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Introduction

The chronic myeloproliferative neoplasms are made up of
diverse disorders, some with proliferative features and others
with dysplastic hematopoiesis. They arise from a pluripotent
lymphoid-myeloid stem cell or in some cases a more commit-
ted myeloid progenitor.1 In an attempt to improve their clas-
sification, the World Health Organization (WHO) divided
them into three distinct categories: myeloproliferative neo-
plasms (MPNs), myelodysplastic syndromes (MDS) and a cat-
egory with overlapping characteristics of both MDS and
MPNs, referred to as myelodysplastic/myeloproliferative neo-
plasms (MDS/MPN) or ‘overlap MDS/MPN’.2 The
MDS/MPN group is made up of chronic myelomonocytic
leukemia (CMML), juvenile myelomonocytic leukemia
(JMML), atypical chronic myeloid leukemia (aCML), a ‘provi-
sional entity’, refractory anemia with ring sideroblasts and
thrombocytosis (RARS-T), and a ‘by exclusion’ subcategory,
MDS/MPN unclassified (MDS/MPN-U) (Figure 1).3,4

Currently there is a paucity of published registry data on the
precise incidence of the various subtypes, though there is a
perception that the relative incidence of MDS/MPN is quite
low. The current classification defines distinct biological enti-
ties with myelodysplastic and myeloproliferative features,

considerable molecular heterogeneity, and the lack of specific
genotypic markers.5 While monocytosis or eosinophilia foster
recognition of CMML/JMML or chronic eosinophilic
leukemia (CEL), respectively, the differentiation between
aCML, MDS/MPN-U and MPN-U is often difficult.
Candidate molecular pathways include JAK-STAT, mTOR,
PI3K/AKT, MEK signaling cascades and epigenetic changes,
most of which are of interest for developing targeted agents.6

To address some of the current challenges related to
MDS/MPN, a panel comprised of laboratory and clinical
experts in MDS/MPN was established, and four independent
academic MDS/MPN workshops. These were held in Miami,
Florida, USA (9th March 2013), in New Orleans, Louisiana,
USA (6th December 2013), in Milan, Italy (13th June 2014), and
in San Francisco, USA (5th December 2014), under the aegis of
the MDS Foundation. In addition, several conference calls
involving deliberations and discussions amongst the panellists
took place between June 2013 and December 2014. A concise
perspective and recommendations on molecular pathogene-
sis, diagnosis, clinical characterization and management of
adult onset MDS/MPN based on the result of this collabora-
tive initiative is summarized here; recommendations for uni-
form response in MDS/MPN have been submitted in a sepa-
rate report.
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In the 2008 WHO classification, chronic myeloid malignancies that share both myelodysplastic and myeloprolif-
erative features define the myelodysplastic/myeloproliferative group, which includes chronic myelomonocytic
leukemia, juvenile myelomonocytic leukemia, atypical chronic myeloid leukemia, refractory anemia with ring
sideroblasts and thrombocytosis, and myelodysplastic/myeloproliferative unclassified. With the notable exception
of refractory anemia with ring sideroblasts and thrombocytosis, there is much overlap  among the various sub-
types at the molecular and clinical levels, and a better definition of these entities, an understanding of their biology
and an identification of subtype-specific molecular or cellular markers are needed. To address some of these chal-
lenges, a panel comprised of laboratory and clinical experts in myelodysplastic/myeloproliferative was established,
and four independent academic MDS/MPN workshops were held on: 9th March 2013, in Miami, Florida, USA; 6th

December 2013, in New Orleans, Louisiana, USA; 13th June 2014 in Milan, Italy; and 5th December 2014 in San
Francisco, USA.  During these meetings, the current understanding of these malignancies and matters of biology,
diagnosis and management were discussed. This perspective and the recommendations on molecular pathogene-
sis, diagnosis and clinical characterization for adult onset myelodysplastic/myeloproliferative is the result of a col-
laborative project endorsed and supported by the MDS Foundation.
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MDS/MPN: cytogenetic, molecular genetics
and signaling abnormalities

Chromosome analysis using conventional cytogenetics
and high-resolution single nucleotide polymorphism array
karyotyping (SNP-A) reveals chromosome abnormalities
in 70% of MDS/MPN patients.7 Most of these are aneu-
ploidies (trisomy 8, monosomy 7) or deletions (del7q,
del13q, del20q); a minority have reciprocal translocations
involving diverse tyrosine kinase (TK) fusion genes.8,9
Some of these fusions are listed separately within the cur-
rent WHO classification: ‘myeloid and lymphoid neo-
plasms with eosinophilia’ (MLN-eo) and abnormalities of
PDGFRA, PDGFRB and FGFR1. Fusions involving other
kinases are also seen in patients with MDS/MPN or
MPNs.10 Fusions involving PDGFRA, PDGFRB and ABL1
are important to recognize as they confer sensitivity to TK
inhibitors (TKIs), such as imatinib.11 Other fusions involv-
ing FGFR1 or JAK2 are insensitive to imatinib but may
respond to ponatinib or ruxolitinib, respectively.12-16
Most mutant genes fall into four functional classes: sig-

naling, epigenetic, splicing and transcription (Figure 2).17-20
Signaling mutations result in aberrant activation of prolif-
erative and anti-apoptotic pathways normally induced by
growth factors (GFs). In addition to the TK gene fusions
mentioned above, mutations have been described in GF
receptors (CSF3R), downstream cytokine receptor signal-
ing intermediates (JAK2, NRAS, KRAS) and negative regu-
lators of signaling pathways (PTPN11, CBL, NF1).21-27
Mutations involving RAS are demonstrable in 90% of
JMML cases and may emerge as a defining feature of this
condition.28 Signaling mutations occur in approximately
50% of CMML patients and correlate with a myeloprolif-
erative phenotype and enhancement of in vitro sensitivity
to GM-CSF.29 Up to 80% of patients with RARS-T have
activated JAK-STAT signaling as a consequence of the
presence of JAK2V617F or mutations in MPL [encoding for
the thrombopoietin receptor (Tpo-R)].30 In mice, abroga-
tion of Notch signaling leads to a MDS/MPN phenotype,
but its relevance in humans is unknown.31

MDS/MPN: nuclear events - epigenetics,
spliceosomes and transcription factors

Mutations in genes encoding epigenetic regulators are
common in MDS/MPN.32-35 The most frequently mutated
genes are TET2 and ASXL1, followed by SRSF2, IDH1/2,
EZH2, SUZ12, EED and UTX.36 The interaction between
epigenetic mutations is complex, and apart from the gen-
eral mutual exclusivity of TET2 and IDH1/2mutations, no
clear patterns have emerged.37,38
Mutations in elements involved in the recognition and

processing of 3’-mRNA splice sites are also common in
MDS/MPN.39 Around 50% of CMML patients have muta-
tions involving SRSF2, with a further 20% exhibiting
mutations in other splicing complex genes (SF3B1,
U2AF35, U2AF65 and SF3A1).34,35,40,41 In addition, SF3B1
mutations are present in 72% of patients with RARS-T.42,43
These SF3B1mutations are not always mutually exclusive
and may be accompanied by DNMT3, JAK2, ASXL1 and
TET2 mutations. Functionally, disruption of SF3B1 func-
tion leads to the formation of ring sideroblasts; however,
its exact role in malignant transformation remains
unclear.20,44-47 Studies of mutant U2AF35 in model systems
indicate global impairment of splicing induction of mRNA

surveillance pathways and impairment of growth.
Nevertheless, it is not known if the critical effect of such
mutations is indeed global or whether they impact only a
small subset of genes.
The RUNX1 gene is mutated in 15%-30% of CMML

patients. RUNX1 encodes core-binding factor alpha
(CBFα), which plays a fundamental role for definitive
commitment of hematopoiesis. NPM1 and TP53 are
mutated in only a small percentage of cases. SET binding
protein 1 (SETBP1) was recently identified as a novel
oncogene mutated in 25% of aCML cases, and less fre-
quently in other MDS/MPN.48 The precise downstream
consequences of SETBP1 mutations are unknown, but
they may attenuate the activity of the tumor suppressor
phosphatase, PP2A though abrogation of a ubiquitination
site (functionally equivalent to overexpression). A small
minority of MDS/MPN have calreticulin (CALR) muta-
tions, which are more commonly associated with JAK2
and MPL unmutated MPN.49 Although somatically
acquired in myeloid malignancies, mutations in SETBP1,
ASXL1, EZH2 and other genes are also found in rare con-
genital developmental disorders of variable phenotypic
severity. A likely unifying factor is that these mutations
alter the expression of HOX genes that are important for
both embryonic development and adult hematopoiesis.48,50

MDS/MPN: subtypes

Chronic myelomonocytic leukemia 
The annual incidence of chronic myelomonocytic

leukemia (CMML) is 1/100,000 adults, with a median age
of 70 years and a male predominance.51 The BCR-ABL1
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Table 1. A potential diagnostic approach for patients suspected to
have myelodysplastic/myeloproliferative neoplasms.

CMML aCML MDS/MPN-U

Mean age 72 72 72
Sex ratio 2/1 2/1 2/1
Mean OS ~3 years ~1 year ~2 years
Incidence 1/100000 1/100 CML Unknown
Criteria Monocytosis > 1 G/L Persistent Heterogeneous

at least 3 months leukocytosis group of rare
+/- bone marrow > 13 G/L myeloid neoplasms
cell dysplasia + immature with

circulating myeloproliferative
myeloid features &

precursors > 10% myelodysplastic
of leukocytes features
+ Marked 

dysgranulopoiesis, that cannot be
and classified as JMML,

- Absent/minimal CMML, RARS-T, 
monocytosis and aCML 

(<1 G/L and <10% 
of leukocytes)
- Absent/minimal 
basophilia (<2%)

A definitive diagnosis of MDS/MPN requires the exclusion of: AML: BM blast cells 
< 20%; CML: lack of BCR-ABL; MLN-Eo: lack of PDGFR/FGFR fusion & eosinophilia.
CMML: chronic myelomonocytic leukemia; aCML: acute chronic myeloid leukemia;
MDS: myelodysplastic syndromes; MPN-U: myeloproliferative neoplasms-Unknown;
AML: acute myeloid leukemia;  myeloproliferative neoplasms; BM: bone marrow. 
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gene and rearrangements of either PDGFRA, PDGFRB or
FGFR1 are absent. The JAKV617F mutation occurs in less
than 10% of patients with CMML, in particular those
with proliferative, rather than dysplastic features.52 Rarely,
CMML can be therapy-related or a secondary neoplasm,
arising in the background of MDS or as a progression of
myelofibrosis (MF), in particular in the presence of an
SRSF2 mutation.53,54 
Although the diagnosis of CMML is based on laborato-

ry, morphological and clinical parameters, the incorpora-
tion of molecular data is now recognized, with the notable
presence of somatic mutations in TET2 (50%-60%),
SRSF2 (40%-50%), ASXL1 (35%-40%) and RUNX1
(15%). Indeed, several investigators have noted that over
90% of CMML patients studied exhibited one or more
mutations and that concurrent mutations in TET2 and
SRSF2 appear to be highly specific for this entity.34,55,56
Other mutations include those affecting cytosine methyla-
tion (DNMT3A, IDH2, IDH1), RNA splicing (SF3B1,
U2AF35, ZRSR2), chromatin remodeling (UTX, EZH2),
and signaling pathways (NRAS, KRAS, CBL, JAK2, FLT3,
CSF3R), whereas TP53 mutations are rare.33,55-58 A cardinal
feature is persistent peripheral blood monocytosis more
than 1x109/L, with a WBC percentage of monocytes of
more than 10%. Morphologically, these monocytes
demonstrate an abnormal appearance with bizarre nuclei
and cytoplasmic granules.59 In some patients, blood cells
identified as monocytes are later recognized to be dysplas-
tic and immature granulocytes endowed with immuno-
suppressive properties.60 Clinical features include
splenomegaly, skin and lymph node infiltration, and
serous membrane effusions. The diagnostic criteria for
CMML versus aCML versus MDS/MPN-U are shown in
Table 1; RARS-T is a provisional entity that remains apart. 
The current WHO classification divides CMML into

two risk groups, CMML-1 and CMML-2, based on the
number of blasts and promonocytes in the peripheral
blood and bone marrow (BM)  (Figure 3A-D).3 The BM is
hypercellular with dysplasia and an increase in the
‘paramyeloid cells’; some patients may also have reticulin
fibrosis.61 Recent data from the Dusseldorf registry also
suggest the notion of a poorer outcome in ‘proliferative’
compared to ‘dysplastic’ CMML.62 Cytogenetic abnormal-
ities include trisomy 8, monosomy 7, del(7q), and
rearrangements with a 12p breakpoint. 

Clonal architecture analysis in CMML has demonstrat-
ed linear acquisition of candidate mutations with limited
branching through loss of heterozygosity.56 The principal
CMML characteristics seem to be early clonal dominance
arising within the CD34(+)/CD38(-) cells, and the subse-
quent granulo-monocytic differentiation skewing of pro-
genitors. Based on this, a unique causal linkage between
early clonal dominance and skewed granulo-monocytic
differentiation has been proposed (Figure 4).63
Another important biological feature is the unique

hypersensitivity to GM-CSF, as measured by hematopoi-
etic colony formation and GM-CSF-dependent phospho-
rylation of STAT5.29,64 This STAT5 pathway convergence is
supported by transgenic models of mutated genes in
CMML. Mouse models recapitulating mutations in TET2,
JAK2, CBL, and NRAS have also been reported to up-reg-
ulate the STAT5 pathway and/or increase hematopoietic
colony formation in a cytokine-dependent fashion. These
novel observations support the candidacy of Janus kinase
(JAK) inhibitors and other novel treatment strategies in
future CMML clinical trials. 
Most, if not all, of the prognostic tools in CMML have

been derived from studies focused on MDS and preceded
the use of hypomethylating agents (HMAs) (Table 2).65-71
Recent efforts include genetic information and clinical fea-
tures.55,72 Solary and colleagues sequenced ASXL1 and
other genes, including epigenetic (TET2, EZH2, IDH1,
IDH2, DNMT3A), splicing (SF3B1, SRSF2, ZRSR2,
U2AF1), transcription (RUNX1, NPM1, TP53), and signal-
ing (NRAS, KRAS, CBL, JAK2, FLT3) regulators in 312
patients with CMML. They noted that ASXL1 mutations,
age, hemoglobin, WBC, and platelet counts defined three
prognostically distinct patient subsets with varied overall
survival (Figure 5). Such and colleagues proposed a
‘CMML-specific prognostic scoring system’ (CPSS), based
on cytogenetics and red blood cell (RBC) transfusion
dependence, which divides patients into four risk groups
for survival and risk of AML transformation.73 A third
group of authors identified absolute monocyte count,
presence of circulating immature myeloid cells, anemia
and thrombocytopenia, but not the spliceosome complex
nor ASXL1 mutations, as independent variables for sur-
vival.74 These investigators also confirmed the independ-
ent prognostic value of the SETBP1 mutation in CMML,
initially reported by the Solary group.60,75
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Table 2. Principal historical CMML risk models.
Study n (total) n (CMML) Treatment CMML Cytogenetics Genetics

validation considered considered

IPSS 816 126** N [1] Y -

IPSS(R) 7012 631** N - Y -

MDASC 1915 306 Y**** [1] Y - 

MDAPS 213 213 Y*** [2] - -

DS 235 25 N [1,2] - -

SS 70 70 Y* [1,2] - -

mBS 53 53 N [1,2] - -

IPSS: International Prognostic Scoring System; IPSS-R: International Prognostic Scoring System Revised; MDASC: Global MD Anderson Scoring System; MDAPS: MD Anderson
Scoring System for CMML; DS: Düsseldorf Score; SS: Spanish Score; mBS: Modified Bournemouth Score. *35% of patients received low-dose cytarabine, hydroxyurea or mercaptop-
urine. **Patients with a WBC >12x109/L excluded. ***Patients received either supportive care (n = 71), �α- or �g-interferon (n = 9), low-dose or single-agent chemotherapy (hydrox-
yurea with or without busulfan or mithramycin, low-dose cytarabine, topotecan, fludarabine, 6-mercaptopurine, thioguanine, oral  idarubicin, oral etoposide, 9-nitrocamptothecin, azac-
itidine) (n = 68), or intensive chemotherapy (n = 65). ****1097 received growth factors, chemotherapy, or transfusions (318 had received transfusions only).
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The clinical management of patients with CMML can
often be a challenge since some patients have a relatively
indolent disorder with median survival in excess of ten
years, whilst others progress rapidly to secondary AML,
which is often difficult to treat. Allogeneic stem cell trans-
plantation (allo-SCT) remains the only treatment modality
associated with long-term remissions and potential cure;
for transplant ineligible patients, there is no firm consen-
sus with regards to the optimal treatment. The French reg-
istry data suggest a 3-year overall survival (OS) of 32% in
a cohort of CMML patients allografted in chronic phase.76
Survival was negatively influenced by the presence of
splenomegaly. Similar results have been reported by other
groups, though few focused exclusively on patients with
CMML.77 The Seattle group reported a 10-year OS of
approximately 40%.78 Factors associated with favorable
outcomes appear to be CMML risk group (CMML1 vs.
CMML2), pre-transplant hematocrit, cytogenetic risk cat-
egory, comorbidity index, and age. Intriguingly, in this
series there appeared to be a gender influence on risk of
relapse, with female-female transplants faring the worst. It
was worthy of note that neither the type of pre-condition-
ing regimen [reduced intensity conditioning (RIC) vs. mye-
loablative] nor the type of pre-transplant therapy appeared
to influence allo-SCT outcomes significantly. There was,
however, a tendency for a lower relapse and a better sur-
vival with fludarbine and targeted busulfan conditioning.
Most published results suggest disease relapse as a princi-
pal cause for transplant failure. 
The historical results of conventional allo-SCT have

been confounded by the substantial non-relapse trans-
plant-related mortality (NRM). This is probably due, at
least in part, to the older age of patients with CMML and
the increasing presence of significant co-morbid condi-
tions. Efforts to improve these results have led to general

improvements in allo-SCT technology. These include
strategies to enhance the graft-versus-leukemia (GvL)
effects, which account for probable cure in those who
achieve long-term remission, and an increased use of RIC
preparative regimens. At present, the very considerable
advances in the understanding of the genomic landscape
in CMML, with the notable exception of ASXL1, appear
not to have been validated sufficiently for adaptation in
treatment algorithms to assess candidacy for allo-SCT
compared to conventional therapy. Results of treatments
for CMML patients who are either in frank AML transfor-
mation, or at high risk of transformation, remain subopti-
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Figure 1. Myeloproliferative neoplasms and myelodysplastic syn-
dromes.

Figure 2. A schematic descrip-
tion of genotypic diversity in
patients with myelodysplastic
syndromes (MDS) and myelo-
proliferative neoplasms (MPN).© Ferr
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mal, with a median survival of 2.4 months for those who
fail to achieve a complete remission following induction
chemotherapy; for patients who achieve a complete
remission following induction and then receive an allo-
SCT, survival is about 28 months.79 
Hypomethylating agents (HMAs) are currently the pre-

ferred non-transplant treatment option, though the
response rates are relatively low, with no important
impact on overall survival.80-83 Furthermore, even when
responses are achieved, most tend to be short-lived. It is of
interest that, in a recent study, ASXL1, RUNX1 and TET2
mutations portended a better response to decitabine,
whereas MYB and JUN expression negatively affected
outcome.84 Current efforts are investigating diverse agents,
including JAK and MEK inhibitors, BCL-XL and BCL-2
inhibitors, clofarabine, next generation HMAs, and other
novel agents.  
The notion of using HMAs in order to improve the per-

formance status and allo-SCT eligibility appears attractive.
What is not known is the impact of HMAs on short and
long-term outcomes following allo-SCT. There are no
CMML transplant-specific risk scores other than the time-
tested Gratwohl methodology for transplant recipients in
general.85 An interesting compromise would be to offer a
transplant only to patients with high-risk disease or
patients with low-risk disease in whom parameters start
to deteriorate. This may allow patients responding to
HMAs to continue the therapy until resistance/intoler-
ance, or indeed, progression of disease, are noted. The dis-
advantages with such an approach are the potential risks
for leukemic transformation and the prolonged use of a
therapy that has yet to demonstrate a durable survival
benefit.

Atypical chronic myeloid leukemia 
Atypical chronic myeloid leukemia (aCML) is an

extremely rare subtype of MDS/MPN with an estimated
incidence of 1% that of typical BCR-ABL1-positive CML.86
It was initially described as a subtype of myeloid neo-

plasm resembling CML, but with the notable absence of
the BCR-ABL1 fusion gene. Diagnosis of aCML requires
the exclusion of not only BCR-ABL1, but also rearrange-
ment of PDGFRA, PDGFRB or FGFR1.3,87 Patients tend to
have severe anemia, thrombocytopenia, neutrophilic
leukocytosis with granulocytic dysplasia, and
splenomegaly; monocytosis and basophilia are not promi-
nent in the peripheral blood.88 In the clinic, aCML patients
can be difficult to distinguish from those with another
very rare MDS/MPN subtype, known as MDS/MPN-U.  
Orazi and colleagues recently analyzed a series compris-

ing 69 patients with aCML and 65 with MDS/MPN-U,  in
an effort to define clinical, histological and genetic charac-
teristics which would help distinguish these two rare enti-
ties.89 They identified aCML patients to have an aggressive
disease course, with a poor prognosis and an overall sur-
vival of 12.4 months, compared with 21.8 months for
patients with MDS/MPN-U (P=0.004).  They attempted to
subclassify the study cohort by the presence of leukocyto-
sis more than 13x109/L, peripheral blood myeloid precur-
sors more than 10%, and dysgranulopoiesis more than
10% in patients with aCML (Figure 6). Median leukocytes
for aCML was 40.8x109/L, compared to 19.4x109/L for
those with MDS/MPN-U (P<0.001). Bone marrow (BM)
samples revealed hypercellularity and dysgranulopoiesis
in all patients with aCML, compared to about half of
MDS/MPN-U patients; there was variable fibrosis and
osteosclerosis, and non-specific recurrent complex cytoge-
netic abnormalities and i(17q) appeared to be slightly
more frequent in aCML. aCML patients were also found
to have increased LDH,  splenomegaly, severe anemia,
thrombocytopenia less than 100x109/L, higher peripheral
blood myeloid precursors, and less than 2% basophils. 
Although no specific molecular abnormality has been

described in aCML, recurrent mutations in SETBP1, locat-
ed on chromosome 18q21.1, have been observed in 25%
of aCML, 6%-15% of CMML and less than 3% of JMML
cases.58,90-93 The functional significance of these mutations
are not yet fully understood. Recurrent somatic mutations

Perspective and recommendations on biology, diagnosis and clinical features of MDS/MPN
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Figure 3. A photomicrograph from a
patient with chronic myelomonocytic
leukemia (CMML)-1. (A) Peripheral blood
smear showing three abnormal mono-
cytes and one neutrophil. (B and C) Bone
marrow aspirate and the corresponding
napthyl butyrate esterase image of the
aspirate. (D) Bone marrow trephine biop-
sy.  
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in JAK2, NRAS, IDH2, CBL, CSF3R and ETNK1 can also be
detected in aCML, although at a much lower frequency;
anecdotal cases with fusion genes such as BCR-JAK2 or
NUP98-HOXA9 have also been detected.94-97 Future studies
should provide insights into the potential impact of such
analyses on precision-medicine therapeutic approaches. In
this regard, the recent proposal of considering the reacti-
vation of PP2A as a therapeutic strategy in SETBP1-mutat-
ed cells is of interest.98 
There are also clinical and morphological similarities

between aCML and chronic neutrophilic leukemia (CNL),
a rare subtype of MPN. The genomic landscape, however,
appears to be quite distinct. A seminal observation by
Maxson and colleagues demonstrated the presence of
mutated CSF3R in about 90% of patients with CNL and
40% of those with aCML; subsequent studies confirmed
the high frequency in CNL but were unable to confirm the
mutations in aCML.99-101 This gene encodes the receptor
for colony-stimulating factor 3 (G-CSF).27 Somatic CSF3R
mutations, together with ELANE, HAX1, and G6PC3
mutations have previously been described in severe con-
genital neutropenia (SCN).102 A germ-line T640N CSF3R
mutation has also been identified in hereditary neutrophil-
ia. Interestingly, a homologous CSF3R somatic mutation
affecting the extracellular domain and conferring
autonomous signaling properties has been found in spo-
radic transformed SCN and de novo AML.103 In sporadic
cases, the most common CSF3R mutation is CSF3RT618I,
which strongly activates the JAK/STAT pathway; howev-
er, CSF3R truncating mutations were also observed and
these predominantly signal through SRC family kinases.104
Recently, a CALR mutation was reported in a case of
CSF3R-positive CNL.105
Allo-SCT appears to be the only treatment that can

accord aCML patients a long-term remission, though there

is no firm consensus due to the extremely low incidence
of this rare disease. Most of the published series, including
registry data, include aCML as part of a more general
series of myeloid malignancies. A recent report of 2 aCML
patients with a heterozygous CSF3RT618I mutation is of
some interest as it highlights the candidacy of this muta-
tion to be used as a disease-specific biomarker of residual
disease.106 
Patients not suitable for allo-SCT often receive HMAs

with some demonstrating transient improvements in
some of the clinical and pathological features. Other treat-
ments used include hydroxyurea and lenalidomide. It is
best, therefore, to offer these patients suitable clinical tri-
als. The notion of the CSF3R mutation activating the
JAK/STAT pathway and, in some instances, the SRC
kinases, provides some support for clinical trials to assess
JAK inhibitors, such as ruxolitinib, and SRC inhibitors,
such as dasatinib, respectively.  A recent case report of a
CSF3RT618I -positive-aCML patient treated with ruxolitinib
showed a significant improvement in his constitutional
symptoms and splenomegaly, providing additional sup-
port for such trials.107

Juvenile myelomonocytic leukemia
Juvenile myelomonocytic leukemia (JMML) is an

uncommon WHO-defined MDS/MPN with an incidence
of 0.12 per 100,000 children, a median age of two years,
and a disproportionate male preponderance. It carries a
poor prognosis108,109 and shares some clinical and molecular
features with CMML. Congenital JMML predisposition
syndromes exist, particularly neurofibromatosis and
Noonan syndrome, which converge on RAS signaling
abnormalities and markedly increase the risk of develop-
ing JMML110,111 JMML is a heterogeneous clinical entity in
that some patients, particularly those with Noonan syn-
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Figure 4. Early clonal domi-
nance (CD34+/CD38–cells)
in chronic myelomonocytic
leukemia (CMML) com-
pared to myeloproliferative
neoplasms (MPN). Adapted
from Itzykson et al.56© Ferr
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drome, have spontaneous resolution of their disease
despite identification of clonal hematopoiesis, while oth-
ers can have a fulminant course refractory to allo-SCT.112,113
Although leukemic transformation is seen in JMML, it is
uncommon in comparison with adult myeloid malignan-
cies.114 
Clinically JMML is characterized by an overproduction

of monocytes that infiltrate liver, spleen lung, intestine and
other organs, which may also lead to considerable mor-
bidity and mortality. The cardinal clinical features also
include fever, thrombocytopenia, monocytosis,
splenomegaly, hepatomegaly, hemoglobin F elevations,
and failure to thrive. Despite a readily apparent diagnostic
marker of disease (peripheral monocytosis), the diagnosis
of JMML is not straightforward due to the extreme rarity
of disease and confounding clinical characteristics in com-
mon with more common entities (such as viral infections). 
The above notwithstanding, JMML is arguably consid-

ered the most well understood hematologic malignancy
after CML, at least in children. Most, if not all, children with
JMML harbor either a somatic or germ-line unique muta-
tion in the Ras pathway (PTPN11> NF1>NRAS/
KRAS>CBL).115,116 In rare cases, additional mutations in
SETBP1 or JAK3 have been identified; these appear to con-
fer a poorer prognosis.117 However, the mutational land-
scape of JMML distinguishes it from various adult myeloid
malignancies in that the genetic abnormalities appear to be
restricted to a limited set of genes, particularly excluding
epigenetic and alternative splicing modifiers that are
enriched in adults.118,119 It is also of some interest that most
patients with JMML exhibit an increased in vitro sensitivity
to GM-CSF.120 Despite the virtually universal dysregulation
of RAS, this hypersensitivity appears to augment signaling
of other downstream effectors, particular JAK/STAT.121,122
This has been demonstrated in human samples and murine

models of NRAS-derived JMML.29
Allo-SCT remains the principal treatment for JMML,

with an event-free 5-year survival of 52%.123 The principal
cause for failure is relapse, which approaches 50%,
though 50% of these patients can be rescued with a sec-
ond allograft.124,125 It has been speculated that the high
relapse rate might be related to an underlying fundamental
immune defect or incomplete eradication of resistant dis-
ease prior to myeloablation. Strategies to rescue children
post relapse remain suboptimal, with limited success of
donor lymphocyte infusions (DLI).126 
Current non-transplant alternatives are limited, and

many efforts to target underlying driver mutations are in
progress. Efforts to target the RAS proteins, which is
involved in the vast majority of JMML patients, have met
little success so far.127 The first generation of farnesyltrans-
ferase inhibitors (FTIs) have now been tested, but in view
of unacceptable toxicities and poor efficacy they are no
longer under development. Clinical trials are now in
progress with MEK inhibitors, such as trametinib, JAK
inhibitors, such as ruxolitinib, as well as SRC inhibitors
and HMAs.128-130

RARS-T
Considerable debate remains as to how RARS-T is best

characterized among chronic myeloid malignancies. It
was provisionally defined by the WHO to be part of the
MDS/MPN in 2001, since patients had MDS features of
refractory anemia with ring sideroblasts (RARS) in addi-
tion to thrombocytosis and megakaryocyte cytological
features resembling essential thrombocythemia (ET).131,132
By the time of the 2008 revision of the WHO classifica-
tion, several reports indicated the presence of clonal
JAK2V617F and MPLW515 gene mutations in RARS-T, favoring
the notion that this sub-category should be considered an
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Figure 5. A simplified prog-
nostic score for chronic
myelomonocytic leukemia
(CMML) that includes ASXL1
mutations.  Adapted from
Itzykson et al.55© Ferr
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MPN akin to ET. Nonetheless, RARS-T displays poor in
vitro colony forming capacity, a recognized feature of
MDS.3 Distinction between RARS-T and RARS with mod-
erate thrombocytosis has become more difficult following
the WHO 2008 revisions that lowered the platelet thresh-
old for RARS-T and ET from more than 600x109/L to more
than 450x109/L. Therefore, RARS-T currently remains a
‘provisional’ member of the MDS/MPN family, in which
entity mutations in SF3B1 (60%-80% of cases) may be
responsible for mitochondrial iron overload in siderob-
lasts, ineffective erythropoiesis, and anemia (myelodys-
plastic features), while mutations in JAK2 or MPL are
thought to be responsible for thrombocytosis (myelopro-
liferative features) (Figure 7).133,134 Furthermore, the notion
of secondary RARS-T developing in RARS has also been
suggested.135 
As in the case of the other MDS/MPN, there is no firm

consensus regarding optimal clinical management and
supportive care remains the cornerstone of treatment.
Since the thrombotic risk in RARS-T appears to be low,
there is no recommendation for platelet-suppressive ther-
apy or aspirin prophylaxis. However, a recent report noted
an increased rate of thrombotic events in RARS-T patients
carrying SF3B1 mutations.136 There are anecdotal reports
of ‘partial remission’ following the use of imatinib or
lenalidomide.137-139 In the 60%-80% of RARS-T patients
who harbor a JAK2 or MPL mutation, it is reasonable to
consider a JAK inhibitor.

MDS/MPN-Unclassified
MDS/MPN-Unclassified (MDS/MPN-U) is quite possi-

bly the most heterogeneous subgroup of MDS/MPN and
includes patients who lack defining characteristics of the
other MDS/MPN subtypes.  Some patients with
MDS/MPN-U may be phenotypically similar to those

with aCML, but lack isolated granulocytic dysplasia and
may have basophilia and megakaryocytic hyperplasia
accompanied by intense BM fibrosis.89,140 MDS/MPN-U
probably accounts for less than 5% of all myeloid malig-
nancies. The recent MD Anderson Cancer Center
(MDACC) series of 85 WHO-defined MDS/MPN-U
patients is arguably the largest published series so far.141
These investigators elected to apply both MDS and MPN
prognostic scoring systems to allow for the defining dys-
plastic and proliferative features. This, together with the
recent work of Orazi and colleagues, which included
patients from multiple institutions including the MDACC,
allows us to have a better understanding of the pertinent
clinical and biological features of MDS/MPN-U.89 
Both series of WHO-defined MDS/MPN-U patients

showed a median age of 71 years, a male predominance
(around 2:1), presence of splenomegaly, low monocyte
counts, 20%-30% JAK2V617F-positivity, and non-specific
cytogenetic findings, with the exception of trisomy 8,
which was the sole cytogenetic abnormality in 15% of the
MDACC cohort. The principal differences in the series
were the proportion of patients with thrombocytosis
more than 450x109/L: 18% vs. 32%, and the median over-
all survival, which was considerably worse for the
MDACC series: 12.4 months vs. 21.8 months. It is possi-
ble, but not certain, that the greater number of patients
with thrombocytopenia (<100x109/L) in the MDACC
series might reflect a biologically more aggressive disease
resulting in the poorer survival. It would have been of
interest to assess the AML-free survival of both series,
which was 18.9 months in the Orazi series and not report-
ed in the MDACC series. It was interesting that the MDS-
IPSS model allocated 68% of the MDACC cohort as ‘low-
risk’ despite the poor survival; conversely the MDA global
model appeared to be a useful prognostic tool.142 
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Figure 6. Hematologic
parameters in a cohort
of 121 patients with
atypical chronic myeloid
leukemia (aCML).© Ferr
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Currently, there is no optimal treatment consensus for
MDS/MPN-U patients who are ineligible for an allo-SCT.
In the MDACC series, the majority of patients received
HMA and the overall survival was better compared to
‘other’ approaches (16.4 months vs. 11.5 months). The
other non-transplant treatments included interferon alpha,
cyclosporine, thalidomide, lenalidomide and anti-thymo-
cyte globulin.141 There is much interest in combining HMA
with JAK inhibitors in the context of a clinical trial, given
the moderate frequency of JAK2 mutations.

Transformation to AML in MDS/MPN
Transformation to acute myeloid leukemia (AML),

which is often refractory to conventional treatment, is a
challenging complication in MDS/MPN, as it is in MDS
and MPN. The rate and incidence of AML transformation
in MDS/MPN is unknown, with the exception of CMML
and RARS-T. Most estimates are based on MPN patients
who transform into AML. A French trial in PV estimated
the risk of transformation of 24% at 15 years in patients
treated with hydroxyurea or pipobroman; smaller series
suggest a risk of 3%-40%.143-146 
The incidence of CMML transformation (AML-M5) is

15%-52%, with higher white blood counts, marrow cellu-
larity, karyotype risk score, and revised IPSS score associ-
ated with greater risk.147,148 The presence of ASXL1 or
RUNX1 may also increase the transformation risk.149-152
Transformation in patients with RARS-T appears compa-
rable to RARS patients (1.8 and 2.4 per 100 patient-years,
respectively) and higher than that in ET.153 Collectively,
MDS/MPN appears to have a higher risk of transforma-
tion compared to MPN, akin to that in MDS. It is, there-
fore, imperative to better characterize the incidence and
potential for transformation risk in MDS/MPN. 
Other candidate genetic events that have been linked to

AML risk in MPN include TET2, IDH1/2, DNMT3A and
EZH2 mutations.154,155 Cytogenetic progression, often
involving abnormalities in chromosomes 7 (target genes
EZH2, IKZF1), 8 (MYC), 17p (p53), 21 (ERG, RUNX1), and
12 (ETV6), is commonly observed at transformation.
MDS/MPN with an isolated isochromosome (i)17p (lead-
ing to TP53 haploinsufficiency) may be a distinct disease
entity with further increased risk of AML progression.156,157
It is possible that some patients may harbor sub-clones
with mutations in TP53, which are only detected by next
generation sequencing (NGS). Clearly this is important in
view of the associated high risk of transformation, and
perhaps an early consideration for allo-SCT.
Results of treatments for AML transformation in

MDS/MPN, including allo-SCT, remain suboptimal, with
a median survival of less than five months.158 Management
is empiric and often is comprised of conventional cytotox-
ic combinations (used in de novo AML) or novel induction
regimens, of both higher and lower intensity.79,159,160
Current efforts are investigating diverse agents, including
hypomethylating agents, JAK and  MEK inhibitors, BCL-
XL and BCL-2 inhibitors, and clofarabine.161-164 

Impact of symptom burden in patients with MDS/MPN 
There has been considerable interest on the pathobiolo-

gy of MDS and MPN-related symptoms and the potential
impact of associated abnormalities, such as cytokine
abnormalities and inflammation, on the overall prognosis.
Furthermore, prospective assessment of disease-specific
symptom burden and its impact on quality of life (QOL)

has been found to be useful in clinical trials to assess ben-
efit.165,166 Symptoms for MPN and MDS are similar, but dis-
parate. For MPN patients, thromboembolic (macrovascu-
lar) and metabolic/catabolic symptoms are more promi-
nent.167 MPN patients, particularly those with myelofibro-
sis (MF), frequently suffer from fever, night sweats, pruri-
tus, bone pain, profound fatigue, weight loss, cachexia, as
well as abdominal pain and distension.168,169 MDS patients
sustain debilitating fatigue, infections, and cardiovascular
complications in addition to significant age-associated co-
morbidities.170
Symptom burden assessment has not been studied in

MDS/MPN, which is likely to depict symptoms of both
MDS and MPNs. We recommend a prospective symptom
assessment study using the MPN-SAF TSS, EORTC-QOL-
C30 and EQ-5D as initial symptom scales/questionnaires,
along with an open-ended cognitive feedback tool captur-
ing patients’ answers to specific symptom questions. Such
efforts should lead to the collation of candidate questions
from which a refined MDS/MPN specific symptom
assessment tool could be developed and then prospective-
ly validated.171 

Novel strategies and future clinical trial designs for the
treatment of MDS/MPN
Since there is no treatment consensus for patients with

MDS/MPN, strategies to improve outcomes must focus
on rationally developed predictive and prognostic bio-
markers based on molecular and clinical perspectives.172
Questions remain as to whether eligibility for future clini-
cal studies should be restricted to WHO subtypes of
MDS/MPN, such as a study for CMML patients alone ver-
sus broad inclusion of MDS/MPN-U patients, or whether
the focus should be based on clinical disease phenotype or
proliferative versus non-proliferative features. As we move
forward with clinical studies based on targeted molecular
pathways, these should ideally determine patient selec-
tion based upon ‘founder’ tyrosine kinase signaling path-
way mutations or those with transcription factor muta-
tions. The underlying molecular complexity of these dis-
eases will be a significant challenge. It is critical to identify
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Figure 7. Emerging molecular fingerprints of myelodysplastic syn-
dromes (MDS) and myeloproliferative neoplasms (MPN).
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MDS/MPN specific therapeutic response criteria and suit-
able end points correlated with survival and AML risk for
uniform assessment of treatment benefit. Moreover, crite-
ria for disease progression or stability while on therapy
ought to be introduced and vetted among experts. 
The high frequency of SF3B1mutations in RARS-T sub-

types suggests that spliceosome inhibition may offer the
prospect of selective synthetic lethality. Trials are current-
ly evaluating the benefit of the JAK1/JAK2 inhibitor rux-
olitinib in CMML patients, either as monotherapy or in
combination with 5-azacytidine. Based on the pre-clinical
data suggestive of GM-CSF dependent STAT-5 hypersen-
sitivity in CMML, it would be reasonable to design trials
assessing GM-CSF neutralizing antibodies (KB003) or JAK
inhibitors. Other putative targets include small-molecule
inhibitors directed against STAT3/5, MAPK, AKT, MEK
and PI3K-mTORC pathways.173-175 

Conclusion

The MPN/MDS group is a very heterogeneous group
defined by WHO mainly on morphological grounds, espe-
cially the concomitance of cytopenia(s) and at least one
“cytosis”. Current studies suggest considerable genetic
complexity and heterogeneity in MDS/MPN.176 Most
patients with JMML, and up to 50% of cases with other
subtypes, have mutations that directly activate prolifera-
tive signaling pathways. Over 30 recurrent gene mutations
have now been identified, whereas in the case of CMML,
there may be 5-20 such gene mutations per case, suggest-
ing a multi-step and highly variable molecular pathogene-
sis. Collectively, TET2, ASXL1 and SRSF2 represent the
most commonly mutated genes. 

Importantly, at present there are no specific mutations
in MDS/MPN that stringently define particular subtypes.
Nevertheless, some clear associations have emerged,
including SF3B1 and JAK2 mutations in RARS-T, and
SETBP1 aCML. Understanding clonal hierarchies should
serve as a cornerstone for development of a robust molec-
ular classification of MDS/MPN, as well as molecular pre-
dictors of prognosis and therapeutic response. An imme-
diate initiative to consider is the set-up of large registries
for these rare hematologic malignancies, along with col-
laborative efforts to define risk models and suitable end
points for clinical trials. Outside of clinical trials, allo-SCT
remains the most viable treatment options for the eligible
patients with about one-third of patients achieving long-
term remission and probable cure. For those who are not
transplant candidates and who have no recourse to a clin-
ical trial, it appears reasonable to consider HMAs in the
first instance, except for those who have JAK2-mutant
disease, for whom a trial of a JAK inhibitor might be indi-
cated. 
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