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► The addition of waste cooking oil stimulated the microbial activities. ► The 

addition of waste cooking oil shortened the crude oil degradation period. ► The 

addition of waste cooking oil enhanced the crude oil biodegradation. ► The addition 

of waste cooking oil helped the viscosity reduction of crude oil. ► The addition of 

waste cooking oil promoted the oil recovery efficiency. 

Graphical abstract 

Abstract 

The present work aims to investigate the effects of the addition of waste cooking oil 

(WCO) on heavy crude oil biodegradation and microbial enhanced oil recovery 

(MEOR) using Pseudomonas sp. SWP-4. Growth kinetics show Pseudomonas sp. 



SWP-4 had a maximum dry cell weight of 1.73 g/L and cell-surface hydrophobicity of 

62.4% against n-hexadecane when degraded the crude oil with the addition of WCO. 

The maximum rhamnolipid concentration was 6.87 g/L, and the culture broth 

exhibited a higher emulsification efficiency of 58.3% on n-hexadecane and reduced 

the surface tension of broth to 22.7 mN/m. Meanwhile, Pseudomonas sp. SWP-4 

reduced the viscosity of crude oil from 26,300 mPa·s to 550 mPa·s (40℃) and 

successfully degraded most of the n-alkanes. Furthermore, the fluidity of oil had been 

well improved after degradation. It can be concluded that not only could WCO 

stimulate the bacterial growth, but also it could enhance the crude oil degradation. 

Core displacement experiment demonstrates the efficiency of water flooding was just 

5.8%, but the microbial flooding produced by Pseudomonas sp. SWP-4 with the 

addition of WCO effectively improved the oil recovery further with an additional oil 

recovery efficiency of 24.4%.  
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1. Introduction 
  With the continuous increase of worldwide energy demand, crude oil as a kind of 

main fossil fuel still plays an important role in the current industrial society. In China, 

the heavy crude oil reserve, such as in the Mao-8 zone of Zhongyuan oilfield in Inner 

Mongolia alone, reaches as much as 1.3×107 tons. However, the oil reserve is not 

equivalent to the oil recovery, which faces a big technical challenge due to the high 

viscosity and poor fluidity of oil. In terms of current volatile market for fossil fuel and 

large demand for petroleum, there is strong economic incentive to develop an 

alternative way to exploit the heavy crude oil resources. It is well-known that 

enhanced oil recovery (EOR) processes are conventionally applied to recover the 

residual heavy oil from reservoirs. However, after the primary and secondary 

technique, around two-thirds of crude oil remains trapped in reservoirs [1]. Thus, 



developing the third stage of oil recovery such as chemical, physical and microbial 

processes to further recover oil has been a great concern. Nevertheless, chemical 

processes by using solvents, polymers and surfactants, and physical processes such as 

steam flooding or hot water flooding are expensive. Meanwhile, non-biodegradable 

residues were usually released to the environment with the chemical or physical 

processes [2]. By contrast, microbial enhanced oil recovery (MEOR) is a 

cost-effective and environment-friendly way to enhance the crude oil recovery.  

  Over the last few decades, MEOR technology has been demonstrated successfully 

in laboratory or field conditions, especially for the low temperature oilfield reservoirs 

[3] . MEOR makes use of microbial activities and metabolic byproducts to reduce the 

viscosity and increase the fluidity of crude oil [4]. On the one hand, microorganisms 

can reduce the oil viscosity by degrading the long-chain saturated hydrocarbons and 

some of the other heavy oil fractions [5]; On the other hand, microorganisms can 

produce non-toxic products such as biosurfactants to increase the oil sweep efficiency 

through changing the reservoirs’ physicochemical characteristics [6].  

  Among various microorganisms, only bacteria are considered as the promising 

candidates for MEOR due to their higher tolerance to extreme reservoir properties 

such as high salinity, pH, temperature, pressure, and nutrient availability [3]. The 

biosurfactant-producing microorganisms such as genus Pseudomonas [7], genus 

Bacillus [8], genus Acinetobacter [6] et al. are commonly employed in MEOR 

process. Nevertheless, most of the studies just evaluated the potential application of  

strains for light crude oil recovery, and the heavy crude oil was rarely discussed. So 

applying biotechnology to recover the heavy crude oil might be urgently needed in the 

future. Thereinto, genus Pseudomonas is known as a high-efficiency crude oil 

degrader [5, 9]. Meanwhile, genus Pseudomonas is able to produce rhamnolipid, 

which may be useful in the MEOR process [10]. In our previous study [11], we have 

isolated a strain Pseudomonas sp. SWP-4 that can consume waste cooking oil (WCO) 

to produce rhamnolipid. The produced rhamnolipid had low critical micelle 

concentration (27 mg/L) and high surface activities (reduced the surface tension of 

water from 71.8 mN/m to 24.1 mN/m and the interfacial tension against n-hexadecane 

from 29.4 mN/m to 0.9 mN/m). Meanwhile, the produced rhamnolipid showed 

excellent stability under high salinity (≤80,000 ppm), wide pH (4-10) and high 

temperature (≤100℃) conditions. All these excellent characteristics suggest that the 

strain Pseudomonas sp. SWP-4 has a great potential to be applied in MEOR process.  

  Even though many studies have applied genus Pseudomonas for crude oil 

degradation or MEOR, the degradation period is quite long and the oil recovery 

efficiency is not so satisfactory, which is mainly because of the poor growth of 



bacteria in crude oil. For instance, Xia et al. [7] have demonstrated that adding 

bacterial biosurfactant solution of the employed bacteria could efficiently enhance the 

oil recovery. However, the biosurfactant purification is generally costly and complex. 

Analogously, Al-Hadhrami et al. [12] have reported that the addition of organic 

carbon sources such as cane sugar molasses was helpful to stimulate the bacterial 

growth when degraded the crude oil, but the degradation efficiency was also not 

prominent. Therefore, our aim is to explore an alternative but cheap substrate to 

promote the crude oil degradation as well as the oil recovery efficiency. Thereinto, 

WCO is a kind of less developed renewable energy but can stimulate the bacterial 

growth, thus we are going to employ it in present work. So far, there is no any report 

about the effects of the addition of WCO on heavy crude oil biodegradation or MEOR 

process.  

2. Materials and methods 
2.1 Chemicals and reagents 
  Tryptone and yeast extract were purchased from OXOID Company (Hampshire, 
England). Dichloromethane (guaranteed reagent grade) and the other chemicals 
(analytical reagent grade) were purchased from Kelong chemical regent factory 
(Chengdu, China), and deionized water (>18.25 MΩ cm) was used to make solutions. 
WCO (major compositions were palmitic acid, oleic acid and linoleic acid) was 
provided by Biogas Institute of Ministry of Agriculture (Chengdu, China). Heavy 
crude oil and wax samples were taken at 390-550 m depth in Ji-2-Ping-8 reservoir, 
Mao-8 zone, Zhongyuan oilfield (Inner Mongolia, China). The formation water used 
in core displacement experiment was also obtained from the Ji-2-Ping-8 reservoir. All 
the samples were stored in plastic buckets at 4℃ before use. 
2.2 Microorganism and cultivation 
  Pseudomonas sp. SWP-4 was stored in glycerol freezer stock at −40℃ in a freezer. 
The preculture was incubated at in Luria-Bertani (LB) medium: 10 g/L tryptone, 5 g/L 
yeast extract and 5 g/L NaCl. Crude oil degradation experiments were conducted in 
Mineral salts medium (MSM), which contained the following components: 4 g/L 
NaNO3, 5 g/L NaCl, 1 g/L KH2PO4, 1 g/L K2HPO4, 0.2 g/L MgSO4·7H20, 0.2 g/L 
FeSO4·7H20, 0.2 g/L CaCl2. 
2.3 Identification of Pseudomonas sp. SWP-4 in hydrocarbonoclastic capacity 
  Pseudomonas sp. SWP-4, an excellent WCO degrader as demonstrated before [11], 
was tested for its potential application in crude oil degradation. In this part, CSH of 
Pseudomonas sp. SWP-4 was investigated against some typical hydrocarbons. In 
addition, the abilities of Pseudomonas sp. SWP-4 to grow on varieties of hydrocarbon 
substrates were evaluated. 
2.3.1 CSH test  
  Pseudomonas sp. SWP-4 was firstly cultured in LB medium at 30℃, 150 rpm on a 
rocking incubator (QYC-200, Shanghai, China) for 24 h. Then, bacterial cells were 
harvested by centrifugation (3,000 rpm, 10 min). The collected cells were washed 
three times and re-suspended in PUM buffer, pH 7.2: 22.2 g K2HPO4, 7.26 g KH2PO4, 



1.8 g urea, 0.2 g MgSO4·7H2O and deionized water to 1000 mL. Afterwards, the 
washed bacterial suspension was adjusted with PUM buffer to an optical density at 
600 nm (OD600) of 0.6±0.02 by an ultraviolet spetrophotometer (V-1800, Kyoto, 
Japan). Finally, 4 mL bacterial suspension and different volumes (0.2, 0.5, 1.0, 1.5, 
2.0, 2.5, 3.0, 3.5, 4.0 mL) of hydrocarbons (n-hexadecane, n-dodecane, n-hexane, 
methybenzene) were added in each test tube. After pre-incubation at room 
temperature for 15 min, the mixtures were mixed by vortex for 2 min. To ensure the 
organic phase rose completely, the mixtures were left to stand for 15min. After that, 
the aqueous phase was transferred to a cuvette by an aseptic pipette and the OD600 
values were measured [13, 14]. All the experiments were carried out in triplicate, and 
CSH percentage was calculated as Eq. (1): 
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where OD600
0 is the initial OD600 value, and OD600

1 is measured after CSH test.  
2.3.2 Growth on specific hydrocarbon substrates 
  The specific hydrocarbon substrates included n-hexane, n-dodecane, n-hexadecane, 
paraffin wax, methybenzene, dimethylbenzene, naphthalene. Theses experiments were 
conducted in test tubes supplemented with 4 mL MSM, and the addition of each 
hydrocarbon substrate was 5 g/L (solid hydrocarbons) or 0.5% (v/v, liquid 
hydrocarbons), respectively. Inoculum was 12 h-old LB-grown cultures and the 
inoculum ratio was 2% (v/v). Incubation was carried out at 30℃, 150 rpm for 72 h. In 
this part, growth was evaluated by measuring the dry cell weight (DCW) coupled with 
the surface view of the disappearance of the oil slick and the turbidity of the culture 
broth. DCW was determined by centrifuging (3000 rpm, 10 min) the culture broth to 
collect the cells, and then the cells were washed twice with distilled water and dried 
by heating at 60℃ until constant weight was obtained [7].  
2.4 Physicochemical properties analysis of the employed oil and formation water 
  Before the following experiments being carried out, the physicochemical properties 
of the employed heavy crude oil were analyzed. Water content in crude oil was 
measured as described by Hammer et al. [15]. Wax, resins, and asphaltenes contents 
in crude oil were determined according to literature [5]. Solidifying point was 
determined by a kryoscope (SYP 1022-I, Shanghai, China) and viscosity was 
determined at 30℃  by a rotational viscometer (DNJ-5S, Shanghai, China). 
Meanwhile, the viscosity-temperature curve of the employed heavy crude oil was 
plotted. Density measurement was conducted at 30℃ using the hydrometer method. 
The salinity of the formation water and its chemical compositions were analyzed by 
an atomic absorption spectrophotometer (AA-7020, Beijing, China) and an ion 
chromatograph (833, Metrohm, Switzerland). 
2.5 Effects of the addition of WCO on heavy crude oil biodegradation 
  To evaluate the effects of the addition of WCO on crude oil degradation, these 
assays were performed in 250 mL Erlenmeyer flasks containing 50 mL MSM and 0.2
±0.01 g crude oil with 0.2 mL WCO at 30℃, 150 rpm. Meanwhile, the same assays 
without addition of WCO were conducted as control. In this part, each medium was 



autoclaved at 121℃ for 20 min and then inoculated with a inoculum ratio of 4% (v/v). 
Inoculum was prepared by cultivating Pseudomonas sp. SWP-4 for 12 h in LB 
medium.    
2.5.1 Time course of crude oil degradation 
  At specific time intervals (every day for 7 days), the amount of biomass in the 
culture broth was monitored by measuring the DCW as described above. CSH 
measurement was carried out to investigate the cell activity of Pseudomonas sp. 
SWP-4 when grew on the crude oil, and the tested hydrocarbon was n-hexadecane 
with the additive volume of 2.5 mL. Surface tension of each cell-oil-free broth was 
measured by a digital tensiometer (DT-102, Zibo, China) using the ring method [16]. 
Emulsification index (E24) measurement was determined by adding 3 mL 
n-hexadecane to the same volume of cell-oil-free broth in the test tube, and then the 
mixture was mixed by vortex for 3 min and left to stand at 25℃ for 24 h prior to 
measurement. E24 was expressed as the percentage of the height of the emulsified layer 
divided by the total height of the liquid column [17]. Meanwhile, quantification of 
rhamnolipid production was determined by anthrone-sulfuric acid colorimetric method, 
and the rhamnose value was calculated from the standard curves prepared with 
L-rhamnose. The concentration of rhamnolipid was determined by multiplying 
rhamnose value by a coefficient of 3.4, obtained from the correlation of pure 
rhamnolipid/rhamnose [18-20].  
2.5.2 Viscosity reduction of crude oil       
  To measure the viscosity reduction of crude oil after being degraded by 
Pseudomonas sp. SWP-4, each culture broth was demulsified at 40℃ in water bath 
for 2 h at specific time intervals (every day for 7 days). Then, the upper residual oil 
was carefully collected and carried out to measure the viscosity by the rotational 
viscometer at 40℃. All these measurements were carried out in triplicate.                                                                                                                                                                                                                                                            
2.5.3 Analysis of crude oil degradation by GC-MS 
  The residual crude oil was extracted with an equal amount of dichloromethane at 
the end of cultivation (7 days). Then, the mixture was vigorously oscillated for 3 min 
and the lower organic phase was carefully collected. Afterwards, the organic phase 
was condensed at 40℃ until the dichloromethane was completely evaporated. The 
dried crude oil sediment was dissolved in 20 mL dichloromethane and dehydrated 
with 2 g anhydrous sodium sulfate [5]. 0.5 μL oil sample was injected in an Agilent 
GC-MS (7890A/5975C, USA) with a split ratio of 5:1. GC-MS analysis was carried 
out by the following temperature programming: initial temperature was 60℃, then 
raised at a rate of 10℃/min to 300℃. The percentages of n-alkanes degradation were 
calculated using normalization method. 
2.6 Core displacement experiment 
  Core displacement experiment was employed to investigate the potential 

application of Pseudomonas sp. SWP-4 in MEOR process. The schematic view of this 

experiment was shown in Fig. 1. The test was performed at 30℃ in a constant 

temperature incubator, which simulated Ji-2-Ping-8 reservoir’s temperature. Two 

man-made cores (named 1# and 2#) with a diameter of 2.5 cm and a length of 30 cm 



were filled with 40-60 mesh quartz sands. Drive fluid was the deionized water and 

the tested fluid used the formation water. The cores were flooded with the formation 

water at a constant flow velocity of 5 mL/min. The porosity Φt was calculated as Eq. 

(2) using the phase difference method, and permeability K was illustrated in Eq. (3) 

[21]. 
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where Q is the flow of core fluid (mL/s), µ is viscosity of formation water (mPa·s), L 

is the core length (cm), A is the core sectional area (cm2) , △P is differential pressure 

of the core on both ends (MPa). 

  The cores were firstly saturated with 5% (w/w) crude oil, and then aged at 30℃ for 

24 h. Afterwards, the cores were flooded with formation water at 5 mL/min until no 

oil was produced, and the efficiency of water flooding was expressed as the 

percentage of the oil mass of water flooding divided by the mass of original saturated 

oil. After that, microbial flooding (prepared by cultivating Pseudomonas sp. SWP-4 

for 24 h in 50 mL MSM with 2% (v/v) WCO) was injected in the cores with a flow 

rate of 5 mL/min, and then the cores were incubated for 24 h. At last, the cores were 

flooded again with the microbial flooding until no oil was recovered, thus the 

additional oil recovery efficiency was obtained.  

 

Fig. 1. Schematic view of the core displacement experiment. 
 
3. Results and discussion 
3.1 Identification of Pseudomonas sp. SWP-4 in hydrocarbonoclastic capacity 
3.1.1 CSH test 
  As the Fig. 2 shows, Pseudomonas sp. SWP-4 exhibited the highest CSH against 
n-hexadecane than the other tested hydrocarbons. When the volume ratio of bacterial 
suspension to n-hexadecane was 4:2.5, CSH percent reached the maximum value of 
68.6%. Similarly, Pseudomonas sp. SWP-4 gave the maximum CSH percentages of 
66.4%, 52.6% and 49.8% against n-dodecane, methybenzene and n-hexane. However, 
it could be clearly seen that the inhibitory effect increased with the rise of 
hydrocarbon volume, which was mainly because that excess hydrocarbon had a 
certain toxicity to bacteria. The CSH capacity affects the bacterial absorption and 
degradation of hydrophobic organic, and it also affects the bacterial adsorption to a 
variety of biological and non-biological surface and interface. Kumari et al. [22] 
demonstrated that the high oil degradation efficiency was attributed to the bacterial 



high CSH capacity. Abbasnezhad et al. [14] also demonstrated that CSH was an 
important parameter in biodegradation of hydrocarbons to enhance uptake and 
metabolism of compounds with very low aqueous solubility. Thus, Pseudomonas sp. 
SWP-4 presented a great potential to be applied in biodegradation of crude oil owing 
to its good CSH capacity.  

 

Fig. 2. CSH capacity of Pseudomonas sp. SWP-4 against specific hydrocarbons. The 

error bars represents standard deviation values of three independent experiments (n = 

3). 

 

3.1.2 Growth on specific hydrocarbon substrates 

  The abilities of Pseudomonas sp. SWP-4 to grow on specific hydrocarbon 

substrates were investigated as shown in Table 1. Pseudomonas sp. SWP-4 degraded 

all of the tested hydrocarbon substrates, but it was more inclined to grow on n-alkanes 

compared with polyaromatic hydrocarbons. Pseudomonas sp. SWP-4 showed 

luxuriant growth on n-hexadecane and n-dodecane and good growth on n-hexane, 

giving average DCW of 0.98 g/L, 0.83 g/L, and 0.65 g/L after 72-hour cultivation, 

respectively. Meanwhile, Pseudomonas sp. SWP-4 grew fairly on paraffin wax, 

methybenzene, dimethylbenzene and naphthalene. Obayori et al. [23] also 

investigated the substrates susceptibility of Pseudomonas strains on various 

components of crude oil, but their isolates performed worse susceptibility compared 

with the present Pseudomonas sp. SWP-4. Therefore, due to its good viability on 

various hydrocarbon substrates, Pseudomonas sp. SWP-4 exhibits high potential for 

crude oil degradation.  

 

Table 1  

Abilities of Pseudomonas sp. SWP-4 to grow on specific hydrocarbon substrates, 

cultivated at 30℃, 150 rpm for 3 daysa. 

 

3.2 Physicochemical properties analysis of the employed oil and formation water 
  The physicochemical properties of the employed heavy crude oil were measured as 

shown in Table 2. The water content in crude oil was just 3.66% and the heavy oil 

components were relatively high. Wax, resins and asphaltene contents were 11%, 

4.32% and 23.86%, respectively. The high contents of the heavy oil fractions resulted 

in high viscosity and density of crude oil. The viscosity and density were measured to 

be 220,000 mPa·s (30℃) and 0.9488g/cm3 (30℃), respectively. The solidifying point 

of crude oil was dependent on the wax contents, and it was determined to be 11℃. 

These results help to explain the poor fluidity of the employed crude oil. The 



viscosity-temperature curve of the employed heavy crude oil was shown in Fig. 3, 

from which we can see that the viscosity plummeted when temperature increased 

from 30℃ to 40℃. In view of the convenience and operability of the measurement, 

the subsequent viscosity reduction experiments were carried out at 40℃.  

  The total salinity of the formation water ranged between 0.6% and 1% (w/v) and its 

chemical composition was (g/L): Chloride, 5.58; Bicarbonate, 0.61; Sulfate, 0.78; 

Carbonate, 0.08; Calcium, 0.15; Magnesium, 0.12; Sodium/Kalium, 3.48. From these 

results we can see that the total salinity of the formation water is nearly equal to the 

normal saline (0.9%) and MSM (1.1%). Meanwhile, Ji-2-Ping-8 is a low temperature 

oilfield reservoir (25.4-30.7℃). Thus we can infer that both salinity of the formation 

water and reservoir temperature are quite suitable for microbial growth and MEOR 

process.   

 

Table 2 

Physicochemical properties of the employed heavy crude oila.  

 

Fig. 3. Viscosity-temperature curve of the employed heavy crude oil. The error bars 

represents standard deviation values of three independent experiments (n = 3). 

 

3.3 Effects of the addition of WCO on heavy crude oil biodegradation 

3.3.1 Time course of crude oil degradation 

  Fig. 4a shows the typical time course profile of the crude oil degradation. From 

DCW curve, we can see that bacterial growth was in the stationary phase from day 4 

to day 6, during which Pseudomonas sp. SWP-4 grew vigorously and exhibited a 

maximum DCW of 1.11 g/L. The increasing law of CSH was in line with the bacterial 

growth, and the highest CSH (against n-hexadecane) capacity of 58.3% was obtained 

during the stationary phase. Rhamnolipid, as a typical secondary metabolite, was 

largely produced in the stationary phase. However, rhamnolipid was also steadily 

accumulated even in the decline phase, giving the maximum concentration of 2.79 g/L 

on day 7. Meanwhile, the increase of E24 was in proportion to the accumulation of 

rhamnolipid, and the cell-oil-free broth showed the highest emulsification efficiency 

on n-hexadecane, 55.7%. Similarly, surface tension was also an important parameter 

to reflect the process of crude oil degradation. The collected cell-oil-free broth could 

decrease the surface tension of water from 72.4 mN/m to 25.4 mN/m.  

  From Fig. 4b, we can see that the addition of WCO gave positive effects on crude 

oil degradation. Pseudomonas sp. SWP-4 entered the stationary phase on day 3 and 

had a maximum amount of biomass of 1.73 g/L. Furthermore, the highest CSH 



capacity (against n-hexadecane) was proven to be 62.4%. The maximum 

concentration of rhamnolipid was 6.87 g/L, which was almost two-and-a-half times 

compared with the result obtained from the same assays without the addition of WCO. 

In the meantime, surface activities of the collected cell-oil-free broth were also better, 

which exhibited a higher emulsification efficiency of 58.3% on n-hexadecane and 

reduced the surface tension of water to a lower value, 22.7 mN/m.  

  Zhang et al. [9] also proved that Pseudomonas aeruginosa had the capacity to 

produce biosurfactant as well as degrade petroleum hydrocarbons when grew on a 

hydrophobic phase. Kumari et al. [22] showed the oil degradation ability of genus 

Pseudomonas was greater than other bacterial species, which might link to several 

inherent factors such as higher biosurfactant production. In our previous study [11], 

we have demonstrated that Pseudomonas sp. SWP-4 was able to grow well on the 

MSM with WCO as the sole carbon source, and this waste oil had significant 

influences on bacterial growth and rhamnolipid synthesis. In present work, 

Pseudomonas sp. SWP-4 also possessed good adaptability in heavy crude oil 

degradation, and it was able to produce rhamnolipid when degraded the hydrocarbons. 

Moreover, with the addition of WCO in cultivation, Pseudomonas sp. SWP-4 

exhibited better growth and greater rhamnolipid production. Therefore, it was 

concluded that the addition of WCO can accelerate the process of degradation and 

increase the solubilization of crude oil.  

 

Fig. 4. Typical time course profiles of the crude oil degradation by Pseudomonas sp. 

SWP-4, cultivated in : (a) 50 mL MSM and 0.2±0.01 g crude oil; (b) 50 mL MSM 

and 0.2±0.01 g crude oil, with the addition of 0.2 mL WCO. Incubation was 

performed at 30℃, 150 rpm for 7 days. The error bars represents standard deviation 

values of three independent experiments (n = 3). 

 

3.3.2 Viscosity reduction of crude oil  

  Fig. 5 illustrates the viscosity reduction of crude oil versus degradation time. 

Pseudomonas sp. SWP-4 showed a high crude oil viscosity reduction efficiency (＞

90%) after cultivation of 7 days. It was able to reduce the viscosity of crude oil from 

26,300 mPa·s to 1,350 mPa·s (measured at 40℃). Meanwhile, we have investigated 

the effect of the addition of WCO on crude oil viscosity reduction, and it indicated 

obvious role to decrease the crude oil viscosity to a lower value, 550 mPa·s (measured 

at 40℃). Moreover, cultivation with the addition of WCO shortened the crude oil 

degradation period, which was conducive to the heavy crude oil recovery and 

transportation. Fig. 5c and Fig. 5d shows the surface views of crude oil before and 



after degradation. It can be seen that crude oil was emulsified obviously and its 

fluidity had been improved to a great extent after being degraded by 7 days.  

  One of the primary mechanisms of heavy crude oil viscosity reduction is that 

degradation of heavy oil fractions through microbial activities, and the other one is 

that the produced rhamnolipid could enhance the stability of oil/water emulsion 

system, eventually forming oil-in-water [2, 4, 24]. The high contents of the employed 

heavy oil fractions resulted in its high viscosity and poor fluidity. What’s worse, these 

bad conditions usually brought negative effects on the oil’s biodegradation. However, 

the high CSH capacity of Pseudomonas sp. SWP-4 could promote the uptake and 

metabolism of the hydrocarbons with very low aqueous solubility. Moreover, it was 

demonstrated that Pseudomonas sp. SWP-4 grew vigorously and produced more 

rhamnolipid in crude oil with the addition of WCO. Thus, it can be concluded that the 

addition of WCO promoted the biodegradation process and the better bacterial 

activities helped the greater viscosity reduction. 

 

Fig. 5. Viscosity reduction of the crude oil after being degraded by Pseudomonas sp. 

SWP-4: (a) cultivation without the addition of WCO; (b) cultivation with the addition 

of WCO; (c) surface view of the crude oil before degradation; (d) surface view of the 

crude oil after degradation by 7 days. All the viscosity measurements were conducted 

at 40℃. The error bars represents standard deviation values of three independent 

experiments (n = 3).  

 

3.3.3 Analysis of crude oil degradation by GC-MS 

  Fig. 6 shows a more detailed evaluation of crude oil degradation before and after 

flask incubation for 7 days. As Fig. 6a shown, the employed crude oil had n-alkanes 

ranging from C13 to C33. Meanwhile, it can be observed from Fig. 6b and Fig. 6c that 

that Pseudomonas sp. SWP-4 could successfully degrade the crude oil samples and 

most of the n-alkanes were highly degraded after 7 days. The percentages of n-alkanes 

degradation were shown in Table 3, from which we can see that a large proportion of 

n-alkanes were degraded larger than 90%. However, C20, C22, C24 and C26 were 

relatively poorly degraded compared to the other n-alkanes, but the addition of WCO 

enhanced the degradation efficiency of these three hydrocarbons. Isoprenoid alkanes 

(pristane (Pr) and phytane (Ph)), as the biomarkers, was hard to degrade by bacteria. 

The less the solubilization, the less the bioavailability [25]. However, the addition of 

WCO resulted in the further degradation of Pr and Ph, which was mainly because the 

solubilization of isoprenoid alkanes increased through rhamnolipid emulsification.       

These improvements were assigned to the better bacterial growth and rhamnolipid 



accumulation with the addition of WCO. On the one hand, the better bacterial growth 

helped the biodegradation of the heavy crude oil as well as the viscosity reduction; on 

the other hand, the accumulated rhamnolipid promoted the oil’s solubilization and 

mobilization, thus bacteria could more easily take and degrade the  crude oil. 

Therefore, it was believed that the addition of WCO could enhance the heavy crude 

oil biodegradation, and there was a synergistic effect between the crude oil 

degradation and WCO consumption.  

  Likewise, Pasumarthi et al. [5] also reported Pseudomonas aeruginosa could highly 

degraded the n-alkanes, but the degradation period was quite longer than present 

Pseudomonas sp. SWP-4. Al-Hadhrami et al. [12] have proved that the addition of 

organic carbon sources such as cane sugar molasses could result in significant 

n-alkanes breakdown. However, their degradation efficiency was not as good as 

Pseudomonas sp. SWP-4 with the addition of WCO. 

 

Fig. 6. GC-MS analysis of the crude oil degradation by Pseudomonas sp. SWP-4: (a) 

blank test; (b) cultivation without the addition of WCO; (c) cultivation with the 

addition of WCO. Incubation was performed at 30℃, 150 rpm for 7 days. 

 

Table 3 

Percentages of n-alkanes degradation by 7 days at 30℃, 150 rpm: (a) cultivation 

without the addition of WCO; (b) cultivation with the addition of WCO. 

 

3.4 Analysis of core displacement experiment  

  All of those characteristics described above demonstrate the potential application of 

Pseudomonas sp. SWP-4 in MEOR, thus we employed the core displacement 

experiment to further prove its potential application. The physical parameters of these 

two man-made cores and the oil recovery efficiency were shown in Table 4. Because 

of the high viscosity and poor fluidity of the heavy crude oil, water flooding just 

recovered 5.8% of oil. Control test demonstrated that after the first stage of water 

flooding, flooding the cores again with formation water couldn’t enhance the oil 

recovery efficiency any more. However, after incubation for 24 h with the addition of 

WCO, the microbial flooding produced by Pseudomonas sp. SWP-4 had a 

rhamnolipid concentration around 7.0 g/L, and the OD600 value of the diluted (6-fold) 

microbial flooding was measured to be 0.757, which indicated the biomass was very 

large and bacterial growth entered stationary phase [11]. Unsurprisingly, the microbial 

flooding effectively mobilized the oil in the core models, giving an additional oil 

recovery efficiency of 24.4%.  



The mechanisms of oil recovery fall into two broad categories: one of them is the 

alteration of interfacial /surface properties among oil, water and sand; and the other 

one is the changes of the crude oil in flow behavior. Firstly, the injected microbial 

flooding increased the capillary number through decreasing the viscosity of oil and 

the interfacial tension among oil, water and sand. Then, it was able to decrease the oil 

sweep efficiency by improving the cores’ physicochemical characteristics [6]. 

Meanwhile, the promotion of crude oil’s solubilization and mobilization helped the 

bacterial transportation and metabolism. Moreover, some of the heavy oil fractions’ 

biodegradation also resulted in oil’s solubilization and mobilization. Therefore, it was 

believed that each role promoted and supplemented to each other. In present work, 

Pseudomonas sp. SWP-4 exhibited excellent physiological activities with the addition 

of WCO, so it can be inferred that the increase of oil recovery was attributed to the 

better biodegradation and solubilization and mobilization of oil. In addition, biomass 

plugging might also result in the enhancement of oil recovery.  

  Similarly, Xia et al. [7] reported about 23.02% oil recovery efficiency with the 

injection of the strain Pseudomonas aeruginosa WJ-1 and its biosurfactant 

rhamnolipid. However, our injected microbial flooding avoided the costly and 

complex process of biosurfactant purification, and no additional biosurfactant solution 

needed being injected in present work. In addition, Zou et al. [6] reported that the 

lipopeptide biosurfactant produced by Acinetobacter baylyi ZJ2 presented nearly 28% 

additional oil recovery efficiency, but their employed oil just have an average 

viscosity of 26.9 mPa·s, which indicated that the solubilization and mobilization of 

light crude oil itself was superior to our employed heavy oil. As we know, recovering 

the heavy crude oil is much more difficult than the light crude oil. What’s more, the 

lack of detailed report about heavy crude oil recovery through biotechnology 

demonstrated the significance of Pseudomonas sp. SWP-4 to be applied in heavy 

crude oil recovery with the addition of WCO.  

 

Table 4 

Oil recovery in core displacement experiment using the formation water flooding and 

microbial flooding produced by Pseudomonas sp. SWP-4a. 

 

4. Conclusions 

  Pseudomonas sp. SWP-4 was able to grow on heavy crude oil and produce 

rhamnolipid. Cultivation with the addition of WCO could stimulate the bacterial 

growth and rhamnolipid accumulation. Meanwhile, the degradation period was 

shortened and the degradation efficiency was improved to a great extent by adding 



WCO. Core displacement experiment showed the oil recovery efficiency of water 

flooding is relatively low, but the microbial flooding produced by Pseudomonas sp. 

SWP-4 was quite effective. On the one hand, the vigorous bacteria growth resulted in 

the better degradation of crude oil and viscosity reduction. On the other hand, the 

produced rhamnolipid altered the oil’s solubilization and mobilization. Meanwhile, 

the addition of WCO helped to produce abundant biomass, so the biomass plugging 

might also contribute to the increase of oil recovery. Therefore, all of these positive 

effects manifest that Pseudomonas sp. SWP-4 has great potential to be applied in 

heavy crude oil biodegradation and MEOR process with the addition of WCO.  
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Table 1  
 

 

Abilities of Pseudomonas sp. SWP-4 to grow on specific hydrocarbon substrates, 

cultivated at 30℃, 150 rpm for 3 daysa. 
 

Growth 
Substrate 

Surface view DCW (g/L) 

n-hexane ++ 0.65 ± 0.02 

n-dodecane +++ 0.83 ± 0.01 

n-hexadecane +++ 0.98 ± 0.02 

paraffin wax + 0.38 ± 0.01 



methybenzene + 0.25 ± 0.03 

dimethylbenzene + 0.15 ± 0.02 

naphthalene + 0.13 ± 0.01 
 

 

 
a +++: luxuriant growth; ++: good growth; +: poor growth; －: no growth. Results 

represent the average of three independent experiments ± standard deviation.  
 

 

Table 2 
 

 

Physicochemical properties of the employed heavy crude oila.  
 

Reservoir 
Water content  

% 

Wax  

% 

Resins  

% 

Asphaltene 

 % 

3.66±0.07 11±0.05 4.32±0.12 23.86±0.24 

Solidifying point 

 ℃ 

Viscosity 

mPa·s (30℃)  

Density 

g/cm3 (30℃)  

Temperature 

℃ 
Ji-2-Ping-8 

11±0 220,000±1,200 0.9488±0.004 25.4-30.7 

 

 

 
a Results represent the average of three independent experiments ± standard deviation.  
 

 

Table 3 
 

 

Percentages of n-alkanes degradation by 7 days at 30℃, 150 rpm: (a) cultivation 

without the addition of WCO; (b) cultivation with the addition of WCO. 
 

% Of degradation % Of degradation 
n-alkanes 

a b 
n-alkanes 

a b 

C13 99.0 99.4 C24 67.3 87.9 

C14 99.3 99.8 C25 95.8 97.1 



C15 99.0 99.2 C26 37.1 83.4 

C16 97.8 97.9 C27 98.4 99.1 

C17 98.8 98.7 C28 96.6 97.9 

C18 99.2 99.2 C29 86.3 91.2 

C19 99.0 99.1 C30 87.2 86.7 

C20 79.6 89.3 C31 99.0 99.4 

C21 99.0 99.6 C32 96.9 98.3 

C22 90.9 91.9 C33 97.2 97.4 

C23 97.6 98.7    

 

 

 

Table 4 
 

 

Oil recovery in core displacement experiment using the formation water flooding and 

microbial flooding produced by Pseudomonas sp. SWP-4a. 
 

Core Flooding type 
VP 

(mL) 

Φt  

 (%) 

K  

(10-3
μm2) 

Oil recovery 

(%) 

Water flooding 5.8 ± 3.7 
1# 

Microbial flooding 
44.1 30.0 0.64 

24.4 ± 0.9 

Water flooding 6.4 ± 1.9 
2# 

Water flooding 
44.5 30.2 0.73 

0.1 ± 0.1 

 

 

 
a Results represent the average of three independent experiments ± standard deviation. 
 

 



Figure captions: 
 
Fig. 1. Schematic view of the core displacement experiment. 

 

Fig. 2. CSH capacity of Pseudomonas SWP-4 against specific hydrocarbons. The 

error bars represents standard deviation values of three independent experiments (n = 

3). 

 

Fig. 3. Viscosity-temperature curve of the employed heavy crude oil. The error bars 

represents standard deviation values of three independent experiments (n = 3). 

 

Fig. 4. Typical time course profiles of the crude oil degradation by Pseudomonas 

SWP-4, cultivated in : (a) 50 mL MSM and 0.2±0.01 g crude oil; (b) 50 mL MSM 

and 0.2±0.01 g crude oil, with the addition of 0.2 mL WCO. Incubation was 

performed at 35℃, 150 rpm for 7 days. The error bars represents standard deviation 

values of three independent experiments (n = 3). 

 

Fig. 5. Viscosity reduction of the crude oil after being degraded by Pseudomonas 

SWP-4: (a) cultivation without the addition of WCO; (b) cultivation with the addition 

of WCO; (c) surface view of the crude oil before degradation; (d) surface view of the 

crude oil after degradation by 7 days. All the viscosity measurements were conducted 

at 40℃. The error bars represents standard deviation values of three independent 

experiments (n = 3).  

 

Fig. 6. GC-MS analysis of the crude oil degradation by Pseudomonas SWP-4: (a) 

blank test; (b) cultivation without the addition of WCO; (c) cultivation with the 

addition of WCO. Incubation was performed at 35℃, 150 rpm for 7 days. 
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Fig. 2. CSH capacity of Pseudomonas SWP-4 against specific hydrocarbons. The 

error bars represents standard deviation values of three independent experiments (n = 

3). 
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Fig. 3. Viscosity-temperature curve of the employed heavy crude oil. The error bars 

represents standard deviation values of three independent experiments (n = 3). 
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Fig. 4. Typical time course profiles of the crude oil degradation by Pseudomonas 

SWP-4, cultivated in : (a) 50 mL MSM and 0.2±0.01 g crude oil; (b) 50 mL MSM 

and 0.2±0.01 g crude oil, with the addition of 0.2 mL WCO. Incubation was 

performed at 35℃, 150 rpm for 7 days. The error bars represents standard deviation 

values of three independent experiments (n = 3). 
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Fig. 5. Viscosity reduction of the crude oil after being degraded by Pseudomonas 
SWP-4: (a) cultivation without the addition of WCO; (b) cultivation with the addition 
of WCO; (c) surface view of the crude oil before degradation; (d) surface view of the 
crude oil after degradation by 7 days. All the viscosity measurements were conducted 
at 40℃. The error bars represents standard deviation values of three independent 
experiments (n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 





Fig. 6. GC-MS analysis of the crude oil degradation by Pseudomonas SWP-4: (a) 
blank test; (b) cultivation without the addition of WCO; (c) cultivation with the 
addition of WCO. Incubation was performed at 35℃, 150 rpm for 7 days. 
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Fig. 2. CSH capacity of Pseudomonas SWP-4 against specific hydrocarbons. The 

error bars represents standard deviation values of three independent experiments (n = 

3). 
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Fig. 3. Viscosity-temperature curve of the employed heavy crude oil. The error bars 

represents standard deviation values of three independent experiments (n = 3). 
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Fig. 4. Typical time course profiles of the crude oil degradation by Pseudomonas 

SWP-4, cultivated in : (a) 50 mL MSM and 0.2±0.01 g crude oil; (b) 50 mL MSM 

and 0.2±0.01 g crude oil, with the addition of 0.2 mL WCO. Incubation was 

performed at 35℃, 150 rpm for 7 days. The error bars represents standard deviation 

values of three independent experiments (n = 3). 
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Fig. 5. Viscosity reduction of the crude oil after being degraded by Pseudomonas 
SWP-4: (a) cultivation without the addition of WCO; (b) cultivation with the addition 
of WCO; (c) surface view of the crude oil before degradation; (d) surface view of the 
crude oil after degradation by 7 days. All the viscosity measurements were conducted 
at 40℃. The error bars represents standard deviation values of three independent 
experiments (n = 3). 
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Fig. 2. CSH capacity of Pseudomonas SWP-4 against specific hydrocarbons. The 

error bars represents standard deviation values of three independent experiments (n = 

3). 
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Fig. 3. Viscosity-temperature curve of the employed heavy crude oil. The error bars 

represents standard deviation values of three independent experiments (n = 3). 
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Fig. 4. Typical time course profiles of the crude oil degradation by Pseudomonas 

SWP-4, cultivated in : (a) 50 mL MSM and 0.2±0.01 g crude oil; (b) 50 mL MSM 

and 0.2±0.01 g crude oil, with the addition of 0.2 mL WCO. Incubation was 

performed at 35℃, 150 rpm for 7 days. The error bars represents standard deviation 

values of three independent experiments (n = 3). 
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Fig. 5. Viscosity reduction of the crude oil after being degraded by Pseudomonas 
SWP-4: (a) cultivation without the addition of WCO; (b) cultivation with the addition 
of WCO; (c) surface view of the crude oil before degradation; (d) surface view of the 
crude oil after degradation by 7 days. All the viscosity measurements were conducted 
at 40℃. The error bars represents standard deviation values of three independent 
experiments (n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 





Fig. 6. GC-MS analysis of the crude oil degradation by Pseudomonas SWP-4: (a) 
blank test; (b) cultivation without the addition of WCO; (c) cultivation with the 
addition of WCO. Incubation was performed at 35℃, 150 rpm for 7 days. 
 

 

 

 


