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Highly non-uniform flows such as shear layers are an intrinsic feature of turbofan exhaust noise
problems. Modeling the sound radiation from turbofan exhausts with the linearized Euler equa-
tions raises the issue of accurately representing strongly spatially-varying mean flows numeri-
cally, while ensuring that numerical solutions are not polluted by spurious solutions such as alias-
ing errors. This paper investigates the behavior of aliasing instabilities in time domain solutions
obtained by the discontinuous Galerkin method. A model exhaust noise problem is studied to
demonstrate the growth of unphysical temporal instabilities. A new fully-discrete dispersion anal-
ysis technique is developed that permits non-uniform mean flows. The dispersion analysis is used
to study the spectral behavior of aliasing instabilities and the impact of polynomial order on their
formation and growth. The results of this study indicate that aliasing errors are largely absolute
instabilities which build up in the solution over time and are highly sensitive to the polynomial
order.

1. Introduction

Accurately predicting the noise signature of turbofan exhausts is a challenging problem requir-
ing a highly accurate solution scheme to resolve the disparate length and temporal scales, a model
incorporating highly non-uniform mean flow effects such as strong shear layers, and a low computa-
tional cost to be useful as an engineering tool. The time domain, quadrature-free nodal discontinuous
Galerkin method (DGM) [1]] has proven to be a highly accurate and efficient solution scheme for
aeroacoustics applications [2, 3, 4]. Applied to the linearized Euler equations (LEE), the LEE DGM
can accurately and efficiently describe sound propagation through non-uniform mean flows and ef-
fects such as refraction, vorticity generation, and scattering of entropy and vorticity fluctuations into
acoustic waves.

One challenge of solving the LEE is discretely representing the mean flow to ensure that the phys-
ical features of the flow are sufficiently described, while also ensuring that problem is well behaved
numerically. This work focuses on the latter to demonstrate numerical issues, specifically aliasing,
that can lead to unstable computations. The nodal DGM represents both the solution and the flux by
polynomial interpolation. Aliasing error arises when the flux is composed of products of polynomials,
and is then interpolated by a polynomial basis of a lower order than the product of the polynomials.
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This interpolation essentially transforms higher order modes into lower order modes in the interpo-
lated flux. Since the flux terms in the LEE consist of products of mean flow variables with the solution
variables, aliasing error is introduced for non-uniform mean flows.

The aliasing problem is studied extensively in the spectral method community for non-linear prob-
lems [S], however little research has been done to investigate aliasing error arising in solutions to
linear problems with non-uniform media. This paper investigates the aliasing problem specifically in
application to the solution of the LEE with highly sheared mean flows by the DGM. A duct radia-
tion problem with an artificially imposed shear layer is solved to illustrate aliasing instabilities. The
spectral properties of aliasing are identified by solving a new, fully-discrete, dispersion analysis of the
LEE DGM supporting non-uniform mean flows.

2. Governing equations and the numerical solution scheme

2.1 Linearized Euler equations in cylindrical coordinates

Sound propagation in a non-uniform, inviscid, fluid flow can be approximated by linearizing the
conservative form of the three-dimensional Euler equations about a mean flow, resulting in the lin-
earized Euler equations. For geometries with cylindrical symmetry, which is often the case for turbo-
fan exhaust problems, it is convenient to work in the cylindrical coordinate system. A simplification
to the problem can be made by performing a Fourier decomposition of the solution in the azimuthal
direction,
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resulting in the three-dimensional formulation for each azimuthal mode, m, with derivatives in only
two spatial dimensions,
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are the fluctuating quantities of density, r-, -, and xz-momentum, and a pressure ratio, 7 = <i) 7,

defined by Goldstein [6]. The term, S, contains any sources present in the problem. The terms
F, =rA.q, Fy = Ayq, and F, = A_q are flux terms in the r, 6, and = directions. The specific
expressions for these matrices can be found in [7]].

2.2 Time domain nodal quadrature-free DGM

Defining a triangular tessellation, 2 C R?, an element, D;, € €, and requiring that the residual of
Eq. (2) is orthogonal to all test functions ¢ € £ in element Dy, where £, = {¢;,i = 1,..., N,}is
the space of Lagrange polynomials of order p,
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where S contains the source and the Fy and A.q terms. Integrating by parts twice, the strong formu-
lation of the DGM becomes
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where F™? is the flux normal to the edge b of element k, and £ is a normal numerical flux through
edge b of element &, which is chosen as the upwind flux in this work. The term, Sj, contains products
of the solution with the matrices, Ay and A.. The solution is defined through the interpolation at
nodes on an element,

Np
(5) q~ qu(rj7$j>t)¢j(rv$)v

j=1

where N, is the number of points on the element, and g; are the nodal solution values. Substituting
Eq. (5) into the strong formulation, Eq. ()), the semi-discrete formulation becomes

qu _ & n n
(6) = =M [MiS" — (SIF) + SiF)) + ) M (Fk”’ —f b)] 7
b=1

where M, S,, S, and M! are the mass, stiffness, and edge matrices, respectively.

Rather than compute the element matrices and store them for each element, the quadrature-free
approach developed by Atkins and Shu [1] maps each triangular element to a reference element and
requires storage of only the transformation Jacobian. This scheme allows for potentially large sav-
ings in computational cost as compared to traditional DGM. However, the element matrices for the
cylindrical formulation have an explicit r-dependence and can not readily be mapped to a reference
element. One solution is solve for rq rather than q, but this raises the issue of recovering the so-
lution on the axis, 7 = 0. To avoid these issues, the standard DGM is used to solve for g in all
elements touching the axis, and the quadrature-free DGM is used to solve for rq in all other elements.
The solution in the quadrature-free elements is divided by r when it is transferred to a neighboring
non-quadrature-free element. The semi-discrete form of the LEE DGM above is integrated in time
with the low-storage, six-stage Runge-Kutta scheme by Berland et. al [8] with fourth order temporal
accuracy.

2.2.1 Aliasing

The flux terms in Eq. (6] involve products of the solution variables, a polynomial of order p, with
mean flow variables. If the mean flow is a polynomial of order m, then the flux is a polynomial of
order at least p + m. Interpolation of the flux with a polynomial of order p, transforms the higher
order modes into lower order modes in the interpolated flux. This leads to the formation of aliasing
errors which may degrade the solution and cause unphysical instabilities especially when using large
elements with high polynomial orders [9]. Reducing the accuracy of the mean flow representation or
applying a modal filter may reduce the aliasing errors, but at a possible cost of solution accuracy.

3. Fully-discrete dispersion analysis

To investigate the formation of aliasing-driven instabilities for the DGM, a fully-discrete disper-
sion analysis technique is developed. Other dispersion analyses of the DGM consider only model
scalar equations on infinite-periodic meshes [10]. In this work, the dispersion analysis technique is
similar to the dispersion analysis of a finite-difference scheme developed by Gabard and Brambley
[11]. Consider the semi-infinite channel computational domain shown in Figure [Ia] with uniform
mesh spacing in the x and y directions, Az and Ay. Assuming solutions of the LEE with the form,
q ~ €!“t=k2) the solution at the boundary of the n + 1-th element can be written in terms of the
solution at the n-th boundary as q,,+1 = qne 2% where k, is the wavenumber in the axial direc-
tion and q is the vector of nodal solution values of fluctuating density, momentum, and pressure ratio,
concatenated with all elements in the mesh as q = [ql, qs, ..., qu} T , with N defined as the total
number of elements.
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Figure 1: Construction of a fully-discrete dispersion analysis (a) and the Mach number profile con-
sidered (b).

By enforcing periodicity only in the axial direction and leaving the transverse direction fully
discretized, both non-uniform mean flow and mesh effects can be considered by the model. In this
work, the hyperbolic-tangent mean flow Mach number profile illustrated in Figure [1b| is imposed.
Boundary conditions specific to the problem may be defined on the edges of the m = 1 and m =
Ny elements, such as hard walls, impedance surfaces, or absorbing layers. The dispersion analysis
problem can be assembled into the following semi-discrete matrix form,

B, X 0 . 0
~1 p+1
dq _1 272) E3’4 25 . 0
7 — =M
(7) T : : q,
-1
0 e 0 Eé)vk_2 E(Nk.—l),Nk

which is a block-tridiagonal matrix. The mass matrix, M, is a block-diagonal matrix, containing each
element’s mass matrix. The flux term corresponding to degrees of freedom (DOF) on a two-element
patch, p = n,n +1,1is E,, ,,41, and the contribution to the edge flux terms from DOF outside of patch
p are 2P~ and 3P, After replacing the time derivative with a low-storage Runge-Kutta scheme,
the formulation becomes

N,
I+ 7 (AAL?

s=1

(8) ehlq = q,

which is in the form of a generalized eigenvalue problem. The number of stages and the coefficients
of the Runge-Kutta scheme are defined as [V, and ,, respectively. Solutions of Eq. (§)) are in the form
of 5 x Ny x N, eigenvalues, e“!, which represent the growth of the solution modes over one time
step, At, and eigenvectors, g, which contain the solution at the nodal points. Solutions to Eq. form
a dispersion relation, D(w, k) = 0, numerically describing the time-evolution of the initial conditions.
Only a few of the solution modes correspond to actual physical modes, the rest can be considered to
be spurious.

4. Properties of the instabilities

This section applies the dispersion analysis technique developed above to a model shear layer
problem. Numerical solutions to a duct radiation problem with an artificial shear layer are used
to illustrate the behavior of aliasing-driven numerical instabilities in a problem with many similar
features to a turbofan exhaust noise problem.
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Figure 2: Computational setup of the duct radiation problem.

4.1 Semi-infinite axisymmetric duct problem

Consider the computational domain shown in Figure[2] A semi-infinite, zero thickness, hard wall
duct with an exit plane at x = 2.5 is colored with a blue line. Duct modes are injected into the domain
within the duct along the green line and the waves are allowed to leave the domain cleanly through
the buffer regions, shown in red. The numerical and analytical solutions are compared on the black
dashed line.

4.1.1 Verification

To verify the axisymmetric implementation, solutions to the duct radiation problem are performed
and compared with the near-field analytical solutions developed by Gabard and Astley [12]. Only a
single solution is shown in this work for brevity. A duct mode with a free-field wavenumber of
ko = 20, azimuthal order 5, and radial order O is injected into a quiescent mean flow. Elements with a
polynomial order, p = 6, are used. Figure [3a]shows contours of fluctuating pressure after 60 periods
of oscillation. The acoustic waves can be seen smoothly exiting the domain through the buffer region,
outlined in black lines, with no noticeable reflections. Pressure, radial velocity, and axial velocity
fluctuations are compared to the analytical solution in Figure [3b] Good agreement with the analytical
solution is demonstrated for all solution variables.

4.2 Aliasing instabilities in the shear layer

Shear layers with strong gradients are a common feature of the mean flow in a turbofan exhaust
noise problem. Consequently, these strong mean flow gradients can amplify the aliasing problem.
To model this effect, the duct radiation problem in Section {.1]is updated to include an artificially-
imposed shear layer from the exit lip of the duct. The shear layer Mach number profile is given
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Figure 3: Contours of pressure fluctuations (a) and a verification of the duct radiation problem (b).
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Figure 4: Pressure fluctuations at consecutive times (a) and contours showing aliasing and the mean
Mach number at the final time (b).

by

_1 R 7]

where R is the duct radius and w is the shear layer thickness which varies in the x-direction as
w = 0.2(x — 2.45) sin(¢), with ¢ being the spreading angle. This mean velocity profile is imposed
directly on the DGM nodes, and therefore with the same order polynomial representation as the
solution variables.

A duct mode with a free-field wavenumber of k; = 8.5, azimuthal order 5, and radial order
0 is injected into the duct in the same manner as in Section 4.1.I] The shear layer region of the
mesh is refined enough to resolve the hydrodynamic fluctuations and to accurately describe the strong
mean flow gradients. As the solution evolves in time, the presence of a mean flow allows vorticity
to be generated downstream of the duct lip. These vortices cause strong fluctuations in pressure
downstream of the duct as shown in the top image in Figure dal The bottom two images show the
pressure fluctuations at two subsequent times. For the polynomial order 7 solution, an unphysical
instability forms and rapidly grows to a similar magnitude as the stable solution. Magnified images
of the pressure contours at a time step of 10800 and the mean flow Mach number are shown in Figure
Mb] It is clear that the instability is highly unphysical and is localized to a region with strong mean
flow gradients.

4.3 Spectral analysis
4.3.1 Duct with a shear layer problem

Taking the spatial Fourier transforms of the pressure computed in Section {4.2] at times ¢t =
10800A¢ and ¢ = 11000A¢, the power spectrums are shown in Figure [5al The range of wavenumbers,
k = 18to k = 50, represents the physical solution mode, with small growth from one time to the next.
Outside of the physical region, there is a large growth over the time period and over a wide range of
wavenumbers. From the ratio of two spectra, a solution growth rate, —Im(w), is calculated and shown
in Figure [Sb| The fast growth of the unphysical modes seen in Figure 4a)is evident considering the
large growth rates over the spectrum.

4.3.2 Dispersion analysis of wave propagation in a shear layer

The dispersion analysis developed in Section[3|can be used to study the error and stability proper-
ties of the LEE DGM for wave propagation through a sheared mean flow. While the physical problem
in the dispersion analysis is fundamentally different than that of the duct radiation problem analyzed
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Figure 5: Power spectrum of pressure fluctuations at two times (a) and the corresponding growth rate
of the pressure (b).

above, it is conjectured that the behavior of aliasing is purely related to the numerical implementation
and should arise independently of the physical problem under consideration.

For a range of wavenumbers, the eigenvalue problem, Eq. (§), is solved to form the dispersion
relation, D(w, k) = 0, of the discrete problem. For each wavenumber considered, the numerical
dispersion relation gives a range of numerical frequencies, w, of which some can be identified as
physical modes and all others are spurious, or unphysical modes. From these modes, it is possible to
analyze the error or the stability of the problem. Only the unstable modes are of interest in this work
and they must be separated from the stable modes. To achieve this, only the modes with the smallest
imaginary part of w, i.e. the most unstable modes, are stored.

In Figure [6a]the most unstable mode is shown for each wavenumber and a range of polynomial or-
ders. As the polynomial order increases from p = 1 to p = 5, for a range of wavenumbers the growth
rate converges to what appears to be the shape of a physical instability. This is further evidenced by
calculating the group velocity, Re (g—“lj) , from Figure For the range of wavenumbers from k£ = 0 to
k = 5 and polynomial orders 3 to 5, the group velocity is calculated from the slope of the dashed line.
The group velocity indicates that the physical unstable mode is convected downstream at a velocity
of 0.25, which is expected as it is the velocity at the center of the shear layer.

As the polynomial order increases, it is clear that the growth rate of the most unstable mode
increases significantly over the range of wavenumbers considered and becomes less physical. The
group velocity of these modes is equal to, or nearly, zero for a wide range of wavenumbers. Zero group
velocity explains why aliasing instabilities pollute the solution; they build up over the integration
time and are not convected out of the domain. These behaviors are in agreement with the aliasing
instabilities seen in the duct radiation problem above. Namely, the polynomial order strongly impacts
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Figure 6: Growth rates of the most unstable mode for a range of polynomial orders (a) and the real
part of the numerical frequency of the modes (b).
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the aliasing and the aliasing instabilities are mostly absolute instabilities that do not convect out of the
domain. While the dispersion analysis indicates that there may be a range of wavenumbers at which
the unphysical modes do not dominate, in practical problems however, a wide range of wavenumbers
will be present and are likely to excite the unphysical modes.

5. Summary and conclusions

Instabilities driven by aliasing in solutions to the LEE in the time domain with the DGM have
been characterized. A model exhaust noise problem with a shear layer was used to show the onset
of aliasing instabilities in practical computations. The spectral properties of the aliasing instabilities
were studied by using a new fully-discrete dispersion analysis technique for the LEE DGM. Effect of
the polynomial order of the scheme on the growth of these instabilities was shown. The results of this
study indicate that aliasing errors are largely absolute instabilities which build up in the solution over
time and are highly sensitive to the polynomial order.

Future work will involve the development of filters to specifically target aliasing. The dispersion
analysis will be used to develop a priori indicators of regions of the mean flow prone to aliasing and
where filtering is most necessary. The impact of the accuracy of the mean flow representation on the
solution will also be studied.
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