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Nonparametric Estimation of Probability Density
Functions for Irregularly Observed Spatial Data

Zudi LU and Dag TJØSTHEIM

Nonparametric estimation of probability density functions, both marginal and joint densities, is a very useful tool in statistics. The kernel
method is popular and applicable to dependent data, including time series and spatial data. But at least for the joint density, one has had to
assume that data are observed at regular time intervals or on a regular grid in space. Though this is not very restrictive in the time series
case, it often is in the spatial case. In fact, to a large degree it has precluded applications of nonparametric methods to spatial data because
such data often are irregularly positioned over space. In this article, we propose nonparametric kernel estimators for both the marginal and
in particular the joint probability density functions for nongridded spatial data. Large sample distributions of the proposed estimators are
established under mild conditions, and a new framework of expanding-domain infill asymptotics is suggested to overcome the shortcomings
of spatial asymptotics in the existing literature. A practical, reasonable selection of the bandwidths on the basis of cross-validation is also
proposed. We demonstrate by both simulations and real data examples of moderate sample size that the proposed methodology is effective
and useful in uncovering nonlinear spatial dependence for general, including non-Gaussian, distributions. Supplementary materials for this
article are available online.

KEY WORDS: Asymptotic normality; Expanding-domain infill asymptotics; Irregularly positioned spatial data; Marginal and joint prob-
ability density functions; Non-Gaussian distribution; Nonlinear spatial dependence; Nonparametric kernel method.

1. INTRODUCTION

Nonparametric estimation methods are well established for
time series and have found extensive practical applications; see,
for example, Fan and Yao (2003) and Teräsvirta, Tjøstheim,
and Granger (2010). In particular this is the case for the kernel
method of estimating a density function and a conditional ex-
pectation with applications to model identification, diagnostic
checking, and forecasting. Nonparametric methods are far less
used for spatial random variables. There are several reasons for
this, but perhaps the most important one has been the fact that
the sampling points are often irregularly positioned in space. For
a time series observations are usually taken at, or can be aggre-
gated at, regular time intervals. For spatial series, at least in the
absence of computerized pixel-based images, this has not been
the case. Because of physical constraints measurement stations
cannot usually be put on a regular grid in space. This means
that spatial analysis has been almost completely dominated by
parametric models; for example, parametric models for covari-
ance functions (or variogram) in kriging (Cressie 1993; Stein
1999). Also, partly for this reason one has to a large degree had
to limit oneself to linear models, although there are (Chiles and
Delfiner 1999) the so-called conjunctive kriging models that are
nonlinear.

One of the main motivations for nonparametric analysis in
time series is density estimation, in particular joint density esti-
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mation since this in turn can be used in nonlinear modeling in
regression and additive modeling. In all of this the regular grid
assumption is vital. Consider, for example, the task of estimat-
ing the joint density p1 = pXt ,Xt−1 of consecutive observations
in a time series. Then the kernel estimate is given by

p̂1(x1, x2) = 1

n

n∑
1

Kh(Xt − x1)Kh(Xt−1 − x2),

where Kh(x) = h−1K(x/h) with K being a kernel function.
To evaluate this asymptotically we need infinitely many pairs
(Xt,Xt−1) taken exactly one time unit apart. If the observations
were taken at irregular time intervals, there would not be enough
observation points to estimate the joint density for a specified
time difference.

The above problem is much worse for spatial variables. There-
fore, the nonparametric theory has so far almost exclusively been
developed for the regular grid case (Gao, Lu, and Tjøstheim
2006; Hallin, Lu, and Tran 2001; 2004a, b; Lu et al. 2007; Tran
1990). This literature does not quite have the potential for appli-
cations that one would wish for, because spatial measurements
on a grid have been an exception.

The purpose of this article is to try to break out of this con-
finement. We make an attempt to construct an asymptotic theory
for nonparametric density estimation, both marginal and joint,
for a random field with irregularly placed observations. To our
knowledge, our article represents the first step in this direction,
but some related attempts have been made for other problems.
Hall and Patil (1994) looked at nonparametric estimation of a
spatial covariance function using observations whose locations
are generated by a probability distribution. Matsuda and Ya-
jima (2009) had a similar model for generating observations
irregularly in space and looked at the estimation of the spectral
density nonparametrically and parametrically with the emphasis
on the latter. The focus by Jenish and Prucha (2009) was also
on parametric models.
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Traditionally there have been two different approaches to
asymptotics for spatial data. The so-called expanding domain
asymptotics let the domain of the measurement locations tend to
infinity. It is more or less a direct extension of the corresponding
device of increasing the number of observations for a time se-
ries. It is primarily suited to a situation where the measurements
are on a grid. The other approach is the infill asymptotics where
the total domain is kept fixed but the density of the measure-
ment points in that domain is allowed to increase indefinitely.
In this article we use a mixed domain approach in which both
the density of observations and the domain itself are allowed
to increase. Using this method we have been able to find con-
ditions under which the density estimates are consistent and
asymptotically normal and where error limits and confidence
intervals can be found. Besides being of interest on its own, we
believe that the theory also opens up for further developments.
For instance, one could start looking at nonlinear regression in
an additive model context (see Lu et al. 2007) and at nonlinear
and nonparametric interpolation, model identification and test-
ing. This would be an alternative to linear and nonlinear kriging,
and these ramifications will be the subject of future publications.
In addition, as commented by the Associate Editor of this ar-
ticle, an interesting application of our procedure is to estimate
the covariance matrix for the longitudinal data, which are also
often irregularly sampled; see, for example, Fan, Huang, and Li
(2007) and Fan and Wu (2008).

Here is a brief overview of the article: In Section 2, the
methodology for the estimation of the marginal and joint prob-
ability density functions together with a new framework of
expanding-domain infill asymptotics for irregularly positioned
spatial data is proposed. Section 3 states the basic assumptions
and notation needed for establishing the asymptotic theory of
the proposed estimators. Sections 4 and 5 will then develop
the asymptotic properties, including asymptotic biases, vari-
ances, and distributions, under the new framework of spatial
asymptotics, for the marginal and joint probability density es-
timators. Estimation of the isotropic joint probability density
function is further investigated in Section 6. Section 7 provides
a practical, reasonable selection of the bandwidths involved
in the joint density estimators on the basis of cross-validation
combined with asymptotic results, which is important for real
applications. Numerical evidence in terms of both simulations
and real data examples is presented in Section 8. The proofs of
the main theorems are collected in Section 9, with the neces-
sary lemmas provided in an Appendix as online supplementary
material.

2. METHODOLOGY

Assume we observe the spatial data {Y (s1), . . . , Y (sN )} from a
stationary spatial process {Y (s)} on R2, where si = (ui, vi) ∈ R2

for i = 1, 2, . . . , N , are allowed to be irregularly positioned.
Let f (x) be the marginal probability density function of Y (s),
and f (x, y; s0) the joint probability density function of Y (s)
and Y (s + s0) that characterizes the nonlinear, non-Gaussian
spatial dependence, with s0 �= (0, 0). We are interested in the
estimation of f (x) and f (x, y; s0) based on the observed
data.

2.1 Estimating the Marginal and Joint Probability
Density Functions

We can easily construct the estimator of the marginal density
f (x) of Yi = Y (si) as follows

f̂ (x) = 1

N

N∑
i=1

Kh(Y (si) − x), (2.1)

whereKh(x) = h−1K(x/h) withK(· · ·) a kernel function on R
and h = hN → 0 (N → ∞) is a bandwidth.

However, the joint density f (x, y; s0) cannot be estimated as
simply as f (x). A formal estimator of f (x, y; s0) could be

f̌ (x, y, s0) = 1

n0

∑
j,�∈S0

Kh(Yj − x)Kh(Y� − y),

where S0 := {(j, �) : sj − s� = s0, j, � = 1, . . . , N} and n0 =
#S0, the cardinality of the set S0. However, in practice, owing to
the irregularity over the plane, n0 could be very small or even
equal to 0, and therefore a more intuitively appealing estimator,
with more neighboring observations used, could be constructed
as

f̂ (x, y; s0)

=
∑N

j,�=1 Lb(sj − s� − s0)Kh(Yj − x)Kh(Y� − y)∑N
j,�=1 Lb(sj − s� − s0)

, (2.2)

whereLb(s) = b−2L(s/b) withL(·) a kernel function on R2 and
b = bN → 0 (N → ∞) is a bandwidth.

The spirit of constructing f̂ (x, y; s0) by using spatial smooth-
ing in (2.2) is similar to that of the nonparametric covariance
estimator in Hall and Patil (1994) who constructed a nonpara-
metric estimation of covariance function that characterizes the
linear spatial dependence, while, differently, our estimator (2.2)
is concerned with the estimation of nonlinear dependence for
the spatial process. Clearly, it becomes more challenging to in-
vestigate the irregularly positioned spatial data than the case of
regularly gridded data: for example, as discussed above, since
it necessitates the introduction of an additional bandwidth pa-
rameter b, it leads to increased theoretical complexity and the
practical difficulty of having to choose two bandwidth parame-
ters in the implementation of (2.2).

Our main objective of this article is to establish the asymp-
totic properties, in Sections 3–5, of the estimators f̂ (x) and
f̂ (x, y; s0). We will study the asymptotic properties under a
new asymptotic framework that is suggested below.

2.2 Framework of Domain-Expanding Infill (DEI)
Asymptotics

As mentioned in the introduction, there are two distinct
asymptotics in spatial statistics: expanding domain asymptotics,
where more data are collected by increasing the domain with
the distance between neighboring observations remaining at
least roughly constant (see, e.g., Dalenius, Hájek, and Zubrzy-
cki 1961; Matérn 1960; Quenouille 1949), and fixed-domain or
infill asymptotics, where more data are collected by sampling
more densely in a fixed domain with the distance between neigh-
boring observations tending to zero (see, e.g., Novak 1988 and
Traub, Wozniakowski, and Wasilkowski 1988). See also Cressie
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(1993) and Stein (1999). Asymptotic properties of the estima-
tors are quite different under the two asymptotic schemes. A
notable difference is in the consistency versus inconsistency of
the estimators under the increasing-domain and fixed-domain
asymptotics, respectively. There is a rich literature under both
frameworks in spatial statistics and econometrics; see Zhang
(2004), Zhang and Zimmerman (2005), Lu, Tjøstheim, and Yao
(2008), Du, Zhang, and Mandrekar (2009), Lu et al. (2009),
and the references therein for recent reviews on fixed-domain
asymptotics, and Hallin, Lu, and Tran (2001, 2004a,b), Gao,
Lu, and Tjøstheim (2006), Lu et al. (2007), Robinson (2008,
2009, 2011), etc., for the recent developments under expanding
domain asymptotics of nonlinear and/or non-Gaussian spatial
processes.

Different from the above references, in this article we will
study the asymptotic properties of the proposed joint proba-
bility density estimators under a framework that combines the
two frameworks of the asymptotics. We will call it a frame-
work of domain-expanding infill asymptotics, or simply DEI
asymptotics, which is defined as

δN = max1≤j≤Nδj,N → 0, with δj,N
= min{‖si − sj‖ : 1 ≤ i ≤ N, i �= j}, (2.3)

that is, the distance between neighboring observations all tends
to 0, as N → ∞, and

�N = min
1≤j≤N

�j,N → ∞, with �j,N

= max{‖si − sj‖ : 1 ≤ i ≤ N, i �= j}, (2.4)

that is, the domain at each location is expanding to ∞, as
N → ∞, where ‖ · ‖ is the usual Euclidean norm in R2. To
avoid confusion, we will call the framework of traditional infill
asymptotics domain-fixed infill (DFI) asymptotics, which in our
terms means that (2.3) is true but max1≤j≤N�j,N ≤ C0 < ∞
for all positive integer N, while the framework of traditional
domain-expanding (DE) asymptotics means that (2.4) holds true
but min1≤j≤N δj,N ≥ c0 > 0 for all N. For convenience, we will
call δN an infilling distance and �N an expanding distance of
the spatial sites, in the sequel.

The reasons why we adopt DEI asymptotics are mainly from
the following considerations: First, DEI asymptotics reconciles
the gap between DFI and DE asymptotics. It overcomes the
drawbacks of DFI and DE asymptotics in that DFI cannot guar-
antee the estimators to be consistent as showed by Lahiri (1996)
and Zhang (2004), while DE asymptotics for which the distance
between neighboring observations does not tend to zero appears
less attractive in such applications as spatial interpolation (krig-
ing) as argued in Stein (1999, p. 62). Second, DEI asymptotics
combines both the advantages of DE and DFI frameworks, and
is therefore appealing in both furnishing consistent estimators
ensured by the expanding aspect and having the potential of
application to spatial prediction (kriging) requiring the infill as-
pect. Third, which kind of asymptotics need be applied in con-
structing confidence intervals for example, may depend on the
viewpoint of the user. But in many situations the DEI framework
may be natural as a result of the data structure. For example,
socio-economic data are often collected over individual cities
and suburbs: on one hand, more cities and suburbs are taken
into account, meaning an expanding domain is adopted; on the

other hand, within each city or suburb, more observations may
be collected, requiring an infill asymptotic simultaneously.

It may also be worth pointing out that our defined domain-
expanding infill asymptotic by (2.3) and (2.4) is different from
an alternative version of mixed asymptotic adopted by Hall
and Patil (1994); see also Matsuda and Yajima (2009), who as-
sumed in the notation of this article, that si = (A1ui,1, A2ui,2),
where ui = (ui,1, ui,2), i = 1, 2, . . . , N , are independently and
identically distributed random vectors with a probability den-
sity function fU(u) of a compact support in [0, 1]2, and A1 =
A1,N → ∞, A2 = A2,N → ∞ as N → ∞. We do not impose
such a particular structure on the spatial locations, because such
a location structure is sample size dependent via A1 and A2 and
appears not suitable for defining a fixed location where spatial
prediction (kriging) needs to be made.

3. ASSUMPTIONS AND NOTATION

For the sake of convenience, we are summarizing here the
main assumptions we are making on the random field {Y (s) : s ∈
R2} and the kernels K(·) and L(·) to be used in the estimation
method. Assumptions (I)–(II) are related to the random field
itself.

For any collection of sites S ⊂ R2, denote by B(S) the
Borel σ -field generated by {Y (s)| s ∈ S}, and for each cou-
ple S ′,S ′′, let d(S ′,S ′′) := min{‖s′ − s′′‖ | s′ ∈ S ′, , s′′ ∈ S ′′}
be the distance between S ′ and S ′′, where ‖s‖ := (u2 + v2)1/2,
for s = (u, v) ∈ R2, stands for the Euclidean norm. Finally,
write Card(S) for the cardinality of S.

Assumption (I) (spatial process):

(i) {Y (s), s ∈ R2} is a strictly stationary spatial process, sat-
isfying the α-mixing property that there exist a func-
tion ϕ such that ϕ(t) ↓ 0 as t → ∞, and a function
ψ : N 2 → R+ symmetric and increasing in each of its
two arguments, such that

α(B(S ′),B(S ′′))
:= sup{|P(AB) − P(A)P(B)|, A ∈ B(S ′), B ∈ B(S ′′)}
≤ ψ(Card(S ′),Card(S ′′))ϕ(d(S ′,S ′′)), (3.5)

for any S ′,S ′′ ⊂ R2. The function ϕ moreover is such
that

lim
m→∞m

γ

∞∑
j=m

j 2{ϕ(j )}κ/(2+κ) = 0

for some constant γ > max{1, 2κ/(2 + κ)}
and some κ > 0.

(ii) Denote by f (x, y; s0) the joint density function of Y (s)
and Y (s + s0), where s0 �= (0, 0). Here f (x, y; s) is con-
tinuous as a function of (x, y) uniformly with respect
to s ∈ R2, and has second-order partial derivatives with
respect to x, y, and s, which are continuous.

(iii) The marginal and joint probability density func-
tions f (x) and fi,j (x, y) for Yi and (Yi, Yj ) sat-
isfy |fi,j (x, y) − f (x)f (y)| ≤ C uniformly for i �= j

and (x, y) ∈ R2, where C is a generic positive con-
stant; further, the joint probability density functions
fi,j,k(x, y, z) and fi,j,k,�(x, y, z,w) for (Yi, Yj , Yk) and
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(Yi, Yj , Yk, Y�), respectively, are bounded uniformly
with respect to i �= j �= k �= �.

Assumption (II) (sampling sites): The observations are
positioned at {si , i = 1, 2, . . . , N} ⊂ R2, for which (2.3)
and (2.4) hold true with min1≤j≤N δj,N/δN ≥ c1 > 0 and
max1≤j≤N�j,N/�N ≤ C1 < ∞ for all N, and there exists a
continuous sampling intensity function (i.e., density function)
fS defined on R2 such that:

(i) for any measurable setA ⊂ R2,N−1 ∑N
i=1 I (si ∈ A) →∫

A
fS(s)ds as N → ∞,

(ii) fS(s) is bounded and has second derivatives which are
continuous on R2, and

(iii) A0(s0) = ∫
R2 fS(s2 + s0)fS(s2)ds2 > 0, and A1(s0) =∫

R2
∂fS(s2+s0)

∂s fS(s2)ds2 and A2(s0) = ∫
R2 f

2
S (s2 + s0)fS

(s2)ds2 exist.

Assumption (III) (kernel functions):

(i) The kernel function K(·) satisfies that
∫
K(u)du = 1,∫

uK(u)du = 0, and μK,2 = ∫
u2K(u)du < ∞, νK =∫

K2(u)du < ∞.
(ii) The kernel function L(·) has a bounded support,

such that
∫
R2 L(s)ds = 1,

∫
R2 sL(s)ds = 0, and bμL,2 =∫

R2 ssτL(s)ds < ∞, νL = ∫
R2 L

2(s)ds < ∞.

Assumption (IV) (bandwidths):

(a) As N → ∞, (i) h → 0, (ii) Nh → ∞, and (iii)
δ

−2(1+2/γ )
N h1−2κ/{(2+κ)γ } → 0.

(b) As N → ∞, (i) h → 0, (ii) b → 0, (iii) Nhb → ∞,
Nhb2 → 0, (iv) N (b/δN )2h−2κ/(2+κ) → ∞,
N (b/δN )2h2(γ−2κ/(2+κ))/(2+γ ) → 0. Here in both (a)
and (b), γ > 2κ/(2 + κ) and κ > 0 were defined in
Assumption (I)(i).

Assumption (I) concerns the conditions on the spatial data-
generating process, which are standard in the context of the prob-
lem under study. For example, Assumption (I)(i), the α-mixing
condition, is similar to (A4) of Hallin, Lu, and Tran (2004b).
This is a technical assumption used in both nonlinear time series
and spatial literature to characterize the data dependence. In the
serial case, many stochastic processes and time series are known
to be strongly mixing. Withers (1981) obtained various condi-
tions for linear processes to be strongly mixing. Under certain
weak assumptions, autoregressive and more general nonlinear
time-series models are strongly mixing with exponential mix-
ing rates; see Pham and Tran (1985), Pham (1986), Tjøstheim
(1990), and Lu (1998). Guyon (1987), as well as Guyon (1995),
has shown that the results of Withers under certain conditions
extend to linear random fields, of the formXn = ∑

j∈Z2 gjZn−j,
with n ∈ Z2, over gridded space, where the Zj’s are indepen-
dent random variables. In addition, Assumptions (M, iii) and (J,
iii), given in the next sections, on the functions ψ(·) and ϕ(·)
in (3.5) are very mild, which allow for Assumptions (A4′) and
(A4′′) of Hallin, Lu, and Tran (2004b) that are the same as the
mixing conditions used by Neaderhouser (1980) and Takahata
(1983), respectively, and are weaker than the uniform strong
mixing condition considered by Nakhapetyan (1980). They are
satisfied by many spatial models, as shown by Neaderhouser
(1980), Rosenblatt (1985), and Guyon (1987). This α-mixing

assumption can be relaxed to a more general Near Epoch De-
pendence, having the α-mixing and the data process of Hallin,
Lu, and Tran (2001, 2004a) as special cases, but it would involve
much lengthier proofs (e.g., in time series case, see Lu 2001 and
Lu and Linton 2007).

Assumption (I)(ii) is a standard condition on the probability
density function to be estimated. Assumption (I)(iii) is a mild
technical condition with uniform boundedness imposed on the
joint probability density functions to ensure the uniform con-
sistency with respect to the different spatial sites. Here the first
part of Assumption (I)(iii) is standard in this context; it has been
used, for instance, by Masry (1986) in the time series case, and
by Tran (1990) and Hallin, Lu, Tran (2004b) in the gridded
spatial context. If the random field Yi = Y (si) consists of inde-
pendent observations, then |fi,j (x, y) − f (x)f (y)| vanishes as
soon as i and j are distinct. Note that the first part of Assumption
(I)(iii) also allows for an unbounded marginal density.

Assumption (II) provides the conditions on the spatial sites
where observations are irregularly positioned, under our frame-
work of DEI asymptotics, among which (II)(i) is the same as
A3 of Lu, Tjøstheim, and Yao (2008) and Condition 8 of Lu
et al. (2009, p. 878), and (II)(ii, iii) are also the mild conditions
required in the derivation of asymptotic bias and variance of
the concerned estimators. Assumption (III) specifies the condi-
tions on the kernel functions used, which are very standard in
nonparametric kernel estimation. Assumption (IV) part (a) lists
the conditions on the bandwidths used for the marginal density
estimator (2.1), where (i) and (ii) are standard as in traditional
marginal density estimator and (iii) is a new condition related
to δN ; while part (b) for the joint density estimator (2.2), where
(i) and (ii) are standard, (iii) is mild and (iv) is a bit involved
relating to the δN but is still easily satisfied. For example, if
b = CN−1/2, where 0 < C < ∞ is a generic constant indepen-
dent of N, then Nhb2 = O(h) → 0 and N (b/δN )2h−2κ/(2+κ) =
O(1)(δN )−2h−2κ/(2+κ) → ∞ hold naturally, while Nhb → ∞
and N (b/δN )2h2(γ−2κ/(2+κ))/(2+γ ) → 0 hold true under simple
conditions that Nh2 → ∞ and h(γ−2κ/(2+κ))/(2+γ )/δN → 0 for
γ > 2κ/(2 + κ) and κ > 0.

We finally let tr(A) stand for the trace of a square matrix A.

4. ASYMPTOTICS FOR THE MARGINAL DENSITY
FUNCTION ESTIMATOR

In this section, we are first concerned with the asymptotics for
the estimator f̂ (x), defined in (2.1), of the marginal distribution
f (x), which takes the same form as in the case of the regularly
positioned spatial data in Tran (1990) and Hallin, Lu, and Tran
(2001, 2004a).

First, it is quite obvious by the stationarity of Yi that f̂ (x)
has a dominating bias term B(f̂ (x)) = 1

2 f̈ (x)h2
∫
u2K(u)du

because

Ef̂ (x) = EKh(Yj − x) = h−1
∫
K((u− x)/h)f (u)du

=
∫
K(u)f (x + hu)du =

∫
K(u)[f (x) + ḟ (x)hu

+ 1

2
f̈ (x + ζhu)(hu)2]du

= f (x) + 1

2
f̈ (x)h2

∫
u2K(u)du(1 + o(1)), (4.6)
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by using Assumption (III, i) on the kernel K(·), where |ζ | < 1.
Then, under Assumption (IV)(a), we can derive the asymptotic
variance for f̂ (x) as follows

var(f̂ (x)) = 1

Nh
f (x)

∫
K2(u)du(1 + o(1)). (4.7)

Moreover, for marginal density estimation we state the following
additional assumption on the bandwidth h relating to the infilling
distance δN and the mixing coefficient defined in (3.5).

Assumption (M): Let cN = {δ2
Nh

κ/(2+κ)}−1/γ , which tends
to ∞ as N → ∞. (i) limN→∞Nh2 > 0, Nh5 = O(1);
(ii) limm→∞m

4+3γ ∑∞
t=m t

2[ϕ(t)]κ/(2+κ) < ∞; and (iii)
Nψ(1, N)ϕ(cN ) → 0 , as N → ∞, where ϕ and ψ are defined
in (3.5).

Note that (i) of Assumption (M) is standard and mild for this
kind of nonparametric marginal density estimation. Assump-
tion (M, ii) is a strengthened version of Assumption (I, i) on
the mixing coefficient ϕ(·). The function ψ(·, ·) in Assump-
tion (M, iii) can take the forms such as ψ(n′, n′′) ≤ min(n′, n′′)
and ψ(n′, n′′) ≤ C(n′ + n′′ + 1)τ for some C > 0 and τ > 1,
in the mixing conditions used by Neaderhouser (1980) and
Takahata (1983), respectively. Under these forms of ψ(·, ·), we
can easily derive some specific conditions on the mixing co-
efficient ϕ(·) to ensure Assumption (M, iii). For example, if
ψ(n′, n′′) ≤ min(n′, n′′), then Assumption (M, iii) is guaran-
teed by Nϕ(cN ) → 0 as N → ∞, while if ψ(n′, n′′) ≤ C(n′ +
n′′ + 1)τ , Assumption (M, iii) is ensured byNτ+1ϕ(cN ) → 0 as
N → ∞, which only requires ϕ(cN ) decreasing to zero at some
reasonably fast convergence rates.

We can then state the following theorem.

Theorem 1. Under Assumptions (I), (II)(i, ii), (III)(i), (IV)(a),
and (M), we have

(Nh)1/2

(
f̂ (x) − f (x) − 1

2
μK,2f̈ (x)h2

)
⇒ N (0, νKf (x)).

We will only sketch the proof for (4.7) and Theorem 1 in
Section 9.1 as the detailed proof for this theorem is similar to
that of the asymptotic normality for the joint density estimator
in Theorem 4 in Section 5.

5. ASYMPTOTICS FOR THE JOINT DENSITY
FUNCTION ESTIMATOR

5.1 Asymptotic Bias

We first state a theorem concerning the asymptotic bias of
f̂ (x, y; s0).

Theorem 2. Under Assumptions (I), (II), (III), and (IV)(b),
the bias of the estimator f̂ defined in (2.2) satisfies

B(f̂ (x, y; s0)) = 1

2
{B1(x, y, s0)b2 + B2(x, y, s0)h2}(1 + o(1)),

as N → ∞, where

B1(x, y, s0) = 2
∂f (x, y, s0)

∂sτ
µL,2

A1(s0)

A0(s0)

+ tr

(
∂2f (x, y, s0)

∂ssτ
µL,2

)
,

and

B2(x, y, s0) =
[
∂2f (x, y, s0)

∂x2
+ ∂2f (x, y, s0)

∂y2

]
μK,2.

Remark. The asymptotic bias in Theorem 2 looks a bit cum-
bersome. It consists of the biases from the two kernel smoothings
over the values of Yi = Y (si) and over the values of si , respec-
tively. However, note that we can take b/h → 0 asN → ∞, un-
der which Theorem 2 reduces to the following corollary, where
the bias expression is simple, only owing to the smoothing over
the values of Yi = Y (si).

Corollary 1. Under the conditions of Theorem 2, if further-
more b/h → 0 as N → ∞, then the bias of the estimator f̂
defined in (2.2) satisfies

B(f̂ (x, y; s0)) = 1

2
B2(x, y, s0)h2(1 + o(1)),

as N → ∞.

5.2 Asymptotic Variance

The next theorem establishes the asymptotic variance of
f̂ (x, y; s0).

Theorem 3. Under Assumptions (I), (II), (III), and (IV)(b),
the variance of the estimator f̂ defined in (2.2) satisfies

var(f̂ ) = (Nbh)−2V1(x, y, s0)(1 + o(1)),

as N → ∞, where

V1(x, y, s0) = f (x, y, s0)(νK )2νL

A0(s0)
.

We remark that for a kernel joint density estimator of (Yi, Yj )
without using spatial smoothing, its asymptotic variance shall be
of orderO{(Nh2)−1} as in the usual time series case. Comparing
this with the asymptotic variance in Theorem 3, it appears rea-
sonable to take b = CN−1/2 with 0 < C < ∞ independent of N,
which again reconfirms b/h → 0 in Corollary 1 if Nh2 → ∞.

5.3 Asymptotic Normality

Before stating the asymptotic normality of our joint density
estimators, we also need

Assumption (J): Let cN = {Nb2δ−2
N h

−2κ/(2+κ)}1/γ , which
tends to ∞ as N → ∞. (i) cN (NbhδN )−1 → 0; (ii) limm→∞
m4+3γ ∑∞

t=m t
2[ϕ(t)]κ/(2+κ) < ∞; and (iii) Nψ(1, N )ϕ(cN ) →

0, as N → ∞, where ϕ and ψ are defined in (3.5).

We remark that Assumption (IV, b, iv) in the above guaran-
tees cN → ∞ in Assumption (J). Assumption (J, i) implies that
NbhδN → ∞ and hence the infilling distance δN should not
decrease to zero too fast with regard to the sample size, which is
understandable. Assumption (J, ii) and Assumption (J, iii) are of
the same forms as (ii) and (iii) of Assumption (M) for marginal
density estimator.
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We now can state our main theorem on asymptotic normality
as follows.

Theorem 4. Under Assumptions (I), (II), (III), (IV) and (J),
we have

(Nhb)(f̂ (x, y; s0) − f (x, y; s0)

− 1

2
{B1(x, y, s0)b2 + B2(x, y, s0)h2})

⇒ N (0, V1(x, y, s0)),

as N → ∞, where ⇒ stands for the convergence in distribu-
tion, B1(x, y, s0) and B2(x, y, s0) are defined in Theorem 2, and
V1(x, y, s0) in Theorem 3.

The proof of the asymptotic normality of our estimators in
Theorem 4 relies on Theorems 2 and 3 in the above and follows
directly from the following proposition.

Proposition 1. Suppose that Assumptions (I), (II),
(III), (IV)(b), and (J) hold. Then (Nhb)(f̂ (x, y; s0) −
Ef̂ (x, y; s0)]/σ ) is asymptotically standard normal asN → ∞,
where σ = √

V1(x, y, s0), with V1(x, y, s0) defined in Theo-
rem 3.

To prove the asymptotic normality in this proposition, as
usual we will need to express f̂ (x, y; s0) − Ef̂ (x, y; s0 as a
finite summation, SN , of a dependent process as indicated in
(9.36) below. However, we note that in the double summations
that arise in the definition of f̂ (x, y; s0) in (2.2) the terms are
irregularly positioned in space and this makes it challenging and
much more involved to derive the asymptotic normality. In the
case where the observations of a stochastic process are regu-
larly positioned in time or space, one can often use Bernstein’s
method by decomposing the finite summation SN into the sum-
mations of smaller pieces involving “large” and “small” blocks,
respectively; see, for example, Tran (1990) and Hallin, Lu, and
Tran (2004b) in the spatial case with spatial lattice observations.
However, unlike the case in Hallin, Lu, and Tran (2004b, sec.
5.3), we are dealing with the observations that are irregularly
positioned in space, where it is difficult to construct “large” and
“small” blocks.

We are here adopting an alternative device due to Stein (1972)
and Bolthausen (1982) to derive a central limit theorem, in which
one does not need to partition the summation over all spatial sites
into the “large” and “small” blocks according to the spatial site
indexes. This device is particularly useful for the irregularly po-
sitioned observations. It has been recently used by Jenish and
Prucha (2009), who are concerned with establishing a central
limit theorem of a single summation for an α-mixing spatial
process under an increasing-domain only asymptotics. Differ-
ently, we are developing the asymptotics, by using this tool, in
a context that is more involved with double summations in (2.2)
under a more complex framework of infill asymptotics together
with an increasing domain. This tool is also different from that
used in Hall and Patil (1994), who use U-statistic technique by
assuming spatial sites being iid randomly distributed over space.
We will fully use the bounded support of the kernel functionL(·)
used in spatial smoothing to deal with the double summations
in (2.2). Proofs are given in Section 9.4.

6. ESTIMATION OF THE ISOTROPIC JOINT
PROBABILITY DENSITY FUNCTION

In the above sections, we were concerned with the estima-
tion of f (x, y; s0), which allows anisotropy in s0. However, if
this joint probability density is isotropic, that is, f (x, y; s0) is
only dependent on ‖s0‖, denoted as f (x, y; ‖s0‖), then we can
construct an improved estimator as follows:

f̂ (x, y; ‖s0‖)

=
∑N

j,�=1 Lb(‖sj − s�‖ − ‖s0‖)Kh(Yj − x)Kh(Y� − y)∑N
j,�=1 Lb(‖sj − s�‖ − ‖s0‖)

,

(6.8)

where Lb(x) = b−1L(x/b) with L(·) a kernel function on R1

and b = bN → 0 (N → ∞) a bandwidth.
Here are some adaptations of the assumptions in Section 3.

Assumption (I
′
): Assumption (I) holds true with (ii) replaced

by (ii
′
): Denote by f (x, y; ‖s0‖) the joint density function of

Y (s) and Y (s + s0), where s0 �= (0, 0). f (x, y; s) is continuous
as a function of (x, y) uniformly with respect to s ∈ R, and has
second-order partial derivatives with respect to x, y and s, which
are all continuous.

Assumption (II
′
): Assumption (II) holds true with (iii)

replaced by (iii
′
):

A∗
0(‖s0‖) = ‖s0‖

∫ ∞

−∞

∫ ∞

−∞

[∫ 2π

0
fS(u+ ‖s0‖ cos(ϑ), v

+‖s0‖ sin(ϑ))dϑ

]
fS(u, v) dudv > 0

and

A∗
1(‖s0‖) = ‖s0‖

∫ ∞

−∞

∫ ∞

−∞

[∫ 2π

0
(cos(ϑ), sin(ϑ))

× ∂fS(u+ ‖s0‖ cos(ϑ), v + ‖s0‖ sin(ϑ))

∂s
dϑ

]
× fS(u, v)dudv

exist.

Assumption (III
′
): Assumption (III) holds true with (ii)

replaced by (ii
′
): The kernel function L(·) satisfies that∫

R L(s)ds = 1,
∫
R sL(s)ds = 0, and μL,2 = ∫

R s
2L(s)ds <

∞, νL = ∫
R L

2(s)ds < ∞.

Assumption (IV
′
): As N → ∞, (i) h → 0, (ii) b → 0,

(iii) Nhb1/2 → ∞, Nhb → 0, (iv) Nb/δ2
Nh

−2κ/(2+κ) → ∞,
Nb/δ2

Nh
2(γ−2κ/(2+κ))/(2+γ ) → 0, where γ > 2κ/(2 + κ) and

κ > 0 were defined in Assumption (I)(i).

Theorem 5. Under Assumptions (I
′
), (II

′
), (III

′
), and (IV

′
),

the bias of the estimator f̂ defined in (6.8) satisfies

B(f̂ (x, y; ‖s0‖))

= 1

2
{B∗

1 (x, y, ‖s0‖)b2 + B∗
2 (x, y, ‖s0‖)h2}(1 + o(1)),
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as N → ∞, where

B∗
1 (x, y, ‖s0‖)

= 2
∂f (x, y; ‖s0‖)

∂s
μL,2

{A∗
1(‖s0‖) + A∗

0(‖s0‖)/‖s0‖}
A∗

0(‖s0‖)

+
(
∂2f (x, y; ‖s0‖)

∂s2
μL,2

)
,

and

B∗
2 (x, y, ‖s0‖) =

[
∂2f (x, y; ‖s0‖)

∂x2
+ ∂2f (x, y; ‖s0‖)

∂y2

]
μK,2.

Theorem 6. Under Assumptions (I
′
), (II

′
), (III

′
), and (IV

′
),

the variance of the estimator f̂ defined in (2.2) satisfies

var(f̂ ) = (N2bh2)−1V ∗
1 (x, y, ‖s0‖)(1 + o(1)),

as N → ∞, where

V ∗
1 (x, y, ‖s0‖) = f (x, y; ‖s0‖)(νK )2νL

A∗
0(‖s0‖)

.

We need the following further assumption for asymptotic
normality.

Assumption (V
′
): Let cN = {Nbδ−2

N h
−2κ/(2+κ)}1/γ , which

tends to ∞ as N → ∞. (i) cN (Nb1/2hδN )−1 → 0; (ii) limm→∞
m4+3γ ∑∞

t=m t
2[ϕ(t)]κ/(2+κ) = 0; and (iii) Nψ(1, N)ϕ(cN ) →

0, as N → ∞.

Theorem 7. Under Assumptions (I
′
), (II

′
), (III

′
), (IV

′
), and

(V
′
), we have(

Nhb1/2
) (
f̂ (x, y; ‖s0‖) − f (x, y; ‖s0‖) − 1

2
{B∗

1 (x, y, ‖s0‖)b2

+B∗
2 (x, y, ‖s0‖)h2}) ⇒ N (0, V ∗

1 (x, y, ‖s0‖)),

as N → ∞, where B∗
1 (x, y, s0) and B∗

2 (x, y, s0) are defined in
Theorem 5, and V ∗

1 (x, y, s0) in Theorem 6.

7. ISSUES OF BANDWIDTH SELECTION

In this section we suggest a practical rule for bandwidth se-
lection.

We are applying the cross-validation principle (see, Stone
1974) to select the bandwidths b and h in f̂b,h(x, y; s0) :=
f̂ (x, y; s0) defined in (2.2). To exclude the extreme values at
which the density is poorly estimated, we look at the estimators
of the density function at the points, (x, y) ∈ [a,A] × [a,A],
where a and A are chosen appropriately, say as 5% and 95%
sample quantiles of Yi’s, respectively. As done in the literature
for marginal kernel density estimation (see Li and Racine 2007,
sec. 1.3), we examine the main terms related to the bandwidths
in the integrated squared error

ISE(b, h; s0)

=
∫ A

a

∫ A

a

[
f̂b,h(x, y; s0) − f (x, y; s0)

]2
dxdy

=
∫ A

a

∫ A

a

[
f̂ 2
b,h(x, y; s0) − 2f̂b,h(x, y; s0)f (x, y; s0)

+ f 2(x, y; s0)
]
dxdy (7.9)

by considering a leave-two-out CV as follows:

CV(b, h; s0) =
∫ A

a

∫ A

a

f̂ 2
b,h(x, y; s0)dxdy

− 2

n0

N∑
k=1

N∑
�=1

‖sk−s�−s0‖2≤ε

f̂b,h,−(k,�)(Yk, Y�; s0)

× I{a≤Yk≤A}I{a≤Y�≤A},
(7.10)

where n0 is the number of the pairs (k, �) such that ‖sk − s� −
s0‖2 ≤ ε with a ≤ Yk, Y� ≤ A. Here ‖ · ‖ is the Euclidean norm
in R2, and ε > 0 is a small number that needs to be specified
(see below). Further, f̂b,h,−(k,�)(Yk, Y�; s0) is the leave-two-out
estimator of f (Yk, Y�; s0) in the form

f̂b,h,−(k,�)(Yk, Y�; s0)

=
∑

i∈Sk�,j∈Sk� Lb(si − sj − s0)Kh(Yi − Yk)Kh(Yj − Y�)∑
i∈Sk�,j∈Sk� Lb(si − sj − s0)

,

(7.11)

where Sk� = {i : 1 ≤ i ≤ N, i �= k, i �= �)}.
For the calculation in the first term on the right-hand

side of (7.10), although we may compute the double integral∫ A
a

∫ A
a
f̂ 2
b,h(x, y; s0)dxdy as done in Li and Racine (2007, sec.

1.3), it would lead to four-fold summations from 1 to N, the cal-
culation of which becomes time-demanding when the sample
size N is not small, say N > 100. To simplify the calculation,
we suggest approximating the double integration by applying
numerical integration as follows:∫ A

a

∫ A

a

f̂ 2
b,h(x, y; s0)dxdy ≈

M∑
u=1

M∑
v=1

f̂ 2
b,h(xu, yv; s0)δ2,

where δ = (A− a)/M and xu = yu = a + (u− 1)δ for u, v =
1, 2, . . . , (M + 1). In application, we may take, say, M = 30
to simplify the calculation. For the second term on the RHS of
(7.10), the calculation can be greatly simplified by considering
only those pairs of (k, �) satisfying ‖sk − s� − s0‖2 ≤ ε, where
ε may in general be dependent on N.

In the empirical examples in the next section, we simply take
ε = 0.01, which appears to work quite well.

Thus we have an approximate CV

CV(b, h; s0) =
M∑
u=1

M∑
v=1

f̂ 2
b,h(xu, yv; s0)δ2

− 2

n0

N∑
k=1

N∑
�=1

‖sk−s�−s0‖2≤ε

f̂b,h,−(k,�)(Yk, Y�; s0)

× I{a≤Yk≤A}I{a≤Y�≤A}, (7.12)

where n0 is as before. We then select (bopt, hopt) minimizing
CV(b, h; s0) over b ∈ [bL, bU ] and h ∈ [hL, hU ], where 0 <
bL < bU and 0 < hL < hU are appropriately given.

The CV bandwidth selection as described in the above is rel-
atively computationally intensive. To simplify the computation,
we adapt an empirical rule for selecting a bandwidth due to
Fan, Yao, and Cai (2003, p. 64) by incorporating the asymptotic
outcome in Theorem 4 into determining the bandwidth; see also
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Lu et al. (2009). Recalling (7.9) and Theorem 4, it follows that
the integrated mean squared error

IMSE(b, h; s0) = E[ISE(b, h; s0)]

=
∫ A

a

∫ A

a

E[f̂b,h(x, y; s0) − f (x, y; s0)]2dxdy

≈ c̄0 + (c̄11b
2 + c̄12h

2)2 + c̄2(Nbh)−2,

where c̄0, c̄11, c̄12 and c̄2 are constants. Notice that we cannot si-
multaneously select optimal b and h to minimize IMSE(b, h; s0).
The reasons are as follows: First of all, the equation in the
above, which indicates a kind of symmetric involvement of b
and h in IMSE(b, h; s0), is derived on the basis of the condi-
tion that Nhb2 → 0 (as N → ∞) in Assumption (IV, b, iii),
which is critical in the derivation of asymptotic bias (Theo-
rem 5.1) and asymptotic variance (Theorem 5.3). Second, we
notice that because of the condition Nhb2 → 0, b and h are
actually not as symmetrically connected as perhaps indicated in
IMSE(b, h; s0). Mathematically speaking, we could look at the
cases of h/b → 0 and h/b = O(1). The problem in these two
cases is that the asymptotic bias of f̂ (x, y, s0) would be larger
than the bias order of O(h2) for usual kernel density estimation
(see Theorem 5.1). Statistically speaking, it looks more reason-
able to choose b with b/h → 0 for bias reduction (see Corollary
1). Therefore, for a given b, for which we would asymptotically
assume b/h → 0 (as N → ∞), up to first-order asymptotics,
the optimal bandwidth for h is thus hbopt = {c2/[2(Nb)2c1]}1/6,
minimizing

CVb(h) = CV(b, h; s0) = c0 + c1h
4 + c2(Nbh)−2

+ oP {h4 + (Nb)−2h−2},
where c0, c1, and c2 are constants that may possibly depend on
b.

In practice, we may partition [bL, bU ] and [hL, hU ] into r
points, b1, b2, . . . , br , and q points, h1, h2, . . . , hq , respectively.
For a given b = b�, � = 1, . . . , r , the coefficients c0, c1, and
c2 will be estimated from CVb(hk), k = 1, 2, . . . , q, via least
squares regression,

min
c0,c1,c2

q∑
k=1

{
CVb(hk) − c0 − c1h

4
k − c2/(Nbhk)

2}2
, (7.13)

where CVb(hk) = CV(b, hk; s0) is obtained from (7.12), and
thus we let hbopt = {ĉ2/(2(Nb)2ĉ1)}1/6 when both ĉ1 and ĉ2,
the estimators of c1 and c2, are positive, and we calculate
the corresponding CVb(hbopt) = ĉ0 + ĉ1(hbopt)

4 + ĉ2(Nbhbopt)
−2.

In the unlikely event that one of them is nonpositive, we let
hbopt = arg min1≤k≤q CVb(hk) and the corresponding minimum
for CVb(hbopt). Thus we can select

bopt = arg min
1≤�≤r

CVb�

(
h
b�
opt

)
, and hopt = h

bopt

opt .

This bandwidth selection procedure will be applied below.
It is computationally efficient as r and q are moderately small,
that is, we only need to compute (rq) CV-values; see remark
2(c) in Fan, Yao, and Cai (2003). Furthermore, the least squares
estimation (7.13) also serves as a smoother for the CV bandwidth
estimates. Also see Ruppert (1997).

8. NUMERICAL EVIDENCES

8.1 Simulation

In this section, we show the performance of our proposed es-
timation of the marginal and joint probability density functions.
To evaluate the performance of our estimation procedure, we
need to use a spatial process {Y (s)}, where the theoretical joint
probability density function of Y (si) and Y (si + s0), s0 �= 0, can
be computed analytically. Therefore, we are considering a spe-
cial spatial process, Y (si), that is generated through a mixture
of Gaussian spatial moving average processes as follows:

Step 1 (Generating locations): Generate the locations irregularly
positioned in R2: Define a lattice (ui, vj ) with ui = u0 +
(i − 1)δ and vj = v0 + (j − 1)δ, for i = 1, . . . , N and j =
1, . . . , N . We take δ = 0.3, and u0 = δ, v0 = 2δ. Then we
randomly select N locations from the lattice as the irregular
locations at which our observations are made. We denote
these locations as sk = (uik , vjk ), k = 1, . . . , N , which are
fixed in the repetition of the simulation below, where 1 ≤
ik, jk ≤ N .

Step 2 (Intermediate variables): Generate two intermediate pro-
cesses Ỹi,1 and Ỹi,2 from two independent Gaussian spatial
moving averages,

Ỹi,r = μr +
1∑

k=−1

1∑
�=−1

ak,rZi−k,r , 1 ≤ i ≤ m1, r = 1, 2,

(8.14)

where Zi,r , r = 1, 2, are two independent iid samples from
N (0, σ 2

Z,r ), r = 1, 2, respectively. We take μ1 = −1 and
μ2 = 0.3, let ak,1 and ak,2 be the (k + 2)th elements of
a1 = (1/5, 2/5,−4/5) and a2 = (−3/5,−2/5,−1/5), re-
spectively, for −1 ≤ k ≤ 1, and σZ,1 = 0.67, σZ,2 = 0.76.
Here the marginal distribution of Ỹi,1 is Gaussian N (μ1 =
−1, σ 2

1 = 0.3771), and Ỹi,2 is N (μ2 = 0.3, σ 2
2 = 0.3235),

where N (μ, σ 2) stands for the univariate Gaussian distribu-
tion of meanμ and variance σ 2. We then generate spatial pro-
cess by first generating independent Rj ∼ Binomial(1, p =
0.4), 1 ≤ j ≤ m2, and then defining

Ỹij = Ỹi,1 × Rj

+ Ỹi,2 × (1 − Rj ), 1 ≤ i ≤ m1, 1 ≤ j ≤ m2, (8.15)

where we take m1 = m2 = N , and Rj ’s are independent of
Zi,r ’s and hence of Ỹi,r ’s, with r = 1, 2.

Step 3 (Final observations): We define our final observations,
for sk = (uik , vjk ) in Step 1,

Yk = Y (sk) = Ỹikjk , k = 1, . . . , N. (8.16)

Thus Yk’s are our simulated observations on the irregular po-
sitions sk , k = 1, . . . , N . Note that the marginal distribution
of Yk is a mixture of normal distributions, in the form

0.4 × N (μ1 = −1, σ 2
1 = 0.3771)

+ 0.6 × N (μ2 = 0.3, σ 2
2 = 0.3235).

We generate the simulated spatial data by using the values
of the parameters in the above models. Note that our simulated
data satisfy the α-mixing assumption, which clearly follows
from the simulating models (8.14), (8.15), and (8.16) with the
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Figure 1. The comparison of the estimated marginal probability density functions with different sample sizes: (a1, a2) N = 200, (b1, b2)
N = 500. Here the left column is for the boxplots of the density estimates, while the right one is for the comparisons of the actual density with
the median of the density estimates, of 100 times of simulations.

fact that Zi,1, Zi,2, and Rj are independent iid processes, which
are α-mixing. Then the resultant marginal and the joint density
functions considered below are asymmetric, non-Gaussian with
one and two modes in marginal and joint density functions,
respectively, these features being similar to those of empirical
marginal and joint ones, in the example of Tokyo land price
below. We are considering the cases of N = 200 and N = 500,
respectively. We repeat the simulation 100 times. The marginal
density estimate of Y (sk) is depicted in Figure 1, where the
left column is for the boxplots of the density estimates (using
the R function “density” with “bcv” for bandwidth) of the 100
simulated samples while the right column is for the comparisons
of the actual density with the median and mean of the density

estimates of 100 simulations. Obviously, the simulation result
for the marginal distribution is satisfying.

We turn to the joint distribution. Let’s look at the joint density
f (x, y; δ) at two sites, s and s + s0, of distance s0 = (δ, 0) =
(0.3, 0). By (8.14)–(8.16), we can calculate to obtain the actual
density

f (x, y; δ = 0.3) = pN2(x, y; (μ1, μ1), �1)

+ (1 − p)N2(x, y; (μ2, μ2), �2),

where N2(x, y; (μ,μ), �) stands for the two-dimensional joint
Gaussian density function of mean (μ,μ) and variance ma-
trix �, and �1 is a 2 × 2 variance-covariance matrix with
elements σ1,11 = σ1,22 = 0.3771 and σ1,12 = σ1,21 = −0.1077,
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and �2 is a 2 × 2 variance-covariance matrix with elements
σ2,11 = σ2,22 = 0.3235 and σ2,12 = σ2,21 = 0.1848. We also
consider the joint density f (x, y; 3δ) at two sites of distance
s0 = (3δ, 0) = (0.9, 0). By (8.15), we can deduce that, owing to
the independence of the Zi,r ’s with r = 1, 2, the actual density
is

f (x, y; 3δ = 0.9) = pN2(x, y; (μ1, μ1), �1)

+ (1 − p)N2(x, y; (μ2, μ2), �2),

where �1 is a 2 × 2 variance-covariance matrix with elements
σ1,11 = σ1,22 = 0.3771 and σ1,12 = σ1,21 = 0, and �2 with ele-
ments σ2,11 = σ2,22 = 0.3235 and σ2,12 = σ2,21 = 0. In the sim-
ulations, we estimate f (x, y; 0.3) and f (x, y; 0.9) at x = xk and
y = y�, for 1 ≤ k, � ≤ 50, where xk = yk = a + (k − 1)(A−
a)/49, for k = 1, 2, . . . , 50, is a partition of [a,A] into 49
subintervals in the bandwidth selection as described in Sec-
tion 7. With some initial experiments, we took a = −3 and
A = 3, and bL = 0.1, bU = 1, hL = 0.2 and hU = 0.7 together
with r = q = 5 for easy implementation of selection of the
bandwidths, which appear to work quite well in the simulation.
The contour plots of the theoretical and the average, based on
100 times of simulations, of the estimated density functions for
f (x, y; 0.3) andf (x, y; 0.9) are given in Figures 2 and 3, respec-
tively, where the boxplots of the averaged squared estimation
errors

ASEE = 1

2500

50∑
k=1

50∑
�=1

(f̂ (xk, y�) − f (xk, y�))
2,

based on 100 times of simulations, are also provided for compar-
ison. For both experiments the estimated marginal and bivariate
distributions are close to the theoretical ones, and the error de-
creases with sample size. As in the ordinary kernel estimation,
due to the smoothing, the peak of the density is slightly underes-
timated. The positive dependence between the x- and y-variables
in experiments 1 and 2 are well taken care of.

8.2 Real Data Examples

We provide two real data examples to demonstrate the pro-
posed joint density estimation.

8.2.1 Baltimore House Sales Price. We are analyzing a spa-
tial dataset in the R package, spdep, that gives the locations with
longitude and latitude together with house sales price and char-
acteristics for a spatial hedonic analysis in Baltimore, MD 1978
(see Dubin 1992). This dataset consists of 211 observations on
17 variables, among which we are concerned with the following
three variables in this article:

u = numeric latitude (in the notation of this article);
v = numeric longitude (in the notation of this article);
PRICE = numeric house sales price.

The spatial plot of the variable, logarithmic PRICE over
latitude (u) and longitude (v) is provided in Panel (a) of
Figure 4. Obviously the price dataset is irregularly positioned
in space and it appears we can see a spatial trend of logarithmic
price over space in Panel (a), indicating that the spatial trend of
the logarithmic price data may need to be removed to obtain the
observations approximately from a spatial stationary process.

Panels (b) and (c) display the spatial trend of logarithmic price,
fitted by sm.regression in the R package SM, and the residu-
als after removing the spatial trend, over (u, v), respectively.
Clearly, the residual of the logarithmic house sales price looks
more stationary in Panel (c). We are interested in examining the
distribution function and spatial dependence of the residuals,
that is, the logarithmic house sales price after removing spa-
tial trend, denoted by Yi = Y (si) below, where si = (ui, vi) for
i = 1, 2, . . . , 211.

The marginal kernel density estimate of Yi = Y (si) by the
R function “density” is plotted in solid line in Panel (d) of
Figure 4 with dashed line for the normal density function of
the same mean and variance. Clearly, it is neither normally
distributed nor symmetric, with heavier LHS tail than that of the
normal distribution on Yi = Y (si). This implies that the spatial
dependence measured by the spatial autocorrelation, the analysis
of which was made by Dubin (1992), may not be adequate, and it
is useful to estimate the joint distributions of (Y (si), Y (si + s0))
for s0 �= (0, 0).

We are estimating the joint probability density functions,
f (x, y; s0), of (Y (si), Y (si + s0)) for s0 = (1, 1), s0 = (5, 5),
and s0 = (9, 9), respectively, by applying the methodology pro-
posed in this article. We use the cross-validation principle de-
tailed in the last section with (a,A) = (−1.9, 0.9),M = 30 and
ε = 0.01 in (7.12), to select the bandwidths (b, h). The estimated
joint probability density functions for (Y (si), Y (si + s0)) are de-
picted in Figure 5, in which Panel (a) corresponds to s0 = (1, 1)
with CV-bandwidth (b, h) = (0.9556, 0.1025), (b) to s0 = (5, 5)
with CV-bandwidth (b, h) = (2.222, 0.1), and (c) to s0 = (9, 9)
with CV-bandwidth (b, h) = (1.211, 0.2425), where each panel
contains the contour plot of the estimated joint density function.
Apparently, our estimated joint probability density functions
give a good characterization of the nonlinear, non-Gaussian
spatial dependence existent in the logarithmic house sales price
(after removing spatial trend), which cannot be captured by spa-
tial auto-correlation γ (‖s0‖) = corr(Y (si), Y (si + s0)), where
the correlogram of Y (si) is plotted in Figure 6 by using the
R package NCF . Whereas the correlogram characterizes (lin-
ear) dependence by just furnishing one number for each lag,
the plots of Figure 5 give a complete distributional pattern for
each lag. This can be used to further characterize dependence
in terms of nonlinear dependence measures. Comparing to the
simulations, it is clear that there is significant positive depen-
dence at lag s0 = (1, 1), while it is seen that we get closer to
independence as the lag increases. A more formal and quantita-
tive analysis can be undertaken but is outside the scope of the
present article.

8.3 Tokyo Land Prices

Our second real example is a larger dataset from Matsuda
and Yajima (2009), who considered the parametric and non-
parametric spectral estimation to land price data, collected by
the Japanese Ministry of Land, Infrastructure and Transport in
2001. This dataset is the record of land prices (yen per square
meter) irregularly spaced in the residential areas around Tokyo.
For details, see Figure 1(a) of Matsuda and Yajima (2009), where
the coordinates are modified with units of kilometers. They se-
lected 1431 points inside the rectangular region (20 ≤ x ≤ 45,
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1556 Journal of the American Statistical Association, December 2014

Figure 2. The comparison of the theoretical and the estimated joint probability density functions with distance s0 = (0.3, 0), under different
sample size N: (a) contour of theoretical density, (b1, b2) estimates with N = 200, (c1, c2) estimates with N = 500. Here in (b) and (c), the left
column is for the contour of the mean of the density estimates, while the right one is for the boxplot of the averaged squared estimation errors of
the density estimates, of 100 times of simulations.
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Lu and Tjøstheim: Nonparametric Estimation of Probability Density Functions for Irregularly Observed Spatial Data 1557

Figure 3. The comparison of the theoretical and the estimated joint probability density functions with distance s0 = (0.9, 0), under different
sample size N: (a) theoretical density, (b1), b2) N = 200, (c1, c2) N = 500. Here in (b) and (c), the left column is for the contour of the mean
of the density estimates, while the right one is for the boxplot of the averaged squared estimation errors of the density estimates, of 100 times of
simulations.

D
ow

nl
oa

de
d 

by
 [

Z
ud

i L
u]

 a
t 1

3:
58

 2
5 

D
ec

em
be

r 
20

14
 



1558 Journal of the American Statistical Association, December 2014

Figure 4. Spatial plot of house sales price in Baltimore. Panel (a): Logarithmic house sales price; Panel (b): Spatial trend of logarithmic house
sales price, fitted by sm.regression; Panel (c): Residual of logarithmic house sales price by removing spatial trend, denoted by Yi = Y (si); Panel
(d): Marginal kernel density (solid line) and Gaussian density (dashed line) of Yi = Y (si).

35 ≤ y ≤ 65) that is shown in Figure 1(b) of Matsuda and Ya-
jima (2009), to which they applied nonparametric and paramet-
ric spectral estimation. To account for the mean component,
Matsuda and Yajima (2009) considered the regression model
for land price data Xtj , j = 1, . . . , 1431,

Xtj = μ0 + μ1utj + μ2vtj + Ztj , j = 1, . . . , 1431, (8.17)

where utj and vtj are the covariates that stand for the distances
from the nearest train station and the terminal station in central
Tokyo to the location tj ∈ R2, respectively. They then analyzed
the residual process Zt, t ∈ R2, by the spectral density function
that was identified by the nonisotropic Matern class; see Section
6.2 of of Matsuda and Yajima (2009) for details.

In this section, we are interested in the distributions of the
residual process Zt. Is this process a Gaussian process, and if

not, what is the nonlinear spatial interdependence pattern? Here
we consider the residuals Ztj , j = 1, . . . , 1431, after the least
squares regression of (8.17), the spatial plot of which is depicted
in Figure 7(a), where Ztj has been scaled by 10−4. The kernel
estimate of the marginal density distribution ofZtj is depicted in
Figure 7(b), which appears to deviate somewhat from a Gaussian
density of the same mean and variance. We, therefore, further
examine the joint density function, f (x, y; s0), of (Ztj , Ztj+s0 )
for s0 �= (0, 0). The contour plots of the estimated joint probabil-
ity density functions for the residuals Ztj , j = 1, . . . , 1431, are
given Figure 8 with (a) s0 = (1, 1) and CV-bandwidth (b, h) =
(2, 0.53), (b) s0 = (5, 5) with CV-bandwidth (b, h) = (1.5, 1.0),
and (c) s0 = (9, 9) with CV-bandwidth (b, h) = (2.5, 1.0), re-
spectively. Here the cross-validation principle detailed in the last
section with (a,A) = (−8.16, 10.65),M = 30, and ε = 0.01 in
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Figure 5. The contour plots of the estimated joint probability density functions for (Y (si), Y (si + s0)): (a) s0 = (1, 1) with CV-bandwidth
(b, h) = (0.9556, 0.1025), (b) s0 = (5, 5) with CV-bandwidth (b, h) = (2.222, 0.1), (c) s0 = (9, 9) with CV-bandwidth (b, h) = (1.211, 0.2425).

(7.12), is applied to select the bandwidths (b, h), and the plots
are highly non-Gaussian.

The Tokyo land price data are quite different in structure from
the Baltimore house price data. It is seen in Figure 7(a) that large
negative residuals are clustered in several geographical areas.
This is not captured by the bivariate density at lag s0 = (1, 1),
which shows positive dependence similar to the Baltimore data.
However, at higher lags the structure of Figure 7(a) has the effect
of creating two modes. Such effects can easily be produced by
simulation or computation as in Section 8.1, by mixture mod-
els. Depending on the distance between the two components of
the mixture, the corresponding bivariate density simulated (or
computed) as in Section 8.1, may have one or two modes. (It is
also possible to construct spatial moving average models with
more than two modes.) In the present case, there are two: one
composed by pairing the peak value of Figure 7(b) with itself,
and one by pairing this peak value with the point of change of
the slope at about −5 of Figure 7(b). Clearly the bivariate den-
sity plots of Figure 8 give much more information about spatial
dependence than a linear covariance analysis would. For both
Figures 8(c) and (b) such an analysis would probably give a cor-
relation close to zero, ignoring the nonlinear and heteroscedastic
structure of these plots.

Figure 6. The correlogram of Yi = Y (si), the residual of the loga-
rithmic house sales price after removing spatial trend.

9. THE PROOF FOR THE MAIN THEOREMS

We collect the proofs of the main theorems in this section,
with the necessary lemmas involved to be proved in the Ap-
pendix (online supplementary material).

The following lemma is often applied, borrowed from Ibrag-
imov and Linnik (1971) or Deo (1973).

Lemma 1. Let Lr (F) denote the class of F-measurable ran-
dom variables ξ satisfying ‖ξ‖r := (E|ξ |r )1/r < ∞. Let U ∈
Lr (B(S)) and V ∈ Ls(B(S ′)), where B(S) and B(S ′) denote
the σ -fields generated by {Y (s) : s ∈ S} and {Y (s) : s ∈ S ′}, re-
spectively. Then, for any 1 ≤ r, s, t < ∞ such that r−1 + s−1 +
t−1 = 1,

|E[UV ] − E[U ]E[V ]| ≤ C‖U‖r‖V ‖s[α(S,S ′)]1/t , (9.18)

where α(S,S ′) = sup{|P (AB) − P (A)P (B)| : A ∈ B(S), B ∈
B(S ′)}.
9.1 Proofs for Section 4

In this section, we only provide the full proof for the asymp-
totic variance (4.7). The proof of Theorem 1 is only sketched. It
is similar to that of Theorem 4 (which is more involved) given
in Section 9.4 by applying some of the details of this section.

Proof of (4.7). Note that

var(f̂ (x)) = 1

(Nh)2

⎡⎣ N∑
i=1

var(K((Yi − x)/h)) + 2
N−1∑
i=1

N∑
j=i+1

× cov(K((Yi − x)/h),K((Yj − x)/h))

]

= 1

Nh
[VN1 + VN2], (9.19)

where

VN1 = h−1var(K((Yi − x)/h))

→ f (x)
∫
K2(u)du ≡ V1(x), (9.20)
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Figure 7. The residuals Ztj , , j = 1, . . . , 1431, after the least squares regression of (8.17) for Tokyo land prices: (a) Spatial plot; (b) Marginal
kernel density (solid line) and Gaussian density (dashed line).

and

VN2 = (Nh)−12
N−1∑
i=1

N∑
j=i+1

× cov(K((Yi − x)/h),K((Yj − x)/h)). (9.21)

We are showing VN2 → 0 as N → ∞: First of all, for i �= j ,

|cov(K((Yi − x)/h),K((Yj − x)/h))|
≤
∫ ∫

K((u− x)/h),K((v − x)/h)|fij (u, v)

− f (u)f (v)|dudv
≤ Ch2

∫ ∫
K(u)K(v)dudv = O(h2),

where O(·) is uniform with respect to i and j owing to the first
part of Assumption (I)(iii). Further, applying Lemma 1 given in
the above, we can easily derive that, for the κ > 0 specified in

Assumption (I)(i),

|cov(K((Yi − x)/h),K((Yj − x)/h))|
≤ C‖K((Yi − x)/h)‖2+κ‖K((Yj − x)/h)‖2+κ

× [α(d(si , sj ))]κ/(2+κ)

= O(h2/(2+κ))[α(d(si , sj ))]κ/(2+κ),

where C is a generic finite positive constant that may differ at
different places throughout the remainder of this article. Thus it
follows from (9.21) that

|VN2| ≤ C(Nh)−1

×
∑

0<d(si ,sj )≤cN
|Cov(K((Yi − x)/h),K((Yj − x)/h))|

+C(Nh)−1
∑

d(si ,sj )>cN

|Cov(K((Yi − x)/h),K((Yj − x)/h))|

Figure 8. The contour plots of the estimated joint probability density functions for the residuals Ztj , , j = 1, . . . , 1431, after the least
squares regression of (8.17) for Tokyo land prices: (a) s0 = (1, 1) with CV-bandwidth (b, h) = (2, 0.53), (b) s0 = (5, 5) with CV-bandwidth
(b, h) = (1.5, 1.0), (c) s0 = (9, 9) with CV-bandwidth (b, h) = (2.5, 1.0).
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≤ (Nh)−1
∑

0<d(si ,sj )≤cN
O(h2) + (Nh)−1

×
∑

d(si ,sj )>cN

O(h2/(2+κ))[α(d(si , sj ))]κ/(2+κ),

where
∑

0<d(si ,sj )≤cN stands for the summation over {(i, j ) : 1 ≤
i, j ≤ N, 0 < d(si , sj ) ≤ cN }, the cardinality of which is con-
trolled by CN (cN/δN )2, and

∑
d(si ,sj )>cN stands for the summa-

tion over {(i, j ) : 1 ≤ i, j ≤ N, d(si , sj ) > cN }, which is a sub-
set of

⋃∞
m=cN {(i, j ) : 1 ≤ i, j ≤ N,m < d(si , sj ) ≤ (m+ 1)}.

Thus

|VN2| ≤ (Nh)−1CN (cN/δN )2O(h2) + (Nh)−1

×
∞∑

m=cN
O(h2/(2+κ))N ((m+ 1)/δN )2[α(m)]κ/(2+κ)

≤ O(1){(cN/δN )2h} +O(1)
{
δ2
Nh

κ/(2+κ)}−1

×
∞∑

m=cN
m2[α(m)]κ/(2+κ). (9.22)

Let cN be the integer part of {δ2
Nh

κ/(2+κ)}−1/γ for the γ > 0
specified in Assumption I(i), by which the second part of (9.22)
tends to zero as N → ∞. Now note that

(cN/δN )2h = {
δ2
Nh

κ/(2+κ)
}−2/γ

δ−2
N h = δ

−2(1+2/γ )
N h1−2κ/{(2+κ)γ },

which tends to zero, following from Assumption IV(a). It hence
follows from (9.19)–(9.22) that

(Nh)var(f̂ (x)) → V1(x) = f (x)
∫
K2(u)du (9.23)

as N → ∞.
We turn to the proof of asymptotic normality. Note that by

letting Zi,N := [Kh(Yi − x) − E{Kh(Yi − x)}]/N , we have

SN :=
N∑
i=1

Zi,N = f̂ (x) − E[f̂ (x)]. (9.24)

We define cN as in the above, and

Si,N :=
N∑

� = 1
d(si , s�) ≤ cN

Z�,N =
∑
�∈J3,i

Z�,N , (9.25)

where J3,i := {1 ≤ � ≤ N : d(si , s�) ≤ cN }. Then, as shown
above, we notice from (9.23) that

aN : =
N∑
i=1

E(Zi,NSi,N ) = var(SN )(1 + o(1))

= (Nh)−1V1(x)(1 + o(1)), (9.26)√
Nh(f̂ (x) − Ef̂ (x))/

√
V1(x) = a

−1/2
N SN (1 + o(1)). (9.27)

Now we need to show that S̄N := a
−1/2
N SN ⇒ N (0, 1) by

showing the following, due to Bolthausen (1982, Lemma 2, p.
1048):

a. supN E(S̄2
N ) < ∞;

b. limN→∞ E[(ıλ− S̄N )eıλS̄N ] = 0 for any λ ∈ R, where ı =√−1.

Here (a) obviously follows from (9.26) in the above. The proof
of (b) for the case of marginal density estimator can be done,
as in the steps of (9.40)–(9.43) in Section 9.4 together with the
details given in Section A.1.3 for the more involved case of joint
density estimator, by using the following facts (here bearing in
mind Zi,N := [Kh(Yi − x) − E{Kh(Yi − x)}]/N):

EZ2
i,NZ

2
�,N =

{
O(1)(N4h3)−1 for i = �,

O(1)(N4h2)−1 for i �= �;

EZ2
i,NZ�,NZ�′,N =

{
O(1)(N4h2)−1 for i = � or i = �′,
O(1)(N4h)−1 for i �= � and i �= �′,

where � �= �′;

andEZi,NZi ′,NZ�,NZ�′,N = O(1)N−4 for all i, i ′, �, �′ different
from each other, as well as

|cov(Zi,NZ�,N , Zi ′,NZ�′,N )|
≤ ‖Zi,NZ�,N‖2+κ ‖Zi ′,NZ�′,N‖2+κ{α(d({si , s�}, {si ′ , s�′ }))}κ/(2+κ)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O(1)(Nh)−2h2/(2+κ){α(d({si}, {si ′ }))}κ/(2+κ)

for i = � and i ′ = �′,
O(1)(Nh)−2h3/(2+κ){α(d({si}, {si ′ , s�′ }))}κ/(2+κ)

for i = � and i ′ �= �′,
O(1)(Nh)−2h3/(2+κ){α(d({si , s�}, {si ′ }))}κ/(2+κ)

for i �= � and i ′ = �′,
O(1)(Nh)−2h4/(2+κ){α(d({si , s�}, {si ′ , s�′ }))}κ/(2+κ)

for i �= � and i ′ �= �′,

where � ∈ J3,i and �′ ∈ J3,i ′ with d(si , si ′ ) > 3cN . The details
are, therefore, omitted here to save space. �

9.2 Proofs for Section 5.1

Proof. Denote by s0 = si − sk . For f̂ (x, y, s0) defined in
(2.2), the bias

B(f̂ ) = E[f̂ (x, y, s0)] − f (x, y, s0),

where

E[f̂ (x, y, s0)]

=
∑N

j,�=1 Lb(sj − s� − s0)E[Kh(Yj − x)Kh(Y� − y)]∑N
j,�=1 Lb(sj − s� − s0)

,

and applying Taylor’s expansion together with Assumption (II),

E[Kh(Yj − x)Kh(Y� − y)]

= h−2
∫ ∫

K((u− x)/h)K((v − y)/h)f (u, v, sj − s�) dudv

=
∫ ∫

K(u)K(v)f (x + uh, y + vh, sj − s�) dudv

=
∫ ∫

K(u)K(v)[f (x, y, sj − s�) + fx(x, y, sj − s�)uh

+ fy(x, y, sj − s�)vh] dudv

+
∫ ∫

K(u)K(v)
1

2
[fxx(xh, yh, sj − s�)(uh)2

+ 2fxy(xh, yh, sj − s�)(uvh2)

+ fyy(xh, yh, sj − s�)(vh)2]dudv

= f (x, y, sj − s�) + 1

2
[fxx(x, y, sj − s�) + fyy(x, y, sj − s�)]

×μK,2h2(1 + o(1)), (9.28)
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where xh = x + ξ1uh and yh = x + ξ2vh with |ξk| ≤ 1 for k =
1, 2. Therefore

B(f̂ ) =
∑N

j,�=1 Lb(sj − s� − s0)[f (x, y, sj − s�) − f (x, y, s0)]∑N

j,�=1 Lb(sj − s� − s0)

+ 1

2

∑N

j,�=1 Lb(sj − s� − s0)[fxx(x, y, sj − s�) + fyy(x, y, sj − s�)]∑N

j,�=1 Lb(sj − s� − s0)

×μK,2h2(1 + o(1)). (9.29)

We need the following lemma. �

Lemma 2. Under Assumptions (I), (II), (III), and (IV), as
N → ∞,

1

N2

N∑
j,�=1

Lb(sj − s� − s0)H (sj − s�) → H (s0)A0(s0),

and

1

N2

N∑
j,�=1

b−2L2((sj − s� − s0)/b)H (sj − s�)

→ H (s0)
∫
R2
L2(s1)ds1A0(s0)

for any function H (s) which is continuous at s0, and

1

N2

N∑
j,�=1

Lb(sj − s� − s0)[f (x, y, sj − s�) − f (x, y, s0)]

= 1

2
b2

[
2
∂f (x, y, s0)

∂sτ
±bμL,2A1(s0)

+ tr

(
∂2f (x, y, s0)

∂ssτ
±bμL,2

)
A0(s0)

]
(1 + o(1)).(9.30)

The proof of Lemma 2 will be given in the Appendix. Now
applying (9.29) together with Lemma 2 leads to

B(f̂ )

=
1
2 b

2
[
2 ∂f (x,y,s0)

∂sτ µL,2A1(s0) + tr
(
∂2f (x,y,s0)

∂ssτ µL,2

)
A0(s0)

]
(1 + o(1))

A0(s0)

+ 1

2

A0(s0)[fxx (x, y, s0) + fyy (x, y, s0)]

A0(s0)
μK,2h

2(1 + o(1)),

from which Theorem 2 follows obviously.

9.3 Proofs for Section 5.2

Proof. Denote

wj�(s0) = Lb(sj − s� − s0)∑N
i,k=1 Lb(si − sk − s0)

. (9.31)

Then

f̂ (x, y, s0) =
N∑

j,�=1

wj�(s0)Kh(Yj − x)Kh(Y� − y).

Therefore,

var(f̂ )

=
N∑

j,�=1

w2
j�(s0)var(Kh(Yj − x)Kh(Y� − y))

+
N∑

j,�=1

N∑
j ′, �′ = 1
(j ′, �′) �= (j, �)

wj�(s0)wj ′�′(s0)

× cov(Kh(Yj − x)Kh(Y� − y),Kh(Yj ′ − x)Kh(Y�′ − y))

≡ V1N + V2N . (9.32)

Note that if j = �, then as N is sufficiently large,L(−s0/b) =
0 in view of the fact that the kernel function L(·) has a bounded
support (Assumption (III, ii)) and b = bN → 0 (Assumption
(IV, ii)) with s0 �= (0, 0) fixed, and therefore as N is sufficiently
large,

wjj (s0) = Lb(−s0)∑N
i,k=1 Lb(si − sk − s0)

= b−2L(−s0/b)∑N
i,k=1 Lb(si − sk − s0)

= 0. (9.33)

Thus, for sufficiently large N, we only need to examine the case
of j �= � in (9.32) below:

var(Kh(Yj − x)Kh(Y� − y))

= E(Kh(Yj − x)Kh(Y� − y))2 − (EKh(Yj − x)Kh(Y� − y))2

= h−4
∫
K2((u− x)/h)K2((v − y)/h)

× f (u, v, sj − s�)dudv +O(1)

= h−2f (x, y, sj − s�)[
∫
K2(u)du]2(1 + o(1)).

Then applying Lemma 2,

V1N =
N∑

j,�=1

w2
j�(s0)var(Kh(Yj − x)Kh(Y� − y))

= N−4 ∑N
j,�=1(Lb(sj − s� − s0))2h−2f (x, y, sj − s�)[

∫
K2(u)du]2(1 + o(1))

{N−2
∑N

i,k=1 Lb(si − sk − s0)}2

= (Nbh)−2
∫
R2 L

2(s1)ds1f (x, y, s0)[
∫
K2(u)du]2A0(s0)(1 + o(1))

{A0(s0)}2

= (Nbh)−2

∫
R2 L

2(s1)ds1f (x, y, s0)[
∫
K2(u)du]2

A0(s0)
(1 + o(1)). (9.34)

To deal with V2N , we need the following �

Lemma 3. (cross-term lemma): Under Assumptions (I), (II),
(III), and (IV), as N → ∞,

N∑
j,�=1

N∑
j ′, �′ = 1
(j ′, �′) �= (j, �)

wj�(s0)wj ′�′(s0)

× cov(Kh(Yj − x)Kh(Y� − y),Kh(Yj ′ − x)Kh(Y�′ − y))

= o
(
(Nbh)−2

)
.

The proof of Lemma 3 is quite involved, so we leave it in
Appendix. Theorem 3 then follows from (9.32), (9.34), and
Lemma 3.

9.4 Proofs for Section 5.3

Proof. First recall wik(s0) defined in (9.31) and

f̂ (x, y; s0) =
N∑

i,k=1

wik(s0)Kh(Yi − x)Kh(Yk − y). (9.35)
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Put

ηik(x, y; s0) := Kh(Yi − x)Kh(Yk − y)

and

�ik(x, y; s0) := wik(s0)(ηik(x, y; s0) − Eηik(x, y; s0)),

and define Zi,N := ∑N
k=1�ik . Then

SN :=
N∑
i=1

Zi,N = f̂ (x, y; s0) − E[f̂ (x, y; s0)]. (9.36)

Now we define cN as defined in Lemma 3, and

Si,N :=
N∑

� = 1
d(si , s�) ≤ cN

Z�,N =
∑
�∈J3,i

Z�,N , (9.37)

where J3,i := {1 ≤ � ≤ N : d(si , s�) ≤ cN }. Then, as shown in
the proof of Theorem 3, we notice that

aN : =
N∑
i=1

E(Zi,NSi,N ) = var(SN )(1 + o(1))

= (Nhb)−2V1(x, y, s0)(1 + o(1)), (9.38)

and hence

(Nbh)(f̂ (x, y; s0) − Ef̂ (x, y; s0))/
√
V1(x, y, s0)

= a
−1/2
N SN (1 + o(1)). (9.39)

Now we need to show that S̄N := a
−1/2
N SN ⇒ N (0, 1) by

showing the following, due to Bolthausen (1982, Lemma 2, p.
1048):

(a) supN E(S̄2
N ) < ∞;

(b) limN→∞ E[(ıλ− S̄N )eıλS̄N ] = 0 for any λ ∈ R, where
ı = √−1.

Here it follows from Theorem 3 that (a) is obviously true. We
focus on the proof for (b) by noticing, with S̄i,N := a

−1/2
N Si,N ,

E
[
(ıλ− S̄N )eıλS̄N

] = A1N − A2N − A3N, (9.40)

where we have to prove

A1N = E

[
ıλeıλS̄N

(
1 − a−1

N

N∑
i=1

Zi,NSi,N

)]
→ 0, (9.41)

A2N = E

[
a

−1/2
N eıλS̄N

N∑
i=1

Zi,N

(
1 − e−ıλS̄i,N − ıλS̄i,N

)]
→ 0,

(9.42)

A3N = E

[
a

−1/2
N

N∑
i=1

Zi,Ne
ıλ(S̄N−S̄i,N )

]
→ 0 (9.43)

as N → ∞. Because of the double summations in (9.35), the
proof of (9.41)–(9.43) is quite involved. We give the proof of
(9.41)–(9.43) one by one in detail in the Appendix (Section
A.1.3). Thus it follows from (9.40) and (9.41)–(9.43) that (b)
holds true. By (a) and (b) together with (9.39), we complete the
proof of this proposition. �

9.5 Proofs for Section 6

We need the following lemma to facilitate the proof of the
theorems in this section.

Lemma 4. Under Assumptions (I
′
), (II

′
), (III

′
), and (IV

′
), as

N → ∞,

1

N2

N∑
j,�=1

Lb(‖sj − s�‖ − ‖s0‖)H (‖sj − s�‖)

→ H (‖s0‖)A∗
0(‖s0‖),

and

1

N2

N∑
j,�=1

b−1L2((‖sj − s�‖ − ‖s0‖)/b)H (‖sj − s�‖)

→ H (‖s0‖)
∫
L2(s1)ds1A

∗
0(‖s0‖)

for any function H (‖s‖) which is continuous at ‖s0‖, and

1

N2

N∑
j,�=1

Lb(‖sj − s�‖ − ‖s0‖)

× [f (x, y, ‖sj − s�‖) − f (x, y, ‖s0‖)]

= 1

2
b2

[
2
∂f (x, y, ‖s0‖)

∂s
μL,2{A∗

1(‖s0‖) + A∗
0(‖s0‖)/‖s0‖}

+
(
∂2f (x, y, ‖s0‖)

∂s2
μL,2

)
A∗

0(‖s0‖)

]
(1 + o(1)). (9.44)

The proof of Lemma 4 will be given in Appendix.

Proof. The proof of Theorems 5–7 is completely similar to
that of Theorems 2–4 with Lemma 2 used there replaced by
Lemma 4. The details are omitted. �

SUPPLEMENTARY MATERIALS

The proofs for Lemmas 24 and (9-41)–(9-43) in Section 9 are
available in the online supplementary materials.

[Received August 2012. Revised May 2014.]

REFERENCES

Bolthausen, E. (1982), “On the Central Limit Theorem for Stationary
Mixing Random Fields,” The Annals of Probability, 4, 1047–1050.
[1551,1561,1563]

Chiles, J-P, and Delfiner, P. (1999), Geostatistics: Modeling Spatial Uncertainty,
New York: Wiley. [1546]

Cressie, N. (1993), Statistics for Spatial Data (revised ed.), New York: Wiley.
[1546,1548]
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