The University of Southampton
University of Southampton Institutional Repository

Dataport and NILMTK: a building data set designed for non-intrusive load monitoring

Record type: Conference or Workshop Item (Paper)

Non-intrusive load monitoring (NILM), or energy disaggregation, is the process of using signal processing and machine learning to separate the energy consumption of a building into individual appliances. In recent years, a number of data sets have been released in order to evaluate such approaches, which contain both building-level and appliance-level energy data. However, these data sets typically cover less than 10 households due to the financial cost of such deployments, and are not released in a format which allows the data sets to be easily used by energy disaggregation researchers. To this end, the Dataport database was created by Pecan Street Inc, which contains 1 minute circuit-level and building-level electricity data from 722 households. Furthermore, the non-intrusive load monitoring toolkit (NILMTK) was released in 2014, which provides software infrastructure to support energy disaggregation research, such as data set parsers, benchmark disaggregation algorithms and accuracy metrics. This paper describes the release of a subset of the Dataport database in NILMTK format, containing one month of electricity data from 669 households. Through the release of this Dataport data in NILMTK format, we pose a challenge to the signal processing community to produce energy disaggregation algorithms which are both accurate and scalable.

PDF globalsip_smart_buildings_2015_camera_ready.pdf - Accepted Manuscript
Download (304kB)

Citation

Parson, Oliver, Fisher, Grant, Hersey, April, Batra, Nipun, Kelly, Jack, Singh, Amarjeet, Knottenbelt, William and Rogers, Alex (2015) Dataport and NILMTK: a building data set designed for non-intrusive load monitoring At 1st International Symposium on Signal Processing Applications in Smart Buildings at 3rd IEEE Global Conference on Signal & Information Processing, United States. 14 - 16 Dec 2015. 5 pp.

More information

Accepted/In Press date: 3 August 2015
Published date: 4 September 2015
Venue - Dates: 1st International Symposium on Signal Processing Applications in Smart Buildings at 3rd IEEE Global Conference on Signal & Information Processing, United States, 2015-12-14 - 2015-12-16
Organisations: Agents, Interactions & Complexity

Identifiers

Local EPrints ID: 381304
URI: http://eprints.soton.ac.uk/id/eprint/381304
PURE UUID: 00314ac4-254f-47fc-bfee-b3a5c1ee9549

Catalogue record

Date deposited: 08 Sep 2015 14:06
Last modified: 17 Jul 2017 20:28

Export record

Contributors

Author: Oliver Parson
Author: Grant Fisher
Author: April Hersey
Author: Nipun Batra
Author: Jack Kelly
Author: Amarjeet Singh
Author: William Knottenbelt
Author: Alex Rogers

University divisions

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×