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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Physics & Astronomy

Doctor of Philosophy

BREAKING THE QUANTUM LIMIT: THE MAGNETIC FIELD OF NEUTRON

STARS IN EXTRA-GALACTIC BE X-RAY BINARIES

by Helen Klus

Neutron stars are some of the most magnetic objects that have ever been observed, and so

they provide physicists with unique environments where fundamental laws of physics can

be tested. Neutron stars are typically thought to have magnetic fields between 108 and

1014 G. The effects of the quantum electrodynamics are important above the quantum

critical field (BQED) of 4.4×1013 G. In this thesis, I provide evidence that there may be

many more neutron stars with B > BQED than previously thought, and that all neutron

stars in binary systems that are close to spin equilibrium follow the same relationship

between spin period (P ) and magnetic field. In Chapter 2, I determine the long-term

average X-ray luminosity, spin period, and rate of change of spin period for 42 Be X-ray

binaries (BeXB) in the Small Magellanic Cloud (SMC). I use this information, combined

with orbital data, to show that the neutron stars in all of these systems are disc-accreting,

and that ∼ 85% are close to spin equilibrium. All systems with P & 100 s are predicted

to have B > BQED. This applies to ∼2/3 systems. These predicted magnetic fields are

higher than those of neutron stars in Galactic BeXB that have had their magnetic fields

directly measured via cyclotron resonance scattering features (CRSF). I conclude that

this is because the CRSF sources are not close to spin equilibrium. In Chapter 3, I look

at pulse-profiles for the neutron stars discussed in Chapter 2 and find that they contain

an array of features that vary both across and within individual systems. I suggest

that BeXB containing neutron stars with relatively longer spin periods transition from

a pencil to a fan beam at lower luminosities. In Chapter 4, I apply the methods used in

Chapters 2 and 3 to LXP187, a BeXB in the Large Magellanic Cloud (LMC) that is not

close to spin equilibrium. Results for LXP187 help confirm the conclusions of Chapter

2 - that ∼ 2/3 BeXB contain neutron stars with B > BQED.
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Chapter 1

Introduction

1.1 Neutron stars in X-ray binaries

Neutron stars are unique and fascinating objects that cause matter to behave in ways we

could never replicate on Earth. Neutron stars form when massive (∼8-20M⊙, O-B-type)

stars stop fusing matter; they eject most of their mass, and their core collapses under

its own gravitational force in a Type II supernova (this is discussed further in Section

1.1.2.1). In a Type II supernova, the force of gravity is strong enough to overcome

electron degeneracy pressure. Degeneracy pressure is a manifestation of the Pauli exclu-

sion principle, which states that two fermions cannot simultaneously occupy the same

quantum state. When every electron energy level is filled, electron degeneracy pressure

prevents the core from becoming any denser. In a Type II supernova, electron degener-

acy pressure can be overcome, electrons merge with protons to become neutrons, and an

object ∼1.4 M⊙ compacts to a radius of ∼10 km. The core is prevented from collapsing

further due to neutron degeneracy pressure. This makes neutron stars extremely dense;

if the force of gravity were strong enough to overcome neutron degeneracy pressure, and

they became any denser, then they would become black holes. Neutron stars are also

some of the fastest spinning and most magnetic objects ever observed, with spin periods

ranging from ms to thousands of s, and magnetic fields of up to ∼ 1015 G. All of this

means that physicists can use observations of neutron stars in order to test and expand

fundamental laws of physics.

Isolated neutron stars can be observed from Earth because they radiate at the expense of

their rotational energy (Pacini, 1967). This radiation is emitted from the neutron star’s

magnetic poles in a broad spectrum, from radio to gamma-rays (Pellizzoni et al., 2009;

Takata et al., 2012). If a neutron star’s rotational and magnetic axes are misaligned,

then this radiation can travel past our line-of-sight as the star rotates. This makes the

neutron star appear to pulsate, and so neutron stars that emit beamed radiation are

known as pulsars. Some isolated pulsars are powered by ultra-strong magnetic fields

1
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of & 1014 G (Duncan and Thompson, 1992; Camilo et al., 2006). These pulsars emit

bursts of X-ray and gamma-ray radiation. They are known as magnetars, and include

soft gamma repeaters (SGR) and anomalous X-ray pulsars (AXP).

Neutron stars may also emit X-ray radiation if they are in a binary system and accrete

matter from their companion, where accretion refers to the gradual accumulation of

matter under the influence of gravity. Here, matter from the companion falls onto the

neutron star’s magnetosphere. If the neutron star is spinning too fast, then it will be

expelled by the centrifugal force. If matter is able to penetrate the magnetosphere,

however, then its trajectory can be controlled by the magnetic field lines, which can

transfer it to the magnetic poles (this is discussed further in Section 1.2). Matter is

accelerated to free-fall velocities of up to ∼ 0.7 c (Kretschmar et al., 2010). When it

hits the surface, most of its kinetic energy is radiated away as heat, which powers the

X-ray source (this is discussed further in Sections 1.3 and 1.4). Compact objects in

binaries that emit X-ray radiation are known as X-ray binaries, and they are amongst

the brightest extra-solar objects in the sky. X-ray binaries can also include systems with

black holes or white dwarfs, instead of neutron stars, but these will not be discussed in

this work.

Neutron star X-ray binaries can generally be divided into two groups depending on the

mass of their companion. Low mass X-ray binaries (LMXB) contain a companion .2

M⊙, which can be a white dwarf or a luminosity class III-V, K-M-type star. High mass

X-ray binaries (HMXB) contain a companion star &8 M⊙ (Grimm et al., 2003). This is

either a supergiant star (an O-B-type star of luminosity class I-II) - in the case of SGXB

- or an OBe star (an Oe-Be-type star of luminosity class III-V) - in the case of BeXB.

There are very few intermediate mass X-ray binaries (IMXB), X-ray binaries with a

companion ∼2-8 M⊙. This is because IMXB have relatively short accretion timescales,

quickly losing enough mass to become LMXB (van den Heuvel, 1975; Li, 2010).

1.1.1 Low mass X-ray binaries (LMXB)

LMXB form when a neutron star has slowed enough to stop emitting observable radiation

due to the loss of rotational energy, and is spun up again via accretion from a low-

mass companion. In LMXB, the low-mass star fills its Roche lobe, the region in which

material is gravitationally bound to the star. Material outside of the Roche-lobe can

fall onto the binary companion and so accretion can be persistent. An optically-thick

accretion disc forms, as too much angular momentum is accreted for the neutron star

to accrete spherically (this is discussed further in Section 1.2). The accretion of angular

momentum, combined with the relatively low magnetic field of these older neutron stars,

can cause the neutron stars in LMXB to have spin periods on the order of ms. LMXB

generally have X-ray luminosities of ∼ 1035−1038 erg s−1, with .10 keV spectra (Tauris

and van den Heuvel, 2006). Since the two stars must be close enough for Roche lobe
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Figure 1.1: Diagram of a LMXB accreting via Roche-lobe overflow (as discussed
in Section 1.1.1). Image credit: modified from NASA/Ron Elsner.

overflow to occur, the orbital periods of neutron stars in LMXB depend on the mass

of the companion, and typically range from tens of minutes to tens of days (Wu et al.,

2010). A diagram of an LMXB is shown in Figure 1.1.

The accretion timescales of LMXB are determined by the mass-transfer process, and

LMXB typically accrete for ∼ 107 − 109 yr. LMXB are composed of relatively old

stars (with ages of & 109 yr), and so are more frequent in the Galactic bulge and in

globular clusters (Tauris and van den Heuvel, 2006). They have also been observed

outside of the Milky Way, in the Large Magellanic Cloud (LMC), an irregular galaxy

that is gravitationally bound to our own (Nazé, 2009), and in M31, the closest spiral

galaxy to our own (Peacock et al., 2002).

1.1.2 High mass X-ray binaries (HMXB)

HMXB form from a binary system containing two massive stars. The most massive

star evolves fastest, shedding its outer layers, which may be captured by the other star.

It then undergoes a supernova, which makes the orbit wider and more eccentric than

before.

HMXB are divided into two classes; SGXB and BeXB. SGXB have a massive evolved

companion (a luminosity class I-II, O-B-type star). The massive companion of a BeXB

is usually a main sequence star (luminosity class III-V), and has a transient circumstellar

disc. In Chapter 2, I show that these discs have an average radius of ∼ 20 ROB, where

ROB is the radius of the massive star. O-B-type stars that have shown evidence for
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a circumstellar disc are known as OBe stars, because evidence for the disc comes from

hydrogen emission lines in their spectra (discussed further in Section 1.1.2.1). A diagram

of a SGXB is shown in Figure 1.2, and diagrams of BeXB are shown in Figures 1.3 and

1.4.

The neutron stars in SGXB tend to accrete persistently from the massive star’s stellar

wind, either via spherical accretion (with luminosities of ∼ 1035−1036 erg s−1) or Roche

lobe overflow with an accretion disc (with luminosities of ∼ 1035 − 1038 erg s−1) (Tauris

and van den Heuvel, 2006). OBe stars do not fill their Roche lobe, and the velocity of

material in the circumstellar disc is both perpendicular to, and far less than, that of a

direct stellar wind (in SGXB, a direct stellar wind is thought to reach velocities of up

to ∼2000 km s−1 (Negueruela, 2010), whereas I show in Chapter 2 that the velocity of

material at the edge of the circumstellar disc is ∼150 km s−1). This means that BeXB

tend to only accrete from the OBe star’s circumstellar disc during periastron (with

luminosities of ∼ 1035 − 1038 erg s−1). HMXB generally have harder energy spectra

than LMXB (LMXB have spectra kT .10 keV, whereas HMXB have spectra kT &15

keV (Tauris and van den Heuvel, 2006)).

Figure 1.2: Diagram of a wind-fed SGXB (as discussed in Section 1.1.2). Image
credit: modified from NASA/Ron Elsner.

The different methods of accretion are reflected in the different positions these systems

have on the Corbet (1984) diagram, a plot of spin period as a function of orbital period

for HMXB, shown in Figure 1.5. Figure 1.5 shows that disc-fed SGXB have spin periods

on the order of ∼1-10 s, and orbital periods of ∼1-3 d. There are only three confirmed
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Figure 1.3: Diagram of a typical BeXB to scale (as discussed in Section 1.1.2.1; image viewed from above). The values of a, q, Rcd, Vw,
and Vorb are discussed in Section 2.2.1. Diagrams of specific systems are shown in Appendix B.
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Figure 1.4: Diagram of a typical BeXB to scale (as discussed in Section 1.1.2.1; image viewed from the side).
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Figure 1.5: The Corbet (1984) diagram for HMXB (as discussed in Section
1.1.2). Wind-fed SGXB (green) do not show a strong correlation between spin
period and orbital period because they tend to accrete spherically. Disc-fed
SGXB (red) tend to have shorter spin periods if they have longer orbital periods
because they are accreting via Roche lobe overflow. BeXB that are spinning
at their equilibrium spin period (black) tend to have longer spin periods if
they have longer orbital periods because they only accrete during periastron (as
discussed in Section 1.2.2). The open triangles correspond to 2S 0114+65 and
OAO 1657-41, and the open circle to SAX J2103.5+4545. These are all atypical
systems. Image credit: modified from Reig (2011).

disc-fed SGXB, these are most likely accreting persistently via Roche lobe overflow.

Wind-fed SGXB have spin periods on the order of ∼200-900 s, and orbital periods of

∼2-40 d. They do not show a clear correlation between orbital period and spin period.

This is most likely because they are persistently accreting via a spherical wind. BeXB

have spin periods on the order of ∼1-3000 s, and orbital periods of ∼20-400 d. The

neutron stars in BeXB have wider, more eccentric orbits than those in SGXB, and they

tend to have longer spin periods if they have longer orbital periods. This is because

they generally only accrete during periastron, and so systems with longer orbital periods

contain neutron stars that accrete less often, and spend longer amounts of time spinning

down between accretion events. This means that they spin-down faster than neutron

stars with shorter orbital periods. This correlation only holds for prograde systems

with neutron stars that are close to spin equilibrium (as discussed in Section 1.2). The

majority of neutron stars in BeXB are thought to be in prograde orbits (Brandt and

Podsiadlowski, 1995), and in Chapter 2, I argue that most BeXB in the SMC are close

to spin equilibrium.

The accretion time-scale and age of the stars in HMXB are dependent on the mass of the
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companion star. HMXB generally have shorter accretion timescales than LMXB (LMXB

have accretion timescales of ∼ 107 − 109 yr, and HMXB have accretion timescales of

∼ 105 yr (Tauris and van den Heuvel, 2006)). Since massive stars have relatively short

lifetimes, HMXB are also composed of younger stars than LMXB (LMXB contain stars

with ages of & 109 yr and HMXB contain stars with ages of . 107 yr (Tauris and van

den Heuvel, 2006)). The same correlation holds between SGXB and BeXB, where SGXB

are composed of more massive, and therefore younger stars (Binder et al., 2011).

The age of these systems is reflected in their number and location. HMXB are mostly

found in star-forming regions in the Galactic plane. To date, there are at least 68

suspected SGXB in the Galaxy, only one of which is disc-fed (Cen X-3). There are only

two known SGXB outside of the Galaxy. One in the LMC (LMC X-4), and one (SMC

X-1) in the Small Magellanic Cloud (SMC), an irregular dwarf galaxy gravitationally

bound to the LMC. These are both disc-fed (Reig, 2011).

There are a roughly even number of SGXB and BeXB in the Galaxy, with at least 63

suspected BeXB (Reig, 2011). There are even more BeXB, however, outside of the Milky

Way. There are at least 69 BeXB in the SMC, and at least 14 in the LMC. This number

is increasing at a constant rate of ∼2 BeXB per year, while no extra-galactic SGXB

have been discovered since the 1970s.

The SMC has a BeXB population that is comparable in number to the Galaxy, despite

the fact that it is almost two hundred times less massive. The high number of BeXB in

the SMC can be explained by recent bursts of star formation (Antoniou et al., 2010),

combined with the low metallicity environment (Russell and Dopita, 1992). A low

metallicity means weaker line-driven stellar winds, and so binaries are more likely to

remain intact after a supernova (Dray, 2006).

Sub-classes of HMXB include supergiant fast X-ray transients (SFXTs), gamma-ray

binaries, and γ Cas-like objects. SFXT are like SGXB, but their outbursts appear only

sporadically, and last for only a few hours, reaching luminosities of ∼ 1036 − 1037 erg

s−1. These outbursts may result from the accretion of a clump of dense matter from

the stellar wind (Romano et al., 2010). They may also be caused by the decay and

instabilities of their magnetic field, making them magnetars (Grebenev, 2010). Finally,

it is possible that SFXTs are SGXB in highly elliptical orbits, with outbursts occurring

at periastron (Reig, 2011).

Gamma-ray binaries are HMXB that emit most of their radiation in the MeV-TeV range.

There are currently only four members of this group, only one of which is thought to

contain a neutron star and not a black hole, this is PSR B1259-63, although HESS

J0632+057 is a possible candidate (Reig, 2011). Both of these systems contain OBe

stars.
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γ Cas-like objects are BeXB where the OBe star exhibits a series of strong, sharp ab-

sorption lines at irregular intervals. This coincides with the OBe star becoming dimmer,

and is thought to be due to the OBe star ejecting material, which settles into a ring or

a shell around the star (Reig, 2011).

1.1.2.1 Be X-ray binaries (BeXB)

The compact object in the vast majority of BeXB is a neutron star (Reig, 2011), although

there are several white dwarf candidates (Haberl, 1995; de Oliveira et al., 2006; Sturm

et al., 2012), and a single system containing a black hole, which is X-ray quiescent

(Casares et al., 2014; Munar-Adrover et al., 2014). The discovery of this system helps

confirm the idea that BeXB containing black holes are difficult to find because they

undergo long quiescent states (Zhang et al., 2004). This is contrasted with the idea that

there are fewer BeXB containing black holes because they have a lower probability of

being formed in the first place (Belczynski and Ziolkowski, 2009).

This work will concentrate on BeXB containing neutron stars, looking at 42 BeXB in

the SMC in Chapters 2 and 3, and concentrating on a single system in the LMC in

Chapter 4.

Knigge et al. (2011) suggest that BeXB may be split into two populations based on

their spin period, which is related to their orbital period via the Corbet (1984) relation

(discussed in Section 1.1.2). In Knigge et al. (2011), the authors show that the spin

period distribution of 120 confirmed and probable BeXB has two peaks when plotted on

a logarithmic scale. The first peak is at ∼10 s (corresponding to an orbital period of ∼40

d). There is a second, slightly larger peak at ∼200 s (corresponding to an orbital period

of ∼100 d). This is shown in Figure 1.6. The neutron stars in these two populations may

be formed by different types of supernova, where neutron stars with relatively long spin

periods are created in iron-core-collapse supernovae, and neutron stars with relatively

short spin periods are created in electron-capture supernovae (Knigge et al., 2011).

Iron-core-collapse supernovae occur when a high-mass star develops a degenerate iron

core before ceasing fusion and collapsing under its own gravity (Woosley and Janka,

2005). Electron-capture supernovae occur when a lower mass star ceases fusion and

collapses while it still has an oxygen-neon-magnesium core (Nomoto, 1984, 1987; Heger

et al., 2003).

If neutron stars with relatively long spin periods are created in iron-core-collapse su-

pernovae, then they may also have larger masses than those with shorter spin periods.

Neutron stars created in iron-core-collapse supernovae are predicted to have masses of

∼1.4M⊙, and neutron stars created in electron-capture supernovae are predicted to have

masses of .1.3 M⊙ (Nomoto, 1984). Iron-core-collapse supernovae also produce more

energetic neutron star ‘kicks’ (iron-core-collapse supernovae produce neutron star kicks
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Figure 1.6: Distribution of spin periods for neutron stars in BeXB (as discussed
in Section 1.1.2.1). Knigge et al. (2011) suggest that the two populations may
be caused by different formation mechanisms, where neutron stars with longer
spin periods are created in iron-core-collapse supernovae, and neutron stars with
shorter spin periods are created in electron-capture supernovae. Image credit:
Knigge et al. (2011).
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of ≤200 km s−1, whereas electron-capture supernovae are expected to produce neutron

star kicks of ≤50 km s−1 (Podsiadlowski et al., 2004)). A higher velocity kick leads to

an increase in the orbital period and eccentricity of the system.

BeXB can also be split into transient and persistent populations. Most BeXB, including

all known BeXB with spin periods .150 s, are transient, usually only accreting at

periastron, in what are known as Type I outbursts. Transient sources may also emit

outbursts at seemingly random times. These are known as Type II outbursts (Stella

et al., 1986). Type II outbursts last for longer than Type I outbursts (Type II outbursts

can last for longer than the orbital period, whereas Type I outbursts last for ∼25% of

the orbital period). Type II outbursts also reach higher luminosities, increasing by up

to four orders of magnitude, to & 1038 erg s−1, whereas Type I outbursts coincide with

an increase by about an order of magnitude, to 1036 − 1038 erg s−1 (Reig, 2011). Type

II outbursts are most likely caused by the OBe star, where its circumstellar material or

radially driven wind are enhanced so that accretion can occur at a higher rate and at

any phase of the orbit (Stella et al., 1986; Negueruela and Okazaki, 2000).

Persistent BeXB tend to accrete throughout their orbital phase. The 6 known persistent

BeXB have spin periods of &150 s, and tend to have lower luminosities than transient

BeXB (on the order of ∼ 1034 − 1035 erg s−1). They also sometimes have a blackbody

component in their spectra, known as a thermal excess (Bartlett et al., 2013). This

allows the radius of the emission region to be determined. In Chapter 4, I provide

evidence that LMC source LXP187 (also known as Swift J045106.8-694803) is also a

persistent source. Persistent emission is most likely related to the behaviour of the OBe

star’s circumstellar disc, which may also be persistent in these sources (Bartlett et al.,

2013).

The behaviour of an OBe star’s circumstellar disc can be observed in the optical and

infra-red bands. The presence of a circumstellar disc can be inferred by Hα emission

lines, which are caused by ionised hydrogen in the circumstellar disc absorbing and

re-emitting the optical and ultraviolet light from the OBe star. Hα emission lines are

shown in Figure 1.7. OBe stars also show more infrared emission than O or B-type stars.

This is a result of free-free and free-bound emission from the circumstellar disc (Woolf

et al., 1970; Gehrz et al., 1974). The size of the circumstellar disc is directly related

to the equivalent-width of the Hα emission line (EW Hα) (Hanuschik, 1989; Huang,

1972).

The circumstellar disc of OBe stars in X-ray binaries are often truncated compared

to those of isolated OBe stars due to the tidal interaction of the neutron star. This

means that their circumstellar discs are smaller and more compact (Reig et al., 1997;

Negueruela and Okazaki, 2001; Okazaki and Negueruela, 2001; Okazaki et al., 2002).
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Figure 1.7: The spectra of a BeXB showing emission lines that indicate the
presence of a circumstellar disc (as discussed in Section 1.1.2.1). Image credit:
Reig (2011).

1.2 Accretion theory for neutron stars in BeXB

The magnetic field of neutron stars in BeXB can be determined directly, from cyclotron

resonance scattering features (CRSF) in their spectra (discussed further in Section 1.3.1),

or indirectly, using accretion theories. Accretion theories differ, depending on whether

accretion is taking place via an accretion disc or a spherical wind.

In BeXB, matter from the OBe star’s circumstellar disc begins accreting onto the neu-

tron star’s magnetosphere from the gravitational capture or Bondi-Hoyle radius (RB)

(Davidson and Ostriker, 1973; Alpar et al., 1982).

RB =
2GMNS

V 2
rel

, (1.1)

where G is the gravitational constant, MNS is the mass of the neutron star, and Vrel is

the relative velocity of accreted matter (discussed further in Section 2.2.1).

The amount of accreted angular momentum is great enough to cause an accretion disc

to form at the circularisation radius (Rcirc).

Rcirc =
J2

GMNS
, (1.2)

where J is the net angular momentum (l) per unit mass.
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Figure 1.8: Diagram of quasi-spherical accretion in a BeXB. In spherical accre-
tion, matter is accreted from the gravitational capture or Bondi-Hoyle radius
(RB). Within the Alfvén radius (RA), it can be channelled by the neutron
star’s magnetic field lines to the magnetic poles. In quasi-spherical accretion,
matter first settles down subsonically onto the rotating magnetosphere, forming
an extended quasi-static shell extending from RA to RB (Postnov et al., 2011;
Shakura et al., 2012, 2013) (as discussed in Section 1.2). Image credit: Shakura
et al. (2013).

A disc cannot form inside of the neutron star’s magnetosphere, however, and so a disc

can only form if the circularisation radius is larger than the radius of the neutron star’s

magnetosphere. The neutron star’s magnetosphere is approximately within the Alfvén

radius (RA) (Elsner and Lamb, 1977). Here the ram pressure of accreted matter equals

the magnetic pressure, and so the kinetic energy density of accreted matter (12ρaV
2,

where ρa is the density of the accreted matter, and V is the velocity) equals the magnetic

energy density (B2/8π, where B is the magnetic field). Assuming that matter falls onto

the magnetosphere in spherical radial free fall (ff), then

V = Vff =
√

2GMNS/RA, (1.3)

and,

ρa =
Ṁ

4πVffR
2
A

. (1.4)

Assuming the magnetic field is dipolar, then

µ = BR3, (1.5)
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where µ is the magnetic dipole moment, and R is the radius. In this case, R = RA, and

so,
1

2
ρaV

2 = B2/8π (1.6)

giving

RA =

(

µ4

2GMNSṀ2

)1/7

. (1.7)

If Rcirc < RA, then an accretion disc cannot form, and accretion occurs via spherical or

quasi-spherical wind accretion. If Rcirc > RA, then an accretion disc can form, outside

of the neutron star’s magnetosphere.

Rcirc depends on the net angular momentum per unit mass, which is related to the mass-

accretion rate (Ṁ ; equation (2.11)). This is directly related to the X-ray luminosity (L)

via

L =
dE

dt
=
GMNSṀ

RNS
(1.8)

where E is energy, and RNS is the radius of the neutron star (Novikov and Thorne,

1973).

Neutron stars in BeXB can sometimes exceed the Eddington luminosity (LEdd). The

Eddington luminosity is the maximum luminosity that an object can reach, assuming it

is accreting spherically. This occurs when the radiation pressure on in-falling material

is equal to the gravitational force of the star,

GMNSmp

R2
=
LEddσT
4πcR2

, (1.9)

where mp is the mass of a proton, σT is the Thomson cross section for the electron, and

c is the speed of light, and so

LEdd =
4πcGMNSmp

σT
,

∼= 1.26 × 1038
MNS

M⊙

erg s−1.

(1.10)

Neutron stars in BeXB may produce L > LEdd because the accretion is asymmetric,

and so radiation may escape from the sides of the accretion column (discussed further

in Section 1.3). The opacity may also be less than that given by Thomson scattering

due to the relatively high magnetic field (Srinivasan, 2006).

1.2.1 Wind accretion

If there is not enough angular momentum for an accretion disc to form outside of the neu-

tron star’s magnetosphere, then matter can fall on to the neutron star’s magnetosphere
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in all directions, as shown in Figure 1.8. This is known as spherical wind accretion, or

Bondi-Hoyle accretion (Illarionov and Sunyaev, 1975; Illarionov and Kompaneets, 1990).

For a neutron star in a prograde orbit, accreting via a spherical wind, the spin-up torque

(τup (wind)) is equal to

τup (wind) = 2πṀηR2
BP

−1
orb , (1.11)

where Porb is the orbital period, and η is a parameter accounting for dissipation of

angular momentum in the accreting material, 0 < η < 1, and is assumed in this work

to be 0.25 ± 0.75
0.15 (Ikhsanov and Finger, 2012; Lipunov, 1992). Equation (1.11) shows

that the spin-up rate of a wind-accreting neutron star depends on the mass-accretion

rate, and hence X-ray luminosity (equation (1.8)), the orbital period, and the relative

velocity of accreted matter (equation (1.1)). The spin-up rate is not affected by the

neutron star’s magnetic field.

The spin-down torque (τdown), caused by the loss of rotational energy, is the same for

wind and disc-accreting systems, and is equal to

τdown = κtµ
2/Rco

3, (1.12)

where κt is a dimensionless efficiency parameter, accounting for the conductivity, spec-

trum of turbulence and inhomogeneities of the accreting material, 0 < κt < 1, and

is assumed in this work to be 1/3 ±
2/3
1/3 (Lipunov, 1992; Ikhsanov and Finger, 2012;

Ikhsanov et al., 2014). Rco is the radius at which matter co-rotates with the neutron

star and its magnetosphere,

Rco =

(

GMNSP
2

4π2

)1/3

. (1.13)

Equation (1.12) shows that a neutron star in a BeXB spins down at a higher rate the

higher the magnetic field, and the shorter the spin period.

When a neutron star is neither spinning up nor down on average, and so has a long-term

average Ṗ of ∼ 0, the spin-up torque equals the spin-down torque, and so

τup (wind) = τdown (1.14)

2πṀηR2
BP

−1
orb = κtµ

2/Rco
3. (1.15)

The magnetic field on the surface of the neutron star can then be found using equation

(1.5),

B ∼= 8.7 × 1013 G

(

4η

3κt

)1/2

R−3
NS6

(

MNS

M⊙

)3/2

Ṁ
1/2
16

(

Vrel
100 km s−1

)−2 P/100

(Porb/10 d)1/2
.

(1.16)
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Here Vrel is measured in km s−1, Porb is measured in d, and everything else is in cgs

units, RNS6 = RNS/10
6 and Ṁ16 = Ṁ/1016. η and κt are normalised to values of

1/4 and 1/3 respectively. Equation (1.16) shows that in wind-accreting systems, with a

long-term average Ṗ of ∼ 0, and a set MNS and RNS , B is proportional to P and L,

and inversely proportional to Vrel and Porb. Here B is most affected by Vrel.

Postnov et al. (2011) and Shakura et al. (2012) suggest that these equations need to be

adjusted. This is because matter settles down subsonically onto the rotating magneto-

sphere, forming a quasi-static shell that extends from RA to RB, and material must pass

through this shell before being accreted (as shown in Figure 1.8). Shakura et al. (2012)

find

B ∼= 6× 1014 G R−3
NS6Ṁ

1/3
16

(

Vrel
100 km s−1

)−11/3 ( P/100

Porb/10 d

)11/12

. (1.17)

As with equation (1.16), Vrel is measured in km s−1, Porb is measured in d, and everything

else is in cgs units. Equation (1.17) shows that in wind-accreting systems, with a long-

term average Ṗ of ∼ 0, and a set MNS and RNS , B is proportional to P and L, and

inversely proportional to Vrel and Porb. B is most affected by Vrel, and is more affected

by this factor in equation (1.17) than in equation (1.16).

1.2.2 Disc accretion

An accretion disc forms if Rcirc > RA, and, in Chapter 2, I predict that this is the

case for most BeXB. Disc accretion brings with it directional angular momentum, which

generally causes the neutron star to spin-up. This is only true, however, if the neutron

star is in a prograde orbit, meaning that the neutron star orbits in the same direction as

material in the OBe star’s circumstellar disc. The majority of neutron stars in BeXB are

thought to be in prograde orbits (Brandt and Podsiadlowski, 1995), although there may

be a misalignment between the spin axis of the OBe star’s circumstellar disc and the spin

axis of the binary orbit (Martin et al., 2009). This may be due to the supernova kick

that occurred when the neutron star was formed (Lai, 1996), or from radiation-induced

warping within the OBe star’s circumstellar disc (Pringle, 1996).

The spin-up torque of a prograde BeXB accreting via an accretion disc is equal to

τup (disc) = Ṁ
√

GMNSǫRA, (1.18)

where ǫ is a numerical coefficient equal to R0/RA. R0 is defined as the radius at which

accreted matter is forced to follow the magnetic field lines, 0 < ǫ < 1, and is assumed in

this work to be 0.5 ± 0.5
0.4 RA (Ghosh and Lamb, 1979; Lipunov, 1992). Equation (1.18)

shows that in disc-accreting BeXB, the neutron star spins up at a higher rate the higher

the mass-accretion rate, and hence X-ray luminosity (equation (1.8)), and the higher
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the magnetic field (equation (1.7)). The spin-down torque is the same as in the wind

accretion case (equation (1.12)) and has a stronger dependence on µ than the spin-up

torque for disc-accreting systems.

The magnetic field of a disc-accreting neutron star with a long-term average Ṗ of ∼ 0

can be calculated by equating the spin-up and spin-down torques (Pringle and Rees,

1972). This gives

τup (disc) = τdown (1.19)

Ṁ
√

GMNSǫRA = κtµ
2/Rco

3, (1.20)

and so

B ∼= 1.9 × 1013 G

(

2ǫ

9κ2t

)7/24

R−3
NS6

(

MNS

M⊙

)5/6

Ṁ
1/2
16

(

P

100

)7/6

, (1.21)

where ǫ and κ are normalised to values of 1/2 and 1/3 respectively. Equation (1.21)

shows that in disc-accreting systems, with a long-term average Ṗ of ∼ 0, and a set MNS

and RNS , B is proportional to P and L. This means that if these systems have similar

luminosities, neutron stars with longer spin periods must have higher magnetic fields. If

L = 1037 erg s−1, MNS=1.4M⊙, and RNS=10 km, for example, then neutron stars with

spin periods >68 s are predicted to have magnetar-strength magnetic fields (B > BQED,

where BQED
∼= 4.4× 1013 G is the quantum critical field, discussed in Section 1.3.1).

For disc-accreting neutron stars with a long-term average Ṗ of ∼ 0, the magnetic field

can also be calculated by equating Rco with RA (Davidson and Ostriker, 1973; Alpar

et al., 1982). This is because matter has no affect on the neutron star’s spin period if

it is co-rotating with the neutron star’s magnetosphere, and so is neither accreted nor

expelled (this is discussed further below). If Rco = RA, then the magnetic field of a

neutron star with a set MNS and RNS is proportional to P and L,

Rco = RA (1.22)

(

GMNSP
2

4π2

)1/3

=

(

µ4

2GMNSṀ2

)1/7

, (1.23)

and so

B ∼= 1.5× 1013 G R−3
NS6

(

MNS

M⊙

)5/6

Ṁ
1/2
16

(

P

100

)7/6

. (1.24)

Equation (1.24) gives slightly lower results than equation (1.21). If L = 1037 erg s−1,

MNS=1.4 M⊙, and RNS=10 km, then neutron stars with spin periods >84 s are pre-

dicted to have magnetic fields > BQED.

The neutron stars in BeXB do not always have a long-term average Ṗ of ∼ 0. Neutron

stars in BeXB first appear as radio pulsars, during what is known as the ejector phase

(Lipunov, 1992; Fu and Li, 2012). During this phase they radiate at the expense of
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their rotational energy, and the pressure of outgoing radiation and particles is larger

than the pressure of accreted matter at RB . This means that matter from the OBe

star’s circumstellar disc cannot pass within this radius. The propeller phase begins

when the neutron star has spun down enough for matter to be able to pass within RB

(Shvartsman, 1970; Illarionov and Sunyaev, 1975). A hot, spherical quasi-static envelope

can form around the neutron star’s magnetosphere, but matter cannot pass within the

magnetosphere because Rco is within RA, and so the neutron star is spinning too quickly

(Davidson and Ostriker, 1973; Alpar et al., 1982). Instead, the centrifugal force causes

matter to accelerate outwards, taking away angular momentum, and causing the neutron

star to spin-down further. The neutron star spins down until its magnetosphere is co-

rotating with the accreted material (Rco = RA). At rotational velocities below this

(Rco > RA), matter is usually able to penetrate the magnetosphere. If the material is

still too hot to be accreted, however, then the neutron star spins down at a subsonic

speed, losing further rotational energy until material has cooled enough to be able to

penetrate the neutron star’s magnetosphere. This is known as the subsonic propeller

phase, and is how neutron stars with spin periods &1000 s are thought to form (Davies

and Pringle, 1981; Ikhsanov, 2001a,b, 2007). Accreted material causes the neutron star

to spin up, assuming a prograde orbit, but it continues to spin-down between accretion

events. The neuron star is said to be close to spin equilibrium when the spin-up rate

during accretion is counterbalanced by the spin-down rate between accretion events, and

Ṗ converges on 0 (Davidson and Ostriker, 1973; Alpar et al., 1982). This will happen

when the neutron star’s spin period converges on the period corresponding to Rco = RA,

which is known as its equilibrium spin period (Peq).

The magnetic field of a neutron star that is not close to spin equilibrium can be found

by considering the total net torque (τtot).

τtot = I × α, (1.25)

where α is the angular acceleration

α = ν̇ =
−2πṖ

P 2
, (1.26)

and I is the moment of inertia,

I = 0.4 ×MNSR
2
NS . (1.27)

This gives

τtot =
−2πIṖ

P 2
. (1.28)

If a system is close to spin equilibrium, then

τtot = τup (disc) − τdown
∼= 0. (1.29)
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If a system is not close to spin equilibrium, then equation (1.29) may be incorrect.

Instead, the Ghosh and Lamb (1979) model can be used to determine the neutron star’s

magnetic field. Here

τtot = τup (disc)n(ωs), (1.30)

where n(ωs) varies depending on Ṗ .

For 0 < ωs < 0.9,

n(ωs) = 1.39(1 − (ωs[4.03(1 − ωs)
0.173 − 0.878]))(1 − ωs)

−1 (1.31)

within 5% accuracy, where ωs is known as the fastness parameter.

ωs = (ξ0RA/Rco)
3/2, (1.32)

where ξ0 is a numeral coefficient assumed to be 0.38. This gives

ωs = 1.35µ
6/7
30 R

−3/7
NS6

(

MNS

M⊙

)−2/7

(PL
3/7
37 )−1, (1.33)

where L37 = L/1037.

In the case of spin equilibrium (Ṗ = 0, Rco = RA), ωs
∼= ξ

3/2
0 , and n(ωs) ∼= 0. For

systems that are spinning up (Ṗ < 0, Rco > RA), ωs < ξ
3/2
0 , and n(ωs) > 0. For systems

that are spinning down (Ṗ > 0, Rco < RA), ωs > ξ
3/2
0 , and n(ωs) < 0. ωs

∼= 0.35 when

n(ωs) approaches 0.

Equations (1.30) - (1.33) show that

− Ṗ = 5.0 × 10−5(ǫ/0.5)1/2µ
2/7
30 n(ωs)R

6/7
NS6

(

MNS

M⊙

)−3/7

I−1
45 (PL

3/7
37 )2 s yr−1, (1.34)

where ǫ is assumed to be 0.5. This means that the magnetic field of a disc-accreting

neutron star with a set MNS and RNS is dependent only on Ṗ and PL3/7. Results for

the Ghosh and Lamb (1979) model for systems that are close to spin equilibrium are

∼ 1.4 times lower than those calculated using equation (1.21). A comparison of results

from disc accretion models is given in Figure 2.18.

A similar model to the Ghosh and Lamb (1979) model, which we refer to as the Kluzniak

and Rappaport (2007) model, uses a different value for ǫ, which is assumed to be 0.52,

and ξ0, which is assumed to be 0.97. Kluzniak and Rappaport (2007) also use a different

value for RA, where RA (K&R) = 21/7RA, and n(ωs), which is designated g(ωs).

For 0 < ωs < 1,

g(ωs) =
10

9

[

1−
1

20

ωs

1− ωs

]

. (1.35)
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In the case of spin equilibrium, ωs approaches ξ
3/2
0 , and g(ωs) approaches 0. With a ξ0

of 0.97, ξ3/2 ∼= 0.95.

Using the Kluzniak and Rappaport (2007) model,

− Ṗ = 6.2× 10−5(ǫ/0.52)1/2µ
2/7
30 g(ωs)R

6/7
NS6

(

MNS

M⊙

)−3/7

I−1
45 (PL

3/7
37 )2 s yr−1, (1.36)

where ǫ is assumed to be 0.52. Results from these models can be found assuming the

system is close to spin equilibrium (with Ṗ = 0), by working out which value would give

a n(ωs) of 0, given P and L. Results calculated from the Ghosh and Lamb (1979) model

are ∼1.18 times larger than results from the Kluzniak and Rappaport (2007) model for

systems that are close to spin equilibrium.

Figures 1.9-1.12 show simulated results for the Ghosh and Lamb (1979) and Kluzniak

and Rappaport (2007) models. These were created by assuming values for B, MNS ,

RNS , and ǫ, and then varying PL
3/7
37 over values of 1-3200. Ṗ is then determined for

each value using equation (1.34) for the Ghosh and Lamb (1979) model, and equation

(1.36) for the Kluzniak and Rappaport (2007) model.

Figure 1.9 shows simulated results for neutron stars with B = 1012 and B = 1014 G,

MNS = 1.4 M⊙, and RNS = 10 km, determined using the Ghosh and Lamb (1979)

and Kluzniak and Rappaport (2007) models. The difference between spin-up and spin-

down results is highlighted. Figure 1.10 shows simulated results for neutron stars with

B = 104 − 1015 G, MNS = 1.4 M⊙, and RNS = 10 km, using the Ghosh and Lamb

(1979) model. Figure 1.11 shows simulated results for neutron stars of different masses

and radii, with B = 1012 and B = 1014 G, determined using the Ghosh and Lamb (1979)

model. Finally, Figure 1.12 shows simulated results for neutron stars of MNS = 1.4 M⊙,

RNS = 10 km, and B = 1012 G determined using the Ghosh and Lamb (1979) model,

using values of ǫ ranging from 0.1-1. The shape of the simulated results have vertical

and diagonal parts. These correspond to the fact that as a system spins up or down,

it’s P will get shorter or longer until it reaches the equilibrium value. It’s PL
3/7
37 will

then remain fairly constant. This means that the vertical parts correspond to results for

systems that are close to spin equilibrium, and the diagonal parts to results for systems

that are not close to spin equilibrium. Many systems will produce results that fall on

two different lines, a diagonal line representing the simulated results of a relatively low

magnetic field, and a vertical line representing the simulated results of a relatively high

magnetic field.

Some accreting pulsars have been found to have magnetar-strength magnetic fields using

accretion theories (Fu and Li, 2012; Reig et al., 2012; Ekşi et al., 2014). The first evidence

for highly magnetised accreting neutron stars came from Pizzolato et al. (2008), who

showed that the X-ray source 1E161348-5055 may be a neutron star with B ∼= 1015 G.

1E161348-5055 is part of a LMXB system. This was shortly followed by Bozzo et al.
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Figure 1.9: Simulated results for neutron stars with B = 1012 and B = 1014 G,
MNS = 1.4 M⊙, and RNS = 10 km, determined using the Ghosh and Lamb
(1979) (equation (1.34)) model for systems that are spinning up (blue) and
down (red) on average. Simulated results determined using the Kluzniak and
Rappaport (2007) (equation (1.36)) model for systems that are spinning up
(green) and down (orange) on average are also shown.

Figure 1.10: Simulated results for neutron stars with B = 104−1015 G, MNS =
1.4 M⊙, and RNS = 10 km, determined using the Ghosh and Lamb (1979)
(equation (1.34)) model (as discussed in Section 1.2.2).
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Figure 1.11: Simulated results for neutron stars of different masses and radii
(z +1 = 1.15-1.45, where z is the gravitational red-shift, equation (1.38)), with
B = 1012 and B = 1014 G, determined using the Ghosh and Lamb (1979)
(equation (1.34)) model (as discussed in Section 1.2.2).

Figure 1.12: Simulated results for neutron stars of MNS = 1.4 M⊙, RNS = 10
km, and B = 1012 G determined using the Ghosh and Lamb (1979) (equation
(1.34)) model (as discussed in Section 1.2.2). The black lines indicate the min-
imum and maximum results using values of ǫ = 0.45 and ǫ = 0.55 respectively.
The grey lines indicate more extreme values, of ǫ = 0.10, ǫ = 0.30, and ǫ = 1.
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(2008), who argued that highly magnetised neutron stars may also exist in HMXB. The

neutron stars in these systems are not referred to as magnetars because their emission

is powered by accretion, rather than the decay and instabilities of their magnetic fields,

however they have the potential to become accreting magnetars. LSI+61◦303, which

is part of a BeXB, previously showed magnetar-like behaviour when it underwent two

bursts similar to those of SGR (Torres et al., 2012; Papitto et al., 2012).

In Chapter 2, I apply all of these accretion theories to neutron stars in 42 transient

BeXB in the SMC, and in Chapter 4, I do the same with LXP187, a persistent BeXB

in the LMC. I show that ∼ 2/3 BeXB may have B > BQED. Accretion theories can be

verified by applying them to neutron stars that have had their magnetic fields measured

directly via CRSF (discussed in Sections 1.3.1 and 2.4).

1.3 The spectra of neutron stars in BeXB

In BeXB, once matter passes through the neutron star’s magnetosphere it is channelled

by the magnetic field lines to the neutron star’s magnetic polar caps. At relatively

low luminosities, and hence low mass-accretion rates (equation (1.8)), a thermal mound

of accreted material forms on the surface, which emits blackbody radiation. Due to

the flatness of the mound, most radiation is emitted vertically (in the direction of the

magnetic field lines). This produces a beam of radiation described as a ‘pencil’ beam.

The thermal mound above the neutron star’s polar caps have been measured to be

. 1 km2 for neutron stars in BeXB with P > 150 s, where the size of the cap tends to

be smaller the longer the neutron star’s spin period (Bartlett et al., 2013).

As the mass-accretion rate increases, the amount of radiation emitted from the mag-

netic poles increases, creating a shock wave. Incoming matter is decelerated by the

shock wave, creating an accretion column. The pencil beam is suppressed, and X-rays

are emitted from the side of the column (perpendicular to the magnetic field lines)

via bremsstrahlung and cyclotron emission. These photons can then be scattered by

collisions with high-energy electrons, creating cyclotron resonance scattering features

(Becker and Wolff, 2007). Emission from an accretion column produces a beam of ra-

diation described as a ‘fan’ beam (Basko and Sunyaev, 1975; Wang and Frank, 1981;

Wang and Welter, 1981; Parmar et al., 1989). The geometry resulting in pencil and

fan beams is shown in Figure 1.13 (and discussed further in Section 1.4.2). Figure 1.14

shows X-ray emission from the accretion column, and Figure 1.15 shows the different

spectra produced by the different emission processes.

The spectra of BeXB are dominated by bremsstrahlung, which produces an absorbed

power-law spectrum with photon indexes in the range of 0.6-1.4 (Haberl et al., 2008)

and high-energy cut-offs in the range of 10-30 keV (Lutovinov et al., 2005; Reig, 2011).
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Figure 1.13: Diagram of material accreting onto the magnetic polar cap of a
neutron star, showing the geometry resulting in fan (left) and pencil (right)
beams (as discussed in Sections 1.3 and 1.4.2). Image credit: Schonherr et al.
(2007).

The spectra of BeXB sometimes also exhibit an emission line at 6.4 keV. This occurs

when high-energy photons collide with iron ions in the accretion disc.

1.3.1 Cyclotron resonance scattering features

Cyclotron resonance scattering features (CRSF) provide a direct way of measuring a

neutron star’s magnetic field in the region where the radiation is emitted. CRSF are

formed when photons are Compton scattered by electrons that are accelerated by the

neutron star’s magnetic field. The electron motions are quantised into Landau orbits.

These correspond to discrete energy levels, where the energy of each electron is known

as its cyclotron energy (Ecyc(0)) (Daugherty and Harding, 1986). When photons collide

with these electrons, they lose an energy equal to Ecyc(0), creating broad absorption lines

in the X-ray spectrum. The cyclotron energy depends on the strength of the magnetic

field via

Ecyc(0) = n
~eB

mec
, (1.37)

where h is Planck’s constant and ~ = h/2π, e is the elementary charge, me is the electron

rest mass, and n is the quantum number corresponding to the Landau level, where the

lowest energy level is at n=1 (Canuto and Ventura, 1977). The absorption lines are
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Figure 1.14: Diagram of material accreting onto the magnetic polar cap of a
neutron star, resulting in a fan beam (as discussed in Sections 1.3 and 1.4.2).
Photons are created via blackbody radiation on the surface of the thermal
mound near the base of the column. They are also created above the mound
via bremsstrahlung and cyclotron emission. These photons can then be Comp-
ton scattered by electrons within the column resulting in CRSF. Image credit:
Becker and Wolff (2007).

shifted by a factor of (1+z)−1, where z is the gravitational red-shift, due to the neutron

star’s strong gravitational field. z is related to the mass and radius of the neutron star

via

1 + z =
(

1−
2G

c2
MNS

RNS

)−0.5
, (1.38)

as discussed in Section 3.2.1. Neutron stars in X-ray binaries typically have 1+ z values

of 1.25-1.40 (Caballero and Wilms, 2012).

This means that the observed cyclotron energy (Ecyc) is

Ecyc = n
~eB

mec
(1 + z)−1,

∼= 11.57 keV B12 n (1 + z)−1.

(1.39)

The effects of the quantum electrodynamics (QED) are important above the quantum

critical field. This transition occurs when an electron’s cyclotron energy equals its rest
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Figure 1.15: The components of the spectra of a HMXB (as discussed in Section
1.3). Image credit: Becker and Wolff (2007).

mass energy (mec
2), and hence its cyclotron radius is comparable to its de Broglie radius.

This change occurs at

n
~eB

mec
= mec

2, (1.40)

and so at n=1,

BQED =
m2

ec
3

~e
∼= 4.4 × 1013 G. (1.41)

It is difficult to find CRSF in the spectra of neutron stars with magnetic fields & 1013 G.

This is because Ecyc ∝ B, and CRSF from electrons are no longer visible in the X-ray

spectrum at this magnetic field strength, although lines from protons may be present.

Isolated pulsars RXJ0720.43125 and RBS1223 have been determined to have magnetic

fields of 2.4× 1013 G and 3.4× 1013 G, respectively, using CRSF from protons (Haberl,

2007). Neutron stars in twelve BeXB have had their magnetic fields measured via CRSF,

and these fields range from ∼ 1012−1013 G. In Chapter 2, I compare the magnetic fields

of these systems to those predicted using the accretion theories discussed in Section 1.2.
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1.4 Pulse-profiles for neutron stars in BeXB

The geometry of the emission region of an accreting neutron star affects its pulse-profile.

If a single magnetic pole were visible, and emitting radiation vertically, in a pencil beam,

then we would view it rise in luminosity, as it appears on the neutron star’s horizon and

rotates towards our line-of-sight. It would then decrease in luminosity as it disappears

over the horizon. This would produce a sinusoidal pulse-profile with one peak per phase.

The trough of this wave does not reach zero, but settles on a value determined by the

pulse-fraction. The pulse-fraction is the fraction of pulsed flux relative to the total flux,

where the un-pulsed component of the flux depends on the level of background radiation.

Figure 1.16 shows examples of typical sinusoidal pulse-profiles, which may result from

a pencil beam geometry. The structure of the pulse-profiles of neutron stars in BeXB

are often more complex than this, with complexities arising for a number of reasons

discussed in Sections 1.4.1-1.4.5.

Figure 1.16: Roughly sinusoidal pulse-profiles (as discussed in Section 1.4), as
would be expected from a pencil beam geometry (see Figure 1.13, also Sections
1.3 and 1.4.2). The pulse-profiles are normalised to the average count-rate
and the phase-shift is arbitrary (pulse-profiles from SXP2.37 (left) and SXP169
(right), also shown in Figures C.2 and C.21).

1.4.1 Number of visible poles

Pulse-profiles may be more complicated than the sinusoidal model discussed above be-

cause the secondary pole, the furthest magnetic pole from the observer, may sometimes

be visible. This is due to gravitational bending, a classical effect of general relativity

caused by the neutron star’s strong gravitational field. If the neutron star’s magnetic

poles are 180◦ apart, then the secondary pole is at its brightest when the closest mag-

netic pole to the observer, the primary pole, is not visible. This means that the trough

in the sinusoidal profile is filled.
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The number of poles that are visible at any one time depends on the angle between

the neutron star’s rotational axis and the observer’s line-of-sight (i), the angle between

the neutron star’s magnetic axis and its spin axis (θ), and z, the gravitational redshift,

which depends on MNS and RNS (equation (1.38)). i and θ are shown in Figure 3.2.

A method for modelling pulse-profiles in order to determine i, θ, and z is discussed in

Section 3.2.1.

1.4.2 Geometry of the emission region

The structure of pulse-profiles may also vary from a simple sinusoidal model when an

accretion column forms, resulting in a fan beam. The geometry resulting in fan and

pencil beams is shown in Figure 1.13, and discussed in Section 1.3.

A fan beam produces a peak in the pulse-profile that is out of phase with the peak from

the pencil beam by about half a phase. This is because radiation from the fan beam

is emitted perpendicular to radiation from the pencil beam. It is also emitted in more

than one direction, which may widen the peak. Wang and Welter (1981) show that fan

beams can produce sharp features, as the fan beam rotates behind the horizon of the

neutron star.

Figure 1.17: Pulse-profiles from SXP2.37 (SMC X-2) showing a transition from
a pencil beam to a fan beam at increasing luminosities (as discussed in Sections
1.3 and 1.4.2, luminosity is given in the top left-hand corner in erg s−1, and
increases from left to right). The pulse-profiles are normalised to the average
count-rate and the phase-shift is arbitrary (these pulse-profiles are also shown
in Figure 3.14 and discussed in Section 3.3.2.1).

Double-peaked structure may result from the transition from a pencil beam geometry to

a fan beam geometry at increasing mass-accretion rates, and hence luminosities (equation

(1.8)) (Wang and Welter, 1981; White et al., 1983; Parmar et al., 1989). At relatively low

L, the pencil beam dominates the pulse-profile, with a single magnetic pole producing

an approximately sinusoidal peak. As L increases, the fan beam appears, resulting

in a secondary peak in the pulse-profile, about half a phase apart from the first. As L

increases further, the pencil beam is further suppressed, and the peak from the fan beam

becomes dominant, so that the secondary peak is around the same amplitude as the first,

resulting in double-peaked structure. Finally, the first peak may disappear completely,

as the pencil beam is completely suppressed and radiation is no longer emitted parallel
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to the magnetic field lines. Figure 1.17 shows the possible transition from a pencil beam

geometry to a fan beam geometry for SXP2.37 (also known as SMC X-2), which is

discussed further in Section 3.3.2.1.

This behaviour has previously been observed in pulse-profiles of many BeXB. Bildsten

et al. (1997) show that A 0535+ 262, which has a P of 105 s, exhibits single-peaked

structure at 4.0×1036 erg s−1 and double-peaked structure at 9.1×1037 erg s−1. Parmar

et al. (1989) show that the pulse-profiles of EXO 2030+ 375, which has a P of 42 s, exhibit

single-peaked structure at 1.2× 1036 erg s−1, double-peaked structure at 2.8× 1037 erg

s−1, and single-peaked structure again at 1.0× 1038 erg s−1. Chen et al. (2008) describe

similar behaviour in 4U 1901+ 03, Mukerjee et al. (2000) in V0332+53, Coe et al. (2009)

in SXP7.92, and Tsygankov et al. (2006) in Cepheus X-4. Her X-1 has also exhibited

double-peaked structure. Trümper et al. (1986) explained this as the result of precession

of the magnetic axis, however, Parmar et al. (1989) suggest that this cannot be the case,

since Soong et al. (1987) observed these changes in pulse-profiles taken only 20 hours

apart. This is too short a time for the magnetic axis to have moved, and so this may also

be due to a transition from a pencil beam to a fan beam. The structure of pulse-profiles

can be energy dependent. This is because fan and pencil beam components dominate at

different energies (Nagel, 1981a,b; White et al., 1983). In Chapter 3, I show that many

BeXB in the SMC produce pulse-profiles with double-peaked structure.

1.4.3 Asymmetry

Figure 1.18: Pulse-profiles showing asymmetry (as discussed in Section 1.4.3).
The pulse-profiles are normalised to the average count-rate and the phase-shift
is arbitrary (pulse-profiles from SXP18.3 (left) and SXP46.6 (right), also shown
in Figures C.10 and C.12).

Pulse-profiles may also show peaks that are asymmetric; they may rise sharply and fall

gradually, or vice versa. Mytrophanov and Tsygan (1978) suggested that asymmetric

pulse-profiles may be formed if photons escape the accretion column in an asymmetric

fashion, due to an asymmetry in the magnetic field lines. Wang and Welter (1981)

suggested that asymmetries can form when the fan beam is disrupted by asymmetries
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in the flow of accreted material through the magnetosphere. This may cause matter to

fall on the magnetic pole at different angular velocities, making the accretion column

brighter on one side than the other. Figure 1.18 shows examples of pulse-profiles with

asymmetry.

1.4.4 Dips

The structure of pulse-profiles may also vary due to dips. These may look like the

emergence of double-peaked structure, but are not attributed to the appearance of a fan

beam as they do not appear with a peak that is about half a phase from the main peak.

This behaviour has been observed in a number of neutron stars within BeXB, including

GRO J1008- 57 (Naik et al., 2011), EXO 2030+ 375 (Naik et al., 2013), A0535+ 262

(Naik et al., 2008), and 1A 1118- 61 (Maitra et al., 2012). This behaviour is also energy

dependent, with the dips disappearing at higher energies. This may be because the dips

are caused by an additional absorption component that obscures the radiation (Galloway

et al., 2001). Figure 1.19 shows examples of pulse-profiles with dips.

Figure 1.19: Pulse-profiles showing dips (as discussed in Section 1.4.4). The
pulse-profiles are normalised to the average count-rate and the phase-shift is
arbitrary (pulse-profiles from SXP8.80 and SXP756, also shown in Figures C.6
and C.40).

1.4.5 Magnetic field

Systems with B > BQED may be more likely to have magnetic poles that are not

antipodal, and are of different sizes and temperatures. Haberl (2007) shows this to be

the case for RX J0720.4 3125 and RBS 1223, where the smaller cap is hotter than the

larger cap. The caps may not be antipodal because of an off-centred dipole, or because

the neutron star has more than two poles, which can also affect the structure of pulse-

profiles. Double-peaked structure may occur in neutron stars with more than two poles
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if the flow of accreted material moves to a different magnetic pole, thereby changing

trajectory (Parmar et al., 1989).

In Chapter 3, I visually inspect over 1000 pulse-profiles, corresponding to observations

of 42 BeXB in the SMC. I show that many contain the features discussed above, which

vary within and across individual systems.

1.5 Organisation and content of thesis

In Chapter 2, I use 13 year’s worth of Rossi X-ray Timing Explorer (RXTE) data to

determine the long-term average L, P , and Ṗ for 42 transient BeXB in the SMC. Plots

of P and L as a function of MJD for all sources are given in Appendix B. I use equations

from Section 1.2 to show that all of these systems contain neutron stars that are most

likely disc-accreting. Diagrams of each system, composed from their orbital parameters,

are also shown in Appendix B. Just over half contain an OBe star with a circumstellar

disc that has been truncated by the orbit of the neutron star. I then use the accretion

theories discussed in Sections 1.2.1-1.2.2 to determine the possible magnetic fields of

the neutron star in each system. These results show that ∼85%, including all systems

with P > 100 s, are close to spin equilibrium. ∼ 2/3 systems in this dataset, including

all systems with P > 100 s, are predicted to have B > BQED. Neutron stars in this

dataset are predicted to have higher magnetic fields than neutron stars in Galactic

BeXB that have had their magnetic fields directly measured via CRSF. I suggest that

the neutron stars in this dataset have magnetic fields that are higher than those of the

CRSF sources because the latter are not close to spin equilibrium, whereas most of the

former are. This is combined with the bias that prevents CRSF from being observed in

systems with B & 1013 G.

In Chapter 3, I use the same data to create pulse-profiles for every observation of every

system in this dataset. There are between 5 and 88 pulse-profiles per source, and over

1000 in total. These are shown in Appendix C. I modelled these pulse-profiles in order to

determine i, θ, and MNS/RNS , using the model discussed in Section 1.4.1, and visually

inspected them, looking for the features discussed in Sections 1.4.1-1.4.5. I find that the

pulse-profiles are mostly not well-fit by this model, and contain an array of features that

vary both across and within individual systems. I suggest that systems with relatively

longer spin periods transition from a pencil beam to a fan beam at relatively lower

luminosities, although these results are inconclusive.

In Chapter 4, I apply the methods used in Chapters 2 and 3 to LXP187, a persistent

BeXB in the LMC that is not close to spin equilibrium, and is spinning up on average.

LXP187 has a longer spin period than all of the BeXB discussed in Chapters 2 and 3 that

are not close to spin equilibrium. It is predicted to have a magnetic field similar to those

of the CRSF sources, helping confirm the conclusions of Chapter 2 - that CRSF sources
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have magnetic fields that differ from those of the sources discussed in Chapter 2 because

the CRSF sources are not close to spin equilibrium. The magnetic field of LXP187 is

slightly too high for CRSF to be observed using most X-ray telescopes, adding credence

to the idea that most BeXB have magnetic fields that are not observable via CRSF.

In Chapter 5, I conclude that evidence from the previous three Chapters suggests that

there may be many more neutron stars with B > BQED than previously thought, and

that all neutron stars in binary systems that are close to spin equilibrium follow the

same relationship between P and B. I also discuss how further evidence for this could

be obtained by monitoring CRSF sources in order to determine their long-term average

L, P , and Ṗ . This would allow us to see how close they are to spin equilibrium, and

to determine their magnetic fields using the Ghosh and Lamb (1979) and Kluzniak and

Rappaport (2007) models. Conversely, LXP187, and the sources discussed in Chapters 2

and 3, could be monitored for CRSF, where predictions for the energy of these features

are shown in Figure 4.33, and given in Tables 2.9 and 4.2.



Chapter 2

Accretion theories, and the

magnetic fields of neutron stars in

BeXB in the SMC

2.1 Introduction

In Chapter 2, I use over 13 year’s worth of archival Rossi X-ray Timing Explorer/Propor-

tional Counter Array (RXTE/PCA) data to determine the magnetic field of 42 transient

BeXB in the SMC, using the accretion theories discussed in Section 1.2.

NASA launched RXTE in December 1995, and it remained active until January 2012.

It was composed of the PCA, operating at 2-60 keV, the High Energy X-ray Timing

Experiment (HEXTE), operating at 15-250 keV, and the All-Sky Monitor (ASM) oper-

ating at 2-10 keV. RXTE did not have focusing X-ray mirrors, and so had no spatial

resolution, but its PCA had a timing resolution of ∼1 µs.

The SMC contains a relatively large number of BeXB. These are at a well-defined dis-

tance, and are located away from the disc of the Milky Way, so they are relatively

un-obscured by interstellar dust. RXTE was sensitive to luminosities of just under 1036

erg s−1 from X-ray binaries in the SMC (at a distance of 60 kpc (Hilditch et al., 2005)),

and so the SMC X-ray pulsar (SXP) monitoring campaign began in 1997. This involved

monitoring the SMC once or twice a week for durations of ∼10,000 s. The SXP moni-

toring campaign became one of RXTE’s ‘core programs’, and continued from 1997 until

RXTE was shut down in 2012.

The long-term pulsed light-curves of 47 BeXB in the SMC were published by Laycock

et al. (2005) and Galache et al. (2008) using data from the SXP monitoring campaign.

The orbital parameters of these SXP were published by Townsend et al. (2011a) and

33
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Bird et al. (2012), and the optical properties by McBride et al. (2008). Corbet et al.

(2001) used RXTE data to study outbursts from SXP2.37 (also known as SMC X-2),

and Knigge et al. (2011) used data from RXTE to show that the neutron stars in BeXB

may be split into two populations, possibly formed by different types of supernova. I use

data from RXTE to determine the long-term average L, P , and Ṗ for 42 BeXB in the

SMC, extending the previous published record by several further years. I then determine

the magnetic fields of these SXP using the accretion theories discussed in Section 1.2. In

order to know which accretion theories are appropriate, I first determined whether these

systems contain neutron stars that are accreting via a spherical wind or an accretion

disc using the orbital and optical parameters published by Townsend et al. (2011a), Bird

et al. (2012), and McBride et al. (2008). This is discussed in Section 2.2, with plots of

P and L as a function of MJD, and diagrams of each system shown in Appendix B. In

Chapter 3, I create pulse-profiles for every observation of these systems, looking for the

features discussed in Section 1.4. These are shown in Appendix C.

The magnetic field of the neutron stars in these systems have previously been calculated

by Chashkina and Popov (2012) using spin equilibrium models. This work differs from

theirs as Chashkina and Popov use the values for P and L published in Galache et al.

(2008), and estimate Vrel, using the same value for each system, whereas I use the raw

data, which extends for a few years beyond the published data. I also determine Vrel

from orbital parameters and take Ṗ into account, so that I can determine the magnetic

field using methods that do not assume spin equilibrium.

Work from this chapter has previously been published as Klus et al. (2014) and Ho et al.

(2014). Data used in this chapter was originally extracted by S. Laycock, L.J. Galache,

and L.J. Townsend, and equations (2.5)-(2.12) were originally derived by W.C.G. Ho.

An outline of this chapter is as follows: observations are discussed in Section 2.2, with

observations regarding accretion methods discussed in Section 2.2.1, and observations

regarding accretion theories and magnetic field determination in Section 2.2.2. Results

are given in Section 2.3, and possible consequences are discussed in Section 2.4.

2.2 Observations

The observations used in this chapter come from the RXTE SXP monitoring campaign

described in Section 2.1. Here, RXTE monitored the SMC once or twice a week, for

durations of ∼10,000 s, between 1997 and 2012, and the activity of the neutron stars

were determined from timing analysis. See Laycock et al. (2005) and Galache et al.

(2008) for detailed reports on this work up until the time of their publication. Here I

extend these results, covering a period from 1997-2011 and duration of 13.5 yr in total.
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As discussed in Laycock et al. (2005) and Galache et al. (2008), the quality of any single

observation depends upon the significance of the detected period combined with the

collimator response to the source. Any period detections with a significance < 99%, or

a collimator response < 0.2 are removed, as are any datasets with < 5 detections. This

leaves results for 42 BeXB, with between 5 and 88 detections per source (see Table 2.1),

and over 1000 detections in total. Figure 2.1 shows the location of these sources, where

the SXP are labelled by their average pulse period upon detection.

The average count-rate (CR, measured in counts PCU−1 s−1) is converted to luminosity

using

L = 0.4× 1037 ×
(100

PF

)

×CR× Col−1 erg s−1, (2.1)

where Col is the collimator response, the distance to the SMC is assumed to be 60 kpc

(Hilditch et al., 2005), and the average pulse-fraction (PF ) is assumed to be 33% (Coe

et al., 2009), where the pulse-fraction is the fraction of pulsed flux relative to the total

flux. A weighted Ṗ is calculated by fitting the time evolution of P using MPFITEXPR1.

Porb is known for 36/42 systems, mostly taken from Bird et al. (2012), and is otherwise

assumed to be 262 ± 258 d (unless otherwise stated) in order to cover the full range of

possible values. The eccentricity (e) is known for 6 systems (see Table 2.3) and otherwise

assumed to be 0.3 ± 0.2. EW Hα is known for 28 systems and otherwise assumed to be

-25 ± 20 Å (unless otherwise stated). MNS is assumed to be 1.4M⊙ and RNS is assumed

to be 10 km (unless otherwise stated). The mass and radius of the OBe star (MOB and

ROB) are determined from the spectral type and luminosity class. These are known

for 35 systems, mostly taken from McBride et al. (2008), otherwise the average values

of MOB/M⊙=18.36 ± 4.42 and ROB/R⊙=8.95 ± 2.08 are assumed. The mass of OBe

stars in X-ray binaries can also be measured, in some cases, using dynamical methods.

A discrepancy is found between the spectroscopic mass (Mspec) and the dynamical mass

(Mdyn), where Mdyn is ∼ 20% lower than Mspec (Coe et al., 2015a,b). While it is not

possible to measure Mdyn for any of the systems in this dataset, Mdyn is assumed to

be 20% lower than Mspec in all cases, and results are determined using both values for

MOB.

All EW Hα measurements were obtained as part of the Southampton SXP optical

monitoring campaign that has been running for several years. The data were collected

primarily at the South African Astronomical Observatory’s (SAAO’s) 1.9 m Radcliffe

telescope in South Africa, and also at the European Southern Observatory’s (ESO’s)

3.58 m New Technology Telescope (NTT) in Chile. The instrumental set-ups and the

data reduction in both cases are the same as those described in Coe et al. (2012).

The number of observations of each system, the range of data, and the long-term average

L, P , and Ṗ are given in Table 2.1. Porb, EW Hα and the spectral type, luminosity

1www.physics.wisc.edu/∼craigm/idl/down/mpfitexpr.pro
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Figure 2.1: Map of the SMC showing the locations of the 42 BeXB in the dataset discussed in Chapters 2 and 3. 27 of these are spinning
up on average (Ṗ < 0; blue), and 15 are spinning down (Ṗ > 0; red). Numbers indicate the P of each SXP. The image of the SMC
is from Stanimirović et al. (1999), taken by combining Parkes telescope observations of neutral hydrogen with an Australia Telescope
Compact Array (ATCA) aperture synthesis mosaic, both in the radio spectrum.



Chapter 2 The magnetic fields of neutron stars in BeXB in the SMC 37

BeXB No. of Range Long-term Long-term Long-term
obs. of data average average average

(yr) L (1037 P (s) Ṗ (s yr−1)
erg s−1)

SXP2.37 23 11.22 12.78 ± 0.95 2.37233 ± 0.00004 -0.0040314 ± 0.0000004
SXP4.78 9 12.70 0.89 ± 0.12 4.78015 ± 0.00012 -0.000851 ± 0.000014
SXP6.85 61 8.03 2.77 ± 0.45 6.85206 ± 0.00037 -0.000221 ± 0.000014
SXP7.78 28 12.30 0.47 ± 0.08 7.78313 ± 0.00062 0.002619 ± 0.000029
SXP8.80 46 11.23 2.55 ± 0.25 8.89961 ± 0.00048 0.001224 ± 0.000007
SXP11.5 16 0.13 1.61 ± 0.17 11.4809 ± 0.0021 -0.04980 ± 0.00670
SXP15.3 10 11.13 0.89 ± 0.11 15.2538 ± 0.0019 0.00700 ± 0.00013
SXP16.6 12 5.46 0.26 ± 0.05 16.5553 ± 0.0028 -0.01307 ± 0.00049
SXP18.3 74 7.39 0.98 ± 0.13 18.3751 ± 0.0020 -0.001178 ± 0.000059
SXP25.5 35 10.56 0.42 ± 0.07 25.5456 ± 0.0041 0.00025 ± 0.00034
SXP46.6 76 13.25 0.69 ± 0.13 46.508 ± 0.021 -0.01549 ± 0.00020
SXP59.0 88 13.10 1.05 ± 0.15 58.859 ± 0.033 -0.02063 ± 0.00047
SXP74.7 28 12.31 1.54 ± 0.22 74.647 ± 0.028 0.02996 ± 0.00042
SXP82.4 21 12.24 0.83 ± 0.17 82.464 ± 0.061 -0.0217 ± 0.0015
SXP91.1 59 13.49 1.38 ± 0.19 88.438 ± 0.065 -0.44195 ± 0.00055
SXP95.2 10 11.01 0.95 ± 0.20 95.21 ± 0.12 0.0267553 ± 0.0054
SXP101 5 7.93 0.90 ± 0.22 101.768 ± 0.088 -0.053 ± 0.013
SXP140 5 6.67 1.17 ± 0.56 140.42 ± 0.87 -0.158 ± 0.099
SXP152 23 11.94 0.80 ± 0.17 151.68 ± 0.25 0.019 ± 0.012
SXP169 35 11.97 1.40 ± 0.27 167.03 ± 0.41 -0.2377889 ± 0.0056
SXP172 42 10.39 0.83 ± 0.23 171.86 ± 0.27 -0.1231 ± 0.0063
SXP175 11 8.50 1.16 ± 0.37 174.95 ± 0.34 0.146 ± 0.011
SXP202A 16 13.28 0.83 ± 0.20 201.47 ± 0.45 -0.130 ± 0.014
SXP202B 5 13.24 0.49 ± 0.21 202.25 ± 0.68 0.209 ± 0.037
SXP214 16 13.26 0.63 ± 0.24 213.68 ± 0.47 0.118 ± 0.018
SXP264 6 10.13 0.32 ± 0.11 262.65 ± 0.89 0.057 ± 0.081
SXP280 6 8.24 0.61 ± 0.24 280.00 ± 0.67 -0.371 ± 0.056
SXP293 12 11.08 0.48 ± 0.12 293.89 ± 0.96 0.025 ± 0.046
SXP304 7 6.09 2.10 ± 0.64 304.11 ± 0.98 -0.50 ± 0.20
SXP323 19 9.42 0.80 ± 0.24 318.53 ± 0.75 -0.946 ± 0.020
SXP327 5 1.76 0.20 ± 0.05 327.53 ± 0.99 -0.82 ± 0.77
SXP342 20 10.29 1.46 ± 0.41 341.0 ± 1.5 0.962 ± 0.062
SXP455 7 12.05 2.69 ± 0.74 452.3 ± 3.2 -0.20 ± 0.32
SXP504 31 13.29 0.69 ± 0.18 502.0 ± 2.5 0.340 ± 0.051
SXP565 8 7.48 0.27 ± 0.15 564.1 ± 3.3 -0.85 ± 0.37
SXP645 13 11.74 0.67 ± 0.28 644.6 ± 6.1 0.31 ± 0.26
SXP701 27 11.71 0.56 ± 0.17 695.8 ± 5.5 -0.03 ± 0.27
SXP726 7 4.20 1.92 ± 0.71 726.3 ± 8.4 -0.8 ± 1.1
SXP756 29 11.20 0.82 ± 0.10 754.6 ± 3.4 -0.011 ± 0.077
SXP893 29 10.44 0.42 ± 0.13 890.8 ± 7.6 -1.89 ± 0.32
SXP967 7 2.85 3.18 ± 1.00 962.9 ± 10.2 -1.1 ± 3.5
SXP1323 25 4.89 2.82 ± 0.49 1322.7 ± 11.6 -7.04 ± 0.67

Table 2.1: Number of observations, range of data, and long-term average L, P ,
and Ṗ , for 42 BeXB in the SMC (as discussed in Section 2.2). A weighted Ṗ
is found by fitting the time evolution of P , as shown in Figures B.1-B.84 (and
discussed in Section 2.3).
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BeXB Porb EW Hα Spectral type V
(d) (Å) & luminosity class

SXP2.37 18.62 ± 0.02 [1] -7.9 ± 0.6 O9.5 III-V [12] 16.38 ± 0.02 [12]
SXP4.78 23.9 ± 0.06 [3] -43.7 ± 1.1 B0-B1 V [10] 15.8 [10]
SXP6.85 21.9 ± 0.1 [4] -3.8 ± 3.7 O9.5-B0 IV-V [12] 14.59 ± 0.02 [12]
SXP7.78 44.93 ± 0.01 [2] -14.3 ± 2.3 B1-B1.5 IV-V [12] 14.91 ± 0.02 [12]
SXP8.80 28.47 ± 0.04 [7] -5.1 ± 0.4 O9.5-B0 IV-V [12] 14.87 ± 0.12 [12]
SXP11.5 36.3 ± 0.4 [6] O9.5-B0 IV-V [11]
SXP15.3 74.32 ± 0.03 [2] -25.1 ± 1.5 O9.5-B0 III-V [12] 14.67 ± 0.04 [12]
SXP16.6 33.72 ± 0.05 [7]
SXP18.3 17.79 ± 0.03 [2] B1-B3 V [4] 15.6 [10]
SXP25.5 22.53 ± 0.01 [2] 15.2 [10]
SXP46.6 137.4 ± 0.2 [2] -21.9 ± 0.7 O9.5-B1 IV-V [12] 14.72 ± 0.03 [12]
SXP59.0 122.1 ± 0.38 [7] -23.4 ± 1.4 O9 V [12] 15.28 ± 0.01 [12]
SXP74.7 33.387 ± 0.006 [2] -18.3 ± 2.3 B3 V [12] 16.92 ± 0.06 [12]
SXP82.4 362.2 ± 4.1 [7] -25.9 ± 1.1 B1-B3 III-V [12] 15.02 ± 0.02 [12]
SXP91.1 88.37 ± 0.03 [2] -26.7 ± 2.6 B0.5 III-V [12] 15.05 ± 0.06 [12]
SXP95.2 280 ± 8 [8]
SXP101 21.949 ± 0.003 [2] -7.8 ± 5 15.67 ± 0.15 [12]
SXP140 197 ± 5 [5] -47.3 ± 3.1 B1 V [12] 15.88 ± 0.03 [12]
SXP152 -17.3 ± 1.7 B1-B2.5 III-V [12] 15.69 ± 0.03 [12]
SXP169 68.37 ± 0.07 [2] -29.2 ± 2.6 B0-B1 III-V [12] 15.53 ± 0.02 [12]
SXP172 68.78 ± 0.08 [2] -15 ± 1.3 O9.5-B0 V [12] 14.45 ± 0.02 [12]
SXP175 87.2 ± 0.2 [9] B0-B0.5 III [9] 14.6 [9]
SXP202A 71.98 ± 5 [10] -18.1 ± 5 B0-B1 V [12] 14.82 ± 0.02 [12]
SXP202B 224.6 ± 0.3 [2] B0-5 III [10] 15.6 ± [10]
SXP214 B2-B3 III [13]
SXP264 49.12 ± 0.03 [2] -30.1 ± 1.7 B1-B1.5 V [12] 15.85 ± 0.01 [12]
SXP280 127.62 ± 0.25 [2] -42 ± 3.1 B0-B2 III-V [12] 15.64 ± 0.03 [12]
SXP293 59.726 ± 0.006 [2] B2-B3 V [10] 14.9 [10]
SXP304 520 ± 12 [5] -70.4 ± 6.2 B0-B2 III-V [12] 15.72 ± 0.01 [12]
SXP323 116.6 ± 0.6 [7] -30.9 ± 1.1 B0-B0.5 V [12] 15.44 ± 0.04 [12]
SXP327 45.93 ± 0.01 [2] 16.3 [10]
SXP342
SXP455 74.56 ± 0.05 [2] -15.1 ± 2 B0.5-B2 IV-V [12] 15.49 ± 0.02 [12]
SXP504 270.1 ± 0.5 [2] -52.9 ± 3.9 B1 III-V [12] 14.99 ± 0.01 [12]
SXP565 152.4 ± 0.3 [2] -37.4 ± 2.9 B0-B2 IV-V [12] 15.97 ± 0.02 [12]
SXP645 B0-B0.5 IIIV [10] 14.6 [10]
SXP701 412 ± 5 [10] -37.1 ± 3.5 O9.5 V [12] 15.87 ± 0.05 [12]
SXP726 B0.5-B3 III-V [10] 15.6 [10]
SXP756 393.6 ± 1.2 [2] -27 ± 3.6 O9.5-B0.5 III-V [12] 14.98 ± 0.02 [12]
SXP893 16.3 [10]
SXP967 101.4 ± 0.2 [2] -12.3 ± 5 B0-B0.5 III-V [10] 14.6 [10]
SXP1323 26.174 ± 0.002 [2] -17.1 ± 1.5 B0 III-V [12] 14.65 ± 0.02 [12]

Table 2.2: Porb, EW Hα, and the spectral type, luminosity class, and appar-
ent V magnitude of the OBe star in each of the 42 BeXB listed in Table 2.1.
References are as follows; [1] Schurch et al. (2008), [2] Bird et al. (2012), [3]
Coe et al. (2005), [4] Townsend et al. (2011a), [5] Schmidtke et al. (2006), [6]
Townsend et al. (2009), [7] Galache et al. (2008), [8] Laycock et al. (2005), [9]
Townsend et al. (2013), [10] Rajoelimanana et al. (2011), [11] Townsend et al.
(2011b), [12] McBride et al. (2008), [13] Coe et al. (2011).
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BeXB Eccentricity Reference

SXP2.37 0.07 ± 0.02 Townsend et al. (2011a)
SXP6.85 0.26 ± 0.03 Townsend et al. (2011a)
SXP8.80 0.41 ± 0.04 Townsend et al. (2011a)
SXP11.5 0.28 ± 0.03 Townsend et al. (2011b)
SXP18.3 0.43 ± 0.03 Schurch (2009)
SXP74.7 0.4 ± 0.2 Townsend et al. (2011a)

Table 2.3: Known eccentricities for the BeXB listed in Tables 2.1 and 2.2.

class, and apparent V magnitude of the OBe star in each system are given in Table 2.2,

known eccentricities are given in Table 2.3.

2.2.1 Accretion methods

The accretion method for each system is determined using equations (1.1)-(1.7). As

discussed in Section 1.2, an accretion disc will form if the net angular momentum per

unit mass of accreted material (J), is too large for it to accrete spherically. This occurs

at Rcirc, where

Rcirc =
J2

GMNS
. (1.2 revisited)

A disc can only form outside the neutron star’s magnetosphere, which is approximately

at RA (derived in Section 1.2), and so for disc accretion to occur Rcirc > RA,

J2

GMNS
>

(

µ4

2GMNSṀ2

)1/7

. (2.2)

J is dependent on the relative velocity of accreted matter (Vrel), and so this inequality

can be rearranged to find the maximum Vrel under-which disc accretion can occur (VCrel).

This can then be compared to the actual relative velocity for each system, determined

from the orbital velocity (Vorb), the velocity of accreted material (Vw), and the angle

at which they impact (θi). The orbital parameters for a typical BeXB can be seen in

Figures 1.3 and 1.4.

In Klus et al. (2014), we derived J for accreted material in typical BeXB. This involves

material accreting from the circumstellar disc of an OBe main sequence star on to the

surface of a neutron star at periastron. We followed the derivation of Shapiro and

Lightman (1976) (see also Wang (1981)) of the angular momentum of the accreting

matter, but while Shapiro and Lightman (1976) determined J for matter accreting from a

spherical wind, matter from the circumstellar disc is usually in prograde motion with the

neutron star, meaning that they orbit in the same direction. Material in the circumstellar
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disc also decreases in velocity and density with distance from the OBe star,

Vrel = Vrel(0)R
−0.5
cd (2.3)

and

ρ = ρ(0)R
−nρ

cd , (2.4)

which means that there will be a net angular momentum change due to accretion. Waters

et al. (1987) find that the density gradient (nρ) has a range of 2-3.5 for isolated OBe

stars, the circumstellar disc of OBe stars in BeXB are generally denser, and so a value

of 2.5 ± 0.5 is assumed.

When the neutron star enters the circumstellar disc, the star forms an accretion cylin-

der with a radius equal to the Bondi-Hoyle radius (RB), given in equation (1.1). We

consider a cross-section of the accretion cylinder, which defines the xy-plane (Davidson

and Ostriker, 1973; Alpar et al., 1982). The angular momentum passing through this

plane is

dl = (ρ dx dy Vrel dt)Vrel y = ρyV 2
rel dx dy dt, (2.5)

where y is the radial distance from the cylinder axis, and ρ is the density of material

at the edge of the circumstellar disc. The first-order density and velocity perturbation

about the periastron separation q is

ρ(x, y) ∼= ρ(q) +
dρ

dRcd

∣

∣

∣

∣

q

y = ρ(q)

(

1− nρ
y

q

)

(2.6)

Vrel(x, y) ∼= Vrel(q) +
dVrel
dRcd

∣

∣

∣

∣

q

y = Vrel(q)

(

1−
y

2q

)

. (2.7)

Here, the dVrel/dRcd term accounts for both the gradient in Vw and Vorb, where

q = a(1− e) (2.8)

and

a =

[

P 2
orbG(MNS +MOB)

4π2

]1/3

, (2.9)

as shown in Figure 1.3.

Substituting back into the angular momentum equation,

dl

dt
= ρ(q)yVrel(q)

2 dx dy

[

1−

(

nρ +
1

2

)

y

q

]

. (2.10)
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J is then found by integrating dl/dt over the accretion cylinder and dividing by Ṁ ,

where Ṁ = πR2
BρVrel, i.e.,

J =
ρV 2

rel

πR2
BρVrel

∫

y[1− (nρ + 1/2)(y/q)] dx dy

= −
1

4
(nρ + 1/2)Vrel

R2
B

q
.

(2.11)

In BeXB, the OBe star’s circumstellar disc can be truncated, so that only approximately

half the neutron star’s magnetosphere is exposed to accreting material at a time (see

Section 1.1.2.1 and Figures B.1-B.84). If this is the case, then

Jt =
Vrel
πR2

B

∫ 2π

π

∫ RB

0
[1− (nρ + 1/2)(Rcd sin θ/q)]R

2
cd sin θdrdθ

= −VrelRB

[

2

3π
+

1

8
(nρ + 1/2)

RB

q

]

.

(2.12)

In order to cover all possibilities, and not presuppose a magnetic field, µ is assumed to

be 1024 − 1033 G cm−3. Assuming RNS = 10 km, this corresponds to B = 106 − 1015 G.

Equation (2.2) is then rearranged to find the maximum Vrel under-which disc accretion

can occur (Vrel).

VCrel can then be compared to the actual Vrel for each system, which is determined using

Vrel =
√

V 2
w + V 2

orb + 2VwVorb cos θi. (2.13)

Here θi=180◦ indicates that the star and disc are in prograde motion (see Figure 1.3),

and θi=-180◦ indicates that the star and disc are in retrograde motion. The neutron

star spin is not taken into account and so more accurate results could be found using

numerical simulations that are beyond the scope of this thesis.

For systems containing an OBe star with a circumstellar disc that has been truncated by

the orbit of the neutron star, Vw is calculated by determining the the Keplerian velocity

of the stellar wind at the edge of the circumstellar disc (Rcd),

Vw =

√

GMOB

Rcd
, (2.14)

assuming that the circumstellar disc is in a circular orbit around the OBe star.

For systems containing an OBe star with a circumstellar disc that has not been truncated

by the orbit of the neutron star, Vw is calculated by determining the Keplerian velocity

of the stellar wind at periastron distance q,

Vw =

√

GMOB

q
. (2.15)
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Rcd is calculated using

log

(

√

ROB

Rcd

)

= [−0.32 × log(−EW Hα)]− 0.2, (2.16)

where ROB refers to the spectroscopic radius of the OBe star (Hanuschik, 1989; Huang,

1972; Zamanov et al., 2001), and Vorb is calculated using

Vorb =

√

G(MNS +MOB)

a

1 + e

1− e
. (2.17)

Many of these parameters are shown in Figure 1.3. Systems are assumed to be disc

accreting if Vrel < VCrel.

2.2.2 Accretion theories

The magnetic field of the neutron star in each system is determined using all of the

accretion theories discussed in Sections 1.2.1 and 1.2.2. These will be summarised again

here.

In the spin equilibrium model for wind accretion,

τup (wind) = τdown, (1.14 revisited)

and so, using equation 1.5,

B ∼= 8.7 × 1013 G

(

4η

3κt

)1/2

R−3
NS6

(

MNS

M⊙

)3/2

Ṁ
1/2
16

(

Vrel
100 km s−1

)−2 P/100

(Porb/10 d)1/2
.

(1.16 revisited)

Whereas in the Shakura et al. (2012) spin equilibrium model for wind accretion,

B ∼= 6× 1014 G R−3
NS6Ṁ

1/3
16

(

Vrel
100 km s−1

)−11/3( P/100

Porb/10 d

)11/12

. (1.17 revisited)

In equations (1.16 revisited) and (1.17 revisited), Vrel is measured in km s−1, Porb is

measured in d, and everything else is in cgs units. Equations (1.16 revisited) and

(1.17 revisited) show that for neutron stars of a given MNS and RNS , B is propor-

tional to P and L, and inversely proportional to Vrel and Porb. B is most affected by

Vrel, and is more affected by this factor in the Shakura et al. (2012) model than in the

spin equilibrium model.

In the spin equilibrium model for disc accretion,

τup (disc) = τdown, (1.19 revisited)
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and so

B ∼= 1.9× 1013 G

(

2ǫ

9κ2t

)7/24

R−3
NS6

(

MNS

M⊙

)5/6

Ṁ
1/2
16

(

P

100

)7/6

. (1.21 revisited)

In the spin equilibrium radius model for disc accretion,

Rco = RA, (1.22 revisited)

and so

B ∼= 1.5 × 1013 G R−3
NS6

(

MNS

M⊙

)5/6

Ṁ
1/2
16

(

P

100

)7/6

. (1.24 revisited)

Equations (1.21 revisited) and (1.24 revisited) show that for a given MNS and RNS , B

is proportional to P and L, and is most affected by P .

The Ghosh and Lamb (1979) and the Kluzniak and Rappaport (2007) models for disc

accretion (discussed in Section 1.2.2) do not assume spin equilibrium. These models

relate Ṗ to µ (and hence B; equation 1.5) via,

τtot = τup (disc)n(ωs), (1.30 revisited)

where n(ωs) (equation (1.31)) is referred to as g(ωs) (equation (1.35)) in the Kluzniak

and Rappaport (2007) model. In the Ghosh and Lamb (1979) model,

− Ṗ = 5.0 × 10−5(ǫ/0.5)1/2µ
2/7
30 n(ωs)R

6/7
NS6

(

MNS

M⊙

)−3/7

I−1
45 (PL

3/7
37 )2 s yr−1,

(1.34 revisited)

and in the Kluzniak and Rappaport (2007) model,

− Ṗ = 6.2× 10−5(ǫ/0.52)1/2µ
2/7
30 g(ωs)R

6/7
NS6

(

MNS

M⊙

)−3/7

I−1
45 (PL

3/7
37 )2 s yr−1.

(1.36 revisited)

Equations (1.34 revisited) and (1.36 revisited) show that for a given MNS and RNS , B

is is dependent only on Ṗ and PL3/7. Results from these models can be found assuming

the system is close to spin equilibrium by working out what value would give a n(ωs)

of 0, given P and L. Figures 1.9-1.12 show simulated results for neutron stars with

different values of B, MNS , RNS , and ǫ determined using the Ghosh and Lamb (1979)

and Kluzniak and Rappaport (2007) models.

2.3 Results

The long-term average L, P , and Ṗ were determined for neutron stars in 42 BeXB in

the SMC. The results are given in Table 2.1, and plots of L and P as a function of MJD



44 Chapter 2 The magnetic fields of neutron stars in BeXB in the SMC

are shown in Appendix B, with a line of best-fit indicating Ṗ . A positive correlation is

found between Ṗ and P , which follows a power-law with a gradient of ∼ 6/5, as is shown

in Figure 2.2. The Ghosh and Lamb model predicts a power-law of two for systems close

to spin equilibrium, and the discrepancy between these two results is discussed below, in

relation to Figure 2.13. Figure 2.2 also shows that there is an asymmetry between the

number of systems that are spinning up on average (27/42) and the number of systems

that are spinning down (15/42).

The Corbet (1984) diagram for the BeXB in this dataset can be seen in Figure 2.3.

This is a plot of Porb as a function of P where, in this case, L is also plotted. Porb is

roughly proportional to P , as the Corbet (1984) relation (discussed in Section 1.1.2)

predicts for systems that are close to spin equilibrium. There is no obvious correlation

between L (and hence Ṁ ; equation (1.8)) and either Porb or P , however, the instrumental

limitations of RXTE prevent the detection of luminosities below ∼ 1036 erg s−1 given

the distance to the SMC.

Figure 2.2: The long-term average Ṗ as a function of P , for neutron stars in
the 42 BeXB listed in Table 2.1. 27 of these are spinning up on average (Ṗ < 0;
blue), and 15 are spinning down (Ṗ > 0; red). A weighted Ṗ is found by fitting
the time evolution of P , as shown in Figures B.1-B.84 (and discussed in Section
2.3). The dashed line indicates a correlation of Ṗ ∝ P 6/5. This is discussed
further in Section 2.3, in relation to Figure 2.13.

Figure 2.4 shows the ratio of Rcd and ROB (equation (2.16)) as a function of Porb. The

radius of the OBe star’s circumstellar disc is proportional to Porb in most cases. A

possible exception to this is SXP4.78, which has a particularly large circumstellar disc,

given its orbital period, as can be seen in Figure B.4.
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BeXB MOB/M⊙ ROB/R⊙ Rcd/R⊙ a/R⊙ q/R⊙

SXP2.37 26 ± 7 12 ± 3 110 ± 28 89 ± 8 83 ± 7
SXP4.78 16 ± 2 8 ± 1 216 ± 20 90 ± 3 63 ± 18∗

SXP6.85 22 ± 4 10 ± 2 60 ± 56 94 ± 6 69 ± 5
SXP7.78 16 ± 3 8 ± 2 110 ± 25 138 ± 9 96 ± 28∗

SXP8.80 22 ± 4 10 ± 2 73 ± 14 112 ± 7 66 ± 6
SXP11.5 22 ± 4 10 ± 2 202 ± 135∗ 131 ± 8∗ 94 ± 7∗

SXP15.3 25 ± 8 11 ± 3 226 ± 62 222 ± 21 155 ± 47∗

SXP16.6 18 ± 4∗ 9 ± 2∗ 176 ± 121∗ 119 ± 9∗ 83 ± 25∗

SXP18.3 11 ± 3 6 ± 1 115 ± 77∗ 66 ± 6∗ 38 ± 4∗

SXP25.5 18 ± 4∗ 9 ± 2∗ 176 ± 121∗ 91 ± 7∗ 64 ± 19∗

SXP46.6 20 ± 6 10 ± 3 173 ± 47 311 ± 28 218 ± 65∗

SXP59.0 20 ± 0 9 ± 0 171 ± 7 288 ± 1 201 ± 58∗

SXP74.7 8 ± 0 5 ± 0 76 ± 6 91 ± 0 54 ± 21
SXP82.4 16 ± 8 8 ± 3 164 ± 70 555 ± 90 388 ± 127∗

SXP91.1 22 ± 6 10 ± 3 214 ± 57 239 ± 21 167 ± 50∗

SXP95.2 18 ± 4∗ 9 ± 2∗ 176 ± 121∗ 487 ± 38∗ 341 ± 101∗

SXP101 18 ± 4∗ 9 ± 2∗ 84 ± 45∗ 89 ± 7∗ 62 ± 18∗

SXP140 14 ± 0 7 ± 0 207 ± 9 356 ± 6 249 ± 71∗

SXP152 17 ± 8 8 ± 3 131 ± 50 454 ± 305∗ 318 ± 232∗

SXP169 23 ± 5 11 ± 3 248 ± 69 204 ± 15 143 ± 42∗

SXP172 18 ± 1 9 ± 0 121 ± 7 190 ± 2 133 ± 38∗

SXP175 28 ± 0 14 ± 1 272 ± 175∗ 256 ± 0∗ 180 ± 51∗

SXP202A 16 ± 2 8 ± 1 123 ± 25 188 ± 11 132 ± 38∗

SXP202B 20 ± 8 10 ± 5 196 ± 155∗ 434 ± 54∗ 304 ± 95∗

SXP214 19 ± 2 9 ± 1 173 ± 113∗ 468 ± 308∗ 328 ± 235∗

SXP264 13 ± 1 7 ± 0 148 ± 9 138 ± 3 97 ± 28∗

SXP280 20 ± 9 10 ± 4 276 ± 123 295 ± 41 206 ± 65∗

SXP293 9 ± 2 5 ± 0 101 ± 66∗ 141 ± 7∗ 99 ± 29∗

SXP304 20 ± 9 10 ± 4 384 ± 172 751 ± 105 526 ± 167∗

SXP323 17 ± 1 8 ± 0 181 ± 8 264 ± 4 185 ± 53∗

SXP327 18 ± 4∗ 9 ± 2∗ 176 ± 121∗ 146 ± 11∗ 102 ± 30∗

SXP342 18 ± 4∗ 9 ± 2∗ 176 ± 121∗ 466 ± 308∗ 326 ± 235∗

SXP455 17 ± 6 8 ± 3 118 ± 39 195 ± 20 137 ± 42∗

SXP504 19 ± 5 9 ± 2 296 ± 75 483 ± 40 338 ± 101∗

SXP565 17 ± 6 9 ± 3 226 ± 84 316 ± 35 221 ± 68∗

SXP645 22 ± 6 11 ± 3 219 ± 156∗ 494 ± 327∗ 346 ± 249∗

SXP701 19 ± 0 9 ± 0 220 ± 14 634 ± 5 444 ± 127∗

SXP726 18 ± 10 9 ± 4 175 ± 140∗ 463 ± 315∗ 324 ± 239∗

SXP756 24 ± 9 11 ± 3 231 ± 74 667 ± 73 467 ± 143∗

SXP893 18 ± 4∗ 9 ± 2∗ 176 ± 121∗ 466 ± 308∗ 326 ± 235∗

SXP967 22 ± 6 11 ± 3 139 ± 58 262 ± 23 184 ± 55∗

SXP1323 23 ± 5 11 ± 3 176 ± 49 108 ± 8 75 ± 22∗

Table 2.4: Orbital parameters for the BeXB listed in Table 2.2. These include
MOB and ROB (determined from the spectral type and luminosity class), Rcd

(equation (2.16)), a (equation (2.9)), and q (equation (2.8)). An asterisk denotes
that this value is an estimate, as discussed in Section 2.3 and shown in Appendix
B. Results that take Mdyn into account are given in Tables A.2 and A.3.
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BeXB Circ. Vorb Vw Vrel VCrel VCrel

disc (km s−1) (km s−1) (prograde) (N-T) (T)
status (km s−1) (km s−1) (km s−1)

SXP2.37 N-T 259 ± 36 244 ± 35 15 ± 71 256 ± 29 867 ± 268
SXP4.78 N-T∗ 260 ± 44 219 ± 33∗ 41 ± 78∗ 247 ± 36 609 ± 187
SXP6.85 T 283 ± 27 261 ± 123 21 ± 150 252 ± 29 706 ± 216
SXP7.78 N-T∗ 211 ± 41 178 ± 32∗ 34 ± 73∗ 208 ± 31 554 ± 172
SXP8.80 N-T 307 ± 31 250 ± 26 56 ± 57 256 ± 29 698 ± 213
SXP11.5 N-T∗ 244 ± 24∗ 209 ± 21∗ 35 ± 45∗ 222 ± 25∗ 651 ± 199∗

SXP15.3 N-T∗ 206 ± 46 176 ± 38∗ 30 ± 84∗ 183 ± 27 594 ± 185
SXP16.6 N-T∗ 243 ± 49∗ 205 ± 39∗ 38 ± 88∗ 212 ± 31∗ 514 ± 159∗

SXP18.3 N-T∗ 298 ± 43∗ 235 ± 38∗ 63 ± 81∗ 294 ± 34∗ 632 ± 187∗

SXP25.5 N-T∗ 278 ± 56∗ 235 ± 45∗ 43 ± 100∗ 237 ± 35∗ 553 ± 171∗

SXP46.6 T∗ 156 ± 34 148 ± 29∗ 8 ± 63∗ 161 ± 24 573 ± 181
SXP59.0 T∗ 162 ± 26 150 ± 3∗ 13 ± 29∗ 169 ± 25 607 ± 191
SXP74.7 N-T 210 ± 44 163 ± 31 47 ± 75 266 ± 45 661 ± 206
SXP82.4 T∗ 106 ± 32 137 ± 46∗ 31 ± 78∗ 134 ± 21 582 ± 182
SXP91.1 N-T∗ 187 ± 40 159 ± 33∗ 28 ± 73∗ 182 ± 27 632 ± 197
SXP95.2 T∗ 120 ± 24∗ 141 ± 51∗ 21 ± 75∗ 141 ± 21∗ 594 ± 185∗

SXP101 N-T∗ 280 ± 56∗ 237 ± 45∗ 43 ± 101∗ 248 ± 37∗ 613 ± 191∗

SXP140 T∗ 125 ± 20 115 ± 2∗ 10 ± 23∗ 158 ± 23 620 ± 200
SXP152 T∗ 119 ± 51∗ 157 ± 47∗ 37 ± 98∗ 143 ± 38 586 ± 188
SXP169 N-T∗ 206 ± 41 175 ± 33∗ 31 ± 74∗ 192 ± 28 635 ± 199
SXP172 T∗ 191 ± 31 169 ± 6∗ 22 ± 37∗ 192 ± 28 593 ± 187
SXP175 N-T∗ 203 ± 33∗ 174 ± 25∗ 29 ± 58∗ 176 ± 26∗ 618 ± 195∗

SXP202A T∗ 180 ± 31 157 ± 18∗ 23 ± 49∗ 192 ± 28 594 ± 187
SXP202B T∗ 133 ± 34∗ 141 ± 62∗ 7 ± 96∗ 142 ± 22∗ 548 ± 176∗

SXP214 T∗ 123 ± 46∗ 144 ± 47∗ 20 ± 93∗ 140 ± 37∗ 569 ± 184∗

SXP264 N-T∗ 194 ± 32 162 ± 24∗ 32 ± 56∗ 204 ± 30 526 ± 165
SXP280 N-T∗ 159 ± 43 135 ± 37∗ 24 ± 80∗ 163 ± 25 566 ± 181
SXP293 T∗ 163 ± 30∗ 132 ± 44∗ 31 ± 74∗ 206 ± 30∗ 553 ± 172∗

SXP304 T∗ 100 ± 27 99 ± 31∗ 1 ± 58∗ 127 ± 19 665 ± 212
SXP323 T∗ 156 ± 26 133 ± 4∗ 23 ± 30∗ 172 ± 25 585 ± 184
SXP327 N-T∗ 219 ± 44∗ 185 ± 35∗ 34 ± 79∗ 196 ± 29∗ 495 ± 154∗

SXP342 T∗ 123 ± 47∗ 141 ± 51∗ 18 ± 98∗ 146 ± 39∗ 637 ± 205∗

SXP455 T∗ 180 ± 42 164 ± 39∗ 17 ± 81∗ 201 ± 30 696 ± 220
SXP504 T∗ 123 ± 26 112 ± 21∗ 12 ± 46∗ 139 ± 21 570 ± 180
SXP565 N-T∗ 143 ± 34 121 ± 28∗ 22 ± 62∗ 153 ± 23 508 ± 165
SXP645 T∗ 130 ± 51∗ 139 ± 53∗ 9 ± 104∗ 138 ± 37∗ 573 ± 186∗

SXP701 T∗ 106 ± 17 127 ± 4∗ 21 ± 21∗ 126 ± 18 553 ± 175
SXP726 T∗ 122 ± 56∗ 140 ± 69∗ 18 ± 125∗ 148 ± 40∗ 665 ± 216∗

SXP756 T∗ 117 ± 28 142 ± 34∗ 25 ± 61∗ 126 ± 19 581 ± 182
SXP893 T∗ 123 ± 47∗ 141 ± 51∗ 18 ± 98∗ 138 ± 36∗ 536 ± 173∗

SXP967 T∗ 178 ± 38 174 ± 44∗ 4 ± 82∗ 184 ± 27 710 ± 226
SXP1323 N-T∗ 283 ± 57 241 ± 46∗ 42 ± 103∗ 246 ± 36 708 ± 220

Table 2.5: The status of the OBe star’s circumstellar disc determined using
orbital parameters listed in Table A.1, assuming MOB =Mspec, as discussed in
Section 2.3. Here T refers to a truncated circumstellar disc and N−T to a non-
truncated circumstellar disc. An asterisk indicates that the value is an estimate.
Vorb (equation (2.17)), Vw (equation (2.15) assuming T , and equation (2.14)
assumingN−T ) and Vrel (equation (2.13)) are given, as is VCrel (equations (1.2)-
(1.7), where J is determined using equation (2.12) assuming T , and equation
(2.11) assuming N − T ). Disc accretion can only occur if Vrel < VCrel. Results
that take Mdyn into account are given in Tables A.4 and A.5.
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Figure 2.3: Corbet (1984) diagram (Porb as a function of P ) for neutron stars
in 36 of the BeXB listed in Table 2.2 (discussed in Section 2.3), where L is
also shown. 25 of these are spinning up on average (Ṗ < 0; blue), and 11 are
spinning down (Ṗ > 0; red).

Figure 2.4: The ratio of Rcd and ROB (equation (2.16)) as a function of Porb,
for 26 of the BeXB listed in Table 2.4 (discussed in Section 2.3). 20 of these are
spinning up on average (Ṗ < 0; blue), and 6 are spinning down (Ṗ > 0; red).
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The orbital parameters of each system are determined using a (equation (2.9)), q (equa-

tion (2.8)), Rcd (equation (2.16)), and ROB, as shown in Figure 1.3. Rcd depends on

EW Hα, which is known for 28 systems, where Rcd could not be calculated, the median

value of 176 ± 121 R⊙ was assumed, with the errors covering the range of the dataset. a

depends on Porb, which is known for 36 systems, where Porb was not known, the median

value of 262 ± 258 d was used. a also depends on MNS , which was assumed to be 1.4

M⊙, and MOB . q depends on a and e, where e is known for 6 systems (see Table 2.3)

and otherwise assumed to be 0.3 ± 0.2. MOB and ROB are determined from the spectral

type and luminosity class of the OBe star, which is known for 35 systems, otherwise the

average values of MOB/M⊙=18.36 ± 4.42, and ROB/R⊙=8.95 ± 2.08, were assumed.

These results are given in Table 2.4. As discussed in Section 2.2, the spectroscopic mass

of OBe stars in X-ray binaries may be larger than the actual mass (which can be derived

in some systems using dynamical methods (Coe et al., 2015a,b)), where Mdyn is ∼ 20%

lower than Mspec, and so I consider the effects of both masses. A full set of results,

assuming both MOB =Mspec and MOB =Mdyn, are given in Tables A.2 and A.3.

While values of Porb = 262 ± 258 d and Rcd = 176 ± 121 R⊙ are used in calculations

when Porb or EW Hα are not known, in order to cover a full range of possible results,

the most probable values were calculated in order to determine whether or not each of

these systems accretes from a truncated or non-truncated circumstellar disc. These were

calculated by fitting the results of Porb and P , and Rcd and Porb (using MPFITEXPR2).

It was found that Porb ∝ P 5/14, and Porb ∝ R
7/100
cd . These values were then used, along

with all other values taken from Tables A.2 and A.3, in order to to create diagrams of

each system. These values are given in Table A.1 and diagrams are shown in Figures

B.1-B.84, where the estimated values are highlighted.

Figures B.1-B.84 show that about half of all systems (23/42 if MOB =Mspec, and 19/42

if MOB = Mdyn) are expected to contain OBe stars with truncated circumstellar discs,

where this is defined as having orbital parameters that place it outside of the OBe

star’s circumstellar disc at periastron. Of the 26 systems where Porb, EW Hα, and

the spectral type and luminosity class of the OBe star were known, 14 systems contain

OBe stars with truncated circumstellar discs, and 12 systems contain OBe stars with

non-truncated circumstellar discs. The status of the circumstellar disc in each of these

systems, assumingMOB =Mspec, is is given in Table 2.5, results assumingMOB =Mdyn

are given in Table A.1.

Table 2.5 also lists Vorb (equation (2.17)), Vw (equation (2.15) for systems containing an

OBe star with a truncated circumstellar disc, and equation (2.14) for systems containing

an OBe star with a non-truncated circumstellar disc), Vrel (equation (2.13); equal to

|Vorb − Vw| if the system is in a prograde orbit, and |Vorb + Vw| if the system is in a

retrograde orbit), and VCrel (equations (1.2)-(1.7), where J is determined using equation

2www.physics.wisc.edu/∼craigm/idl/down/mpfitexpr.pro
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Figure 2.5: RB for prograde (θi=180◦; equation (1.15); red) and retrograde (θi=-
180◦; equation (1.15); blue) systems, both assuming MOB = Mspec, and Rco

(equation (1.13); yellow), as a function of P , for 26 of the BeXB in this dataset
(discussed in Section 2.3). When a system is in spin equilibrium, Rco

∼= RA

(equation (1.7)), and so an accretion disc can form between RB and Rco.

(2.12) assuming a truncated circumstellar disc, and equation (2.11) assuming a non-

truncated circumstellar disc). These are derived from parameters given in Table 2.4,

assuming MOB =Mspec. A full set of results, assuming both MOB =Mspec and MOB =

Mdyn, are given in Tables A.4 and A.5. Disc accretion can only occur if Vrel < VCrel.

Figure 2.5 shows RB (equation (1.15)), assuming prograde and retrograde orbits and

MOB = Mspec, as a function of P . RB is the radius at which matter begins accreting

onto the neutron star’s magnetosphere. Rco (equation (1.13)) is also shown. This is

the radius at which matter co-rotates with the neutron star and its magnetosphere.

If a system is close to spin equilibrium, then Rco
∼= RA, where RA (equation (1.7))

is approximately equal to the radius of the neutron star’s magnetosphere, and so an

accretion disc can form between RB and RA. Rco is proportional to P , and so RA is

proportional to P for systems that are close to spin equilibrium. RB, on the other hand,

is not directly related to P , and remains fairly constant. This implies that if these

systems are close to spin equilibrium, then the accretion disc may be larger for systems

with shorter spin periods. The disc may also be larger for systems in prograde rather

than retrograde orbits.

Figure 2.6 shows Vw as a function of P , assuming MOB = Mspec. Vorb and VCrel, for

prograde systems with truncated and non-truncated discs, are also shown. The VCrel

for systems with truncated discs is ∼2-5 times larger than in the non-truncated case. It
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Figure 2.6: Vw (equation (2.14); blue), Vorb (equation (2.17); red), and VCrel, for
systems where the OBe star has a circumstellar disc that is (equation (2.12); or-
ange), and is not (equation (2.11); black), truncated by the orbit of the neutron
star, assuming MOB = Mspec, as a function of P , for 26 of the BeXB listed in
Table 2.5 (discussed in Section 2.3). The status of the OBe star’s circumstellar
disc is determined from orbital parameters, as given in Table A.1 and shown in
Figures B.1-B.84.

is easier to form a disc in the truncated case because of the asymmetry in the accretion

of angular momentum.

Figure 2.7 shows the ratio of Vrel and VCrel as a function of P for all systems, assuming

prograde orbits, for both MOB =Mspec, and MOB =Mdyn. Figure 2.7 shows that all of

these systems contain neutron stars that are most-likely accreting via an accretion disc.

Figure 2.8 shows that wind accretion is also possible in all systems where the OBe star’s

circumstellar disc is not truncated by the orbit of the neutron star and the neutron star

is in a retrograde orbit, however the majority of neutron stars in BeXB are thought to

be in prograde orbits (Brandt and Podsiadlowski, 1995).

Figures 2.7 and 2.8 show that all of the BeXB in this dataset most likely contain neutron

stars that are disc-accreting. The long-term average Ṗ for the neutron star in each

system is known, and so the Ghosh and Lamb (1979) (equation (2.13)) and Kluzniak

and Rappaport (2007) (equation (2.13)) models are the most appropriate models for

determining the neutron star’s magnetic field.

Figures 2.9 and 2.10 show results for the systems in this dataset over-plotted onto the

simulated results shown in Figures 1.9 and 1.10 (these are plots of Ṗ as a function of

PL3/7 for different values of B). Five systems - SXP2.37 (SMC X-2), SXP4.78 (which
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Figure 2.7: The ratio of Vrel (equation (2.13)) and VCrel as a function of P ,
assuming a prograde orbit, for the BeXB listed in Table A.5. Results are shown
for systems where the OBe star has a circumstellar disc that is (equation (2.12);
red), and is not (equation (2.11); dark blue), truncated by the orbit of the
neutron star, assuming MOB = Mspec, and that is (orange), and is not (light
blue), truncated by the orbit of the neutron star, assuming MOB =Mdyn. The
status of the OBe star’s circumstellar disc is determined from orbital parameters
given in Table A.1 and shown in Figures B.1-B.84. Disc accretion occurs when
Vrel/VCrel <1, and wind accretion when Vrel/VCrel >1.

Figure 2.8: As for Figure 2.7, except results are given assuming a retrograde
rather than prograde orbit.
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Figure 2.9: Ṗ as a function of PL3/7; results for neutron stars in the 42 BeXB
listed in Table 2.1 (discussed in Section 2.3) over-plotted onto Figure 1.9. 27 of
these are spinning up on average (Ṗ < 0; blue stars), and 15 are spinning down
(Ṗ > 0; red stars).

Figure 2.10: As for Figure 2.9, except results are over-plotted onto Figure 1.10
rather than Figure 1.9.
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Figure 2.11: B as a function of P for the 42 BeXB listed in Table 2.6 (discussed
in Section 2.3), where B is determined using the Ghosh and Lamb (1979) (equa-
tion (1.34); blue) and Kluzniak and Rappaport (2007) (equation (1.36); red)
non-spin equilibrium models. The fact that there are two possible results for
some systems is discussed in Sections 1.2.2 and 2.3.

Figure 2.12: As for Figure 2.11, except only showing results for the Ghosh
and Lamb (1979) model. Systems with only one possible result are highlighted
(black triangles), given two possible results, one will be closer to spin equilibrium
(blue), and one will further from spin equilibrium (red). Results are shown for
MNS=1.4M⊙, where error bars represent the highest and lowest possible results
if MNS=1 M⊙ and MNS=2 M⊙ respectively.
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accretes from a particularly large circumstellar disc, as discussed above), SXP7.78 (SMC

X-3), SXP11.5, and SXP16.6 - are above all possible spin equilibrium lines for the Ghosh

and Lamb (1979) and Kluzniak and Rappaport (2007) models. This means that they

are not close to spin equilibrium. SXP2.37, SXP4.78, SXP11.5, and SXP16.6 are not

close to spin equilibrium and are spinning up on average, and SXP7.78 is not close to

spin equilibrium and is spinning down on average. All of these systems are thought to

accrete from a non-truncated circumstellar disc, via an accretion disc.

Figure 2.10 shows that all other systems that are spinning up on average have two

possible results; they fall on the non-spin equilibrium, spin-up lines corresponding to

relatively low (∼ 103 − 1010 G) magnetic fields, and the spin equilibrium lines corre-

sponding to relatively high (∼ 1011 − 1015 G) magnetic fields (as discussed in Section

1.2.2). This applies to 26 systems. 11 systems are spinning down on average, and are

below all possible spin-down lines. This means that they must be close to spin equilib-

rium. These are SXP8.80, SXP15.3, SXP74.7, SXP95.2, SXP152, SXP175, SXP202B,

SXP214, SXP342, SXP504, and SXP645.

Results for the surface magnetic field determined using the Ghosh and Lamb (1979) and

Kluzniak and Rappaport (2007) models are shown in Figure 2.11. The Kluzniak and

Rappaport (2007) model has a particularly large lower error bar on the spin equilibrium

results for SXP91.1, it is so large that it intersects with the non-spin equilibrium result.

SXP91.1 is the only system with two possible results where the non-spin equilibrium

result is similar in strength to the magnetic field of neutron stars that we know are not

close to spin equilibrium (SXP2.37, SXP4.78, SXP7.78, SXP11.5, and SXP16.6; ∼ 1011

G). It may be more likely, therefore, that the lower results for SXP91.1 are correct, and

it is also not close to spin equilibrium.

Figure 2.12 shows results for the Ghosh and Lamb (1979) model for MNS=1.4 M⊙,

where the error bars indicate results for MNS=1 M⊙ - 2 M⊙. This confirms that the

magnetic field does not have a strong dependence on MNS , as is expected given Figure

1.11.

For the other 25 systems with two possible results, the spin equilibrium results are

assumed to be correct for a number of reasons. Firstly, it was previously noted that a

correlation of Ṗ ∝ P 6/5 is found in our results, whereas the Ghosh and Lamb (1979)

model predicts a correlation of Ṗ ∝ P 2 for systems that are close to spin equilibrium.

The discrepancy between these two results can be resolved if the non-spin equilibrium

results are removed, giving a weighted correlation of Ṗ ∝ P 12/7. If two further points

are removed (SXP8.80 and SXP15.3; the two systems with the lowest P that are spinning

down), then a weighted correlation of Ṗ ∝ P 2 is found, as shown in in Figure 2.13.

Secondly, 12 neutron stars in Galactic BeXB have had their magnetic fields measured

directly using CRSF (see Table 2.7). These were found to have magnetic fields of∼ 1012−

1013 G (see Figure 2.17). While these are lower than some of the spin equilibrium results
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Figure 2.13: As for Figure 2.2, except that results are highlighted for systems
not thought to be close to spin equilibrium, both spinning up (light blue di-
amonds) and spinning down (orange diamond). The Ghosh and Lamb (1979)
model predicts a correlation of Ṗ ∝ P 2 for systems that are close to spin equi-
librium. The dashed black line indicates a correlation, between all results, of
Ṗ ∝ P 6/5. When only the spin equilibrium results are considered, a correlation
of Ṗ ∝ P 12/7 is found (black line). If SXP8.80 and SXP15.3 are also removed
from the dataset (these are the two systems with the lowest P that are spinning
down), then a correlation of Ṗ ∝ P 2 is found (red line).

(which will be discussed further below), they are much closer to the spin equilibrium

results (1011 − 1015 G) than the non-spin equilibrium results (103 − 1010 G).

Thirdly, Figure 2.9 shows that at least 11 systems are almost certainly close to spin

equilibrium, and at least 5 are almost certainly not, 6 if SXP91.1 is included (as dis-

cussed above). All 6 are still predicted to have magnetic fields much closer to the spin

equilibrium results than the non-spin equilibrium results (B > 1011 G). This can be

seen in Figures 2.14 and 2.15, which show results assuming that the spin equilibrium

results are correct for systems with two possibilities (with the exception of SXP91.1),

and results assuming Ṗ = 0 in all cases, using the Ghosh and Lamb (1979) and Kluzniak

and Rappaport (2007) models respectively. This allows us to see how close the neutron

star in each system is to spin equilibrium (assuming the close-to-spin-equilibrium results

are correct when two results are possible, with the exception of SXP91.1).

Finally, many of these systems follow the Corbet (1984) relation, which is expected if

they are close to spin equilibrium. The Corbet (1984) relation shows that for neutron

stars in BeXB, P is proportional to Porb. This is because systems with longer orbital
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Figure 2.14: B as a function of P for neutron stars in the 42 BeXB listed in
Table 2.6. The most probable results determined using the Ghosh and Lamb
(1979) (equation (1.34)) model are shown (as discussed in Section 2.3). 36
neutron stars in this dataset are assumed to be close to spin equilibrium (blue),
and 6 are not (black). Results found using the Ghosh and Lamb (1979) model
assuming that the system is in spin equilibrium, and hence Ṗ = 0, are also
shown (red). The largest disparity between these results is in SXP91.1. This
suggests that it is the furthest from spin equilibrium.

Figure 2.15: As for Figure 2.14, except results are determined using the Kluzniak
and Rappaport (2007) rather than Ghosh and Lamb (1979) model.
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periods accrete less often, and spend longer amounts of time spinning down between

accretion events, which means that they tend to have longer spin equilibrium periods.

Figure 2.16: B as a function of P for neutron stars in the 42 BeXB listed
in Table 2.6. The most probable results are shown (as discussed in Section
2.3), determined using the Ghosh and Lamb (1979) (equation (1.34); blue) and
Kluzniak and Rappaport (2007) (equation (1.36); red) models.

Figure 2.16 shows the most probable B found using the Ghosh and Lamb (1979) and

Kluzniak and Rappaport (2007) models (as described above), as a function of P . This

assumes that all systems are close to spin equilibrium, with the exception of SXP2.37,

SXP4.78, SXP7.78, SXP11.5, SXP16.6, and SXP91.1. Table 2.6 summarises the results

for each system, giving the accretion method, spin equilibrium status, the status of the

OBe star’s circumstellar disc, and the most probable B given this information.

Figure 2.16 shows that both models predict B > BQED (where BQED=4.4×1013 G;

equation 1.41) for all systems with P & 100 s. Two thirds (28/42) of the systems in

this dataset contain neutron stars with B > BQED according to the Ghosh and Lamb

(1979) model, and 60% (25/42) contain neutron stars with B > BQED according to the

Kluzniak and Rappaport (2007) model.

Figure 2.17 shows the most probable B as a function of P , alongside results for almost

all known neutron stars, including magnetars, and neutron stars in Galactic BeXB that

have had B determined from CRSF. If these results are correct, then this plot, first
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BeXB Acc. Spin Circ. Ghosh & Kluzniak &
method equilibrium disc Lamb Rappaport

status status B (G) B (G)

SXP2.37 Disc N-S eq, u N-T (5.5± 0.5) × 1011 (1.7 ± 0.4)× 1012

SXP4.78 Disc N-S eq, u N-T∗ (3.0± 0.5) × 1011 (5.5 ± 1.5)× 1011

SXP6.85 Disc S eq∗ T (3.5± 0.3) × 1012 (3.1 ± 0.3)× 1012

SXP7.78 Disc N-S eq, d N-T∗ (3.1± 0.2) × 1012 (1.5 ± 0.1)× 1012

SXP8.80 Disc S eq N-T (5.1± 0.3) × 1012 (4.0 ± 0.2)× 1012

SXP11.5 Disc N-S eq, u N-T∗ (1.2± 0.1) × 1012 (3.7 ± 0.7)× 1012

SXP15.3 Disc S eq N-T∗ (6.7± 0.3) × 1012 (4.5 ± 0.3)× 1012

SXP16.6 Disc N-S eq, u N-T∗ (7.5± 0.5) × 1011 (2.3 ± 0.4)× 1012

SXP18.3 Disc S eq∗ N-T∗ (6.6± 0.5) × 1012 (5.8 ± 0.4)× 1012

SXP25.5 Disc S eq∗ N-T∗ (6.6± 0.6) × 1012 (5.6 ± 0.5)× 1012

SXP46.6 Disc S eq∗ T∗ (1.6± 0.2) × 1013 (1.4 ± 0.1)× 1013

SXP59.0 Disc S eq∗ T∗ (2.6± 0.2) × 1013 (2.3 ± 0.2)× 1013

SXP74.7 Disc S eq N-T (4.5± 0.3) × 1013 (3.7 ± 0.3)× 1013

SXP82.4 Disc S eq∗ T∗ (3.5± 0.4) × 1013 (3.1 ± 0.3)× 1013

SXP91.1 Disc N-S eq∗, u N-T∗ (5.5± 2.5) × 1011 (8.0 ± 3.0)× 1011

SXP95.2 Disc S eq T∗ (4.6± 0.5) × 1013 (3.9 ± 0.4)× 1013

SXP101 Disc S eq∗ N-T∗ (4.6± 0.7) × 1013 (4.1 ± 0.5)× 1013

SXP140 Disc S eq∗ T∗ (7.4± 2.3) × 1013 (6.6 ± 1.8)× 1013

SXP152 Disc S eq T∗ (7.2± 0.8) × 1013 (6.1 ± 0.7)× 1013

SXP169 Disc S eq∗ N-T∗ (1.0± 0.1) × 1014 (9.1 ± 0.9)× 1013

SXP172 Disc S eq∗ T∗ (8.2± 1.3) × 1013 (7.2 ± 1.0)× 1013

SXP175 Disc S eq N-T∗ (1.0± 0.2) × 1014 (8.7 ± 1.4)× 1013

SXP202A Disc S eq∗ T∗ (1.0± 0.1) × 1014 (8.7 ± 1.1)× 1013

SXP202B Disc S eq T∗ (8.1± 1.8) × 1013 (6.6 ± 1.5)× 1013

SXP214 Disc S eq T (N-T)∗ (9.6± 1.9) × 1013 (8.1 ± 1.6)× 1013

SXP264 Disc S eq∗ N-T∗ (8.6± 1.7) × 1013 (7.3 ± 1.3)× 1013

SXP280 Disc S eq∗ N-T∗ (1.2± 0.3) × 1014 (1.1 ± 0.2)× 1014

SXP293 Disc S eq∗ T∗ (1.2± 0.2) × 1014 (1.0 ± 0.1)× 1014

SXP304 Disc S eq∗ T∗ (2.6± 0.4) × 1014 (2.2 ± 0.4)× 1014

SXP323 Disc S eq∗ T (N-T)∗ (1.6± 0.3) × 1014 (1.4 ± 0.2)× 1014

SXP327 Disc S eq∗ N-T∗ (7.1± 2.9) × 1013 (7.4 ± 1.2)× 1013

SXP342 Disc S eq T∗ (2.5± 0.4) × 1014 (2.1 ± 0.3)× 1014

SXP455 Disc S eq∗ T∗ (4.7± 0.7) × 1014 (4.0 ± 0.6)× 1014

SXP504 Disc S eq T∗ (2.7± 0.4) × 1014 (2.3 ± 0.3)× 1014

SXP565 Disc S eq∗ N-T∗ (1.8± 0.6) × 1014 (1.6 ± 0.5)× 1014

SXP645 Disc S eq T (N-T)∗ (3.5± 0.8) × 1014 (3.0 ± 0.7)× 1014

SXP701 Disc S eq∗ T∗ (3.5± 0.6) × 1014 (3.0 ± 0.5)× 1014

SXP726 Disc S eq∗ T∗ (6.8± 1.4) × 1014 (5.9 ± 1.2)× 1014

SXP756 Disc S eq∗ T∗ (4.8± 0.3) × 1014 (4.1 ± 0.3)× 1014

SXP893 Disc S eq∗ T∗ (4.0± 0.7) × 1014 (3.5 ± 0.6)× 1014

SXP967 Disc S eq∗ T∗ (1.2± 0.2) × 1015 (1.1 ± 0.2)× 1015

SXP1323 Disc S eq∗ N-T∗ (1.7± 0.2) × 1015 (1.4 ± 0.1)× 1015

Table 2.6: Accretion method, spin equilibrium status, the status of the OBe
star’s circumstellar disc (results assuming MOB = Mspec, where results assum-
ing MOB = Mdyn are in parenthesis), and the corresponding magnetic fields
determined from the Ghosh and Lamb (1979) and Kluzniak and Rappaport
(2007) models. Here, S eq refers to systems that are close to spin equilibrium,
and N − S eq to systems that are not, where u refers to spin-up, and d to
spin-down. Other nomenclature is the same as in Table 2.5, where an asterisk
denotes that the value is an estimate, as discussed in Section 2.3 and shown in
Appendix B.
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Figure 2.17: The most probable B (as discussed in Section 2.3) for neutron stars
in the 42 BeXB listed in Table 2.6 determined using the Ghosh and Lamb (1979)
(equation (1.34)) model. Neutron stars in 27 of these systems are spinning up
on average (Ṗ < 0; blue), and 15 are spinning down (Ṗ > 0; red). 36 are
close to spin equilibrium (stars), and 6 are not (triangles). Neutron stars in
Galactic BeXB, where B has been measured using CRSF, are also shown (green
triangles; for references see Table 2.7), as are neutron stars in LMXB (yellow
circles; Camilo et al. (1994)), magnetars (orange ‘x’s; Manchester et al. (2005)),
and isolated radio pulsars (black crosses; Manchester et al. (2005)).

published in Ho et al. (2014), shows that all neutron stars in accreting X-ray binaries

follow the same relationship between P and B if they are close to spin equilibrium (Ho

et al., 2014). This is assuming that the CRSF sources are not close to spin equilibrium,

which is discussed further in Section 2.4.

Figure 2.18 shows results from the spin equilibrium disc accretion models (discussed

in Section 1.2.2), and results using the Ghosh and Lamb (1979) and Kluzniak and

Rappaport (2007) models with Ṗ = 0. The spin equilibrium disc accretion models give

slightly higher results than the Ghosh and Lamb (1979) and Kluzniak and Rappaport

(2007) models, as discussed in Section 1.2.2.

Wind accretion is possible in some systems if they are in retrograde orbits and are ac-

creting from a non-truncated circumstellar disc, and so results from the spin equilibrium
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Figure 2.18: B as a function of P , where B is determined using the spin equi-
librium disc accretion models, discussed in Section 1.2.2. These include the
spin equilibrium (τup (disc) = τdown; orange), and the spin equilibrium radius
(Rco = RA; red) models for disc accretion. Results from the Ghosh and Lamb
(1979) (equation (1.34); green), and Kluzniak and Rappaport (2007) (equation
(1.36): blue) models, assuming Ṗ = 0, are also shown.

Figure 2.19: B as a function of P , where B is determined using the spin equilib-
rium wind accretion models discussed in Section 1.2.1, assumingMOB =Mspec.
These include the spin equilibrium model (τup (wind) = τdown) for prograde
(θi=180◦; dark blue) and retrograde (θi = −180◦; light blue) systems, and
the Shakura et al. (2012) model (equation (1.17)) for prograde (θi=180◦; red)
and retrograde (θi = −180◦; yellow) systems.
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wind accretion models, assuming both prograde and retrograde orbits andMOB =Mspec,

are shown in Figure 2.19. The Shakura et al. (2012) model has a stronger dependence

on Vrel than the spin equilibrium model for wind accretion, and so shows a greater

difference between prograde and retrograde systems. Wind accretion is not possible in

most prograde systems, whether or not the disc is truncated. If it were possible, then

the magnetic fields for neutron stars in most systems would be predicted to be > BQED.

The system with the highest predicted magnetic field, assuming a prograde orbit, is

SXP304, which also has the longest orbital period and the shortest orbital velocity, as

shown in Figure B.58.

The magnetic field for systems in retrograde orbits are ∼ 1011−1014 G using the Shakura

et al. (2012) model and 1012 − 1014 G using the spin equilibrium model. These results

are closer to the results of CRSF sources, but it is very unlikely that the majority of

BeXB in the SMC are in retrograde orbits (Brandt and Podsiadlowski, 1995). It is not

possible for prograde systems containing OBe stars with truncated circumstellar discs

to be wind-accreting. In order for wind accretion to be possible in prograde, truncated,

systems that the Ghosh and Lamb (1979) model predicts have > BQED, Vw would have

to increase from ∼150 km s−1 to ∼ 800 km s−1. Wind accretion would also be possible

if the orbital velocity (Vorb) increased from ∼ 50 km s−1 to ∼ 900 km s−1, assuming Porb

is correct, then this is only possible if e > 0.98. Wind accretion is, therefore, extremely

unlikely in all systems.

2.4 Discussion and conclusions

In Sections 2.1-2.3, I showed that neutron stars in 42 BeXB in the SMC are most likely

disc-accreting. About half are accreting from a circumstellar disc that is truncated

by the orbit of the neutron star (23/42 assuming MOB = Mspec, and 19/42 assuming

MOB = Mdyn). 36 systems are close to spin equilibrium, and 6 are not; these are

SXP2.37 (SMC X-2), SXP4.78, SXP7.78 (SMC X-3), SXP11.5, SXP16.6, and SXP91.1.

SXP7.78 is the only member of this group that is spinning down on average. ∼ 2/3

systems, and all systems with P > 100 s, are predicted to have B > BQED (where

BQED=4.4×1013 G; equation 1.41). Similarly high estimates for the magnetic fields of

neutron stars in X-ray binaries have been made before (as discussed in Section 1.2.2).

These systems were thought to be unusual, but results from this chapter suggest that

systems with B > BQED may be common.

The main objection to these results is that they do not match the magnetic fields of neu-

tron stars directly measured with CRSF, where a similar difference in field determination

using these two methods has previously been noted for SGXB GX 301-2 (Doroshenko

et al., 2010a). Twelve Galactic BeXB contain neutron stars that have had B measured
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using CRSF (see Table 2.7), and all have magnetic fields between 1012 − 1013 G (see

Figure 2.17). There are a number of possibilities to explain this disparity.

Firstly, it may be the case that accretion theories are simply wrong, overestimating the

magnetic field of systems with spin periods & 100 s. This seems unlikely, however; if

this were the case then we may need to rethink most of accretion physics. Secondly, our

understanding of CRSF may be wrong. Although this seems less likely than accretion

theories being wrong as the method (described in Section 1.3.1) is based on fewer theo-

retical assumptions. Thirdly, it is possible that both results are correct, where the result

determined from accretion theory is the magnetic field at the neutron star’s surface, and

the CRSF result originates from above the surface, from the top of the accretion column.

Finally, it is possible that both results are correct if the CRSF sources with P > 100

s are not close to spin equilibrium. The last two possibilities are investigated below,

although the long-term average L, P , and Ṗ are not known for most CRSF sources, and

so the results are approximate at best.

BeXB Bcyc P Ṗ L Spin eq.
(1012 G) (s) (s yr−1) (1037 erg s−1) status

4U 0115+634 1.07 [1] 3.61 [1] U
V 0332+53 2.70 [2] 4.40 [2] U

Swift J1626.6-5156 1.13 [3] 15.40 [3] 0.034 [3] 0.0098 [4] N-S eq, d
XTE J1946+274 4.06 [5] 15.80 [5] U

Cep X-4 3.41 [6] 66.25 [6] U
GRO J1008-57 6.60 [7] 93.63 [7] 2 [7] 0.22 [8] S eq, d
A0535+26 3.89 [9] 103.4 [9] 0.037 [9] 0.0068 [10] S eq, d

MXB 0656-072 3.67 [11] 160.4 [11] 0.66 [11] -3.7 [11] S eq, u
RX J0440.9+4431 3.20 [12] 203.8 [12] 0.71 [12] 0.20 [12] S eq, d

GX 304-1 4.70 [13] 275.5 [13] U
1A1118-616 4.80 [14] 407.7 [14] 2.90 [15] -14.5 [14] N-S eq, u

X Per 3.28 [16] 837.0 [16] 0.0042 [16] 0.11 [16] S eq, d

Table 2.7: Galactic BeXB that have had B directly measured via CRSF (as
discussed in Sections 1.3.1 and 2.4), and P , L, and Ṗ where known. The spin
equilibrium status is also given. This is determined from Figure 2.21, where U
means the statues is unknown, and other nomenclature is the same as in Table
2.6. Some of these results may be incorrect since the values used for P , L, and
Ṗ are not long-term averages. References are as follows; [1] Heindl et al. (1999),
[2] Pottschmidt et al. (2005), [3] DeCesar et al. (2013), [4] Baykal et al. (2010),
[5] Heindl et al. (2001), [6] Mihara et al. (1991), [7] Yamamoto et al. (2014), [8]
Shrader et al. (1991), [9] Terada et al. (2006), [10] Kendziorra et al. (1994), [11]
McBride et al. (2006), [12] Tsygankov et al. (2012), [13] Yamamoto et al. (2011),
[14] Doroshenko et al. (2010b), [15] Reig and Nespoli (2013), [16] Coburn et al.
(2001).

Figures 2.20 and 2.21 show results for the CRSF sources over-plotted onto Figures 1.9

and 1.10. Figures 1.9 and 1.10 show Ṗ as a function of PL3/7 with simulated results

over-plotted for varying magnetic fields determined using the Ghosh and Lamb (1979)



Chapter 2 The magnetic fields of neutron stars in BeXB in the SMC 63

Figure 2.20: Ṗ as a function of PL3/7; results for CRSF sources (given in Table
2.7 and discussed in Section 2.4), over-plotted onto Figure 1.9. 2 CRSF sources
are spinning up on average (Ṗ < 0; red diamonds), and 5 are spinning down
(Ṗ > 0; black diamonds).

Figure 2.21: As for Figure 2.20, except results are over-plotted onto Figure 1.10
rather than Figure 1.9.
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BeXB Spin eq. Bcyc BG&L Height Height
status (1012 G) (1012 G) needed if predicted if

BG&L = Bs BG&L = Bs

(km) (km)

4U 0115+634 U 1.07 [1] 1.00 <0 1.48
V 0332+53 U 2.70 [2] 1.30 <0 1.27

Swift J1626.6-5156 N-S eq, d 1.13 [3] 3.10 4.01 8.68
XTE J1946+274 U 4.06 [5] 5.80 1.26 0.54

Cep X-4 U 3.41 [6] 30.79 10.83 0.21
GRO J1008-57 S eq, d 6.60 [7] 65.20 11.91 0.08
A0535+26 S eq, d 3.89 [9] 10.00 4.06 4.00

MXB 0656-072 S eq, u 3.67 [11] 70.20 6.57 0.40
RX J0440.9+4431 S eq, d 3.20 [12] 96.20 21.38 0.14

GX 304-1 U 4.70 [13] 162.30 22.56 0.08
1A1118-616 N-S eq, u 4.80 [14] 0.22 <0 0.02

X Per S eq, d 3.28 [16] 38.50 13.41 8.72

Table 2.8: CRSF sources, spin equilibrium status, and Bcyc from Table 2.7.
The fourth column shows B determined using the Ghosh and Lamb (1979)
(BG&L; equation (1.34)) model, given the spin equilibrium status. If the status
is unknown, it is assumed that the system is close to spin equilibrium, with
a Ṗ of 0. If L is not known, a value of 1037 erg s−1 is assumed. If BG&L is
equal to the surface magnetic field (Bs), and Bcyc originates from above this, in
an accretion column, then the height of the column can be determined (using
equation (1.5), assuming RNS = 10 km), and is given in the fifth column. The
height of the accretion column can also be determined from L and B following
Becker et al. (2012) (equations (2.18)-(2.20)), as discussed in Section 2.4. This
height is given in the last column, assuming Bs = BG&L. Results may be
incorrect since the values used for P , L, and Ṗ are either not known, or are not
long-term averages. References for Bcyc are given in Table 2.7.

and Kluzniak and Rappaport (2007) models. Figures 2.20 and 2.21 show that if the

values of L, P , and Ṗ are representative of their long-term behaviour, then one system

is certainly not close to spin equilibrium. This is Swift J1626.6-5156, which is spinning

down on average. There is one system that may or may not be close to spin equilibrium,

this is 1A1118-616, which is spinning up on average. 1A1118-616 will be classified as

not being close to spin equilibrium for the same reasons applied to SXP91.1 in Section

2.3. Figure 2.21 shows that the rest of the systems are expected to be close to spin

equilibrium. These include four systems that are spinning down on average and one

system that is spinning up. The results are given in Table 2.7. The magnetic field of

each CRSF source is then determined using the Ghosh and Lamb (1979) model, given

these results. Where Ṗ and L were not known, it was assumed that Ṗ = 0, and L = 1037

erg s−1. Once the expected magnetic field from the Ghosh and Lamb (1979) model is

known, the height that the CRSF must originate from in order for that to be the correct

surface field can be determined (given equation (1.5), and assuming RNS=10 km). This

height is given in column five of Table 2.8. The height of the accretion column can also

be determined from L and B using the Becker et al. (2012) model.
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Figure 2.22: Diagram of an accretion column in the subcritical state, following
the Becker et al. (2012) model (discussed in Section 2.4). Image credit: Becker
et al. (2012).

Figure 2.23: Diagram of an accretion column in the supercritical state, following
the Becker et al. (2012) model (discussed in Section 2.4). Image credit: Becker
et al. (2012).
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Within the Becker et al. (2012) model, the height of the accretion column depends on

whether or not the pencil beam is fully suppressed (as discussed in Section 1.4.2). The

pencil beam is observable, and the system is referred to as subcritical, if L < Lcrit. The

pencil beam is suppressed, and the system is referred to as supercritical, if L > Lcrit.

For MNS=1.4 M⊙ and RNS=10 km,

Lcrit = 1.49 × 1037 erg s−1
( Λ

0.1

)−7/5
w−28/15

( B

1012 G

)16/15
. (2.18)

Here, Λ is a numerical coefficient that depends on the symmetry of accretion, where

Λ = 1 for spherical wind accretion, and Λ < 1 for disc accretion. Becker et al. (2012)

assume a value of 0.1. w is a numerical coefficient that depends on the shape of the

spectrum inside the accretion column, and is assumed to be equal to 1 (Becker et al.,

2012). Diagrams of subcritical and supercritical systems are shown in Figures 2.22 and

2.23 respectively.

In subcritical systems, where the pencil beam is still visible, the height of the accretion

column (hc) is found via

hc = 1.48 × 105 cm
( Λ

0.1

)−1( τ

20

)( B

1012 G

)−4/7( L

1037 erg s−1

)−5/7
(2.19)

for MNS=1.4 M⊙ and RNS=10 km, where τ is the Thomson optical depth required to

stop the flow of accreted material via Coulomb interactions, and is assumed to be equal

to 20. Here, the height of the accretion column is inversely proportional to B and L.

In supercritical systems, where the pencil beam is fully suppressed and the fan beam is

dominant, the height of the accretion column (hs) is found via

hs = 2.28 × 103 cm
( ξh
0.01

)( L

1037 erg s−1

)

(2.20)

for MNS=1.4 M⊙ and RNS=10 km, where ξh is a numerical coefficient that depends on

the flow velocity of accreted material, and is assumed to be equal to 10−2.5. Here, the

height of the accretion column is proportional to L and unaffected by B.

Results from the Becker et al. (2012) model, assuming that the B determined using

the Ghosh and Lamb (1979) model is the surface field (and RNS=10 km), are given

in Table 2.8. If this is the surface field, then the Becker et al. (2012) model predicts

that most CRSF sources have accretion columns < 2 km, and most are < 1 km. One

system (A0535+26) is predicted to have a ∼ 4 km accretion column, and two (Swift

J1626.6-5156 and X Per) are predicted to have accretion columns of ∼ 8 km. Given that

a neutron star has a radius of ∼ 10 km, this suggests that these results are incorrect,

and that the L, P , and Ṗ used for these systems are not representative of the long-

term averages. Excluding these systems, the only other systems where the expected

and predicted heights are compatible are those that are not assumed to be close to spin
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BeXB B Height of Predicted Predicted
(1012 G) accretion Bcyc Ecyc

column (1012 G) (keV)
(m)

SXP2.37 0.55 ± 0.05 92.1 ± 6.8 0.54 ± 0.05 4.7 ± 0.4
SXP4.78 0.30 ± 0.05 6.4 ± 0.9 0.30 ± 0.05 2.7 ± 0.4
SXP6.85 3.50 ± 0.30 349 ± 44 3.16 ± 0.27 28.0 ± 2.4
SXP7.78 3.05 ± 0.15 1339 ± 176 2.09 ± 0.14 18.5 ± 1.3
SXP8.80 5.05 ± 0.25 301 ± 22 4.62 ± 0.23 40.9 ± 2.0
SXP11.5 1.20 ± 0.10 949 ± 83 0.91 ± 0.08 8.1 ± 0.7
SXP15.3 6.70 ± 0.30 541 ± 51 5.72 ± 0.27 50.7 ± 2.4
SXP16.6 0.75 ± 0.05 4581 ± 659 0.24 ± 0.04 2.1 ± 0.3
SXP18.3 6.60 ± 0.50 510 ± 52 5.69 ± 0.44 50.4 ± 3.9
SXP25.5 6.60 ± 0.60 937 ± 120 5.04 ± 0.49 44.7 ± 4.3
SXP46.6 15.6 ± 1.8 403 ± 60 13.8 ± 1.6 122 ± 14
SXP59.0 26.4 ± 2.1 220 ± 25 24.7 ± 2.0 219 ± 18
SXP74.7 44.7 ± 3.1 124 ± 13 43.0 ± 2.9 381 ± 26
SXP82.4 35.3 ± 4.0 220 ± 36 33.0 ± 3.7 293 ± 33
SXP91.1 0.55 ± 0.25 9.9 ± 1.4 0.55 ± 0.25 4.9 ± 2.2
SXP95.2 46.3 ± 5.0 171 ± 28 44.0 ± 4.8 390 ± 42
SXP101 46.4 ± 6.7 178 ± 35 44.0 ± 6.3 390 ± 56
SXP140 74.2 ± 23.0 113 ± 43 71.7 ± 22.2 635 ± 197
SXP152 72.4 ± 8.0 150 ± 24 69.2 ± 7.7 613 ± 68
SXP169 104 ± 11 82.0 ± 12.4 101 ± 11 897 ± 96
SXP172 82.3 ± 12.6 137 ± 30 79.0 ± 12.1 700 ± 107
SXP175 104 ± 17 93.8 ± 22.8 101 ± 16 893 ± 142
SXP202A 101 ± 13 121 ± 23 96.9 ± 12.8 859 ± 114
SXP202B 80.9 ± 17.7 200 ± 66 76.2 ± 16.7 676 ± 148
SXP214 96.0 ± 18.8 151 ± 44 91.8 ± 18.0 813 ± 160
SXP264 85.9 ± 16.8 264 ± 72 79.4 ± 15.6 703 ± 138
SXP280 122 ± 28 136 ± 43 117 ± 27 1038 ± 242
SXP293 121 ± 17 162 ± 32 115 ± 16 1018 ± 141
SXP304 258 ± 43 36.4 ± 8.7 256 ± 43 2264 ± 380
SXP323 162 ± 28 95.1 ± 22.2 158 ± 27 1396 ± 238
SXP327 71.4 ± 29.0 401 ± 118 63.4 ± 25.9 562 ± 229
SXP342 255 ± 37 47.5 ± 10.4 251 ± 36 2224 ± 323
SXP455 470 ± 71 21.7 ± 4.7 467 ± 71 4137 ± 625
SXP504 271 ± 38 78.7 ± 16.3 264 ± 37 2343 ± 329
SXP565 181 ± 60 191 ± 81 171 ± 57 1519 ± 507
SXP645 353 ± 80 68.7 ± 22.0 346 ± 78 3064 ± 695
SXP701 353 ± 60 78.6 ± 18.7 345 ± 58 3057 ± 516
SXP726 685 ± 143 22.2 ± 6.5 680 ± 142 6028 ± 1262
SXP756 477 ± 32 50.1 ± 4.8 470 ± 32 4162 ± 283
SXP893 401 ± 70 90.0 ± 21.5 391 ± 68 3461 ± 602
SXP967 1231 ± 217 11.1 ± 2.7 1227 ± 217 10875 ± 1920
SXP1323 1689 ± 167 10.1 ± 1.4 1684 ± 167 14924 ± 1477

Table 2.9: Most probable B for neutron stars in the 42 BeXB discussed in this
chapter. Results are determined using the Ghosh and Lamb (1979) model, as
given in Table 2.6. The height of the accretion column is also given, deter-
mined from L and B, following Becker et al. (2012) (equations (2.18)-(2.20);
as discussed in Section 2.4). The corresponding predicted Bcyc and Ecyc, for
electrons, from this radius (equations (1.5) and (1.39)) are also given, assuming
n = 1, RNS=10 km, and MNS = 1.4 M⊙.
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equilibrium (1A1118-616), and systems with spin periods < 15 s (4U 0115+634 and V

0332+53). This leaves six systems where the two results are not compatible. In these

cases, the spin equilibrium assumption is most likely flawed. This means that the values

of L, P , and Ṗ that were used are not representative of the source’s long-term behaviour.

Figure 2.24: The height of the accretion column for neutron stars in the 42 BeXB
listed in Table 2.9, determined using the Becker et al. (2012) model (equations
(2.18)-(2.20)), as a function of spin period (as discussed in Section 2.4). 27 of
these systems are spinning up on average (Ṗ < 0; blue), and 15 are spinning
down (Ṗ > 0; red).

The most likely explanation as to why the magnetic fields of neutron stars in SXP diverge

from those in BeXB that have been measured using CRSF, is that the CRSF sources are

not close to spin equilibrium, whereas most SXP sources are. This is combined with an

instrumental bias, which prevents CRSF, from electrons, from being detected in systems

containing neutron stars with B & 1013 G (as discussed in Section 1.3.1). All of the

SXP sources that are not close to spin equilibrium are predicted to have magnetic fields

similar to those of CRSF sources. This can be seen in Figures 2.17 and 4.34, where

Figure 4.34 includes the non-spin equilibrium, persistent LMC source LXP187, which is

discussed in Chapter 4.

Further evidence of this could be obtained by monitoring the long-term average L, P ,

and Ṗ of CRSF sources, so that a proper comparison with the Ghosh and Lamb (1979)

model can be made. Conversely, the SXP sources could be targeted for observation.

The energy of the predicted CRSF for each SXP source is given in Table 2.9 and Figures
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Figure 2.25: As for Figure 2.24, except Ecyc, from electrons, is shown rather
than the height of the accretion column. The black line indicates the maximum
energy range of NASA’s NuStar (Nuclear Spectroscopic Telescope Array Mis-
sion), and shows that most sources would not be expected to have detectable
CRSF.

2.24 and 2.25. The height of the accretion column in each SXP is determined using

the Becker et al. (2012) model. The magnetic field at this height is determined (using

equation (1.5), assuming RNS = 10 km), and the energy of the predicted CRSF is then

calculated using equation (1.39), assuming n = 1 and MNS=1.4 M⊙.

Figure 2.24 shows that most SXP are expected to contain accretion columns of < 1 km.

Most systems are subcritical, and so are still predicted to have a visible pencil beam. In

subcritical systems, the height of the accretion column is inversely proportional to B and

L. The Ghosh and Lamb (1979) model predicts that B is proportional to P for systems

that are close to spin equilibrium, and so the height of the accretion column is inversely

proportional to P in most cases. Three systems are supercritical, with a suppressed

pencil beam, and so the heights of their accretion columns only depend on L; these

are SXP2.37, SXP4.78, and SXP91.1, all of which are not close to spin equilibrium, are

spinning up on average, and are accreting from non-truncated circumstellar discs. Figure

2.25 shows the predicted Ecyc, from electrons, for all of the SXP sources. The black

line indicates the maximum energy range of NASA’s NuStar (Nuclear Spectroscopic

Telescope Array Mission). This shows that most sources would not be expected to have

detectable CRSF. Evidence of B > BQED could also be obtained if any of these systems

undergo a magnetar-like gamma-ray outburst (as described in Section 1.1).
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If ∼ 2/3 SXP sources do have B > BQED, then this may suggest that there are many

more isolated neutron stars with B > BQED. If isolated neutron stars have B > BQED,

then their magnetic fields can usually only be measured when they undergo a magnetar-

like outburst. The SXP sources have not been observed to undergo these outbursts,

and this suggests that perhaps these outbursts are not common for neutron stars with

B > BQED, and there is a hidden population of isolated neutron stars with B > BQED

that cannot be observed. It may also mean that magnetic field decay occurs more slowly

than previously thought (Pons et al., 2009). These conclusions are discussed further in

Chapters 3 and 4.



Chapter 3

The pulse-profiles of neutron

stars in BeXB in the SMC

3.1 Introduction

In Chapter 2, I showed that 42 transient BeXB in the SMC are most likely disc-accreting.

About half of all systems (23/42 if MOB = Mspec, and 19/42 if MOB = Mdyn) are

accreting from a circumstellar disc that is truncated by the orbit of the neutron star. 36

systems are close to spin equilibrium, and 6 systems are not; these are SXP2.37 (SMC

X-2), SXP4.78, SXP7.78 (SMC X-3), SXP11.5, SXP16.6, and SXP91.1. SXP7.78 is the

only member of this group that is spinning down on average. The magnetic field of the

neutron star in each system was calculated based on this information, and ∼ 2/3 were

shown to have B > BQED.

In this chapter, pulse-profiles are created for every observation of all of these systems.

They are then modelled in order to determine i, θ, and MNS/RNS (as discussed in

Section 1.4.1) using the Beloborodov (2002) approximation, and visually inspected for

the features discussed in Section 1.4. If the magnetic fields given in Chapter 2 are

correct, then we might expect to see different structures in the pulse-profiles of systems

with relatively long and short spin periods, and hence relatively high and low magnetic

fields.

Data used in this chapter was originally extracted by S. Laycock, L.J. Galache, and L.J.

Townsend.

An outline of this chapter is as follows: observations are discussed in Section 3.2, with

the Beloborodov (2002) approximation described in Section 3.2.1. Results are presented

in Section 3.3, firstly results from the Beloborodov (2002) approximation in Section

3.3.1, and secondly results regarding other features within the pulse-profiles, in Section

3.3.2. Conclusions are given in Section 3.4.

71
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3.2 Observations

The observations in this chapter come from the study of the SMC carried out using

RXTE over the period 1997-2012. These are discussed in Section 2.2. As stated in

Section 2.2, the SMC was observed once or twice a week, for durations of ∼10,000 s. The

quality of any single observation depends upon the significance of the detected period

combined with the collimator response to the source, and so any period detections with

a significance < 99%, or a collimator response < 0.2 are removed, as are any datasets

with < 5 detections. This leaves results for 42 BeXB, with between 5 and 88 detections

per source (see Table 2.1), and over 1000 detections in total. The average count-rate

(CR), measured in counts PCU−1 s−1, is converted to luminosity using equation (2.1).

Each observation records CR every 10 ms. These data were binned into 1 s intervals,

with the error taken as the square-root of the total number of counts in each bin.

Pulse-profiles were then created, folded on the spin period specific to the observation

(as shown in Appendix B), and plotted normalised to the average count-rate, with

30 bins per phase. The background level is uncertain because RXTE’s PCAs had no

spatial resolution or imaging capability, and so it is not known if other systems were in

outburst during the observation. This means that the true pulse-fraction is not known.

The pulse-profiles cannot be phase locked between observations, and so the phase-shift

is also unknown. These pulse-profiles were then modelled using the Beloborodov (2002)

approximation, and visually inspected, to look for the features discussed in Section 1.4.

3.2.1 The Beloborodov approximation

The Beloborodov (2002) approximation determines how the pulse-profile should look,

depending on how many magnetic poles are visible at any one time (as discussed in

Section 1.4.1, see also King and Shaviv (1984) with regard to white dwarfs). It is

applicable to compact objects emitting from two point-like antipodal hot-spots that can

be approximated as blackbodies. Beloborodov (2002) shows that the bending angle (β)

of a photon in a spherically symmetric gravitational field can be approximated as,

β = ψ − α, (3.1)

where the exact angle is given by an elliptic integral (Pechenick et al., 1983). Here α

is the angle at which the photon is emitted, from point E with respect to the compact

object, and ψ is the angle between the observer’s line of sight and the current position

of the photon. These parameters are shown in Figure 3.1. Beloborodov (2002) describes

the photon’s trajectory, in polar co-ordinates (r, ψ), as approximately

cos(α) = cos(ψ)
(

1−
rg
RNS

)

+
rg
RNS

. (3.2)
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Figure 3.1: Diagram showing the trajectory a photon, travelling from emission
point E, in a strong gravitational field (as discussed in Section 3.2.1), where b
is the impact parameter. Image credit: modified from Beloborodov (2002).

This method is accurate, to about 1% of the exact value, for systems with RNS ≥ 2rg,

and β < 90◦. Here rg is the object’s Schwarzschild radius,

rg =
2GMNS

c2
. (3.3)

Assuming RNS=10 km, this model is accurate for neutron stars with MNS <1.7 M⊙.

Assuming MNS=1.4 M⊙, then this model is accurate for neutron stars with RNS >

8.3 km.

Beloborodov (2002) assumes that the flux (dF ) from a surface element (dS) is

dF =
(

1−
rg
RNS

)2
I0(α) cos(α)

dS

D2
, (3.4)

where I0(α) is the local intensity of radiation and D is the distance to the observer.

For a neutron star with two antipodal poles, the flux from each pole can be assumed to

only differ in terms of cos(α), and so Beloborodov (2002) shows that,

FP

F1
= cos(α)P , (3.5)

and
FS

F1
= cos(α)S , (3.6)
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where FP is the flux emitted from the primary pole (the pole closest to the observer),

FS is the flux emitted from the secondary pole (the pole furthest from the observer).

F1 =
(

1−
rg
RNS

)2
I0(α)

dS

D2
, (3.7)

and does not contribute to the pulsed flux.

This gives a total flux, Fobs of,

Fobs =
FP

F1
+
FS

F1
. (3.8)

cos(α)P = cos(ψ)
(

1−
rg
RNS

)

+
rg
RNS

, (3.9)

and

cos(α)S = − cos(ψ)
(

1−
rg
RNS

)

+
rg
RNS

. (3.10)

ψ varies between i+θ and i−θ as the neutron star rotates, where i is the angle between

the neutron star’s rotational axis and the observer’s line-of-sight, and θ is the angle

between the neutron star’s magnetic axis and its spin axis, as shown in Figure 3.2.

Specifically,

cos(ψ) = sin(θ) sin(i) cos(2πΩ) + cos(θ) cos(i), (3.11)

where Ω is the phase, and i and θ are degenerate. FP = 0, and only the secondary pole

is visible, when − cos(ψ) > rg/(RNS − rg). FS = 0, and only the primary pole is visible,

when cos(ψ) > rg/(RNS − rg).

Fobs/F1 can be plotted as a function of phase for various values of θ, i, and MNS/RNS

using Equations (3.2)-(3.11). These values determine how many poles contribute to the

total flux, and this affects the shape of the pulse-profiles as shown in Figure 3.3. Figure

3.3 shows that pulse-profiles can be split into four approximate shapes, designated classes

I-IV.

The angles that produce each class depend on MNS and RNS via

cos(ξ) =
RNS

rg
− 1 =

c2

2G

(MNS

RNS

)−1
− 1, (3.12)

as shown in Figure 3.4. Figure 3.4 shows how the boundaries change for systems con-

taining neutron stars with z + 1 values of 1.2, 1.3, and 1.4, where z is the gravitational

red-shift, and is related to MNS/RNS via

1 + z =
(

1−
rg
RNS

)−0.5
=
(

1−
2G

c2
MNS

RNS

)−0.5
. (3.13)

For relatively low values of θ and i (as shown in the blue sections of the plots in Figure

3.4, which represent class I systems), the primary pole is visible all of the time and the
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Figure 3.2: Diagram showing angles i and θ, where i is the angle between the
neutron star’s rotational axis and the observer’s line-of-sight, and θ is the angle
between the neutron star’s rotational axis and magnetic axis. These angles
determine how many magnetic poles are visible at any one time (as discussed
in Section 3.2.1, image not to scale).

Figure 3.3: Pulse-profiles predicted by the Beloborodov (2002) approximation
for class I-IV neutron stars, where classes are defined by how many magnetic
poles are visible at once (as discussed in Section 3.2.1). These correspond to
specific areas on plots of i as a function of θ, as shown in Figure 3.4.



76 Chapter 3 The pulse-profiles of neutron stars in BeXB in the SMC

Figure 3.4: Plots of i as a function of θ for different values of z + 1 (equation
(3.13)) using the Beloborodov (2002) approximation (as discussed in Section
3.2.1). The boundary between classes is related to MNS/RNS via equation
(3.12). The three plots are for z + 1 =1.20 (top), z + 1 =1.30 (middle), and
z + 1 =1.40 (bottom).
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secondary pole is never visible. This leads to a sinusoidal pulse-profile (as shown in the

blue section of Figure 3.3). If the values of θ and i are slightly higher (as shown in the

green sections of the plots in Figure 3.4, which represent class II systems), the secondary

pole becomes visible when the primary pole is at its lowest flux. This fills in the trough

of the sine wave, making it flat (as shown in the green section of Figure 3.3). If the

values of θ and i are higher still (as shown in the yellow sections of Figure 3.4, which

represent class III systems), then the first pole sometimes becomes invisible, so that the

flat section can now be filled (as shown in the yellow section of Figure 3.3). If either θ

is relatively high and i is relatively low, or vice versa (as shown in the pink sections of

the plots in Figure 3.4, which represent class IV systems), then both poles are always

visible, and so a flat profile is produced (as shown in the pink section of Figure 3.3).

This model is applied to over 1000 pulse-profiles, composed from the dataset discussed

in Chapter 2, in order to determine the most probable values of θ, i, and MNS/RNS for

each system. θ and i were varied from 0◦ − 90◦, in intervals of 1◦, and values of 1 + z

were varied from 1.15 − 1.41, in intervals of 0.01. The phase-shift is also varied, where

the maximum point on the model is moved to the maximum count-rate on the pulse-

profile, the phase-shift is then varied, in intervals of 0.01, across one complete phase.

Not knowing the true pulse-fraction, the model is normalised to the data by assuming

that the maximum and minimum points on the model correspond to the maximum and

minimum counts on the pulse-profile. The reduced χ2 (χ2
r) is then calculated between

the observed results and the results predicted from the model.

3.3 Results

3.3.1 The Beloborodov approximation

Pulse-profiles were modelled for every observation of every system in the dataset dis-

cussed in Chapter 2. This is over 1000 pulse-profiles. Figure 3.5 shows χ2
r as a function

of P for all of the observations discussed in Section 3.2. Figure 3.5 shows that most

pulse-profiles are not well-fit using the Beloborodov (2002) approximation, and the fit

often varies within systems, as does the predicted class of the system. 76.4% of results

correspond to class I systems, 20.8% to class II systems, and 2.9% to class III systems.

Only 15 pulse-profiles can be fit with a χ2
r <1.1. These include pulse-profiles for 12

different systems. When combined with a visual inspection, the four best-fit profiles are

for SXP2.37, SXP8.80, SXP16.6, and SXP169. These are shown in Figures 3.6-3.9, with

results given in Table 3.1.

Three out of four of the best-fit profiles come from neutron stars with P < 100 s, and

three out of the four are predicted to be class I systems. This means that they have

only one visible pole, which is visible all of the time, leading to sinusoidal pulse-profiles.
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Figure 3.5: χ2
r as a function of P for all of the observations discussed in Section

3.2 when fit using the Beloborodov (2002) approximation. These are predicted
to be class I (black), class II (blue), and class III (red) systems (as discussed in
Section 3.2.1). The dashed line indicates a χ2

r of 1.1.

BeXB MJD Period (s) Luminosity χ2
r Class

(-50000) (1037 erg s−1)

SXP2.37 1573.2969 2.37209 ± 0.00002 23 ± 2 0.76 I
SXP8.80 2961.4805 8.893 ± 0.001 0.3 ± 0.1 0.94 I
SXP16.6 1801.4453 16.576 ± 0.001 0.27 ± 0.04 0.95 II
SXP169 4704.0312 165.7 ± 0.1 0.9 ± 0.3 1.06 I

Table 3.1: Results for the four observations best-fit by the Beloborodov (2002)
approximation (as discussed in Section 3.3.1). χ2

r contour plots for these systems
are shown in Figures 3.6-3.9.
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Figure 3.6: χ2
r contour plot for SXP2.37 at L = 2.26×1038 erg s−1 (right). This

shows χ2
r between the pulse-profile (left; black) and the Beloborodov (2002)

approximation, as discussed in Section 3.3.1. The best-fit values of i and θ are
in the dark blue area of the contour plot, and the best-fit model is plotted (left;
red).

Figure 3.7: As for Figure 3.6 but for SXP8.80 at L = 2.80 × 1036 erg s−1.
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Figure 3.8: As for Figure 3.6 but for SXP16.6 at L = 2.69 × 1036 erg s−1.

Figure 3.9: As for as Figure 3.6 but for SXP169 at L = 9.49 × 1036 erg s−1.
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SXP16.6 is predicted to be a class II system. This means that its primary pole is always

visible and a secondary pole is sometimes visible.

The fact that the majority of systems are predicted to be class I may be a coincidence.

It may also be due to an instrumental bias, class IV systems will not be classified as

pulsating, for example, and so may not be discovered. Wang and Welter (1981) found

similar results and suggested that this may be because θ - the angle between the neutron

star’s rotational axis and magnetic axis - is not random, there may be a bias that makes

θ tend towards zero in X-ray binaries.

The four best-fit profiles were predicted to have 1+ z values of ∼ 1.3, which means that

if they have a radius of 10 km, then they have a mass of 1.4 M⊙. There are large errors

on this parameter, however, with similarly well-fit results over the full range of values.

3.3.2 Double-peaked structure & other interesting features

All of the pulse-profiles in this dataset are shown in Appendix C. These are colour-coded,

where the colours represent luminosity bands and are explained in Figure C.1. Many of

the systems in this dataset produce pulse-profiles that exhibit a slight asymmetry (as

described in Section 1.4.3), with some showing a gradual rise and sharp fall, and some

showing the opposite behaviour. These vary across, and sometimes within, individual

systems, with no obvious correlation between the type of asymmetry and either P or L.

Many systems produce pulse-profiles with one or more dips (as described in Section

1.4.4). Dips are thought to be caused by an additional absorption component that

obscures the radiation (Galloway et al., 2001). As with asymmetry, dips vary across,

and sometimes within, individual systems.

There are also a high number of systems with pulse-profiles containing both single and

double-peaked structure at different luminosities. As described in Section 1.4.2, double-

peaked structure is defined as structure containing a secondary peak, about half a phase

apart from the main peak, that has an amplitude over half the amplitude of the main

peak. A secondary peak about half a phase apart from the main peak, and less than

half the amplitude, will be referred to as the ‘emergence of double-peaked structure’.

This is similar in appearance to pulse-profiles produced by class III systems, described

in Section 3.3.1. Pulse-profiles showing the emergence of double-peaked structure can be

distinguished from class III systems, however, because we would expect class III systems

to always produce pulse-profiles that display this shape, since the parameters entered

into the Beloborodov (2002) approximation (MNS , RNS , i, and θ) are not expected to

change over the observation period. It is also sometimes difficult to distinguish double-

peaked structure from dips, where the structure appears as a dip in the main peak, but

is so deep that it is hard to distinguish from double-peaked structure (see Figure 3.15).

This is particularly true if there are no pulse-profiles showing the emergence of the peak.
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As described in Section 1.4.2, double-peaked structure is thought to result from the

transition from a pencil beam to a fan beam (the geometry relating to this is shown in

Figure 1.13). At relatively low L, the pencil beam dominates the pulse-profile, with a

single pole producing an approximately sinusoidal peak. As L increases, an accretion

column forms, and a fan beam appears, resulting in a secondary peak appearing in the

pulse-profile, about half a phase apart from the first. As L increases further, the fan

beam may dominate, causing the secondary peak to become larger than the first. The

first peak may even disappear completely, as radiation is no longer emitted parallel to

the magnetic field lines. Double-peaked structure may also result from systems with

more than two magnetic poles (as described in Section 1.4.5).

Figures 3.10 and 3.11 show L as a function of P for all pulse-profiles, highlighting those

that show double-peaked structure, and distinguishing between double-peaked structure

that does, and does not, contain a dip. Figure 3.10 shows that SXP46.6 is the only

system with pulse-profiles that exhibit double-peaked structure both with and without

dips. With the exception of SXP175, systems with P < 46.6 s always have a dip in their

pulse-profiles when they exhibit double-peaked structure, and systems with P > 46.6

s never have a dip in their pulse-profiles when they exhibit double-peaked structure.

The L at which double-peaked structure appears tends to decrease with P for systems

with P < 46.6 s. Double-peaked structure appears across a range of luminosities for

systems with P > 46.6 s. SXP11.5 produces the most pulse-profiles with double-peaked

structure, with seven. This system was shown not to be close to spin equilibrium in

Chapter 2.

Figure 3.11 is the same as Figure 3.10, but also shows any other pulse-profiles that

exhibit dips. Figure 3.11 shows that dips appear across roughly the same luminosity

range (∼ 6×1036−1038 erg s−1) at all spin periods. For systems with P < 46.6 s, the dips

tends to appear at luminosities lower than the L at which they exhibit double-peaked

structure. The dip then remains when the double-peaked structure appears. Systems

with P > 46.6 s are more likely to exhibit double-peaked structure without a dip, with

the dip appearing at higher luminosities.

As stated above, SXP46.6 is the only system that exhibits double-peaked structure

both with and without a dip. The double-peaked structure without a dip appears at

∼ 1.6×1036 erg s−1, and the double-peaked structure with a dip appears at ∼ 4.8×1037

erg s−1, with many single-peaked pulse-profiles appearing at luminosities in between.

This is a range of ∼ 4.6 × 1037 erg s−1, three times larger than the range between

double-peaked profiles in SXP11.5, and over twenty times larger than the range between

double-peaked pulse-profiles for any other system. This suggests that the double-peaked

profiles seen at relatively high and relatively low L in SXP46.6 (and perhaps in other

systems) might have different causes. If the system has more than two magnetic poles,

for example, then double-peaked structure may occur if the flow of accreted material

moves to a different pole, thereby changing trajectory (Parmar et al., 1989).



Chapter 3 The pulse-profiles of neutron stars in BeXB in the SMC 83

Figure 3.10: L as a function of P for all detections. Pulse-profiles showing the
emergence of double-peaked structure (as defined in Section 3.3.2) are high-
lighted (green), as are pulse-profiles showing double-peaked structure both with
(orange) and without (red) dips (as described in Section 1.4.4).

Figure 3.11: As for Figure 3.10 but also showing single-peaked structure with
dips (as described in Section 1.4.4; blue).
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If double-peaked structure is generally caused by the transition from pencil to fan beam

emission, then Figure 3.10 shows that this occurs over a wide range of L, where sys-

tems with relatively long spin periods tend to transition at lower mass-accretion rates

than systems with relatively short spin periods. These results are highly inconclusive,

however, because of the subjective nature of classification. It is difficult to know if

double-peaked structure is evident, or if the appearance of double-peaked structure is

caused by dips. This is particularly true for SXP8.80, as discussed in Section 3.3.2.2.

Figures 3.14-3.19 show pulse-profiles that exhibit single and double-peaked structure at

varying L for SXP2.37, SXP8.80, SXP59.0, and SXP91.1.

3.3.2.1 SXP2.37

SXP2.37 (also known as SMC X-2) was discovered in 1977, with a L of ∼ 1038 erg s−1

(Clark et al., 1978), and remained in a Type II outburst (as defined in Section 1.1.2.1)

for about a month (Clark et al., 1979). SXP2.37 underwent another Type II outburst

in 2000 (Corbet et al., 2001). This can be seen in Figure 3.12, which shows P and L

as a function of MJD for SXP2.37 over 11 yr, starting on the 30th January 2000. The

luminosity peaks at ∼ 7.6× 1038 erg s−1 on the 18th February (MJD 51592.2266). This

is the highest L of all the observations, for all 42 sources in this dataset, and exceeds the

Eddington luminosity (LEdd
∼= 1.26×1038MNS/M⊙ erg s−1, as discussed in Section 1.2).

This outburst was followed by a period of spin-down that lasted ∼ 3 months. For the

next ∼ 10 yr, this system has been spinning up. In Chapter 2, I showed that SXP2.37

is one of six systems that are not close to spin equilibrium. The OBe star in SXP2.37

has a non-truncated circumstellar disc, as is shown in Figure 3.13.

All of the pulse-profiles for SXP2.37 are shown in Figure C.2. Figure 3.14 shows the

change in pulse-profiles throughout the 2000 outburst. At a L of ∼ 2.3 × 1038 erg s−1,

SXP2.37 is well-fit by the Beloborodov (2002) approximation as a class I system (with a

χ2
r of 0.76; as shown in Figure 3.6). The pulse-profiles of SXP2.37 remain roughly single-

peaked at L below this. As L increases to ∼ 4.8× 1038 erg s−1, however, double-peaked

structure begins to emerge. The secondary peak becomes more dominant, resulting in

double-peaked structure, at the maximum L of ∼ 7.6 × 1038 erg s−1. There is no clear

dip present until this L, when a peak rises between the main and secondary peak on one

side.

If this behaviour can be interpreted in terms of changing geometry, then during Type I

outbursts, SXP2.37 emits a pencil beam. During Type II outbursts, an accretion column

can form and it transitions into a fan beam. During Type II outbursts it may also exhibit

a dip, possibly due to inhomogeneous material in the accretion disc. This is inconsistent

with findings in Chapter 2, which show that SXP2.37 is one of three systems (including

SXP4.78 and SXP91.1) predicted to be in a supercritical state (following Becker et al.

(2012), as discussed in Section 2.4). This means that the pencil beam is suppressed.
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Figure 3.12: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP2.37. The black line in the upper panel shows the best-fit Ṗ (also
shown in Figure B.1).

Figure 3.13: Diagram of SXP2.37, using orbital parameters discussed in Section
2.3 (also given in Table A.1 and shown in Figure B.2).
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Figure 3.14: Pulse-profiles for SXP2.37, depicted in order of decreasing L from
top to bottom (black). Results from the Beloborodov (2002) approximation
(discussed in Section 3.3.1) that best-fit the bottom pulse-profile are over-plotted
(red). The luminosity during the observation is given in the top left-hand corner
in erg s−1.
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Using equation (2.18), and assuming the results for the magnetic field given in Table

2.9 are correct, the pencil beam in SXP2.37 should be suppressed above 8 × 1036 erg

s−1. All pulse-profiles for SXP2.37 are above 8 × 1036 erg s−1, and so the pencil beam

should be suppressed in all pulse-profiles, and the transition between pencil and fan beam

patterns should not be seen. This suggests that perhaps the double-peaked structure

in this system has a different cause, such as multiple magnetic poles, as discussed in

relation to SXP46.6 in Section 3.3.2.

3.3.2.2 SXP8.80

In Chapter 2, SXP8.80 was shown to be close to spin equilibrium. The pulse-profiles of

SXP8.80 are shown in Figures C.6 and 3.15. SXP8.80 is not well-fit by the Beloborodov

(2002) approximation. In SXP8.80, pulse-profiles develop small dips at L ∼= 1.3×1037 erg

s−1, increasing until ∼ 2.7 × 1037 erg s−1, when they remain somewhat stable. Double-

peaked structure appears at ∼ 9.2× 1037 erg s−1. It is difficult to know if this is caused

by the transition between pencil and fan beam patterns, or if it is caused by an increase

in size of the dip. While in this case, the presence of the dip in the other pulse-profiles

for this system indicates that it is more likely that the double-peaked structure is caused

by an increase in size of the dip, it would be very difficult to tell if this pulse-profile were

considered in isolation.

3.3.2.3 SXP59.0

In Chapter 2, SXP59.0 was shown to be close to spin equilibrium. The pulse-profiles

of SXP59.0 are shown in Figures C.13 and 3.16. Unlike with SXP2.37 and SXP8.80,

the pulse-profiles of SXP59.0 exhibit double-peaked structure at relatively low L, at

∼ 2.3× 1036 erg s−1 and ∼ 3.4× 1036 erg s−1. At a L of ∼ 6.3× 1036 erg s−1, SXP59.0

is well-fit by the Beloborodov (2002) approximation as a class II system (with a χ2
r of

0.93). The pulse-profiles of SXP59.0 begin to exhibit a dip at ∼ 1.4 × 1037 erg s−1.

3.3.2.4 SXP91.1

Figure 3.17 shows P and L as a function of MJD for SXP91.1 over 13 yr, starting in

1997. In Chapter 2, SXP91.1 was shown not to be close to spin equilibrium. The OBe

star in the system has a non-truncated circumstellar disc, as is shown in Figure 3.18.

The pulse-profiles of SXP91.1 are shown in Figures C.16 and 3.19. SXP91.1 is not well-

fit by the Beloborodov (2002) approximation. SXP91.1 shows double-peaked structure

between ∼ 5.8 × 1036 erg s−1 and ∼ 7.0 × 1036 erg s−1. The secondary peak begins to

disappear at ∼ 8.0 × 1036 erg s−1, and between ∼ 1.0 × 1037 erg s−1 and ∼ 3.1 × 1037

erg s−1 the pulse-profiles show single-peaked structure that is non-sinusoidal. This is
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Figure 3.15: As for Figure 3.14 but for SXP8.80.
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Figure 3.16: As for Figure 3.14, except results from the Beloborodov (2002)
approximation that best-fit the top, rather than bottom, pulse-profile are over-
plotted, and pulse-profiles are for SXP59.0.
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Figure 3.17: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP91.1. The black line in the upper panel shows the best-fit Ṗ (also
shown in Figure B.29).

Figure 3.18: Diagram of SXP91.1, using orbital parameters discussed in Section
2.3 (also given in Table A.1 and shown in Figure B.30).
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Figure 3.19: As for Figure 3.16 but for SXP91.1.
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consistent with findings in Chapter 2 that predict SXP91.1 is in a supercritical state,

which means that the pencil beam is suppressed. Using equation (2.18), and assuming

the results for the magnetic field given in Table 2.9 are correct, the pencil beam in

SXP91.1 should be suppressed above 8× 1036 erg s−1.

The single trough in the pulse-profile of SXP91.1 is much sharper than the troughs of the

pulse-profiles of other systems, with a full-width half maximum of less than a quarter of

a phase. Almost none of the pulse-profiles of SXP91.1 contain dips, including the pulse-

profiles exhibiting double-peaked structure. The structure of the pulse-profiles may be

related to the fact that SXP91.1 has the longest spin period of all the neutron stars in

this dataset that are not close to spin equilibrium. Wang and Welter (1981) show that

fan beams can produce sharp features, as the fan beam rotates behind the horizon of the

neutron star. The sharp features may also be caused by matter outside of the neutron

star’s magnetosphere absorbing the light, so that it is only seen when viewed directly.

3.4 Discussion and conclusions

In Sections 3.1-3.3, I created over 1000 pulse-profiles for BeXB in the SMC. I modelled

these using the Beloborodov (2002) approximation, and found that only 15 could be

well-fit (with a χ2
r <1.1). These include pulse-profiles for 12 different systems. The

Beloborodov (2002) approximation does not seem well-suited to these pulse-profiles.

This is probably because they cannot be assumed to simply be emitting from two point-

like hotspots. By visually inspecting the pulse-profiles, it is evident that they vary not

just from system to system, but from observation to observation. They display a range

of structure containing all the complexities discussed in Section 1.4.

In Section 3.3, I showed that systems with relatively long spin periods tend to transition

from a pencil beam to a fan beam at lower luminosities than systems with relatively short

spin periods. These results are far from conclusive, however, because of the subjective

nature of classification; it is sometimes difficult to distinguish between double-peaked

structure and dips, which produce the same shape in the pulse-profile.

Future work in this area involves modelling the pulse-profiles with models that take into

account the effects of fan beam radiation, asymmetric poles, and multiple poles. This

is currently being undertaken by S. Laycock and R. Cappallo et al. at the University of

Massachusetts.
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LXP187: a persistent BeXB in

the LMC

4.1 Introduction

LXP187 is a newly discovered BeXB located in the LMC. It was first discovered by

Beardmore et al. (2009) within Swift/Burst Alert Telescope (Swift/BAT) observations

(where it is referred to as Swift J0451.5-6949), with a 14-195 keV flux of (2.8 ± 0.3)×

10−11 erg cm−2 s−1, and fit with a power-law of photon index 2.5 ± 0.4. Swift/BAT

data show LXP187 to be a persistent X-ray source.

Beardmore et al. (2009) report the X-ray source position to be at an RA, Dec (J2000)

of 04:51:06.8 and -69:48:03.2 respectively, with an uncertainty of 3.5′′, using data from

Swift/X-ray Telescope (Swift/XRT) (where it is referred to as Swift J045106.8-694803)

taken on 23rd October 2008 and 14th November 2008. This is consistent with the

location of a V=14.70 blue star, known as LMC 9775 (Massey, 2002). Beardmore

et al. (2009) use the XRT data to determine an X-ray flux of (1.68 ± 0.11) × 10−11

erg cm−2 s−1 (0.3-10 keV), fit with a power-law of photon index 0.96 ± 0.06
0.04 and a

column density of (1.9 ± 0.3)×1021 cm−2. They also determine a possible neutron

star spin period of ∼187 s, and report strong secondary peaks in the Lomb-Scargle

periodogram, occurring at 181 s and 193 s. These may be side-bands due to Swift’s 95

min orbital period. Beardmore et al. (2009) also report an orbital period of 21.64 ±

0.02 d, which they found in blue band optical data taken with the MAssive Compact

Halo Objects’ (MACHO’s) 1.27 m telescope (where it is referred to by MACHO ID

44.1741.17). Grebenev et al. (2013) created energy spectra of LXP187 over 3-200 keV

using data from the INTErnational Gamma-Ray Astrophysics Laboratory/Imager on-

Board the INTEGRAL Satellite (INTEGRAL/IBIS). They showed that the high-energy

cut-off in the spectrum is at 16.0 ± 5.0 keV, and calculated a photon index of 0.5 ± 0.5.

93
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In Klus et al. (2013), we analysed optical spectra of LXP187, taken with the 1.9 m

Radcliffe telescope at SAAO on the 12th December 2009 and 26th September 2011, and

the NTT, in La Silla, Chile on the 8th and 10th December 2011. We used these data to

classify the optical companion to the neutron star in LXP187 as a B0-B1 III-V star (see

Figure 4.1) and determined the EW Hα (see Figure 4.2), which is directly related to

the size of the OBe star’s circumstellar disc (equation (2.16)). The EW Hα was found

to be -29 ± 2 Å in 2009, and -33 ± 1 Å and -34.5 ± 0.6 Å for the SAAO and ESO

spectra taken in 2011. This consistency is uncommon, and almost certainly related to

the persistent activity Beardmore et al. (2009) saw in the Swift/BAT data.
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Figure 4.1: Spectrum of the OBe star in LXP187 in the blue band (wavelength
range λλ3900−5000Å), taken with the NTT on 8th December 2011 (as discussed
in Section 4.1). The spectrum has been normalised to remove the continuum,
and redshift corrected by ∼ 280 km s−1. Atomic transitions relevant to spectral
classification have been marked, and the OBe star has been classified as a B0-B1
III-V star.

Bartlett et al. (2013) used data from a ∼7 ks X-ray Multi-Mirror Mission - Newton/Eu-

ropean Photon Imaging Camera (XMM-Newton/EPIC) target of opportunity (ToO)

observation, taken on 17th July 2012, in order to confirm the position of LXP187, which

they found to be at an RA, Dec (J2000) of 04:51:06.7 and -69:48:04.2 respectively, with

a 1σ uncertainty of 1′′. This is shown in Figure 4.3. Bartlett et al. (2013) also used these

data to determine the neutron star spin period (discussed further in Section 4.3.1.3),

and analyse the 0.2-10 keV spectra (see Figure 4.4).
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Figure 4.2: Spectra of the OBe star in LXP187 in the red band (wavelength
range λλ6400−6700Å), taken with the NTT in December 2011 (top panel), and
the Radcliffe telescope in December 2009 (bottom panel) and September 2011
(middle panel) (as discussed in Section 4.1). Spectra have been normalised to
remove the continuum and shifted by ∼ 280 km s−1. The Hα emission lines
indicate the presence of a circumstellar disc (as discussed in Section 1.1.2.1).
The line has a similar equivalent-width in all cases, indicating that the disc has
not changed size in ∼ 2 yr (equation (2.16)).

Bartlett et al. (2013) use these data to show that LXP187 has other qualities in common

with the class of persistent BeXB discussed in Section 1.1.2.1. This class contains at least

6 BeXB that emit persistent, low luminosity (∼ 1034 erg s−1) radiation, and have spin

periods & 150 s. They have a hot thermal excess within their spectra (with blackbody

temperatures kTBB >1 keV) that correspond to small emitting regions (<1 km2). These

are attributed to the neutron star’s magnetic polar caps (as discussed in Section 1.3).

The radius of the caps tend to be inversely proportional to spin period (Bartlett et al.,

2013), and hence to the magnetic field of disc-accreting systems that are close to spin

equilibrium. LXP187 has the highest luminosity of all members of this class. It also has

the shortest spin period. Bartlett et al. (2013) show that LXP187 has a hot thermal

excess, corresponding to a blackbody component with a temperature of kTBB = 1.8 ± 0.2
0.3

keV, and a radius of 0.5 ± 0.2 km. The unabsorbed flux from the blackbody component

accounts for ∼40% of the total X-ray emission. This value varies as the neutron star

rotates, and decreases with increasing energy. This is consistent with the idea that

the pulsations are coming from the geometry associated with a pencil beam (discussed
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Figure 4.3: The location of LXP187 (as discussed in Section 4.1). V-band image
taken with EFOSC2 on the NTT, with 1σ error circles from Swift/XRT (blue)
and XMM-Newton/EPIC (red). Swift/XRT data were taken on 23rd Octo-
ber 2008 (right, labelled 00038029001) and 11th November 2008 (left, labelled
00038029002). Image credit: Bartlett et al. (2013).

further in Section 1.3).

Bartlett et al. (2013) modelled the XMM-Newton pulse-profile using the Beloborodov

(2002) approximation (discussed in Section 3.2.1). They assumed a z + 1 value of 1.24,

and found i and θ to be 53◦ and 70◦ (although these numbers are degenerate), with a

χ2
r of 0.54 (as shown in Figure 4.5). This suggests LXP187 is a class III system, with

two poles that are both only sometimes visible.

In Sections 4.2-4.3, I determine the average L, P , and Ṗ for LXP187 over ∼ 3.5 yr, and

apply the same methods used in Chapter 2 to show that LXP187 most likely contains a

neutron star that is accreting via an accretion disc, from a non-truncated circumstellar

disc. It is not close to spin equilibrium and is spinning up on average. LXP187 has

a longer spin period than all of the non-spin equilibrium SXP discussed in Chapters 2

and 3. If the results of Chapter 2 are correct - that CRSF sources have lower magnetic

fields than the SXP sources because the CRSF sources are not close to spin equilibrium,

whereas most SXP sources are - then we would expect the neutron star in LXP187 to

have a similar magnetic field to the CRSF sources. The magnetic field of the neutron



Chapter 4 LXP187: a persistent BeXB in the LMC 97

0.01

0.1

co
un

ts
 s−

1  
ke

V
−

1

1 100.5 2 5

−2
0
2

χ

Energy (keV)

Figure 4.4: The 0.2-10.0 keV EPIC-pn (black), EPIC-MOS1 (red), and EPIC-
MOS2 (green) spectra of LXP187, showing a blackbody component (as discussed
in Section 4.1). The top panel shows the background subtracted spectrum with
best fit power-law plus blackbody model, and the bottom panel shows residuals.
The spectrum is composed using data from XMM-Newton/EPIC. Image credit:
Bartlett et al. (2013).

Figure 4.5: Pulse-profile of LXP187, composed using data from XMM-
Newton/EPIC (red line), with results from the Beloborodov (2002) approxi-
mation (black dots) (as discussed in Sections 4.1 and 3.2.1). The phase-shift is
arbitrary. Image credit: Bartlett et al. (2013).
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star in LXP187 is determined using the same methods as in Chapter 2, and is found to

be ∼ 1.4× 1013 G, consistent with the conclusions of Chapter 2.

Work from this chapter has previously been published as Klus et al. (2013), where the

spectra of LXP187 were originally analysed by E.S. Bartlett, who produced Figures 4.1

and 4.2, and classified the OBe star as a B0-B1 III-V star.

An outline of this chapter is as follows: observations are discussed in Section 4.2, with X-

ray observations in Section 4.2.1, optical observations in Section 4.2.2, and observations

regarding the magnetic field in Section 4.2.3. Results are given in Section 4.3, starting

with results from X-ray observations in Section 4.3.1, including a brief discussion of the

spin period and luminosity given in Bartlett et al. (2013), followed by the results of

optical observations in Section 4.3.2, and finally results regarding the magnetic field in

Section 4.3.3. Conclusions are given in Section 4.4, including a discussion of how the

results for LXP187 relate to SXP and CRSF sources.

4.2 Observations

4.2.1 X-ray Observations

4.2.1.1 Swift/XRT

Swift/XRT is a CCD imaging spectrometer, operating over 0.2-10 keV in photon count-

ing mode. Archival data were downloaded from NASA’s High Energy Astrophysics

Science Archive Research Center (HEASARC)1, as summarised in Table 4.1.

Images were extracted using the ftool2 xselect. Source and background spectra were

then extracted from regions of 34′′ radii. The spectra were binned to 50 counts per bin.

The ancillary response files (ARF) were calculated with xrtmkarf, and a redistribution

matrix file (RMF) was taken from HEASARC’s calibration database (CALDB). The

position of the source was confirmed using ftool xrtcentroid.

The total count-rate and error of each dataset, as well as the intrinsic hydrogen column

density (NH) and photon index, were calculated using ftool xspec. The spectra were

described by an absorbed power-law with a fixed Galactic foreground column density of

8.4 × 1020 cm−2 (Dickey and Lockman, 1990) and abundances set in accordance with

Wilms et al. (2000). Intrinsic absorption and the abundances of elements heavier than

helium, were set to 0.4 (Borkowski et al., 2006). X-ray spectra were then compiled in

xspec over 0.2-10 keV, and in four energy-bands, with approximately equal count-rates

of 0.5-1.5, 1.5-3, 3-4.5, and 4.5-8 keV. The 0.2-10 keV flux of each dataset was also

1http://heasarc.gsfc.nasa.gov/
2http://heasarc.nasa.gov/ftools/
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Instrument Start Exposure/ Energy- Average Average
Date End Date band P (s) L (1037

erg s−1)

Swift/XRT 23.10.2008 6.56 ks 0.2 - 10 keV 186.6 ± 0.3
Swift/XRT 11.11.2008 6.40 ks 0.2 - 10 keV (180.8 ± 0.3) 0.67 ± 0.04
RXTE 28.10.2011 9.005 ks 3 - 10 keV
RXTE 28.10.2011 0.849 ks 3 - 10 keV 169.8 ± 0.3

XMM-Newton 17.07.2012 7 ks 0.2 - 10 keV 168.5 ± 0.2 0.098 ± 0.009
Swift/BAT 16.12.2004 31.05.2010 14 - 195 keV
INTEGRAL 02.01.2003 21.12.2010 15 keV- 10 MeV

OGLE 14.09.2001 15.05.2012 I
MACHO 03.11.1992 14.12.1999 R
MACHO 03.11.1992 29.12.1999 B

Table 4.1: Summary of datasets used in Chapter 4, where values of P and L are
derived by combining all datasets of a given instrument, results in parenthesis
are also considered (as discussed in Section 4.2.1.1). Results from XMM-Newton
are taken from Bartlett et al. (2013) (as discussed in Section 4.2).

determined using xspec. The luminosity was then calculated using a distance of 50.6 ±

1.6 kpc to the LMC (Bonanos et al., 2011).

The light-curves of each dataset were extracted in xselect. The two datasets were com-

bined and a Lomb-Scargle normalised periodogram was produced using time-series anal-

ysis package Period3, with a frequency interval of 1× 10−5 Hz. Pulse-profiles were also

produced for the combined dataset over 0.2-10 keV, and over the four energy-bands

mentioned above. The 0.2-10 keV pulse-profile, binned to 30 bins per phase, was then

modelled using the Beloborodov (2002) approximation (discussed in Section 3.2.1).

4.2.1.2 RXTE/PCA

Archival data from RXTE/PCA were taken from HEASARC. These were recorded in

two datasets, both on the 28th October 2011, over 3-10 keV, as summarised in Table

4.1. Cleaned light-curves were produced for each dataset and combined. A Lomb-

Scargle normalised periodogram and pulse-profile was then created using Period, with

a frequency interval of 1× 10−5 Hz. The pulse-profile, binned to 30 bins per phase, was

then modelled using the Beloborodov (2002) approximation (discussed in Section 3.2.1).

4.2.1.3 Swift/BAT

The Swift/BAT data were taken with the Hard X-ray Transient Monitor from 16th

December 2004 to the 31st May 2010, over 14-195 keV, as summarised in Table 4.1. A

58 month light-curve was downloaded from NASA’s Swift/BAT 58-Month Hard X-ray

3http://www.starlink.rl.ac.uk/docs/sun167.htx/sun167.html
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Survey4. This contained an average of ∼15 observations per day split into 9 energy-

bands. Plots of count-rate as a function of time were produced for energy ranges of

14-50, 50-75, 75-150, and 150-195 keV, as well as for the full 14-195 keV range, with one

bin per month.

4.2.1.4 INTEGRAL/IBIS

The INTEGRAL/IBIS data were taken from 2nd January 2003 to the 21st December

2010, over 15 keV - 10 MeV, as summarised in Table 4.1. A plot of count-rate as a

function of time was produced with 30 bins.

4.2.2 Optical observations

4.2.2.1 OGLE III/IV

Optical Gravitational Lensing Experiment (OGLE) III/IV data were taken from 14th

September 2001 to 16th May 2012 in the I-band, as summarised in Table 4.1. A plot

of count-rate as a function of time was produced, and a Lomb-Scargle normalised peri-

odogram and pulse-profile was then created using Period, with a frequency interval of

1× 10−5 Hz.

4.2.2.2 MACHO

Archival data were taken from the MACHO project’s 1.27 m telescope, located at the

Mount Stromlo Observatory in Australia. This covered the period from 1st November

1992 to the 29th December 1999, and contains instrumental magnitudes using red (R)

and blue (B) filters, as summarised in Table 4.1. The data were filtered to remove results

flagged as erroneous. The four points remaining in the R-band dataset that were over

2.4σ from the mean were also removed. Lomb-Scargle normalised periodograms and

pulse-profiles were then created using Period for both the R and B-band datasets, using

frequency intervals of 1× 10−5 Hz.

4.2.3 Accretion methods and magnetic fields

The long-term average L and P are derived using data taken from Swift/XRT, RX-

TE/PCA, and XMM-Newton/EPIC, where the XMM-Newton/EPIC data are taken

from Bartlett et al. (2013). The same method is then followed as in Chapter 2. A

weighted Ṗ is found by fitting the time evolution of P using MPFITEXPR5. The mass

4http://swift.gsfc.nasa.gov/docs/swift/results/bs58mon/
5www.physics.wisc.edu/∼craigm/idl/down/mpfitexpr.pro
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and radius of the OBe star are determined from its spectral type and luminosity class,

as given in Klus et al. (2013), and Mdyn is assumed to be 80% of Mspec (as discussed

in Section 2.3). The radius of the OBe star’s circumstellar disc is determined from its

EW Hα (equation (2.16)), where the EW Hα is also taken from Klus et al. (2013). It

is assumed that e = 0.3 ± 0.2, MNS = 1.4 M⊙, and RNS=10 km, unless otherwise

stated. Equations (1.1)-(1.7), and (2.11)-(2.12), are used to determine whether or not

LXP187 is disc-accreting. Equations (1.34) and (1.36) are then used to determine its

magnetic field.

4.3 Results

4.3.1 X-ray Results

4.3.1.1 Swift/XRT

Figure 4.3 shows the positions calculated for the Swift/XRT datasets on 23rd October

and 11th November 2008. The first dataset has an RA, Dec (J2000) of 04:51:06.4 and

-69:48:02.5, and the second has an RA, Dec (J2000) of 04:51:07.0 and -69:48:03.1, both

have a 2σ error radius of 3.6′′. The photon index is determined to be 0.7 ± 0.1, and the

average luminosity is (6.7 ± 0.4) × 1036 erg s−1. Figure 4.7 shows the Lomb-Scargle

normalised periodogram for the combined datasets. This shows the 186.6 ± 0.3 s spin

period and the two side-peaks mentioned by Beardmore et al. (2009), where the peak

at 180.8 s is slightly higher than the 186.6 s peak. These results are given in Table 4.1.

The side-peaks in the periodograms are due to gaps in the observations. This was

confirmed firstly by fitting sine waves, with periods of 186.6 s and 180.8 s, to the data,

which gave rise to similar peaks, as can be seen in Figures 4.8 and 4.9. Secondly, by

splitting the datasets into shorter datasets composed of continuous observations, and

adding the individual periodograms, as can be seen in Figure 4.6.

It is not clear why the 180.8 s peak is higher than the 186.6 s peak, and neither Figure

4.8 nor 4.9 are prefect reconstructions of Figure 4.7, and so I will consider both results

when determining the system’s magnetic field in Section 4.3.3.

Pulse-profiles, folded at 186.6 s and 180.8 s, are shown in Figures 4.10 and 4.11. Neither is

well-fit by the Beloborodov (2002) approximation (discussed in Section 3.2.1). Assuming

P = 186.6 s, the pulse-profile is best-fit as a class I system, on the border of class II,

with a χ2
r of 1.8, as shown in Figure 4.12. Assuming P = 180.8 s, the pulse-profile is

best-fit as a class I system, but has a χ2
r of 3.2. These results are not consistent with

those found by Bartlett et al. (2013) (see Figure 4.5), who suggest that LXP187 is a

class III system.
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Figure 4.6: Lomb-Scargle normalised periodogram for LXP187, from the com-
bined Swift/XRT datasets over 0.2-10 keV (as discussed in Section 4.3.1.1). To
remove spikes due to gaps in the data, the datasets were split into 13 shorter
datasets composed of continuous observations. The individual periodograms
were then added together. The 186.6 ± 0.3 s period is highlighted (blue line),
as are the two side-peaks, of 181 s and 193 s mentioned by Beardmore et al.
(2009) (red lines).

Figure 4.7: As for Figure 4.6 but using a combined dataset with non-continuous
observations.
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Figure 4.8: Lomb-Scargle normalised periodogram; the results of a simulated
Swift/XRT dataset composed of a sine wave with a period of 186.6 ± 0.3 s, as
discussed in Section 4.3.1.1.

Figure 4.9: As for Figure 4.8, except the period of the simulated results is 180.8
± 0.3 s rather than 186.6 ± 0.3 s.
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Figure 4.10: Pulse-profile for LXP187 from the combined Swift/XRT datasets,
folded at 186.6 s, over 0.2-10 keV (as discussed in Section 4.3.1.1). The phase-
shift is arbitrary.

Figure 4.11: As for Figure 4.10, except folded at 180.8 s rather than 186.6 s.
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Figure 4.12: χ2
r contour plot for LXP187 from the combined Swift/XRT

datasets, assuming P = 186.6 s (as discussed in Section 4.3.1.1). This shows
the χ2

r between the pulse-profile (left; black; also shown in Figure 4.10) and the
Beloborodov (2002) approximation (discussed in Section 3.2.1). The best-fit
values of i and θ are in the blue area of the contour plot, and the best-fit model
is plotted (left; red).

Figure 4.13: Pulse-profiles for LXP187, folded at 186.6 s, from the combined
Swift/XRT datasets over 0.5-1.5, 1.5-3, 3-4.5, and 4.5-8 keV (as discussed in
Section 4.3.1.1). Energy increases from top to bottom, left to right. The phase-
shift is arbitrary.
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Pulse-profiles were also made for the combined datasets, folded at 186.6 s, in four energy-

bands with approximately equal count-rates; these are 0.5-1.5, 1.5-3, 3-4.5, and 4.5-8

keV, as shown in Figure 4.13. The pulse-fraction appears to decrease with increasing

energy. This is consistent with observations by Bartlett et al. (2013), although the large

error bars make this inconclusive.

4.3.1.2 RXTE/PCA

Figure 4.14: Lomb-Scargle normalised periodogram for LXP187, from the com-
bined RXTE datasets over 3-10 keV, as discussed in Section 4.3.1.2. The spin
period is highlighted (red), as is the spin period found from the Swift/XRT data,
taken three years previously, assuming P = 186.6 s (dark blue) and P = 180.8 s
(light blue), and the spin period found by Bartlett et al. (2013) using data from
XMM-Newton/EPIC taken in 2012 (green). Harmonics can be seen at 1/3 and
1/4 of the pulse period (at 56.6 s and 42.45 s).

Lomb-Scargle normalised periodograms, created from the RXTE data, are shown in

Figures 4.14 and 4.15. These give a period of 169.8 ± 0.3 s, as shown in Table 4.1.

As with the Swift/XRT data, the side-peaks are due to gaps in the observations. This

was confirmed by fitting a sine wave with the same period to the data, as can be seen

in Figure 4.16. The harmonics, at exactly 1/3 and 1/4 of the pulse period (at 56.6 s

and 42.45 s) indicate that the pulse-profile should be non-sinusoidal. The pulse-profile

is shown in Figure 4.17, where results from the Beloborodov (2002) approximation are

over-plotted in red. The pulse-profile shows a large dip in the peak, and so is not well-fit,

with a best-fit χ2
r of 96.
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Figure 4.15: As for Figure 4.14 but showing a smaller range of P .

Figure 4.16: Lomb-Scargle normalised periodogram; the results of a simulated
RXTE dataset composed of a sine wave, as discussed in Section 4.3.1.2.
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Figure 4.17: Pulse-profile for LXP187, from the combined RXTE datasets over
3-10 keV (as discussed in Section 4.3.1.2). The best-fit results from the Be-
loborodov (2002) approximation (discussed in Section 3.2.1) are over-plotted
(red). The phase-shift is arbitrary.

Both the Swift/XRT and RXTE pulse-profiles produce results from the Beloborodov

(2002) approximation that are inconsistent with those found by Bartlett et al. (2013).

The Swift/XRT profile is best fit (with a χ2
r of 1.8) as a class I system, on the border

of class II. The pulse-profile taken with the RXTE data cannot be fit. The XMM-

Newton/EPIC data, on the other hand, is very well-fit (with a χ2
r of 0.54), as a class

III system. Although the results from Bartlett et al. (2013) are better fit, it is unclear

which, if any, of these fits are correct. This is because the pulse-profiles of a single

system can vary enormously (as discussed in Chapter 3).

4.3.1.3 XMM-Newton/EPIC

LXP187 was observed by XMM-Newton/EPIC on 17th July 2012 (Bartlett et al., 2013).

Bartlett et al. (2013) confirmed the position of LXP187 to be at an RA, Dec (J2000)

of 04:51:06.7 and -69:48:04.2 respectively, with a 1σ uncertainty of 1′′. This is shown

in Figure 4.3. The luminosity was found to be (9.8 ± 0.9)×1034 ergs s−1, and the spin

period 168.5 ± 0.2 s, as shown in Table 4.1. This is either 12.5 or 18.1 s less than the

spin period calculated from Swift/XRT data in 2008 (depending on whether the period

from the Swift/XRT data is assumed to be 180.8 s or 186.6 s), as is shown in Figure

4.14.
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4.3.1.4 Swift/BAT

Figure 4.18: Long-term light-curve for LXP187, from Swift/BAT data, over a
range of energy-bands with approximately equal count-rates; these are 14-50
keV (red), 50-75 keV (orange), 75-150 keV (green), and 150-195 keV (blue) (as
discussed in Section 4.3.1.4). The black line indicates 0 counts.

Figure 4.18 shows the long-term light-curve for LXP187 in energy-bands of 14-50, 50-

75, 75-150, and 150-195 keV. The count-rate in the 14-50, 75-150, and 150-195 keV

bands remain fairly constant. The count-rate in the 50-75 keV range, however, begins

to increase at ∼MJD 54000, peaking at ∼ MJD 54350.

The middle panel of Figure 4.19 shows the long-term light-curve of LXP187 over the

total energy range of 14-195 keV. This shows that LXP187 has been a persistent X-ray

source for at least 5 years. The persistent X-ray activity is almost certainly related to

the consistency in the EW Hα, and hence the size of the OBe star’s circumstellar disc.

4.3.1.5 INTEGRAL/IBIS

The light-curve compiled from the INTEGRAL/IBIS data is shown in the top panel of

Figure 4.19. It shows a slight increase in count-rate over time.
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Figure 4.19: Long-term light-curves for LXP187 from INTEGRAL/IBIS (15
keV - 10 MeV; top), Swift/BAT (14-195 keV; middle), and OGLE III and IV
(I-band; bottom) (as discussed in Section 4.3.1.4).

4.3.2 Optical results

4.3.2.1 OGLE III/IV

The light-curve compiled from the OGLE III and IV I-band data is shown in the bottom

panel of Figure 4.19. It shows a decrease in brightness over time. The Lomb-Scargle

normalised periodogram is shown in Figure 4.20. It shows a peak at 440.5 d. Other

peaks are present, indicating that other time-scale changes are occurring, and that the

440.5 d period is unlikely to be directly related to the orbital period. These long-term

changes may be due to fluctuations in the stellar wind, or precessional motion of the

circumstellar disc. There is no evidence of the 21.631 d period found in the MACHO

data (as discussed in Section 4.3.2.2). However, if the better-sampled OGLE IV data

are merged with the MACHO data (normalised to the approximate starting magnitude

of the OGLE III data), then the strength of the 21.631 d peak in the Lomb-Scargle

power spectrum increases slightly. The pulse-profile, folded on the 440.5 d modulation,

is shown in Figure 4.21.
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Figure 4.20: Lomb-Scargle normalised periodogram for LXP187, using data
from OGLE III/IV (as discussed in Section 4.3.2.1). The 440.5 d peak is high-
lighted (red), as is the 21.631 d period found in the MACHO data (blue).

Figure 4.21: Pulse-profile for LXP187, using data from OGLE III/IV, folded
on the 440.5 d long-term modulation (as discussed in Section 4.3.2.1). The
phase-shift is arbitrary.
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Figure 4.22: Light-curves for LXP187 in the B (blue) and R (red) energy-bands,
using data from MACHO (as discussed in Section 4.3.2.2).

Figure 4.23: Lomb-Scargle normalised periodogram for LXP187, from the B-
band MACHO dataset. A possible orbital period of 21.631 d is highlighted
(blue) (as discussed in Section 4.3.2.2).
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Figure 4.24: Pulse-profile for LXP187, from the B-band MACHO dataset (as
discussed in Section 4.3.2.2). The phase-shift is arbitrary.

4.3.2.2 MACHO

Figure 4.22 shows that the flux of the optical companion to LXP187 appears to have

remained fairly consistent in the B and R-bands over 7 years (from 1992-1999). The

B-band data show a possible orbital period of 21.631 ± 0.005 d as shown in Figure 4.23,

although any underlying non-radial pulsations from the OBe star may affect the results

(Bird et al., 2012). Non-radial pulsations occur when some parts of the stellar surface

move inwards, while other parts move outwards. The pulse-profile of the B-band data

is shown in Figure 4.24.

The ∼ 21.6 s orbital period is not evident in the R-band data. This is most likely

because the R-band data has less than half the data points of the B-band dataset. This

is confirmed by randomly removing half of the B-band data points and creating a new

Lomb-Scargle normalised periodogram, which also failed to show any evidence of an

orbital period.

4.3.3 Accretion methods and magnetic fields

Figure 4.25 shows the spin periods (top) and luminosities (bottom) calculated using

data from Swift/XRT, RXTE/PCA, and XMM-Newton/EPIC, as a function of time.

The long-term average L is found to be (3.82 ± 0.22)×1036 erg s−1, and, assuming the
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Swift/XRT data has P = 186.6 s, then the long-term average P is 174.95 ± 0.28 s, and

the line of best-fit between the changing spin periods indicates a Ṗ of -4.92 ± 0.11 s

yr−1. If the Swift/XRT data has P = 180.8 s (as discussed in Section 4.3.1.1), then the

long-term average P is 173.04 ± 0.27 s, and the line of best-fit between the changing

spin periods indicates a Ṗ of -3.36 ± 0.10 s yr−1. These results are given in Tables 4.1

and 4.2.

Figure 4.25: P (top), and L (bottom), as a function of MJD for LXP187, using
data from Swift/XRT assuming P=186.6 s (black), and P=180.8 s (blue), and
data from RXTE/PCA (red), and XMM-Newton/EPIC (green) (as discussed in
Section 4.3.3). The black line in the upper panel shows the best-fit Ṗ assuming
the Swift/XRT data has P=186.6 s, and the blue dashed line shows the best-fit
Ṗ assuming the Swift/XRT data has P=180.8 s. The XMM-Newton results are
taken from Bartlett et al. (2013).

Orbital parameters are determined assuming that the orbital period taken from the B-

band MACHO data is correct, these are given in Table 4.2, and Tables A.1-A.3. Figures

4.26 and 4.27 show that the OBe star in LXP187 has a relatively large, non-truncated

circumstellar disc. This makes it similar to SXP4.78, which is also not close to spin

equilibrium and spinning up on average.

Vw is determined to be 257 ± 49 km s−1, and Vorb to be 302 ± 61 km s−1. This gives a

Vrel of 45 ± 109 km s−1, for prograde systems, and a VCrel of 233 ± 34 km s−1, assuming

the circumstellar disc is non-truncated. These results are given in Table 4.1 and Tables

A.4 and A.5, and are shown in Figures 4.28 and 4.29. Vrel < VCrel, and so the neutron

star should be accreting via an accretion disc.
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Figure 4.26: Diagram of LXP187 using orbital parameters given in Table 4.2
(and discussed in Section 4.2.3). The spin equilibrium status is determined from
Figure 4.25. B corresponds to the magnetic field determined using the Ghosh
and Lamb (1979) (equation (1.34)) model (as discussed in Section 4.3.3).

Figure 4.27: The ratio of Rcd and ROB (equation (2.16)) as a function of Porb;
result for LXP187 (black) over-plotted onto Figure 2.4. LXP187 appears in a
similar location to SXP4.78 (as discussed in Section 4.3.3).
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Figure 4.28: The ratio of Vrel (equation (2.13)) and VCrel; results for LXP187
over-plotted onto Figure 2.7 (as discussed in Section 4.3.3). VCrel is determined
assuming a prograde orbit, and assuming that the OBe star has a circumstellar
disc that is (equation (2.12); red) and is not (equation (2.11); blue) truncated
by the orbit of the neutron star. LXP187 is expected to contain an OBe star
with a non-truncated circumstellar disc, as shown in Figure 4.26. Results for
the SXP dataset discussed in Chapters 2 and 3 are shown in black.

Figure 4.29: As for Figure 4.28 but assuming retrograde, rather than prograde,
orbits.
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LXP187 is most likely disc-accreting, and cannot be assumed to be close to spin equilib-

rium, and so the Ghosh and Lamb (1979) and Kluzniak and Rappaport (2007) models

are the most appropriate models for determining the magnetic field. These models (dis-

cussed in Section 1.2.2) show that the magnetic field of a neutron star in a BeXB, with

a given mass and radius, can be determined from Ṗ and PL3/7.

Plots of Ṗ as a function of PL3/7, showing simulated results from the Ghosh and Lamb

(1979) and Kluzniak and Rappaport (2007) models for different values of B, are shown

in Figures 4.30 and 4.31. Results for LXP187 are over-plotted, as are results for the

SXP discussed in Chapters 2 and 3. The results for LXP187 assume MNS =1.4 M⊙,

but the error bars, which are contained within the symbol, correspond to results using

a range of masses between 1 M⊙ and 2 M⊙. Figure 4.31 shows that LXP187 cannot

be well-fit by the simulated spin equilibrium lines for the Ghosh and Lamb (1979) or

Kluzniak and Rappaport (2007) models, and this does not change whether it is assumed

that the Swift/XRT data has P = 186.6 s or P = 180.8 s. This means that like ∼ 40%

of the SXP discussed in Chapter 2, LXP187 has only one possible result for each model,

and like five of those systems (SXP2.37, SXP4.78, SXP11.5, SXP16.6, and SXP91.1), it

is not close to spin equilibrium and is spinning up on average.

If it is assumed that the Swift/XRT dataset has P = 186.6 s, then the Ghosh and Lamb

(1979) model predicts that LXP187 has a surface magnetic field of (1.41 ± 0.04)×1013

G, and the Kluzniak and Rappaport (2007) model predicts that it has a surface magnetic

field of (5.37 ± 1.25)×1013 G. If it is assumed that the Swift/XRT dataset has P = 180.8

s, then the Ghosh and Lamb (1979) model predicts B = (1.39 ± 0.04) × 1013 G, and

the Kluzniak and Rappaport (2007) model predicts B = (3.96 ± 0.12)× 1013 G. These

results are given in Table 4.2, and shown in Figure 4.32. LXP187 would be predicted

to have a higher magnetic field if it were closer to spin equilibrium, given the same values

of P and L, and assuming it is disc-accreting. The result from equating RA and Rco,

for example, is B=(6.4 ± 0.2)×1013 G. The Shakura et al. (2012) wind accretion model,

however, predicts a magnetic field of (2.9 ± 2.1)×1012 G, assuming the neutron star is

in spin equilibrium, wind-accreting, and in a retrograde orbit.

LXP187 is predicted to be subcritical using the Becker et al. (2012) model discussed

in Section 2.4. This means that, like most of the SXP discussed in Chapters 2 and 3,

the pencil beam in LXP187 is not completely suppressed. The height of the accretion

column is therefore inversely proportional to B and L, and is predicted to be ∼650 m

using equation (2.19), assuming RNS = 10 km, and that results from the Ghosh and

Lamb (1979) model give the surface magnetic field. This means that the magnetic field

at the top of the accretion column, where CRSF may be present, is (1.16 ± 0.04)×1013

G, corresponding to an energy of 135 keV (using equation (1.39), assuming CRSF are

from electrons, n = 1, and MNS=1.4 M⊙). These results are given in Table 4.2. Figure

4.33 shows the predicted Ecyc for LXP187 and the SXP discussed in Chapters 2 and 3,

like many SXP, LXP187 would not be expected to have detectable CRSF.
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Figure 4.30: Ṗ as a function of PL3/7; results for LXP187 assuming that the
spin period from the Swift/XRT data is 186.6 s (black, filled triangle), and
180.8 s (purple triangle), over-plotted onto Figure 2.9. Error bars correspond
to results using a range of masses between 1 M⊙ and 2 M⊙ and are within the
size of the symbols (as discussed in Section 4.3.3).

Figure 4.31: As for Figure 4.30, except results over-plotted onto Figure 2.10
rather than Figure 4.30.
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Spectral type & luminosity class B0-B1 III-V
V 14.70 ± 0.02

Porb (d) 21.6310 ± 0.0047
Long-term average EW Hα (Å) -31.1 ± 4.1

Long-term average P (s) 174.95 ± 0.28 [173.04 ± 0.27]
Long-term average L (1037 erg s−1) 0.382 ± 0.022

Long-term average Ṗ (s yr−1) -4.92 ± 0.11 [-3.36 ± 0.10]

MOB/M⊙ 23.0 ± 5.5 (18.4 ± 4.4)
ROB/R⊙ 11.4 ± 3.1 (10.6 ± 2.9)
Rcd/R⊙ 258 ± 73
a/R⊙ 95 ± 7 (88 ± 6)
q/R⊙ 66 ± 20 (62 ± 18)

Vorb (km s−1) 302 ± 61 (282 ± 56)
Vw (km s−1) 257 ± 49 (230 ± 44)

Vrel (km s−1) (prograde) 45 ± 109 (52 ± 100)
VCrel (km s−1) (non-truncated) 233 ± 34
VCrel (km s−1) (truncated) 545 ± 167

B (1012 G) Ghosh and Lamb (1979) (disc) 14.1 ± 0.4 [13.9 ± 0.4]
B (1012 G) Kluzniak and Rappaport (2007) (disc) 53.7 ± 12.5 [39.6 ± 1.2]

Height of accretion column (m) 651 ± 30
Predicted Bcyc (10

12 G) 11.63 ± 0.38
Predicted Ecyc (keV) 134.5 ± 4.5

Table 4.2: A summary of results for LXP187. The apparent V magnitude is
taken from Massey (2002), and the spectral type, luminosity class, and long-
term average EW Hα are taken from Klus et al. (2013) (as discussed in Sec-
tion 4.1). Porb is determined using data from MACHO (discussed in Section
4.3.2.2). P is determined using data from Swift/XRT, RXTE/PCA, and XMM-
Newton/EPIC (Bartlett et al., 2013) (as discussed in Section 4.3.3). L is deter-
mined using data from Swift/XRT and XMM-Newton/EPIC. A weighted Ṗ is
found by fitting the time evolution of P (as shown in Figure 4.25, and discussed
in Section 4.3.3). MOB/M⊙ and ROB/R⊙ are determined from the spectral
type and luminosity class, where results in curved brackets assume Mdyn (as
discussed in Section 2.3). Rcd (equation (2.16)), a (equation (2.9)), q (equation
(2.8)), Vorb (equation (2.17)), Vw (equation (2.15)), Vrel (equation (2.13)), and
VCrel (equations (2.2)-(2.9)) are also given (as discussed in Section 4.3.3). B is
determined using the Ghosh and Lamb (1979) (equation (1.34)), and Kluzniak
and Rappaport (2007) (equation (1.36)) models (as discussed in Section 4.3.3).
The height of the accretion column is determined from L and B (determined
using the Ghosh and Lamb (1979) model) following Becker et al. (2012) (equa-
tions (2.18)-(2.20); discussed in Section 4.3.3). The corresponding predicted
Bcyc and Ecyc, from electrons, from this radius (equations (1.5) and (1.39)) is
given assuming n = 1. Results assume P = 186.6 s for the Swift/XRT data,
where results in square brackets assume P = 180.8 s (as discussed in Section
4.3.1.1).
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Figure 4.32: B as a function of P ; results for LXP187 over-plotted onto Figure
2.16, where B is determined using the Ghosh and Lamb (1979) model assuming
the spin period from the Swift/XRT dataset is 186.6 s (equation (1.34); black
diamond) and 180.8 s (yellow circle), and the Kluzniak and Rappaport (2007)
model assuming the spin period from the Swift/XRT dataset is 186.6 s (equation
(1.36); black triangle) and 180.8 s (green circle).

4.4 Discussion and conclusions

Beardmore et al. (2009) show that LXP187 is part of a persistent BeXB in the LMC

containing a neutron star with a ∼187 s spin period, and a V=14.70 OBe star. They

suggest an orbital period of ∼21.6 d. In Klus et al. (2013) we showed that the optical

component of this BeXB is a B0-B1 III-V star, with a circumstellar disc that has re-

mained relatively constant in size over ∼ 2 yr, corresponding to an average EW Hα of

∼-31 Å. Bartlett et al. (2013) show that LXP187 has a hot thermal excess, correspond-

ing to a blackbody component with a radius of 0.5 ± 0.2 km. This is almost certainly

the neutron star’s magnetic polar cap.

In Sections 4.1-4.3, I show that the spin period, luminosity, and pulse-profiles of LXP187

change over time. The pulse-profile taken from the Swift/XRT data, corresponding to a

luminosity of (6.7 ± 0.4)× 1036 erg s−1 and a spin period of 186.6 ± 0.3 s, is shown in

Figures 4.10 and 4.12. It is reasonably well-fit by the Beloborodov (2002) approximation

as a class I system on the border of class II. A class I system has one pole that is always

visible, and a class II system also has a second pole that is sometimes visible when the
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Figure 4.33: Predicted Ecyc, from electrons, as a function of P ; result for
LXP187 (black) determined using the Becker et al. (2012) model (equations
(2.18)-(2.20), and equation (1.39), using B determined from the Ghosh and
Lamb (1979) model), over-plotted onto Figure 2.25 (as discussed in Section
2.4). The black line indicates the maximum energy range of NASA’s NuStar
(Nuclear Spectroscopic Telescope Array Mission), and shows that, like many
SXP, LXP187 would not be expected to have detectable CRSF (as discussed in
Section 4.3.3).

first pole is at its dimmest (as discussed in Section 3.2.1). A dip appears in the bottom

of the pulse-profile as the neutron star spins up to 169.8 ± 0.3 s. This is shown in

Figure 4.17, using data from RXTE. As the spin period decreases to 168.5 ± 0.2 s, and

the luminosity decreases to (9.8 ± 0.9)×1034 ergs s−1, the dip changes position so that

the system is well-fit by the Beloborodov (2002) approximation as a class III system

(Bartlett et al., 2013). This is shown in Figure 4.5, using data from XMM-Newton.

In Section 4.3, I show that LXP187 is most likely accreting via an accretion disc, from

a non-truncated circumstellar disc. It is not close to spin equilibrium, and is spinning

up on average. This is most likely due to its persistent accretion, which is almost

certainly related to the fact that the OBe star’s circumstellar disc has remained at a

constant size over ∼ 2 yr. This means that the magnetic field is best described by the

Ghosh and Lamb (1979) and Kluzniak and Rappaport (2007) models, which predict

magnetic fields of (1.41 ± 0.04) × 1013 G and (5.37 ± 1.25) × 1013 G respectively

(assuming MOB = Mspec). The height of the accretion column is predicted to be ∼650

m, corresponding to an energy of ∼ 135 keV, too high to be detected by most X-ray

telescopes.
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Figure 4.34: B as a function of P ; result for LXP187 (black triangle), determined
using the Ghosh and Lamb (1979) (equation (1.34)) model, over-plotted onto
Figure 2.17 (as discussed in Section 4.4).

In Chapter 2, I concluded that the magnetic fields of most SXP are higher than those

of CRSF sources because CRSF sources are not close to spin equilibrium, whereas most

SXP are. Results from LXP187 support these conclusions. Figure 4.34 shows results

for LXP187 over-plotted onto Figure 2.17. This shows B as a function of P for most

known neutron stars, where LXP187, which is not close to spin equilibrium, has a similar

magnetic field to the CRSF sources.



Chapter 5

Conclusions and future work

5.1 Conclusions

In Chapter 2, I showed that 42 BeXB in the SMC contain neutron stars that are disc-

accreting. Approximately half are expected to be accreting from a circumstellar disc

that is truncated by the orbit of the neutron star, and ∼85% are expected to be close to

spin equilibrium; the exceptions being SXP2.37 (SMC X-2), SXP4.78, SXP7.78 (SMC

X-3), SXP11.5, SXP16.6, and SXP91.1, where all are spinning up on average except

for SXP7.78, which is spinning down. I determined the most likely surface magnetic

field for the neutron star in each system, given its spin equilibrium status, using the

Ghosh and Lamb (1979) and Kluzniak and Rappaport (2007) models. I found that

∼ 2/3 systems, including all systems with P & 100 s, are predicted to contain neutron

stars with B > BQED (where BQED=4.4×1013 G). This means that all neutron stars in

binary systems that are close to spin equilibrium follow the same relationship between

P and B, as is shown in Figure 4.34.

The neutron stars in BeXB can also have their surface magnetic fields measured directly,

via CRSF. Galactic BeXB that have had their magnetic fields measured in this way are

predicted to have magnetic fields of ∼ 1012 − 1013 G. It is difficult to measure magnetic

fields > 1013 G using CRSF from electrons. This is because Ecyc ∝ B, and CRSF are

no longer within the observable energy-bands of most X-ray telescopes above & 1013 G,

as shown in Figure 4.33.

I suggest that most of the neutron stars in the BeXB in this dataset are predicted to

have higher magnetic fields than CRSF sources because the CRSF sources are not close

to spin equilibrium, whereas most of the BeXB in this dataset are. I predict that if the

CRSF sources were close to spin equilibrium, then they would require much stronger

magnetic fields, and CRSF would not be visible in the X-ray spectrum.
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If ∼ 2/3 neutron stars in BeXB have B > BQED, and only one BeXB, LSI+61◦303, is

known to have undergone magnetar-like outbursts (Torres et al., 2012; Papitto et al.,

2012), then this suggests that this behaviour may be rare for neutron stars with B >

BQED. This behaviour may be related to age (Thompson et al., 2002). It may also be

related to spin period, since BeXB with magnetar-strength magnetic fields have spin

periods & 100 s and do not tend to undergo these outbursts, whereas magnetars, which

have spin periods of ∼ 2− 10 s, do. This means that ∼ 2/3 isolated neutron stars may

have B > BQED, but remain unobserved. The fact that ∼ 2/3 neutron stars in the

BeXB in this dataset have B > BQED may also mean that magnetic field decay occurs

more slowly than previously thought (Pons et al., 2009).

In Chapter 3, I created pulse-profiles for every observation used in Chapter 2, I then

visually inspected them, and modelled them using the Beloborodov (2002) approxima-

tion. I found that the pulse-profiles contained a variety of features, including asymmetry,

dips, and double-peaked structure, which vary both within and across individual sys-

tems. Most pulse-profiles were not well-fit by the Beloborodov (2002) approximation.

Assuming that double-peaked structure indicates a transition from a pencil beam to a

fan beam, systems containing neutron stars with relatively longer spin periods seem to

transition to a fan beam at lower luminosities than systems containing neutron stars

with relatively shorter spin periods, as shown in Figure 3.10. These results are inconclu-

sive, however, because of the subjective nature of classification; it is sometimes difficult

to distinguish between double-peaked structure and dips, which produce the same shape

in pulse-profiles.

In Chapter 4, I apply the same methods used in Chapter 2 to LXP187, a persistent

BeXB located in the LMC. I show that it is most likely accreting via a disc, that it is

not close to spin equilibrium, and that it is spinning up on average. LXP187 has a longer

spin period than any of the SXP discussed in Chapters 2 and 3 that are not close to spin

equilibrium (the next longest being SXP91.1). This allows us to compare its magnetic

field to those of CRSF sources, which I suggest cannot be close to spin equilibrium. I

show that LXP187 is predicted to have a similar magnetic field to the CRSF sources.

This is consistent with the conclusions of Chapter 2 - that the magnetic field of most

SXP are higher than those of CRSF sources because CRSF sources are not close to spin

equilibrium, whereas most SXP are. The magnetic field of LXP187 is slightly too high

for CRSF to be observed using most X-ray telescopes (as shown in Figure 4.33), adding

credence to the idea that most BeXB have magnetic fields that are not observable via

CRSF.
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5.2 Future work

In Section 5.1, I suggested that ∼ 2/3 neutron stars may have B > BQED, and that

the magnetic field of most SXP are higher than those of CRSF sources because CRSF

sources are not close to spin equilibrium, whereas most SXP are.

Evidence of magnetic fields > BQED could be obtained if any of these systems undergo a

magnetar-like gamma-ray outburst. However, the fact that only one BeXB, LSI+61◦303,

is known to have undergone magnetar-like outbursts suggests that this behaviour is rare

(Torres et al., 2012; Papitto et al., 2012).

Evidence that the CRSF sources are not close to spin equilibrium could be obtained by

determining their long-term average L, P , and Ṗ . This would allow us to determine

their magnetic fields using the Ghosh and Lamb (1979) and Kluzniak and Rappaport

(2007) models, to see if they match the values determined by CRSF.

Figure 4.33 revisited: Predicted Ecyc, from electrons, as a function of P ; results
for LXP187 (black), and SXP sources that are spinning up (Ṗ < 0; blue) and
down (Ṗ > 0; red) on average. The black line indicates the maximum energy
range of NASA’s NuStar (Nuclear Spectroscopic Telescope Array Mission) (as
discussed in Section 4.3.3).

Conversely, the SXP sources, and LXP187, could be monitored for CRSF. Predictions

for the energy of these features, assuming results from the Ghosh and Lamb (1979)

model are correct, are given in Tables 2.9 and 4.2 and shown in Figure 4.33. Most
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sources are not predicted to produce CRSF, from electrons, that are observable with X-

ray telescopes, although CRSF from protons are possible. Only 11 systems are predicted

to have Ecyc < 100 keV, these are the 10 systems with the shortest spin periods, and

SXP91.1. Six of these are predicted to not be close to spin equilibrium.

Evidence from Chapter 3 suggests that the pulse-profiles of systems with relatively short

spin periods (and hence relatively low magnetic fields, assuming results from Chapters

2 and 3 are correct) tend to exhibit double-peaked structure at higher luminosities than

systems with relatively long spin periods. Dips are also evident in the double-peaked

structure of systems with relatively short spin periods, and do not tend to be evident

in the double-peaked structure of systems with relatively long spin periods. This may

mean that systems with relatively short spin periods transition from a pencil beam to

a fan beam at relatively higher luminosities. It is also possible that the double-peaked

structure in some observations are due to the neutron star having multiple magnetic

poles. These results are far from conclusive, however, because it is difficult to distinguish

between double-peaked structure and dips, which produce the same shape in the pulse-

profile.

The problems could be resolved with more complex modelling, including modelling that

takes into account the effects of fan beam radiation, asymmetric poles, and multiple

poles. Future work in this area is currently being undertaken by S. Laycock and R.

Cappallo et al. at the University of Massachusetts.



Appendix A

Tables of orbital parameters

Tables A.1-A.5 give the orbital parameters for the BeXB discussed in this work, including

the SXP discussed in Chapters 2 and 3, and LXP187, which is discussed in Chapter

4. Table A.1 lists the orbital parameters used to determine the status of the OBe

star’s circumstellar disc, and to create diagrams of each system, shown in Appendix B

and Figure 4.26. When values of MOB and ROB were not known, average values of

MOB/M⊙=18.36 ± 4.42 and ROB/R⊙=8.95 ± 2.08 were used. When values of Porb and

Rcd were not known, the most probable values were used to create diagrams, and to

determine the status of the OBe star’s circumstellar disc (with values determined from

Porb ∝ P 5/14 and Porb ∝ R
7/100
cd , as discussed in Section 2.3). In all other calculations,

a full range of values were used for Porb and Rcd (Porb = 262 ± 258 d and Rcd =

176 ± 121 R⊙), as given in Tables A.2 and A.3. The derived velocities are given in

Tables A.4-A.5. Results in Tables A.1-A.5 assumeMOB=Mspec, where results calculated

using Mdyn are in parenthesis.
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BeXB Porb MOB ROB Rcd a e q Circ.

(d) M⊙ R⊙ R⊙ R⊙ R⊙ disc
status

SXP2.37 18.62 26 (21) 12 (11) 110 89 (83) 0.07 83 (77) N-T
SXP4.78 23.90 16 (13) 8 (7) 216 90 (84) 0.30∗ 63 (59)∗ N-T∗

SXP6.85 21.90 22 (17) 10 (10) 60 94 (87) 0.26 69 (65) T
SXP7.78 44.93 16 (13) 8 (7) 110 138 (129) 0.30∗ 96 (90)∗ N-T∗

SXP8.80 28.47 22 (17) 10 (10) 73 112 (104) 0.41 66 (61) N-T
SXP11.5 36.30 22 (17) 10 (10) 128∗ 131 (122) 0.28 94 (88) N-T∗

SXP15.3 74.32 25 (20) 11 (11) 227 222 (207) 0.30∗ 155 (145)∗ N-T∗

SXP16.6 33.72 18 (15)∗ 9 (8)∗ 108∗ 119 (111)∗ 0.30∗ 83 (78)∗ N-T∗

SXP18.3 17.79 11 (9) 6 (5) 50∗ 66 (62) 0.43 38 (35) N-T∗

SXP25.5 22.53 18 (15)∗ 9 (8)∗ 88∗ 91 (85)∗ 0.30∗ 64 (59)∗ N-T∗

SXP46.6 137.40 20 (16) 10 (9) 173 311 (290) 0.30∗ 218 (203)∗ T∗

SXP59.0 122.10 20 (16) 9 (8) 171 288 (268) 0.30∗ 201 (188)∗ T∗

SXP74.7 33.39 8 (6) 5 (4) 76 91 (85) 0.40 54 (51) N-T
SXP82.4 362.20 16 (13) 8 (8) 164 555 (518) 0.30∗ 388 (363)∗ T∗

SXP91.1 88.37 22 (18) 10 (10) 214 239 (223) 0.30∗ 167 (156)∗ N-T∗

SXP95.2 280.00 18 (15)∗ 9 (8)∗ 212∗ 487 (455)∗ 0.30∗ 341 (318)∗ T∗

SXP101 21.95 18 (15)∗ 9 (8)∗ 87∗ 89 (83)∗ 0.30∗ 62 (58)∗ N-T∗

SXP140 197.00 14 (11) 7 (6) 207 356 (333) 0.30∗ 249 (233)∗ T∗

SXP152 81.93∗ 17 (14) 8 (8) 131 209 (195)∗ 0.30∗ 146 (137)∗ T∗

SXP169 68.37 23 (18) 11 (11) 249 204 (190) 0.30∗ 143 (133)∗ N-T∗

SXP172 68.78 18 (15) 9 (8) 121 190 (178) 0.30∗ 133 (124)∗ T∗

SXP175 87.20 28 (23) 14 (13) 239∗ 256 (239) 0.30∗ 180 (167)∗ N-T∗

SXP202A 71.98 16 (13) 8 (7) 123 188 (176) 0.30∗ 132 (123)∗ T∗

SXP202B 224.60 20 (16) 10 (9) 224∗ 434 (405) 0.30∗ 304 (284)∗ T∗

SXP214 92.57∗ 19 (15) 9 (8) 155∗ 234 (219)∗ 0.30∗ 164 (153)∗ T (N-T)∗

SXP264 49.12 13 (11) 7 (6) 148 138 (130) 0.30∗ 97 (91)∗ N-T∗

SXP280 127.62 20 (16) 10 (9) 276 295 (275) 0.30∗ 206 (192)∗ N-T∗

SXP293 59.73 9 (7) 5 (5) 78∗ 141 (133) 0.30∗ 99 (93)∗ T∗

SXP304 520.00 20 (16) 10 (9) 384 751 (701) 0.30∗ 526 (491)∗ T∗

SXP323 116.60 17 (13) 8 (7) 181 264 (246) 0.30∗ 185 (172)∗ T (N-T)∗

SXP327 45.93 18 (15)∗ 9 (8)∗ 123∗ 146 (136)∗ 0.30∗ 102 (95)∗ N-T∗

SXP342 109.35∗ 18 (15)∗ 9 (8)∗ 166∗ 260 (243)∗ 0.30∗ 182 (170)∗ T∗

SXP455 74.56 17 (13) 8 (8) 118 195 (182) 0.30∗ 137 (128)∗ T∗

SXP504 270.10 19 (15) 9 (9) 296 483 (451) 0.30∗ 338 (316)∗ T∗

SXP565 152.40 17 (14) 9 (8) 226 316 (296) 0.30∗ 221 (207)∗ N-T∗

SXP645 137.19∗ 22 (18) 11 (10) 220∗ 321 (299)∗ 0.30∗ 225 (209)∗ T (N-T)∗

SXP701 412.00 19 (15) 9 (8) 221 634 (592) 0.30∗ 444 (414)∗ T∗

SXP726 143.15∗ 18 (14) 9 (8) 178∗ 309 (289)∗ 0.30∗ 216 (202)∗ T∗

SXP756 393.60 24 (19) 11 (10) 231 667 (622) 0.30∗ 467 (436)∗ T∗

SXP893 153.95∗ 18 (15)∗ 9 (8)∗ 183∗ 327 (305)∗ 0.30∗ 229 (214)∗ T∗

SXP967 101.40 22 (18) 11 (10) 139 262 (245) 0.30∗ 184 (171)∗ T∗

SXP1323 26.17 23 (18) 11 (11) 177 108 (100) 0.30∗ 75 (70)∗ N-T∗

LXP187 21.63 23 (18) 11 (11) 259 95 (88) 0.30∗ 66 (62)∗ N-T

Table A.1: Orbital parameters used to create diagrams for each system (shown
in Appendix B and Figure 4.26) and used to determine status of the OBe star’s
circumstellar disc. Here T refers to a truncated circumstellar disc, and N−T to
non-truncated. An asterisk denotes that the value is an estimate, as discussed
in Appendix A. Results assume MOB=Mspec, where results calculated using
Mdyn are in parenthesis.
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BeXB Porb −EWHα MOB ROB

(d) (Å) M⊙ R⊙

SXP2.37 18.62±0.02 -7.9±0.6 26±7 (21±6) 12±3 (11±3)
SXP4.78 23.9±0.1 -43.7±1.1 16±2 (13±1) 8±1 (7±1)
SXP6.85 21.9±0.1 -3.8±3.7 22±4 (17±3) 10±2 (10±2)
SXP7.78 44.93±0.01 -14.3±2.3 16±3 (13±3) 8±2 (7±2)
SXP8.80 28.47±0.04 -5.1±0.4 22±4 (17±3) 10±2 (10±2)
SXP11.5 36.3±0.4 -25±20∗ 22±4 (17±3) 10±2 (10±2)
SXP15.3 74.32±0.03 -25.1±1.5 25±8 (20±6) 11±3 (11±3)
SXP16.6 33.7±0.1 -25±20∗ 18±4 (15±4)∗ 9±2 (8±2)∗

SXP18.3 17.79±0.03 -25±20∗ 11±3 (9±3) 6±1 (5±1)
SXP25.5 22.53±0.01 -25±20∗ 18±4 (15±4)∗ 9±2 (8±2)∗

SXP46.6 137.4±0.2 -21.9±0.7 20±6 (16±5) 10±3 (9±2)
SXP59.0 122.1±0.4 -23.4±1.4 20±0 (16±0) 9±0 (8±0)
SXP74.7 33.39±0.01 -18.3±2.3 8±0 (6±0) 5±0 (4±0)
SXP82.4 362.2±4.1 -25.9±1.1 16±8 (13±7) 8±3 (8±3)
SXP91.1 88.37±0.03 -26.7±2.6 22±6 (18±5) 10±3 (10±2)
SXP95.2 280.0±8.0 -25±20∗ 18±4 (15±4)∗ 9±2 (8±2)∗

SXP101 21.949±0.003 -7.8±5 18±4 (15±4)∗ 9±2 (8±2)∗

SXP140 197.0±5.0 -47.3±3.1 14±0 (11±0) 7±0 (6±0)
SXP152 262.0±258.0∗ -17.3±1.7 17±8 (14±6) 8±3 (8±3)
SXP169 68.4±0.1 -29.2±2.6 23±5 (18±4) 11±3 (11±3)
SXP172 68.8±0.1 -15±1.3 18±1 (15±1) 9±0 (8±0)
SXP175 87.2±0.2 -25±20∗ 28±0 (23±0) 14±1 (13±1)
SXP202A 72.0±5.0 -18.1±5 16±2 (13±1) 8±1 (7±1)
SXP202B 224.6±0.3 -25±20∗ 20±8 (16±6) 10±5 (9±4)
SXP214 262.0±258.0∗ -25±20∗ 19±2 (15±2) 9±1 (8±1)
SXP264 49.12±0.03 -30.1±1.7 13±1 (11±1) 7±0 (6±0)
SXP280 127.6±0.3 -42±3.1 20±9 (16±7) 10±4 (9±4)
SXP293 59.73±0.01 -25±20∗ 9±2 (7±1) 5±0 (5±0)
SXP304 520.0±12.0 -70.4±6.2 20±9 (16±7) 10±4 (9±4)
SXP323 116.6±0.6 -30.9±1.1 17±1 (13±1) 8±0 (7±0)
SXP327 45.93±0.01 -25±20∗ 18±4 (15±4)∗ 9±2 (8±2)∗

SXP342 262.0±258.0∗ -25±20∗ 18±4 (15±4)∗ 9±2 (8±2)∗

SXP455 74.6±0.1 -15.1±2 17±6 (13±4) 8±3 (8±2)
SXP504 270.1±0.5 -52.9±3.9 19±5 (15±4) 9±2 (9±2)
SXP565 152.4±0.3 -37.4±2.9 17±6 (14±5) 9±3 (8±3)
SXP645 262.0±258.0∗ -25±20∗ 22±6 (18±5) 11±3 (10±3)
SXP701 412.0±5.0 -37.1±3.5 19±0 (15±0) 9±0 (8±0)
SXP726 262.0±258.0∗ -25±20∗ 18±10 (14±8) 9±4 (8±4)
SXP756 393.6±1.2 -27±3.6 24±9 (19±7) 11±3 (10±3)
SXP893 262.0±258.0∗ -25±20∗ 18±4 (15±4)∗ 9±2 (8±2)∗

SXP967 101.4±0.2 -12.3±5 22±6 (18±5) 11±3 (10±3)
SXP1323 26.174±0.002 -17.1±1.5 23±5 (18±4) 11±3 (11±3)

LXP187 21.631±0.005 -31.05±4.05 23±5 (18±4) 11±3 (11±3)

Table A.2: Orbital parameters for each system, where references for Porb and
−EWHα are given in Table 2.2. An asterisk denotes that the value is an
estimate, as discussed in Appendix A. Results assume MOB=Mspec, where
results calculated using Mdyn are in parenthesis.
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BeXB Rcd a e q

R⊙ R⊙ R⊙

SXP2.37 110±28 89±8 (83±7) 0.07±0.02 83±7 (77±7)
SXP4.78 216±20 90±3 (84±3) 0.3±0.2∗ 63±18 (59±17)∗

SXP6.85 60±56 94±6 (87±5) 0.26±0.03 69±5 (65±5)
SXP7.78 110±25 138±9 (129±8) 0.3±0.2∗ 96±28 (90±26)∗

SXP8.80 73±14 112±7 (104±6) 0.41±0.04 66±6 (61±6)
SXP11.5 202±135∗ 131±8 (122±7) 0.28±0.03 94±7 (88±6)
SXP15.3 226±62 222±21 (207±20) 0.3±0.2∗ 155±47 (145±44)∗

SXP16.6 176±121∗ 119±9 (111±8)∗ 0.3±0.2∗ 83±25 (78±23)∗

SXP18.3 115±77∗ 66±6 (62±5) 0.43±0.03 38±4 (35±4)
SXP25.5 176±121∗ 91±7 (85±6)∗ 0.3±0.2∗ 64±19 (59±17)∗

SXP46.6 173±47 311±28 (290±26) 0.3±0.2∗ 218±65 (203±61)∗

SXP59.0 171±7 288±1 (268±1) 0.3±0.2∗ 201±58 (188±54)∗

SXP74.7 76±6 91±0 (85±0) 0.40±0.23 54±21 (51±20)
SXP82.4 164±70 555±90 (518±82) 0.3±0.2∗ 388±127 (363±119)∗

SXP91.1 214±57 239±21 (223±19) 0.3±0.2∗ 167±50 (156±47)∗

SXP95.2 176±121∗ 487±38 (455±34)∗ 0.3±0.2∗ 341±101 (318±94)∗

SXP101 84±45∗ 89±7 (83±6)∗ 0.3±0.2∗ 62±18 (58±17)∗

SXP140 207±9 356±6 (333±6) 0.3±0.2∗ 249±71 (233±67)∗

SXP152 131±50 209±305 (195±284)∗ 0.3±0.2∗ 146±232 (137±216)∗

SXP169 248±69 204±15 (190±14) 0.3±0.2∗ 143±42 (133±39)∗

SXP172 121±7 190±2 (178±2) 0.3±0.2∗ 133±38 (124±36)∗

SXP175 272±175∗ 256±0 (239±0) 0.3±0.2∗ 180±51 (167±48)∗

SXP202A 123±25 188±11 (176±10) 0.3±0.2∗ 132±38 (123±36)∗

SXP202B 196±155∗ 434±54 (405±49) 0.3±0.2∗ 304±95 (284±88)∗

SXP214 173±113∗ 234±308 (219±287)∗ 0.3±0.2∗ 164±235 (153±219)∗

SXP264 148±9 138±3 (130±2) 0.3±0.2∗ 97±28 (91±26)∗

SXP280 276±123 295±41 (275±37) 0.3±0.2∗ 206±65 (192±61)∗

SXP293 101±66∗ 141±7 (133±7) 0.3±0.2∗ 99±29 (93±27)∗

SXP304 384±172 751±105 (701±96) 0.3±0.2∗ 526±167 (491±156)∗

SXP323 181±8 264±4 (246±4) 0.3±0.2∗ 185±53 (172±49)∗

SXP327 176±121∗ 146±11 (136±10)∗ 0.3±0.2∗ 102±30 (95±28)∗

SXP342 176±121∗ 260±308 (243±287)∗ 0.3±0.2∗ 182±235 (170±219)∗

SXP455 118±39 195±20 (182±19) 0.3±0.2∗ 137±42 (128±39)∗

SXP504 296±75 483±40 (451±37) 0.3±0.2∗ 338±101 (316±94)∗

SXP565 226±84 316±35 (296±32) 0.3±0.2∗ 221±68 (207±63)∗

SXP645 219±156∗ 321±327 (299±305)∗ 0.3±0.2∗ 225±249 (209±233)∗

SXP701 220±14 634±5 (592±5) 0.3±0.2∗ 444±127 (414±118)∗

SXP726 175±140∗ 309±315 (289±294)∗ 0.3±0.2∗ 216±239 (202±223)∗

SXP756 231±74 667±73 (622±68) 0.3±0.2∗ 467±143 (436±133)∗

SXP893 176±121∗ 327±308 (305±287)∗ 0.3±0.2∗ 229±235 (214±219)∗

SXP967 139±58 262±23 (245±21) 0.3±0.2∗ 184±55 (171±51)∗

SXP1323 176±49 108±8 (100±7) 0.3±0.2∗ 75±22 (70±21)∗

LXP187 258±73 95±7 (88±6) 0.3±0.2∗ 66±20 (62±18)∗

Table A.3: Orbital parameters for each system, where references for e are given
in Table 2.3. An asterisk denotes that the value is an estimate, as discussed in
Appendix A. Results assumeMOB=Mspec, where results calculated usingMdyn

are in parenthesis.
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BeXB Vorb Vw
(km s−1) (km s−1)

SXP2.37 259±36 (242±33) 244±35 (218±31)
SXP4.78 260±44 (243±41) 219±33 (196±30)∗

SXP6.85 283±27 (264±25) 261±123 (234±110)
SXP7.78 211±41 (198±38) 178±32 (159±29)∗

SXP8.80 307±31 (286±29) 250±26 (224±24)
SXP11.5 244±24 (228±22)∗ 209±21 (187±19)∗

SXP15.3 206±46 (192±42) 176±38 (157±34)∗

SXP16.6 243±49 (227±45)∗ 205±39 (184±35)∗

SXP18.3 298±43 (279±39)∗ 235±38 (210±34)∗

SXP25.5 278±56 (259±52)∗ 235±45 (210±40)∗

SXP46.6 156±34 (146±31) 148±29 (133±26)∗

SXP59.0 162±26 (152±25) 150±3 (134±3)∗

SXP74.7 210±44 (198±41) 163±31 (146±28)
SXP82.4 106±32 (99±29) 137±46 (122±41)∗

SXP91.1 187±40 (174±37) 159±33 (142±29)∗

SXP95.2 120±24 (112±22)∗ 141±51 (126±46)∗

SXP101 280±56 (262±52)∗ 237±45 (212±40)∗

SXP140 125±20 (117±19) 115±2 (102±2)∗

SXP152 119±51 (112±47)∗ 157±47 (140±42)∗

SXP169 206±41 (192±38) 175±33 (157±30)∗

SXP172 191±31 (178±29) 169±6 (151±5)∗

SXP175 203±33 (189±31)∗ 174±25 (155±22)∗

SXP202A 180±31 (168±29) 157±18 (140±16)∗

SXP202B 133±34 (124±31)∗ 141±62 (126±56)∗

SXP214 123±46 (115±43)∗ 144±47 (93±34)∗

SXP264 194±32 (182±30) 162±24 (145±21)∗

SXP280 159±43 (149±40) 135±37 (121±33)∗

SXP293 163±30 (153±28)∗ 132±44 (118±40)∗

SXP304 100±27 (93±25) 99±31 (88±28)∗

SXP323 156±26 (146±24) 133±4 (117±17)∗

SXP327 219±44 (205±41)∗ 185±35 (166±32)∗

SXP342 123±47 (114±44)∗ 141±51 (126±46)∗

SXP455 180±42 (169±39) 164±39 (146±35)∗

SXP504 123±26 (115±24) 112±21 (100±18)∗

SXP565 143±34 (134±31) 121±28 (108±25)∗

SXP645 130±51 (121±47)∗ 139±53 (99±38)∗

SXP701 106±17 (99±16) 127±4 (114±4)∗

SXP726 122±56 (114±52)∗ 140±69 (125±62)∗

SXP756 117±28 (109±26) 142±34 (127±30)∗

SXP893 123±47 (114±44)∗ 141±51 (126±46)∗

SXP967 178±38 (166±35) 174±44 (156±39)∗

SXP1323 283±57 (264±53) 241±46 (216±41)∗

LXP187 302±61 (282±56)∗ 257±49 (230±44)∗

Table A.4: Vorb and Vw for each system. An asterisk denotes that the value is
an estimate, as discussed in Appendix A. Results assume MOB=Mspec, where
results calculated using Mdyn are in parenthesis.
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BeXB Vrel Vrel VCrel VCrel

(prograde) (retrograde) (non-truncated) (truncated)
(km s−1) (km s−1) (km s−1) (km s−1)

SXP2.37 15±71 (23±64) 503±71 (460±64) 256±29 867±268
SXP4.78 41±78 (48±71)∗ 479±78 (439±71)∗ 247±36 609±187
SXP6.85 21±150 (30±135) 544±150 (497±135) 252±29 706±216
SXP7.78 34±73 (39±67)∗ 389±73 (357±67)∗ 208±31 554±172
SXP8.80 56±57 (62±52) 557±57 (510±52) 256±29 698±213
SXP11.5 35±45 (41±41)∗ 453±45 (414±41)∗ 222±25∗ 651±199∗

SXP15.3 30±84 (35±76)∗ 382±84 (349±76)∗ 183±27 594±185
SXP16.6 38±88 (43±80)∗ 448±88 (410±80)∗ 212±31∗ 514±159∗

SXP18.3 63±81 (69±73)∗ 533±81 (489±73)∗ 294±34∗ 632±187∗

SXP25.5 43±100 (49±92)∗ 513±100 (469±92)∗ 237±35∗ 553±171∗

SXP46.6 8±63 (13±58)∗ 304±63 (278±58)∗ 161±24 573±181
SXP59.0 13±29 (18±27)∗ 312±29 (285±27)∗ 169±25 607±191
SXP74.7 47±75 (52±69) 373±75 (343±69) 266±45 661±206
SXP82.4 31±78 (23±71)∗ 242±78 (221±71)∗ 134±21 582±182
SXP91.1 28±73 (32±66)∗ 345±73 (316±66)∗ 182±27 632±197
SXP95.2 21±75 (14±68)∗ 261±75 (238±68)∗ 141±21∗ 594±185∗

SXP101 43±101 (50±93)∗ 517±101 (474±93)∗ 248±37∗ 613±191∗

SXP140 10±23 (14±21)∗ 239±23 (219±21)∗ 158±23 620±200
SXP152 37±98 (29±89)∗ 276±98 (252±89)∗ 143±38 586±188
SXP169 31±74 (35±68)∗ 381±74 (348±68)∗ 192±28 635±199
SXP172 22±37 (27±34)∗ 360±37 (329±34)∗ 192±28 593±187
SXP175 29±58 (34±53)∗ 376±58 (344±53)∗ 176±26∗ 618±195∗

SXP202A 23±49 (28±45)∗ 337±49 (309±45)∗ 192±28 594±187
SXP202B 7±96 (2±87)∗ 274±96 (250±87)∗ 142±22∗ 548±176∗

SXP214 20±93 (22±76)∗ 267±93 (208±76)∗ 140±37∗ 569±184∗

SXP264 32±56 (37±51)∗ 357±56 (327±51)∗ 204±30 526±165
SXP280 24±80 (28±73)∗ 294±80 (269±73)∗ 163±25 566±181
SXP293 31±74 (35±67)∗ 295±74 (271±67)∗ 206±30∗ 553±172∗

SXP304 1±58 (5±53)∗ 198±58 (181±53)∗ 127±19 665±212
SXP323 23±30 (28±41)∗ 288±30 (263±41)∗ 172±25 585±184
SXP327 34±79 (39±72)∗ 404±79 (370±72)∗ 196±29∗ 495±154∗

SXP342 18±98 (12±90)∗ 264±98 (241±90)∗ 146±39∗ 637±205∗

SXP455 17±81 (22±73)∗ 344±81 (315±73)∗ 201±30 696±220
SXP504 12±46 (15±42)∗ 235±46 (215±42)∗ 139±21 570±180
SXP565 22±62 (26±57)∗ 264±62 (242±57)∗ 153±23 508±165
SXP645 9±104 (22±86)∗ 269±104 (220±86)∗ 138±37∗ 573±186∗

SXP701 21±21 (15±20)∗ 234±21 (213±20)∗ 126±18 553±175
SXP726 18±125 (11±114)∗ 262±125 (239±114)∗ 148±40∗ 665±216∗

SXP756 25±61 (18±56)∗ 259±61 (236±56)∗ 126±19 581±182
SXP893 18±98 (12±90)∗ 264±98 (241±90)∗ 138±36∗ 536±173∗

SXP967 4±82 (10±75)∗ 353±82 (322±75)∗ 184±27 710±226
SXP1323 42±103 (48±94)∗ 524±103 (480±94)∗ 246±36 708±220

LXP187 45±109 (52±100)∗ 559±109 (511±100)∗ 233±34∗ 545±167∗

Table A.5: Vrel for each system, assuming prograde and retrograde orbits, and
VCrel assuming accretion is occurring from both a non-truncated, and truncated
circumstellar disc. Disc accretion is only possible if Vrel < VCrel. An asterisk
denotes that the value is an estimate, as discussed in Appendix A. Results
assume MOB=Mspec, where results calculated using Mdyn are in parenthesis.
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Plots of P and L as a function of

MJD, and diagrams of BeXB

The odd numbered figures within Figures B.1-B.84 show plots of P (upper panel; blue)

and L (lower panel; red) as functions of MJD, for neutron stars in the 42 BeXB in the

dataset discussed in Chapters 2 and 3. The black line in the upper panel shows the

weighted line of best fit used to determine the long-term average Ṗ . This is calculated

using MPFITEXPR1 (see Section 2.2).

The even numbered figures within Figures B.1-B.84 show diagrams of the aforementioned

BeXB (as discussed in Appendix A). These diagrams are to scale, composed using values

of a (equation (2.9)), q (equation (2.8)), Rcd (equation (2.16)), and ROB, all of which

are given in Table A.1. L, Vorb (equation (2.17)), Vw (equations (2.14) and (2.15)), the

spin equilibrium status, and B, determined using the Ghosh and Lamb (1979) model

(equation (1.34)), are also given. These are determined using the methods described in

Section 2.2. All images are to the same scale.

1www.physics.wisc.edu/∼craigm/idl/down/mpfitexpr.pro
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Figure B.1: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP2.37. The black line in the upper panel shows the best-fit Ṗ .

Figure B.2: Diagram of SXP2.37, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.3: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP4.78. The black line in the upper panel shows the best-fit Ṗ .

Figure B.4: Diagram of SXP4.78, using orbital parameters given in Table A.1
and discussed in Section 2.3.



136 Appendix B Plots of P and L as a function of MJD, and diagrams of BeXB

Figure B.5: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP6.85. The black line in the upper panel shows the best-fit Ṗ .

Figure B.6: Diagram of SXP6.85, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.7: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP7.78. The black line in the upper panel shows the best-fit Ṗ .

Figure B.8: Diagram of SXP7.78, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.9: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP8.80. The black line in the upper panel shows the best-fit Ṗ .

Figure B.10: Diagram of SXP8.80, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.11: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP11.5. The black line in the upper panel shows the best-fit Ṗ .

Figure B.12: Diagram of SXP11.5, using orbital parameters given in Table A.1
and discussed in Section 2.3.



140 Appendix B Plots of P and L as a function of MJD, and diagrams of BeXB

Figure B.13: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP15.3. The black line in the upper panel shows the best-fit Ṗ .

Figure B.14: Diagram of SXP15.3, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.15: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP16.6. The black line in the upper panel shows the best-fit Ṗ .

Figure B.16: Diagram of SXP16.6, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.17: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP18.3. The black line in the upper panel shows the best-fit Ṗ .

Figure B.18: Diagram of SXP18.3, using orbital parameters given in Table A.1
and discussed in Section 2.3.



Appendix B Plots of P and L as a function of MJD, and diagrams of BeXB 143

Figure B.19: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP25.5. The black line in the upper panel shows the best-fit Ṗ .

Figure B.20: Diagram of SXP25.5, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.21: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP46.6. The black line in the upper panel shows the best-fit Ṗ .

Figure B.22: Diagram of SXP46.6, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.23: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP59.0. The black line in the upper panel shows the best-fit Ṗ .

Figure B.24: Diagram of SXP59.0, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.25: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP74.7. The black line in the upper panel shows the best-fit Ṗ .

Figure B.26: Diagram of SXP74.7, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.27: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP82.4. The black line in the upper panel shows the best-fit Ṗ .

Figure B.28: Diagram of SXP82.4, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.29: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP91.1. The black line in the upper panel shows the best-fit Ṗ .

Figure B.30: Diagram of SXP91.1, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.31: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP95.2. The black line in the upper panel shows the best-fit Ṗ .

Figure B.32: Diagram of SXP95.2, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.33: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP101. The black line in the upper panel shows the best-fit Ṗ .

Figure B.34: Diagram of SXP101, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.35: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP140. The black line in the upper panel shows the best-fit Ṗ .

Figure B.36: Diagram of SXP140, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.37: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP152. The black line in the upper panel shows the best-fit Ṗ .

Figure B.38: Diagram of SXP152, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.39: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP169. The black line in the upper panel shows the best-fit Ṗ .

Figure B.40: Diagram of SXP169, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.41: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP172. The black line in the upper panel shows the best-fit Ṗ .

Figure B.42: Diagram of SXP172, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.43: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP175. The black line in the upper panel shows the best-fit Ṗ .

Figure B.44: Diagram of SXP175, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.45: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP202A. The black line in the upper panel shows the best-fit Ṗ .

Figure B.46: Diagram of SXP202A, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.47: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP202B. The black line in the upper panel shows the best-fit Ṗ .

Figure B.48: Diagram of SXP202B, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.49: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP214. The black line in the upper panel shows the best-fit Ṗ .

Figure B.50: Diagram of SXP214, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.51: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP264. The black line in the upper panel shows the best-fit Ṗ .

Figure B.52: Diagram of SXP264, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.53: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP280. The black line in the upper panel shows the best-fit Ṗ .

Figure B.54: Diagram of SXP280, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.55: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP293. The black line in the upper panel shows the best-fit Ṗ .

Figure B.56: Diagram of SXP293, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.57: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP304. The black line in the upper panel shows the best-fit Ṗ .

Figure B.58: Diagram of SXP304, using orbital parameters given in Table A.1
and discussed in Section 2.3.



Appendix B Plots of P and L as a function of MJD, and diagrams of BeXB 163

Figure B.59: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP323. The black line in the upper panel shows the best-fit Ṗ .

Figure B.60: Diagram of SXP323, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.61: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP327. The black line in the upper panel shows the best-fit Ṗ .

Figure B.62: Diagram of SXP327, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.63: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP342. The black line in the upper panel shows the best-fit Ṗ .

Figure B.64: Diagram of SXP342, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.65: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP455. The black line in the upper panel shows the best-fit Ṗ .

Figure B.66: Diagram of SXP455, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.67: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP504. The black line in the upper panel shows the best-fit Ṗ .

Figure B.68: Diagram of SXP504, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.69: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP565. The black line in the upper panel shows the best-fit Ṗ .

Figure B.70: Diagram of SXP565, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.71: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP645. The black line in the upper panel shows the best-fit Ṗ .

Figure B.72: Diagram of SXP645, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.73: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP701. The black line in the upper panel shows the best-fit Ṗ .

Figure B.74: Diagram of SXP701, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.75: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP726. The black line in the upper panel shows the best-fit Ṗ .

Figure B.76: Diagram of SXP726, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.77: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP756. The black line in the upper panel shows the best-fit Ṗ .

Figure B.78: Diagram of SXP756, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.79: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP893. The black line in the upper panel shows the best-fit Ṗ .

Figure B.80: Diagram of SXP893, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.81: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP967. The black line in the upper panel shows the best-fit Ṗ .

Figure B.82: Diagram of SXP967, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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Figure B.83: P (upper panel; blue) and L (lower panel; red) as a function of
MJD for SXP1323. The black line in the upper panel shows the best-fit Ṗ .

Figure B.84: Diagram of SXP1323, using orbital parameters given in Table A.1
and discussed in Section 2.3.
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All pulse-profiles

Figures C.2-C.43 show pulse-profiles for neutron stars in the 42 BeXB discussed in

Chapters 2 and 3. These are normalised to the average count-rate, and the phase-shift

is arbitrary (as discussed in Section 3.3). Pulse-profiles are coloured according to their

luminosity, where the colour-coding is explained in Figure C.1. Pulse-profiles that show

double-peaked structure (as defined in Section 3.3.2) are highlighted with diagonal lines

in the corners of the plot.
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Figure C.1: Figures C.2-C.43 show all of the pulse-profiles for SXP in the dataset
discussed in Chapters 2 and 3, in order of decreasing L from top to bottom,
left to right. The plots are colour-coded according to L, where pulse-profiles
relating to detections in multiples of 1038 erg s−1 are depicted in shades of blue,
detections in multiples of 1037 erg s−1 are depicted in shades of green, yellow,
and orange, detections in multiples of 1036 erg s−1 are depicted in shades of
pink, and detections below 1036 erg s−1 are depicted in red. This figure shows
the colour associated with each energy-band, where the lowest L in each energy-
band is listed in the top right of each plot, except in the case of the red plot;
all plots with L < 1036 erg s−1 are depicted in red.
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Figure C.2: Pulse-profiles for SXP2.37, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.3: Pulse-profiles for SXP4.78, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.4: Pulse-profiles for SXP6.85, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.5: Pulse-profiles for SXP7.78, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.6: Pulse-profiles for SXP8.80, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.7: Pulse-profiles for SXP11.5, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.8: Pulse-profiles for SXP15.3, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.9: Pulse-profiles for SXP16.6, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.10: Pulse-profiles for SXP18.3, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.11: Pulse-profiles for SXP25.5, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.12: Pulse-profiles for SXP46.6, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.13: Pulse-profiles for SXP59.0, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.14: Pulse-profiles for SXP74.7, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.15: Pulse-profiles for SXP82.4, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.16: Pulse-profiles for SXP91.1, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.17: Pulse-profiles for SXP95.2, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.18: Pulse-profiles for SXP101, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.19: Pulse-profiles for SXP140, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.20: Pulse-profiles for SXP152, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.21: Pulse-profiles for SXP169, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.22: Pulse-profiles for SXP172, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.23: Pulse-profiles for SXP175, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.24: Pulse-profiles for SXP202A, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.25: Pulse-profiles for SXP202B, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.26: Pulse-profiles for SXP214, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.27: Pulse-profiles for SXP264, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.28: Pulse-profiles for SXP280, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.29: Pulse-profiles for SXP293, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.30: Pulse-profiles for SXP304, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.31: Pulse-profiles for SXP323, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.32: Pulse-profiles for SXP327, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.33: Pulse-profiles for SXP342, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.34: Pulse-profiles for SXP455, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.35: Pulse-profiles for SXP504, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.36: Pulse-profiles for SXP565, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.37: Pulse-profiles for SXP645, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.38: Pulse-profiles for SXP701, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.



Appendix C All pulse-profiles 249

Figure C.39: Pulse-profiles for SXP726, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.40: Pulse-profiles for SXP756, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.41: Pulse-profiles for SXP893, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.42: Pulse-profiles for SXP967, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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Figure C.43: Pulse-profiles for SXP1323, in order of decreasing L (from top to
bottom, left to right). The colour-coding is explained in Figure C.1.
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