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ABSTRACT

A viscoelastically prestressed polymeric matrix composite (VPPMC) is produced by subjecting polymeric
fibres to tensile creep, the applied load being removed before moulding the fibres into a resin matrix.
After matrix curing, the viscoelastically strained fibres impart compressive stresses to the surrounding
matrix, thereby improving mechanical properties. This study investigated the mechanisms considered
responsible for VPPMCs improving impact toughness by performing Charpy impact tests on unidirec-
tional nylon 6,6 fibre-polyester resin samples over a range of span settings (24-60 mm) and fibre volume
fractions (3.3-16.6%). Comparing VPPMC samples with control (unstressed) counterparts, the main
findings were: (i) improved impact energy absorption (up to 40%) depends principally on shear stress-
induced fibre-matrix debonding (delamination) and (ii) energy absorption improves slightly with
increasing fibre volume fraction, but the relationship is statistically weak. The findings are discussed in

relation to improving the impact performance of practical structures.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A viscoelastically prestressed polymeric matrix composite
(VPPMC) is produced by applying tension to polymeric fibres,
thereby causing viscoelastic creep. The tensile load is then released
before moulding the fibres into a matrix and, following matrix
solidification, compressive stresses are imparted by the strained
fibres as they attempt viscoelastic recovery. This matrix compres-
sion, which is balanced by residual tension within the fibres, can
improve mechanical properties. A similar state of matrix compres-
sion-fibre tension may also be achieved with an elastically pre-
stressed PMC (EPPMC): here, fibres are subjected to elastic strain
during matrix curing to achieve the required prestress. Results
from studies of unidirectional glass fibre EPPMCs indicate that
elastic prestressing could increase tensile strength by ~25%, elastic
modulus by ~50% [1] and impact resistance, flexural stiffness and
strength by up to 33% [2,3], when compared with unstressed (con-
trol) counterparts. Explanations for such improvements have been
based on matrix compression and fibre tension effects which can
impede or deflect propagating cracks and reduce composite strain
resulting from external tensile or bending loads [1-3]. The
improvements offered by VPPMCs may also be similarly consid-
ered. Moreover, VPPMCs offer two potentially important benefits
over EPPMCs. First, the VPPMC fibre stretching and moulding
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operations are de-coupled, so the stretching process imposes no
constraints on fibre orientation, length and spatial distribution,
which could restrict the moulding of complex product geometries.
Second, in an EPPMC, localised matrix creep near the fibre-matrix
interface would be expected to cause a gradual deterioration in
prestress; in a VPPMC however, this effect would be offset by an
active response from longer term recovery mechanisms within
the polymeric fibres [4].

Research into VPPMCs has advanced from a feasibility study [5]
to a stage where the basic mechanical (tensile and flexural) prop-
erties have been evaluated [6,7]. Tensile tests [6] demonstrated
increases in strength, modulus and energy absorbed (to 0.25
strain) to exceed 15%, 30% and 40% respectively and the flexural
modulus from three-point bend tests [7] was found to be ~50%
greater than corresponding control samples. There was however
an intermediate period of several years in which effects relating
to long-term behaviour required investigation [4,8-11]. The long-
term mechanical performance of VPPMCs was characterised
through Charpy impact testing [4,8,11], culminating in the most
recent study, which (i) demonstrates no deterioration in impact
performance over a duration equivalent to 40 °C ambient for
~20 years and (ii) shows that VPPMC samples absorb, on average,
~30% more impact energy than their control (unstressed) counter-
parts [12]. To date, all composite specimens for evaluation by
Charpy impact testing have been produced at a very low fibre
volume fraction (V). To investigate fracture and energy absorption
characteristics further, this paper reports on Charpy impact evalu-
ation over a range of test span settings and V; values.
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2. Background
2.1. The ISO 179 standard and published Charpy impact investigations

The Charpy test is a well-known simple method for evaluating
impact toughness. For plastics, the EN ISO 179 standard [13] de-
scribes three test specimen types, detailing their dimensions and
required span, L. Unnotched Type 2 or Type 3 specimens are used
for materials capable of exhibiting interlaminar shear (e.g. long
fibre-reinforced materials), these being tested ‘flatwise’ or ‘edge-
wise’ to the pendulum blow direction. Thus flatwise orientation
is most appropriate for evaluation of prestress effects. Preferred
specimen thickness, h, is 3 mm for Types 2 and 3 and the standard
states there are no other specified specimen sizes, the most impor-
tant parameter being the L/h ratio for flatwise testing. For Type 2, L
is 20h but this is lower for Type 3, being 6h or 8h. The choice be-
tween Type 2 and Type 3 is determined by the nature of failure:
according to the standard, these are expected to be tensile-type
failures for Type 2 and interlaminar shear failures for Type 3
specimens.

Table 1 provides an overview, using information from published
papers, of typical conditions used for Charpy (flatwise) impact tests
on fibre-reinforced polymeric composite specimens. In most cases,
where information is available, a range of failure mechanisms is re-
ported, from fibre debonding or delamination (interlaminar shear)
through to tensile, i.e. cleavage-type transverse fractures from brit-
tle specimens. Common L settings are 40 and 60 mm and, with
varying specimen thicknesses, the range of L/h values is extensive.

It is well known that the contribution to beam deflection from
shearing forces becomes increasingly significant as L/h is decreased
[7]. Adams and Miller [14] highlighted the effects of shear stress
during beam failure and, although principally a study based on sta-
tic flexural testing, they also reported findings from Charpy tests
on thick (10 mm) and thinner (~2.5 mm) polymeric composite
specimens (Table 1). For the 10 mm thick specimens, contributions
from shear effects were increased by the small L/h value (i.e. 4)
and, although the thinner specimens raised L/h to 16, it may be in-
ferred from Ref. [14] that this caused no substantial change.

In the context of L/h values, the work of Nagai and Miyairi [15]
in Table 1 is of particular interest. From Charpy tests, if impact
energy is considered to be absorbed within the specimen volume
defined by span size, the impact energy per unit volume, u, can
be defined as:

u
u= AL (1)
where U is the measured impact energy and b is the specimen width.
It was found in Ref. [15] that the contribution from shear-induced

Table 1

delamination failure decreased with increasing L/h, causing u to
reach an approximately constant (minimum) value for L/h > 20
for unidirectional CFRP specimens and L/h > 16 for woven CFRP
specimens. Thus provided that L/h is sufficiently large, u effectively
becomes independent of L and specimen dimensions, making it a
potentially useful parameter for comparative purposes. By using
such large L/h values however, these findings presuppose that Char-
py test conditions should be set up to promote energy absorption
through elastic deflection, followed by failure through transverse
fracture, in preference to failure by delamination. Nevertheless,
compared with bending strength, CFRPs have inferior interlaminar
shear strength [15] and when subjected to general impact condi-
tions, delamination becomes a major failure mechanism [18,24].

2.2. Published Charpy impact test work on prestressed composites

In contrast with views supporting the use of large L/h values,
our evaluation of VPPMCs by Charpy testing has, to date, focused
on using an L/h value of ~8. With sample dimensions (80 x 10 x
3.2 mm) concurring closely with ISO 179 Specimen Type 2, the
appropriate span would have been 60 mm; however, L was set to
24 mm, in accordance with Specimen Type 3. Originally, the avail-
able nylon yarn for moulding VPPMC samples limited V; to 2-3%,
hence the shorter span prevented the possibility of some samples
falling below the minimum energy readings set by the standard
[4,5,8,11]. To be consistent with these earlier studies, the most re-
cent work [12] also adopted the same V¢ and test parameters.

The Charpy impact testing of EPPMCs by Motahhari and Cam-
eron [2] also used a similar L/h value (~8.5, Table 1) to our work.
They found that the impact energy absorption of glass fibre-epoxy
specimens could be increased by up to 33% from elastically gener-
ated prestress, i.e. comparable to that achieved by viscoelastic
prestressing (~30%) [12]. In Ref. [2], the principal mechanism cited
for this improvement was impact-induced fibre-matrix interfacial
debonding in preference to transverse fracture of fibres. This
debonding mechanism absorbs more impact energy than trans-
verse fracture and is promoted by the residual shear stresses at
fibre-matrix interfaces caused by elastic [2] or viscoelastic [12] fi-
bre prestressing.

In this study, it is suggested that prestress-induced interfacial
shear stresses (which promote debonding) are activated by exter-
nally imposed stresses from shearing forces caused by the impact
event. Thus shear stress-induced debonding from impact is
enhanced by the presence of prestress. Since the contribution from
impact-induced shear effects should decrease with increasing L/h,
we propose that the benefits provided by prestress-induced
interfacial shear stresses may diminish at larger span settings

Summary of published details from Charpy (flatwise) impact tests on fibre-reinforced polymeric composite samples: E = estimated or inferred from information provided; S = ISO
179 specified with no further information; D = failure by fibre debonding or delamination; T = tensile (brittle, cleavage) failure.

Ref. Year Principal fibre Matrix Specimen size (mm) Span (mm) L/h ISO 179 specimen type Principal failure mode
[14] 1976 Carbon Epoxy 55 % 10 x 10 40 4 - DE
55 x 10 x 2.5E 40 16E - -
[15] 1994 Carbon Epoxy (L+20) x 10 x (1-5) 30-100 6-40 - D, T
(L+30)x10x 1 60, 90 60, 90 - T
121 1998 Glass Epoxy 81x 19 x 6 50 8.5E - D
[16] 1998 Glass Epoxy ?x5x%x2 40 20 -
[17] 2008 Carbon Epoxy 80 x 10 x 3 60 20 D, T
80x10x5 60 12 - D, T
[18] 2008 Carbon Epoxy 80 x 10 x 1.7 40 235 - D, T
[19] 2009 Jute/cellulose PP - - - S -
[20] 2010 Glass/carbon Epoxy 80 x 15 x 1.5 60E 40E - D, T
[21] 2010 Glass Epoxy 80 x 15 x 4 62E 15.5E 1 D, T
[22] 2010 Glass HDPE/wood - - - S -
[23] 2010 Glass Nylon 80x 10 x4 62E 15.5E 1 -
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(for a constant h). A further hypothesis is that specimens with
higher V; values will increase opportunities for energy absorption
through prestress-enhanced fibre debonding.

It should be noted that studies on unidirectional fibre PMCs
commonly refer to failure by delamination rather than (generic)
fibre debonding, reflecting the use of prepregs [14,15,17,20] as op-
posed to separate fibres in unidirectional EPPMCs [2] and VPPMCs
[12]. For the current study, we suggest that sample (flatwise) test-
ing geometry and resulting (shear-induced) failure effectively ren-
der both terms interchangeable for macroscopic observations.

3. Experimental

General details of sample production and impact test procedures
have been published previously [4,5,8,11,12] and are summarised
here. Fibre reinforcement was from continuous multi-filament ny-
lon 6,6 yarn (140 filaments, 27.5 pm filament diameter), supplied
by Goodfellow Cambridge Ltd. Batches of composite samples were
produced at three V; values, i.e. 3.3%, 10.0% and 16.6%. For each
batch, sufficient yarn was annealed in a fan-assisted oven (150 °C,
0.5 h). Following this, yarn designated for (prestressed) test sam-
ples was attached to a bespoke stretching rig and subjected to
340 MPa tensile creep stress for 24 h, whilst equivalent (annealed)
control yarn was positioned in close proximity to the stretching rig
for exposure to the same ambient conditions (19.5-21 °C, 30-50%
RH). Both yarns were then folded, cut into multiple lengths and
combed into flat ribbons ready for moulding.

Immediately prior to moulding, control yarns were observed to
exhibit slightly more waviness than corresponding test yarns.
Since V¢ calculations were based on fibre and composite sample
cross-sectional areas, Vy would have tended to be higher in the
resulting composite control samples. Nevertheless, the effect on
V¢ will have been minimal: from linear measurements of these
yarns, we estimate V¢ to be less than 1.015 times that of composite
test sample counterparts.

The matrix resin was Cray Valley Norsodyne E9252, mixed with
1% MEKP catalyst, supplied by CFS Fibreglass Supplies, UK. This
was a clear-casting polyester resin, selected here for its high filler
loading capability. Gel time was ~15 min and the resin was consid-
ered sufficiently cured after 2 h (at room temperature) to allow
demoulding. Unidirectional continuous fibre composite samples
were prepared by open-casting. Two aluminium moulds were
used, each with a 10 mm wide channel enabling a strip of test
and control materials to be cast simultaneously from the same
resin mix; this procedure was completed within 0.5 h of the fibre
stretching process. Following demoulding, the test and control

strips were each cut into five samples, the sample size being
80 x 10 x 3.2 mm. These samples were then held under a
weighted steel strip for 24 h to prevent potential bending effects
from internal stresses. The resulting batch (of five test and five con-
trol samples) was subsequently sealed in polythene bags and
stored at room temperature (18-22 °C) prior to impact testing at
336 h (2 weeks) after moulding.

A Ceast Resil 25 Charpy machine with (non-instrumented) 7.5
or 15] hammer was used for impact testing at 3.8 ms~', which
operated in accordance with Ref. [13]. As observed with previous
Charpy-based studies using open-cast polyester matrix samples
[4,5,8,11,12], fibres tended to settle towards the bottom of the
mould prior to curing, an effect most easily observed at the lowest
Ve (3.3%). Thus for all our impact tests, samples were mounted with
the fibre-rich side facing away from the pendulum hammer and a
diagram of this configuration has been previously published [5,8].
For each Vi, three batches were impact tested at span settings of 24,
40 and 60 mm. Despite meticulous set-up procedures and align-
ment checks, some samples at 40 and 60 mm spans were observed
to be susceptible to being struck off-centre by the Charpy hammer,
the effect being most significant at 60 mm span.

4. Results
4.1. Initial observations

Fig. 1 shows cross sections, representing typical fibre spatial
distributions of all samples studied. For both test and control sam-
ples, fibre concentration was greatest towards the bottom of the
moulding, the effect being most prominent at 3.3% Vi, where the
fibre-rich region occupies only ~35-40% of the cross-sectional
area. As reported in Section 3, this concurs with previous Char-
py-based studies using open-cast polyester matrix samples, hence
V¢ calculations represent average values.

Of particular concern however, was whether there were any sys-
tematic differences in spatial distribution between equivalent test
and control samples. Fig. 1 shows some tendency towards the
concentration gradient of fibres in control samples being more dif-
fuse than the corresponding test samples. Although this may be
attributed to control yarn waviness (Section 3), it was not observed
in cross sections from a previous study [7], where a different
polyester resin was used. Thus minor differences in resin curing
characteristics may have exacerbated this effect. A more diffusely
distributed layer of fibres might be expected to increase the total fi-
bre-matrix interface area available for energy absorption (through
debonding), thereby preferentially improving the Charpy impact

Vi (%) TEST

CONTROL

16.6

Fig. 1. Representative optical micrograph (polished) sections of all samples evaluated.
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Fig. 2. Representative fracture and delamination characteristics observed from (prestressed) test and (unstressed) control samples for each V¢ value and span setting.

toughness of the control samples. Although undesirable, we suggest
that this, combined with the marginally higher V; (Section 3) in the
control samples would have had negligible effects on the results.

Fig. 2 shows representative fractures from (prestressed) test
and (unstressed) control samples at the three span settings. For
all Vyvalues at 24 mm span and all span settings at 3.3% V;, samples
generally exhibited a small cluster of fractures in the central
region, sometimes with a vertical crack at either side in the vicinity
of the Charpy anvil shoulders. This was consistent with samples
being pushed through the anvil shoulders following impact and
remaining in a deformed state with a ‘V’ shaped profile after
testing. For 10% and 16.6% V¢, a wider spread of multiple (predom-
inantly) vertical cracks was observed, particularly at larger spans,
concurring with a transition to fractured samples with more
curved deformation profiles. Larger spans also left samples with
less residual deformation after testing.

As reported in Section 3, samples tested at 60 mm span were
most susceptible to being struck off-centre by the Charpy hammer.
Owing to the more centralised fracture pattern, this was more
easily observed at 3.3% Vi. We estimate that ~60% of all 3.3% V¢
samples tested at 60 mm span were fractured 3-8 mm off-centre.
At 10% and 16.6% Vg, more than half of the 60 mm span samples
also showed multiple diagonal cracking at one end, as seen in
Fig. 2. Unlike through-thickness damage in the main fracture re-
gion, these cracks were restricted to the matrix-rich side (facing
the hammer). We suggest that the off-centre impacts and diagonal
cracking are symptoms of (unwanted) lateral sample movement
during testing; this can be attributed to the limited sample support
at the 60 mm span setting, as discussed in Section 5.1.

In previous studies (L =24 mm), the region of impact-induced
delamination in test samples was found to be greater than that
of their control counterparts [5,8,11,12] and this can also be ob-
served at all span settings in Fig. 2. Moreover, for higher V; test
and control samples, Fig. 2 shows the multiple vertical cracks at
larger spans tending to produce delamination regions of a more
discontinuous nature.

4.2. Effects of span and fibre volume fraction on prestress-induced
energy increase

Table 2 summarises the impact test data. From this, Fig. 3 shows
the increase in impact energy absorbed (test samples relative to
control counterparts) as a function of V¢ for each span setting.
The considerable batch-to-batch variation seen in Table 2 is
denoted by the error bars. Since these represent uncertainty in
the mean values (standard errors), identification of any trends in
Fig. 3 requires caution.

Table 2
Impact test results from composite sample batches: 5 (prestressed) test and 5
(unstressed) control samples per batch. SE is the standard error of the mean.

Ve Span  Mean impact energy Increase in  Mean increase in
(%) (mm) (kjm~2) energy (%) energy (% +SE)
Test + SE Control + SE
33 24 91.2+1.0 61.8+3.2 47.5 38.9+45
92.0+2.0 69.6+1.5 321
88.7+4.0 64.7+1.5 371
33 40 71125 64.9+2.1 9.5 8.7+4.1
73.4+3.1 63.7+2.2 15.2
67.6%2.1 66.7 +4.4 13
33 60 33.9+25 354+32 -41 -1.0£2.7
41.9+3.7 40.1+0.8 4.3
389+19 401+1.7 31
10.0 24 250.8 +6.1 165.6 +9.6 51.4 34.0+9.3
2049+129 1564+7.0 31.0
205.8+13.7 171.8+139 19.8
10.0 40 160.2+1.8  149.1+33 7.5 12.3+3.0
179.8+24  152.7+4.0 17.7
143.6+2.7 1285%13 11.7
10.0 60 87.5+2.7 78.1+4.9 121 134+15
85.6+2.9 76.6 +5.0 11.7
85.7+3.9 73.6+2.6 16.4
16.6 24 265.8+89 2142+94 241 256+1.4
300.7+83  2344+99 283
282.7+24  2274+9.1 243
16.6 40 202.5+2.2 1753 £5.5 15.5 153+1.3
2125+46  181.0+5.7 17.4
2175+43 1925+5.1 13.0
16.6 60 103.9+2.6 103.8+4.5 0.1 93+4.6
99.4+1.8 87.8+54 133
111515 97.4+1.7 14.5

For data at 60 mm span, there are further concerns, because the
effects of batch-to-batch variability have been exacerbated by low
increases in energy. Table 2 shows two batches producing (small)
negative increases in energy absorbed at 3.3% V; and one batch at
16.6% V¢ is effectively zero. Thus any potentially observable trend
in Fig. 3 is masked by these effects.

In contrast, some conclusions may be drawn from data at the
other span settings. At 40 mm span, the three data points in
Fig. 3 show an approximately linear trend. Each of these data
points are, however, means from three batches and, when a least
squares fit of the nine individual batch values for energy increase
(Table 2) is performed, the correlation coefficient (0.540) indicates
no linear correlation, statistically, at 0.05 significance level.
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Fig. 4. Mean impact energies from test and control samples as a function of Charpy
span setting. Data points with error bars (standard errors) are means from three
batches (Table 2).

Although a linear relationship in the 40 mm span data may be
ruled out, there is still a modest increase in energy absorbed by test
samples, i.e. from ~9% (3.3% V;) rising to ~15% (16.6% V). Because
of error bar magnitudes however, a one-tailed t-test is required to
compare the means at 3.3% and 16.6% V;. This demonstrates that
the observed increase at 16.6% V¢ is significant at 0.10 but not at
the 0.05 level. Thus we may infer that there is only a weak positive
trend between increase in impact energy and V;.

At 24 mm span, the increase in impact energy is reduced from
~39% at 3.3% Vi to ~26% at 16.6% Vg, i.e. a 1/3 reduction. A one-
tailed t-test (0.05 level) shows this reduction is statistically signif-
icant. Since this negative trend does not occur at the 40 mm span,
we suggest it can be attributed to an increase in drag caused by the
greater resistance from higher V¢ samples being forced through the
Charpy anvil supports following impact. Higher Vi samples will
have been stiffer and thus more resistant to deformation (immedi-
ately after fracture) during this event, and resistance from drag
provided by test or control samples (giving additional energy
absorption) would have been similar, irrespective of prestress
effects.

4.3. Effects of span and fibre volume fraction on energy absorption

By plotting the mean impact energy data for test and control
batches as a function of span, Fig. 4 shows that with increasing

Fibre volume fraction
- 12 4 (%) Test Control
IE 33 [ ] o
g 166 = o
=~ o
£ b
5 &7
[=]
>
x
c
=
; 4 Published CFRP
‘h_b data
(]
f=4
w9 Tl T
0 4 + N
5 10 15 20
(L/h)

Fig. 5. Dependence of impact energy/unit volume, u, on L/h ratio for test and
control samples at 3.3% and 16.6% V¢ Also shown are CFRP data at comparable h
values from Ref. [15].

L: (i) energy absorption by both test and control groups decreases
and (ii) the increase in energy absorbed by test samples over their
control counterparts diminishes. Additionally, (iii) the change in
energy absorbed by control samples is less sensitive to a change
in span for 24 < L <40 mm.

At larger spans, we suggest that (i) can be attributed to an
increasing contribution from elastic deflection as the sample is
forced through the anvil shoulders, with less contribution from
fracture-inducing (plastic) deformation. Thus correspondingly less
energy becomes absorbed from fracture-based mechanisms during
the impact process. This concurs with the increasing prevalence of
multiple vertical cracks and reduced residual deformation of sam-
ples at the larger span settings, reported in Section 4.1.

From (ii), we can deduce that increased energy absorption
resulting from prestress must depend on the contribution from
shear stress during impact, the latter decreasing as L is increased.
Since there is no prestress effect in the control samples, this may
also explain (iii), in that their energy absorption characteristics
would be less sensitive to increasing contributions from shear at
the shorter span settings.

4.4. Effects of span and fibre volume fraction on energy per unit
volume

Referring to Eq. (1), Fig. 5 shows plots of u versus L/h for test and
control samples at the highest and lowest V; values studied. The
increasing contribution to energy absorption from shear stress-in-
duced delamination is highlighted as L/h is reduced. Also shown for
comparison are data from Ref. [15] for unidirectional CFRP speci-
mens over the same L/h range (L=30-100 mm; h=3 or 5 mm).
Although V¢ for the CFRP is unknown, we expect it exceeded the
V¢ values used in our study.

As L/h decreases, Fig. 5 clearly shows that u for the 16.6% V¢
(unstressed) control samples increases faster than the CFRP data.
This reflects the inherent toughness of the nylon fibre (even at rel-
atively low V), concurring with the energy absorbing capability of
fibres being of great importance for low velocity impact resistance
[25]. It is also apparent that at the lowest V¢ (3.3%), brittle matrix
characteristics become more prevalent. The (prestressed) test sam-
ples show higher u values as L/h decreases. This demonstrates the
increasing effect of energy absorption from larger (shear stress-in-
duced) delamination areas, referred to in Section 4.1.

As L/h approaches 20, both test and control samples at 16.6% V¢
show u values comparable to the CFRP data. In contrast with the
multiple vertical cracking observed in our samples at larger spans
(Fig. 2) however, Ref. [15] reports the failure mode for their CFRP
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Fig. 6. Mean impact energies (from Fig. 4) at 24 mm and 60 mm span settings
plotted against the product of estimated delamination area, A, and V;. Solid lines and
equations are from linear regression; r is the correlation coefficient.

samples (h=3 mm) to be complete separation break into two
pieces and this clearly reflects their brittle nature. For values of
L/h > 20, we may infer from trends in Fig. 5 that if the nylon fibre
composites reach a constant (minimum) value for u, it will be low-
er than the corresponding CFRP data and this can be attributed to
the relatively low V; values used for our composites.

4.5. Effects of delamination area on energy

To understand further the role of delamination on energy
absorption, Fig. 6 plots impact energy data, from the maximum
and minimum span settings, as a function of the product of
estimated delamination area, A (as seen in Fig. 2), and V. The
parameter AV provides a simple means to enable a more direct
comparison of data for A determined from samples with different
Ve values. Since this approach assumes similar delamination profile
characteristics through the thickness, h, of each sample, AV is not
an accurate parameter. Nevertheless, Fig. 6 shows that the test and
control sample data form approximately linear trends at both
spans thus indicating some dependence of energy absorption on
delamination area. These linear relationships can be compared
with findings from impact tests on glass fibre—epoxy plate samples
[26]. All test sample data points show higher AV values than cor-
responding control results, concurring with the larger delamina-
tion regions observed in Fig. 2. Of particular interest however, is
the difference in gradients between the two span settings
(34 x10°km™ at L=24mm, 1.6 x 10°km™ at L=60mm).
The higher gradient value at 24 mm span indicates that energy
absorption has a greater dependence on delamination than at
60 mm. Data for 40 mm span (not shown for clarity) follow an
intermediate gradient value (2.5 x 10° k] m™*). The more promi-
nent role of delamination at the 24 mm span clearly concurs with
greater contributions from shear stress effects, as considered in
Sections 4.3 and 4.4.

5. Discussion
5.1. Effects of span and fibre volume fraction on energy absorption

Referring to Section 4.2, the selected span settings had a pro-
found effect on how increases in energy absorption (from
prestress) apparently changed with V;. For L =24 mm, the testing
configuration was close to ISO 179 Specimen Type 3, the only dif-
ference being that the length of our samples (80 mm) was greater
than that recommended by the standard (33 or 39 mm for
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Fig. 7. Schematic of the fracture process at (a) 24 mm span and (b) 60 mm span.

h =3 mm). Although ISO 179 states that the most important (geo-
metric) parameter is the L/h ratio [13], our findings indicate that
drag, especially from the higher V; samples, has some influence
on impact energy data at this L setting. As illustrated in Fig. 7a, this
must be expected: if the Charpy hammer pushes the fractured
sample through the anvil shoulders following impact, clearance
either side of the 10 mm wide hammer will only be 4 mm for a
3 mm thick sample. Although the longer sample lengths used in
our study would have exacerbated the effect, it is highly probable
that impact energy readings from shorter (Specimen Type 3) fibre-
reinforced samples, in which hinged (incomplete) breaks occur,
would also be affected by drag. Fig. 7a also shows how the crack
pattern seen in Fig. 2 is generated at L = 24 mm.

For L = 60 mm, the testing configuration was ISO 179 Specimen
Type 2. In contrast with shorter spans, the contribution to energy
absorption from shear would have been comparatively small. In-
stead, following elastic deflection, our samples would have exhib-
ited simple transverse fracture, had they been as brittle as CFRP
(Section 4.4). Based on previous bend-test studies [7], we estimate
that flexural modulus values for all our samples were <10 GPa, i.e.
very low in comparison with, for example, GFRP (55 GPa) or CFRP
(120 GPa) specimens used for Charpy tests [15,16]. Thus although
drag effects could have been negligible, samples deflecting elasti-
cally (prior to the onset of fracture mechanisms) will have been
significant at the 60 mm span setting, as suggested in Section
4.3. Additionally, since the prestressed samples could have been
up to 50% stiffer than their control counterparts [7], they may have
absorbed more energy through elastic deflection, though we
suggest that this addition to total energy absorption (as deter-
mined by final position of the Charpy hammer after impact) would
have been comparatively small. Owing to limited support from the
anvil base (only 10 mm overhang at each end of the sample) and
degree of bending following elastic deflection, the onset of
multiple vertical fractures (Fig. 2) would have enabled samples
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to be pushed through the anvil shoulders with relatively low en-
ergy absorption, resulting in little difference between test or con-
trol groups. Schematically, these effects are illustrated in Fig. 7b.

A further concern with the 60 mm span setting was the fre-
quent tendency for samples to be struck off-centre by the Charpy
hammer (Section 4.1). Vibrations and transient effects have been
cited as complicating factors in pendulum-type impact tests [27]
and dynamic analysis has demonstrated that a Charpy sample is
not constrained as a simply supported three-point bend specimen
[28]. Moreover, significant elastic deflection and limited support
from the anvil base, coupled with uncertainty in the location of
crack initiation (due to samples being unnotched), would have
increased opportunities for unwanted lateral sample movement.

For L = 40 mm, the effect of V¢ can be assessed without compli-
cations associated with the other two spans being significant. Anal-
ysis of the data (Section 4.2) suggests only a statistically weak rise
in energy absorbed by test samples (over their control counter-
parts) with Vi A previous study [6] has shown there is an optimum
Ve (~35-40%) at which VPPMCs provide the greatest improvement
in tensile properties: this optimum was simply explained by the
competing roles of fibres (which generate the available stress)
and matrix (over which the stress can function). For Charpy (i.e.
flexural) loading conditions, the situation is clearly much more
complex. Three-point bend test studies [7] have indicated that
the increase in flexural stiffness from viscoelastic prestress was
insensitive to the limited V¢ range studied (8-16%) and, although
samples were not fractured in Ref. [7], this insensitivity concurs
at least, with the present findings.

5.2. Influence of shear on impact performance

The most significant finding from this work is that increased en-
ergy absorption arising from viscoelastically generated prestress
depends principally on the presence of impact-induced shear stres-
ses; these in turn activate residual (prestress-induced) shear stres-
ses at the fibre-matrix interface to promote (energy-absorbing)
delamination during the impact process. In Charpy impact tests,
the contribution from impact-induced shear stress and therefore,
prestress-enhanced delamination, increases as L/h is reduced,
thereby supporting the hypothesis in Section 2.2.

Attempting to make inferences on impact mechanisms occur-
ring in large potentially complex composite structures, based on
findings from the laboratory testing of samples with simple geom-
etry, clearly requires caution. Beam-shaped samples, having lower
levels of transverse constraint, are more capable of absorbing
energy than larger structures, such as circular plates [25]. More-
over, with fibre reinforcement being unidirectional, our study
was effectively performed on composite samples representing
one-dimensional behaviour. Nevertheless, it is still possible to
make some inferences on the likely effectiveness of VPPMCs in
real-world structures.

Since enhanced energy absorption from the prestress effect
depends principally on shear stress, low velocity impact protection
from structures where deflection is restricted may be further im-
proved with VPPMC technology. Clearly, deflection-restricted
structures are not uncommon, and these include composite panels
or plates with stiffeners for aerospace and underwater structures
[29] and thick laminates, e.g. glass fibre composites for marine
applications [30].

Predicting the effects of VPPMC principles applied to high veloc-
ity low mass impact conditions may be considerably more specu-
lative than those of low velocity impact scenarios. Damage is
however much more localised, so that geometrical aspects become
less important [25]. Previous work has highlighted four mecha-
nisms that may contribute to VPPMC energy absorption capabili-
ties and, by considering circumstantial evidence from published

studies, all of these could contribute towards improved high veloc-
ity impact protection [12]:

(I) Matrix compression impedes crack propagation.

(II) Matrix compression attenuates dynamic overstress effects,
thereby reducing the probability of fibre fracture outside
the area of immediate impact.

(1) Residual fibre tension causes the fibres to respond more col-
lectively and thus more effectively to external loads.

(IV) Residual shear stresses at the fibre-matrix interface regions
promote energy absorbing fibre debonding (delamination)
over transverse fracture.

In the present study, impact-induced shear is shown to encour-
age Mechanism (IV) but in more general terms, this does not
negate contributions from the other three mechanisms. The contri-
bution from Mechanism (IV) may however be significant under
high velocity low mass impact conditions, because the highly local-
ised deformation will cause large shear stresses. This deformation
generally consists of dishing or cone formation within the localised
damage zone, as observed in composites reinforced with carbon
[31,32], polymeric [33] and glass [34] fibres.

6. Conclusions

Charpy impact testing has been used to investigate the fracture
and energy absorption characteristics of VPPMCs over a range of
test span settings and Vi values. The main findings are as follows:

(i) The improvement in impact energy absorption from viscoe-
lastically generated prestress depends principally on shear
stresses activating prestress-enhanced fibre-matrix debond-
ing (delamination) during the impact process. Thus a span
setting of 24 mm shows greater increases in energy
absorbed (25-40%) compared with 60 mm (0-13%).

(ii) In contrast with relatively brittle composites such as CFRP,
the mechanical properties (fracture characteristics, modu-
lus) of the composite samples investigated here make the
Charpy impact results much more sensitive to span setting.
Thus although benefits from shear stresses are demon-
strated at 24 mm span, higher V¢ samples tested at this
setting are increasingly affected by drag, as the fractured
(hinged break) samples are forced through the anvil sup-
ports following impact. At larger span settings, particularly
at 60 mm, we suggest there is an increasing contribution
to energy absorption from elastic deflection, at the expense
of energy being absorbed from fracture-based mechanisms:
this causes lower energy absorption from all samples (i.e.
both test and control groups) as well as reducing any
improvements from prestress effects.

(iii) Although higher V; values may be expected to increase
opportunities for energy absorption through prestress-
enhanced fibre debonding, results at (the intermediate)
40 mm span show there is no more than a small, positive,
statistically weak trend between increased energy absorp-
tion (relative to control counterparts) and the V¢ range stud-
ied (3.3-16.6%).

Based on these findings, we suggest that for structures where
deflection is restricted, low velocity impact protection may be fur-
ther improved with VPPMC technology. Structures subjected to
high velocity impact from low mass projectiles may also benefit,
since large shear stresses would be expected to occur from highly
localised deformation.
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In this work, we have highlighted some of the limitations of the
Charpy impact test. Nevertheless, the improved understanding of
energy-absorbing mechanisms from our findings could provide
the basis for further, similar studies. By using fibre commingling
techniques, investigating the effects of viscoelastic prestressing
on the impact performance of relatively brittle composites (e.g.
CFRP), would be of particular interest.
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