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Collision probability due to space debris clouds

through a continuum approach

Francesca Letizia1, Camilla Colombo2, and Hugh G. Lewis3
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As the debris population increases, the probability of collisions in space grows. Due

to the high level of released energy, even collisions with small objects may produce

thousands of fragments. Propagating the trajectories of all the objects produced by

a breakup could be computationally expensive. Therefore, in this work debris clouds

are modeled as a �uid, whose spatial density varies with time under the e�ect of at-

mospheric drag. By introducing some simplifying assumptions, such as an exponential

model of the atmosphere, an analytical expression for the cloud density evolution in

time is derived. The proposed approach enables the analysis of many potential frag-

mentation scenarios that would be time-limited with current numerical methods that

rely on the integration of all the fragments' trajectories. In particular, the proposed

analytical method is applied to evaluate the consequences of some recent breakups on a

list of target objects. In addition, collision scenarios with di�erent initial conditions are

simulated to identify which parameters have the largest e�ect on the resulting collision

probability. Finally, the proposed model is used to study the mutual in�uence among

a set of high risk targets, analyzing how a fragmentation starting from one spacecraft
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a�ects the collision probability of the others.
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Nomenclature

AT = target area [m2]

a = semi-major axis [km]

e = eccentricity

err = relative error

F = fragments' �ux [km−2s−1]

f = vector �eld

G = characteristic line of the system

H = scale height for the atmospheric model [km]

h = altitude [km]

i = inclination [rad] or [deg]

J2 = second zonal harmonic coe�cient of Earth's gravitational potential, 1.082 62× 10−3

Lc = fragment characteristic length [m]

M = mean anomaly [rad] or [deg]

ME = reference mass for collision [kg]

mp = projectile mass [kg]

N = number of collisions

n = fragment density [-/km]

RE = Earth's equatorial radius, 6.378 16× 103 km

RH = geocentric radius of fragmentation [km]

pc = cumulative collision probability

r = geocentric radius [km]

t = time [s]

V = volume [km3]

v = velocity [m/s]

vcoll = collision velocity [km/s]

vr = radial velocity [km/s]

vθ = transversal velocity [km/s]

w = width of the altitude bins [km]
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µ = gravitational constant, 3.986 00× 105 km3 s−2

ν = true anomaly [rad] or [deg]

Ω = argument of the ascending node [rad] or [deg]

ω = argument of the periapsis [rad] or [deg]

ρ = atmospheric density [kg/m3]

I. Introduction

Past space missions left millions of non-operative objects in orbit and also current missions,

despite mitigation measures, continue to increase the number of debris objects because, quoting

Chobotov [1], `space debris is a self-perpetuating issue as any new space mission generates new

objects'. Currently, the focus is mostly on the largest objects of the debris population, which are

the 22 000 objects larger than 10 cm that are constantly tracked from the Earth to avoid collisions

with operational spacecraft [2, 3].

Objects smaller than 10 cm cannot be tracked with current radar technologies and, as a result,

the contribution of small fragments to the collision probability is often neglected. Objects larger

than 10 cm have also been the main scope for the evolutionary studies on the space debris population,

which analyze the long term response to the variation of some parameters such as launch frequency,

percentage of compliance with regulations, and implementation of active removal missions. However,

White and Lewis [4] showed that the e�ect of remediation measures is not the same for the population

of objects larger than 10 cm compared to the population between 5 and 10 cm. The latter may still

increase even when the former is expected to decrease. In other words, focusing only on the large

fragments may lead to an underestimation of the collision risk. In fact, also small fragments can pose

a relevant hazard to spacecraft. In particular, objects larger than 1mm are yet able to interfere with

operational spacecraft causing anomalies and objects larger than 1 cm can even destroy a satellite in

case of collision [5]. Recently, McKnight et al. [6] highlighted how the so-called lethal non-trackable

objects may become the leading factor in the decrease of �ight safety.

When aiming to get a global picture of space debris down to 1mm, models currently employed

to study the debris evolution cannot be simply extended to consider also small fragments. In fact,
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the number of objects larger than 1 cm in LEO is around 500 000 and more than one hundred

million objects larger than 1mm are thought to be in orbit around the Earth [3]. These numbers

are too large to consider a piece-by-piece analysis of the debris population feasible as the resulting

computational time would be prohibitive. For this reason, some existing models, such as Rossi et

al. [7], sample the small fragments and de�ne some representative objects, which are the only ones

to be propagated. Then, the representative objects need to be re-converted into a distribution of

small fragments or in a value of fragment density to compute the resulting collision probability.

This work discusses the applicability of a novel alternative method, where the small fragments

are modeled in terms of their spatial density. This approach presents two main advantages. Firstly,

the proposed method, Cielo (debris Cloud Evolution in Low Earth Orbits), operates directly on

the spatial density, which can be used to compute the contribution to the collision probability due to

small fragments. Secondly, the formulation in terms of spatial density admits an analytical solution

for the evolution of the fragment density in the Low Earth Orbit (LEO) region where the e�ect of

drag is dominant.

The method will be brie�y outlined in Section II, while Section III-IV present the most recent

improvements in the proposed approach. Finally, Section V discusses some possible applications of

the method, such as the study of the consequences of some real breakups on a set of targets and the

analysis of the worst conditions for a fragmentation considering the resulting collision probability

for the target set.

II. Method overview

An analytical approach to the study of space debris population in LEO was proposed by

McInnes [8]. His approach is based on the application of the continuity equation to obtain an

explicit expression for the global debris spatial density in time. In this work, instead, this approach

is used to model a single fragmentation event and assess its consequences in terms of the resulting

fragment spatial density and the change in the collision probability for other spacecraft.

For this purpose, McInnes' analytical propagation [8] is included as one of the building blocks

(Fig. 1) required to model a fragmentation event from its beginning (the breakup) to the long term
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Fig. 1 Cielo building blocks.

evolution. The proposed method is here brie�y summarized through a short description of the �rst

four blocks in Fig. 1; further details on the overall method can be found in [9]. The rest of the paper

will focus on the �fth block regarding the computation of the collision probability.

The simulation of a fragmentation starts with the generation of the fragments through the

application of the NASA breakup model [10, 11], considering only fragments with size between

1 mm and 10 cm. Once the fragments are generated, their orbital parameters are numerically

propagated to model the initial phase of the cloud evolution when the Earth's oblateness is the

dominant driver [12, 13]. The numerical propagator used in this phase is PlanODyn [14], a

semi-analytical propagator based on the averaged variation of the orbital elements in Keplerian

elements. In particular, for this work, only the following perturbations are considered: the secular

e�ect of the Earth's oblateness [15], considering the J2 term only, and the e�ect of the atmospheric

drag, considering the average variation of the parameters along one orbit as obtained by King-Hele

[16].

The numerical propagation is stopped once the fragments are spread over 360 degrees and

form a band around the Earth. The time required for this transition can be estimated through

Ashenberg's theory [17]. From this moment, the problem can be studied with the analytical method

proposed by McInnes [8], changing the point of view from the single fragments to the whole cloud.

This requires the information on the position of all the fragments to be converted into a continuous

density function n0(r). A detailed discussion on the functions used for this purpose is provided in

Section III.

The long term evolution of the cloud is obtained by applying the continuity equation to model

the e�ect of atmospheric drag [8]. Using n to indicate the fragment spatial density, the continuity
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equation is written as

∂n(r, t)

∂t
+∇ • f = 0, (1)

where f = nv is the vector �eld that models drag and ∇ • f is its divergence.

Assuming that the system can be considered spherically symmetrical, it can be studied through

only one coordinate, the geocentric radius r. Therefore, f has only one component, fr = vrn(r, t),

with vr is the radial velocity due to drag. Introducing the hypothesis of circular orbits for the

fragments and considering an exponential model for the atmosphere, an explicit expression for the

fragment spatial density is found

n(r, t) = n0(ri)
r2i vr(ri)

r2vr(r)
(2)

where ri is the function

ri = g(r, t) = H logG(r, t) +RH (3)

that is derived from inverting the expression of the characteristics G(r, t) at the initial time t = 0.

Further information on the mathematical details can be found in [9]. Through Eq. 2, the value of the

density at a certain altitude and at a certain time instant is immediately known and it can be used

to compute the collision probability for a spacecraft crossing the cloud as explained in Section IV.

It should be observed that the hypothesis of circular orbits for the fragments limits the applica-

bility of the method. Firstly, it can be applied only to model fragmentations starting from circular

orbits, where the majority of the fragments have an eccentricity lower than 0.05 both in the case

of explosions and of collision. Circular orbits are, in any case, where the vast majority of cataloged

objects can be found [2] and where historically most of the fragmentations have started [18]. In ad-

dition, the hypothesis of circular orbits limits the altitudes where the method is applicable because

at low altitude (< 800 km) eccentricity has a large in�uence on the accuracy of the propagation [9].

An extension of the method able to deal also with the distribution in eccentricity is currently under

development [19]. Despite this constraint, the analytical method can be still applied to study the

regions in LEO with the highest debris density, which are around and above 800 km [2]. At these

altitudes also the e�ect of solar radiation pressure should be considered as this force can reach the
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same order of magnitude as drag for objects with large area-to-mass ratio. Future work will aim to

include also the e�ect of this perturbation in the analytical propagation, whereas the current work

considers the e�ect of atmospheric drag only and intend to validate the use of the spatial density

approach to compute the collision probability.

III. Density de�nition

A. Fragment spatial density

The simplest approach to de�ne the initial condition for the analytical propagation would be to

set it equal to the actual distribution of fragments with altitude at the time of the band formation

(TB). However, in this way, the initial condition would depend on the moment when the band is

considered formed and on the speci�c run of the breakup model used to simulate the fragmentation.

In fact, the NASA breakup model contains some random parameters to describe the distribution of

the fragments. A Monte Carlo approach could be adopted to give statistical meaning to the results.

An alternative approach is adopted here. The positions of the fragments is not set directly as

initial condition, but the information on the fragments' orbital parameters (namely, the semi-major

axis a, the eccentricity e, the inclination i) is used to describe the fragment distribution in space,

whereas the other parameters (i.e., the longitude of the ascending node Ω, the argument of the

periapsis ω and the mean anomalyM) are randomized within the cloud. In this way, the dependence

on the band formation time and on the run of the breakup model is reduced.

The conversion from the orbital parameters to the spatial density can be done by using the

expressions by Kessler [20] and Sykes [21], both derived from the work of Öpik [22]. They express

the probability of �nding a particle, at a certain distance from the central body r and a certain

latitude β, knowing its orbital parameters a, e, i, and assuming that the other parameters can be

considered randomly distributed. Note that when a cloud generated by a breakup is simulated, the

energy will spread di�erently among the fragments, so the mean anomaly M is the one randomly

distributed. These expressions depend only on geometry, so they have been applied to di�erent

problems related to space debris [23, 24], the design of disposal trajectories [25], but also asteroids

[21] and Jupiter's outer moons [20]. Moreover, the dependence on the distance and on the latitude
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can be described separately, which is particularly useful in the current application as the evolution

of the two parameters occurs with di�erent time scales and drivers.

According to Kessler's [20] and Sykes' [21] expressions, the spatial density in a particle band

can be expressed as

S(r, β) = s(r)f(β) (4)

where

s(r) =
1

4πra2
1√

e2 −
(

r
a − 1

)2
(5)

f(β) =
2

π

1√
cos2 β − cos2 i

, (6)

so, if only the dependence on the distance is considered, Eq. 5 can be used to build the initial

condition n0(r) = s(r). In this section only the expression as a function of the distance r is

analyzed, whereas the role of latitude is discussed in Section III C. Appendix A explains how to

derive the expression of the spatial density as a function of the orbital elements (Eq. 5) starting

from a set of fragments equally distributed in mean anomaly.

When modeling the cloud produced by a breakup, the dispersion of the orbital parameters

a, e among the fragments should be considered. This means that Eq. 5 cannot be applied directly

to describe the cloud density using the initial value of a, e of the orbit where the fragmentation

occurred. Instead, it should be applied to each fragment to take into account how the energy is

distributed among them; the total density is then obtained by simply summing the contribution of

each fragment

n(r) =

Nf∑
j=1

nj(r).

B. Validation of the density expression

The expression for the density was initially tested considering its accuracy in modeling the

initial density pro�le, which is the distribution of the fragments at the band formation. This was

done both on single runs of the NASA breakup model and on an average distribution obtained with

ten runs of the breakup model.
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Fig. 2 Average fragment spatial distribution at the band formation over ten runs of the breakup

model and distribution obtained from Eq. 5. Altitude bin size equal to 25 km.

Fig. 2 shows the test performed on ten di�erent runs of the NASA breakup model for a non-

catastrophic collision with energy equal to 100 kJ, occurring on a circular equatorial orbit at 800 km.

The grey bars represent the average distribution of fragments from the numerical propagation and

the black lines the resulting pro�les applying Eq. 5.

The comparison is expressed in terms the number of fragments in an altitude shell of width equal

to 25 km, so the result of Eq. 5 is multiplied by the volume of the spherical shell Vshell = 4
3π(r

3
+−r3−)

where r± = r±∆r with r center of the altitude bin and ∆r bin width. From Fig. 2 it is possible to

observe how Eq. 5 captures the general shape of the distribution and shows low variability among

the di�erent runs. This observation is important because it con�rms that the results obtained with

the proposed analytical method have a limited dependence on the speci�c run of the breakup model

used to model a fragmentation.

This aspect was studied more in detail evaluating also the variability of the results after the

propagation at di�erent altitudes. For the validation, ten runs of the breakup model are used to

simulate a fragmentation; the resulting debris cloud is followed up to 1000 days after the band

formation, when the di�erence with the numerical propagation is measured. The reference case is

set as the density pro�le obtained by averaging the result of the numerical propagation over the ten
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runs of the breakup model. The results of the analytical propagation are compared to this reference

case but they are built starting from the output of a single run of the breakup model, so that the

variability of the results can be evaluated.

PlanODyn [14] is used as numerical propagator also in this case, with the same settings

described in Section II. In particular, the e�ect of solar radiation pressure is not included in the

numerical propagation, even if its e�ect is important at altitudes larger than 800 km. Future work

will aim to validate the analytical propagation considering also this perturbation and will try to

include its e�ect in the continuity equation.

For both the propagation methods, numerical and analytical, the predicted number of fragments

still in orbit is computed and the relative error on this estimation errt is used as a measure of the

accuracy of the analytical method. In detail, errt is computed as

errt =
|
∫
nA(r) dr −

∫
nN (r) dr|∫

nN (r) dr

where nN (r) is the pro�le of the spatial density obtained with the numerical propagation and nA(r)

is the one from the analytical propagation. Another indicator used to measure the accuracy is the

relative error errp on the height of the peak in the distribution of fragments with altitude,

errp =
|maxnA(r)−maxnN (r)|

maxnN (r)
.

The values of errt and errp for fragmentations at di�erent altitudes are shown in Fig. 3, where

the error bars indicate the maximum and the minimum error among the ten density pro�les obtained

with the analytical propagation.

From the curve for errt it is possible to observe that the variability with the run of the breakup

model is very limited. For errp the variability is larger, but the error is in general lower than errp.

This shows that the proposed analytical model gives a reliable representation of the cloud evolution

without requiring multiple runs of the breakup model. This represents an advantage with respect

to other debris propagation methods that relies on multiple Monte Carlo runs.
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Fig. 3 Relative error on the total fragment number (errt) and on the density peak (errp) of

the analytical model at di�erent altitudes.

C. The dependence on latitude

As stated in Section III, the correct representation of the cloud spatial density requires consid-

ering also the distribution in latitude. However, in this work a constant distribution in latitude is

assumed, similar to what is already done by Kessler [24]. This approximation is chosen because the

purpose of this method is to study the long term (i.e., years) e�ect of a fragmentation, whereas the

latitude of a target spacecraft crossing the cloud evolves in a much shorter time scale (i.e., hours).

Following correctly the target latitude would require very short time step for the integration, elim-

inating or reducing the advantage of having a fast propagator for the fragment cloud.

However, it is important to remark that the analytical method is able to deal also with the

distribution in latitude. In fact, applying the general solution for a 2D formulation of a continuity

equation problem to the current application, the expression for the density can be written as

ñ(r, β, t) = ñ0(ri, βi)
vr(ri, βi)vβ(ri, βi)

vr(r, β)vβ(r, β)
(7)

where ñ0 is the initial distribution, ri, βi are functions obtained by inverting the characteristic lines

at initial time t = 0, vr, vβ are respectively the expression of dr/dt and dβ/dt due to the e�ect

modeled by the continuity equation, i.e., drag. Therefore, in this case, where the e�ect of drag on
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quasi-circular orbits is considered,

dr

dt
= −ε

√
RH exp

(r −RH

H

)
(8)

dβ

dt
= 0 (9)

meaning that vr depends only on r and the distribution in latitude is not directly a�ected by drag.

As a result, Eq. 7 can be written as

ñ = ñ0(ri, β)
vr(ri)

vr(r)
. (10)

The expression for ñ0(ri, βi) is simply the one given by Kessler [20] and Sykes [21], so using the

expressions in Section III,

ñ0(ri, βi) = S(ri, β) = s(ri)f(β) (11)

and �nally

ñ(r, β, t) = f(β)
s(ri)vr(ri)

vr(r)
. (12)

Similarly to what is done for s(r), f(β) can be built from the distribution of the fragments at the

time of band formation.

In this work, as explained before, the choice was not to follow in detail the evolution of the

target latitude: the collision probability is computed using an average value of the fragment density,

which depends only on the radial distance and not on the latitude.

The average density value can be found computing once the integral average of f(β) over one

orbit period and apply it to rescale the spatial density at any time, applying again the hypothesis

that the fragments' and the target's inclinations are not changing. The dependence of the latitude

β on the orbital parameters is expressed by

β = arcsin (sin (ω + ν) sin i) (13)

where ω, ν, i refer to the argument of perigee, the true anomaly and the inclination of the target

spacecraft crossing the cloud. Introducing the argument of latitude u = ω + ν and writing the

expression for the case of circular orbit, the scaling factor of the spatial density can be computed as

f̄ =
1

2βmax

∫ 2π

0

du√
cos2 (β(u))− cos2 (βmax)

(14)
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Fig. 4 Relative error on the collision probability due to the averaging in latitude.

where β(u) is given by Eq. 13. βmax is the maximum latitude covered by the band. For non-

equatorial orbits βmax is put equal to the inclination where the fragmentation occurred iF if iF ≤ π/2

and equal to π − if otherwise. This follows from the band characterization proposed by McKnight

[12] and the observation that, with the current hypotheses (e.g., non-rotating atmosphere), the

fragment inclination is not a�ected by drag and so it is constant. For equatorial orbits, βmax is put

equal to the maximum inclination reached by the fragments because of the breakup.∗

This approach was tested by performing a simulation where the spatial density and the collision

probability (pc,f(β)) are computed considering the dependence on the latitude and using a very

short time step, equal to �ve minutes.† In this way, for each target orbit there are at least 20

integration points and the value of β can be considered representative of the time-step. This result

is compared to the simulation ran with a time step equal to one day, where only the dependence

on the geocentric distance is considered and the scaling factor from Eq. 14 is applied. The collision

probability obtained in this way is indicated with pc,f̄ .

∗ This can be done for any inclination of the parent orbit and this approach was compared with the results obtained
setting the maximum covered latitude equal to the parent orbit inclination. The latter gives actually a distribution
closer to the observed one and is, therefore, implemented.

† Observe that using this large number of points results in a remarkable increase in the RAM required to run the
simulation in a such a way that high-performance computing was employed for this validation. If the analytical
method is instead used on a normal machine, then a reasonable time-step needs to be chosen.
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The result of the comparison is presented in Fig. 4: it shows the relative error

∆pc
pc

=
|pc,f̄ − pc,f(β)|

pc,f(β)
(15)

introduced by Eq. 14 on the collision probability. The simulation refers to a target with inclination

equal to iT = 60 degrees crossing a cloud generated from an orbit with equal inclination (iF = 60

degrees).

It is possible to observe how the di�erence between the two methods is limited, with the relative

error that oscillates around a value equal to 0.004. Therefore, Eq. 14 is an e�ective way to model the

long term evolution of the collision probability without following the target latitude. For this reason,

this approach will be used in the following results where the spatial density is always computed as

S(r) = f̄s(r).

IV. Collision probability computation

Once the cloud density at any time is known, it is possible to evaluate its e�ect on the collision

probability for a spacecraft that crosses the cloud. The computation of the collision probability is

based on the average number of collisions N in an interval of time [20]. This number is then used to

obtain the cumulative collision probability for the target spacecraft through a Poisson distribution

pc(t) = 1− exp (−N) (16)

following the common analogy with the kinetic gas theory [12, 23]. According to this analogy, the

collisions between a target and a distribution of objects, in this case the fragments in a cloud pro-

duced by a fragmentation event, can be modeled similarly to the collisions among molecules within

an inert gas [26]. This requires that the probabilities of events at di�erent times are independent

(fragment random motion) and that the probability of collision during a certain time interval is

proportional to the length of the time interval (large number of fragments). This approach has been

criticized for example by Chan [27], who observes how the spatial density of the fragments and the

mean free path of the target have a very di�erent ratio in the case of gases and in the one of space

debris. Jenkin [26] also criticizes this approach if used in the �rst phases of the cloud evolution,

when the fragments' trajectories are highly correlated. In our application, the analogy is applied at
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a later stage of the cloud evolution, when the motion of the fragments has already been randomized.

Moreover, other approaches to the computation of collision probability, such as the one proposed

by Chan [27], should be feasible if they are based on a dependence of the number of collisions on

the fragment spatial density.

In the traditional approach, the average number of collisions N in a given interval of time

∆t = t− t0 can be written as

N = Fσ∆t (17)

where F is the �ux of particles and σ represents the collisional cross-sectional area [20]. This last

parameter is usually de�ned considering the dimensions of both the colliding objects [20], but here

only the target spacecraft area AT is considered because the fragments are much smaller than it, so

σ ≈ AT .

The �ux F is equal to

F = n(r, t)v (18)

where n(r, t) is the value of the spatial density obtained with the Cielo method explained in

Section II and applying the scaling factor due to the distribution in latitude. v is the average

relative velocity between the targets and the fragments.

To keep the formulation simple and dependent only on the radial distance, a set of hypotheses

is introduced to obtain the expression of v.If a single fragment is considered, v can be obtained from

the rule of cosines

v2 = v2T + v2F − 2vT vF cosφ (19)

where vT and vF are respectively the orbital velocities of the target and of the fragment with

respect to the central body; φ is the angle between the two vectors vT and vF. vT is known from

the propagation of the target trajectory; vF is a piece of information that is lost with the analytical

propagation. However, the propagation of the fragment cloud is done under the hypothesis of

quasi-circular orbits, so

vF ≈ vcirc =

√
µ

r
. (20)
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Fig. 5 Generic spherical triangle.

The angle φ can be related to the geometry of the two orbits too. In fact, the intersection between

two circular orbits with the same radius can be represented by the spherical triangle in Fig. 5

where B is the ascending node of the target orbit and C the ascending node of the fragment orbit.

Therefore,

B = iT C = π − iF ;

also a = ∆Ω, so the spherical triangle can be solved with the law of cosines to �nd the angle A

cosA = sinB sinC cos a− cosB cosC (21)

= sin (iT ) sin (iF ) cos (∆Ω) + cos (iT ) cos (iF ) (22)

Eq. 22 can be used to provide a unique value of φ for a given con�guration of target and fragments

in terms of their inclinations. In fact, given that Ω is uniformly distributed among the fragments,

the average relative velocity ∆v̄, can be found computing the integral mean of the function

∆v =
√
v2T + v2F − 2vT vF [sin (iT ) sin (iF ) cos (∆Ω) + cos (iT ) cos (iF )] (23)

for ∆Ω from 0 to 2π. By putting

χ = v2T + v2F − 2vT vF cos (iT ) cos (iF ) η = 2vT vF sin (iT ) sin (iF )

the average value of the relative speed can be written as

∆v̄ =
2

π

√
χ+ ηE

[
2η

χ+ η

]
, (24)

where E[x] is the complete elliptic integral of the second kind.
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Fig. 6 Relative error in the estimation of the relative velocity between target and fragments

for several con�gurations.

The approximation for ∆v was validated for di�erent geometries of the target and fragment

orbits. The results of the validation are shown in Fig. 6, where the metric used to measure the

method accuracy is

errrel =

∫
|∆vA −∆vN |dt∫

∆vN dt
, (25)

where ∆vN is the estimation of the velocity obtained using a numerical procedure that computes

the distance and the relative velocity between the target and each fragment; ∆vA is the analytical

estimation obtained from Eq. 24. Basically, Eq. 25 measures if the analytical approximation is able

to capture the average value of the relative velocity, which is considered to be the most relevant

parameter in a long-term study of the collision probability.

The plot on the left in Fig. 6 refers to di�erent combinations of inclinations for the target

(iT ) and the fragments (iF ), while their initial altitude is the same and equal to 800 km. As one

could expect, Eq. 24 does not work for equatorial orbits, where ∆Ω is not de�ned; for those cases

errrel ≈ 0.3 whereas it is lower than 0.08 for all the other cases. The estimation of ∆v in the

cases with equatorial orbits could be improved if information on the distribution of the fragments

in eccentricity were available. The extension of the method towards this direction is in progress, so

future work aims to fully develop the method to consider the e�ect of eccentricity.

The plot on the right in Fig. 6 shows instead the results for di�erent choices of the orbit
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inclinations, with ∆i = iF − iT , and of the target altitude, with the fragmentation starting again

at 800 km. Also in this case the error is generally low, but it tends to increase with the altitude

di�erence for orbits with the same inclination. In addition, it was veri�ed that errrel is lower than

10% for the cases discussed in Section V.

Here we would like to highlight that the expression in Eq. 24, even with its limits in terms

of applicability, appears as an important improvement of the method compared to its previous

formulation [28], where it was assumed that the impact angle between the target and the fragments

is always equal to 90 degrees. This hypothesis was conservative and it largely overestimated the

relative velocity ∆v, whereas the expression in Eq. 24 provides a more realistic estimation of ∆v.

V. Collision scenarios

Thanks to its limited computational time and its good accuracy, the proposed method Cielo

can be applied to study the collision probability due to small fragments in many di�erent scenarios.

The use of Cielo is proposed for following three applications. First, it can study the e�ect of a

breakup on di�erent target spacecraft. Second, it can be used to build, for each target spacecraft or

for a whole set of targets, a map of collision probability by varying the inclination and the altitude

of the simulated breakup. Third, the analytical method can be applied to generate a matrix of

in�uence among a selected set of targets.

The targets used for the simulations are listed in Tab. 1: they were extracted from a list prepared

by IFAC-CNR, ISTI-CNR and University of Southampton for a study sponsored by the European

Space Agency [29]. The objects in Tab. 1 are the ten spacecraft with the largest collision probability

and they are sorted by their semi-major axis. Note that the list of target spacecraft can be selected

depending on the desired application.

A. Single event simulation

The �rst application of the method is the evaluation of the consequences of a breakup on the

target list in Tab. 1, considering the collision probability associated with fragments larger than

1mm.

For this application, two recent small breakups are considered [30], whose parameters are re-
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Table 1 List of target spacecraft [29] for the collision probability analysis.

ID Target hp [km] ha [km] i [deg] Mass [kg] Size [m]

1 816.0959 818.9741 98.73 4090 6.91

2 818.5311 832.9389 98.83 2490 5.17

3 804.0385 858.8315 98.83 1000 4.46

4 822.4681 865.8019 70.90 3220 4.49

5 946.4051 986.0649 82.91 1420 4.06

6 934.9528 998.1172 82.95 1420 4.06

7 964.0951 990.5749 82.95 1420 4.06

8 960.1156 1005.754 82.93 1420 4.06

9 968.9735 999.8965 82.94 1420 4.06

10 1099.8350 1099.8350 63.00 1000 2.41

ported in Tab. 2. The value in the last column is an estimation of the parameter M used in the

NASA breakup model as a measure of the energy of the breakup [10]. For non-catastrophic collisions

it is de�ned as the product between the mass of the smaller object mp and the square of the collision

velocity vcoll [11]

ME [kg] = mp[kg]v
2
coll[km/s]/1[km/s].

From this parameter the fragment size distribution for a collision can be described through the

expression

N(Lc) = 0.1(ME)
0.75L−1.71

c (26)

where Lc is the fragment characteristic length and N(Lc) is the number of fragments of size equal

or larger than Lc. The parameter M is here estimated considering that for the two breakups the

number of fragments added to the debris population catalog is known (respectively 35 objects for

Cosmos 1867 and 9 objects for Cosmos 2428)‡. Therefore, assuming that the tracked fragments are

larger than 5 cm, the value of M is obtained inverting Eq. 26 and then the number of fragments NF

‡ Values updated from https://www.space-track.org/
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in the desired size range (1mm-10 cm) is obtained applying again Eq. 26 with the computed value

of M . Observe that the total number of fragments shown in Tab. 2 is very high and there is not

a general consensus on the reliability of the NASA breakup model in the studied size range. Some

modi�cations of the model are available in literature [31], but the original NASA model is used

because the purpose of this work was not to develop a new breakup model, but rather to show the

possible applications and the advantages of using a formulation based only on the spatial density.

The implementation of the NASA model used in this work was validated with the comparison to

the available data on other implementations [32].

Table 2 Parameters of two recent small breakups [30].

Spacecraft hp [km] ha [km] i0 [deg] NLc>5 cm M [kg] NF

COSMOS 1867 775 800 65 35 2.665 28138

COSMOS 2428 845 860 71 9 0.436 7235

The e�ect of the breakups on the target in the list is shown in Fig. 7, which shows the cumulative

collision probability caused by fragments larger than 1mm from the time of band formation up

to �ve years afterwards. The study of a single case in Fig. 7 for the COSMOS 1867 event was

obtained with an average computational time of 9.45 minutes on a cluster with 4 processors; the

average computational time is instead equal to 7 minutes for the COSMOS 2428 cases. Most of the

propagation time is required for the propagation of the fragments from the breakup to the band, so

the computational e�ort is required only once to generate the fragment cloud, which can be saved

and superimposed on each target spacecraft trajectory.

For the �rst breakup (COSMOS 1867), the resulting collision probability pc is shown in Fig. 7(a):

it is possible to observe that the �rst four spacecraft are the most a�ected by the fragmentation.

This is explained by two factors: �rstly, SC1 and SC2 have the largest cross-sectional area, and

secondly the �rst four spacecraft are both at the lowest altitudes and the shortest radial distance

from the fragmentation location. In particular, it is possible to observe an exponential relationship

between the spacecraft altitudes and the �nal values of the collision probability after �ve years.

A similar behavior can be observed also for the second breakup (COSMOS 2428) in Fig. 7(b),
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Fig. 7 Resulting collision probability from the two breakups on the targets in Tab. 1 including

fragments down to 1mm.

which shows the e�ect of inclination. In fact, the inclination of COSMOS 2428 is very similar to

the one of SC4, which, in this case, has a slightly higher collision probability than SC2 even if the

latter has a larger cross-sectional area.

B. Maps of collision probability

The collision risk for a spacecraft can be studied also from a di�erent point of view: instead of

focusing on a single breakup, here the location of the breakup is changed to highlight the e�ect of the

breakup conditions on the collision probability. In particular, here the altitude and the inclination

of the fragmentation are changed and this allows de�ning the most dangerous regions for a collision

to occur for all the targets in Tab. 1. Other parameters (e.g., time, fragmentation energy) may be

considered with the same approach.

Fig. 8 shows, for example, the study done for the spacecraft SC4 for fragmentations of 100 kJ,

including all the fragments down to 1mm. The peak in the collision probability is slightly above the

altitude of the spacecraft semi-major axis (aSC4 = RE+844 km) and for inclinations iF such that

sin(iF ) = sin(iSC4). Under this condition, the spacecraft will spend a part of its orbit at latitudes

where the cloud density is maximum. The collision probability is high also for inclinations where

sin(iF ) > sin(iSC4) because in these cases the spacecraft is always inside the band formed by the
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Fig. 8 Collision probability map for SC4 for fragmentations of 100 kJ, including all the frag-

ments down to 1mm.
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Fig. 9 Total collision probability map for the targets in Tab. 1 for fragmentations of 100 kJ,

including all the fragments down to 1mm. The markers indicate the targets.

fragments. As expected, fragmentations at higher altitudes than SC4 have a larger e�ect than the

ones at lower altitudes. In fact, over time drag tends to reduce the fragments altitude and the

fragments initially at altitudes higher than SC4 decay towards the target orbit.

The same analysis was performed for all the targets in Tab. 1 to obtain the map in Fig. 9,
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where the markers indicate the targets. Here it is possible to observe two peaks in the collision

probability, corresponding to the two bands in altitude where the targets are grouped: the �rst

from 817 to 844 km for SC1-4, the second from 966 to 984 km for SC5-9. Observing the �rst peak

in altitude (h ≈ 840 km), it is possible to notice that the distribution of collision probability is

not symmetrical around the peak: in fact, fragmentations at higher altitudes (e.g., 880 km) have a

larger e�ect than the ones at lower altitudes (e.g., 800 km) as already discussed for Fig. 8. It is also

possible to observe that the collision probability is still relatively high around h = 820 km, mainly

because of the presence of SC1, whose large cross-sectional area has a large in�uence on the total

collision probability.

As observed in Fig. 7(b) and Fig. 8, the fragmentations with sin(iF ) = sin(iT ) have a large

e�ect on the total collision probability because of the distribution of objects with latitude. Eight

out of ten spacecraft in Tab. 1 have sin(iT ) ≈ sin(82◦) = sin(98◦), so at these inclinations two

clear bands of high collision probability are present. Compared to previous results obtained with

the continuity equation approach [33], the bands are more evident because the expression in Eq. 14

takes into account the di�erent time of residence of the target inside regions with high spatial

density when its inclination is similar to the one of the fragmentation. Similar to Fig. 8, the

collision probability is high also in the whole inclination band between 80 and 100 degrees, which

corresponds to fragmentations for which all the targets are always inside the fragment band.

A map such as the one in Fig. 8 is obtained with a computational time of 3.66 hours in average§

on a cluster with 4 processors. The process can be easily automatized and parallelized to study a

list of targets and obtain a global map as the one in Fig. 9. These maps may be useful to study both

operational and non-operational targets to understand under which conditions a fragmentation has

the largest e�ect on the spacecraft. Moreover, the global maps can highlight the most critical areas

in terms of in�uence on the whole spacecraft population and can be used, for example, to identify

interesting candidates for active debris removal. Note that the targets to build the global map can

increased or some representative objects of the whole population can be chosen.

§ among the ten cases
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Fig. 10 In�uence matrix showing the cumulative collision probability for ten studied space-

craft.

C. In�uence matrix

The in�uence matrix is proposed to study the following situation: a small breakup caused by

a non-catastrophic collision with one of the spacecraft in Tab. 1, generates a fragment cloud that

can interfere with other spacecraft. Each spacecraft in Tab. 1 is treated as a potential target and

its collision probability due to the fragment cloud is computed after a certain time. This process

is repeated scrolling through the whole list of spacecraft in Tab. 1 to obtain a picture of how each

spacecraft a�ects the collision probability of the other ones.

Fig. 10 shows the resulting in�uence matrix for the spacecraft in Tab. 1 considering a fragmen-

tation of 100 kJ and plotting the resulting collision probability after �ve years. Here it is important

to specify that, as the proposed method is able to provide an analytical expression for the density

only after the band is formed, the collision probability is computed starting from that moment.

This means that the collision probability may be underestimated for satellites such as SC5-SC9 that

have very similar orbits and that may start to interact before the band is formed.

The sum of the collision probabilities, over all the targets, due to the same source can be used

as an index of the spacecraft in�uence; similarly, the sum of the collision probabilities for one target

from all the sources can be used as an index of its vulnerability. In formulas, I(i, j) is the element
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of the in�uence matrix that expresses the cumulative collision probability of the object j due to a

fragmentation starting from the object j. For a generic object k, the two indices are obtained from

In�uence(k) =
Ntot∑
j=1

I(k, j)

Vulnerability(k) =
Ntot∑
i=1

I(i, k).

Both these values are shown in Fig. 11.

As one can expect, the in�uence is very strong among satellites on similar orbits such as the

already cited group SC5-SC9 and the group SC1-SC4. SC10 has, instead, the lowest in�uence be-

cause it is in an orbit with lower inclination than the other objects and, therefore, its fragmentations

a�ect a smaller range of latitudes.

A high vulnerability is registered for SC1, which is in a lower orbit than the other spacecraft

and which has a much larger cross-sectional area. This explains why it is a�ected by all the frag-

mentations originating from the other spacecraft. On the other hand, SC10 is the least vulnerable

target because of its high altitude (with more than 115 km of separation between its semi-major

axis and the one of the closest object) and because of its small cross-sectional area.

The computational time required to generate Fig. 10 is equal to 645 s on a PC with 8 CPUs at

3.40 GHz. The process is fully automatic and parallized, so the number of spacecraft in the list can
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be extended to obtain a more complete picture of the mutual in�uence among what are considered

the most critical objects in the debris population in LEO.

VI. Conclusion

Small debris fragments are often not included in the study of the evolution of the debris pop-

ulation even if they can still pose a relevant hazard to spacecraft in case of collision. The number

of small fragments is too large to follow each object separately, so a method to study them in

terms of their resulting spatial density was proposed. This requires converting the information on

the position of the fragments into a continuous density function. The approach used derives the

spatial density from the fragments' orbital parameters and not directly from their positions. It was

shown how in this way the results are less dependent on the the run of the breakup model used to

produce the fragment cloud. Once the initial density pro�le was de�ned, its evolution with time

under the e�ect of drag was obtained by applying the continuity equation, which allows deriving

an explicit expression for the density as a function of time and distance. The dependence of the

fragment density on the latitude was instead neglected as the focus was on the long term evolution

of the cloud, whereas the latitude of a possible target spacecraft evolves on a much shorter time

scale. The explicit expression for the density allows the method to provide a very fast estimation

of the extension of the region of space a�ected by the fragmentation and of the resulting collision

probability for a spacecraft in that region. For this reason, the proposed method can be applied

to simulate many collision scenarios in a short time, enabling new analysis on the contribution of

small fragments to the collision probability. In particular, here the method was applied to study

the mutual in�uence among a list of spacecraft in the case they originate a fragment cloud as a

result of a small breakup. The resulting matrix of collision probability can be useful to identify

which objects, in case of fragmentations, are more likely to have a large e�ect on the global collision

probability and are therefore critical items in the debris population.

Appendix A

The expression of the spatial density can be obtained starting from the hypothesis of mean

anomaly M equally distributed. In this case the density nM (M) will be constant with M and the
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follow condition holds ∫ 2π

0

k dM = 1. (27)

The �rst step is to obtain the distribution with the true anomaly ν. Starting from the de�nition

of M

M = E − e sinE, (28)

with E eccentric anomaly, dM can be written as

dM =

(
dE

dν
− e cosE

dE

dν

)
dν (29)

=

[ √
1− e2

1 + e cos ν
− e

e+ cos ν

1 + e cos ν

√
1− e2

1 + e cos ν

]
dν (30)

=
(1− e2)

3
2

(1 + e cos ν)2
dν. (31)

Therefore,

nν(ν) =
(1− e2)

3
2

(1 + e cos ν)2
(32)

which is identical to the expression by McInnes and Colombo [34], beside a constant term due to

the di�erent choice in the normalization.

The following step is the translation into a distribution in r. Starting from the de�nition of r

the expression for dν is found.

r =
a(1− e2)

1 + e cos ν
⇒ dr =

a(1− e2)

(1 + e cos ν)2
e sin ν dν (33)

It is convenient to express sin ν as

sin ν =
√

1− cos2 ν =

√
1− 1

e2

[a
r
(1− e2)− 1

]2
(34)

=
√

1− e2
a

er

√
e2 −

( r
a
− 1

)2

(35)

so that

dν =
(1 + e cos ν)2

(1− e2)
3
2

r

a2
1√

e2 −
(
r
a − 1

)2 dr. (36)

Substituting dν in ∫
k

(1− e2)
3
2

(1 + e cos ν)2
dν (37)
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one obtains ∫
k
r

a2
1√

e2 −
(
r
a − 1

)2 dr (38)

so the distribution nr(r) in r is

nr(r) = k
r

a2
1√

e2 −
(
r
a − 1

)2 . (39)

Eq. 39 has as dimensions [1/km]; to obtain a real spatial density other two steps are required.

Firstly, the number of objects in a bin are counted and secondly, the number is divided by the

volume of the shell de�ned by the altitude bin.

For the �rst step, a rigorous approach will require

N(r;∆h) =

∫ r+δh

r

k
r

a2
1√

e2 −
(
r
a − 1

)2 dr; (40)

if we consider ∆h → 0,

N(r;∆h) =

∫ r

−∞
k
r

a2
1√

e2 −
(
r
a − 1

)2 dr−
∫ r+∆h

−∞
k
r

a2
1√

e2 −
(
r
a − 1

)2 dr ≈ k
r

a2
1√

e2 −
(
r
a − 1

)2∆h.

(41)

Similarly the volume of the shell can be written as

V =
4

3
π[(r +∆h)3 − r3] =

4

3
π[3∆hr2 +O(∆h2)] ≈ 4πr2∆h. (42)

The spatial density s is �nally obtained as

s(r) ≈ nr(r)∆h

4πr2∆h
=

k

4πa2r

1√
e2 −

(
r
a − 1

)2 , (43)

which is identical to Kessler's [20] and Sykes' [21] expression apart from a constant (k = 1 in his

expression).

VII. Acknowledgements

Camilla Colombo acknowledges the support received by the Marie Curie grant 302270 (SpaceDe-

bECM - Space Debris Evolution, Collision risk, and Mitigation), within the 7th European Commu-

nity Framework Programme. The authors acknowledge the use of the IRIDIS High Performance

Computing Facility, and associated support services at the University of Southampton, in the com-

pletion of this work. The authors would like to thank the editor and the reviewers for the detailed

comments that contributed to improve the quality of the paper.

29



VIII. References

[1] Chobotov, V., Orbital mechanics, AIAA, Reston, 3rd ed., 2002, pp. 301�334.

[2] Klinkrad, H., Space Debris: Models and Risk Analysis, Springer Praxis Books, Springer, 2006, pp. 15,

91-103, 120.

[3] Johnson, N., �Orbital debris: the growing threat to space operations,� 33rd Annual Guidance and

Control Conference, Breckenridge, CO, 2010, AAS 10-011.

[4] White, A. E. and Lewis, H. G., �The many futures of active debris removal,� Acta Astronautica, Vol. 95,

Feb. 2014, pp. 189�197,

doi:10.1016/j.actaastro.2013.11.009.

[5] Krisko, P. H., �The predicted growth of the low-Earth orbit space debris environment an assessment

of future risk for spacecraft,� Proceedings of the Institution of Mechanical Engineers, Part G: Journal

of Aerospace Engineering , Vol. 221, No. 6, Jan. 2007, pp. 975�985,

doi:10.1243/09544100JAERO192.

[6] McKnight, D. S., Di Pentino, F. R., and Knowles, S., �Massive collisions in LEO � A catalyst to initiate

ADR,� 65th International Astronautical Congress, Toronto, 2014, IAC-14-A.6.2.1.

[7] Rossi, A., Cordelli, A., Pardini, C., Anselmo, L., and Farinella, P., �Modelling the space debris evolution:

Two new computer codes,� Space Flight Mechanics � Advances in the Astronautical Sciences series,

Vol. 89, Univelt, San Diego, April 1995, pp. 1217�1231, AAS 94-157.

[8] McInnes, C. R., �An analytical model for the catastrophic production of orbital debris,� ESA Journal ,

Vol. 17, No. 4, 1993, pp. 293�305.

[9] Letizia, F., Colombo, C., and Lewis, H. G., �Analytical model for the propagation of small debris

objects clouds after fragmentations,� Journal of Guidance, Control, and Dynamics, Vol. 38, No. 8,

2015, pp. 1478�1491,

doi:10.2514/1.G000695.

[10] Johnson, N. L. and Krisko, P. H., �NASA's new breakup model of EVOLVE 4.0,� Advances in Space

Research, Vol. 28, No. 9, 2001, pp. 1377�1384,

doi:10.1016/S0273-1177(01)00423-9.

[11] Krisko, P. H., �Proper Implementation of the 1998 NASA Breakup Model,� Orbital Debris Quarterly

News, Vol. 15, No. 4, 2011, pp. 4�5.

[12] McKnight, D. S., �A phased approach to collision hazard analysis,� Advances in Space Research, Vol. 10,

No. 3-4, Jan. 1990, pp. 385�388,

doi:10.1016/0273-1177(90)90374-9.

30

http://dx.doi.org/10.1016/j.actaastro.2013.11.009
http://dx.doi.org/10.1243/09544100JAERO192
http://dx.doi.org/10.2514/1.G000695
http://dx.doi.org/10.1016/S0273-1177(01)00423-9
http://dx.doi.org/10.1016/0273-1177(90)90374-9


[13] Jehn, R., �Dispersion of debris clouds from In-orbit fragmentation events,� ESA Journal , Vol. 15, No. 1,

1991, pp. 63�77.

[14] Colombo, C., �Long-term evolution of highly-elliptical orbits: luni-solar perturbation e�ects for stability

and re-entry,� 25th AAS/AIAA Space Flight Mechanics Meeting , Williamsburg, VA, Jan. 2015, AAS

15-395.

[15] Vallado, D. A., Fundamentals of astrodynamics and applications, Springer, 4th ed., 2013, pp. 551�573,

619�688.

[16] King-Hele, D., Satellite orbits in an atmosphere: theory and application, Blackie, Glasgow and London,

1987, pp. 44 � 62.

[17] Ashenberg, J., �Formulas for the phase characteristics in the problem of low-Earth-orbital debris,�

Journal of Spacecraft and Rockets, Vol. 31, No. 6, Nov. 1994, pp. 1044�1049,

doi:10.2514/3.26556.

[18] Orbital Debris Program O�ce, �History of On-orbit fragmentations,� Jsc 62530, NASA, May 2004.

[19] Letizia, F., Colombo, C., and Lewis, H. G., �Continuity equation method for debris cloud evolution,�

Key Topics in Orbit Propagation Applied to SSA, April 2014.

[20] Kessler, D. J., �Derivation of the collision probability between orbiting objects: the lifetimes of Jupiter's

outer moons,� Icarus, Vol. 48, No. 1, Oct. 1981, pp. 39�48,

doi:10.1016/0019-1035(81)90151-2.

[21] Sykes, M., �Zodiacal dust bands: Their relation to asteroid families,� Icarus, Vol. 9, No. 2, 1990, pp. 267

� 289,

doi:10.1016/0019-1035(90)90117-R.

[22] Öpik, E. J., �Collision probabilities with the planets and the distribution of interplanetary matter,�

Royal Irish Academy, May 1951, pp. 165�199.

[23] Su, S.-Y. and Kessler, D., �Contribution of explosion and future collision fragments to the orbital debris

environment,� Advances in Space Research, Vol. 5, No. 2, Jan. 1985, pp. 25�34,

doi:10.1016/0273-1177(85)90384-9.

[24] Kessler, D., �Collision probability at low altitudes resulting from elliptical orbits,� Advances in Space

Research, Vol. 10, No. 3, 1990, pp. 393�396,

doi:10.1016/0273-1177(90)90376-B.

[25] Jenkin, A. B. and Gick, R. A., �Dilution of disposal orbit collision risk for the medium earth orbit con-

stellations,� 4th European Conference on Space Debris (ESA SP-587), edited by D. Danesy, European

Space Agency, ESA Publication Division, Noordwijk, Netherlands, 2005, pp. 309�314.

31

http://dx.doi.org/10.2514/3.26556
http://dx.doi.org/10.1016/0019-1035(81)90151-2
http://dx.doi.org/10.1016/0019-1035(90)90117-R
http://dx.doi.org/10.1016/0273-1177(85)90384-9
http://dx.doi.org/10.1016/0273-1177(90)90376-B


[26] Jenkin, A., �Probability of collision during the early evolution of debris clouds,� Acta Astronautica,

Vol. 38, No. 96, 1996, pp. 525�538,

doi:10.1016/0094-5765(96)00059-8.

[27] Chan, F. K., Spacecraft collision probability , Aerospace Press, El Segundo, 2008, Chapter 12, Close

Encounters with Multiple Satellites.

[28] Letizia, F., Colombo, C., and Lewis, H. G., �Continuity equation approach for the analysis of the

collision risk due to space debris clouds generated by a fragmentation event,� 65th International Astro-

nautical Congress, International Astronautical Federation, Toronto, Sept. 2014, IAC-14.A6.P.31.

[29] Rossi, A., Lewis, H. G., White, A. E., Anselmo, L., Pardini, C., Krag, H., and Bastida Virgili, B.,

�Analysis of the consequences of fragmentations in Low and Geostationary orbits,� Advances in Space

Research, May 2015,

doi:10.1016/j.asr.2015.05.035.

[30] NASA Orbital Debris Program O�ce, �Flurry of Small Breakups in First Half of 2014,� Orbital Debris

Quaterly News, Vol. 18, No. 3, 2014, pp. 1�2.

[31] Hanada, T., Liou, J.-C., Nakajima, T., and Stansbery, E., �Outcome of recent satellite impact experi-

ments,� Advances in Space Research, Vol. 44, No. 5, Sept. 2009, pp. 558�567,

doi:10.1016/j.asr.2009.04.016.

[32] Rossi, A., �NASA Breakup Model Implementation Comparison of results,� 24th IADC Meeting , 2006.

[33] Letizia, F., Colombo, C., and Lewis, H. G., �Small debris fragments contribution to collision probability

for spacecraft in Low Earth Orbit,� Space Safety is No Accident, 7th IAASS Conference, Springer

International Publishing, May 2015, pp. 379 � 387.

[34] McInnes, C. R. and Colombo, C., �Wave-like patterns in an elliptical satellite ring,� Journal of Guidance,

Control, and Dynamics, Vol. 36, No. 6, 2013, pp. 1767�1771,

doi:10.2514/1.55956.

32

http://dx.doi.org/10.1016/0094-5765(96)00059-8
http://dx.doi.org/10.1016/j.asr.2015.05.035
http://dx.doi.org/10.1016/j.asr.2009.04.016
http://dx.doi.org/10.2514/1.55956

	Nomenclature
	Introduction
	Method overview
	Density definition
	Fragment spatial density
	Validation of the density expression
	The dependence on latitude

	Collision probability computation
	Collision scenarios
	Single event simulation
	Maps of collision probability
	Influence matrix

	Conclusion
	Appendix A
	Acknowledgements
	References

