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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Reduced-Complexity Communications System Design

by Chao Xu

The technical breakthrough of Turbo Codes (TCs) initiated two decades of exciting develop-

ments leading to a suite of near-capacity techniques. It hasbeen widely recognized that exchang-

ing extrinsic information between the channel decoders andthe modulated signal detectors assists

communications systems in approaching their best possibleperformance potential that is predicted

by the channel capacity. Nonetheless, in line with Moor’s Law, as researchers inch closer and

closer to the channel capacity, the complexity of the resultant communications systems is also

significantly increased. In fact, soft-decision-aided signal detection conceived for Single-Input

Single-Output (SISO), Single-Input Multiple-Output (SIMO) and Multiple-Input Multiple-Output

(MIMO) schemes typically contribute a substantial fraction of the total complexity, especially when

multiple received samples have to be jointly detected in order to combat the deleterious effect of

channel fading. Against this background, in this treatise,we firstly propose a reduced-complexity

design for the classic soft-decision-aided PSK/QAM detectors, and then these reduced-complexity

design guidelines are applied to a variety of communications systems spanning from coherent to

noncoherent, from uncoded to coded, and also from SISO to MIMO systems. Our aim is to reduce

the computational complexity as much as possible, especially for complex near-capacity communi-

cations systems, while mitigating any performance loss imposed by our reduced-complexity design.

First of all, we commence from the family of basic coherent SISO/SIMO systems, where

both uncoded and coded PSK/QAM schemes are considered. The channel coding assisted near-

capacity systems design principles are introduced based onEXtrinsic Information Transfer (EXIT)

charts. Furthermore, we observe that the Max-Log-MAP algorithm invoked for soft-decision-aided

PSK/QAM detection aims for finding the maximum probabilities, which is similar to the action of

hard-decision-aided detection of uncodedMPSK/QAM schemes. Therefore, we propose to link

eacha priori LLR to a reduced-size fraction of the channel’s output signal constellations, so that

the Max-Log-MAP algorithm may be operated at a reduced complexity. Moreover, the correspond-

ing reduced-complexity Approx-Log-MAP algorithm is also conceived by compensating for the

Max-Log-MAP algorithm’s widely-used Jacobian approximation relying on a lookup table. Our

performance results demonstrate that up to41.6% and72.6% complexity reductions are attained

for soft-decision-aided Square 64QAM and Star 64QAM detectors, respectively, which is achieved

without any performance loss. This complexity reduction is substantial, especially when the soft-

decision-aided signal detectors are invoked several timesduring turbo detection.



Secondly, we proceed by conceiving reduced-complexity algorithms for the noncoherently de-

tected DPSK schemes in both uncoded and coded SISO/SIMO systems. More explicitly, the DPSK

transmitter modulates the data-carrying symbols onto the phase changes between consecutive trans-

mitted symbols, so that the Conventional Differential Detection (CDD) may recover the source

information by observing the phase change between every pair of consecutive received samples.

However, the CDD aided DPSK suffers from a 3 dB performance penalty compared to its coherent

counterpart. Moreover, an irreducible error floor occurs, when the CDD is employed in rapidly fluc-

tuating fading channels. In order to mitigate this problem,Multiple-Symbol Differential Detection

(MSDD) may be invoked in order to improve the DPSK performance by extending the observation

window length from the CDD’sNw = 2 to Nw ≥ 2. The price paid is that the MSDD complex-

ity grows exponentially with(Nw − 1) as a result of jointly detecting the(Nw − 1) data-carrying

symbols. As a remedy, the Decision-Feedback Differential Detection (DFDD) concept may be in-

troduced in order to detect a single symbol based on previousdecisions concerning the(Nw − 2)

data-carrying symbols in a MSDD window. However, the DFDD inevitably imposes a perfor-

mance loss due to its inherent error propagation problem. Inorder to retain the optimal MSDD

performance, the Multiple-Symbol Differential Sphere Detection (MSDSD) facilitates the MSDD

by invoking a Sphere Decoder (SD). Against this background,we firstly propose to introduce a

simple correlation operation into the hard-decision-aided MSDSD employing an arbitary number

of Receive Antennas (RAs), so that the SD may visit the constellation points in a zigzag fashion

for the case of uncoded DPSK SIMO systems. Furthermore, we propose a reduced-complexity

Schnorr-Euchner search strategy for the soft-decision MSDSD employing an arbitrary number of

RAs, so that the optimum candidate may be found by visiting a reduced-size subset of constellation

points, and then the rest of the constellation points may be visited in a zig-zag fashion. Our simula-

tion results demonstrate that up to88.7% complexity reduction is attained for MSDSD(Nw = 4)

aided D16PSK. We have also proposed the near-optimum Approx-Log-MAP algorithm conceived

for soft-decision-aided SD, which has not been disseminated in the open literature at the time of

writing. Furthermore, the important subject of coherent versus noncoherent detection is discussed

in the context of coded systems, which suggests that MSDSD aided DPSK is an eminently suitable

candidate for turbo detection assisted coded systems operating at high Doppler frequencies.

Following this, a range of noncoherent detectors designed for non-constant modulus Differen-

tial QAM (DQAM) schemes are introduced for both uncoded and coded scenarios, where the open

problem of MSDSD aided Differential QAM (DQAM) is solved. More explicitly, the MSDSD

relies on the knowledge of channel correlation, which is determined both by the Doppler frequency

and by the noise power. For DPSK, the transmitter’s phases may form a unitary matrix, which

may be separated from the channel’s correlation matrix, so that a lower triangular matrix that is

created by decomposion from the inverse of the channel’s correlation matrix may be utilized in the

context of sphere decoding. However, for DQAM, the transmitted symbol-amplitudes cannot form

a unitary matrix, which implies that they have to be taken into account by the channel’s correla-

tion matrix. As a result, the symbol-amplitude-dependent channel correlation matrix only becomes
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known, when all the symbol-amplitudes are detected. Furthermore, the classic DFDD solutions

conceived for DQAM rely on the assumption of the channel’s correlation matrix being independent

of the symbol-amplitudes, which implies that these DFDD solutions are sub-optimal and they are

not equivalent to the decision-feedback aided version of the optimum MSDD. To circumvent these

problems, we prove that although the complete channel correlation matrix remains unknown, the

associated partial channel correlation matrix may be evaluated with the aid of the SD’s previous

decisions as well as by relying on a single information-dependent symbol amplitude that may be

readily found by the SD. As a benefit, we are able to invoke sphere decoding for both amplitude

detection and phase detection in the context of MSDD aided DQAM. Furthermore, we have also

improved the classic DFDD solutions conceived for DQAM by directly deriving them from the op-

timum MSDD. Moreover, we offer a unified treatment of diversenoncoherent detectors, including

CDD, MSDD, MSDSD and DFDD for a variety of DQAM constellations that exist in the literature,

including Differential Amplitude Phase Shift Keying (DAPSK), Absolute-Amplitude Differential

Phase Shift Keying (ADPSK) and their twisted constellations. The reduced-complexity algorithms

proposed for DPSK detection are also applied to DQAM detection in both uncoded and coded

systems .

Last but not the least, we provide insights concerning the design of MIMO systems in both

uncoded and coded scenarios, where two of the salient tradeoffs encountered in MIMO system de-

sign are investigated. Firstly, the tradeoff between the attainable multiplexing and diversity gain of

MIMO schemes is discussed. More explicitly, the V-BLAST MIMO systems have a capacity that

may even grow linearly with the number of antennas, but they are not designed for achieving a trans-

mit diversity gain for combating the effects of fading. By contrast, the family of Space-Time Block

Codes (STBCs) offers a benefical transmit diversity gain, but the STBCs cannot achieve the full

MIMO capacity. In order to circumvent this problem, the Linear Dispersion Code (LDC) concept

may be introduced to resolve this tradeoff, where a total number of NQ modulatedMPSK/QAM

symbols are dispersed across both theNT-element spatial domain and theNP-element time domain

of the transmission matrix. As a result, the LDC may attain both the full MIMO capacity and the full

transmit diversity gain, provided that the parameters satisfy NQ ≥ NT NP. Nonetheless, since the

STBC’s orthogonality requirements are dropped by the LDC design, the LDC receiver has to em-

ploy the V-BLAST detectors in order to tackle the Inter-Antenna Interference (IAI). Hence a trade-

off between the performance attained and the complexity imposed is encountered, which explicitly

manifests itself in the context of V-BLAST receiver design.More explicitly, on the one hand, it is

well known that the ML detector and the SD are capable of achieving the best possible V-BLAST

performance in uncoded systems, but their detection complexity may be potentially excessive, when

employing a large number of Transmit Antennas (TAs). The optimum MAP V-BLAST detection

complexity may become especially unaffordable, when the MIMO detector is invoked several times

in the context of turbo detection in coded systems. On the other hand, linear V-BLAST receivers

such as the classic MMSE receiver may be invoked in order to separate the superimposed parallel

data streams. However, the residual IAI persisting after the linear interference-suppression filter
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may still severely degrade the MIMO system’s performance. Against this background, the Spatial

Modulation (SM) concept may be introduced. Our goal is to ensure that the optimal ML MIMO

detection performance may be achieved for SM at a substantially reduced complexity. More explic-

itly, the SM transmitter activates a single one out ofNT TAs in order to transmit a single modulated

MPSK/QAM symbol. As a result, the SM receiver may aim for detecting the TA activation in-

dex and the modulated symbol index separately at a reduced complexity. Moreover, the concept

of Space-Time Shift Keying (STSK) once again achieves a beneficial diversity gain, where a sin-

gle one out ofNQ dispersion matrices is activated for dispersing a single modulatedMPSK/QAM

symbol. The STSK receiver may employ the low-complexity SM detectors in order to recover both

the activated dispersion matrix index and the modulated symbol index. However, completely in-

dependently detecting the TA activation index and the modulatedMPSK/QAM symbol imposes a

performance loss on the SM receiver. This is because the potentially erroneous decisions concern-

ing the TA activation index may mislead theMPSK/QAM demodulator into detecting the wrong

symbol. In order to mitigate this problem, in this treatise,we have proposed reduced-complexity

algorithms conceived both for hard-decision-aided SM detection and for soft-decision-aided SM

detection, where the optimal SM performance is retained by taking into account the correlation

between the TA activation index and the modulatedMPSK/QAM symbol index. A range of other

optimal and suboptimal SM detectors characterized in the literature are also summarized for the

sake of comparison.
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• A modulatedMPSK symbol may be represented by{sm = exp( 2π
M m̌)}M−1

m=0 , where modu-

lation indexm is Gray coded version of the natural indexm̌.

• The Gray coded indexm may be directly translated to binary source bits combinations, i.e.

we have dec2bin(m) = b1b2 · · · bBPS.

General Rules for Square QAM

• A modulated SquareMQAM symbol is constituted by aMRePAM {smRe
Re = MRe−2m̌Re−1√

β
}MRe−1

mRe=0

for its real part and by aMImPAM {smIm
Im = MIm−2m̌Im−1√

β
}MIm−1

mIm=0 for its imaginary part, i.e.

we have{sm = smRe
Re + jsmIm

Im }M−1
m=0 .

• The QAM modulation indexm = bin2dec(b1 · · · bBPS) = mImMRe + mRe and the PAM

modulation indicesmRe = bin2dec(bBPSIm+1 · · · bBPS) and mIm = bin2dec(b1 · · · bBPSIm)

are Gray coded natural indicešm, m̌Re andm̌Im, respectively.

• The normalization factor is given byβ =
∑

MRe/2−1
m̌Re=0 ∑

MIm/2−1
m̌Im=0 [(MRe−2m̌Re−1)2+(MIm−2m̌Im−1)]

M/4 .

General Rules for Star QAM

• A modulated StarMQAM symbol is obtained by aMPPSK phase{Ωp = exp(j 2π
MP

p̌)}MP−1
p=0

multiplied by aMA-level ring amplitude{Γa = αǎ√
β
}MA−1

a=0 , i.e. we have{sm = ΓaΩp}M−1
m=0 .

• The modulation indicesm = bin2dec(b1 · · · bBPS) = pMA + a, p = bin2dec(b1 · · · bBPSP
)

anda = bin2dec(bBPSP+1 · · · bBPS) are Gray coded natural indicešm, p̌ andǎ, respectively.

• The ring amplitude ratio is given byα, and the symbol power normalization factor is given

by β = ∑
MA−1
ǎ=0 α2ǎ

MA
.
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General Rules for Differential PSK (DPSK)

• The DPSK scheme maps BPS= log2 M source bits{bk}BPS
k=1 to an MPSK symbolxm =

exp(j 2π
M m̌).

• The DPSK differential encoding processing is given bysn = xn−1sn−1 commencing from

s1 = 1, wherexn−1 andsn−1 denote the data-carrying symbol and the transmitted symbol,

respectively.

General Rules for Differential Amplitude Phase Shift Keying (DAPSK)

• The DAPSK schemes are represented by the acronym ofM-DAPSK(MA,MP).

• The DAPSK scheme aims to guarantee that all the transmitted symbols sn are drawn from

the same StarMQAM constellation. The differential encoding process is given by sn =

xn−1sn−1, which commences froms1 = 1√
β
.

• The transmitted symbolsn may be represented by aMA-level ring amplitudeΓn = αµn√
β

combined with aMP-PSK phaseΩn assn = ΓnΩn. The data-carrying symbolxn may be

represented in the same way asxn = γnωn.

• A modulated data-carrying symbol is given byxm = γaωp = α[(ǎ+µn−1) mod MA]−µn−1 ·
exp(j 2π

MP
p̌), where the modulation indicesm = bin2dec(b1 · · · bBPS) = pMA + a, p =

bin2dec(b1 · · · bBPSP
) anda = bin2dec(bBPSP+1 · · · bBPS) are Gray coded natural indicešm,

p̌ andǎ, respectively.

General Rules for Absolute-Amplitude Differential Phase Shift Keying

(ADPSK)

• The ADPSK schemes are represented by the acronym ofM-ADPSK(MA,MP).

• The ADPSK scheme aims to guarantee that all the data-carrying symbolsxn are drawn from

the same Star QAM constellation. In order to avoid having an unconstrained transmitted

symbol power, the differential encoding process is given bysn = 1
|sn−1|xn−1sn−1, which

commences froms1 = 1√
β
. As a result, the ADPSK scheme always has the absolute-

amplitude ofΓn = |sn| = |xn−1| = γn−1.

• The transmitted symbol may be represented assn = ΓnΩn, whereΓn and Ωn refer to

the transmitted ring amplitude and the transmitted phase, respectively. Similarly, the data-

carrying symbol may be represented asxn = γnωn, whereγn and ωn refer to the data-

carrying ring amplitude and the data-carrying phase, respectively.
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• A modulated data-carrying symbol is directly drawn from Star MQAM constellation associ-

ated withMA ring amplitudes andMPPSK phases asxm = γaωp = αǎ√
β
· exp(j 2π

MP
p̌).

General Rules for Twisted DAPSK (TDAPSK) and Twisted ADPSK

(TADPSK)

• The TDAPSK schemes and the TADPSK schemes are represented bythe acronyms ofM-

TDAPSK(MA,MP) andM-TADPSK(MA,MP), respectively.

• The data-carrying symbol is represented byxn = γnωnψn, where the extra term ofψn is a

ring-amplitude-dependent phase rotation ofψa = exp(j 2π
M ǎ). As a result, the transmitted

symbol is given bysn = ΓnΩnΨn, whereΨn refers to the accumulated ring-amplitude-

dependent phase rotation.

• The TDAPSK scheme modulates the data-carrying symbol asxm = γaωpψa = α[(ǎ+µn−1) mod MA]−µn−1 ·
exp(j 2π

MP
p̌) · exp(j 2π

M ǎ). The differential encoding process for TDAPSK is as same as that

for DAPSK.

• The TADPSK scheme modulates the data-carrying symbol asxm = γaωpψa = αǎ√
β
·

exp(j 2π
MP

p̌) · exp(j 2π
M ǎ). Similarly, TADPSK invokes the same differential encodingpro-

cess as ADPSK.

General Rules for DQAM Associated with Joint Mapping (DQAMJM )

• Instead of assigning the BPSP source information bits and the BPSA information bits to mod-

ulate theMPPSK phase index and theMA-level ring amplitude index separately, DQAMJM

joinly maps the ring amplitude and phase.

• The joint mapping for TDAPSK constellation is given byxm = α[(m̌ mod MA)+µn−1] mod MA

αµn−1 ·
exp(j 2π

M m̌), which may be termed as TDAPSKJM.

• Similarly, the joint mapping for TADPSK constellation is given byxm = α(m̌ mod MA)√
β

· exp(j 2π
M m̌),

which may be termed as TADPSKJM.

• All the BPS= log2 M source information bits are assigned to encode the global modulation

indexm = bin2dec(b1 · · · bBPS), which is Gray coded natural index̌m.

General Rules for V-BLAST

• The V-BLAST schemes are represented by the acroym of V-BLAST(NT,NR)-MPSK/QAM.
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• A total of NQ = NT modulatedMPSK/QAM symbols are transmitted by theNT transmit

antennas duringNP = 1 symbol periods.

• The (1 × NT)-element V-BLAST transmission matrix is given byS = [ sm1√
NT

, · · · , s
mNT√

NT
],

where theMPSK/QAM symbols are separately modulated as{smv = M(mv)}NT
v=1.

General Rules for Space-Time Block Code (STBC)

• The STBC transmitter encodes theNQBPS source bits intoNQ modulatedMPSK/QAM

symbols{sq}NQ

q=1. During NP symbol periods, the(NP × NT)-element symbol-matrix trans-

mitted from theNT transmit antennas is given byS =
√

PtGNT
({sq}NQ

q=1), whereGNT
(·)

represents the STBC’s space-time modulation arrangement.

• Alamouti’s G2-STBC associated withNT = NP = NQ = 2 is the only full-rate orthogonal

STBC employing a complex-valued signal constellation, where the STBC’s symbol rate is

defined asR = NQ/NP.

• Half-Rate(HR) STBCs relying on the Hurwitz-Radon orthogonal design are represented by

the acroym of HR-GNT-STBC, where we haveNT = NQ andNP = 2NQ for the specific

cases ofNT =2, 4 or 8. For the case ofNT not being a power of 2, the HR-GNT-STBC

transmission matrix may be obtained by taking the firstNT columns of the HR-G2⌈log2 NT⌉-

STBC’s codeword. Moreover, we haveNP = 16 × 16(NT/8−1) for NT being bigger than 8

and being a power of 2.

• STBCs relying on the Amicable Orthogonal (AO) design are represented by the acroym of

AO-GNT-STBC. The AO-G2ι-STBC’s transmission matrix is formed from the AO-G2ι−1-

STBC’s codeword and an extra the(ι + 1)-th transmitted symbol, whereι denotes a positive

integer that may start fromι = 1. As a result, the AO-STBCs always have a reduced delay

of NP = NT for the cases ofNT = 2ι, and we also haveNQ = ι + 1.

• The Quasi-Orthogonal(QO) STBCs are represented by the acroym of QO-GNT-STBC, whose

transmission matrix is formed by subgroups of orthogonal STBCs, so that the STBC’s sym-

bol rate may be improved but the STBC’s orthogonality is compromised.

General Rules for Linear Dispersion Code (LDC)

• The LDC schemes are denoted by the acronyms of LDC(NT,NR,NP,NQ)-MPSK/QAM,

where a total number ofNQ modulatedMPSK/QAM symbols{sq}NQ

q=1 are dispersed across

both spatial domain and the time domain of the(NP × NT)-element transmission matrixS.

• The capacity-improving LDC scheme disperses the real and imaginary parts of modulated

symbols separately asS = ∑
NQ

q=1[Aqℜ(sq) + jBqℑ(sq)], which may provide an improved

capacity from the STBC while retaining the full diversity order.
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• The capacity-achieving LDC scheme disperses the real and imaginary parts of modulated

symbols jointly asS = ∑
NQ

q=1

[
Aqsq

]
, which may achieve the full MIMO capacity while

retaining the full diversity order, provided that the parameters satisfyNQ ≥ NT NP

General Rules for Spatial Modulation (SM)

• The SM schemes are represented by the acronym of SM(NT,NR)-MPSK/QAM.

• The SM transmitter assigns the first BPS= log2 M source information bits to modulate

a singleMPSK/QAM symbolsm = M(m), and the following BPST = log2 NT bits are

assigned to activate a single out of a total number ofNT transmit antennas.

• The(1 × NT)-element SM transmission matrix is given byS = [0 · · · 0︸ ︷︷ ︸
v−1

, sm, 0 · · · 0︸ ︷︷ ︸
NT−v

].

General Rules for Space-Time Shift Keying (STSK)

• The STSK schemes are represented by the acronym of STSK(NT,NR,NP,NQ)-MPSK/QAM.

• The STSK transmitter activates a single out of a total numberof NQ dispersion matrices for

dispersing a singleMPSK/QAM symbol, so that the low-complexity SM detectors maybe

invoked at the STSK receiver.

• The(NP × NT)-element STSK transmission matrix is given byS = Aqsm.

Special Symbols

α: Ring amplitude ratio for StarMQAM.

β: Normalization factor for a modulatedMQAM symbol.

Γn: A transmitted ring amplitude of a StarMQAM symbol or a DQAM symbol.

γn: A data-carrying ring amplitude of a DQAM symbol.

Ωn: A transmittedMPPSK phase of a StarMQAM symbol or a DQAM symbol.

ωn: A data-carryingMPPSK phase of a DQAM symbol.

Ψn: A transmitted ring-amplitude-dependent phase rotation ofa DQAM symbol.

ψn: A data-carrying ring-amplitude-dependent phase rotationof a DQAM symbol.

µn: A transmitted ring amplitude index as inΓn = αµn√
β

for DAPSK.

∆v−1: The Partial Euclidean Distance (PED) increment evaluated by Sphere Decoder (SD).
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MSE: The Mean Squared Error (MSE).

Ξv: The determinant term in PED evaluated by MSDSD aided DQAM.

ξv: A constant determinant term that is introduced in order to guarantee thatΞv takes

positive value.

a: The ring amplitude index for a StarMQAM symbol or a DQAM symbol.

A: The(Nw × Nw)-elements ring amplitudes matrix that is modelled by MSDD.

Ā: The MSDD’s ring amplitudes matrix where the first ring amplitudeΓ1 is known.

{A}NQ

q=1/{B}NQ

q=1: The dispersion matrices that are used in MIMO schemes.

arg: Taking the argument.

b1 · · · bBPS: The source bits that are assigned to modulate aMPSK/QAM symbol.

b̃m
1 · · · b̃m

BPS: The bits mapping arrangement corresponding to the specific constellation pointsm,

where we have(b̃m
1 b̃m

2 · · · b̃m
BPS) = dec2bin(m).

bin2dec(·): A function that converts binary bits to decimal integer.

BPS: The number of bits per symbol, i.e. we have BPS= log2 M.

BPSRe/BPSIm: The number of bits per symbol that are assigned to modulate the real/imaginary

part of a SquareMQAM symbol, where we have BPS= BPSRe+ BPSIm.

BPSA/BPSP: The number of bits per symbol that are assigned to modulate the amplitude/phase

of a StarMQAM symbol or a DQAM symbol, where we have BPS= BPSA +

BPSP.

C: The channel correlation matrix that is often utilized by MSDD, MSDSD and DFDD.

C̃: The partial channel correlation matrix that is utilized by MSDSD aided DQAM.

CCCMC: Capacity of Continuous-input Continuous-output Memoryless Channel.

CDCMC: Capacity of Discrete-input Continuous-output MemorylessChannel.

det(·): The determinant of a matrix.

diag(·): A diagonal matrix using the input vector as its diagonal.

dm: The probability metric that is facilitated by Log-MAP, Max-Log-MAP as well as

Approx-Log-MAP according to the specific constellation point sm.

dmRe
Re /dmIm

Im : The probability metrics that are associated with the real/imaginary part of a Square

MQAM symbol.
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dv: The Partial Euclidean Distance (PED) evaluated by Sphere Decoder (SD).

dec2bin(·): A function that converts decimal integer to binary bits.

E(·): The expectation of a random variable.

exp(·): The natural exponentiation of the elements.

fd: The normalized Doppler frequency.

Hn: The (NT × NR)-element MIMO’s Rayleigh fading channel matrix.

H: The(Nw × NR)-element Rayleigh fading channels matrix that is modelled by MSDD.

I(B; Λ): The mutual information between the variableB modelled for bitb and the variable

Λ modelled for LLRL.

IA: Thea priori information.

IE: The extrinsic information

IN : An identity matrix of sizeN × N.

IR: Number of iterations between two turbo detected components.

j: The imaginary unit, wherej2 = −1.

J0(·): The zeroth-order Bessel function of the first kind

jac(·): The modified Jacobian algorithm that compares two numbers and produces an output

according to a lookup table.

ln(·): The natural logarithm of the elements.

loga b: The logarithm of b to base a.

L(b): The Log Likelihood Ratio (LLR) of bitb.

La(b): Thea priori LLR of bit b.

Le(b): The extrinsic LLR of bitb.

Lp(b): Thea posterioriLLR of bit b.

L: The lower triangular matrix that is decomposed fromLLH = C−1 that is often

utilized by MSDD, MSDSD and DFDD.

L̃: The partial lower triangular matrix that is utilized by MSDSD aided DQAM.

M: The number of levels of a multi-level PSK/QAM scheme.

MRe/MIm: The number of levels of a PAM scheme that constitutes the real/imaginary part of a

SquareMQAM scheme, where we haveM = MReMIm.
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MA/MP: The number of levels of a StarMQAM scheme’s amplitude/phase, where we have

M = MA MP.

m: Gray coded modulation index.

mRe/mIm: Gray codedMRePAM/MImPAM modulation index for the real/imaginary part of a

SquareMQAM scheme.

min/max: Comparing and taking the minimum/maximum candidate.

n: The subscriptn of a symbol (e.g. the subscriptn in sn) indicates the time index.

NOL: The number of observations that are overlapped by consecutive MSDD/MSDSD ob-

servation windows.

NT: The number of transmit antennas.

NR: The number of receive antennas.

NQ: The number of symbols transmitted together by a MIMO (including STBC, SM,

STSK, etc.) block.

NP: The number of symbol periods (also termed as time slots) required by a MIMO

transmission.

Nw: The observation window size for MSDD/MSDSD/DFDD.

O(·): Complexity order.

O: The (Nw × Nw)-elements ring-amplitudes-dependent phase rotations matrix that is

modelled by MSDD aided DQAM.

Ō: The MSDD’s ring-amplitudes-dependent phase rotations matrix where the first phase

rotationΨ1 is known.

p(·): The probability of an event.

p: The PSK phase index for a StarMQAM symbol or a DQAM symbol.

P: The(Nw × Nw)-elementsMPPSK phases matrix that is modelled by MSDD aided

DQAM.

P̄: The MSDD’sMPPSK phases matrix where the firstMPPSK phaseΩ1 is known.

R: The system’s overall throughput.

Rc: The channel code’s coding rate.

ℜ(·)/ℑ(·): Taking the real/imaginary part of a complex number.

RH̄H̄: The fading channel correlation matrix.
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RVV : The AWGN correlation matrix.

Rvv: The AWGN characteristic correlation matrix.

rvec(·): A row vector formed by taking the rows of a matrix one-by-one.

sn: A transmitted symbol for both coherent scheme and noncoherent scheme.

S: The(Nw × Nw)-element transmitted symbols matrix that is modelled by MSDD.

S̄: The MSDD’s transmitted symbols matrix where the first transmitted symbols1 is

known.

T(·): The transfer characteristic function of a soft-decision-aided decoder/demapper.

TQS: The number of symbol periods in which the QS fading channel remains the same.

Toeplitz(·): A symmetric Toeplitz matrix generated from the input vector.

tr(·): Trace of a matrix.

Vn: The AWGN matrix that is of the same size as the received signalmatrix Yn.

V: The(Nw × NR)-element AWGN matrix that is modelled by MSDD.

xn: The data-carrying symbol for differential schemes.

Yn: The (NP × NR)-element received signal matrix that models signal received by NR

receive antennas overNP symbol periods.

Y: The(Nw × NR)-element received signals matrix that is modelled by MSDD.

zn: The decision variable for detecting a symbol.

Special Operations

‖ · ‖2: The Euclidean norm of a vector/matrix.

(·)H: The Hermitian transpose of a matrix.

(·)T: The transpose of a matrix.

(·)∗: The conjugate of a complex symbol/vector/matrix.

⌊·⌉: Rounding a numerical value to its nearest integer.

⌈·⌉: Rounding a numerical value to its nearest higher integer.

⌊·⌋: Rounding a numerical value to its nearest lower integer.
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Chapter1
Introduction

Wireless communication has been thriving throughout the information and telecommunication rev-

olution of the last few decades. Driven by the growing demandfor reliable wireless access, numer-

ous advanced technologies have been developed. In line withMoor’s Law, wireless communica-

tions systems have gradually become more and more complex. Fig. 1.1 offers a glimpse of a few

key factors that directly affect wireless communications system design. The factors in the first cat-

egory of system modelling seen in Fig. 1.1 play a fundamentalrole in efficient system planing and

deployment. First of all, as the medium for reliable transmission, the channel characteristics have

to be modelled before chosing the appropriate transmissionscheme. To elaborate a little further,

the effects of channel fading impose one of the most grave challenges in wireless communications

systems. The path loss, which results in a substantial received signal power loss as a function of

distance has to be tackled by robust power control [2–5]. Theshadowing fading caused by large

terrain features may either be compensated by the transmitter’s power control or be mitigated by

the employment of relays [6], which may forward the transmitter’s signal to the desired receiver.

For mitigating the effects of small-scale fading, which is often caused by signals received via dif-

ferent paths sometimes adding constructively or destructively, channel estimation [1] is required, so

that the signals may be detected coherently. When the fadingchannel envelope fluctuates rapidly,

differentially encoded schemes employing noncoherent receivers [7–9] may be invoked in order to

avoid the effects of imperfect channel estimation and the pilot overhead. The factors found in the

first category related to system modelling in Fig. 1.1 also include hardware-related configurations.

For example, the number of antennas employed at the transmitter and at the receiver may explicitly

determine the achievable capacity and influence the transceiver choices. Moreover, the multi-user

scenario of Fig. 1.1 is also of critical importance. These system modelling concepts constitute the

foundation of communications theory and they have been lavishly documented in textbooks, such

as [2–5].

Once the system model is established, the communications system’s transceiver design featured

in Fig. 1.1 is centred around achieving the best possible performance at the lowest cost. The factors

of the second category in Fig. 1.1 are all related to the attainable system performance, while the
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Figure 1.1: Factors affecting the design of wireless communications systems.

factors of the third category in Fig. 1.1 are related to the system’s complexity. Unfortunately, there

is invariably a tradeoff between the performance attained and the complexity imposed, since a com-

plexity reduction is often associated with a performance degradation. As an example, the classic

Multiple-Input Multiple-Output (MIMO) system is portrayed in Fig. 1.2, where both the transmitter

and the receiver are equipped with multiple antennnas. TheNT Transmit Antenna (TA) elements

independently transmit a total number ofNT modulated symbols, which are drawn from theMPSK

constellation diagram. TheNT data streams are separately modulated and transmitted. They ex-

perience fading channels and arrive at the Receive Antenna (RA) elements simultaneously. As a

result, the classic Maximum-Likelihood (ML) MIMO receiver[8] of Fig. 1.2 has to jointly consider

all the NT MPSK constellation diagrams in order to recover all data streams. As a result, the ML

receiver has to examine a total number ofMNT of MIMO signal combinations, which imposes a

potentially excessive computational complexity. In orderto mitigate this complexity problem, it

is desirable to visit the individualMPSK constellation diagrams separately. However, in practice,

Inter-Antenna Interference (IAI) is encountered, becausethe multiple data streams act as interfer-

ence imposed on each other. An attractive option is to invokea Sphere Decoder (SD) [10–12] as

seen in Fig. 1.2, which only detects a single symbol at a time,while the previous decisions made

by visiting other constellation diagrams are fed back in order to cancel out the known interference.

The SD may continue to examine new constellation points of the next constellation diagram, un-

til the search scope exceeds the SNR-dependent sphere radius. Therefore, the performance and

complexity of SD is explicitly determined by the sphere radius, where the ML performance may

be retained at the cost of the a high complexity, whilst visiting less candidates may result in a de-

graded performance. Another option is to mitigate the IAI bya Linear Filter (LF) [13–16], and

then the individual constellation digrams may be visited completely separately, so that only a total

of NT × M constellation points have to be examined. Nonetheless, theresidual IAI after LF may

still severely degrade the MIMO system’s performance.
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Figure 1.2: An example of striking a tradeoff between the performance attained and the

complexity imposed by MIMO systems.

In this report, we focus our attention on the tradeoff between the performance and complexity.

Our aim is to reduce the computational complexity as much as possible, especially for complex

near-capacity communications systems, while mitigating any performance loss imposed by our

reduced-complexity design. The basic idea of reduced-complexity design is illustrated by the ex-

ample of SD seen in Fig. 1.2, where the complex detector may bedecomposed into steps so that

less decision candidates have to be considered, while the correlation between the detection steps

should be carefully taken into account, so that the optimum performance may be retained.

1.1 A Historical Perspective on Near-Capacity Communications Sys-

tem Design

The communications theoretic capacity limit was established by Shannon [17] in the late 1940s,

which quantified a channel’s capacity as the maximum mutual information between the input sig-

nal and the output signal. Shannon proposed in Theorem 11 of [17] that the channel capacity,

which is the maximum data rate that can be transmitted over the channel at an infinitesimally low

error rate, can be achieved with the aid of channel coding at the unconstrained cost of delay and

complexity. In the 1950s, the single-error correcting Hamming code was proposed in [18], while

the convolutional coding concept was proposed by Elias [19]. Following this, the multiple error

correcting Bose-Chaudhuri-Hocquenghem (BCH) code was proposed in [20–22]. Furthermore,

the Maximum-Likelihood Sequence Estimation (MLSE) of convolutional codes was proposed by

Viterbi [23] in 1967. This classic Viterbi algorithm was further interpreted by Forney [24] in 1973,

and it was also applied to block codes by Wolf [25] in 1978. As amajor milestone, the opti-

mum Log-Max A Posteriori (MAP) decoding algorithm was proposed by Bahlet al. [26] in 1974,

which is often referred to as the Bahl-Cocke-Jelinek-Raviv(BCJR) algorithm. More explicitly, the
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BCJR Log-MAP algorithm aims for maximizing thea posterioriprobability of p(X|Y), where the

variablesX andY model the input and the output signals of the wireless channel. By contrast,

Viterbi’s MLSE algorithm aims for maximizing the conditional probability p(Y|X) of receivingY

upon sendingX over the wireless channel. The pair of probabilities ofp(X|Y) and p(Y|X) are

only equivalent for equiprobable discrete sources. The BCJR Log-MAP algorithm was shown to

be capable of achieving a lower Bit Error Rate (BER) in [26] than the Viterbi algorithm [23–25].

However, owing to the fact that the BCJR Log-MAP algorithm imposed a substantially higher com-

putational complexity than the Viterbi ML algorithm, it hadnot attracted much attention until the

revolutionary development of near-capacity system designemerging in the 1990s. Most notably, the

BCJR Log-MAP algorithm was simplified by the approximation of ln
[
∑∀i exp(di)

]
≈ max∀i di

by Koch et al. [27] in 1990, which is often referred to as the Max-Lag-MAP algorithm, so that

the computationally complex exponential operations may beavoided. Furthermore, Robertsonet

al. [28] proposed the near-optimum Approx-Log-MAP algorithm in 1995, which aimed for com-

pensating the difference between the two terms ofln
[
∑∀i exp(di)

]
andmax∀i di by invoking a

lookup table.

On the voyage of persuing the near-capacity performance predicted by Shannon, the construc-

tion of powerful channel code became the greatest challenge. It was observed in [29] that the

coding gain, which is theEb/N0-reduction provided by channel coding, grows linearly withthe

convolutional code’s memory, but the associated decoding complexity grows exponentially. In or-

der to mitigate this problem, the concept of concatenated codes [30] was introduced, where simple

component codes were concatenated in order to construct a powerful channel code. The con-

catenated code concept was first proposed by Elias [31] in 1954, where an idealistic “error-free”

performance predicted by Shannon’s theory was shown to be possible. The concatenated code

constituted by a convolutional code and a Reed-Solomon (RS)code stood out among the known

candidates [30,32,33], which was capable of providing a performance that was only2.0 ∼ 3.0 dB

away from Shannon’s capacity. In 1979, Battailet al. [34] proposed to place a interleaver between

the component codes of a concatenated code, which was also referred to as a product code, so that

the error bursts may be effectively interleaved. Battailet al. also suggested in [34] that the good

performance of concatenated codes may be guaranteed if the component decoders can exchange

their decisions. Inspired by the development of the Soft-Output Viterbi Algorithm (SOVA) and

its application to concatenated codes developed by Hagenauer and Hoeher [35] in 1989, Lodge

et al. [36] proposed in 1992 that the soft-decision-aided iterative decoding conceived for concate-

nated block codes inched closer to Shannon’s capacity. Thisscheme was further improved by the

same authors [37] in their ICC’93 paper, where the performance of half-rate channel coded BPSK

transmitted over Additive White Gaussian Noise (AWGN) channels achieved an impressive clos-

est ever 1.3 dB distance from Shannon capacity. It was also predicted by Lodgeet al. [37] that

the concatenated convolutional codes assisted by soft-decision-aided iterative decoding may pro-

vide an even better performance. At the same ICC conference in 1993, the groundbreaking Turbo

Coding (TC) technique was independently proposed by Berrouet al. [38], where a low BER of
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Figure 1.3: The schematic of a Parallel Concatenated Code (PCC) assisted by iterative

decoding, which is adopted by Turbo Codes (TCs) [38, 39]. BPSK transmission over

AWGN channels is assumed, unless otherwise stated.

10−5 was recorded atEb/N0 = 0.7 dB for half-rate channel coded BPSK transmitted over AWGN

channel, which was achieved by the parallel concatenation of a pair of Recursive Convolutional

Code (RSC) components exchanging their soft-bit information with the aid of iterative decoding,

as previously predicted by Lodgeet al. [36,37].

Let us now elaborate a little further on TC and its revolutionary effect on channel coding sci-

ence. The schematic of the Parallel Concatenated Code (PCC)adopted by TC [38,39] is portrayed

in Fig. 1.3. It can be seen in Fig. 1.3 that the information bits are encoded twice by a pair of

component RSC encoders, where an interleaver is inserted between them in order to ensure that

the bit-dependencies imposed by the two RSC codes are eliminated between them. At the receiver,

the pair of component RSC decoders exchange their so-calledextrinsic information1 in order to

achieve a near-capacity performance. The soft-bit processed by the soft-input soft-output decoders

of Fig. 1.3 is in the form of Log Likelihood Ratio (LLR) [27, 35], whereLa, Lp andLe represent

the a priori LLR, a posterioriLLR and extrinsic LLR, respectively. BPSK transmission over an

AWGN channel was assumed by the TC scheme of [38, 39]. However, it is straightforward to ex-

tend this scheme to more complex modulations, where an arbitrary modulator and a demodulator

is placed before and after the wireless channel block of Fig.1.3, respectively.

Following the groundbreaking invention of TC and considering that the block codes have rela-

tively simple trellis structures [41], Pyndiahet al. [42] proposed to replace the convolutional codes

of Fig. 1.3 by block codes, which also achieved a near-capacity performance [42, 43]. In [44],

1The terminology of extrinsic information stems from the fact that as a benefit of the interleaver, they are capable of

providing an independent ’extended’ source of informationfor each bit.
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Hagenaueret al. generalized PCC, where any combination of block and convolutional codes was

deemed to be possible. Owing to the fact that the TC componentdecoders in Fig. 1.3 only updated

the LLRs for the information bits, but not for the parity bits, an error floor was experienced for

a limited number of decoding iterations, Benedettoet al. [40, 45] proposed the concept of Serial

Concatenated Code (SCC). The schematic diagram of a SCC is depicted in Fig. 1.4. At the SCC

encoder of Fig. 1.4, after interleaving the coded bitsco that include both the information bitsuo and

the parity bitsqo produced by the outer encoder, all bits become the input information bitsui of

the inner encoder. As a result, at the SCC decoder of Fig. 1.4,the extrinsic LLRsLe(ui) produced

by the inner decoder become thea priori LLRs La(co) for the outer decoder after de-interleaving,

while the extrinsic LLRsLe(co) produced by the outer decoder are transformed to be thea priori

LLRs La(ui) for the inner decoder after interleaving. Therefore, unlike for the PCC of Fig. 1.3, the

SCC component decoders of Fig. 1.4 exchange their extrinsicinformation based on the exact same

binary bits without any puncturing.

The Low-Density Parity Check (LDPC) coding concept that wasoriginally proposed by Galager

[46] in 1962 was popularized by MacKay and Neal [47] in 1996, where a near-capacity performance

was achieved by constructing sparse random parity check matrices and by iteratively improving the

decoding performance [47–49]. Hence the LDPC concept preceded TC by 31 years.

In order to optimize the communications schemes, the modulation scheme, which defines the

format of signal transmission and determines the effectivethroughput should also be taken into ac-

count. During their infancy, channel coding and modulationwere treated as separate entities [4,5],

as portrayed by Fig. 1.5. The first attempt of jointly designing channel coding and modulation is
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Modulation (TCM) of [50].

due to Mecklenburget al. [51] in 1973, when the conventional Gray-labelling designed for modu-

lation was revised in order to also impose bit-dependency onthe channel coded source bits. As the

benefit, the demodulator and the channel decoder act in liaison in order to jointly decide upon the

modulated symbol. Inspired by this idea, Multi-Level Coding (MLC) was proposed by Imai and

Hirakawa [52] in 1977, where the coded bits were mapped to thedifferent - integrity protection -

classes of multi-level modulus. The bits mapped to the lower-integrity modem sub-channels were

protected by stronger channel codes, which were then detected first by the MLC scheme’s multi-

stage decoder followed by the other bits of the MLC scheme. In1982, Ungerboeck [50] proposed

the landmark concept of Trellis Coded Modulation (TCM), where the channel code’s parity bits

were accommodated by the modem by increasing the number of bits per symbol, because this re-

quired no bandwidth expansion for FEC. More explicitly, instead of using Gray-labelling for the

modulated symbols, the TCM constellation diagram is divided into subsets by a techniqe referred to

as set partitioning, where each bit determines a pair of subsets, and the Euclidean distance between

the neighbouring constellation points within a subset is increased at every partitioning step. An ex-

ample of 8PSK set partitioning [50] is portrayed by Fig. 1.6.Similar to the MLC of [52], the TCM

of [50] assigned stronger component channel codes associated with longer memories to protect the

bits associated with lower Euclidean distances. However, instead of invoking a multistage decoder

as the MLC scheme [52], the TCM decoder was originally designed for relying on a single trellis

for jointly deciding on all the information bits.

Inspired by the invention of MLC and TCM, a lot of research efforts had been dedicated to

developing multi-dimensional constellations for TCM [53–55] in the 1980s, where instead of set-

partitioning the constellation diagram of a single symbol,a block of data were mapped to higher di-
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mensional constellations, so that a beneficial coding gain was achieved by the joint channel coding

and modulation design. However, as described in [56], the number of metrics to be calculated for

the TCM decoder’s trellis state transitions inevitably increases as the modulation-order increases.

In order to mitigate the escalating complexity, the trellisconstruction of the TCM decoder was de-

composed into lower-dimensional problems with the aid of multistage decoding [57–59] following

the philosophy of the MLC receiver of [52].

A specific TCM scheme conceived for fading channels was conceived by Simon and Divsalar

[60, 61] in 1988, where a symbol-based interleaver was proposed for separating the trellis-based

channel encoder and the modulator at the TCM transmitter, while the corresponding symbol-based

deinterleaver separated the demodulator and the channel decoder at the receiver. As a result, the

channel code and modulation were once again separated into two entities. Despite the temporal

correlation among the fading samples, the employment of interleaving/deinterleaving makes the

fading channels more-or-less memoryless, so that the symbols along a given error event path may be

considered to be independently faded. Moreover, it was observed in [60,61] that the TCM scheme’s

maximized Euclidean distance became less important in fading channels than in case of AWGN

channels [62]. Against this background, the classic Bit-Interleaved Coded Modulation (BICM)

arrangement was proposed by Zehavi [63] in 1992, which was further developed by Caireet al.[64].

It was proven in [63, 64] that the achievable time-diversityorder of the BICM was determined

by the minimum Hamming distance of the channel code. As a benefit of bit-based interleaving,

every coded bits may be modulated to any modulation constellation point, and hence BICM is

not designed for achieving the maximized free Euclidean distance of TCM. As a result, the TCM

scheme still performs better than BICM in AWGN channels, butBICM outperforms TCM in fading

channels, especially when the SNR is relatively high and hence the fading characteristics dominate

the attainable performance. In order to further improve theperformance of BICM, the landmark

Bit-Interleaved Coded Modulation concept relying on Iterative Decoding (BICM-ID) was proposed

by Li and Ritcey [65] in 1997. More explicitly, BICM-ID constitutes an instance of the generalized

SCC portrayed in Fig. 1.7, where the channel code and the modulation scheme constitute the outer

code and the inner code, respectively. The BICM-ID scheme was initially proposed for exchanging

hard-decisions in [65,66] and then it was further developedfor exchanging soft-bit decisions in [67]
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SCC Systems Inner code Outer code

Serial concatenated channel code [40,45] Channel code Channel code

LDPC codes [47–49] Variable nodes Check nodes

BICM-ID [65–68] Modulation Channel Code

Source-controlled channel decoding [69] Channel code Source code

Turbo equalization [70–72] Equalization Channel code

Turbo multiuser decoding [73–76] Mutiuser transceiver Channel code

Turbo-BLAST [13,77,78] V-BLAST MIMO Channel code

PCC Systems Component code I Component code II

Parallel concatenated channel code [38,39,42–44] Channel code Channel code

Turbo TCM (TTCM) [79] TCM TCM

Table 1.1: Examples of turbo detected concatenated codes.

performance
Near−capacity

Convergence analysis

Soft−Decision−Aided
Detector/Decoder

Turbo detection
(Iterative decoding)

Figure 1.8: The key driving factors behind achieving a near-capacity performance.

with the aid of a turbo receiver. It was explicitly demonstrated in [68] that since the BICM-ID

receiver’s demodulator was capable of mapping any bit back to the constellation subset pairs with

the aid of thea priori knowledge of all other bits, the free Euclidean distance wasonce again

increased after the demodulator received feedback from thechannel decoder, which assisted BICM-

ID in outperforming TCM both in AWGN channels and in fading channels.

It was gradually realized by the community that the “turbo principle” [80] may in fact be

extended to a variety of areas in order to achieve the full potential of different communications

systems. The revolutionary development of near-capacity system design has attracted substantial

research interest from the late 1990s onwards. A brief summary of turbo detected concatenated

codes is offered in Table 1.1, which includes the areas of channel coding, source coding, equal-

ization, multi-user detection, MIMO systems, etc.. The three driving factors behind near-capacity

system design are summarized in Fig. 1.8. Clearly, in order to perform iterative decoding/turbo

detection, the constituent detectors/decoders have to be revised both to be able to accept and to

produce soft-bit LLRs, again, as summarized in Table 1.1. Inthis treatise, the terminologies of

iterative decoding and turbo detection are used interchangeably in order to address the involvement

of potentially any detector/decoder in iterative decoding. The last key factor in Fig. 1.8 that has not
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Figure 1.9: An example of EXIT charts analysis and BER performance of the RSC and

URC coded Square 16QAM scheme. The Discrete-input Continuous-output Memoryless

Channel (DCMC) capacity limit of this scheme is given byEb/N0 = 0.1 dB. A more

powerful IRregular Convolutional Code (IRCC) may replace the RSC in order to further

inch to the capacity limit. More details are offered in Chapter 2.

received much attention is the convergence analysis.

The BER versusEb/N0 performance curve of a near-capacity system may be generally divided

into three regions according to the noise level. In the low SNR region, the component channel

codes are unable to correct large bursts of errors. At a specific SNR, which is not much higher

than the capacity limit, a “turbo cliff” or a “waterfall” maybe observed as the BER curve drops

rapidly, which is the result of decoding convergence. When the SNR is increased beyond this

specific region, the BER is expected to become infinitesimally low. An example of such BER

performance curve is shown in Fig. 1.9b. Owing to the fact that the asymptotic union bounds

derived based on the distance properties of channel codes are only tight at high SNRs [40], this tool

becomes less useful for predicting the performance of turbodetected concatenated codes, which

generally operate at a relatively low SNR that is close to thecapacity limit. Recall that the error

performance of coded modulation at a low SNR associated witha high noise level is more related

to the modem’s Euclidean distance than to the channel code’sHamming distance. As a result, the

modulation scheme’s capacity limit itself may be regarded as a loose performance prediction of the

decoding convergence. In general, a communications systemmay be considered to be capable of

“near-capacity” operation, when a turbo-like performanceis achieved, which may be interpreted as

attaining decoding convergence at an SNR that is within 1.0 dB distance from the capacity limit,

provided that optimum or near-optimum decoding/detectingalgorithms are employed.

Naturally, the prediction of the BER curve’s “turbo cliff” SNR is important for near-capacity
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system design, but it is also important to optimize the number of iterations between the turbo

detected component detectors/decoders so that no futile complexity wastage is imposed. In 1993,

Moher [81] proposed to analyse the iterative convergence behavior with the aid of the cross-entropy

metric, which was further developed to an iterative detection “stopping criterion” in [82]. The con-

cept of cross-entropy allows us to keep track of the Probability Density Function (PDF) of the

extrinsic LLRs produced by the component decoders, where decoding convergence is expected to

occur, when the extrinsic LLR PDFs of the component decodersconverge to the same decisions.

Following this idea, Richardsonet al.[48,49] proposed the density evolution concept for predicting

the LDPC decoding convergence, where the belief propagation was also characterized by tracing

the PDFs. Inspired by the development of density evolution,ten Brink [83] proposed the powerful

tools of EXtrinsic Information Transfer (EXIT) charts in 1999, which visualized the convergence

of turbo detection. More explicitly, the PDF of the extrinsic LLRs of a component decoder may

be obtained by feeding Gaussian-distributeda priori LLRs [84, 85] to the decoder, so that the mu-

tual information between the extrinsic LLRs and the source bits may be evaluated. As a benefit

of iterative soft information exchanging between a pair of component decoders, the extrinsic infor-

mation produced by a component decoder becomes thea priori information of another component

decoder and vice versa. When the EXIT curves of two componentdecoders only intersect each

other at the (1.0,1.0) point of the EXIT chart as seen in the example protrayed by Fig. 1.9a, decod-

ing convergence is expected to occur. It can be seen in Fig. 1.9 that both the SNR and the number

of iterations required for decoding convergence are accurately predicted by the EXIT charts. This

technique was further extended for SCC in [86] and for PCC in [87, 88]. Furthermore, it was pro-

posed in [89–91] that the mutual information may be calculated without having access to the source

bits. As a result, the EXIT charts may be constructed ”on-line”, because as soon as new extrinsic

LLRs become available at the receiver, they can be used for updating the current estimate of the

mutual information [92].

This section is summarized by a list of major contributions on near-capacity system design, as

presented in Tables 1.2-1.4. We will offer a more detailed discussion on this topic in Chapter 2,

where a reduced-complexity design will be proposed for soft-decision-aided demodulators.

1.2 A Historical Perspective on Noncoherent Detection

The signal received at the output of a wireless communications channel typically contains a faded

and noise-contaminated replica of the transmitted signal.In the classic AWGN channels, often a

frequency offset ofexp(jθ) also corrupts the transmitted symbolsn, so that the received symbol is

given byyn = exp(jθ)sn + vn, wherevn is the AWGN element. This frequency offset, which is the

difference between the frequency of the received signal andthe designed frequency of the receiver,

is typically induced by numerous sources, such as the Doppler shift and the frequency difference

of the heterodyning oscillators. Furthermore, in fading channels the frequency offsetexp(jθ) is

replaced by a fading factorhn, which may be a statistically random variable, because the signals
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Table 1.2: Summary of major contributions on near-capacitysystem design (Part I).

Year Author(s) Topic Contribution

1948 Shannon

[17]

Capacity The-

orem

Proposed that the channel capacity, which is the maxi-

mum data rate that can be transmitted over the channel

at an infinitesimally low error rate, can be achieved with

the aid of channel coding at the unconstrained cost of

delay and complexity.

1950 Hamming

[18]

Channel Code Proposed the single-error correcting Hamming code.

1954 Elias [31] Concatenated

Code

Proposed the concatenated code concept, where an ide-

alistic “error-free” performance predicted by Shannon’s

theory was shown to be possible.

1955 Elias [19] Channel Code Proposed the classic convolutional coding concept.

1959

∼ 1960

Bose et al.

[20–22]

Channel Code Proposed the classic multiple-error correcting BCH

code, which was named after the authors.

1967 Viterbi [23] Decoding Al-

gorithm

Proposed the Maximum Likelihood Sequence Estima-

tion (MLSE) decoding algorithm of convolutional code,

which was later termed as Viterbi algorithm [24] and

was applied to block codes in [25].

1973 Mecklenburg

et al. [51]

Coded Modu-

lation

Proposed to jointly design channel coding and modu-

lation, where the demodulator and the channel decoder

act in liaison in order to jointly decide upon the modu-

lated symbol.

1974 Bahl et al.

[26]

Decoding Al-

gorithm

Proposed the major milestone of the optimum Log-Max

A Posteriori (MAP) decoding algorithm, which is also

known as the BCJR algorithm named after the authors.

1977 Imai and

Hirakawa

[52]

Coded Modu-

lation

Proposed Multi-Level Code (MLC), where the bits

mapped to the lower-integrity modem sub-channels

were protected by stronger channel codes, which were

then detected first by the MLC scheme’s multistage de-

coder followed by the other bits of the MLC scheme.

1979 Battail et

al. [34]

Concatenated

Code

Proposed to place a interleaver between the component

codes of a concatenated code and proposed to exchange

decisions between the component decoders.

1982 Ungerboeck

[50]

Coded Modu-

lation

Proposed the concept of Trellis Coded Modulation

(TCM), which increased the constellation Euclidean

distance by set-partitioning, while modulation and

channel code were jointly designed by a single trellis.
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Table 1.3: Summary of major contributions on near-capacitysystem design (Part II).

Year Author(s) Topic Contribution

1988 Simon and

Divsalar

[60,61]

Coded Modu-

lation

Proposed to place a symbol-based interleaver between

the channel code and the modulation for the TCM

scheme conceived for fading channels.

1989 Hagenauer

et al. [35]

Decoding Al-

gorithm

Proposed to modify the Viterbi algorithm to be able to

process soft-bit decisions, which is also known as the

Soft-Output Viterbi Algorithm (SOVA) algorithm.

1990 Koch and

Baier [27]

Decoding Al-

gorithm

Proposed to simplify the BCJR Log-MAP algorithm by

the approximation ofln
[
∑∀i exp(di)

]
≈ max∀i di in

order to avoid the computationally complex exponential

operations, which is often referred to as the Max-Lag-

MAP algorithm.

1992 Zehavi [63] Coded Modu-

lation

Proposed the classic Bit-Interleaved Coded Modulation

(BICM), which replaced the TCM’s symbol-based in-

terleaver [60, 61] by a bit-based interleaver in order

to improve the achievable time-diversity order of the

BICM in fading channels.

1992 Lodge et

al. [36]

Concatenated

Code

Proposed the soft-decision-aided iterative decoding

conceived for concatenated block codes that inched

closer to Shannon’s capacity, which was further im-

proved by the authors in [37].

1993 Berrou et

al. [38]

Concatenated

Code

Proposed the groundbreaking Turbo Code (TC), which

achieved a near-capacity performance by the parallel

concatenation of a pair of RSCs exchanging their soft-

bit decisions with the aid of iterative decoding. It was

later summarized in detail by the authors in [39].

1995 Robertson

et al. [28]

Decoding Al-

gorithm

Proposed the near-optimum Approx-Log-MAP which

compensated the difference between the BCJR Log-

MAP [26] and the Max-Log-MAP [27] by invoking a

lookup table.

1996 Hagenauer

et al. [44]

Concatenated

Code

Proposed to generalize the Parallel Concatenated Code

(PCC), which included TC as an special case.

1996 Benedetto

et al. [45]

Concatenated

Code

Proposed to generalize the Searial Concatenated Code

(SCC), which was later summarized in detail by the au-

thors [40].
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Table 1.4: Summary of major contributions on near-capacitysystem design (Part III).

Year Author(s) Topic Contribution

1997

∼ 1999

Li and

Ritcey

[65–67]

Coded Modu-

lation

Proposed the Bit-Interleaved Coded Modulation con-

cept relying on Iterative Decoding (BICM-ID), which

improved BICM [63,64] by introducing iterative decod-

ing between the demodulator and the channel decoder.

1999 ten

Brink [83]

Convergence

Analysis

Proposed the powerful tools of EXtrinsic Information

Transfer (EXIT) charts, which visualized the extrinsic

information exchanged in iterative decoding and accu-

rately predicted both the SNR and the number of itera-

tions required for decoding convergence.

2000 Divsalar et

al. [93]

Concatenated

code

Proposed to further place an Unity Rate Code (URC) as

an intermediate component in the SCC, so that the error

floor of the two-stage turbo detector may be eliminated

by the resultant three-stage turbo detector.

2001 ten

Brink [88]

Convergence

Analysis

Extended EXIT charts to the PCC system design.

2004 Tuchler

[86]

Convergence

Analysis

Extended EXIT charts to the SCC system design, and

proposed the IRregular Convolutional Code (IRCC)

concept in order to inch closer to the capacity limit.

2009 Hanzo et

al. [8]

Coded Modu-

lation

Summarized guidelines for general near-capacity sys-

tem design and offered design examples for a wide

range of communications systems.

received from different paths may be superimposed either constructively or destructively. Against

this background, a receiver is referred to as being “coherent”, when the Channel State Informa-

tion (CSI) of the frequency offset or the fading factor are assumed to be known at the receiver. This

requirement of CSI knowledge at the receiver has inspired the development of channel estimation

techniques.

Fig. 1.10 portrays two typical channel estimation examples. The preamble-based training as-

sisted signal transmission of Fig. 1.10 is conceived for fading channels, which remain more-or-less

time-invariant during a block of symbol periods. In this case, a sequence of training symbols

that are known to both transmitter and receiver may be transmitted before the sequence of data

symbols, so that the receiver may first recover the CSI knowledge by observing the faded and

noise-contaminated training symbols, and then a coherent demodulator may be invoked for detect-

ing the following data symbols with the aid of the CSI estimate. The training sequence design

was proposed to maximize the capacity bound in [94–97]. In particular, in 2003, Hassibi and

Hochwald [97] proposed a framework for appropriate time- and power- allocation between the
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Figure 1.10: Examples of channel estimation techniques relying on preamble-based train-

ing and Pilot Symbol Assisted Modulation (PSAM).

training and data symbols based on the capacity lower bounds. They discovered that if the training

symbols and the data symbols are assigned the same power, half of the channel’s coherence time

should be spent on training. However, if the power allocation is optimized by the capacity bounds,

the number of neccessary training symbols may be set to the number of TAs. It was also observed

in [97] that using training is optimal for obtaining accurate CSI estimation in the high SNR region

in conjunction with a long coherence time, but channel estimation relying on training becomes

suboptimal in the low SNR region. It was demonstrated in [98,99] that the Mean Squared Error

(MSE) lower bound of training is given by the Cramer-Rao Bound (CRB) of CRB = N0/NOW

in block fading, whereNOW represents the observation window length used for trainingsymbols.

This further confirms that channel estimation using training is challenging, when the noise power

is high.

When the channel’s coherence time is reduced and becomes comparable to the symbol period,

a so-called rapidly fading channel is encountered, where the fading factor is generally considered

to be different for each consecutive transmitted symbol. Inthis scenario, a beneficial solution is to

insert a pilot tone into the spectrum of the transmitted signal, so that an estimate of the fading factor

may be extracted at the receiver. This technique was proposed by McGeehan and Bateman [100]

in 1984 termed as the Transparent Tone-In-Band (TTIB) solution. The design challenges of TTIB

include an increased peak-to-average signal ratio, and theTTIB also has to carefully choose the

position of the pilot tone in the signal specturm. In order toavoid this problem, the novel Pilot

Symbol Assisted Modulation (PSAM) regime was proposed by Moher and Lodge [101] in 1989

and then theoretical analysed by Cavers [1] in 1991. As portrayed in Fig. 1.10, the PSAM scheme

periodically transmits pilot symbols among data symbols, so that the receiver may interpolate the

correlated fading envolope and phase by a Wiener filter that aims for the Minimum Mean Squared

Error (MMSE) between the estimated CSI and the actual CSI. Wewill demonstrate in Sec. 3.4

that the PSAM scheme’s MSE lower bound, which corresponds tothe ideal case of the fading

remaining constant overNOW symbol observations, is given byσ2
MSE−LB = N0/(N0 + NOW),

which is worse than that of the preamble-based training in the context of block fading. This channel

estimation error expression implies that channel estimation is even more of a challenge in the low

SNR region, when rapid fading is encountered. Moreover, as the Doppler frequency is increased,

the PSAM scheme’s pilot spacing has to be reduced in order to sample the fading channels more
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Figure 1.11: Schematic of a simple Differential Phase ShiftKeying (DPSK) transceiver.

frequently. As a result, more transmission power has to be dedicated to the pilot symbols to the

detriment of the data-carrying symbols.

As demonstrated in Sec. 1.1, turbo detected concatenated codes generally operate at a relatively

low SNR that is close to the capacity limit, where accurate CSI knowledge is difficult to obtain.

However, for coherent demodulators, researchers often assume having perfect CSI knowledge even

in rapidly fading channels at low SNRs. However, realistic channel estimation always imposes a

performance penalty that is more severe in coded systems than in uncoded systems. This is because

the soft-decision-aided coherent demodulators relying onimperfect CSI will produce LLRs, which

deviate from the true probabilities. Hence, the resultant exaggerated LLR values may become more

and more difficult to correct by the channel decoder, as the number of iteration increases, which

will be further discussed in more detail in Sec. 3.4.

Against this background, when the CSI knowledge is not assumed to be known at the receiver,

“noncoherent” detection is encountered. The optimum noncoherent detection relies on Maximum

Likelihood Sequence Estimation (MLSE), which jointly performs channel estimation and data de-

tection. An early attempt of MLSE may be found in Kailath’s work [102] in 1960. It was demon-

strated in [102] that channel estimation may be tentativelyperformed for each possible combination

of the data-carrying sequence, and then these combinationsmay be compared in order to make a

final decision on the data-carrying sequence. This method was further augmented by Kailath [103]

in the context of the “estimator-correlator” in 1969. However, as the message length increases,

the complexity of MLSE inevitably increases exponentially. In order to circumvent this problem,

Forney [104] proposed to invoke the Viterbi algorithm for MLSE in 1972, which relies on the early

termination of the candidate evaluation process by ignoring those candidates that are unlikely to

be the maximum likelihood solution. The aforementioned MLSE techniques were explicitly de-

veloped for frequency selective fading channels, where channel’s memory was imposed onto the

data transmission in the form of Inter-Symbol Interference(ISI). In 1979, Morley and Snyder [105]

demonstrated that the MLSE may be capable of tackling any form of channel memory that may be

imposed by either frequency selective channels or by time selective channels, such as correlated

Rayleigh, Rician and lognormal fading. It was also demonstrated in [105] that the MLSE detec-

tion complexity, which is determined by the number of trellis states, grows exponentially with the

channel’s memory rather than with the message length, when using the Viterbi algorithm.

In order to eliminate channel estimation in noncoherent receivers, differentially encoded modu-
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Figure 1.12: Schematic of Multiple-Symbol Differential Detection (MSDD) observations.

lated schemes may be employed. As an example, a simple Differential Phase Shift Keying (DPSK)

transceiver is portrayed in Fig. 1.11. At the DPSK transmitter, the data-carryingMPSK sym-

bol xn−1 is mapped onto the difference between the consecutive transmitted symbols assn =

xn−1sn−1. In AWGN channels or in non-dispersive slow fading channels, the received signal seen

in Fig. 1.11 may be expressed asyn = snhn + vn, wherehn andvn refer to the CSI and AWGN,

respectively. As a result, the DPSK receiver of Fig. 1.11 maybe capable of eliminating the need for

channel esimation by the simple correlation operation ofzn−1 = yny∗n−1, which may be directly

demapped to bits. This simple noncoherent detection, whichdetects a single symbol based on two

observations may be termed as Conventional Differential Detection (CDD). The early development

of DPSK may be found in Lawton’s work [106, 107] in 1959-1960,where the effect of the con-

stant phase rotation in AWGN channels is mitigated by the low-complexity transceiver portrayed in

Fig. 1.11. However, it was demonstrated by Cahn [108] in 1959that the CDD aided DPSK scheme

suffers from a 3 dB performance penalty compared to its coherent MPSK counterpart assuming the

idealistic perfect estimation of the frequency offset phase. Moreover, it was discovered by Bello

and Nelin [109] in 1962 that an irreducible error floor occursfor DPSK, when the CDD, which

was originally designed for AWGN channels, is directly employed in rapidly fluctuating fading

channels.

The pragmatic approach to improve the performance of the noncoherently detected DPSK

scheme for the sake of approaching the optimum MLSE performance is to increase the number

of observations. In 1979, it was proposed by Masamuraet al. [110] that the DBPSK’s pair of

data-carrying bits detected from three consecutive observations at the noncoherent receiver may

be treated as an information bit and a parity bit. As a result,detecting DBPSK as a channel code

may improve its performance in AWGN channels. Furthermore,Samejimaet al. [111] extended

the work in [110] toM-level DPSK and to more than three observations. Following this, the

groundbreaking Multiple-Symbol Differential Detection (MSDD) conceived for DPSK operating

in AWGN channels was proposed by Wilsonet al. [112] in 1989 and then theoretically analysed

by Divsalar and Simon [7] in 1990. As portrayed by Fig. 1.12, the MSDD extends the CDD’s

observation window from two toNw ≥ 2 observations, where a total number of(Nw − 1) data-

carrying symbols are jointly detected. The MSDD is a specialcase of MLSE, where the channel

memory is assumed to span overNw transmission intervals. Moreover, for the sake of simplicity,
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Figure 1.13: Schematic of the Decision-Feedback Differential Detection (DFDD) obser-

vations.

the MSDD assumes having a message length ofNw, which is the same as the channel memory,

so that the employment of the Viterbi algorithm by the MLSE [104] may be avoided. Further-

more, the MSDD design conceived for DPSK was extended to Rayleigh fading channels by Ho and

Fung [113] in 1992. As a further advance, the MSDD techniquesdeveloped for both DPSK and for

Differential Quadrature Amplitude Modulation (DQAM) operating both in AWGN and Rayleigh

fading channels were summarized by Divsalar and Simon [114]in 1994. It was demonstrated that

the MSDD may be capable of reducing the 3 dB performance penalty both for AWGN channels

and for slowly fluctuating fading channels [7, 112–114], while the CDD’s error floor experienced

in rapidly fading channels may also be mitigated by the MSDD [113, 114]. However, the major

disadvantage of the MSDD is that its detection complexity increases exponentially withNw. Given

an M-level DPSK scheme, the MSDD complexity order imposed by detecting a single symbol is

given byO
[

M(Nw−1)/(Nw − 1)
]
.

In order to further reduce the MSDD complexity, an efficient algorithm was conceived by Mack-

enthun [115] in 1994 for MSDD in AWGN channels, where a low detection complexity order of

O(log Nw) was imposed by detecting a single symbol relying on tracing the phase changes over

the Nw samples. This method may also be applied for reducing the MSDD complexity of DPSK

operating in block fading channels. However, as discussed before, channel estimation for block

fading channels is capable of maintaining a low estimation error that diminishes upon increasing

SNR and the training window. Furthermore, it was also demonstrated by Chenet al. [116] that

combining TC and channel estimation for DPSK in block fadingmay achieve a performance that

is close to Shannon’s capacity limit. By contrast, it is widely recognized that channel estimation

remains a challenge for rapidly fading channels. Therefore, it is vitally important to implement

MSDD in rapidly fading channels at an affordable complexity.

Similar to the MIMO scheme’s ML detector portrayed in Fig. 1.2, the exponentially increasing

MSDD complexity is the result of jointly detecting the(Nw − 1) data-carrying symbols as seen in
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Fig. 1.12. In order to separately visit the individual constellations, decision-feedback may be intro-

duced, where a total of(Nw − 2) data-carrying symbols are detected from the previous detection

windows, while only a single unknown symbol has to be detected by the current detection window.

This decision-feedback version of MSDD may be termed as Decision-Feedback Differential De-

tection (DFDD), which is portrayed in Fig. 1.13. The DFDD concept was originally proposed for

DPSK operating in AWGN channels by Leib and Pasupathy [117] in 1988 and by Edbauer [118] in

1992, which were shown to be equivalent by Adachi and Sawahashi [119] in 1993. Leib [120] later

confirmed in 1995 that the DFDD of [117] is equivalent to the MSDD of [7] operating in decision-

feedback mode. The DFDD designed for DPSK was further extended to Rayleigh fading channels

by Schoberet al. [121] in 1999, which was derived from the MSDD of [113, 114]. Furthermore,

the DFDD designed for DPSK was developed to be able to accept and produce soft-bit decisions

by Lampeet al. [122] in 2001, so that the DFDD may be invoked in turbo detection. Another

form of DFDD may be derived from linear prediction, where a channel sample is predicted by a

low-pass filter based on the previous observations and decisions, so that coherent detection may

be performed for the current symbol. This idea was originally introduced by Svensson [123] in

1994, which was tailored for DQPSK operating in fading channels. In 1999, Bin and Ho [124]

further generalized the prediction-based DFDD toM-level DPSK, while Hoeher and Lodge [125]

proposed the soft-decision-aided prediction-based DFDD for DPSK in fading channels. In 2000,

Schober and Gerstacker [126] extended the prediction-based DFDD designed for DPSK to Ricean

fading channels, and they proved that both MSDD-based DFDD [121, 122] and prediction-based

DFDD employing the MMSE Wiener filter [123–125] are identical for DPSK operating both in

AWGN and in Rayleigh fading channels. Furthermore, these two forms of DFDD also perform

similarly in Ricean fading channels. The above DFDD solutions are capable of improving the

CDD’s performance by mitigating the error floor, when the fading fluctuates rapidly. Moreover,

the DFDD complexity order is simply given byO(M), because only a single symbol has to be

detected at a time. However, the DFDD’s imperfect decision feedback results in a performance loss

compared to MSDD.

In order to retain the optimum MSDD performance, the conceptof Multiple-Symbol Differen-

tial Sphere Detection (MSDSD) was proposed by Lampeet al. [127] in 2005, where the problem of

optimizing the MSDD decision metric was transformed into a shortest-vector search problem [12],

so that the SD may be invoked for MSDD. An example of the MSDSD conceived for DQPSK is

portrayed in Fig. 1.14a. More explicitly, assuming that theSD’s initial radius is set to be sufficiently

large, and the SD indexv may start fromv = 1, for each SD indexv, only M MPSK candidates

have to be examined for detecting a single symbol. When the best candidate is chosen, the SD

index v may be increased and the search may be repeated untilv = Nw is reached, where a valid

MSDSD output is found and the SD’s radius may be updated accordingly. Then the SD indexv

may be reduced, so that the next-best candidate may be examined. If no more valid candidates can

be found within the SD’s radius, the SD indexv may be further reduced until reachingv = 1, where

the sphere decoding process is terminated. As a result, the MSDSD complexity order imposed by
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Figure 1.14: Example of Multiple-Symbol Differential Sphere Detection (MSDSD) con-

ceived for DQPSK recorded at SNR=10 dB, where we haveNw = 3, and its correspond-

ing trellis decoding aided MSDD using the Viterbi algorithm. We note that all the likeli-

hood metrics represented in the logarithmic domain that arecalculated by the trellis have

to be carefully modified for sphere decoding, so that the sphere decoder may only process

non-negative values.

detecting a single symbol is lower bounded byO(M). If the MSDSD is replaced by trellis decod-

ing aided MSDD using the Viterbi algorithm as portrayed by Fig. 1.14b, the same optimum MSDD

decisions may be obtained. The trellis seen in Fig. 1.14b is drawn according to the differential en-

coder’s memory [125,128], as seen in Fig. 1.11 instead of thechannel’s memory [129–131], so that

the number of trellis states may be kept to a minimum. In general, the trellis decoding process may

span over much more than just two time slots, as seen in Fig. 1.14b. Considering that except for

the first time slot, there are alwaysM trellis transition branches emerging from a particular current

state, while there are alwaysM transition braches merging into a particular next state, the average

complexity order of the trellis-decoded MSDD imposed by detecting a single symbol is given by

O(M2), which is higher than the MSDSD’s lower bound. Inspired by the development of MSDSD,

Pauliet al. [132] proposed the soft-decision-aided MSDSD for DPSK in 2006.

In summary, the links between the MIMO receivers of Fig. 1.2 and the noncoherent receivers in-

troduced in this section are presented in Fig. 1.15, where the same performance-complexity tradeoff

exists for both systems. In more details, both the MIMO’s ML receiver and the noncoherent MSDD

jointly detect multiple data-carrying symbols, so that theoptimum performance may be achieved,

albeit this imposes a high complexity. Both the MIMO’s SD andthe noncoherent MSDSD substan-

tially reduce the original detection complexity by invoking a sphere decoder. Moreover, both the

MIMO’s linear filter based receiver and the noncoherent DFDDopt for separating the multiple data

streams by employing a linear filter, which results in a low detection complexity, but a degraded

performance.

If a higher bandwidth efficiency is pursued, the DQAM constellations may be considered.
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Figure 1.15: The links between MIMO receivers and noncoherent receivers.
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Figure 1.16: The constellation diagram of the data-carrying symbols of 16-Absolute-

amplitude Differential Phase Shift Keying (16-ADPSK).

The early attempt to invoke differential encoding for QAM stems from Simon and Smith [133]

in 1974, where they suggested that differential encoding may resolve the quadrant ambiguity of

QAM transmission in the presence of a constant phase rotation in AWGN channels. This idea

was implemented by Weber [134] in 1978, where part of the information bits were assigned to a

differentially encoded phase. Furthermore, in 1982, Simonet al. [135] proposed a more general

regime for the absolute-amplitude based DQAM scheme, wherethe transmitted phase was dif-

ferentially encoded but the transmitted amplitude was the original data-carrying amplitude. This

transmission regime [135], which was conceived for the maximum-minimum distance Square

QAM constellation, was originally proposed to be detected noncoherently for recovering the data-

carrying phase, but coherently recovering the data-carrying amplitude, required that the channel

amplitude had to be estimated at the receiver. However, it was later discovered by Lampe and

Schober [136] in 2001 that the equivalent differential encoding of the absolute-amplitude DQAM



1.2. A Historical Perspective on Noncoherent Detection 22
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|sn| = Hb4 = 1 |sn| = L

Figure 1.17: The constellation diagram of the transmitted symbols of 16-Differential Am-

plitude Phase Shift Keying (16-DAPSK), and its differential amplitude encoding lookup

table.

may be represented by the revised expression ofsn = 1
|sn−1| xn−1sn−1, where the amplitude of

the previous transmitted symbol|sn−1| is normalized, so that the amplitude of the next trans-

mitted symbol|sn| becomes equal to the absolute amplitude of the data-carrying QAM symbol

|xn−1|. Lampe and Schober [136] adopted the absolute-amplitude DQAM regime for the Star

QAM constellation, which may be termed as Absolute-amplitude Differential Phase Shift Key-

ing (ADPSK). An example constellation diagram of the 16-ADPSK scheme’s data-carrying sym-

bols is portrayed in Fig. 1.16. For the ADPSK receiver, basedon the revised differential encoding

model ofsn = 1
|sn−1| xn−1sn−1, noncoherent detection may be invoked for both amplitude and phase

detection. Considering CDD for ADPSK in block fading as an example, the received signal may be

expressed asyn = snhn + vn = 1
|sn−1| xn−1yn−1 + (vn − 1

|sn−1| xn−1vn−1), wherehn = hn−1 and

vn refer to the block fading and AWGN factors, respectively. Asa result, both the amplitude and

phase ofxn−1 may be recovered by the CDD with the aid of both the previous received sampleyn−1

and the previous decision on|sn−1| = |xn−2|. It is worth noting that many QAM aided differential

MIMO schemes [137–141] make use of this revised differential encoding model for dynamically

constraining the transmitted symbol’s amplitude.

As an alternative to ADPSK, the classic Differential Amplitude Phase Shift Keying (DAPSK)

was proposed by Webb, Hanzo and Steele [142] in 1991. An example of 16-DAPSK is portrayed

in Fig. 1.17. More explicitly, the 16-DAPSK scheme’s first three bits are assigned to modulate

the change in phase between two consecutive transmitted symbols, while the last bit is assigned

to modulate the change in amplitude ring. It can be seen in Fig. 1.17 that in order to maintain a

Star 16QAM constellation for the transmitted symbols,b4 = 0 andb4 = 1 determines whether

the consecutive transmitted symbols’ amplitude|sn−1| and |sn| should be retained or be toggled

to its other legitimate value. In other words, if the DAPSK’sdifferential encoding process is to be

represented bysn = xn−1sn−1, the transmitted symbolssn−1 and sn are always drawn from the
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classic Star QAM constellation. However, the specific constellation diagram of the data-carrying

symbolxn−1 depends on the previously transmitted amplitude|sn−1|. Considering the 16-DAPSK

scheme of Fig. 1.17 as an example, if we have|sn−1| = L, thenb4 = 0 andb4 = 1 for modulating

|xn−1| should enable the transitions ofL → L and L → H, respectively. However, if we have

|sn−1| = H, then the modulation of|xn−1| should enable the different amplitude transitions of

H → H andH → L for b4 = 0 andb4 = 1, respectively. Nonetheless, the phase of 16-DAPSK’s

data-carrying symbolxn−1 is still drawn from the original 8PSK constellation diagram. It was pro-

posed in [142] that the detection of DAPSK’s data-carrying amplitude may be carried out by testing

the amplitude change between consecutive received samples|yn|/|yn−1|, while the data-carrying

phase may be detected by testing the phase change∠yn − ∠yn−1. In summary, the fundamental

difference between the ADPSK and the DAPSK is that the ADPSK aims for maintaining the map-

ping regime of a Star QAM constellation for the data-carrying symbols, while the DAPSK aims for

maintaining a Star QAM constellation for the transmitted symbols.

The development of DAPSK has attracted a lot of research interests. The performance compari-

son between coherent QAM and CDD aided DAPSK was provided by Adachi and Sawahashi [143]

and also by Chowet al. [144] in 1992. In 1995, Rohling and Engels [145] proposed theapplication

of DAPSK in digital terrestrial video broadcasting, where the authors compared the performance

of the CDD aided DAPSK to that of the coherent QAM in the presence of realistic channel esti-

mation errors. Despite the satisfactory performance of CDDaided DAPSK in AWGN and block

fading channels, it was observed by the authors [142] that the DAPSK performance degrades and

eventually an error floor is formed, as the Doppler frequencyis increased. It was suggested by

the authors of [142] that both oversampling and channel coding may be invoked for mitigating this

problem. We note that oversampling was also proposed for improving the performance of DPSK

in rapidly fading channels [146, 147]. Moreover, it was observed by Chowet al. [148] in 1993

and then analysed by Chung [149] in 1997 that employing multiple RAs is capable of reducing the

error floor of DAPSK in rapidly fading channels. Nonetheless, the optimum noncoherent detector

of both the ADPSK and the DAPSK is the MSDD characterized by Divsalar and Simon [114] in

1994, which is capable of improving the performance of DQAM in different channel scenarios.

In order to mitigate the MSDD’s exponentially increasing complexity, the prediction-based

DFDD was proposed for 16-DAPSK operating in AWGN channels byAdachi and Sawahashi [150]

in 1996, and then its amplitude detection was improved by Weiand Lin [151] in 1998. The MSDD-

based DFDD was also proposed for 16-DAPSK for transmission over AWGN channels by Schober

et al. [152] in 1998. Following this, the prediction-based DFDD designed for DAPSK communi-

cating in fading channels was proposed by Gerstackeret al. [153] in 1999 and later it was improved

by Schoberet al. [154]. Notably, the prediction-based DFDD specifically conceived for ADPSK

operating in fading channels was proposed by Lampeet al. [136] in 2001.

Inspired by the near-capacity performance achieved by turbo detection, soft-decision-aided

DQAM detection has also been developed throughout the last two decades. Mayet al. [155] pro-

posed Trellis decoded DQAM using the Viterbi algorithm in 1998, and then Fischeret al. [156]
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invoked MSDD for DQAM in both multilevel coding and BICM in 2001. Moreover, Ishibashiet

al. [157] proposed the low-complexity soft-decision-aided CDD concept conceived for DAPSK in

Rayleigh fading channels, where the amplitude and phase areseparately detected. However, no

iteration was invoked between the channel decoder and the DQAM detector in these contributions.

Liang et al. [158] proposed to employ the CDD for DAPSK relying on turbo detection in 2011,

where the amplitude and phase are jointly detected. This soft-decision-aided CDD conceived for

DAPSK was further streamlined by Xuet al. [159] in 2013, where the authors also discovered

that completely separately detecting the DAPSK’s amplitude and phase may impose a performance

loss, which is more substantial in coded systems. Furthermore, in 2012, Wang and Hanzo [160]

proposed a new arrangement for soft-decision-aided DAPSK detection. More explicitly, Wang and

Hanzo [160] proposed to invoke MSDD and MSDSD for detecting the DAPSK’s amplitudes and

phases, which may be referred to as Multiple Symbol Differential Amplitude Detection (MSDAD)

and Multiple Symbol Differential Phase Sphere Detection (MSDPSD), respectively. Given that

the data-carrying amplitudes and phases are correlated, MSDAD and MSDPSD are capable of it-

eratively exchanging their decisions in order to achieve a near-optimum MSDD performance for

DAPSK with the aid ofa priori information gleaned from the channel decoder.

Against this background, solving the MSDD aided DQAM detection problem by sphere decod-

ing is still an open problem, which also has been the gravest obstacle to offering a solution for MS-

DSD aided Differential MIMO schemes using QAM [137–141]. More explicitly, the MSDD [114]

relies on the knowledge of channel correlation, which is determined by the Doppler frequency and

the noise power. For DPSK, the transmitted phases may form a unitary matrix, which may be

separated from the channel correlation matrix, so that a lower triangular matrix that is created by

decomposion from the inverse of the channel’s correlation matrix may be utilized in the context of

sphere decoding [127,132]. However, for DQAM, the transmitted symbol-amplitudes cannot form

a unitary matrix, which implies that they have to be taken into account by the channel’s correla-

tion matrix. As a result, the symbol-amplitude-dependent channel correlation matrix only becomes

known, when all the symbol-amplitudes are detected. This isthe reason why Wang [160] invoked

MSDD for amplitude detection. We note that without the assistance of channel coding, Wang’s so-

lution [160] may introduce an error floor for uncoded DAPSK schemes, because the MSDAD and

the MSDPSD may exchange erroneous decisions. Furthermore,the DFDD conceived for DQAM

operating in fading channels and documented in the existingliterature [136,153,154] are all derived

from the linear prediction filter, which is exactly the same as the linear prediction filter invoked by

the DPSK detection scheme of [121, 122, 125]. This implies that these DFDD solutions are sub-

optimal and they are not equivalent to the decision-feedback version of MSDD. In this treatise,

we will solve these problems for DQAM, including both ADPSK and DAPSK in Chapter 4 and

Chapter 5 for coded and uncoded DQAM systems, respectively.

This section is summarized in form of a list of major contributions on noncoherent detection

in Tables 1.5-1.7. We will continue by providing a detailed discussion on this topic from a tech-

nical perspective in Chapter 3 for noncoherent detection for DPSK and in Chapters 4 and 5 for
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Table 1.5: Summary of major contributions on noncoherent detection (Part I).

Year Author(s) Topic Contribution

1959-

1960

Lawton [106,

107]

DPSK Proposed that the constant phase rotation in AWGN chan-

nels may be mitigated by the simple DPSK transceiver.

1959 Cahn [108] DPSK Demonstrated that the CDD aided DPSK scheme suffers

from a 3 dB performance penalty in AWGN channels com-

pared to its coherent PSK assuming the idealistic perfect es-

timation of the frequency offset phase.

1960 Kailath [102] MLSE Proposed to jointly perform channel estimation and data

detection, where channel estimation was tentatively per-

formed for each possible combination of the data-carrying

sequence, and then these combinations were compared in

order to make a final decision on the data-carrying sequence.

1962 Bello and

Nelin [109]

DPSK Discovered that an irreducible error floor occurs, when the

CDD that was originally designed for AWGN channels is

employed in the rapidly fluctuating fading channels.

1972 Forney [104] MLSE Proposed to invoke the Viterbi algorithm for MLSE, which

relies on the early termination of the candidate evaluation

process by ignoring those candidates that are unlikely to be

the maximum likelihood solution.

1979 Morley and

Snyder [105]

MLSE Proposed that with the aid of Viterbi algorithm, the MLSE

complexity grows exponentially with the channel memory

that imposed onto the data transmission in the form of Inter-

Symbol Interference (ISI).

1982 Simon et al.

[135]

DQAM Proposed the absolute-amplitude DQAM scheme based on

Square QAM constellation, where the transmitted phase was

differentially encoded but the transmitted amplitude was the

original data-carrying amplitude.

1988 Leib and Pa-

supathy [117]

DFDD

(DPSK)

Proposed DFDD for DPSK operating in AWGN channels,

which was later shown in [120] to be equivalent to the

MSDD of [7] operating in decision-feedback mode.

1990 Divsalar and

Simon [7]

MSDD

(DPSK)

Proposed MSDD for DPSK operating in AWGN channels,

which partially compensated the 3 dB performance penalty

by observing more than two received samples.

1991 Webb,

Hanzo and

Steele [142]

DAPSK Proposed DAPSK which differentially encodes both ampli-

tude and phase, where the Star QAM constellation is main-

tained for all transmitted symbols.
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Table 1.6: Summary of major contributions on noncoherent detection (Part II).

Year Author(s) Topic Contribution

1992 Ho and Fung

[113]

MSDD

(DPSK)

Proposed MSDD for DPSK operating in Rayleigh fading

channels, which mitigated the error floor in rapidly fluctu-

ating fading channels.

1994 Divsalar and

Simon [114]

MSDD

(DPSK

DQAM)

Summarized the MSDD techniques developed both for

DPSK and for DQAM operating both in AWGN channels

and in fading channels.

1994 Mackenthun

[115]

MSDD

(DPSK)

Proposed an efficient algorithm for MSDD aided DPSK op-

erating in AWGN channels.

1996 Adachi et al.

[150]

DFDD

(DAPSK)

Proposed prediction-based DFDD for 16-DAPSK operating

in AWGN channels.

1998 Schoberet al.

[152]

DFDD

(DAPSK)

Proposed MSDD-based DFDD for 16-DAPSK for transmis-

sion over AWGN channels.

1999 Schoberet al.

[121]

DFDD

(DPSK)

Proposed DFDD for DPSK operating in Rayleigh fading

channels, which is derived from the MSDD of [113,114].

1999 Bin and Ho

[124]

DFDD

(DPSK)

Proposed prediction-based DFDD for DPSK operating in

Rayleigh fading channels, where a channel sample is pre-

dicted based on the previous decisions, so that coherent de-

tection may be performed for the current symbol.

1999 Hoeher and

Lodge [125]

DFDD

(DPSK)

Proposed soft-decision-aided prediction-based DFDD for

DPSK operating in fading channels, so that DFDD may be

invoked in turbo detection.

2000 Schober

and Ger-

stacker [126]

DFDD

(DPSK)

Proved that both MSDD-based DFDD [121, 122] and

prediction-based DFDD employing the MMSE Wiener filter

[123–125] are identical for DPSK operating both in AWGN

and in Rayleigh channels.

2001 Schoberet al.

[154]

DFDD

(DAPSK)

Proposed prediction-based DFDD for 16-DAPSK commu-

nicating in fading channels.

2001 Lampe et al.

[122]

DFDD

(DPSK)

Proposed soft-decision-aided MSDD-based DFDD for

DPSK operating in Rayleigh fading channels, where the

DFDD was involved in turbo detection.

2001 Lampe and

Schober [136]

DFDD

(ADPSK)

Proposed the absolute-amplitude DQAM scheme based on

the Star QAM constellation, and proposed prediction-based

DFDD conceived for this ADPSK scheme.

2005 Lampe et al.

[127]

MSDSD

(DPSK)

Proposed MSDSD for DPSK operating in Rayleigh fading

channels, which invoked a sphere decoder for MSDD.
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Table 1.7: Summary of major contributions on noncoherent detection (Part III).

Year Author(s) Topic Contribution

2005 Ishibashi et

al. [157]

DAPSK Proposed the low-complexity soft-decision-aided CDD con-

ceived for DAPSK in Rayleigh fading channels, where the

amplitude and phase are separately detected.

2006 Pauli et

al. [132]

MSDSD

(DPSK)

Proposed soft-decision-aided MSDSD for DPSK communi-

cating in Rayleigh fading channels, so that MSDSD may be

invoked in turbo detection.

2011 Liang et al.

[158]

DAPSK Proposed to invoke the CDD for DAPSK in turbo detection

in 2011, where the amplitude and phase are jointly detected.

2012 Wang and

Hanzo [160]

MSDSD

(DAPSK)

Proposed to invoke MSDD and MSDSD for detecting the

DAPSK’s amplitudes and phases, which may be referred to

as MSDAD and MSDPSD, respectively. The pair are capa-

ble of iteratively exchanging decisions in order to achievea

near-optimum MSDD performance in coded systems.

2013 Xu et al.[159] DAPSK Streamlined the soft-decision-aided CDD of [158], and dis-

covered that completely separately detecting DAPSK’s am-

plitude and phase may impose a performance loss, which is

more substantial in coded systems.

noncoherent detection designed for uncoded and coded DQAM,respectively.

1.3 A Historical Perspective on Multiple-Input Multiple Ou tput Schemes

Multiple-Input Multiple Output (MIMO) techniques have been one of the most vibrant areas in

communications, where exciting progress has been made overthe past two decades. The proposal

of employing multiple antennas for a single user was motivated by its substantial capacity gain.

In more details, the multiplexing-oriented MIMO concept was proposed by Paulraj and Kailath

[161] in 1994, where a high data-rate transmission was carried out by splitting it into low data-rate

signals transmitted by spatially separated Space-Division Multiple Access (SDMA) users. In order

to pursue the multiplexing gain using co-located antennas,Foschini [162] proposed the ground-

breaking layered space-time architecture in 1996, which was later termed as the Bell Laboratories

Layered Space-Time (BLAST). In particular, the original encoding method proposed by Foschini

[162] was diagonal-encoding, which may be termed as D-BLAST. As portrayed in Fig. 1.18a,

the D-BLAST transmitter de-multiplexes a single data stream to NT separate data streams, where

channel coding and modulation may be performed either before or after the de-multiplexing, and

then theNT data streams of theNT TAs are rotated in a round robin fashion, so that the code

words are transmitted in diagonal layers. El-Gamal and Hammons [163] further extended this D-
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Figure 1.18: Schematics of D-BLAST and V-BLAST.

BLAST structure in 2001, where each layer constitutes more than one consecutive diagonal lines.

The benefit of D-BLAST’s diagonal-encoding is that the signal components of a diagonal layer

experience independent fading, which may lead to a potential temporal diversity gain.

In order to simplify the real-time implementation, in 1998,Wolnianskyet al. [164] proposed

V-BLAST that invokes vertical-encoding. As portrayed by Fig. 1.18b, the rotator of the D-BLAST

was avoided by the V-BLAST transmitter. Owing to the fact that all the signals transmitted from

NT TAs are simultaneously received byNR RAs, the same detection methods are shared by both

D-BLAST and V-BLAST, which was exemplied in Fig. 1.2 at the beginning of this chapter. It was

demonstrated in [162, 164] that both D-BLAST and V-BLAST mayachieve an improved spectral

efficiency that increases linearly with the number of antennas at realistic SNRs and error rates. It

was further confirmed by Foschini and Gans [165] in 1998 and then by Telatar [166] in 1999 that

compared to the family of Single-Input Multiple-Output (SIMO) systems where multiple antennas

may only be used at the receiver, the BLAST MIMO systems have an ergodic capacity that may

grow linearly, rather than logarithmically, with the number of antennas, provided that the BLAST

MIMO system employs a large number of antennas and that both the input signals and the output

signals are independent and identically Gaussian-distributed.

In order to exploit the full potential of BLAST MIMO systems and to approach the impres-

sive capacity results, the BLAST receivers have to employ MLdetection in uncoded systems, or

the MAP detection in coded systems, which have to evaluate all MNT combinations of a total of

NT transmittedMPSK/QAM symbols [8]. This implies that the BLAST detection complexity in-

creases exponentially with the numberNT of TAs, which may be particularly unaffordable, when

the BLAST detector is invoked several times in turbo coded systems. In order to mitigate this

problem, the BLAST schemes [162, 164] were originally proposed to employ the Multi-User De-

tector (MUD) of the classic Code Division Multiple Access (CDMA) systems [167, 168]. More
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explicitly, in order to separate theNT data streams impinging at the BLAST receiver, Linear Filter

(LF) based receivers, such as Zero Forcing (ZF) and MMSE receivers may be invoked, where all the

other data streams, i.e. the interferers, may be nulled whendetecting a particular data stream. How-

ever, the LFs suffer from inevitable performance limitations, since ZF enhances the noise, while

the MMSE receiver only minimizes, rather than eliminates, the interferers. In order to further

improve the attainable performance, the decision-feedback techniques of [169–171], which have

been widely used for equalization may be employed for cancelling an interfer from the BLAST

scheme’s received signal immediately after a data stream has been detected, so that the ensuing

detection stages suffer less from the interference problem. Nonetheless, the LFs aided BLAST re-

ceivers generally suffer from a performance penalty compared to the optimum nonlinear BLAST

detection, but the LF aided BLAST detection complexity becomes comparable to that of Single-

Input Single-Output (SISO) or SIMO systems, because the constellation diagrams of theNT data

streams are visited completely separately.

In order to achieve a further improved performance in coded systems, the LFs may be revised

to be able to both accept and produce soft-bit decisions. Thefirst soft-decision-aided MMSE filter

was proposed by Douillardet al. [70] for turbo equalization in 1995. However, in the presence of

soft-bits, thea priori probabilities are no longer equal for all constellation points, which poses a

major design challenge for the MMSE solution of coded systems. In order to solve this problem, the

exact MMSE solution incorporating the non-constanta priori probabilities was derived for CDMA

MUD by Wang and Poor [75] in 1999, and then this solution was invoked for turbo equalization

by Tuchleret al. [72] in 2002 and finally for turbo BLAST by Sellathurai and Haykin [13] also in

2002.

In order to strike a performance-complexity tradeoff between the BLAST scheme’s optimum

detector and the LF-aided detectors, Damenet al. [172] proposed to apply sphere decoding for

BLAST detection in 2000, where the ML performance may be retained at a substantially reduced

complexity. As illustrated by Fig. 1.2, the SD visits the constellation diagrams one-by-one in

order to find the best candidates that lie within the decodingradius, and then these constellation

diagrams may be visited again by the SD in order to check for other possible candidates. The

termination of SD is determined by the SNR-dependent sphereradius. The SD algorithms designed

for BLAST detection were extensively documented by Damenet al. [10] in 2003. Inspired by

the turbo codes, the first soft-decision-aided SD for BLAST was proposed by Hochwald and ten

Brink [173], where a list of BLAST signal candidates was established by the hard-decision-aided

SD and then the candidates in this list were processed by the MAP decoding algorithm. However,

the a priori information gleaned from the channel decoder was not utlized for establishing the

candidate-list in [173], which prevented it from achievingBLAST’s full potential. In order to

mitigate this problem, in 2004, Vikaloet al. [174] proposed the soft-decision-aided SD for BLAST,

which incorporated thea priori information in sphere decoding. Furthermore, in 2008, Studer

et al. [175] proposed the soft-output SD’s Very-Large-Scale Integration (VLSI) implementation,

where a single SD tree search was invoked just once for all thesoft-bit decisions output for a
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Figure 1.19: Schematic of Alamouti’s G2 STBC transceiver.

BLAST detection block. Studer and Bolcskei further developed their work of [175] in [176] in

2010, where thea priori LLRs were once again incorporated into the SD’s VLSI implementation.

The BLAST systems enjoy a beneficial multiplexing gain, where the system throughput may be

NT times higher than that of their SISO/SIMO counterparts using the sameMPSK/QAM constella-

tion. Alternatively, the mutliple TAs may be exploited for achieving a diversity gain, where multiple

replicas of the modulated symbols may be transmitted by multiple TAs over multiple symbol pe-

riods, so that the receiver becomes capable of recovering the data-carrying symbols from several

independently faded observations. This revolutionary invention was originally proposed by Alam-

outi [177] for the case of usingNT = 2 TAs in 1998, where the full transmit diversity was achieved

by a SISO receiver at a low detection complexity. More explicitly, the transceiver of Alamouti’s

transmit diversity technique is portrayed in Fig. 1.19, where the space-time mapper forms a two-

by-two unitary matrix from theNQ = 2 independently modulatedMPSK/QAM symbols, which

are transmitted byNT = 2 TAs overNP = 2 symbol periods. Owing to the orthogonality provided

by the unitary matrix design, the receiver of Fig. 1.19 is capable of decoupling theNQ = 2 data

streams without encountering BLAST’s IAI problem. The class of transmit diversity techniques

generated from orthogonal design has been termed as the set of Space-Time Block Code (STBC)

arrangements. In particular, as the first member in the STBC family, Alamouti’s scheme is often

referred to as G2 STBC.

The gravest challenge of STBC design is to construct the unitary matrix from orthogonal design

for any arbitrary number of TAs. Alamouti’s G2 STBC has a unity normalized throughput of

R =
NQ

NP
= 1, which implies that its throughput is the same as that of its SISO/SIMO counterpart,

when using the sameMPSK/QAM constellation. Owing to its transmit diversity gain, Alamouti’s
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G2 STBC has a better BER performance than its BLAST MIMO and SIMO counterparts associated

with the same system throughput. However, it was proven by Tarokh et al. [178] in 1999 that

Alamouti’s G2 STBC is the only full unity-rate code in the family of STBCs. Nonetheless, Tarokh

et al. [178] discovered that full unity-rate real-valued STBCs doexist for NT =2, 4 or 8, which

may be generated by the Hurwitz-Radon theory [179, 180]. As aresult, the class of Half-Rate

(HR) STBCs may be obtained by vertically concatenating the real-valued STBC codeword and its

conjugates, which forms the family of HR STBCs that are represented by the terminology of HR-

GNT-STBC for usingNT TAs. For the case ofNT not being a power of 2, the HR-GNT-STBC

transmission matrix may be obtained by taking the firstNT columns of the HR-G2⌈log2 NT⌉-STBC’s

codeword. Although the HR-GNT-STBCs created forNT > 8 were not explicitly constructed,

Tarokhet al. [178] proved that such a design may impose a substantial transmission delay, which

increases exponentially withNT. For example, we have [178]NP = 16 × 16(NT/8−1) for NT > 8

and being a power of 2.

In order to improve the throughput of STBCs withNT > 2, Ganesan and Stoica [181–183]

invented the Amicable Orthogonal (AO) STBCs in 2001 according to the theory of amicable or-

thogonal design [179]. An AO STBC scheme havingNT TAs may be represented by the termi-

nology of AO-GNT-STBC. For the case ofNT being a power of 2 asNT = 2ι, whereι denotes

a positive integer, the AO-G2ι-STBC schemes have a reduced delay ofNP = NT, and they also

have NQ = ι + 1 transmitted symbols. More explicitly, the AO-G2ι-STBC’s transmission ma-

trix is constructed based both on the lower-level AO-G2ι−1-STBC’s transmission matrix havingι

symbols as well as on a an extra the(ι + 1)-th modulated symbol. Hence, the construction of AO-

G2ι-STBCs may commence fromι = 1, where the AO-STBC associated withι = 1 corresponds to

Alamouti’s G2 STBC. As a result, rate-3/4 STBCs associated with a reduced delay ofNP = 4 may

be constructed for the AO-STBCs havingNT = 3 or NT = 4, while half-rate STBCs associated

with a reduced delay ofNP = 8 may be constructed for the AO-STBCs having5 ≤ NT ≤ 8.

However, owing to the fact that the AO-STBC’s number of transmitted symbolsNQ only increases

logarithmically with the number of TAsNT asNQ = ⌈log2 NT⌉ + 1, the attainable throughput of

AO-STBC is expected to be lower than the half-rate ofR = 1
2 for NT > 8.

Against this background, it has emerged that there is a tradeoff between the attainable multi-

plexing and diversity gain in MIMO system design. The development of STBCs was motivated by

their improved BER performance, especially in the high SNR region, which is the benefit of their

diversity gain. However, it was recognized by Sandhu and Paulraj [184] in 2000 that STBCs cannot

achieve the full MIMO capacity except for a special case, which is Alamouti’s G2-STBC system

associated with a single RA, i.e. withNR = 1. On the other hand, the BLAST systems have the

full MIMO capacity, but they are not designed for achieving atransmit diversity gain for combating

the effects of fading. This classic MIMO design tradeoff wasquantified by Zheng and Tse [185]

in 2003, where the relationship between the diversity gaind and the multiplexing gainr is given

by d = (NT − r)(NR − r), which portrays the diversity and multiplexing gains as rivals in MIMO

system design.



1.3. A Historical Perspective on Multiple-Input Multiple O utput Schemes 32

R
F

 T
ransm

itter
bits

R
F

 R
eceiver

V
ectorization

V
−

B
LA

S
T

 D
etector

bits

bits

bits

S
erial/P

arallel

NQ log2 M

NQ log2 M

log2 M
M

log2 M sNQ

s1

A1

ANQ

M

∑

Y

χ

ANQ
sNQ

A1s1

S =
∑NQ

q=1 Aqsq

Y = rvec(Y)

Figure 1.20: Schematic of the capacity-achieving LDC transceiver of [188].

If the STBC throughput is to be improved, the first step is to relax the orthogonality requirement.

In the light of this principle, the concept of Quasi-Orthogonal (QO) STBC design was proposed

by Jafarkhani [186] in 2001, where the QO STBC’s transmission matrix is formed by subgroups

of orthogonal STBCs. For the QO STBCs, the signals are orthogonal to each other within the

subgroups, but they are not orthogonal to the signals from the other subgroups. As a result, the IAI

problem resurfaces in the QO STBC design, and hence the signals that cannot be decoupled have

to be jointly detected. It was suggested by Papadias and Foschini [187] in 2003 that linear MIMO

receivers such as the MMSE detector or the ZF detector may be invoked for QO-STBC systems.

However, this may not be an ideal solution, because the sub-optimal linear MIMO receivers may

erode the performance advantage of the QO-STBC’s diversitygain.

In 2002, Hassibi and Hochwald [189] proposed the new class ofLinear Dispersion Code (LDC),

which completely droped the STBC’s orthogonality requirements in order to further improve the

STBC capacity while retaining the full transmit diversity gain. In more details, the LDC’s transmis-

sion matrix may be represented byS = ∑
NQ

q=1

[
Aqℜ(sq) + jBqℑ(sq)

]
, where the real and imag-

inary parts of a total number ofNQ modulatedMPSK/QAM symbols{sq}NQ

q=1 are dispersed into

both spatial and temporal dimensions by the dispersion matrices{Aq}NQ

q=1 and{Bq}NQ

q=1. The dis-

persion matrices are obtained from random search, where thecapacity is maximized while the error

probability is aimed to be minimized. Although the LDCs proposed by Hassibi and Hochwald [189]

effectively improve the attainable STBC capacity, and the LDC may even outperform the STBC in

certain scenarios, the full MIMO capacity still cannot be achieved by the LDC design of [189]. In

order to further improve the LDC design, Heath and Paulraj [188] proposed in 2002 that jointly
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dispersing the real and imaginary parts of theNQ modulatedMPSK/QAM symbols{sq}NQ

q=1 may

allow the LDC to achieve the full MIMO capacity, which results in a simplified form of the trans-

mission matrix given byS = ∑
NQ

q=1

[
Aqsq

]
. For the sake of clarity, the original LDC design

proposed by Hassibi and Hochwald [189] is referred to as the capacity-improving LDC in this

treatise, while the further optimized LDC design conceivedby Heath and Paulraj [188] is termed

as the capacity-achieving LDC, whose transceiver is portrayed in Fig. 1.20. We will demonstrate

in Sec. 6.3.2.3 that the vectorization process seen in Fig. 1.20 may transform the LDC’s received

signal to a form that is equivalent to the received signal of aV-BLAST system equipped withNQ

TAs andNRNP RAs, so that the classic V-BLAST detectors may be invoked forLDC detection.

Owing to the fact that the dispersion matrices{Aq}NQ

q=1 are populated with random elements, they

can be designed under the constraint of having a transmission delay of NP = NT, which is a

more relaxed condition compared to the delay of STBCs [177, 178, 181–183]. Furthermore, it was

demonstrated by Heath and Paulraj [188] that satisfying thecondition ofNQ ≥ NT NP is required

for the LDC to achieve the full MIMO capacity, which implies that the LDC throughput is flexibly

adjusted and it may even be higher than that of its BLAST counterpart using the sameMPSK/QAM

constellations. Upon finding the MIMO matrix capable of achieving the full MIMO capacity, the

random search for the capacity-achieving LDC of [188] may aim for minimizing the error probabil-

ity. It was demonstrated by Heath and Paulraj [188] that powerful LDCs exist that are also capable

of outperforming their STBC counterparts. The error probability of LDCs was further improved

in [190–194], which also tackle the problem of having a diminishing distance between legitimate

codewords, when aiming for the high-throughput LDC codeword generation. In general, the ran-

dom search carried out for populating LDC matrix according to the original guidelines of [188] is

capable of producing powerful LDCs that achieve both a full multiplexing gain and a full transmit

diversity gain.

The development of LDC successfully resolves the diversityversus multiplexing tradeoff, where

both full MIMO capacity and full diversity gain may be attained following the optimized codeword

construction guidelines of [188], provided that the parameters satisfyNQ ≥ NT NP. However, the

LDC design becomes a retrograde step for the tradeoff between the performance attained and the

complexity imposed. As the STBC’s orthogonality requirement is abandoned, the LDC receivers

have to invoke conventional V-BLAST detectors in order to deal with the IAI problem. As dis-

cussed before, the performance versus complexity tradeoffhas an even more significant impact

on the family of coded systems. More explicitly, on one hand,optimal MIMO receivers exhibit a

potentially excessive detection complexity, which may become especially unaffordable when the

MIMO detector is invoked several times in the context of turbo detection. On the other hand, sub-

optimal receivers are at risk of producing over-confident output LLRs that deviate from the true

probabilities, which cannot be readily corrected by the channel decoder.

Against this background, a newly-developed MIMO techniquereferred to as Spatial Modula-

tion (SM) was proposed by Songet al. [195] in 2004, which is a modulated extension of a scheme

proposed in 2001 by Chau and Yu [196]. Then SM was analysed by Meslehet al. [197] in 2008.
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Figure 1.21: Schematic of the SM transmitter.

The SM transmitter is portrayed in Fig. 1.21, wherelog2 M bits are assigned to modulate a single

MPSK/QAM symbol by theMPSK/QAM modulator, whilelog2 NT bits are assigned to activate

a single one out ofNT TA by the TA index activation encoder in order to transmit thesingle mod-

ulated MPSK/QAM symbol. It can be seen in Fig. 1.21 that only a single RF-chain associated

with a TA is activated at a time, which effectively reduce theMIMO’s transmission complexity.

Moreover, one of the most important motivations behind the SM design is the hope that the TA

activation index and the classic modulated symbol index maybe separately detected, so that the

optimal ML MIMO detection performance may be achieved for SMat a substantially reduced

complexity. Therefore, Meslehet al. [197] proposed a Maximum Ratio Combining (MRC) based

SM detector, which firstly “decouples” the received signal to NT matched filter output elements.

Following this, the TA activation index may be detected by comparing the absolute values of the

matched filter output elements, and then the classicMPSK/QAM demodulator may be invoked for

demodulating the specific matched filter output element according to the detected TA activation in-

dex. As a result, the SM detector does not have to jointly detecting theNT TA index candidates and

the M modulated symbol candidates by evaluating a total ofNT M combinations of SM signals.

Instead, theNT TA index candidates and theM modulated symbol candidates are evaluated sepa-

rately, which reduces the SM detection complexity order from O(NT M) to O(NT + M). However,

it was demonstrated by Jeganathanet al. [198] in 2008 that completely independently detecting the

two indices results in an error floor, unless the fading channels are known and compensated at the

transmitter by a precoder. This is because the erroneous TA activation index detection may mis-

lead theMPSK/QAM demodulator into detecting the wrong symbol. As a remedy, Jeganathanet

al. [198] streamlined the ML MIMO detector’s calculations for SM, which takes advantage of the

fact that the SM transmit vector contains(NT − 1) zero elements and a single non-zero element.

As a benefit, the computational complexity imposed may be reduced by this simplification, but the

detection complexity order remainsO(NT M), where theNT TA index candidates and theM mod-

ulated symbol candidates are still jointly evaluated. As a remedy, Space-Shift Keying (SSK) was

proposed by Jeganathanet al. [199,200] in 2008, where simply the TA activation index conveys the

source information. However, the SSK schemes inevitably suffers from a capacity loss compared
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to the SM schemes.

Inspired by this open problem, SM detector design has been developed in two major directions

in the open literature. The first option is to develop the optimal SM ML detectors [201–204] en-

deavouring to reduce the complexity order of the simplified SM detector of [198] without imposing

any performance loss. The second approach elaborated on in [141, 205–210] aims for improving

the attainable performance of the sub-optimal MRC based SM detector of [197], but achieving the

optimal ML SM performance is not guaranteed. In more details, for the optimum ML SM de-

tection, in 2008, Yang and Jiao [201] proposed to invoke classic MPSK/QAM demodulators for

all matched filter output elements first, and then the TA activation index detection was performed

with the aid of the demodulatedMPSK/QAM symbols. This method was also considered by Ra-

jashekaret al. [204] in 2014, which was termed as the hard-limiter-based SMdetector. Owing

to the fact that in the absence ofa priori information gleaned from a channel decoder, the hard-

decision-aidedMPSK/QAM demodulators may directly map the matched filter’s output signal to

the nearestMPSK/QAM constellation point. As a result, the hard-limiter-based SM detection has

a low detection complexity order ofO(2NT), which does not increase with the number of mod-

ulation levelsM. However, this method cannot be directly applied to the soft-decision-aided SM

detectors in coded systems, because the channel decoder is unaware of which constellation diagram

is employed. As a result, the soft-decision-aided SM detectors have to evaluate and compare all

the TA index and classic modulated symbol index combinations, when both thea priori informa-

tion gleaned from the channel decoder and the matched filter output are taken into account, which

increases the detection complexity order back toO(NT × M).

In order to mitigate this problem, in 2013 Xuet al. [203] proposed a SM detector, which aims

for reducing the SM detection search scope while maintaining the optimum detection capability.

In more detail, by exploring the symmetry provided by the Gray-labelledMPSK/QAM constella-

tion diagrams, the normalized matched filter output elements may be first partially demodulated,

so that the correlation between the TA index and the classic modulated symbol index may be taken

into account, when the TA index is detected. Following this,only a singleMPSK/QAM demod-

ulation action has to be carried out according to the alreadydetected TA activation index. Based

on these processing steps, this may be referred to as the reduced-scope SM detector. This method

was then also applied to the soft-decision-aided SM detector of [203], which exploited the sym-

metry of the Gray-labelled constellation diagrams to perform the above mentioned reduced-scope

MPSK/QAM demodulation. As a result, the reduced-scope SM detector [203] may achieve a sub-

stantial complexity reduction compared to the simplified SMdetector of [198] without imposing

any performance loss. We will further demonstrate in Chapter 6 that the reduced-scope SM [203]

detection complexity is comparable to the hard-limiter-based SM [201, 204] detector of uncoded

systems. Furthermore, it will be shown in Chapter 7 that the reduced-scope SM [203] detection is

also capable of achieving a similaly substantial complexity reduction for coded SM systems, which

is especially beneficial, when considering that the SM detector may be invoked several times in

iterative turbo detection.
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Optimal ML SM detectors

Reduced−scope SM detector [203]

Hard−limiter−based SM detector [201,204]

Maximum Radio Combining (MRC)−based SM detector [197]

Normalized−MRC−based SM detector [205,206]

List−normalized−MRC−based SM detector [205,206,208]

Unity−constellation−power−based SM detector [141]

List−unity−constellation−power−based SM detector [209]

Distance−ordered−based SM detector [210]

Signal−vector−based SM detector [207]

Simplified ML SM detector [198]

SD aided SM detectors [211−213]

Suboptimal low−complexity SM detectors

Figure 1.22: Summary of hard-decision-aided SM detectors found in the open literature.

Considerable research efforts have also been dedicated to the family of sub-optimal low-complexity

SM detectors in recent years. It was discovered and demonstrated by Guoet al. [205] in 2010 and

by Naidooet al. [206] in 2011 that the error performance of the TA activationindex detection of

the MRC based SM detector of [197] may be improved by normalizing the matched filter output

signals by the fading norm, which leads to the concept of normalized-MRC-based SM detection.

The so-called signal-vector-based SM detector proposed byWang et al. [207] in 2012 operates

based on the fact that the SquareMQAM symbol does not change the direction of the received

signal vector, which hence attains the same performance results as the normalized-MRC-based SM

detectors. Furthermore, in order to avoid the situation of missing the optimum TA index candi-

date, the authors of [205, 206, 208] proposed to allow the TA activation index detector to produce

a list of candidates, and then theMPSK/QAM demodulator may be invoked for all the TA in-

dices in this list. This method may be termed as the List-normalized-MRC-based SM detector.

Moreover, Sugiuraet al. [141] conceived a unity-constellation-power-based SM detector in 2011,

where a reduced number of non-negative constellation points associated with a unity constellation

power are taken into account for the sake of achieving a more reliable TA index estimation. In

2012, Yanget al. [209] further improved the performance of the unity-constellation-power-based

SM detector by invoking a list of TA indices as used in [205, 206, 208], which may be termed

as the List-unity-constellation-power-based SM detector. The decision metrics used by the unity-

constellation-power-based SM detector were further improved by Tanget al. [210] in 2013, which

is termed as the distance-ordered-based SM detector.

In summary, the family-tree of optimal ML SM detectors and that of suboptimal low-complexity

SM detectors is portrayed in Fig. 1.22. Since SM was motivated by implementing the optimal

MIMO detectors at a reduced complexity, the aforementionedsub-optimal SM detectors may not be

highly recommended for coded systems, because they are likely to produce unreliable LLRs, which
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Figure 1.23: Schematic of the STSK transmitter.

fail to reflect the true probabilities. Moreover, we will demonstrate in Chapter 6 that these sub-

optimal SM detectors do not have a significant complexity advantage over the reduced-complexity

optimal SM detectors such as the hard-limiter-based SM detector [204] and the reduced-scope SM

detector [203]. It is also worth mentioning that a sphere decoder was invoked for single-stream

SM by Youniset al. [211–213], which exhibits a reduced complexity compared tothe sphere de-

coder invoked by V-BLAST. However, it is widely recognized that the sphere decoder has an SNR-

dependent detection complexity, which increases with the noise power [214, 215]. Therefore, the

low-complexity optimum reduced-scope SM detector [203] may be perferred for coded systems,

where an infinitesimally low BER may be achieved at a low SNR that is close to the capacity limit.

In order to be able to benefit from a transmit diversity gain, the concept of Space-Time Shift

Keying (STSK) was proposed by Sugiuraet al. [216] in 2010, which is a combination of SM and

LDC. The schematic of the STSK transmitter is portrayed in Fig. 1.23, which evolved from the

LDC transmitter of Fig. 1.20. In more detail, the STSK transmitter of Fig. 1.23 assignslog2 M

bits to modulate a singleMPSK/QAM symbol by theMPSK/QAM modulator, whilelog2 NQ bits

are assigned to the dispersion matrix index activation encoder in order to select a single one out

of a total number ofNQ dispersion matrices. Then the modulated symbolsm is dispersed into

both spatial and temporal dimensions by the activated dispersion matrixAq, so that the STSK

transmission matrix seen in Fig. 1.23 is given byS = smAq. It was demonstrated by Sugiuraet

al. [216] that after vectorizing the STSK scheme’s received signal matrix, the SM detectors may

be invoked for detecting the STSK’s dispersion matrix indexand modulated symbol index. As a

result, the SM may rely on a low-complexity single-stream MLdetector derived from the optimum

V-BLAST MIMO detector at a lower detection complexity. Similarly, STSK is also capable of

effectively reducing the LDC’s detection complexity. Although a beneficial transmit diversity gain

is obtained, the STSK’s disadvantage over the SM is that all the STSK transmitter’s RF chains have

to be activated at the same time, as seen in Fig. 1.23, which loses the SM’s advantage of using a

single RF chain at any symbol-instant, as seen in Fig. 1.21. In 2011, Sugiuraet al. [217] proceeded

to conceive the concept of Generalized Space-Time Shift Keying (GSTSK), where virtually all the
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MIMO schemes including V-BLAST, STBC, LDC, SM and STSK are included in the framework of

dispersion matrix-aided space-time modulation. Furthermore, in 2011, Basaret al. [218] arranged

for achieving a transmit diversity gain for the original SM by activating more than one TAs in order

to convey STBC codewords. This method has been further developed in [219–221] and all these

schemes can be categorized under the framework of GSTSK according to the STBC’s dispersion

matrix expression. By contrast, Renzoet al. [222–224] conceived an STBC transmit diversity

aided SM scheme by employing idealistic orthogonal shapping filters, while Yang [225] proposed

to employ orthogonal frequency-hopping codes. These schemes are however beyond the scope of

GSTSK and they impose extra stringent hardware requirements.

Considering the fact that there are always(NT − 1) zero elements and a single non-zero element

in a SM’s transmission vector, any pair of SM codewords will share a total number of(NT − 2)

zero-element positions. As a result, the average pairwise Euclidean distance between SM code-

words is lower than that of its V-BLAST counterpart, which implies that SM may have a higher

pairwise symbol error probability than its V-BLAST counterpart. For this reason, it is not likely

for SM to outperform V-BLAST at the same system throughput and under the same hardware and

software conditions. Indeed, this would only be possible for SM systems, under the employment

of extra hardware for creating transmit diversity techniques [224, 226, 227], orthogonal shapping

filters [222,224,227], or when aiming for a reduced SM throughput [228] or when using more com-

plex ML SM detectors while opting for suboptimal V-BLAST detectors [197, 204, 205, 212, 218].

In summary, the ubiquitous performance versus complexity tradeoff manifests itself in the context

of V-BLAST and SM, which is also the case for the LDC and the STSK arrangements. However,

we will demonstrate in Chapters 6 and 7 that although SM may not be capable of outperforming

V-BLAST, the performance differences between them are almost negligible compared to the per-

formance loss imposed by employing an MMSE detector for V-BLAST. The same claim is valid,

when STSK is compared to LDC.

The capacity of SM was evaluated by Yang and Jiao [201], who confirmed that the SM capacity

is higher than that of the SISO/SIMO systems, but the full MIMO capacity cannot be achieved by

the family of SM systems. We will demonstrate under the same framework in Chapter 6 that

STSK also suffers from the same capacity loss against LDC. Inorder to mitigate this problem, the

GSTSK proposed by Sugiuraet al. [217] advocates transmitting more than one symbols. However,

considering SM as an example, if more than one TAs are activated to transmit different symbols,

the problem of IAI resurfaces, unless STBC codewords are transmitted. In order to tackle this IAI

problem, Wanget al. [226] and Sugiuraet al. [229] proposed sub-optimal interference-suppression

receivers for Generalized SM and for the GSTSK, respectively. However, these arrangements are

not consistent with the SM/STSK motivation of relying on low-complexity optimum ML receiver

design. Against this background, Fuet al. [230] and Youniset al. [231] proposed the a Generalized

SM (GSM) design, where multiple activated TAs may transmit the same symbol. In this way,

although the IAI problem is avoided, the capacity improvement provided by the GSM remains

limited, because the ergodic capacity is only maximized, when the signals transmitted by multiple
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Figure 1.24: Key Multiple-Input Multiple Output (MIMO) schemes and the design trade-

offs that motivated their development.

TAs are independent and identically distributed (i.i.d.) [165, 166]. Therefore, the concept of a

systematically normalized GSM/GSTSK arrangement that achieves an improved capacity without

imposing IAI requires further research efforts.

It is worth noting that a comprehensive review paper on the recent development of SM was

offered by Renzoet al. [227] and by Yanget al. [232].

Last but not least, the aforementioned milestones in MIMO development are summarized in

Tables 1.8-1.10. We also summarize the key MIMO schemes and their relationships in Fig. 1.24.

More explicitly, the first type of MIMO system design tradeoff is that between BLAST’s multi-

plexing gain and STBC’s diversity gain. The LDC design may resolve this tradeoff, provided that

the parameters satisfyNQ ≥ NT NP. The second MIMO system design tradeoff manifests itself

between the MIMO detectors conceived for tackling the IAI problem, hence strikes a performance

versus complexity tradeoff. Furthermore, the concept of SMwas motivated by the hope that the

optimum MIMO detection may be implemented at a substantially reduced complexity. In reality, a

slight performance loss is imposed by SM, which again, indicates the presence of the performance

versus complexity tradeoff. The same performance versus complexity tradeoff exists between the

LDC and the STSK family. Furthermore, since STSK provides a transmit diversity gain, the con-

ventional multiplexing versus diversity tradeoff manifests itself between SM and STSK. The at-

tainable capacity, BER performance and complexity will be at the centre of our further discussions

on MIMO systems in Chapters 6 and 7.
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Table 1.8: Summary of major contributions on MIMO schemes (Part I).

Year Author(s) Topic Contribution

1994 Paulraj and

Kailath [161]

MIMO Proposed the concept of multiplexing-oriented MIMO,

where a high data-rate transmission was carried out by split-

ting it into low data-rate signals transmitted by spatiallysep-

arated SDMA users.

1996 Foschini [162] BLAST Proposed the concept of D-BLAST, where a single data

stream is de-multiplexed and then rotated and transmitted

by NT co-located TAs, so that the multiplexing gain may be

pursued for a single user.

1998 Wolniansky et

al. [164]

BLAST Proposed the concept of V-BLAST, which elimiates the D-

BLAST transmitter’s diagonal-encoding rotator in order to

simplify the real-time implementation.

1998 Alamouti

[177]

STBC Proposed the transmit diversity technique for the case of

NT = 2, which is often referred to as Alamouti’s G2 STBC.

1999 Telatar [166] BLAST Proved that the BLAST MIMO systems have an ergodic ca-

pacity that may grow linearly with the number of antennas,

provided that the BLAST MIMO system employs a large

number of antennas.

1999 Tarokh et al.

[178]

STBC Proved that Alamouti’s G2 STBC is the only full unity-rate

code in the family of STBCs, and proposed Half-Rate (HR)

STBCs for any number of TAs according to the Hurwitz-

Radon theory [179,180].

2000 Damen et al.

[172]

BLAST Proposed to inoke a sphere decoder for BLAST in order to

strike a performance-complexity tradeoff between the ML

BLAST detector and the LF-aided detectors.

2000 Sandhu and

Paulraj [184]

STBC Demonstrated that STBCs cannot achieve the full MIMO

capacity except for a single case, which is Alamouti’s G2-

STBC systems associated withNR = 1.

2001 Jafarkhani

[186]

STBC Proposed the concept of Quasi-Orthogonal (QO) STBC,

which relaxed the STBC’s orthogonality requirement in or-

der to improve the STBC throughput.

2001 Ganesan

and Sto-

ica [181–183]

STBC Proposed Amicable Orthogonal (AO) STBCs for any num-

ber of TAs according to the theory of amicable orthogonal

design [179], which reduced the transmission delay of HR-

STBCs and achieved an improved normalized throughput of

3/4 for the AO-STBCs associated withNT = 3 and 4.
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Table 1.9: Summary of major contributions on MIMO schemes (Part II).

Year Author(s) Topic Contribution

2002 Hassibi and

Hochwald

[189]

LDC Proposed the capacity-improving LDC, which completely

droped the STBC’s orthogonality requirements in order to

further improve the STBC capacity while retaining the full

transmit diversity gain.

2002 Heath and

Paulraj [188]

LDC Proposed the capacity-achieving LDC, which simplified the

LDC design of [189] so that both the full MIMO capacity

and the full transmit diversity gain may be attained, provided

that the parameters satisfyNQ ≥ NT NP.

2002 Sellathurai

and Haykin

[13]

BLAST Proposed the exact MMSE solution incorporating the non-

constanta priori probabilities for coded BLAST systems.

2003 Damen et al.

[10]

BLAST A comprehensive summary paper for the sphere decoding

algorithms invoked by the uncoded BLAST systems.

2003 Zheng and

Tse [185]

BLAST

STBC

Quantified the classic MIMO design tradeoff between the

attainable multiplexing and diversity gain.

2003 Hochwald

and Brink

[173]

BLAST Proposed the first soft-decision-aided SD for BLAST, where

a list of BLAST signal candidates was established by the

hard-decision-aided SD and then the candidates in this list

were processed by the MAP decoding algorithm.

2004 Vikalo et al.

[174]

BLAST Proposed the soft-decision-aided SD for BLAST, which in-

corporated thea priori information in sphere decoding.

2008 Studer et al.

[175]

BLAST Proposed the soft-output SD’s VLSI implementation, which

is further developed by the authors in [176], where thea

priori LLRs are once again incorporated into the SD’s VLSI

implementation.

2008 Mesleh et al.

[197]

SM Analysed the SM that was firstly appeared in [195], where a

single out ofNT TA is activated in order to transmit a single

modulatedMPSK/QAM symbol, so that a substantial com-

plexity reduction may be achieved for the SM receiver by

separately detecting the TA activation index and the classic

modulated symbol index.

2008 Jeganathanet

al. [198]

SM Demonstrated that completely independently detecting the

TA index and the modulated symbol index as seen in [197]

resulted in an error floor. The authors further streamlined

the ML MIMO detector’s calculations for SM.
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Table 1.10: Summary of major contributions on MIMO schemes (Part III).

Year Author(s) Topic Contribution

2008 Jeganathanet

al. [199,200]

SM

(SSK)

Proposed the concept of SSK, where simply the TA activa-

tion index conveys the source information.

2008 Yang and Jiao

[201]

SM Proposed to invoke demodulator before detecting the TA ac-

tivation index, and demonstrated that the SM capacity is

higher than that of the SISO/SIMO systems.

2010 Sugiuraet al.

[216]

STSK Proposed the concept of STSK in order to be able to benefit

from a transmit diversity gain for the SM techniques, where

a single out ofNQ LDC’s dispersion matrix is activated in

order to disperse a single modulatedMPSK/QAM symbol,

so that the low-complexity SM detectors may be invoked by

the STSK receiver.

2011 Basar et al.

[218]

SM Proposed to achieve a transmit diversity gain for the origi-

nal SM by activating more than one TAs in order to convey

STBC codewords.

2011 Sugiuraet al.

[217]

STSK Proposed the concept of Generalized STSK (GSTSK),

where virtually all the MIMO schemes including V-BLAST,

STBC, LDC, SM and STSK are included in the framework

of dispersion matrix-aided space-time modulation.

2013 Xu et al.[203] SM

STSK

Proposed the reduced-scope SM detector both for uncoded

and coded SM systems, which reduced the detection search

scope while maintaining the optimum detection capability.

The correlation between the TA index and the modulated

symbol index was taken into account when detecting the TA

index, and then only a singleMPSK/QAM demodulator was

invoked according to the already detected TA index.

2014 Rajashekaret

al. [204]

SM Summarized the Yang and Jiao’s [201] technique as the

hard-limiter-based SM detector, which invoked classic

MPSK/QAM demodulators for all matched filter output el-

ements first, and then the TA activation index detection

was performed with the aid of the already demodulated

MPSK/QAM symbols. The hard-limiter-based SM detec-

tor cannot be directly applied to coded SM systems.

2014 Renzo et al.

[227]

SM

STSK

A comprehensive summary paper for the recent develop-

ment of SM.
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1.4 Outline and Novel Contributions

During my PhD study, I have authored and co-authored 14 journal papers as well as 9 conference

papers. This report is written based on the 7 journal papers that I published as the first author.

In more detail, my first journal publication was a near-capacity design for cooperative differential

LDC using MSDD [233] in 2011, which covers the three main topics introduced in this chapter.

Moreover, inspired by the open problem of how to separately detect the SM’s TA index and mod-

ulated symbol index without imposing any performance loss,we discovered that the optimum SM

detection capability may be retained if the TA index detector takes into account, which specific

MPSK/QAM modulated symbol is transmitted. According to thiscarefully designed reduced-

complexity algorithm, only a reduced number of constellation points has to be visited, and yet, no

performance loss is imposed. We firstly proposed this methodfor the hard-decision-aided CDD

and MSDSD conceived for Differential STSK [234] in 2011. Then we extended this work to soft-

decision-aided STSK detection of [202] also in 2011. Furthermore, in the same year, we solved

another open problem in the context of hard-decision-aidedMSDSD conceived for Differential

STBC using QAM in [235], where the channel’s correlation matrix, which is determined by the

QAM signal’s non-constant modulus is solved step-by-step using a sphere decoder. Although this

method successfully improved the performance of Differential STBC by using a sphere decoder,

no theoretical proof was provided in this paper, and furthermodifications are still required for

the family of coded systems. In 2013, we summarized our previous research efforts dedicated to

reduced-complexity optimal SM/STSK detection in the context of both uncoded and coded systems

in [203]. Moreover, we discovered that this reduced-complexity design, which was originally con-

ceived for SM/STSK, may be applied to basic soft-decision-aided PSK/QAM detection [236], so

that a wider range of communications systems may benefit fromthis reduced-complexity design.

In the same year, we have applied this reduced-complexity design to soft-decision-aided CDD con-

ceived for DAPSK in [159].

Instead of summarizing my publications according to their chronological order, in this report, a

systematic approach is pursued along the road to reduced-complexity design by critically appraising

the structure of communications systems, where the missingsteps bridging the gap between my

previous publications are conceived. The outline of the report is portrayed in Fig. 1.25, where the

entire family of communications systems spanning from coherent to noncoherent, from uncoded to

coded, and also from SISO/SIMO to MIMO systems is summarized.

In more details, the main body of the report commences from the basic coherent SISO/SIMO

schemes, where the class of both uncoded and coded PSK/QAM schemes is introduced in Chap-

ter 2. The near-capacity system design concept based on EXITcharts is also introduced in this chap-

ter and our reduced-complexity design methodology is applied to soft-decision-aided PSK/QAM

detectors, which is based on [236]. Chapter 3 moves on to conceiving noncoherent SISO/SIMO

schemes both for uncoded and coded systems. A survey of noncoherent detectors designed for

DPSK including CDD, MSDD, MSDSD and DFDD is provided, and ourreduced-complexity
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design philosophy is especially applied to the soft-decision-aided MSDSD conceived for coded

DPSK. Moreover, a detailed comparison between coherent PSKusing realistic imperfect channel

estimation and its noncoherent counterpart is also offeredin this chapter. In Chapter 4 and Chap-

ter 5, the family of noncoherent detectors conceived for differential non-constant modulus modula-

tion schemes is introduced for uncoded and coded scenarios,respectively. The separation between

the uncoded system and the coded system is for the sake of arriving at manageable chapter length.

In Chapter 4, the DQAM2 constellations that exist in the literature including DAPSK, ADPSK,

TADPSK, etc. are introduced and compared. Furthermore, thefinal steps of the theoretical proof

of how to invoke a sphere decoder for DQAM detection is provided, and the MSDSD conceived for

DQAM is proposed based on our theoretical analysis. Furthermore, the soft-decision-aided MS-

DSD was also proposed for coded DQAM in Chapter 5, where our reduced-complexity design is

applied. Moreover, the comparison between coherent QAM andnoncoherent DQAM is discussed

in the context of both coded and uncoded systems in these two chapters. After introducing both the

coherent and noncoherent SISO/SIMO schemes, Chapter 6 and Chapter 7 provide further insights

concerning the design of MIMO systems. As the background of the recently proposed the fam-

ily of SM and STSK arrangements, the development of MIMO techniques is summarized special

emphasis on their capacity, performance and complexity analysis. Finally, our reduced-complexity

SM/STSK detection techniques are detailed in Chapters 6 and7 based on our publication of [203].

We leave our future deliberations on the class of noncoherent MIMO systems for our future work,

as briefly discussed in Chapter 8.

Explicitly, the novel contributions offered by each chapter are summarized as follows:

Chapter 2: Coherent Detection for PSK and QAM

2.1) We observe that the Max-Log-MAP algorithm aided soft-detector aims for finding the maxi-

mum probabilities, which is similar to the action of hard-decision-aided detection of uncoded

MPSK/QAM schemes. Therefore, after linking eacha priori LLR to a reduced-size fraction

of the channel’s output signal constellations, the Max-Log-MAP algorithm may be operated

at a reduced complexity.

2.2) Furthermore, the corresponding reduced-complexity Approx-Log-MAP algorithm is also

conceived by compensating for the Max-Log-MAP algorithm’swidely-used Jacobian ap-

proximation relying on a lookup table.

2.3) We have generalized our detection algorithms for different constellations, includingMPSK,

SquareMQAM, Star MQAM and CrossMQAM. The symmetry exhibited by each Gray-

labelled constellation diagram is the key to the detection complexity reduction.

2.4) Finally, we demonstrate the benefits of our solution in the context of a variety of turbo de-

tected systems. The iteration gain achieved by the softMPSK/QAM detectors results in a

significant performance improvement. Furthermore, a substantial complexity reduction is

achieved without any performance loss.

2We note that the terminology of non-constant modulus modulation and DQAM are exchangeable in this treatise.
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Chapter 3: Noncoherent Detection for DPSK

3.1) We further extend the classic MSDSD aided uncoded DPSK [127] to the case of employing

multiple RAs associated withNR ≥ 1, while maintaining a low complexity for the SD’s

Schnorr-Euchner [237] search strategy.

3.2) In order to compensate for the performance erosion imposed by the Max-Log-MAP al-

gorithm, we propose to modify the output of the soft-decision-aided MSDSD conceived

in [132], where multiple candidates may be produced by the SDso that the Approx-Log-

MAP regime may be invoked.

3.3) When thea priori LLRs gleaned from a channel decoder are taken into account bythe soft-

decision-aided MSDSD of [132], the SD’s Schnorr-Euchner [237] search strategy once again

requires the sorting of all theM constellation points. In order to mitigate this problem,

we proposed to adopt the reduced-complexity design proposed in Chapter 2 for the sorting

algorithm, where the optimum candidate may be found by visiting a reduced-size subset of

constellation points, and then the rest of the constellation points may be visited in a zig-zag

fashion.

3.4) Furthermore, we provide a discussion on the important subject of coherent versus nonco-

herent detection. More explicitly, numerous channel estimation techniques are capable of

acquiring accurate CSI knowledge at the coherent receiver,when the fading channels fluc-

tuate relatively slowly. However, as the Doppler frequencyincreases, the coherent receivers

relying on realistic imperfect CSI suffer from an inevitable performance loss. We will demon-

strate that this problem becomes particularly serious for soft-decision-aided coherent detec-

tors, because they are likely to produce extrinsic inaccurate LLRs.

Chapter 4: Noncoherent Detection for Differential Non-Constant Modulus Modulation – Part

I: Uncoded Systems

4.1) We prove that although the complete channel correlation matrix required by the MSDD con-

ceived for DQAM remains unknown until all the transmitted symbol amplitudes have been

detected, its partial channel correlation matrix may be evaluated with the aid of the SD’s

previous decisions as well as a single information-dependent symbol amplitude that may

be readily found by the SD. As a benefit, we are able to invoke sphere decoding for both

amplitude detection and phase detection for MSDD aided DQAM.

4.2) As a solution to the open problem of MSDSD aided DQAM, a DFDD derived from an

MSDD/MSDSD and a Linear Prediction Detection (LPD) relyingon blind channel estima-

tion are developed for uncoded DQAM schemes. We demonstratethat the DFDD regime

and the LPD aided DQAM solution operating in Rayleigh fadingchannels are also equiv-

alent, similarly to the trend we observe for the DFDD aided DPSK technique summarized

in [121, 125]. As expected, the revised DFDD proposed in thischapter outperforms the

DFDD aided DQAM solution of [136,153,154].
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4.3) We provide a detailed study on the family of DQAM constellations based on the existing

literature. A variety of noncoherent detectors, includingCDD, MSDD, MSDSD and DFDD

are tailored for different DQAM schemes, and their pros as well as cons exhibited in different

scenarios are suggested. We provide a quantitative performance comparison between coher-

ent QAM using realistic channel estimation and DQAM using noncoherent detection in the

context of uncoded systems.

Chapter 5: Noncoherent Detection for Differential Non-Constant Modulus Modulation – Part

II: Coded Systems

5.1) First of all, the soft-decision-aided MSDD conceived for coded DQAM is introduced in this

chapter. Since the first transmitted symbol’s ring amplitude within an observation window

may be treated either as a variable, or a known quantity basedon previous decisions or alter-

natively as a known term based on thea priori information gleaned from a channel decoder,

three types of soft-decision-aided MSDDs including the original MSDD, the Hard-Decision-

Directed MSDD (HDD-MSDD) and the Soft-Decision-Directed MSDD (SDD-MSDD) are

treated in this chapter.

5.2) Secondly, the soft-decision-aided MSDSD conceived for coded DQAM is proposed in this

chapter, where sphere decoding is invoked for both constellation ring amplitude detection

and phase detection. According to the MSDD arrangements, the soft-decision-aided MSDSD

may also be implemented in form of a HDD-MSDSD and SDD-MSDSD.Moreover, both the

Max-Log-MAP and Approx-Log-MAP regimes are implemented bythe soft-decision-aided

MSDSD designed for coded DQAM, where the Approx-Log-MAP proposed for MSDSD

aided DPSK in Chapter 3 may be applied for coded DQAM detection.

5.3) Thirdly, since Gray-coded labelling is applied to the DQAM constellations, we propose to

invoke the reduced-complexity design conceived for MSDSD aided DPSK in Chapter 3 also

for the soft-decision-aided MSDSD conceived for coded DQAM. In this way, the complex-

ity of the soft-decision-aided MSDSD may be substantially reduced without imposing any

performance loss.

5.4) Fourthly, the soft-decision-aided MSDD-IAP conceived for coded DAPSK in [160] is revised

for employment for all DQAM constellations. Based on the above-mentioned developments,

we propose to carry out MSDAD with the aid of sphere decoding.Hence the terminology

may be revised to Multiple-Symbol Differential Amplitude Sphere Detection (MSDASD).

Since both ring amplitude detection and phase detection arecarried out by SD, the terminol-

ogy of MSDD-IAP may be revised to MSDSD-IAP, which may also becarried out with the

aid of HDD-MSDSD-IAP and SDD-MSDSD-IAP, if required. Furthermore, the reduced-

complexity design conceived for MSDSD aided DPSK in Chapter3 may be directly applied

to MSDPSD, so that the total number of constellation points visited by the MSDSD-IAP may

be substantially reduced.
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5.5) Furthermore, the soft-decision-aided DFDD conceivedfor coded DQAM is proposed in

this chapter based on the hard-decision-aided DFDD regime introduced in Chapter 4. We

will demonstrate that the proposed DFDD outperforms the suboptimal DFDD solutions of

[136, 153, 154], because the latter assume having a channel correlation matrix, which is in-

dependent of the transmitted symbol amplitudes.

5.6) Last but not least, a quantitative performance study ofsoft-decision-aided noncoherent de-

tectors conceived for coded DQAM is offered in this chapter and the most suitable design

choices are recommended for different DQAM constellations. Furthermore, we also demon-

strate that when the fading channels fluctuate rapidly, the soft-decision-aided HDD-MSDSD-

IAP conceived for ADPSK may even outperform PSAM aided coherent QAM detection in a

variety of channel coding assisted systems.

Chapter 6: Reduced-Complexity Design Applied to MIMO Schemes – Part I: Uncoded Sys-

tems

6.1) The tradeoff between the attainable diversity and multiplexing gain is discussed in the con-

text of each MIMO scheme introduced in this chapter. The achieveable capacity and error

probability are used as the fundamental metrics of quantifying the associated tradeoff. We

demonstrate that although this tradeoff exemplied by that between V-BLAST and STBC

may be resolved by the LDC design, but it still exists betweenthe newly-developed reduced-

complexity MIMO systems of SM and STSK, which leaves room forfurther investigations.

6.2) The importance of the tradeoff between the performanceattained and complexity imposed is

stressed in the context of MIMO system designs throughout this chapter. This tradeoff per-

sists both for the classic V-BLAST and LDC receiver design, but it is also the key motivation

of SM and STSK.

6.3) Altough the development of SM and STSK is motivated by their potentially low detection

complexity, it was demonstrated in [198] that completely independently detecting the TA

activation index and the modulatedMPSK/QAM symbol imposes a performance loss on the

SM receiver. In order to mitigate this problem, in this chapter, we summarize the wide-

ranging facets of reduced-complexity hard-decision-aided SM detector design based on our

previous publications [141, 202, 203, 234], where the optimal SM performance was retained

by taking into account the correlation between the TA activation index and theMPSK/QAM

modulation index. A range of other optimal and suboptimal SMdetectors found in the liter-

ature [141,204–213] are also summarized for the sake of comparison.

Chapter 7: Reduced-Complexity Design Applied to MIMO Schemes – Part II: Coded Systems

7.1) We demonstrate the benefits of the reduced-complexity design proposed for the soft-decision-

aided MPSK/QAM demodulators of Chapter 2 in the context of both channel coded V-

BLAST systems as well as channel coded STBC systems. This contribution is based on

our publication [236].



1.4. Outline and Novel Contributions 49

7.2) Similar to the soft-decision-aided MSDSD conceived for DPSK introduced in Chapter 3,

the reduced-complexity SD previously proposed for MSDSD inChapter 3 is applied for the

soft-decision-aided V-BLAST detector, whenMPSK constellations are employed.

7.3) We further exploit the reduced-complexity SM detectordesign proposed in Chapter 6 also for

channel coded SM and STSK systems. In more details, the maximuma posterioriprobability

that is required by the Max-Log-MAP algorithm may be obtained by partially relying on

the reduced-complexity soft-decision-aidedMPSK/QAM demodulators before deciding the

SM’s TA activation index, where the correlation between themodulated symbol index and

the TA index is taken into account, so that the detected TA index always corresponds to the

MAP solution. This contribution is based on our publications [202,203].



Chapter2
Coherent Detection for PSK and QAM

2.1 Introduction

The significant technical breakthrough of Turbo Coding (TC)was proposed in [38, 39]. More

explicitly, as portrayed by Fig. 2.1a, the transmitter encodes the source bits twice by a pair of

component RSC encoders, with an interleaver between their inputs to ensure that the two encoders

fed with sequences that are independent of each other. As a result, the pair of RSC decoders at the

receiver of Fig. 2.1b may be capable of exchanging their extrinsic information, so that a substantial

performance improvement may be achieved by this so-called turbo detection process. Tutorial for

TC may be found in [238,239].

Ever since the development of TC, the iterative decoding of concatenated codes has inspired

numerous researchers to aim for achieving a near-capacity performance in diverse system contexts

[2, 8, 239]. It was observed in [8, 240, 241] that a variety of commonly used modulation schemes

also impose dependency among the source bits and hence theirdemodulators may be appropriately

modified to be able to process soft-values which can be exchanged with the soft-input channel

decoders in the context of turbo detection. As an example, Fig. 2.2a shows that the source bits are

encoded twice by a RSC encoder and transmitted by a MIMO modulator. At the receiver, the inner

receiver component, namely the RSC decoder of the conventional turbo detection of Fig. 2.1b is

replaced by a MIMO demodulator, as seen in Fig. 2.2b.

Moreover, the concept of EXtrinsic Information Transfer (EXIT) charts was proposed in [88]

for analyzing the convergence behaviour of turbo detection. Furthermore, in order to eliminate the

error floor often observed in two-component concatenated codes, it was proposed in [93,242] that a

further Unity Rate Code (URC) may be incorporated as shown inFig. 2.3a, so that an infinitesimally

low BER may be achieved by the resultant three-stage turbo detector of Fig. 2.3b. Furthermore,

the IRregular Convolutional Code (IRCC) concept [86,243] was proposed for replacing the regular

convolutional codes, where the area between the EXIT curve of the outer IRCC and that of the

inner amalgamated URC and demodulator block was minimized.As a result, a vanishingly low
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BER may be achieved at a near-capacity SNR [17,244].

As researchers inch closer and closer to the channel capacity, the complexity of the resultant

communication systems is also increased. In fact, soft-decision-aided MIMO demodulator as seen

in Figs. 2.2b and 2.3b typically contributes a substantial fraction of the total complexity. In order

to circumvent this problem, a soft-decision-aided Sphere Decoder (SD) assisted multiple-stream

MIMO systems (e.g. V-BLAST [162]) was proposed in [173,174,176], where the total number of

constellation points visited by the MIMO demodulator may besignificantly reduced by the SD’s

tree-search. On the other hand, often low-complexity linear MIMO receivers (e.g. MMSE receiver)

[13, 14, 75] may be employed for separating the superimposedparallel data streams. Similarly,

the parallel streams of orthogonal STBC schemes [177, 178] may be readily transformed into an

equivalent single-stream form, as a benefit of the orthogonal space-time code design. As a result,

when the conventionalMPSK/QAM detector is invoked either by the MIMO’s linear receivers or

by the STBC receivers, the detection complexity is on the order ofO(M) instead ofO(MQ), where

Q represents the number of symbols transmitted together.

Since the family of classicMPSK/QAM detectors is of salient significance in virtually all

communication systems, the detection algorithms conceived for MPSK/QAM demodulation are

revisited in this chapter. From a historical point of view, the methods introduced in [245–247]

may be capable of reducing the softMPSK/QAM detection complexity from the order ofO(M)

to O(log2 M), where the approxmiated LLR values are efficiently evaluated on a bit-by-bit basis.

However, these early contributions on bit-metric generation did not consider thea priori LLRs

produced by a channel decoder. This is because the detectionof the Gray-labelled low-order

PSK/QAM schemes (e.g BPSK/QPSK and Square 16QAM) generallyproduce near-horizontal

curves in the EXIT charts [86, 88], which means that exchanging information between the soft

MPSK/QAM detector and the channel decoder may have a negligible benefit. However, at the time

of writing, high-orderMPSK/QAM schemes are routinely utilized in commercialized systems. For

example, Square 64QAM and Square 256QAM have been included in the ITU-R IMT Advanced
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4G standards [248] and in IEEE 802.11ac [249], respectively. As the number of modulation levels

M increases, the softMPSK/QAM detectors become capable of producing an improved iteration

gain. Therefore, a significant performance improvement is attained, once thea priori LLRs have

been taken into account by the softMPSK/QAM detector. However, since the softMPSK/QAM

detectors are required to process both thea priori LLRs and the channel’s output signal, con-

ventionally all theM symbol probabilities corresponding to allM constellation points have to

be evaluated and compared. Against this background, in thischapter, a reduced-complexity design

conceived for generalized soft-deicision-aidedMPSK/QAM demodulation is proposed, where only

a reduced-size subset of theMPSK/QAM constellation points is taken into account for producing

a single soft-bit output. In more detail, the novel contributions of this chapter are as follows:

1. We observe that the Max-Log-MAP algorithm aims for findingthe maximum probabilities,

which is similar to the action of hard-decision-aided detection of uncodedMPSK/QAM

schemes. Therefore, after linking eacha priori LLR to a reduced-size fraction of the chan-

nel’s output signal constellations, the Max-Log-MAP algorithm may be operated at a reduced

complexity.

2. Furthermore, the corresponding reduced-complexity Approx-Log-MAP algorithm is also

conceived by compensating for the Max-Log-MAP algorithm’swidely-used Jacobian ap-

proximation relying on a lookup table.

3. We have generalized our detection algorithms for different constellations, includingMPSK,

SquareMQAM, Star MQAM and CrossMQAM. The symmetry exhibited by each Gray-

labelled constellation diagram is the key to the detection complexity reduction.

4. Finally, we demonstrate the benefits of our solution in thecontext of a variety of turbo de-

tected systems. The iteration gain achieved by the softMPSK/QAM detectors results in a

significant performance improvement. Furthermore, a substantial complexity reduction is

achieved without any performance loss.

The remainder of this chapter is organized as follows. The PSK and QAM constellations and

their low-complexity hard-decision-aided detection methods in uncoded system are reviewed in

Sec. 2.2. The soft-decision-aided PSK/QAM detection in coded system is introduced in Sec. 2.3,

where the effective tool of EXIT chart is also thoroughly discussed. The proposed reduced-

complexity soft-decision-aided PSK/QAM detection is presented in Sec. 2.4, while the chapter

conclusions are offered in Sec. 2.5.

2.2 Uncoded PSK and QAM

In this section, the hard-decision-aided detectors conceived for uncodedMPSK/QAM schemes are

reviewed first. Gray-labelled constellations are assumed throughout this chapter. Naturally, there
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are many other constellation labelling schemes in the existing literatures [86, 250], but the reasons

for choosing Gray-labelling in this work may be deemed to be twofold. First of all, the adjacent

constellation points mapped according to the Gray code onlydiffer by one bit, which results in the

best performance in uncoded systems [2,3]. This also implies a higher starting point for the EXIT-

curves of soft-decision-aidedMPSK/QAM detectors in coded systems in their EXIT charts [86,88],

when initially noa priori LLRs are available from the outer channel decoder. Secondly, considering

SquareMQAM as an example, a Gray encoder labels the real and the imaginary parts of a Square

MQAM symbol separately, where two separate bits respectively determine the polarities of the

real and the imaginary parts of the SquareMQAM symbol. This constellation mapping symmetry

provided by Gray-labelling is the key to a low detection complexity both for the uncoded and for

the codedMPSK/QAM detectors. We will elaborate on these features in the following sections.

2.2.1 Hard-Decision-Aided PSK Detection

The MPSK transmitter firstly maps BPS= log2 M source binary bits to a phasor indexm =

bin2dec(b1 · · · bBPS)1, which modulates aMPSK phasor{sm = exp(j 2π
M m̌)}M−1

m=0 , where the pha-

sor indexm is mapped to the Gray coded indexm̌. The constellation diagrams of Gray-labelled

MPSK schemes including BPSK, QPSK, 8PSK and 16PSK are portrayed in Fig. 2.4.

For a Single-Input Multiple-Output (SIMO) system, the signal received by theNR Receive

Antennas (RAs) may be expressed as:

Yn = snHn + Vn, (2.1)

wheresn denotes the transmittedMPSK symbol, while the (1 × NR)-element vectorsYn, Hn and

Vn refer to the received signal vector, the Rayleigh fading channel vector and the Additive White

Gaussian Noise (AWGN) vector, which has a zero mean and a variance ofN0, respectively.

The optimum Maximum A Posteriori (MAP) detector aims for maximizing thea posteriori

probability according to Bayes’ law [251] as:

p(sm|Yn) =
p(Yn|sm)p(sm)

∑∀sm∈s p(Yn|sm)p(sm)
, (2.2)

where according to the received signal model of Eq. (2.1), the conditional probability of receiving

Yn given thatsm was transmitted may be expressed as:

p(Yn|sm) =
1

(πN0)NR
exp

(
−‖Yn − smHn‖2

N0

)
, (2.3)

while we have constanta priori probabilities{p(sm) = 1
M}M−1

m=0 upon assuming that the transmit-

ted symbolsn is equiprobable. As a result, the ML detection may be formulated as:

ŝn = arg min
∀sm∈s

‖Yn − smHn‖2, (2.4)

1In this report, ”bin2dec” denotes the function that converts binary bits to decimal integers, while its inverse function

”dec2bin” converts a decimal integer to bits.
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Figure 2.4: Constellation Diagrams of Gray-labelledMPSK schemes including BPSK,

QPSK, 8PSK and 16PSK.

wheres indicates theMPSK symbol set, while the coherent receiver assumes a perfect knowledge

of the fading channel vectorHn. The Euclidean norm calculation of Eq. (2.4) leads to the decision

variable of:

zn = YnHH
n . (2.5)

Therefore, the vector-by-vector based ML detection of Eq. (2.4) may be simplified to be operated

on a symbol-by-symbol basis, which is expressed as:

ŝn = arg min
∀sm∈S

|zn − sm|2. (2.6)

In order to show the equivalence between Eq. (2.4) and Eq. (2.6), we further extend the decision
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metric of Eq. (2.4) as:

‖Yn − smHn‖2 = tr
[
(Yn − smHn)(Yn − smHn)

H
]

= ‖Yn‖2 + |sm|2 · ‖Hn‖2 −
[
(sm)∗YnHH

n + smHnYH
n

]

= ‖Yn‖2 + |sm|2 · ‖Hn‖2 − 2ℜ
[
(sm)∗YnHH

n

]
,

(2.7)

while the decision metric of Eq. (2.6) may be extended as:

|zn − sm|2 = |zn|2 + |sm|2 − [(sm)∗zn + smz∗n]

= |zn|2 + |sm|2 − 2ℜ [(sm)∗zn]

= |zn|2 + |sm|2 − 2ℜ
[
(sm)∗YnHH

n

]
.

(2.8)

Observe in Eq. (2.7) and Eq. (2.8) that‖Yn‖2, ‖Hn‖2 and|zn|2 are all invariant over the different

candidates{sm}M−1
m=0 , while we have{|sm|2 = 1}M−1

m=0 for MPSK schemes. Therefore, minimizing

‖Yn − smHn‖2 and minimizing|zn − sm|2 over all possible{sm}M−1
m=0 are equivalent.

Since only the phase of anMPSK symbol carries source information, the phase of the decision

variablezn in Eq. (2.5) may be directly used for detecting the phase of the transmitted symbol

sn. As a result, the symbol-by-symbol basedMPSK demodulation of Eq. (2.6) may be further

simplified to the following simple step:

ŝn = exp(j 2π
M

ˆ̌m), where ˆ̌m = ⌊ M
2π ∠zn⌉, (2.9)

which is obtained from enforcing the equality ofzn = sm = exp(j 2π
M m̌). Then, the resultant

phasor index that is naturally given byM2π ∠zn may be quantized to its nearest legitimateMPSK

index ˆ̌m = ⌊ M
2π ∠zn⌉.

2.2.2 Hard-Decision-Aided QAM Detection

In the family of bandwidth-efficient QAM schemes, Square QAMand Star QAM are the most pop-

ular candidates in a variety of communication systems. On one hand, Gray-labelled Square QAM

generally enjoys a lower detection complexity owing to the fact that the real and the imaginary

parts of a Square QAM symbol may be separately detected [2,236]. Furthermore, a classic Square

QAM scheme associated with an even number of BPS typically exhibits a better performance in

uncoded systems because of its high minimum distance among all constellation points [2, 3, 141].

On the other hand, the Star QAM constellation is often employed in low-complexity non-coherent

systems [136, 142, 154, 159] owing to its convenient separate amplitude-phase detection complex-

ity. Moreover, Star QAM has also been shown to have a performance advantage in the recently

proposed Space-Time Shift Keying (STSK) system context [141, 203]. We will further investigate

these two QAM schemes in the following sections.
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2.2.2.1 Square QAM

The square-shapedMQAM constellations were characterized in [2], and the constellation dia-

gram of Square 16QAM is presented in Fig. 2.5a. More explicitly, at the transmitter, BPSRe =

log2 MRe and BPSIm = log2 MIm numbers of bits are assigned to encode aMRePAM index

mRe = bin2dec(bBPSIm+1 · · · bBPS) and aMImPAM index mIm = bin2dec(b1 · · · bBPSIm), respec-

tively. As a result, a modulated SquareMQAM symbol may be expressed as:

sm = smRe
Re + jsmIm

Im =
MRe− 2m̌Re− 1√

β
+ j

MIm − 2m̌Im − 1√
β

, (2.10)

where the normalization factor is given by:

β =
∑

MRe/2−1
m̌Re=0 ∑

MIm/2−1
m̌Im=0

[
(MRe− 2m̌Re− 1)2 + (MIm − 2m̌Im − 1)2

]

M/4
, (2.11)

while the PAM indicesmRe and mIm are Gray codedm̌Re and m̌Im, respectively. We note that

smRe
Re = ℜ(sm) andsmIm

Im = ℑ(sm) constitute the real and the imaginary part of a SquareMQAM

symbol, where the operationsℜ(·) andℑ(·) take the real part and the imaginary part of a com-

plex number, respectively. Their index relationship is given by m = bin2dec(b1 · · · bBPS) =

mRe+ mImMRe. Furthermore, the index ranges ofm, mRe andmIm seen in Eq. (2.10) are given by

[0 ≤ m ≤ (M − 1)], [0 ≤ mRe ≤ (MRe− 1)] and[0 ≤ mIm ≤ (MIm − 1)], respectively.

More specifically, when BPS= BPSRe + BPSIm is an even number, we have BPSRe =

BPSIm = BPS/2 and MRe = MIm =
√

M. As a result, the modulated SquareMQAM sym-

bol of Eq. (2.10) may be rewritten as:

sm = smRe
Re + jsmIm

Im =

√
M − 2m̌Re− 1√

β
+ j

√
M − 2m̌Im − 1√

β
, (2.12)

where the corresponding normalization factor is given by:

β =
∑

√
M/2−1

m̌Re=0

[
(
√

M − 2m̌Re− 1)2
]

√
M/4

. (2.13)

Furthermore, when BPS is an odd number, we have BPSRe = BPSIm + 1 = (BPS+ 1)/2 and

MRe = 2MIm =
√

2M, while the corresponding modulated SquareMQAM symbol has to be

represented by the general expression of Eq. (2.11). In fact, for the case of an odd BPS, it was shown

in [252] that Cross-shapedMQAM constellations actually have a better performance compared to

their SquareMQAM counterparts.

For a QAM scheme, the received signal model and the vector-by-vector based ML detection

may also be represented by Eq. (2.1) and Eq. (2.4). However, the symbol power{|sm |2}M−1
m=0 is

no longer a constant over different candidate QAM symbols. Therefore, we have to normalize the

power of the decorrelating variable as:

z̃n = YnHH
n /‖Hn‖2, (2.14)
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Figure 2.5: Constellation Diagrams of Gray-labelled Square 16QAM and Star 16QAM.

so that the extension of Eq. (2.8) becomes:

|z̃n − sm|2 = |z̃n|2 + |sm|2 − 2ℜ
[
(sm)∗YnHH

n

]
/‖Hn‖2, (2.15)

which is now equivalent to the vector-by-vector based ML detection metric of Eq. (2.7), because

the fading channel’s power‖Hn‖2 is a constant.

As a result, for a SquareMQAM scheme, the real and the imaginary parts ofz̃n of Eq. (2.14)

may be used for detecting the real and the imaginary part ofsn of Eq. (2.10), which may be ex-

pressed as:

ℜ(ŝn) =
MRe− 2 ˆ̌mRe− 1√

β
,

ℑ(ŝn) =
MIm − 2 ˆ̌mIm − 1√

β
,

(2.16)

where the detected PAM indices are given by:

ˆ̌mRe = max [min (⌊qRe⌉, MRe− 1) , 0] , whereqRe =
[
MRe−

√
βℜ(z̃n) − 1

]
/2,

ˆ̌mIm = max [min (⌊qIm⌉, MIm − 1) , 0] , whereqIm =
[
MIm −

√
βℑ(z̃n) − 1

]
/2.

(2.17)

Physically, Eq. (2.16) corresponds to the equalities ofℜ(z̃n) = smRe
Re andℑ(z̃n) = smIm

Im , and then

quantizing the resultant indicesqRe and qIm to their nearest legitimate PAM indices ofˆ̌mRe and

ˆ̌mIm, respectively.

2.2.2.2 Star QAM

A classic StarMQAM scheme [142, 155, 253] may encode the first BPSP = log2 MP number

of bits to aMPPSK phasor indexp = bin2dec(b1 · · · bBPSP
), which modulates aMPPSK phasor
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{Ωp = exp(j 2π
MP

p̌)}MP−1
p=0 , where the indexp is Gray codedp̌. The remaining BPSA = log2 MA

bits may be assigned for encoding a ring amplitude indexa = bin2dec(bBPSP+1 · · · bBPS), which

corresponds to a specific ring amplitude of{Γa = αǎ√
β
}MA−1

a=0 , where the indexa is Gray coded

ǎ, while α andβ refers to the ring amplitude ratio and to the symbol power normalization factor,

respectively. Furthermore, we have the modulation indexm = bin2dec(b1 · · · bBPS) = a + pMA,

which has the index range of[0 ≤ m ≤ (M − 1)]. As a result, a modulated StarMQAM symbol

may be represented by:

sm = ΓaΩp =
αǎ

√
β

exp(j
2π

MP
p̌), (2.18)

where the symbol power normalization factor is given by:

β =
∑

MA−1
ǎ=0 α2ǎ

MA
. (2.19)

It was shown in [155,253] that for transmission over fading channels, StarMQAM schemes having

an optimized ring ratio do not suffer from a substantial performance penalty compared to the classic

SquareMQAM schemes, despite their reduced Euclidean distance. Forexample, the twin-ring

Star 16/32QAM associated withα = 2.0 and the four-ring Star 64QAM associated withα = 1.4

exhibit a performance close to their Square-QAM counterparts in Rayleigh fading channels. As an

example, the constellation diagram of Star 16QAM is portrayed in Fig. 2.5b.

Similar to SquareMQAM detection, the decision variable ofz̃n of Eq. (2.14) may be invoked

for detecting the transmitted StarMQAM symbol of Eq. (2.18). In order to detect the phasor and

the ring amplitude of a StarMQAM symbol separately, we return to the ML detection rule of

Eq. (2.6), which may be simplified as:

{Γ̂n, Ω̂n} = arg min
∀Γa∈Γ,∀Ωp∈Ω

|z̃n − ΓaΩp|2

= arg min
∀Γa∈Γ,∀Ωp∈Ω

(Γa)2 − 2Γaℜ [(Ωp)∗ z̃n] .
(2.20)

If we define the local minimum metric of
{
(Γa)2 − 2Γaℜ [(Ωp)∗ z̃n]

}
in Eq. (2.20) as the minimum

over the set ofMPPSK phasors∀Ωp ∈ Ω only, then Eq. (2.20) may be transformed into:

Ω̂n = arg min
∀Ωp∈Ω

(Γa)2 − 2Γaℜ [(Ωp)∗z̃n]

= arg min
∀Ωp∈Ω

− 2ℜ [(Ωp)∗ z̃n]

= arg min
∀Ωp∈Ω

|z̃n − Ωp|2,

(2.21)

where a fixed ring amplitude is chosen fromΓa ∈ Γ. It can be seen in Eq. (2.21) that regardless

of which ring amplitude{Γa}MA−1
a=0 is chosen, the optimumMPPSK phasor can always be directly

detected from̃zn, which may be explicitly expressed as the classicMPPSK detection rule of:

Ω̂n = exp(j 2π
MP

ˆ̌p), where ˆ̌p = ⌊MP
2π ∠z̃n⌉, (2.22)

which is given by forcing the equality of∠z̃n = 2π
MP

p̌, and then rounding the resultant phasor

index MP
2π ∠z̃n to its nearest legitimateMPPSK phasor index. Furthermore, the global minimum in
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Eq. (2.20) may be obtained by comparing all the local minima according to:

Γ̂n = arg min
∀Γa∈Γ

|z̃n − ΓaΩ̂n|2

= arg min
∀Γa∈Γ

(Γa)2 − 2Γaℜ(Ω̂∗
n z̃n),

(2.23)

whereΩ̂n is obtained by Eq. (2.22). More specifically, for the case of twin-ring Star MQAM

schemes, the last BPSA = 1 bit which determines the ring amplitude may be detected according to

Eq. (2.23) as:

b̂BPSP+1 =





1, if ℜ(Ω̂∗
n z̃n) > α+1

2
√

β
,

0, otherwise.
(2.24)

Similarly, for the case of four-ring StarMQAM schemes, the last BPSA = 2 bits which determine

the ring amplitude may be detected according to Eq. (2.23) as:

b̂BPSP+1 =





1, if ℜ(Ω̂∗
n z̃n) > α2+α

2
√

β
,

0, otherwise.

b̂BPSP+2 =





1, if α+1

2
√

β
< ℜ(Ω̂∗

n z̃n) ≤ α3+α2

2
√

β
,

0, otherwise.

(2.25)

Observe in Eq. (2.23) that the ML ring amplitude detection iscompleted with the aid of the

detected phasor̂Ωn. In fact, the StarMQAM detection process may be further simpified so that

the ring amplitude and the phasor may be detected completelyindependently. More explicitly, as

mentioned before, theMPPSK phasor detection of Eq. (2.22) is given by forcing the equality of

∠z̃n = ∠Ωn. If we assume that the resultant phasor index is already a legitimate MPPSK phasor

index without the need of rounding, i.e. that we haveˆ̌p = MP
2π ∠z̃n and hence∠z̃n = ∠Ω̂n, then

the ring amplitude detection of Eq. (2.23) may be simplified as:

Γ̂n = arg min
∀Γa∈Γ

∣∣|z̃n| exp(j∠z̃n) − ΓaΩ̂n

∣∣2

= arg min
∀Γa∈Γ

||z̃n| − Γa|2

= arg min
∀Γa∈Γ

(Γa)2 − 2Γa|z̃n|.

(2.26)

Consequently,ℜ(Ω̂∗
n z̃n) seen in Eqs. (2.24) and (2.25) may all be replaced by|z̃n|. According

to Eqs. (2.22) and (2.26), both the phase and the ring amplitude of a StarMQAM symbol are

independently detected by∠z̃n and |z̃n|, respectively. In fact, this simplified method is detailed

in [142], which relies on the aforementioned optimistic assumption of∠z̃n = ∠Ω̂n, and as a result

this method does not have exactly the same detection capability as the ML StarMQAM detec-

tion of Eqs. (2.22) and (2.23). Nonetheless, the associatedperformance difference is negligible for

coherent StarMQAM detection, which is evidenced by the performance results seen in Fig. 2.6.

However, it is demonstrated in [159] that invoking completely independent amplitude-phase de-

tection for noncoherent StarMQAM, which is also termed as Differential Amplitude-Phase Shift

Keying (DAPSK), imposes a modest but non-negligible performance loss. We will further investi-

gate this problem later in Chapter 4.
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Figure 2.6: BER performance of UncodedMPSK and Square/StarMQAM in Rayleigh

fading channels, whenNR = 2 RAs are used. The ML StarMQAM detection is

based on Eqs. (2.22) and (2.23), while the simplified StarMQAM detection is based

on Eqs. (2.22) and (2.26).

The comparisons betweenMPSK and Square/StarMQAM constellations are characterized

in Table 2.1. It can be seen that SquareMQAM generally enjoys a higher minimum distance

among its constellation points [2,3,141], which results ina superior performance, as demonstrated

by Fig. 2.6. Furthermore, as suggested by [155, 253], Fig. 2.6 also verifies that for transmission

over Rayleigh fading channels, StarMQAM schemes associated with optimized ring ratios are

capable of achieving a comparable performance to their Square MQAM counterparts. Moreover,

the minimum signal powermin∀sm∈s |sm|2 seen in Table 2.1 may also influence the performance

of MPSK/QAM in certain communication systems (e.g. STSK of [141, 203]). We will further

characterize this feature in Chapter 6.

2.3 Coded PSK and QAM

In this section, soft-decision-aided detectors conceivedfor codedMPSK/QAM schemes are in-

vestigated. The codedMPSK/QAM schemes considered in this section are not only assisted by

powerful channel coding elements, but they are also detected with the aid of the powerful turbo

principle [2,8,80,239]. More explicitly, both the channeldecoders and theMPSK/QAM detectors

may be capable of receiving and producing soft-bit decisions, so that a near-capacity performance

may be achieved by iteratively exchanging their decisions.Furthermore, we will introduce the the-

oretical principle and practical computation of EXIT charts [88], which constitute an effective tool

conceived for designing different types of near-capacity systems.
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min∀{sm 6=sm′}∈s
|sm − sm′ | min∀sm∈s |sm|2

Square 16QAM 0.4 0.2

Star 16QAM (MA = 2,α = 2) 0.234 0.4

16PSK 0.152 1

Square 64QAM 0.0952 0.0476

Star 64QAM (MA = 4,α = 1.4) 0.0425 0.279

64PSK 0.0096 1

Table 2.1: Comparison ofMPSK and Square/StarMQAM constellations.

2.3.1 Conventional Soft-Decision-Aided PSK/QAM Detection

The soft-bit decisions may be characterized in the form of Log Likelihood Ratios (LLRs) [27, 35]

as:

L(b) = ln
p(b = 1)

p(b = 0)

= ln
p(b = 1)

1 − p(b = 1)
.

(2.27)

The sign of the LLRL(b) being positive or negative indicates that bitb is likely to be a logical

1 or a logical0, respectively. Furthermore, the magnitude ofL(b) quantifies our confidence level

concerning its sign. Explicitly, the higher the magnitude,the higher the possibility for bitb being

either a logical1 or a logical0. Consequently, given a LLR value ofL(b), the corresponding

probabilities of the bitb being1 or 0 may be evaluated by:

p(b = 1) =
eL(b)

1 + eL(b)
,

p(b = 0) =
1

1 + eL(b)
.

(2.28)

The soft-decision-aidedMPSK/QAM detectors aim for maximizing thea posterioriprobability

p(sm|Yn) of Eq. (2.2), given the conditional probabilityp(Yn|sm) expressed by Eq. (2.3), while

the a priori probability p(sm) may now be obtained from a channel decoder2. More explicitly,

according to Eq. (2.28), upon receiving thea priori LLRs {La(bk)}BPS
k=1 from a channel decoder, the

MPSK/QAM detector may evaluate the correspondinga priori probabilities for each constellation

point sm ∈ s as:

p(sm) =
BPS

∏
k=1

exp(b̃m
k La(bk))

1 + exp(La(bk))
, (2.29)

where{b̃m
k }BPS

k=1 refers to the bit-mapping arrangement for the specific constellation pointsm ∈ s,

where we have(b̃m
1 · · · b̃m

BPS) = dec2bin(m). Taking QPSK of Fig. 2.4b as an example, the bit-

mapping arrangements are given by(b̃0
1 b̃0

2 = 00),(b̃1
1 b̃1

2 = 01),(b̃2
1 b̃2

2 = 10) and(b̃3
1 b̃3

2 = 11) for

the constellation points of(s0 = 1), (s1 = j), (s2 = −j) and(s3 = −1), respectively.

2For uncodedMPSK/QAM schemes in Sec. 2.2, thea priori probabilities{p(sm)}∀sm∈s are the same for all candi-

dates as the transmitted symbolsn is assumed to be equiprobable, i.e. we have{p(sm) = 1
M}∀sm∈s.
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Furthermore, the resultant Log-MAP algorithm invoked byMPSK/QAM detection may be

expressed as:

Lp(bk) = ln
∑∀sm∈sbk=1

p(sm|Yn)

∑∀sm∈sbk=0
p(sm|Yn)

= ln
∑∀sm∈sbk=1

p(Yn|sm)p(sm)

∑∀sm∈sbk=0
p(Yn|sm)p(sm)

= ln
∑∀sm∈sbk=1

exp(dm)

∑∀sm∈sbk=0
exp(dm)

= La(bk) + Le(bk),

(2.30)

whereLp(bk) andLe(bk) refer to thea posterioriLLR and to the extrinsic LLR produced by the

MPSK/QAM detector, respectively, whilesbk=1 andsbk=0 denote theMPSK/QAM subsets, when

the specific bitbk is fixed to 1 and 0, respectively. Furthermore, according to Eqs. (2.3) and (2.29),

the probability metric{dm}M−1
m=0 seen in Eq. (2.30) is given by:

dm = −‖Yn − smHn‖2

N0
+

BPS

∑
k̄=1

b̃m
k̄

La(bk̄). (2.31)

Taking QPSK constellation of Fig. 2.4b as an example, the four a posterioriprobability metrics of

Eq. (2.31) corresponding to the four QPSK constellation pointssm ∈ {1, j,−j,−1} are given by:

d0 = −‖Yn − Hn‖2

N0
,

d1 = −‖Yn − j · Hn‖2

N0
+ La(b2),

d2 = −‖Yn + j · Hn‖2

N0
+ La(b1),

d3 = −‖Yn + Hn‖2

N0
+ La(b1) + La(b2).

(2.32)

As a result, the soft-decision-aided QPSK detector using the Log-MAP algorithm of Eq. (2.30) may

produce the following soft-bit decisions:

Lp(b1) = ln
exp(d2) + exp(d3)

exp(d0) + exp(d1)
,

Lp(b2) = ln
exp(d1) + exp(d3)

exp(d0) + exp(d2)
.

(2.33)

In practice, the Log-MAP algorithm of Eq. (2.30) imposes a potentially excessive detection

complexity for high-orderMPSK/QAM schemes, owing to its high-precision representation of

probabilities. Therefore, when designing a low-complexity soft detector, the so-called Max-Log-

MAP algorithm [27] may be invoked, which only considers the maxima of thedm values in

Eq. (2.31) associated with∀sm ∈ sbk=1 and∀sm ∈ sbk=0 respectively:

Lp(bk) = max
∀sm∈sbk=1

(dm) − max
∀sm∈sbk=0

(dm). (2.34)
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|d1 − d2| δ(|d1 − d2|)
|d1 − d2| > 3.7 0

2.25 < |d1 − d2| ≤ 3.7 0.05

1.5 < |d1 − d2| ≤ 2.25 0.15

1.05 < |d1 − d2| ≤ 1.5 0.25

0.7 < |d1 − d2| ≤ 1.05 0.35

0.43 < |d1 − d2| ≤ 0.7 0.45

0.2 < |d1 − d2| ≤ 0.43 0.55

|d1 − d2| ≤ 0.2 0.65

Table 2.2: Lookup table for the modified Jacobian algorithm [28,239].

Since only the pair of maximum probability metrics are takeninto account in Eq. (2.34), the Max-

Log-MAP algorithm imposes a slight performance degradation. In order to compensate for this

performance loss, the Approx-Log-MAP algorithm [28] was introduced as :

Lp(bk) = jac∀sm∈sbk=1
(dm) − jac∀sm∈sbk=0

(dm), (2.35)

wherejac denotes the modified Jacobian algorithm, which may be expressed as [239]:

jac(d1, d2) = max (d1, d2) + δ(|d1 − d2|). (2.36)

The addional term ofδ(|d1 − d2|) in Eq. (2.36) takes into account the difference betweend1 and

d2 according to a lookup table, as demonstrated by Table 2.2 [28, 239]. Further details on these

algorithms may be found in [239].

When MPSK is employed, as discussed in Sec. 2.2.1, the detector maybe operated on a

symbol-by-symbol basis, as seen in Eq. (2.6). Therefore, the probability metric evaluation of

Eq. (2.31) may be simplified in the same way to:

dm = −|zn − sm|2
N0

+
BPS

∑
k̄=1

b̃m
k̄

La(bk̄), (2.37)

where the decision variablezn is given by Eq. (2.5), while the only differences between− ‖Yn−smHn‖2

N0

in Eq. (2.31) and− |zn−sm|2
N0

in Eq. (2.37) are constants, which may be ignored by the division oper-

ation in the Log-MAP algorithm of Eq. (2.30).

Similarly, whenMQAM is employed, the probability metric evaluation of Eq. (2.31) may be

simplified to the same equation as Eq. (2.37), namely to:

dm = −|z̃n − sm|2
Ñ0

+
BPS

∑
k̄=1

b̃m
k̄

La(bk̄), (2.38)

with the difference that the decision variablez̃n is given by Eq. (2.14), while the equivalent noise

power is given byÑ0 = N0/‖Hn‖2.
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To elaborate a little further, when SquareMQAM is employed, the real and the imaginary parts

of the constellation may be detected separately. As a result, the SquareMQAM scheme’s symbol

probability metrics{dmIm
Im }MIm−1

mIm=0 and{dmRe
Re }MRe−1

mRe=0 are given by:

dmIm
Im = −|ℑ(z̃n)− smIm

Im |2

Ñ0

+
BPSIm

∑
k̄=1

b̃mIm

k̄
La(bk̄),

dmRe
Re = −|ℜ(z̃n)− smRe

Re |2

Ñ0

+
BPS

∑
k̄=BPSIm+1

b̃mRe

k̄
La(bk̄),

(2.39)

where{smIm
Im }MIm−1

mIm=0 and{smRe
Re }MRe−1

mRe=0 refer to theMImPAM andMRePAM constellation sets for the

imaginary part and the real part of the SquareMQAM scheme, respectively.

2.3.2 EXtrinsic Information Transfer Charts

As more and more sophisticated concatenated codes are constructed for the sake of pursuing a

near-capacity performance, one of the major design challenges is to predict and compare their

Eb/N0 convergence thresholds in order to choose the most appropriate channel coding and mod-

ulation parameters. Motivated by this challenge, researchers have focussed their attentions on

characterizing the convergence behavior of turbo detection [48, 49, 85, 87, 88, 254]. In this section,

we provide insights into the state-of-the-art EXtrinsic Information Transfer (EXIT) charts design

tool [87, 88, 254], which effectively visualizes the flow of extrinsic information between the turbo

detector components, so that their decoding convergence may be accurately predicted. We will

introduce both their theoretical principles as well as the practical applications of EXIT charts.

2.3.2.1 Mutual Information and Transfer Characteristics

Let us assume that the data bitsb ∈ {1, 0} are equiprobable at the transmitter, i.e. we have

p(b = 1) = p(b = 0) = 1
2 , while its corresponding LLR valueL at the receiver is either a soft-

valued input or a soft-valued output of a decoder/demapper.Then the mutual information between

the random variablesB andΛ modellingb andL respectively is given by [251]:

I(B; Λ) = ∑
b=1,0

∫ ∞

−∞
p(b, L) log2

p(b, L)

p(b)p(L)
dL

= ∑
b=1,0

∫ ∞

−∞
p(L|b)p(b) log2

p(L|b)
p(L|b = 1)p(b = 1) + p(L|b = 0)p(b = 0)

dL

=
1

2 ∑
b=1,0

∫ ∞

−∞
p(L|b) log2

2p(L|b)
p(L|b = 1) + p(L|b = 0)

dL,

(2.40)

where we havep(b, L) = p(L|b)p(b) andp(L) = ∑b=1,0 p(L|b)p(b) according to the definition

of the joint probability and of the total probability, respectively. Furthermore,p(L|b) may be

obtained by evaluating the Probability Density Function (PDF) of the LLRL.

In order to investigate the flow of mutual information definedby Eq. (2.40) between the com-

ponents of the receiver, the transfer characteristics of a decoder/demapper may be formulated
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as [88,92]:

IE = T(IA), (2.41)

where thea priori information IA and the extrinsic informationIE at the input and at the output

of the transfer functionT are given byI(B; Λa) and I(b; Λe) respectively according to Eq. (2.40),

while Λa andΛe are random variables modellingLa andLe respectively.

The first step of obtainingIE given IA according to (2.41) is to generate a group ofa priori

LLRs La according toIA. Then IE = I(B; Λe) may be evaluated according to Eq. (2.40), where

the extrinsic LLRsLe are obtained by feedingLa to the decoder/demapper.

Let us assume that sufficiently long interleavers are employed between the concatenated com-

ponents so that the LLRs exchanged by them may be deemed to be uncorrelated and Gaussian-

distributed. Therefore, the LLR-generation based on the above-mentioned Gaussian distribution

assumption may be performed as [88]:

La = µA · x + v (2.42)

wherev is a Gaussian random variable having a zero mean and a variance of σ2
A, while we have

µA =
σ2

A
2 . Furthermore,x ∈ {+1,−1} in Eq. (2.42) is equivalent to source data bitb ∈ {1, 0}.

Accordingly, the PDF of thea priori LLRs La generated by Eq. (2.42) is given by:

p(La|x) =
1√

2πσA

exp


− (La − σ2

A
2 x)2

2σ2
A


 . (2.43)

The Gaussian PDF of (2.43) satisfies both the symmetry condition of p(La|x) = p(−La| − x)

and the consistency condition ofp(La|x = +1) = p(La|x = −1)eLa . As a result, the mutual

information of Eq. (2.40) may be rewritten for evaluatingIA as [88]:

IA =
1

2 ∑
x=+1,−1

∫ ∞

−∞
p(La|x) log2

2p(La|x)

p(La|x = +1) + p(La|x = −1)
dLa

= 1 −
∫ ∞

−∞
p(La|x = +1) log2

p(La|x = +1) + p(La|x = −1)

p(La|x = +1)
dLa

= 1 −
∫ ∞

−∞

1√
2πσA

exp


− (La − σ2

A
2 )2

2σ2
A


 log2(1 + e−La)dLa,

(2.44)

which may be simplified by an input-output relationship characterized by a functionJ(·) as:

IA = J(σA), (2.45)

where we have the input range ofσA ≥ 0 and output range of0 ≤ IA ≤ 1. Furthermore, the

function J(·) of Eq. (2.45) has the following properties:

lim
σA→0

J(σA) = 0

lim
σA→∞

J(σA) = 1.
(2.46)
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Figure 2.7: The functionJ(·) of Eq. (2.45).

Observe from Fig. 2.7 that the outputIA of function J(·) increases monotonically with respect to

its inputσA, hence its unique and unambiguous inverse function may be expressed as:

σA = J−1(IA). (2.47)

Althougth the functionJ(·) and its inverse functionJ−1(·) cannot be expressed in closed form [88],

it is demonstrated in [255] that they can be approxmiated with negligible error as:

J(σA) ≈
(

1 − 2−H1σ
2H2
A

)H3

,

J−1(IA) ≈
[
− 1

H1
log2(1 − I1/H3

A )

]1/(2H2)

,

(2.48)

where the parameters ofH1 = 0.3073, H2 = 0.8935 andH3 = 1.1064 were obtained by minimiz-

ing the squared difference between Eqs. (2.45) (2.47) and their approximations of Eq. (2.48).

Based on the previous discussions, we summarize the procedures of evaluating the transfer

characteristics of Eq. (2.41) as:

Algorithm 2.1: EXIT module of Eq. (2.41).

(1) For a specifica priori mutual informationIA, a group ofa priori LLRs La may be gener-

ated according to Eq. (2.42), where the standard deviationσA of the Gaussian distribution

is given by the inverse function of Eq. (2.47), i.e. we haveσA = J−1(IA).

(2) Upon feeding the generated soft-valued inputsLa to the tested component de-

coder/demapper in the concatenated code, a group of extrinsic LLR outputsLe may be

obtained.
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Figure 2.8: Schematics of a classic two-stage SCC.

(3) Finally, the extrinsic mutual information output of Eq.(2.41) may be computed accord-

ing to Eq. (2.40) as:

IE =
1

2 ∑
b=1,0

∫ ∞

−∞
p(Le|b) log2

2p(Le|b)
p(Le|b = 1) + p(Le|b = 0)

dLe, (2.49)

where the PDFsp(Le|b = 1) and p(Le|b = 0) may be obtained by evaluating the

histograms ofLe [256] with respect to the source data bit beingb = 1 andb = 0.

2.3.2.2 Concatenated Schemes

Concatenated schemes may be classified as Parallel Concatenated Coding (PCC), Serially Con-

catenated Coding (SCC) as well as Hybrid Concatenated Coding (HCC), where the latter combines

both PCC and SCC [92]. The TC of Fig. 2.1 represents a classic PCC scheme, where the parity

bits produced by the two RSC encoders are punctured at the transmitter, so that the two parallelly

connnected RSC decoders of the receiver may process the parity bits of the upper and lower en-

coder alternatively. By contrast, the RSC coded MIMO arrangement of Fig. 2.2 exemplifies the

popular SCC scheme, where the same number of bits are processed by both the RSC decoder and

the MIMO demodulator at the receiver. Both the PCC and SCC schemes may be extended to have

more than two component codes. As mentioned before, a URC is often incorportated in SCC as an

intermediate component in order to eliminate the error floorof two-component SCC. The resultant

three-stage SCC arrangement is demonstrated by Fig. 2.3. Furthermore, PCC may also be extended

to multiple-stage turbo codes, as in [257,258].

Let us consider the classic two-stage SCC of Fig. 2.8, where the pair of component codes may

be classified as the inner and outer code. On one hand, the inner code typically processes both

the channel’s output and thea priori LLRs LM,a, which are obtained by scrabbling the decoder’s

extrinsic LLRsLD,e. On the other hand, the extrinsic LLRs of the inner codeLM,e are de-interleaved
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Figure 2.9: EXIT chart analysis and BER performance of the RSC coded Square 16QAM

scheme of Fig. 2.8, whereNR = 2 RAs are employed. The corresponding simulation

parameters are given by Table 2.3.

and fed to the decoder asa priori input LD,a. Taking a RSC codedMPSK/QAM scheme as an

example, the RSC decoder and theMPSK/QAM demodulator constitute the outer code and the

inner code component, respectively. As a result, the mutualinformation transfer characteristics of

the inner and the outer code may be expressed as:

IEM
= TM(IAM

, SNR),

IED
= TD(IAD

),
(2.50)

where the subscriptsM andD refer to the demapper and decoder respectively, while naturally TM

of the inner code is a function of both thea priori information IAM
and channel SNR.

The EXIT characteristics of both an inner Square 16QAM demapper introduced in Sec. 2.3.1

and of an outer RSC are portrayed in Fig. 2.9 a. The relationship between theSNR seen in

Eq. (2.50) and theEb/N0 ratio seen in Fig. 2.9 is given by:

SNR (dB) = Eb/N0 + log10 R (dB), (2.51)

where R = Rc · Rm refers to the overall throughput of the system, whileRc and Rm refer to

the coding rate of the channel code and the modulation rate, respectively. The modulation rate is

given by the number of bits per channel use which are mapped bythe modulator, and we have

Rm = BPS for SISO/SIMO systems. Fig. 2.9a demonstrates that the intersections between the

inner code’s EXIT curve and the outer code’s EXIT curve get closer toIEM
= IAD

= 1.0 asEb/N0

increases, which implies that the turbo detector’s capability of enhancing our confidence in its input

information gradually improves. The EXIT charts based performance prediction may be verified by

the Monte-Carlo simulation based decoding trajectories and the BER performance curves, as seen
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Modulation Scheme MPSK/QAM defined in Sec. 2.2

Channel Model SIMO channels (NT = 1, NR ≥ 1) defined in Sec. 2.2

Half-rate RSC associated with a constraint length ofK = 3 and with a octal

generator polynomial of(Gr, G) = (7, 5)8

Channel Coding Scheme Half-rate TC constituted by two half-rate RSCs and associated with the

half-rate puncturing of the parity bits

Unity-rate URC that serves as an intermediate code

Half-rate IRCC introduced in Sec. 2.3.2.3

IRRSC−QAM iterations between RSC decoder and QAM demapper

IRTC inner iterations between the two RSC decoders within a TC decoder

IRTC−QAM outer iterations between TC decoder and QAM demapper

Number of iterations IRURC−QAM inner iterations between URC decoder and QAM demapper

IRRSC−{URC−QAM} outer iterations between RSC decoder and the

amalgamated URC-QAM decoder, where RSC may be replaced by IRCC

Frame Length 1,000,000 bits

Table 2.3: Simulation parameters of Sec. 2.3 and Sec. 2.4.
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Figure 2.10: Schematics of a classic three-stage SCC.

in Fig. 2.9a and 2.9b. The corresponding simulation parameters are given by Table 2.3. Compared

to the uncoded Square 16QAM scheme, the RSC coded Square 16QAM performs worse in the

high-noise region ofEb/N0 < 0 dB, because the channel code cannot correct bursts of errorsthat

often occur in these hostile channel conditions. However, Fig. 2.9 shows that as predicted by the

EXIT chart, the RSC coded Square 16QAM scheme gradually converges to a lower BER in the

region ofEb/N0 > 0 dB.

As demonstrated by Fig. 2.9a, perfect extrinsic information of IED
= 1.0 can only be safely

achieved by the channel decoder, when perfecta priori information ofIAD
= IEM

= 1.0 is provided

by the demodulator, which requires an infinite SNR. This implies that a non-negligible BER exists,

unless the inner code’s EXIT curve and the outer code’s EXIT curve only intersect at the (1.0,1.0)

point. In order to achieve this goal, a URC may be introduced as an intermediate code as seen in

Fig. 2.3, which equips the resultant concatenated scheme with a free distance of two that was shown

to be the sufficient and neccessary condition for achieving an infinitesimally low BER [93,242]. For
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Figure 2.11: EXIT charts analysis and BER performance of theRSC and URC coded

Square 16QAM scheme of Fig. 2.10, whereNR = 2 RAs are equipped. The correspond-

ing simulation parameters are given by Table 2.3.

the three-stage turbo receiver of Fig. 2.10, the specific activation order of the component decoders

is sometimes also referred to as scheduling in the related literature [255]. Moreover, in this treatise

the terminology of ’activation order’ is preferred to avoidconfusion with ’scheduling’ routinely

used in resource-allocation. In order to simplify the receiver’s analysis, the amalgamated URC and

QAM decoder may be viewed as the amalgamated inner code, while the RSC as the outer code. The

number of inner iterations may be set toIRURC−QAM = 1 for the case of low-order PSK/QAM,

whose demodulator does not exhibit a substantial iterationgain. It was also demonstrated in [233]

that IRURC−QAM = 2 is sufficient for the case of employing a modulation scheme (e.g. high-order

PSK/QAM) which has a beneficial iteration gain, and only negligible performance improvements

may be achieved upon increasingIRURC−QAM beyond 2.

Fig. 2.11 portrays the EXIT chart prediction as well as our Monte-Carlo simulation based per-

formance results for a RSC and URC coded Square 16QAM scheme.It can be seen in Fig. 2.11a

that an open tunnel emerges between the inner and outer codes’ EXIT curves atEb/N0 = 1.3

dB, where the only intersection of the two curves is at the (1.0,1.0) point. More explicitly, the

requirement for an open EXIT tunnel may be expressed as:

TM(IMA
, SNR) > T−1

D (IDE
), whenIMA

= IDE
∈ [0, 1),

TM(IMA
, SNR) = 1, whenIMA

= IDE
= 1.

(2.52)

Since EXIT curves are obtained by averaging over numerous transmitted frames, the Monte-Carlo

simulation based decoding trajectories are subject to small but potentially non-negligible deviations

from the EXIT curves’ prediction. As a result, it cannot be guaranteed that all Monte-Carlo simula-

tion based decoding trajectories can get through the extremely narrow EXIT tunnel atEb/N0 = 1.3
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dB seen in Fig. 2.11a. Nonetheless, Fig. 2.11b shows that an infinitesimally low BER is recorded

at a slightly increasedEb/N0 of 1.7 dB, which implies that all Monte-Carlo simulation based de-

coding trajectories recorded atEb/N0 = 1.7 dB can actually get through their open EXIT tunnels.

An example of Monte-Carlo simulation based decoding trajectory recorded atEb/N0 = 1.7 is

portrayed in Fig. 2.11a.

2.3.2.3 Capacity and Area Property

The concept of mutual information is popularly used for quantifying capacity. More explicitly, the

Continuous-input Continuous-output Memoryless Channel (CCMC) capacity of the SIMO chan-

nels characterized in Eq. (2.1) is given by maximizing the mutual information between the channel’s

input and output signals as [17,166]:

CCCMC(SNR) = max
p(s)

I(s; Y)

= max
p(s)

H(Y)− H(Y|s),
(2.53)

where the operationH(·) evaluates the entropy of the random variable. Based on the Gaus-

sian PDFp(Y|s) defined in Eq. (2.3), we haveH(Y|s) = log2 det [πeN0INR
], where the op-

erationdet(·) calculates the determinant of a matrix. Furthermore, it wassuggested by Shan-

non [17, 166] that the maximum rate of Eq. (2.53) may be achieved when the input signal is also

Gaussian distributed. Given a Gaussian-distributed inputsignal and Gaussian noise, the output sig-

nal is also Gaussian-distributed, and hence we haveH(Y) = log2 det
[
πe
(
HHH + N0INR

)]
=

log2 (πeN0)NR

(
1 + ‖H‖2

N0

)
. In this way, the ergodic CCMC capacity, which defines the maximum

rate of Eq. (2.53) averaged over all channel realizations, may be evaluated by [3,17,166]:

CCCMC(SNR) = E
[
log2(1 + η · ‖H‖2)

]
, (2.54)

whereSNR represents the logarithmic decibel scale ofη = 1
N0

, i.e. we haveSNR = 10 log10 η dB,

while H refers to the randomly generated fading channel vector according to the received signal

model of Eq. (2.1).

In practice, however, the modulated PSK/QAM symbols constitute a non-Gaussian channel

input. As a result, the Discrete-input Continuous-output Memoryless Channel (DCMC) capacity

represents the relevant performance bound, which is given by:

CDCMC(SNR) = max
p(s)

I(s; Y)

= max
{p(sm)}M−1

m=0

M−1

∑
m=0

∫
p(sm, Y) log2

p(sm, Y)

p(sm)p(Y)
dY

= max
{p(sm)}M−1

m=0

M−1

∑
m=0

∫
p(Y|sm)p(sm) log2

p(Y|sm)

∑
M−1
m̄=0 p(Y|sm̄)p(sm̄)

dY.

(2.55)

The DCMC capacity of Eq. (2.55) is maximized, when the modulated PSK/QAM symbols are

equiprobable, i.e. we have{p(sm) = 1
M}M−1

m=0 . According to the conditional PDFp(Y|sm) given
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Figure 2.12: CCMC capacity and DCMC capability ofMPSK/QAM schemes in SIMO

fading channels characterized by Eq. (2.1).

by Eq. (2.3), Eq. (2.55) may be further simplified as [244]:

CDCMC(SNR) = log2 M − 1

M

M−1

∑
m=0

∫
p(Y|sm) log2

∑
M−1
m̄=0 p(Y|sm̄)

p(Y|sm)
dY

= BPS− 1

M

M−1

∑
m=0

E

{
log2

[
M−1

∑
m̄=0

exp(
−‖(sm − sm̄)H + V‖2 + ‖V‖2

N0
)

]}
,

(2.56)

whereV is an AWGN vector generated according to Eq. (2.1). According to Eq. (2.56), the maxi-

mum achievable rate of anMPSK/QAM scheme is given by:

CDCMC
max = Rm. (2.57)

Fig. 2.12 portrays both the CCMC and DCMC capacities of theMPSK/QAM schemes in

Rayleigh fading channels. It can be seen that as the number ofmodulation levelsM increases,

the signal input to the channel becomes more Gaussian-like and hence a higher bandwidth effi-

ciency is achieved. However, high-order QAM schemes require a higherSNR for their DCMC

capacities to tend towards theirCDCMC
max , as evidenced by Fig. 2.12. Furthermore, it may be ob-

served in Fig. 2.12 that theSNR required for achievingCDCMC
max is reduced, when more RAs are

employed.

Upon comparing the DCMC capacity definition of Eq. (2.55) andthe extrinsic information of

Eq. (2.49), it can be seen that Eq. (2.49) may be interpreted as a detection-directed rate estimation

regime, where the input and output signals of the ”channel” are the source bits and the detector’s

extrinsic output, respectively. This leads us to the so-called area property of EXIT chart [91, 259],
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which relates the area under the EXIT curve of aMPSK/QAM demapperAM(SNR) and the

achievable DCMC capacity to each other as:

AM(SNR) =
∫ 1

0
TM(IA, SNR)dIA

≈ CDCMC(SNR)

BPS
,

(2.58)

where the MAP detection algorithm is assumed to be used by theMPSK/QAM demapper, while

thea priori LLRs fed to theMPSK/QAM demapper are assumed to be Gaussian-distributed.

Similarly, the areaAD under the EXIT curve of the channel decoder is related to the coding

rate as:

AD =
∫ 1

0
TD(IA)dIA

= 1 −
∫ 1

0
T−1

D (IE)dIE

≈ 1 − Rc.

(2.59)

A variety of near-capacity systems have been designed in [8,86, 88, 243, 260] by matching the

EXIT curve shapes of the inner and outer codes, so that an opentunnel may be encountered at the

lowest possibleEb/N0. For the extreme situation of having an infinitesimally small open tunnel,

there is supposed to be a perfect match between the EXIT curves of the inner and outer codes, which

corresponds toAM(SNR) ≈ 1 − AD, where the maximum achievable rate is attained according

to Eqs. (2.58) and (2.59) as3:

CDCMC(SNR) = Rc · Rm = Rc · CDCMC
max , (2.60)

whereSNR refers to the particularSNR which is required for the equality of Eq. (2.60). Let us

now elaborate a little further on the situation ofSNR < SNR, where we haveCDCMC(SNR) <

CDCMC(SNR), which implies that apparently the system’s maximum throughput has not been

achieved in full. Moreover, according to the area property of Eqs. (2.58) and (2.59), we have

AM(SNR) < 1 − AD at SNR < SNR, which clearly contradicts with the conditions to be satis-

fied for having an open tunnel, as specified in Eq. (2.52). In other words, an error-free transmission

at aSNR that is lower thanSNR is not theoretically possible. By contrast, forSNR > SNR, the

modulation scheme’s DCMC capacity may further increase, but the system’s throughput remains

at the full rate ofR = Rc · Rm. Therefore, a near-capacity system’s design may aim for achieving

an infinitesimally low BER at aSNR, which is supposed to be higher thanSNR, but at the same

time it should be as close toSNR as possible, so that an error-free transmission may be achieved

at the lowest possible SNR.

In order to approach to this goal, on the one hand, numerous researchers have focused their

attention on how to design optimized modulation schemes so that their EXIT curves may match

3According to the requirements for having an open tunnel as expressed in Eq. (2.52), the maximum achievable rate

specified in Eq. (2.60) can never be attained, because we shall always haveAM(SNR) > 1 − AD.
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the shape of the outer channel code’s EXIT curve. This topic is widely known as bit-to-symbol

mapping optimization for Bit-Interleaved Coded Modulation relying on Iterative Decoding (BICM-

ID) [250, 260–264]. On the other hand, as the family of modulation schemes keeps evolving,

especially in MIMO applications, it becomes more feasible to adjust the channel decoder’s transfer

characteristics, as seen in [86,243,265]. We only considerthe latter case in this report.

The 17-point IRregular Convolutional Code (IRCC) proposedin [86] is a popular implementa-

tion of the aforementioned near-capacity design. More explicitly, the 17-point IRCC is constituted

by 17 subcodes associated with code rates of{rk = 0.1 + (k − 1) · 0.05}17
k=1. These subcodes

are constructed from a systematic half-rate memory-four mother code, which is defined by the

octally represented generator polynomial of(Gr, G) = (31, 27)8. Subcodes with higher rates are

obtained by puncturing, while subcodes with lower rates arecreated by adding more generators and

by puncturing. Given the appropriate weighting coefficients of {0 ≤ αk ≤ 1}17
k=1, each subcode

may encodeαk · rk · Nc information bits toαk · Nc coded bits, whereNc refers to the frame length.

The IRCC’s coefficients have to satisfy the following two conditions:

17

∑
k=1

αk = 1,

17

∑
k=1

αkrk = Rc.

(2.61)

As a result, the transfer function of the outer IRCC may be characterized by the weighted superpo-

sition of the subcodes’ mutual information transfer functions{TD,k(IA)}17
k=1 as:

TD(IA) =
17

∑
k=1

αkTD,k(IA), (2.62)

where all subcodes are assumed to produce LLRs associated with symmetric and consistent PDFs.

In summary, the IRCC’s weighting coefficients may be obtained by minimizing the Mean Squared

Error (MSE) between the mutual information transfer functions of the inner and the outer codes

according to:

{αk}17
k=1 = arg min

{αk}17
k=1

∫ 1

0
|TD(I)− T−1

M (I, SNR)|2dI. (2.63)

We note that the search formulated in Eq. (2.63) may start with the maximum achievable rate’s

SNR. If the resultant weighting coefficients cannot produce an EXIT curve for the outer code that

matches the inner code’s EXIT curve sufficiently well, thenSNR shall be increased and Eq. (2.63)

is repeatedly evaluated, until a valid group of weighting coefficients of{αk}17
k=1 is obtained.

Fig. 2.13 portrays the EXIT chart prediction and Monte-Carlo simulation based performance

of an IRCC and URC coded Square 16QAM scheme. The 17-point IRCC’s coefficients evaluated

from Eq. (2.63) are given by [0.0154826, 0, 0, 0, 0, 0, 0.661138, 0, 0, 0, 0, 0.106681, 0.151967,

0, 0, 0, 0.064775], which is closely matched to the EXIT curveof the amalgamated URC and

QAM detector’s EXIT curve atEb/N0 = 0.6 dB. Fig. 2.13b shows that an infinitesimally low

BER is achieved by the IRCC coded scheme atEb/N0 = 0.9 dB, and the corresponding decoding

trajectory is presented in Fig. 2.13a. Furthermore, it can be seen in Fig. 2.13b that the IRCC coded
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Figure 2.13: EXIT chart analysis and BER performance of the IRCC and URC coded

Square 16QAM scheme of Fig. 2.10, whereNR = 2 RAs are used. The IRCC’s coeffi-

cients are given by [0.0154826, 0, 0, 0, 0, 0, 0.661138, 0, 0, 0, 0, 0.106681, 0.151967, 0,

0, 0, 0.064775]. The corresponding simulation parameters are given by Table 2.3.

scheme outperforms the conventional RSC coded scheme by0.8 dB, and its performance is only

0.7 dB away from the DCMC capacity limit.

2.3.2.4 Efficient Computation and Examination of EXIT Charts

If we assume that the PDFp(Le|b) of the extrinsic LLRs is symmetric and consistent, then the

extrinsic information evaluation of Eq. (2.49) may be simplified by the following averaging method

[86]:

IE = 1 −
∫ ∞

−∞
p(Le|x = +1) log2(1 + e−Le)dLe

= 1 − Ex=+1

[
log2(1 + e−Le)

]

≈ 1 − 1

Nc

Nc

∑
n=1

[
log2(1 + e−x[n]·Le[n])

]
,

(2.64)

where{x[n]}Nc
n=1 are equivalent to the source bits{b[n]}Nc

n=1, while {Le[n]}Nc
n=1 represents the

extrinsic LLRs produced by the demapper/decoder. It was discussed in [49, 86, 266] that the as-

sumption of PDF symmetry may be granted, as long as the input PDFs including the PDFs of both

a priori LLRs and of the channel’s output signal are symmetric. Moreover, the assumption of PDF

consistency should be valid all the time so that the LLR definition of Eqs. (2.27) and (2.28) may

be guaranteed. Furthermore, we note that Eq. (2.64) is averaged over bothx = +1 andx = −1

owing to the symmetry property.
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It may be observed in Eq. (2.64) that the histogramsp(Le|b = 1) andp(Le|b = 0) in Eq. (2.49)

no longer have to be evaluated. However, the souce bits are assumed to be known for the evaluation

of Eq. (2.64), which means that this method can only be used ”off-line” namely, when the receiver

can get access to the source bits. In order to circumvent thisproblem, an alternative computation

method for the extrinsic information is presented in [89–91] as:

IE = H(X) − H(X|Λe)

= 1 + p(x = +1|Le) log2 p(x = +1|Le) + p(x = −1|Le) log2 p(x = −1|Le)

= 1 + E

[
eLe

1 + eLe
log2

(
eLe

1 + eLe

)
+

1

1 + eLe
log2

(
1

1 + eLe

)]
,

≈ 1

Nc

Nc

∑
n=1

[
eLe[n]

1 + eLe[n]
log2

(
2eLe[n]

1 + eLe[n]

)
+

1

1 + eLe[n]
log2

(
2

1 + eLe[n]

)]
,

(2.65)

where we haveH(X) = 1 because of the equiprobable sourcex ∈ {±1}. With the aid of

Eq. (2.65), the EXIT charts may be constructed ”on-line”, because as soon as new extrinsic LLRs

become available at the receiver, they can be used for updating the current estimate of the mutual

information [92].

As mentioned before, the efficient computation of Eqs. (2.64) and (2.65) is based on the im-

portant assumption of satisfying the symmetric condition of p(Le|x) = p(−Le| − x) and the

consistency condition ofp(Le|x = +1) = p(Le|x = −1)eLe . If the symmetricity condition can-

not be satisfied, the histogram-based Eq. (2.49) has to be invoked for evaluatingIE. However, if

the consistency condition cannot be guaranteed, the LLR definition of Eq. (2.27) will be violated.

Let us elaborate a little further here. The consistency condition of p(Le|b = 1) = p(Le|b = 0)eLe

leads to the following relationship:

Le = ln
p(Le|b = 1)

p(Le|b = 0)
= ln

p(b = 1|Le)

p(b = 0|Le)
, (2.66)

because we havep(b|Le) = p(Le|b)p(b)

∑b={1,0} p(Le|b)p(b)
according to Bayes’ law [251], and we have{p(b) =

0.5}b={1,0} for equiprobable source bits, the extrinsic LLRs satisfy the relationship defined by

Eq. (2.66), their LLR values may be deemed as valid [49,86,266] according to the LLR definition

of Eq. (2.27). Therefore, Eq. (2.66) may be used for testing the performance of virtually all soft-

decision-aided demappers/decoders, and this method is termed as the LLR validity test in this

treatise.

Let us consider the SquareMQAM demodulator in conjunction with the Approx-Log-MAP

algorithm of Eq. (2.35) and Max-Log-MAP algorithm of Eq. (2.34) as an example. It can be seen

in Fig. 2.14a that Max-Log-MAP decoder introduces a performance loss, which is more noticeable

as the number of modulation levelsM increases, because more probability metrics of Eq. (2.39)

are ignored by the Max-Log-MAP decoder of Eq. (2.34). Moreover, the accuracy of the extrinsic

LLRs produced by the Square 256QAM demodulator using the Approx-Log-MAP and Max-Log-

MAP algorithms are tested as portrayed in Fig. 2.14b, where the two PDFs{p(Le|b)}b={0,1} may

be obtained by estimating the histograms ofLe, with the source bits beingb = {0, 1}. In other
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Figure 2.14: EXIT charts of SquareMQAM demodulator using Approx-Log-MAP and

Max-Log-MAP algorithms, as well as the LLR validity test forthe Square 256QAM de-

modulator.

words,{p(Le|b)}b={0,1} scaled on the y-axis in Fig. 2.14b represents the magnitudesof the his-

tograms’ bins, whileLe scaled on the x-axis represents the locations of the histograms’ bins. If

Le = ln
p(Le|b=1)
p(Le|b=0)

of Eq. (2.66) is statistically true, then the LLRs validity test is supposed to re-

sult in a diagonal line in Fig. 2.14b. However, as demonstrated by Fig. 2.14b, the LLRs of the

Max-Log-MAP decoder suffer from a noticeable deviation, which implies that the Max-Log-MAP

decoder’s soft output is arguably less reliable than the LLRs produced by the Approx-Log-MAP

algorithm.

Fig. 2.15a portrays our performance comparison between theApprox-Log-MAP and Max-Log-

MAP algorithms, when they are invoked for Square 256QAM detection in a variety of coded sys-

tems, while the Monte-Carlo simulation based decoding trajectories are recorded in Fig. 2.15b. It

can be seen that the performance difference between the Approx-Log-MAP and Max-Log-MAP de-

coders becomes more obvious for complex channel coding aided systems exemplified by the IRCC

and URC schemes. We note that the modest performance loss imposed by the Max-Log-MAP de-

coder is generally expected and acceptable. Our comparisonbetween the Approx-Log-MAP and

Max-Log-MAP algorithms is only exemplified here in order to demonstrate the efficiency of the

LLRs validity test. Generally speaking, if theLe versusln
p(Le|b=1)
p(Le|b=0)

plot of Fig. 2.14b severely

deviates from the diagonal line, the demapper/decoder has to be carefully checked and revised so

that reliable LLRs may be produced. Furthermore, if the demapper/decoder is a low-complexity

sub-optimal one (e.g. the MMSE multi-user detector often produces less reliable LLRs), LLR

post-processing [8] may be invoked for shaping theLe versusln p(Le|b=1)
p(Le|b=0)

plot.
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Figure 2.15: BER performance and decoding trajectories of RSC coded Square 256QAM

(IRRSC−QAM = 2), TC coded Square 256QAM (IRTC = 4,IRTC−QAM = 2) and IRCC-

URC coded Square 256QAM (IRURC−QAM = 2,IRIRCC−{URC−QAM} = 30), where

NR = 2 RAs are equipped. The IRCC’s coefficients are given by [0.0113078, 0, 0, 0,

0, 0.449189, 0.0859921, 0.0178352, 0, 0.129073, 0, 0.0962122, 0.103771, 0, 0.0184346,

0.0211703, 0.0670265]. The schematics of Figs. 2.8 and 2.10are used.

2.4 Reduced-Complexity Coded PSK and QAM

After adapting theMPSK/QAM detectors of Sec. 2.2 for turbo detection accordingto [8,240,241],

the receiver’s complexity is inevitably increased as a result of iterative demodulation and decoding.

To mitigate this problem, a new reduced-complexity design may be proposed for soft-decision-

aidedMPSK/QAM detectors, where only a reduced-size subset of theMPSK/QAM constellation

points is taken into account for producing a single soft decision. In contrast to the soft-metric

generation methods of [245–247], our reduced-complexity soft MPSK/QAM detectors retain their

optimal unimpaired detection capabilities. We note that the reduced-complexity design introduced

in this section is from our publication of [236].

2.4.1 Reduced-Complexity Soft-Decision-Aided Square QAMDetection

For producing a single soft-bit output, the conventional Max-Log-MAP algorithm of Eq. (2.34) as

well as the Approx-Log-MAP algorithm of Eq. (2.35) have to estimate and compare all theMRe and
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MIm probability metrics using Eq. (2.39) according to theMRePAM andMImPAM constellations,

which forms the real part and the imaginary part of a SquareMQAM symbol, respectively. In

this section, we aim for reducing the detection complexity by reducing the number of constellation

points that have to be visited.

First of all, let us extend the probability metric of the imaginary part in Eq. (2.39) as:

dmIm
Im = −|ℑ(z̃n)|2

Ñ0

− |smIm
Im |2
Ñ0

+
2ℑ(z̃n)smIm

Im

Ñ0

+
BPSIm

∑
k̄=1

b̃mIm

k̄
La(bk̄), (2.67)

where
(
− |ℑ(z̃n)|2

Ñ0

)
is a constant for all the candidate variables{smIm

Im }MIm−1
mIm=0 . Hence it may be

ignored, because all the multiplicative constants may be eliminated by the division operation in the

Log-MAP algorithm of Eq. (2.30). Therefore, Eq. (2.67) may be further simplified as:

dmIm
Im =

smIm
Im

N0

ℑ(z̃n) − |smIm
Im |2
Ñ0

+
BPSIm

∑
k̄=1

b̃mIm

k̄
La(bk̄), (2.68)

where we have
(

N0 = Ñ0/2
)

. Let us now consider Square 16QAM as an example. Its detected

constellation diagram is re-drawn in Fig. 2.16a for the sakeof convenience. For the Square 16QAM

scheme of Fig. 2.16a, theMIm = 4 imaginary metrics of Eq. (2.68) may be expressed as:

d0
Im = 3ℑ(z̃n)√

10·N0
− 9

10Ñ0
= tG0

Im − 4
5Ñ0

+ CIm,

d1
Im = ℑ(z̃n)√

10·N0
− 1

10Ñ0
+ La(b2) = tG1

Im + La(b2) + CIm,

d2
Im = − 3ℑ(z̃n)√

10·N0
− 9

10Ñ0
+ La(b1) = −tG0

Im − 4
5Ñ0

+ CIm,

d3
Im = − ℑ(z̃n)√

10·N0
− 1

10Ñ0
+ La(b1) + La(b2) = −tG1

Im + La(b2) + CIm,

(2.69)

where we relate the imaginary part ofz̃n to the corresponding soft-bit inputLa(b1) by defining the

test-variables{t
Gg
Im }1

g=0 as:

tG0
Im = 3ℑ(z̃n)√

10·N0
− La(b1)

2 ,

tG1
Im = ℑ(z̃n)√

10·N0
− La(b1)

2 ,
(2.70)

while the constant in Eq. (2.69) is given by
[
CIm = − 1

10Ñ0
+ La(b1)

2

]
. It may be observed in

Eq. (2.69) that the only difference betweend0
Im and d2

Im is the sign oftG0
Im . Similarly, the only

difference betweend1
Im andd3

Im is the sign oftG1
Im . Consequently, the maximum probability metrics

of these two groups are given by:

dG0
Im = max{d0

Im, d2
Im} = |tG0

Im | − 4

5Ñ0

+ CIm,

dG1
Im = max{d1

Im, d3
Im} = |tG1

Im | + La(b2) + CIm.

(2.71)

Therefore, the global maximum metric that is sought by the Max-Log-MAP algorithm of Eq. (2.34)

may be obtained by:

dmax
Im = max

{
max{d0

Im, d2
Im}

max{d1
Im, d3

Im}

}
= max

g={0,1}
d

Gg
Im . (2.72)

As a result, instead of evaluating and comparing Eq. (2.68)MIm = 4 times in Eq. (2.69) according

to the MImPAM constellation points, Eq. (2.72) is obtained by comparing a reduced number of
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Figure 2.16: The reduced-complexity soft-decision-aidedMPSK/QAM detector’s con-

stellation diagrams. We deliberately rotate all the detected MPSK (M ≥ 4) constellation

diagrams and the detected StarMQAM constellation diagrams anti-clockwise by a phase

of π/M andπ/MP, respectively, so that there are exactlyM/4 constellation points in

each quadrant.

MIm/2 = 2 candidates according to havingMIm/2 positive PAM magnitudes, where the absolute

value calculation eliminates the need for considering the signs, thanks to the Gray-labelled Square

16QAM constellation diagram of Fig. 2.16a.

Upon obtaining the maximum probability metricdmax
Im and the corresponding optimum group

index ĝ according to Eq. (2.72), the MAP hard-bit decisions may be produced accordingly as:

b̂1 =

{
1, if t

Gĝ
Im < 0

0, otherwise
, b̂2 =

{
1, if ĝ = 1

0, otherwise
. (2.73)

According to the maximum metric search of Eq. (2.72), the first two soft-bit decisions produced

by the reduced-complexity Max-Log-MAP algorithm may be obtained as:

Lp(b1) = max{d2
Im, d3

Im} − max{d0
Im, d1

Im}
= max{ −tG0

Im − 4
5Ñ0

, −tG1
Im + La(b2) } − max{ tG0

Im − 4
5Ñ0

, tG1
Im + La(b2) }

=





dmax
Im − max{ tG0

Im − 4
5Ñ0

, tG1
Im + La(b2) }, if b̂1 = 1

max{ −tG0
Im − 4

5Ñ0
, −tG1

Im + La(b2) } − dmax
Im , otherwise

.

(2.74)

Lp(b2) = max{d1
Im, d3

Im} − max{d0
Im, d2

Im}
= dG1

Im − dG0
Im

= |tG1
Im |+ La(b2) − |tG0

Im |+ 4

5Ñ0

.

(2.75)
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We note that the constant ofCIm may be deleted from{dmIm
Im }MIm−1

mIm=0 of Eq. (2.69) as well as the

following definitions for{d
Gg
Im }MIm/2−1

g=0 of Eq. (2.71) anddmax
Im of Eq. (2.72), as the subtraction

operations between two maxima in Eqs. (2.74) and (2.75) eliminates common constants.

Similarly, the corresponding Approx-Log-MAP algorithm may be obtained by compensating

the error imposed by considering only the maximum in Eqs. (2.74) and (2.75) as:

Lp(b1) = jac{ −tG0
Im − 4

5Ñ0
, −tG1

Im + La(b2) } − jac{ tG0
Im − 4

5Ñ0
, tG1

Im + La(b2) }, (2.76)

Lp(b2) = Λ(|tG1
Im |) + La(b2) − Λ(|tG0

Im |) +
4

5Ñ0

, (2.77)

where we define the special case of the corrected Jacobian algorithm of Eq. (2.36) as:

Λ(|t|) = jac(t,−t) = |t| + δ(2|t|). (2.78)

Based on the example of Square 16QAM detection, we summarizethe Max-Log-MAP algo-

rithm conceived for SquareMQAM detection as follows:

Algorithm 2.2: Max-Log-MAP Algorithm for Square MQAM Detection.

(1) Define the test-variables, which relateLa(b1) and La (bBPSIm+1) to the imaginary and

real parts of̃zn as:

t
Gg
Im =

A
Gg
Im ℑ(z̃n)

N0
− La(b1)

2 ,

t
G f
Re =

A
G f
Reℜ(z̃n)

N0
− La(bBPSIm+1)

2 ,
(2.79)

where{A
Gg
Im }MIm/2−1

g=0 and{A
G f
Re}MRe/2−1

f =0 are the positive PAM magnitudes on the y-

axis and x-axis of the Gray-labelled SquareMQAM constellation diagram, respectively.

(2) Calculate the maximum probability metrics, which relates the rest of thea priori LLRs

{La(bk̄)}BPSIm

k̄=2
and{La(bk̄)}BPS

k̄=BPSIm+2
to the PAM magnitude indicesg and f as:

d
Gg
Im = |tGg

Im | + ∑
BPSIm

k̄=2
b̃

Gg

k̄
La(bk̄) −

(A
Gg
Im )2

Ñ0
,

d
G f
Re = |tG f

Re |+ ∑
BPS
k̄=BPSIm+2

b̃
G f

k̄
La(bk̄) −

(A
G f
Re)2

Ñ0
,

(2.80)

where{b̃
Gg

k̄
}BPSIm

k̄=2
and {b̃

G f

k̄
}BPS

k̄=BPSIm+2
refer to the bit-mapping arrangements corre-

sponding to the group indicesg and f , where we have[b̃Gg
2 · · · b̃

Gg
BPSIm

] = dec2bin(g)

and[b̃
G f
BPSIm+2 · · · b̃

G f
BPS] = dec2bin( f ).

(3) The global maximum probability metrics may be obtained by comparing all their local

maxima as:
dmax

Im = d
Gĝ
Im = maxg∈{0,··· ,MIm/2−1}

(
d

Gg
Im

)
,

dmax
Re = d

G f̂
Re = max f∈{0,··· ,MRe/2−1}

(
d

G f
Re

)
,

(2.81)

where the optimum group indiceŝg and f̂ may be directly used for determining the

MAP hard-bit decisions of{b̂k}BPSIm
k=2 and{b̂k}BPS

k=BPSIm+2, i.e. we have[b̂2 · · · b̂BPSIm ] =
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dec2bin(ĝ) and [b̂BPSIm+2 · · · b̂BPS] = dec2bin( f̂ ), respectively. Moreover, the first bit

and the(BPSIm + 1)-th bit may be determined bŷb1 = (t
Gĝ
Im < 0) and byb̂BPSIm+1 =

(t
G f̂
Re < 0), respectively.

(4) For the first bit and the(BPSIm + 1)-th bit, which determine the signs, thea posteriori

LLRs are given by:

Lp(b1) = maxg∈{0,··· ,MIm/2−1}
(

d
Gg
Im,b1=1

)
− maxg∈{0,··· ,MIm/2−1}

(
d

Gg
Im,b1=0

)
,

Lp(bBPSIm+1) = max f∈{0,··· ,MRe/2−1}
(

d
G f
Re,bBPSIm+1=1

)

− max f∈{0,··· ,MRe/2−1}
(

d
G f
Re,bBPSIm+1=0

)
,

(2.82)

where the probability metrics of Eq. (2.80) have to be updated when the specific bit is

set to be 1 or 0 as:

d
Gg
Im,b1=1 = −t

Gg
Im + ∑

BPSIm

k̄=2
b̃

Gg

k̄
La(bk̄) −

(A
Gg
Im )2

Ñ0
,

d
Gg
Im,b1=0 = t

Gg
Im + ∑

BPSIm

k̄=2
b̃

Gg

k̄
La(bk̄) −

(A
Gg
Im )2

Ñ0
.

(2.83)

d
G f
Re,bBPSIm+1=1 = −t

G f
Re + ∑

BPS
k̄=BPSIm+2

b̃
G f

k̄
La(bk̄) −

(A
G f
Re)2

Ñ0
,

d
G f
Re,bBPSIm+1=0 = t

G f
Re + ∑

BPS
k̄=BPSIm+2

b̃
G f

k̄
La(bk̄) −

(A
G f
Re)2

Ñ0
.

(2.84)

Moreover, for Lp(b1) and Lp(bBPSIm+1) produced by Eq. (2.82),dmax
Im and dmax

Re of

Eq. (2.81) may be utilized to replace one of their maxizationoperations. As a result,

Eq. (2.82) may be simplified to:

Lp(b1) =





dmax
Im − maxg∈{0,··· ,MIm/2−1}

(
d

Gg
Im,b1=0

)
, if b̂1 = 1

maxg∈{0,··· ,MIm/2−1}
(

d
Gg
Im,b1=1

)
− dmax

Im , otherwise
,

Lp(bBPSIm+1) =





dmax
Re − max f∈{0,··· ,MRe/2−1}

(
d

G f
Re,bBPSIm+1=0

)
, if b̂BPSIm+1 = 1

max f∈{0,··· ,MRe/2−1}
(

d
G f
Re,bBPSIm+1=1

)
− dmax

Re , otherwise
.

(2.85)

(5) For the remaining(BPS− 2) bits, which determine the magnitudes, the Max-Log-MAP

algorithm is given by:

Lp(bk) = maxbk=1

(
d

Gg
Im

)
− maxbk=0

(
d

Gg
Im

)
, k ∈ {2, · · · , BPSIm},

Lp(bk) = maxbk=1

(
d

G f
Re

)
− maxbk=0

(
d

G f
Re

)
, k ∈ {BPSIm + 2, · · · , BPS},

(2.86)

where the tentative indices set for (g ∈ {0, · · · , MIm/2 − 1}) and

( f ∈ {0, · · · , MRe/2 − 1}) are halved to have set sizes ofMIm/4 and MRe/4

when a specific bitbk is fixed to 1 and 0, respectively. Taking Square 16QAM as an

example, it was demonstrated in Eq. (2.75) that onlyg = 1 or g = 0 may be considered

whenb2 is fixed to be 1 or 0, respectively.
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Similar to Step (4),dmax
Im and dmax

Re of Eq. (2.81) may replace one of the maxization

operations for each constituent equation of Eq. (2.86) as:

Lp(bk) =





dmax
Im − maxbk=0

(
d

Gg
Im

)
, if b̂k = 1

maxbk=1

(
d

Gg
Im

)
− dmax

Im , otherwise
,

k ∈ {2, · · · , BPSIm},

Lp(bk) =





dmax
Re − maxbk=0

(
d

G f
Re

)
, if b̂k = 1

maxbk=1

(
d

G f
Re

)
− dmax

Re , otherwise
,

k ∈ {BPSIm + 2, · · · , BPS}.

(2.87)

The corresponding reduced-complexity Approx-Log-MAP algorithm conceived for general

SquareMQAM may be obtained by appropriately modifying Algorithm 2.2, where themax oper-

ation should be replaced by the Jacobian operation of Eq. (2.36), while the operation(|t|) should

be replaced by the special Jacobian operationΛ(|t|) of Eq. (2.78). Furthermore, we note that the

simplifieda posterioriLLR evaluations of Eqs. (2.85) and (2.87) are not applicableto the Approx-

Log-MAP algorithm because the maximum probability metricsdmax
Im anddmax

Re of Eq. (2.81) cannot

replace the jac operation seen in Eq. (2.35). Accordingly, Step (3) may be deleted for the Approx-

Log-MAP algorithm.

In the design of reduced-complexity soft-decision-aided QAM detection algorithms, we aim for

a reduced-complexity order ofO(log2 M), i.e. each bit is detected independently. However, both

the real part and the imaginary part of a SquareMQAM symbol has(BPSRe− 1) and(BPSIm − 1)

bits, which encode the PAM magnitudes together, hence they have to be jointly detected. As a

result, when detecting the(BPS− 2) bits which determine the magnitudes, the complexity order

of Eq. (2.87) is given byO(MIm/4) andO(MRe/4) for detecting the imaginary part and the real

part of a SquareMQAM symbol, respectively. Furthermore, when detecting thetwo bits which

determine the signs, the complexity order of Eq. (2.85) is given byO(MIm/2) andO(MRe/2) for

detecting the imaginary and real parts of a SquareMQAM symbol, respectively. It can be seen that

the proposed algorithm exhibits a reduced complexity compared to the orignal complexity order of

O(MIm)/O(MRe) of Eq. (2.34), when using Eq. (2.39). We will demonstrate in the next section

that the complexity reduction may even be more substantial,when the design portrayed in this

section is applied toMPSK and Star/Cross constellation basedMQAM schemes.

2.4.2 Reduced-Complexity Soft-Decision-Aided General PSK/QAM Detection

For SquareMQAM schemes, the real part and the imaginary part of a transmitted symbol are en-

coded separately. By contrast, a high-orderMPSK scheme associated with(M > 4) encodes its

phase, which means that the real and imaginary parts of a transmittedMPSK symbol are in fact en-



2.4.2. Reduced-Complexity Soft-Decision-Aided General PSK/QAM Detection 85

coded jointly. As a result, the jointly encoded bits in aMPSK symbol have to be detected together,

which imposes a higher complexity. However, it can be seen inAlgorithm 2.2 that as long as we

have the symmetry provided by Gray-labelling, a similar reduced-complexity detection algorithm

may be obtained. For the sake of achieving this goal, we have to rotate all theMPSK receiver’s

constellations (except BPSK) in [2] anti-clockwise by(π/M), so that there are exactlyM/4 con-

stellation points in each quadrant. The rotated 8PSK constellation is shown in Fig. 2.16b. Similarly,

a StarMQAM receiver’s constellation [155, 253] may be rotated anti-clockwise by a phase angle

of (π/MP). We note that the transmitted constellation diagrams of theMPSK and StarMQAM

schemes may remain the same, but theMPSK scheme’s detected constellation diagram is rotated,

wherezn andsm in Eq. (2.37) are replaced bȳzn = zn exp(jπ/M) and s̄m = sm exp(jπ/M).

Similarly, the StarMQAM arrangement’s detected constellation diagram may be rotated, wherẽzn

andsm in Eq. (2.38) are replaced bȳzn = z̃n exp(jπ/MP) and s̄m = sm exp(jπ/MP), respec-

tively.

In order to operate the Max-Log-MAP algorithm conceived fordifferent PSK/QAM constella-

tions at a reduced complexity, we extend thea posterioriprobability metric of Eqs. (2.37) and (2.38)4

as:

dm = −|z̄n|2
Ñ0

− |s̄m|2
Ñ0

+
ℜ(z̄n)ℜ(s̄m) +ℑ(z̄n)ℑ(s̄m)

N0

+
BPS

∑
k̄=1

b̃m
k̄

La(bk̄), (2.88)

where the constant of
(
− |z̃n|2

Ñ0

)
may be ignored and we haveN0 = Ñ0/2. Let us now consider

the detected 8PSK constellation of Fig. 2.16b as an example,where the eight metrics{dm}7
m=0 of

Eq. (2.88) may be expressed as:

d0 = tG0
Re + tG0

Im + C8PSK,

d2 = −tG0
Re + tG0

Im + C8PSK,

d4 = tG0
Re − tG0

Im + C8PSK,

d6 = −tG0
Re − tG0

Im + C8PSK,

(2.89)

d1 = tG1
Re + tG1

Im + La(b3) + C8PSK,

d3 = −tG1
Re + tG1

Im + La(b3) + C8PSK,

d5 = tG1
Re − tG1

Im + La(b3) + C8PSK,

d7 = −tG1
Re − tG1

Im + La(b3) + C8PSK,

(2.90)

where we relate the real and imaginary parts ofz̄n to the corresponding soft bit inputLa(b2) and

La(b1) by defining test-variables{t
Gg
Re}1

g=0 and{t
Gg
Im }1

g=0 as:

tG0
Re =

cos( π
8 )ℜ(z̄n)

N0

− La(b2)

2
,

tG1
Re =

sin( π
8 )ℜ(z̄n)

N0

− La(b2)

2
,

(2.91)

4We note thatMPSK’s probability metric of Eq. (2.37) may be seen as a special case of the more generalMQAM’s

expression of Eq. (2.38), where we haveÑ0 = N0 in Eq. (2.38) for the case ofMPSK detection.
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tG0
Im =

sin( π
8 )ℑ(z̄n)

N0

− La(b1)

2
,

tG1
Im =

cos( π
8 )ℑ(z̄n)

N0

− La(b1)

2
,

(2.92)

while the constantC8PSK is given by
[
C8PSK = − 1

Ñ0
+ La(b1)+La(b2)

2

]
. The eight probability metrics

{dm}7
m=0 are arranged into two groups in Eqs. (2.89) and (2.90), whereevery four metrics are

associated with the same constellation magnitudes. It can be seen that the four metrics formulated

in Eq. (2.89) all contain three parts, i.e. they are±tG0
Re, ±tG0

Im andC8PSK. As a result, the maximum

metric over the four candidates in Eq. (2.89) is given by a simple estimation:

dG0 = max
m={0,2,4,6}

dm = |tG0
Re|+ |tG0

Im |+ C8PSK. (2.93)

Similarly, the maximum metric over the second group in Eq. (2.90) is given by:

dG1 = max
m={1,3,5,7}

dm = |tG1
Re|+ |tG1

Im | + La(b3) + C8PSK. (2.94)

Therefore, the maximuma posterioriprobability metric generated by the Max-Log-MAP algorithm

is given by:

dmax = max
g={0,1}

(
dGg
)

= max

{
|tG0

Re|+ |tG0
Im |+ C8PSK

|tG1
Re|+ |tG1

Im |+ La(b3) + C8PSK

}
.

(2.95)

Therefore, instead of evaluating and comparing Eq. (2.88) for a total number ofM = 8 times in

Eqs. (2.89) and (2.90), Eq. (2.95) only has to evaluate and compare a reduced number of (M/4 =

2) candidates in order to obtaindmax. In other words,dmax of Eq. (2.95) is obtained without visiting

all the eight 8PSK constellation points. In fact, only the two constellation points in the first quadrant

are of interest, as demonstrated by Fig. 2.16b.

Upon obtaining the maximum probability metricdmax and the corresponding optimum group

index ĝ according to Eq. (2.95), the MAP hard-bit decisions may be produced as:

b̂1 =

{
1, if t

Gĝ
Im < 0

0, otherwise
, b̂2 =

{
1, if t

Gĝ
Re < 0

0, otherwise
, (2.96)

and we have[b̂3 · · · b̂BPS] = dec2bin(ĝ). Furthermore, according to the maximum metric search

demonstrated by Eq. (2.95), the reduced-complexity Max-Log-MAP algorithm may be formulated

as:

Lp(b1) = dmax
b1=1 − dmax

b1=0

= max

{
|tG0

Re| − tG0
Im

|tG1
Re| − tG1

Im + La(b3)

}
− max

{
|tG0

Re|+ tG0
Im

|tG1
Re|+ tG1

Im + La(b3)

}

=





dmax− max { |tG0
Re|+ tG0

Im , |tG1
Re|+ tG1

Im + La(b3) }, if b̂1 = 1

max { |tG0
Re| − tG0

Im , |tG1
Re| − tG1

Im + La(b3) } − dmax, otherwise
.

(2.97)
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Lp(b2) = dmax
b2=1 − dmax

b2=0

= max

{
−tG0

Re + |tG0
Im |

−tG1
Re + |tG1

Im | + La(b3)

}
− max

{
tG0
Re + |tG0

Im |
tG1
Re + |tG1

Im |+ La(b3)

}

=





dmax− max { tG0
Re + |tG0

Im |, tG1
Re + |tG1

Im |+ La(b3) }, if b̂2 = 1

max { −tG0
Re + |tG0

Im |, −tG1
Re + |tG1

Im |+ La(b3) } − dmax, otherwise
.

(2.98)

Lp(b3) = max
b3=1

dGg − max
b3=0

dGg

= dG1 − dG0

= |tG1
Re|+ |tG1

Im | + La(b3) − |tG0
Re| − |tG0

Im |

(2.99)

The constantC8PSK in {dm}M−1
m=0 of Eqs. (2.89) and (2.90) as well as{dGg}M/4−1

g=0 of Eqs. (2.93)

and (2.94) anddmax of Eq. (2.95) may all be omitted.

Based on the example of 8PSK detection, we propose the reduced-complexity Max-Log-MAP

algorithm conceived for generalMPSK/QAM detection as follows:

Algorithm 2.3: Max-Log-MAP Algorithm for General MPSK/QAM Detection.

(1) Define the test-variables, which relates the first twoa priori LLRs La(b2) andLa(b1) to

the real and imaginary parts ofz̄n as:

t
Gg
Re = AGgℜ(z̄n)

N0
− La(b2)

2 ,

t
Gg
Im = BGgℑ(z̄n)

N0
− La(b1)

2 ,
(2.100)

where{(AGg, BGg)}M/4−1
g=0 denote the coordinates of the rotatedMPSK/QAM constel-

lation points which are located in the first quadrant.

(2) Calculate the maximum probability metrics, which relates the rest of thea priori LLRs

{La(bk̄)}BPS
k̄=3

to the magnitude indexg as:

dGg = |tGg
Re |+ |tGg

Im |+
BPS

∑
k̄=3

b̃
Gg

k̄
La(bk̄) −

(AGg)2 + (BGg)2

Ñ0

. (2.101)

where{b̃
Gg

k̄
}BPS

k̄=3
refers to the bit-mapping arrangement corresponding to thegroup index

g, where we have[b̃Gg
3 · · · b̃

Gg
BPS] = dec2bin(g).

(3) The global maximum probability metricdmax may be obtained by comparing all local

maxima as:

dmax = dGĝ = max
g∈{0,··· ,M/4−1}

dGg, (2.102)

where the optimum group index̂g may be directly used for determining the correspond-

ing MAP hard-bit decisions, i.e. we haveb̂3 · · · b̂BPS = dec2bin(ĝ). Moreover, the first

two hard-bit decisions may be obtained byb̂1 = (tImĝ < 0) and b̂2 = (tReĝ < 0),

respectively.
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(4) For the first two bits, which determine the signs, thea posterioriLLRs are given by:

Lp(b1) = maxg∈{0,··· ,M/4−1}
(

d
Gg
b1=1

)
− maxg∈{0,··· ,M/4−1}

(
d

Gg
b1=0

)
,

Lp(b2) = maxg∈{0,··· ,M/4−1}
(

d
Gg
b2=1

)
− maxg∈{0,··· ,M/4−1}

(
d

Gg
b2=0

)
,

(2.103)

where the probability metrics of Eq. (2.101) have to be updated as:

d
Gg
b1=1 = |tGg

Re | − t
Gg
Im + ∑

BPS
k̄=3

b̃
Gg

k̄
La(bk̄)− (AGg)2+(BGg)2

Ñ0
,

d
Gg
b1=0 = |tGg

Re |+ t
Gg
Im + ∑

BPS
k̄=3

b̃
Gg

k̄
La(bk̄)− (AGg)2+(BGg)2

Ñ0
.

(2.104)

d
Gg
b2=1 = −t

Gg
Re + |tGg

Im |+ ∑
BPS
k̄=3

b̃
Gg

k̄
La(bk̄)− (AGg)2+(BGg)2

Ñ0
,

d
Gg
b2=0 = t

Gg
Re + |tGg

Im |+ ∑
BPS
k̄=3

b̃
Gg

k̄
La(bk̄)− (AGg)2+(BGg)2

Ñ0
.

(2.105)

Moreover,dmax of Eq. (2.102) may replace one of the maxization operations in both

equations of Eq. (2.103). Therefore, the evaluation ofLp(b1) andLp(b2) of Eq. (2.103)

may be simplified as:

Lp(b1) =





dmax− maxg∈{0,··· ,M/4−1}
(

d
Gg
b1=0

)
, if b̂1 = 1

maxg∈{0,··· ,M/4−1}
(

d
Gg
b1=1

)
− dmax, otherwise

,

Lp(b2) =





dmax− maxg∈{0,··· ,M/4−1}
(

d
Gg
b2=0

)
, if b̂2 = 1

maxg∈{0,··· ,M/4−1}
(

d
Gg
b2=1

)
− dmax, otherwise

.

(2.106)

(5) For the following(BPS− 2) bits which determine the magnitudes, the Max-Log-MAP

algorithm is given by:

Lp(bk) = maxbk=1

(
dGg
)
− maxbk=0

(
dGg
)

, k ∈ {3, · · · , BPS}, (2.107)

where the tentative index set for(g ∈ {0, · · · , M/4 − 1}) is halved to have a set size

of M/8, when a specific bitbk is fixed to 1 or 0. Taking 8PSK as an example, it was

demonstrated in Eq. (2.99) that onlyg = 1 or g = 0 may be considered whenb3 is fixed

to be 1 or 0, respectively.

Similar to Step (4),dmax of Eq. (2.102) may replace one of the maxizations in Eq. (2.107)

as:

Lp(bk) =

{
dmax− maxbk=0

(
dGg
)

, if b̂k = 1

maxbk=1

(
dGg
)
− dmax, otherwise

, k ∈ {3, · · · , BPS}. (2.108)

The corresponding reduced-complexity Approx-Log-MAP algorithm may be obtained by re-

placing themax operation by the jac operation, and by replacing the operation |t| by theΛ(|t|),
while Step (3) as well as Eqs. (2.106) and (2.108) may be omitted for Approx-Log-MAP.

When detecting the first two bits, Eq. (2.106) in Algorithm 2.3 has a detection complexity
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order ofO(M/4), while Eq. (2.108) evaluated for detecting those specific(BPS− 2) bits has a

detection complexity order ofO(M/8). They exhibit a substantially reduced complexity compared

to the conventional detection complexity orderO(M), owing to the fact that the proposed detection

algorithms visit a reduced-size fraction of the constellation points.

We note that when Algorithm 2.3 is invoked forMPSK detection, the constant( (AGg)2+(BGg)2

Ñ0
=

1
Ñ0

) in Eqs. (2.101), (2.104) and (2.105) may be ignored. Furthermore, it was shown in [252]

that CrossMQAM constellations actually have a better performance compared to SquareMQAM

schemes. We note that Algorithm 2.3 may be adopted for detecting CrossMQAM constellations

without rotating its detected constellation diagram.

2.4.3 Performance Results

Let us now discuss our simulation results in this section. First of all, we classify the detection

complexity into five categories, which are the number of real-valued multiplications, the num-

ber of real-valued additions, the number of comparisons, the number of table look-up operations

with reference to Table 2.2 for the Approx-Log-MAP algorithm and the number of constellation

points visited (which are equivalently termed as nodes). Therefore, the complexity of the con-

ventional SquareMQAM detection introduced in Sec. 2.3.1 and that of the reduced-complexity

SquareMQAM detection proposed in Algorithm 2.2 of Sec. 2.4.1 is compared in Table 2.4. We

note that the practical implementation of detectors shouldbe optimized to eliminate unnecessary

calculations. For example, for the conventional SquareMQAM detector, the decision variable

z̃n = YnHH
n /‖Hn‖2 of Eq. (2.39) only has to be evaluated once before invoking the Max-

Log-MAP algorithm of Eq. (2.34) or the Approx-Log-MAP algorithm of Eq. (2.35). Similarly,

for the reduced-complexity SquareMQAM detection of Algorithm 2.2, the variables including

{ A
Gg
Im

N0
}MIm/2−1

g=0 , { A
G f
Re

N0
}MRe/2−1

f =0 , { (A
Gg
Im )2

Ñ0
}MIm/2−1

g=0 , { (A
G f
Re )2

Ñ0
}MRe/2−1

f =0 , {∑
BPSIm

k̄=2
b̃

Gg

k̄
La(bk̄)}MIm/2−1

g=0

and{∑
BPS
k̄=BPSIm+2

b̃
G f

k̄
La(bk̄)}MRe/2−1

f =0 may all be computed before activating Algorithm 2.2.

Against this background, we can see in Table 2.4 that the Square MQAM detection complex-

ity order is reduced fromO(MIm + MRe) to O(MIm/2 + MRe/2) for all complexity categories,

when the proposed Max-Log-MAP technique of Algorithm 2.2 and its corrected Approx-Log-MAP

counterpart are invoked. This is expected, because Algorithm 2.2 only visits half of the overall con-

stellation points, as demonstrated by Fig. 2.16a. We note that reducing the number of the detected

constellation points is the most common technique of complexity reduction in communication sys-

tems. For example, the ML detection of a MIMO scheme equippedwith NT Transmit Antennas

(TAs) and employingMPSK/QAM signalling has to consider a total number ofMNT combinations

of the constellation points, which is impractical for a large NT and/or a highM. In order to mit-

igate the excessive complexity, Sphere Detection (SD) [173, 174, 176] and linear MIMO receivers

(e.g. MMSE detector) [13, 14, 75] are capable of effectivelyreducing the number of constellation

points that have to be visited by the MIMO detector. Comparedto these popular solutions, our

reduced-complexity design conceived for basic soft-decision-aided MPSK/QAM detection aims
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real-valued real-valued comparisons Lookup visited

multiplications additions Table 2.2 nodes

Conventional [(BPSIm + 2)MIm [(3BPSIm + 2)MIm+ (BPSIm MIm+ (BPSImMIm+ (MRe

Approx-Log-MAP +(BPSRe+ 2)MRe (3BPSRe+ 2)MRe+ BPSReMRe)/BPS BPSReMRe)/BPS +MIm)

+6NR + 3]/BPS BPS+ 6NR − 3]/BPS

Conventional [(BPSIm + 2)MIm [(BPSIm + 2)MIm+ (BPSIm MIm+ (MRe

Max-Log-MAP +(BPSRe+ 2)MRe (BPSRe+ 2)MRe+ BPSReMRe)/BPS +MIm)

+6NR + 3]/BPS BPS+ 6NR − 3]/BPS

Proposed [( BPSIm
2 + 1)MIm [( 3BPSIm

2 + 4)MIm [(BPSIm + 1) MIm
2 [(BPSIm + 1) MIm

2 ( MRe
2

Approx-Log-MAP +( BPSRe
2 + 1)MRe +( 3BPSRe

2 + 4)MRe+ +(BPSRe+ 1) MRe
2 +(BPSRe+ 1) MRe

2 + MIm
2 )

+6NR + 6]/BPS BPS+ 6NR − 3]/BPS ]/BPS ]/BPS

Proposed [( BPSIm
2 + 1)MIm [( BPSIm

2 + 2)MIm [(BPSIm + 3) MIm
2 ( MRe

2

Max-Log-MAP +( BPSRe
2 + 1)MRe +( BPSRe

2 + 2)MRe+ +(BPSRe+ 3) MRe
2 + MIm

2 )

+6NR + 6]/BPS BPS+ 6NR − 3]/BPS +2 + BPS]/BPS

Table 2.4: Complexity (per bit) of soft-decision-aided Square MQAM detection. Con-

ventional Max-Log-MAP and Approx-Log-MAP refer to Eqs. (2.34) and (2.35) using

Eq. (2.39), while Proposed Max-Log-MAP and Approx-Log-MAPrefer to Algorithm 2.2

and its Approx-Log-MAP correction.

for the same desirable objective, but no performance loss isimposed.

Similarly, Table 2.5 summarizes our complexity comparisons between the conventional QAM

detection introduced in Sec. 2.3.1 and the reduced-complexity general MQAM detection tech-

niques proposed in Algorithm 2.3 of Sec. 2.4.1. As expected,Table 2.5 demonstrates that the

generalMPSK/QAM detection complexity is reduced fromO(M) to O(M/4), because only the

M/4 constellation points residing in the first quadrant are visited by the Max-Log-MAP algorithm

of Algorithm 2.3 and by its Approx-Log-MAP correction aidedcounterpart.

Furthermore, the complexity reductions achieved by Algorithms 2.2 and 2.3 are portrayed in

terms of the total number of real-valued multiplications required for producing a single soft-bit

output in Fig 2.17, where the Complexity-Reduction Ratio (CRR) may be defined as:

CRR=
Complexity of the conventional detector− Complexity of the proposed detector

Complexity of the conventional detector
.

(2.109)

In contrast to the SquareMQAM results of Fig. 2.17a, Algorithm 2.3 conceived for general MPSK/QAM

detection achieves a higher complexity reduction, as demonstrated in Fig. 2.17b. This is because

the conventional SquareMQAM detection presented in Sec. 2.3.1 already has a comparatively low

detection complexity, owing to the fact that the real and imaginary parts of a SquareMQAM sym-

bol are detected separately. Nonetheless, Fig. 2.17 demonstrates that as the number of modulation

levelsM increases, the CRRs become more substantial, because theNR-related complexity terms

seen in Tables 2.4 and 2.5 contribute less to the overall complexity at higherM. It can be seen
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real-valued real-valued comparisons Lookup visited

multiplications additions Table 2.2 nodes

Conventional [(BPS+ 3)M [(3BPS+ 4)M+ M M M

Approx-Log-MAP +6NR + 3]/BPS BPS+ 6NR − 3]/BPS

Conventional [(BPS+ 3)M [(BPS+ 4)M+ M M

Max-Log-MAP +6NR + 3]/BPS BPS+ 6NR − 3]/BPS

Proposed [(BPS+ 3) M
4 + [(3BPS+ 20) M

4 + [(BPS+ 2) M
4 [(BPS+ 2) M

4 M/4

Approx-Log-MAP 6NR + 10]/BPS BPS+ 6NR − 1]/BPS ]/BPS ]/BPS

Proposed [(BPS+ 3) M
4 + [(BPS+ 10) M

4 + [(BPS+ 4) M
8 M/4

Max-Log-MAP 6NR + 10]/BPS BPS+ 6NR − 1]/BPS +BPS+ 2]/BPS

Table 2.5: Complexity (per bit) of soft-decision-aided General MQAM detection. Con-

ventional Max-Log-MAP and Approx-Log-MAP refer to Eqs. (2.34) and (2.35) using

Eq. (2.38), while Proposed Max-Log-MAP and Approx-Log-MAPrefer to Algorithm 2.3

and its Approx-Log-MAP correction.

in Figs. 2.17a and 2.17b that the CRR achieved by Algorithms 2.2 and 2.3 approaches their upper

bound of50% and75% respectively asM increases, because50% and75% of the constellation

points have been avoided by the respective algorithms. Furthermore, the complexity reduction seen

in both Fig. 2.17a and Fig. 2.17b is substantial, especially, when the softMPSK/QAM detector is

invoked several times in the aforementioned turbo detection applications.

As demonstrated by the EXIT charts of the SquareMQAM schemes seen in Fig. 2.14a, the

Square 16QAM detector has a near-horizontal EXIT curve. However, as the number of modula-

tion levelsM increases, the SquareMQAM constellations involve more bits in jointly encoding the

symbol magnitudes, which results in an improved iteration gain, as evidenced by Fig. 2.14a. There-

fore, a performance loss may be imposed, when the QAM detectors do not take into account thea

priori LLRs, as in the conventional bit metric generation methods presented in [245–247]. Fig. 2.18

further demonstrates that a significant performance improvement may be achieved, when the num-

ber of iterations between the Square 256QAM detector and thechannel decoder is increased, which

is only possible for theMQAM detectors introduced in Secs 2.3 and 2.4, which exhibit optimum

detection capabilities.

The performance attained and the complexity imposed typically hinges on a tradeoff in commu-

nication systems design. Considering 32QAM as an example, Fig. 2.19a shows that Cross 32QAM

and Star 32QAM outperform their Square 32QAM counterpart inthe context of a variety of coded

schemes. However, as demonstrated by Fig. 2.19b, the conventional Cross/Star 32QAM detection

invoking Eq. (2.38) exhibits a substantially higher complexity compared to the conventional Square

32QAM detection relying on Eq. (2.39). Nonetheless, it can also be seen in Fig. 2.19b that the com-

plexity difference between the Cross/Star 32QAM detectionand the Square 32QAM detection is

significantly reduced, when the proposed reduced-complexity algorithms are applied.
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Figure 2.17: Complexity (number of multiplications per bit) comparison between the con-

ventional soft-decision-aidedMPSK/QAM detection algorithms of Sec. 2.3.1 and the pro-

posed reduced-complexity detection algorithms of Sec. 2.4. The Complexity Reduction

Ratios (CRRs) achieved by the proposed detection algorithms are indicated on the figures.
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Figure 2.18: BER performance of a variety of coded Square 256QAM schemes (NR = 2)

associated with different number of iterations. For the case of IRURC−QAM = 1, the

IRCC’s coefficients are given by [0.0106113, 0, 0, 0, 0, 0.105379, 0.547611, 0, 0, 0, 0,

0.138154, 0.126095, 0, 0, 0, 0.0721744]. The rest of the parameters are the same as those

of Fig. 2.15. The corresponding schematics are portrayed inFigs. 2.8 and 2.10.
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Figure 2.19: The tradeoff between BER performance and complexity of Cross/Star/Square

QAM schemes when they are invoked in a variety of coded system. The corresponding

schematics are portrayed in Figs. 2.8 and 2.10.

2.5 Chapter Conclusions

In this chapter, the basic PSK and QAM modulation schemes in both coded systems and in uncoded

systems are studied. Firstly, the constellations PSK and QAM and their hard-decision-aided low-

complexity detectors are reviewed in Sec. 2.2. Secondly, the classic soft-decision-aided PSK/QAM

detection algorithms are summaried in Sec. 2.3. Furthermore, both theoretical backgound and

practical implementation of EXIT chart as well as the crucial role of EXIT chart in the near-capacity

systems design are also thoroughly discussed in Sec. 2.3. Lastly, a new method of reducing the

complexity of the soft-decision-aided PSK/QAM detection algorithms is proposed in Sec. 2.4. We

demonstrate that the symmetry provided by Gray-labelled constellations enables the detector to

only take into account a reduced subset of the constellationpoints, while the optimum detection

capabilities are retained.

Among all the channel coded systems introduced in this chapter, the turbo coded schemes

achieve a better performance than their RSC coded counterparts, while the IRCC and URC coded

schemes are capable of achieving a performance that is closest to capacity, as discussed in Sec. 2.3.2

and verified by both Fig. 2.18 and Fig. 2.19a. However, the highest complexity is imposed by the

IRCC-URC coded scheme, followed by the TC coded scheme and the RSC coded scheme. The

tradeoff between the attainable performance and the complexity imposed is one of the most im-

portant considerations in communication systems. Moreover, owing to the fact that the real and

imaginary parts of the SquareMQAM constellation may always be separately detected, the detec-

tion complexity for SquareMQAM is generally lower than that of otherMPSK/QAM counterparts,

which is exemplified by Fig. 2.19. An example of the complexity and performance tradeoffs sum-
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Coded Scheme At BER=10−5

IRCC-URC coded Cross 32 QAM Eb/N0 = 1.8 dB

IRCC-URC coded Square 32 QAMEb/N0 = 2.8 dB

TC coded Cross 32 QAM Eb/N0 = 2.5 dB

TC coded Square 32 QAM Eb/N0 = 3.8 dB

RSC coded Cross 32 QAM Eb/N0 = 10 dB

RSC coded Square 32 QAM Eb/N0 = 11 dB

Table 2.6: Summary table for the simulation results of Fig. 2.19, whereNR = 2 RAs are

employed. The coded schemes are listed according to descending order of complexity.

TheEb/N0 results are recorded at a BER level of10−5.

marized according to the simulation results of Fig. 2.19 is presented in Table 2.6, where only the

Cross 32QAM constellation and the Square 32QAM constellation seen in Fig. 2.19 are summa-

rized. This is because the Star 32QAM schemes and their Cross32QAM counterparts exhibit a

similar performance and complexity. Table 2.6 demonstrates plausible trend that the performance

attained may degrade as the system complexity is reduced.

The modulation and channel coding schemes introduced in this chapter constitute the most

fundamental elements in communication systems. The algorithms of this chapter will be widely

referred throughout this report. For example, the reduced-complexity soft PSK/QAM detectors

proposed in this chapter may benefit a diverse variety of communication systems. As mentioned

before, the linear MIMO receivers [13,14,75] as well as orthogonal STBC detectors [177,178] may

directly invoke our proposed PSK/QAM detection algorithms. Similarly, linear receivers designed

for beamforming [267] or for CDMA Multiple-User Detection (MUD) [75] that have a similar

form to linear MIMO receivers may also employ our reduced-complexity PSK/QAM detection

algorithms. Furthermore, noncoherent receivers [127, 132, 136, 154] for differential PSK/QAM

schemes may also have their detection complexity reduced byapplying our proposed method. We

will continue to discuss some of the selected techniques in the following chapters.



Chapter3
Noncoherent Detection for DPSK

3.1 Introduction

The coherent detection techniques introduced in Chapter 2 rely on the availability of Channel State

Information (CSI) knowledge at the receiver. To elaborate alittle further, when the fading channels

remain constant over several transmission frame periods, which may be termed as Quasi-Static (QS)

fading, accurate channel estimation becomes feasible withthe aid of training based channel esti-

mation [99, 268]. This Channel Estimator (CE) effectively takes samples of the fading channels

envolope/phase by observing the received pilot samples, which are periodically sent by the trans-

mitter and also known by the receiver. In order to avoid the associated system throughput reduction

imposed by the pilot overhead, blind CEs allow the coherent receiver to process the received sig-

nal without known pilot samples [269, 270]. By contrast, semi-blind CEs rely on a significantly

reduced number of pilot symbols [271, 272] but typically impose a high estimation complexity. It

is demonstrated in [98] that the MSE between the fading channel matrix and its estimate at the

coherent receiver may be minimized by the aforementioned three CEs in QS fading channels.

However, when the fading channel varies potentially for each consecutive transmitted symbol,

which may be termed as rapid fading, the resultant inaccurate channel estimation may substantially

deteriorate the coherent receiver’s performance. More explicitly, as the Doppler frequency is in-

creased, the Pilot Symbol Assisted Modulation (PSAM) [1] conceived for estimating the fading has

to reduce the pilot spacing in order to sample the fading channels more frequently. This implies

that more transmission power may be dedicated to the pilot symbols instead of the data-carrying

symbols. Furthermore, as the temporal correlation betweenthe fading samples becomes weaker,

the accuracy of pilot-based channel estimation degrades, which may result in an unavoidable per-

formance loss for all coherent schemes.

In order to mitigate this problem, low-complexity noncoherently detected differential schemes

may be considered. More explicitly, Fig. 3.1 portrays the schematic of Differential Phase Shift

Keying (DPSK) transmitter and its noncoherent receiver relying on Conventional Differential De-
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Figure 3.1: The schematic of DPSK transmitter and Conventional Differential Detection

(CDD) aided DPSK receiver.

tection (CDD). The differential encoder of Fig. 3.1 modulates its data-carrying symbolxn−1 onto

the phase changes between every pair of consecutive transmitted symbol, namelysn−1 and sn.

As a result, the CDD portrayed in Fig. 3.1 may recover the source information by observing

the phase change between every pair of consecutive receivedsamplesYn−1 and Yn. The fam-

ily of DPSK schemes was originally proposed for avoiding false phase locking in AWGN chan-

nels [7, 115, 119, 273], and since then numerous noncoherentreceivers have been developed to

eliminate the need for channel estimation for transmissionover fading channels.

In the absense of channel estimation, the CDD portrayed in Fig. 3.1 generally suffers from a

3 dB performance penalty, while upon increasing the Dopplerfrequency a pronounced irreducible

error floor is formed. Hence Multiple-Symbol Differential Detection (MSDD) was proposed for

DPSK in [7, 113, 114] in order to reduce the performance penalty imposed. Briefly, the MSDD

observesNw consecutive received samples{Yn−t}Nw−1
t=0 and makes a joint decision on(Nw − 1)

data-carrying symbols{xn−t}Nw−1
t=1 . The price paid is that the MSDD complexity increases expo-

nentially with Nw, because the(Nw − 1) data-carrying symbols have a total number ofM(Nw−1)

joint combinations. In order to mitigate this problem, low-complexity Decision-Feedback Differ-

ential Detection (DFDD) was introduced based on two different approaches. The first approach

proposed in [119,121] makes use of the same decision metric as MSDD, where the first(Nw − 2)

data-carrying symbols{x̂n−t}Nw−1
t=2 are detected as part of the previous DFDD windows, and the

current DFDD window is only responsible for detecting a single symbolxn−1. The second ap-

poach proposed in [120, 121, 126] relies on blind channel estimation based on both the previous

received samples{Yn−t}Nw−1
t=1 as well as on the previous symbol decisions{x̂n−t}Nw−1

t=2 , and then

the estimated fading channel is utilized for detecting the latest data-carrying symbolxn−1. Interest-

ingly, it was demonstrated in [121] that these DFDD methods are equivalent for DPSK operating

in Rayleigh fading channels. However, the DFDD’s imperfectdecision feedback results in a per-

formance loss compared to MSDD. In order to maintain the optimum MSDD performance at a

reduced detection complexity, Multiple-Symbol Differential Sphere Detection (MSDSD) was pro-

posed in [127], where the problem of optimizing the MSDD decision metric is transformed into a

shortest-vector problem [12], so that the Sphere Decoder (SD) may be invoked for MSDD. This

concept is reminiscent of the SD aided V-BLAST [10,274–276]philosophy.

Similar to ML detection aided V-BLAST, MSDD jointly detectsmultiple independently faded
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symbols, which implies that the MSDD’s improved degree of freedom may result in a beneficial it-

eration gain, when the MSDD is invoked in turbo detection. Therefore, soft-decision-aided MSDD

conceived for coded DPSK was proposed and analyzed in [114].Similarly, soft-decision-aided

DFDD was designed for coded DPSK schemes in [122,125,136]. Furthermore, soft-decision-aided

MSDSD conceived for coded DPSK using the Max-Log-MAP detector was proposed in [132]. All

these aforementioned developments facilitate the employment of turbo detection by exchanging

extrinsic soft-information between the noncoherent detector and the channel decoder, which po-

tentially facilitates attaining a near-capacity performance for coded DPSK systems. However, the

objective of approaching the optimum noncoherent performance bound at a further reduced com-

plexity continues to elude researchers at the time of writing. Our goal in this chapter is to provide a

performance comparison between the coherent and noncoherent schemes at different Doppler fre-

quencies in order to characterize their pros and cons in specific scenarios. Against this background,

the novelty of this chapter may be summarized as follows:

1. We further extend the classic MSDSD aided uncoded DPSK [127] to the case of employing

multiple Receive Antennas (RAs)NR ≥ 1, while maintaining a low complexity for the

SD’s Schnorr-Euchner [237] search strategy. More explicitly, the MSDSD conceived for

multiple antennas aided differential schemes in [277] requires us to evaluate and sort allM

constellation points for each SD index. A similar problem arises when we employ multiple

RAs for MSDSD aided uncoded DPSK [127]. However, a simple decorrelating operation

may be introduced before invoking the Schnorr-Euchner search strategy, so that the SD may

first visit the specific constellation point that are near thedecorrelated variable. Then the rest

of the constellation points may be visited in a zig-zag fashion, if required, which is similar to

the original case ofNR = 1 in [127].

2. As demonstrated in Sec. 2.3.2.4, the Max-Log-MAP algorithm imposes a modest, but non-

negligible performance loss compared to the near-optimum Approx-Log-MAP algorithm.

Therefore, we propose to modify the output of the soft-decision-aided MSDSD proposed

in [132], where multiple candidates may be produced by the SDso that the Approx-Log-

MAP may be implemented. Our simulation results demonstratethat the Approx-Log-MAP

aided MSDSD matches the near-optimum detection capabilityof the Approx-Log-MAP

aided MSDD.

3. When thea priori LLRs gleaned from a channel decoder are taken into account bythe soft-

decision-aided MSDSD in [132], the SD’s Schnorr-Euchner [237] search strategy once again

requires us to sort a total number ofM probability metrics according to havingM constella-

tion points. This is because the channel decoder is unaware of the specific transmitted DPSK

symbol, hence the decision variables that were used by the MSDSD for detecting the un-

coded DPSK symbols cannot be directly employed for coded DPSK detection. However, as

discussed in Chapter 2, a soft-decision-aided detector does not have to visit all constellation

legitimate points for finding the optimum probability metric. Indeed, the reduced-complexity
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design proposed in Chapter 2 may be adapted for the Schnorr-Euchner search strategy of

MSDSD in [132], where the optimum candidate may be found by visiting a reduced-size

subset of constellation points, and then the rest of the constellation points may be visited in

a zig-zag fashion, if needed. Therefore, since the MSDSD proposed in [132] substantially

reduces the MSDD complexity because of the SD’s advantage ofvisiting a reduced number

of constellation points within the sphere radius, our proposed MSDSD aided coded DPSK

arrangement exhibits a further reduced detection complexity due to the fact that the number

of constellation points visited by the SD is reduced.

4. Furthermore, we provide a discussion on the important subject of coherent versus nonco-

herent detection. More explicitly, numerous channel estimation techniques are capable of

acquiring accurate CSI knowledge at the coherent receiver,when fading channels fluctu-

ate relatively slowly. However, as the Doppler frequency increases, the estimated CSI may

severely deviate from the true CSI. As a result, coherent receivers relying on realistic im-

perfect CSI suffer from an inevitable performance loss. We will demonstrate that this prob-

lem becomes particularly serious for soft-decision-aidedcoherent detectors, because they are

likely to produce extrinsic LLRs exhibiting a poor integrity. This implies that the resultant

LLRs may severely deviate from the LLR definition introducedin Sec. 2.3.2.4. We will con-

firm that coherent schemes may enjoy indeed, a substantial performance advantage in slowly

fluctuating fading channels, while noncoherent schemes employing MSDSD may be deemed

as a more suitable candidate for turbo detection aided codedDPSK systems operating at high

Doppler frequencies.

The rest of this chapter is organized as follows. The noncoherent receivers conceived for un-

coded DPSK are summarized in Sec. 3.2, where the CDD, MSDD, MSDSD and DFDD schemes

are detailed. The soft-decision-aided noncoherent detectors conceived for coded DPSK are pre-

sented in Sec. 3.3, where both the Approx-Log-MAP aided MSDSD and the reduced-complexity

MSDSD are proposed. Sec. 3.4 presents a summary of our performance comparisons between the

coherent and noncoherent schemes. The Chapter is concludedin Sec. 3.5.

3.2 Uncoded DPSK

In this section, hard-decision-aided noncoherent detectors conceived for uncoded DPSK are intro-

duced. The low-complexity CDD aided uncoded DPSK scheme is similar to the coherent detection

aided uncodedMPSK arrangement introduced in Sec. 2.2. The CDD uses the previous received

sampleYn−1 as a reference for detecting the data-carrying symbolxn−1, which imposes a perfor-

mance loss. The MSDD scheme improves the noncoherent receiver’s performance by eliminat-

ing its error-floor encountered at high Doppler frequencies, albeit at the cost of an exponentially

increasing complexity, as the detection-window width is increased. Fortunately, the MSDSD is

capable of mitigating the excessive MSDD complexity without imposing any performance loss.
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The DFDD is capable of bridging the gap between the coherent and noncoherent schemes, where

blind channel estimation is performed with the aid of the previous received samples and previous

decisions. However, DFDD still suffers from a potential error propagation problem, hence its per-

formance is sub-optimal compared to the MSDD. We will continue by demonstrating these features

in the following sections.

3.2.1 Hard-Decision-Aided CDD Conceived for Uncoded DPSK

The structure of a DPSK’s transmitter and its CDD aided DPSK receiver is portrayed in Fig. 3.1.

For anM-ary DPSK scheme, the transmitter firstly maps BPS= log2 M source bits{bk}BPS
k=1 to an

MPSK symbolxm = exp(j 2π
M m̌), where the phasor indexm = bin2dec(b1 · · · bBPS) is the Gray-

coded indexm̌. Following MPSK mapping, the DPSK-related differential encoding operation of a

single Transmit Antenna (TA) may be performed as:

sn =

{
1, n = 1

xn−1sn−1, n > 1
, (3.1)

wheresn is also drawn from the sameMPSK constellation, as that introduced in Fig. 2.4 of Chap-

ter 2. Furthermore, the signal received by theNR RAs may also be modelled by Eq. (2.1).

If the Rayleigh fading channel is Quasi-Static (QS), i.e. wehaveHn = Hn−1 over a block of

TQS symbol periods, then the received signal matrix of Eq. (2.1)may be further extended as:

Yn = xn−1sn−1Hn + Vn

= xn−1(Yn−1 − Vn−1) + Vn

= xn−1Yn−1 + Ṽn,

(3.2)

where the equivalent noise term̃Vn = −xn−1Vn−1 + Vn is also Gaussian distributed with a zero

mean and a variance of2N0.

Similar to the low-complexity coherentMPSK detector of Eq. (2.4), the ML estimation of the

data symbolxn−1 based on the equivalent received signal model of Eq. (3.2) may be formulated

as [8]:

x̂n−1 = arg min
xm∈x

‖Yn − xn−1Yn−1‖2

= arg min
xm∈x

∣∣zCDD
n−1 − xn−1

∣∣2 ,
(3.3)

where the CDD decision variable is given by the decorrelating operation as:

zCDD
n−1 = YnYH

n−1. (3.4)

Moreover, the differences between‖Yn − xn−1Yn−1‖2 = ‖Yn‖2 + ‖Yn−1‖2 − 2ℜ(x∗n−1YnYH
n−1)

and
∣∣zCDD

n−1 − xn−1

∣∣2 =
∣∣zCDD

n−1

∣∣2 + |xn−1|2 − 2ℜ(x∗n−1zCDD
n−1 ) in Eq. (3.3) are all constants.

Upon obtaining the decision variablezCDD
n−1 of Eq. (3.4), the regularMPSK demapper of Eq. (2.9)

may be formulated as:

x̂n−1 = exp(j 2π
M

ˆ̌m), where ˆ̌m = ⌊ M
2π ∠zCDD

n−1 ⌉. (3.5)
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Figure 3.2: The arrangement of the observation windows.

Since the equivalent AWGN noise term̃Vn in Eq. (3.2) has a doubled noise power of2N0,

the CDD aided DPSK scheme generally exhibits the widely-known 3 dB performance loss com-

pared to its coherent counterpart in QS fading channels. Moreover, the continuous fading requires

Hn 6= Hn−1, which introduces an even more severe performance loss for low-complexity CDD.

Therefore, in the next section, we introduce the more advanced MSDD, which is capable of miti-

gating the error floor of CDD that is often encountered in rapidly fluctuating high-Doppler fading

channels.

3.2.2 Hard-Decision-Aided MSDD Conceived for Uncoded DPSK

Again, MSDD aims for improving the performance of CDD by exploiting the temporal correlation

of the fading channels overNw observations. The observation windows are portrayed in Fig. 3.2,

where NOL denotes the number of samples that are overlapped by the consecutive observation

windows. We normally haveNOL = 1 for MSDD, so that all the data symbols may be explicitly

detected by MSDD.

Therefore, theNw received signal blocks of Eq. (2.1) may be modelled by MSDD as[113,114,

121,127]:

Y = SH + V, (3.6)

where the matrices are given by:

Y =
[
YT

n , YT
n−1, · · · , YT

n−Nw+1

]T
, S = diag{[sn, sn−1, · · · , sn−Nw+1]} ,

H =
[
HT

n , HT
n−1, · · · , HT

n−Nw+1

]T
, V =

[
VT

n , VT
n−1, · · · , VT

n−Nw+1

]T
.

(3.7)

Without any confusion, we drop the time indexn, and we always use the notations of the first

MSDD window as:

Y =
[
YT

Nw
, YT

Nw−1, · · · , YT
1

]T
, S = diag{[sNw , sNw−1, · · · , s1]} ,

H =
[
HT

Nw
, HT

Nw−1, · · · , HT
1

]T
, V =

[
VT

Nw
, VT

Nw−1, · · · , VT
1

]T
.

(3.8)

We note that the matricesY, H andV are of size(Nw × NR), while the transmitted signals matrix

S has(Nw × Nw) elements. Furthermore, since the first transmitted symbols1 in S is a common

phase rotation of the following symbols{st}Nw
t=2, the MSDD’s received signal model of Eq. (3.6)
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may be rewritten as1:

Y = S̄H̄ + V, (3.9)

where thevth diagonal element in̄S is given by:

s̄v = sv · s∗1 =

{
1, n = 1

xv−1s̄v−1 = ∏
v−1
t=1 xt, n > 1

, (3.10)

while thevth row in H̄ is given byH̄v = s1Hv.

The MSDD aims for maximizing the followinga posteriori probability over all candidates

{S̄i}M(Nw−1)−1
i=0 :

p
(

S̄i|Y
)

=
p
(
Y | S̄i

)
p(S̄i)

∑∀S̄i p (Y | S̄i) p(S̄i)
, (3.11)

where thea priori probability{p(S̄i)}M(Nw−1)−1
i=0 may be assumed to be a constant of1

M(Nw−1) for the

equiprobable variable{S̄i}M(Nw−1)−1
i=0 . Furthermore, the conditional probability{p

(
Y | S̄i

)
}M(Nw−1)−1

i=0

in Eq. (3.11) may be expressed as:

p
(

Y | S̄i
)

=
exp

{
−rvec(Y) · R−1

YY · [rvec(Y)]H
}

πNR Nw det(RYY)
, (3.12)

where the operation rvec(Y) forms a(1× NRNw)-element row vector by taking the rows ofY one-

by-one. We note that the conditional probability{p(Yn|sm)}M−1
m=0 of Eq. (2.3) invoked by coherent

receivers is given by the PDF of the Gaussian-distributed AWGN matrix Vn of Eq. (2.1). By

contrast, the conditional probability{p
(
Y | S̄i

)
}M(Nw−1)−1

i=0 of Eq. (3.12) invoked by noncoherent

receivers is given by the PDF of the multi-variate Gaussian-distributed MSDD’s received signal

matrix Y of Eq. (3.6), where the MSDD’s Rayleigh fading matrixH of Eq. (3.6) (or equivalently

H̄ of Eq. (3.9)) does not have to be known by noncoherent receivers [278].

The MSDD’s received signal matrixY of Eq. (3.9) is vectorized in Eq. (3.12) in order to form

a vector of Gaussian-distributed variables. The equivalent signal model is given by:

rvec(Y) = rvec(H̄) · (S̄ ⊗ INR
) + rvec(V), (3.13)

where the operation⊗ represents the Kronecker product. As a result, the correlation matrix RYY

in Eq. (3.12) may be formulated as:

RYY = E
{
[rvec(Y)]H · rvec(Y)

}

=
[
(S̄i)H ⊗ INR

]
E
{
[rvec(H̄)]

H · rvec(H̄)
} (

S̄i ⊗ INR

)
+ E

{
[rvec(V)]H · rvec(V)

}

=
[
(S̄i)H ⊗ INR

]
(RH̄H̄ + RVV)

(
S̄i ⊗ INR

)
,

(3.14)

1We note thatY in Eq. (3.6) stores received signal vectors in a reverse order compared to the one seen in [127,132].

As a result, the MSDSD introduced in the next section may detect the transmitted symbols according to their differential

encoding order, i.e. we havēsv = xv−1 s̄v−1, instead of detecting them backwards ass̄v = x∗v s̄v+1 in [127,132].
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where the transmission matrix̄S of Eq. (3.6) is a unitary matrix when DPSK is employed, hence

we have{S̄i(S̄i)H = INw
}M(Nw−1)−1

i=0 . The fading channel’s correlation matrixRH̄H̄ in Eq. (3.14)

is given by:

RH̄H̄ = E
{
[rvec(H̄)]

H · rvec(H̄)
}

= Rhh ⊗ INR
, (3.15)

where the fading channel’s characteristic correlation matrix2 Rhh may be expressed as:

Rhh = Toeplitz([ ρ0 ρ1 · · · ρNw−1 ])

=




ρ0 ρ1 · · · ρNw−1

ρ1 ρ0 · · · ρNw−2

...
...

. ..
...

ρNw−1 ρNw−2 · · · ρ0




.
(3.16)

The notation Toeplitz([ ρ0 ρ1 · · · ρNw−1 ]) refers to the symmetric Toeplitz matrix generated

from the vector[ ρ0 ρ1 · · · ρNw−1 ]. For the case of QS fading channels associated with

TQS > Nw, we have{ρv = 1}Nw−1
v=0 . For the case of continuous fading channels, we have{ρv =

J0(2π fd · v)}Nw−1
v=0 according to the Rayleigh fading channel model characterized by Clarke [279]

and Jakes [280], whereJ0(·) is the zero-order Bessel function of the first kind, whilefd denotes

the normalized Doppler frequency. In a mobile communication system, the normalized Doppler

frequency characterizes the fading rate of the channels as:

fd =
v · fc

c · fs
, (3.17)

wherev, fc, c and fs refer to the velocity of the mobile receiver, the carrier frequency, the speed of

light and the sampling rate, respectively. As a result, the cross correlations{ρv}Nw−1
v=1 in Eq. (3.15)

may become relatively low in high-mobility scenarios, in which case the accurate channel estima-

tion required by coherent receivers is severely challenged. Moreover, the AWGN correlation matrix

RVV in Eq. (3.21) is given by:

RVV = E
{
[rvec(V)]H · rvec(V)

}
= Rvv ⊗ INR

, (3.18)

where the AWGN characteristic correlation matrixRvv is simply given by:

Rvv = N0 · INw
. (3.19)

As a result, the correlation matrixRYY of Eq. (3.14) may be expressed as:

RYY =
[
(S̄i)H ⊗ INR

]
(C ⊗ INR

)
(

S̄i ⊗ INR

)

=
[
(S̄i)HCS̄i

]
⊗ INR

,
(3.20)

where the channel’s characteristic correlation matrixC is given by:

C = Rhh + Rvv. (3.21)

2We note that the fading channel’s characteristic correlation matrixRhh is a simplified representation of the fading

channel’s correlation matrixRH̄H̄. They are equal only whenNR = 1 RA is used as in [127,132].
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Therefore, the determinant of the correlation matrixRYY seen in Eq. (3.12) is a constant ofdet(RYY) =
{

det
[
(S̄i)H · det(C) · det(S̄i)

]}NR = det(C)NR for DPSK schemes.

In summary, the MSDD that maximizes thea posterioriprobability of Eq. (3.11) may be for-

mulated as:

Ŝ = arg min
∀S̄i

rvec(Y) · R−1
YY · [rvec(Y)]H (3.22a)

= arg min
∀S̄i

[vec(YH)]H ·
{[

(S̄i)HC−1S̄i
]
⊗ INR

}
· [vec(YH)] (3.22b)

= arg min
∀S̄i

[vec(YH)]H · vec

{
YH
[
(S̄i)HC−1S̄i

]T
}

(3.22c)

= arg min
∀S̄i

tr
{

YYHS̄iC−1(S̄i)H
}

(3.22d)

= arg min
∀S̄i

∥∥∥L(S̄i)HY

∥∥∥
2

. (3.22e)

In more details, Eq. (3.22b) is obtained according to(A ⊗ I)−1 = A−1 ⊗ I, and the operation

vec(YH) forms a(NRNw × 1)-element column vector by taking the columns in matrixYH one-by-

one. Eq. (3.22c) is obtained according to(B ⊗ I) · vec(A) = vec(ABT). Eq. (3.22d) is obtained

according to[vec(A)]Hvec(B) = tr(AHB), while both S̄i and C are symmetric, i.e. we have

(S̄i)T = S̄i andCT = C. The relationships leading to these results may be found in [281]. Fur-

thermore, the lower triangular matrixL in Eq. (3.22e) is obtained from the Cholesky decomposition

of the inverted channel correlation matrix, i.e. we haveC−1 = LLH.

Recall that both the coherent detection of Eq. (2.4) and CDD of Eq. (3.3) have a low-complexity

of orderO(M) and their corresponding implementations of Eq. (2.9) and Eq. (3.5) directly search

for the optimum constellation point, which is located closest to the decision variable. However,

the MSDD of Eq. (3.22) imposes a high detection complexity oforder O(M(Nw−1)), where all

candidates{S̄i}M(Nw−1)−1
i=0 have to be visited and compared. Therefore, in order to mitigate the

excessive MSDD complexity, MSDSD which incorporates SD into the MSDD of Eq. (3.22) is

introduced in the next section.

3.2.3 Hard-Decision-Aided MSDSD Conceived for Uncoded DPSK

It is widely recognized that a V-BLAST MIMO system, which hasNT TAs for transmittingMPSK/QAM

symbols has an exponentially increasing ML detection complexity of O(MNT). This trend is simi-

lar to that of the MSDD as a function of the window-width. Therefore, the SD that is often invoked

for V-BLAST MIMO detection [10, 274–276] may be incorporated into the MSDD in order to

substantially reduce the MSDD’s complexity, while the optimum MSDD performance may still be

retained, provided that the initial SD’s search radius is initialized to a sufficiently large value. In
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order to facilitate SD, the MSDD metric of Eq. (3.22) may be extended as:

∥∥∥LHS̄HY

∥∥∥
2
=

Nw

∑
v=1

∥∥∥∥∥
v

∑
t=1

lNw−t+1,Nw−v+1s̄∗t Yt

∥∥∥∥∥

2

=
Nw

∑
v=1

∥∥∥∥∥
v

∑
t=1

s̄∗t Ut,v

∥∥∥∥∥

2

,

(3.23)

where we define the vectors{{Ut,v = lNw−t+1,Nw−v+1Yt}v
t=1}Nw

v=1 which are invariant over the

variables{s̄v}Nw
v=2, while the superscripti ∈ {0, · · · , M(Nw−1) − 1} for S̄i is omitted for notational

convenience. Eq. (3.23) implies that MSDD may be regarded asa shortest-vector problem [12],

which may be solved by SD [127]. More explicitly, the SD may beinvoked to examine a limited,

but high-probability decision candidate set{s̄v}Nw
v=2, which falls into the decoding sphere as:

Nw

∑
v=1

∥∥∥∥∥
v

∑
t=1

s̄∗t Ut,v

∥∥∥∥∥

2

≤ R2, (3.24)

whereR refers to the SD’s SNR-dependent radius. According to Eq. (3.24), we may define the

Partial Euclidean Distance (PED) as [127]:

dv =
v

∑
v̄=1

∥∥∥∥∥
v̄

∑
t=1

s̄∗t Ut,v̄

∥∥∥∥∥

2

= dv−1 + ∆v−1,

(3.25)

and the associated PED increment throughout the search as:

∆v−1 =

∥∥∥∥∥
v

∑
t=1

s̄∗t Ut,v

∥∥∥∥∥

2

=

∥∥∥∥∥s̄∗v−1Uv,v + xv−1

(
v−1

∑
t=1

s̄∗t Ut,v

)∥∥∥∥∥

2

.

(3.26)

Observe in Eqs. (3.25) and (3.26) that for a specific indexv, all the previously tested transmitted

symbols{s̄t}v−1
t=1 have been decided, and the current SD search may opt for the best candidate for

representingxv−1, which is supposed to minimize∆v−1. In summary, the procedures of MSDSD

may be summarized as [12]:

Algorithm 3.1: Procedures of Hard-Decision-Aided MSDSD Conceived for Uncoded

DPSK.

(1) Initialize the SD’s radiusR to a sufficiently large value. For the initial SD index of

v = 1, the PEDd1 = ‖s̄∗1U1,1‖2 is a constant, which does not affect the search result,

and hence we may fixd1 = 0. Then the SD search may start with the index ofv = 2.

(2) When the SD visits a specific indexv for the first time, the Schnorr-Euchner [237] search

strategy is invoked, where theM hypotheticalMPSK constellation points forxv−1 are
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ordered according to the monotonically increasing values of ∆v−1 of Eq. (3.26). The first

decision candidate forxv−1 is stored and the corresponding PED increment value∆v−1

is used for updating PEDdv of Eq. (3.25).

(3) The SD increases the indexv, and Step (2) is repeated. Oncev = Nw is reached, the

radius is updated byR = dNw , and a validS̄ is found. The SD may re-start its search

with the decreased index ofv = Nw − 1.

(4) When the SD visits a specific indexv for the (nv−1 + 1)-st time (0 < nv−1 ≤ (M −
1)), according to the previously defined Schnorr-Euchner search order, the(nv−1 + 1)-

st hypotheticalMPSK constellation point candidate forxv−1 is visited, and then the

corresponding∆v−1 anddv are updated.

(4.1) If the updated PED valuedv lies outside the spheredv > R or if there is no more

new candidate to be visited as specified bynv−1 > (M− 1), then the SD decreases

its indexv, and Step (4) is repeated.

(4.2) Otherwise, the SD increases its indexv, and then Step (3) is repeated.

(5) The SD terminates whenv = 2 is reached again without finding any other validS̄ that

lies inside the search sphere.

As demonstrated in Algorithm 3.1, the Schnorr-Euchner search strategy plays an essential role

in MSDSD. To elaborate a little further, the Schnorr-Euchner search strategy tailored for MSDSD

aided uncoded DPSK aims for finding the best phasor forxv−1, which has the lowest PED incre-

ment value∆v−1, and then the remaining phasor candidates may be visited in azig-zag fashion

that their corresponding∆v−1 value increases monotonically. WhenNR = 1 RA is used, it was

demonstrated in [127] that the best phasor index is given bym̌v−1 = ⌊pv−1⌉, where we have

pv−1 = M
2π∠(−s̄∗v−1Uv,v/ ∑

v−1
t=1 s̄∗t Ut,v). If the phase index̌mv−1 was rounded down frompv−1,

i.e. we have the condition ofpv−1 − m̌v−1 ≥ 0, then the SD visits the remaining phasors according

to the steps of̌mv−1 = m̌v−1 + 1, m̌v−1 = m̌v−1 − 2, , m̌v−1 = m̌v−1 + 3, etc. By contrast, if the

phase index̌mv−1 was rounded up frompv−1, i.e. we have the condition ofpv−1 − m̌v−1 < 0, then

the SD visits the remaining phasors according to the steps ofm̌v−1 = m̌v−1 − 1, m̌v−1 = m̌v−1 + 2,

m̌v−1 = m̌v−1 − 3, etc.

However, for the more general case of usingNR > 1 RAs, {{Ut,v}v
t=1}Nw

v=1 in Eq. (3.26)

become vectors. As a result, we cannot directly obtainpv−1 as we did for the case ofNR = 1 seen

in [127]. In order to mitigate this problem, we further interpret the PED increment of Eq. (3.26) in

the following form:

∆v−1 =
∥∥YMSDD

v−1 − xv−1HMSDD
v−1

∥∥2
, (3.27)

where theNR-element vectorsYMSDD
v−1 = s̄∗v−1Uv,v andHMSDD

v−1 = −∑
v−1
t=1 s̄∗t Ut,v may be inter-

preted as the equivalent ”received signal vector” and the equivalent ”fading channel vector” for
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detecting the variablexv−1, because the PED increment∆v−1 of Eq. (3.27) becomes similar to the

specific form of the coherent detector’s decision metric of Eq. (2.4). This leads us to the following

MSDSD decision variable:

zMSDSD
v−1 = −s̄∗v−1Uv,v

(
v−1

∑
t=1

s̄∗t Ut,v

)H

= YMSDD
v−1 (HMSDD

v−1 )H,

(3.28)

which may be directly used for detectingxv−1. More explicitly, similar to the case ofNR = 1 seen

in [127], the best phasor index is given bym̌v−1 = ⌊pv−1⌉, where we havepv−1 = M
2π∠zMSDSD

v−1 ,

and the Schnorr-Euchner search strategy may visit the remaining phasors in a zig-zag order accord-

ing to the increasing value of∆v−1 of Eq. (3.27), which may be completed as:

∆v−1 = ∆v−1 + Cv−1, (3.29)

where the equivalent PED increment is defined as:

∆v−1 = −2ℜ(x∗v−1zMSDSD
v−1 ), (3.30)

while the constantCv−1 in Eq. (3.29) is given by:

Cv−1 =
∥∥YMSDD

v−1

∥∥2
+
∥∥HMSDD

v−1

∥∥2
. (3.31)

We note that comparing the various PED increments∆v−1 of Eq. (3.26) is equivalent to comparing

∆v−1 of Eq. (3.30) over the entire range of the variablexv−1, which is also equivalent to comparing

∆′
v−1 = |zMSDSD

v−1 − xv−1|2 = |zMSDSD
v−1 |2 + |xv−1|2 + ∆v−1, where all the differences are constants.

An example of MSDSD aided DQPSK is portrayed in Fig. 3.3, which demonstrates that MS-

DSD is capable of acquiring the MSDD’s ML result, while the total number of constellation points

visited by MSDSD is substantially reduced compared to MSDD.Furthermore, the pseudo-code for

hard-decision-aided MSDSD conceived for uncoded DPSK is summarized in Table 3.1, which was

adapted and modified from [127] in order to accommodate the more general case ofNR ≥ 1.

More explicitly, Fig. 3.3-a) shows that the “findBest” subfunction of Table 3.1 opts for obtaining

the best phasor candidate by using the decision variablezMSDSD
v−1 of Eq. (3.28), when the SD visits

the indicesv = 2 andv = 3 for the first time in Step1© and Step2©, respectively. The SD radius

is updated asd = 7.497, when the SD index reachesv = Nw in Step 2© of Fig. 3.3-a). Then the

SD index is decreased tov = 2 in Step 3©, and the second-best phasor candidate is obtained by the

“findNext” subfunction of Table 3.1, which has a PED value ofd2 = 13.678 as seen in Fig. 3.3-a).

Since this new PED value is higher than the SD radius, the SD decreases its index tov = 1 and

terminates the search. It can be seen in Fig. 3.3-a) that the MSDSD does not visit all the MSDD

candidates, but the SD output radiusd = 7.497 is indeed the smallest amongst all the legitimate

EDs at indexv = 3. Fig. 3.3-b) further portrays the corresponding constellation points that are

visited by the SD’s Schnorr-Euchner search strategy in a zigzag fashion at SD indexv = 2. Once

again, the “findBest” subfunction of Table 3.1 is invoked forfinding the best candidate, when the
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v=3

v=1

(condition: )

0011

−Find the best candidate:

−Find the next candidate:

10

01

the SD’s steps

0

paths that are visited by the SD

the SD’s decision

constellation points that are visited by the SD

paths that are not visited by the SD

constellation points that are not visited by the SD

PED increments labelled by Gray coded indices

24.204 3.076 34.806 13.678

a) Example of Hard−Decision−Aided MSDSD Conceived for DQPSK Detection (labelled with PED values)

the steps of SD evaluations

v=2

v=2

b) Example of QPSK constellation digram visited by Hard−Decision−Aided SD (v=2)

pv−1 − m̌v−1 > 0

∆1
v−1 = 3.076

∆1
v−1∆

3
v−1

∆1
v−1

∆3
v−1 = 13.678

1©

1©, 2©, 3©, · · ·

∆0,1,2,3
v−1

∆3
v−1 ∆0

v−1

∆2
v−1

∆1
v−1

7.497

2©

38.11448.665 71.39875.792 41.61534.789 40.781 67.83 50.169 57.188 59.95 71.465 23.18 34.691

3©

75.85

Figure 3.3: Example of hard-decision-aided MSDSD conceived for uncoded DQPSK

recorded at SNR=10 dB, where we haveNR = 2 and Nw = 3. The MSDSD hard-

decision-aided refers to Algorithm 3.1, which is detailed in the form of pseudo-code seen

in Table 3.1.

SD visits indexv = 2 for the first time, while the “findNext” subfunction is invoked to visit the

next candidate, when the SD re-visits indexv = 2. In this way, the SD does not have to visit all the

constellation points.

It is worth noting that for the special case ofNw = 2, the channel’s correlation matrix of

Eq. (3.21) is given by:

C =

[
ρ0 + N0 ρ1

ρ1 ρ0 + N0

]
, (3.32)

where we haveρ0 = 1 andρ1 ≤ 1. Therefore, according to Eq. (3.28), the MSDSD’s decision

variable for the special case ofNw = 2 is given by:

zMSDSD
1 = −U2,2UH

1,2

= −l1,1l2,1Y2YH
1

=
ρ1

(1 + N0)2 − ρ2
1

Y2YH
1 .

(3.33)

As a result, the angles of the MSDSD’s decision variablezMSDSD
1 of Eq. (3.33) and of the CDD’s

decision variablezCDD
1 = Y2YH

1 of Eq. (3.4) are exactly the same, owing to the fact that the factor
ρ1

(1+N0)2−ρ2
1

in Eq. (3.33) is always positive in the presence of non-zero AWGN N0 > 0. Therefore,

as indicated by the pseudo-code of Table 3.1, CDD may be implemented as MSDSD associated

with Nw = 2, where the MSDSD’s decision variable of Eq. (3.33) only has to be evaluated once,

while the findBest function in Table 3.1 only has to be evaluated once.
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function: [{x̂v−1}Nw
v=2] = MSDSD({{Ut,v}v

t=1}
Nw

v=1, M, Nw, R)

requirements: Constellations set is given by{xm ∈ x}M−1
m=0 . We havexm = exp(j 2π

M m̌), wherem is Gray codedm̌.
The SD’s search radiusR may be initialized to be a sufficiently large value.

1: d1 = 0 //initialize PED
2: s̄1 = 1 //initialize the first transmitted symbol
3: v = 2 //initialize SD search index
4: [m̌v−1, stepv−1, nv−1, zMSDSD

v−1 , Cv−1] = findBest({Ut,v}v
t=1, {s̄t}v−1

t=1 ) //visit the best child node
5: loop

6: ∆v−1 = Cv−1 − 2ℜ
[
exp(−j 2π

M m̌v−1) · zMSDSD
v−1

]
//update∆v−1 according to Eq. (3.29)

7: dv = dv−1 + ∆v−1 //update PED according to Eq. (3.25)
8: if dv < R

9: xv−1 = exp(j 2π
M m̌v−1) //update new child node

10: s̄v = xv−1 s̄v−1

11: if v 6= Nw

12: v = v + 1 //move up indexv
13: [m̌v−1, stepv−1, nv−1, zMSDSD

v−1 , Cv−1] //visit the best child node
= findBest({Ut,v}v

t=1, {s̄t}v−1
t=1 )

14: else
15: R = dNw

//update SD radius
16: {x̂v−1}Nw

v=2 = {xv−1}Nw
v=2 //update the optimum data symbols

17: do
18: if v == 2 return {x̂v−1}Nw

v=2 and exit //terminate SD for the case ofNw = 2
19: v = v − 1 //move down indexv
20: while nv−1 == (M − 1)
21: [m̌v−1, stepv−1, nv−1] = findNext (m̌v−1, stepv−1, nv−1) //visit the next child node
22: end if
23: else
24: do
25: if v == 2 return {x̂v−1}Nw

v=2 and exit //terminate SD whenv = 2 is reached
26: v = v − 1 //move down indexv
27: while nv−1 == (M − 1)
28: [m̌v−1, stepv−1, nv−1] = findNext (m̌v−1, stepv−1, nv−1) //visit the next child node
29: end if
30: end loop

subfunction: [m̌v−1, stepv−1, nv−1, zMSDSD
v−1 , Cv−1] = findBest({Ut,v}v

t=1, {s̄t}v−1
t=1 )

1: YMSDD
v−1 = s̄∗v−1Uv,v //updateYMSDD

v−1 according to Eq. (3.27)
2: HMSDD

v−1 = −(∑
v−1
t=1 s̄∗t Ut,v) //updateHMSDD

v−1 according to Eq. (3.27)
3: zMSDSD

v−1 = YMSDD
v−1 (HMSDD

v−1 )H //update decision variable of Eq. (3.28)
4: Cv−1 = ‖YMSDD

v−1 ‖2 + ‖HMSDD
v−1 ‖2 //update the constant of Eq. (3.31)

5: pv−1 = M
2π ∠zMSDSD

v−1 //update best child node
6: m̌v−1 = ⌊pv−1⌉
7: stepv−1 = sign(pv−1 − m̌v−1) //store the step size for the next child node
8: nv−1 = 0

subfunction: [m̌v−1, stepv−1, nv−1] = findNext (m̌v−1, stepv−1, nv−1)

1: m̌v−1 = m̌v−1 + stepv−1 //visit the next child node
2: stepv−1 = −stepv−1 − sign(stepv−1)
3: nv−1 = nv−1 + 1

Table 3.1: Pseudo-code for Hard-Decision-Aided MSDSD Conceived for Uncoded
DPSK.
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It may be expected that for each SD indexv, the distances between the hypothetical candidates’

PED increment values∆v−1 are sufficiently high in the high-SNR region, so that all the sub-optimal

candidates’ PED valuesdv may lie outside the spheredv > R. Consequently, Steps (2)-(4) may

not have to be repeated, which results in a prompt conclusionof the SD search. More specifically,

if the SD may only visit a total of(Nw − 1) constellation points, when the SD index increases from

v = 2 to v = Nw, and provided that the SD may only visit a total number of(Nw − 2) constellation

points, when the SD index decreases fromv = (Nw − 1) back tov = 2, the MSDSD’s complexity

lower bound may be closely approached in the high-SNR region.

Compared to the exponentially increasing complexity of MSDD of Eq. (3.22), the MSDSD

exhibits a substantially reduced linearly increasing complexity with respect toNw at high SNRs.

However, it is demonstrated in [214] that the average SD complexity obeys a polynomial function,

often approximately a cubic function, while [215] demonstrates that the SD complexity still in-

creases exponentially in the low SNR region. Therefore, in the next section, the classic DFDD that

has a fixed linearly increasing detection complexity is discussed further.

3.2.4 Hard-Decision-Aided DFDD Conceived for Uncoded DPSK

The DFDD may also rely on the MSDD decision metric of Eq. (3.22). The symmetric matrix

F = C−1 that appeared in Eq. (3.22) equals to its own transposeFT = F, which indicates that we

have{{ ft,v = fv,t}Nw
t=1}Nw

v=1. Consequently, the MSDD’s Euclidean Distance (ED) of Eq. (3.22)

may be extended as:

d = tr
(

FS̄HYYHS̄

)

=
Nw

∑
v=1

(
Nw

∑
t=1

fNw−v+1,Nw−t+1s̄∗t Yt

)
s̄vYH

v

=
Nw

∑
v=1

fNw−v+1,Nw−v+1 ‖Yv‖2 + 2ℜ
(

Nw

∑
v=1

v−1

∑
t=1

fNw−v+1,Nw−t+1s̄∗t s̄vYtY
H
v

)
,

(3.34)

which may be simplified as:

d′ = ℜ
(

Nw

∑
v=1

v−1

∑
t=1

fNw−v+1,Nw−t+1s̄∗t s̄vYtY
H
v

)
. (3.35)

Assuming that{ ˆ̄sv}Nw−1
v=1 are known from the previous search decisions{x̂v}Nw−2

v=1 , only the single

variables̄Nw has to be detected for the current decisionxNw−1. As a result, the constant parts ind′

that are associated with the indexv that ranged from 1 to(Nw − 1) may all be deleted, which leads

to the DFDD decision formulated as [121]:

x̂Nw−1 = arg min
xm∈x

ℜ
(

Nw−1

∑
t=1

f1,Nw−t+1s̄∗t xm s̄Nw−1YtY
H
Nw

)

= arg min
xm∈x

−ℜ
[
xm(zDFDD

Nw−1)
∗]

= arg min
xm∈x

|zDFDD
Nw−1 − xm|2,

(3.36)
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where the DFDD’s decision variable is given by:

zDFDD
Nw−1 = −

[(
Nw−1

∑
t=1

f1,Nw−t+1 ˆ̄s∗t Yt

)
ˆ̄sNw−1YH

Nw

]∗

= − ˆ̄s∗Nw−1YNw

(
Nw−1

∑
t=1

f1,Nw−t+1 ˆ̄s∗t Yt

)H

.

(3.37)

As a result, the optimum phasor index forx̂Nw−1 may be obtained by rounding the phase ofzDFDD
Nw−1

as:

x̂Nw−1 = exp(j 2π
M

ˆ̌m), where ˆ̌m = ⌊ M
2π ∠zDFDD

Nw−1⌉, (3.38)

which is similar to the low-complexity coherent detection of Eq. (2.9) and to the CDD detection

of Eq. (3.5). According to Eqs. (3.37) and (3.38), the DFDD only detects a single variablexNw−1

based on the previous decisions{ ˆ̄sv}Nw−1
v=1 within a DFDD window. Hence, the DFDD windows

should be overlapped byNOL = (Nw − 1) observations according to Fig. 3.2, so that all data

symbols may be explicitly detected.

Furthermore, compared to Eq. (3.28), the MSDSD’s decision variable forxNw−1 is given by:

zMSDSD
Nw−1 = − ˆ̄s∗Nw−1UNw,Nw

(
Nw−1

∑
t=1

ˆ̄s∗t Ut,Nw

)H

= −l1,1 ˆ̄s∗Nw−1YNw

(
Nw−1

∑
t=1

lNw−t+1,1 ˆ̄s∗t Yt

)H

,

(3.39)

where we havef1,Nw−t+1 = l1,1lNw−t+1,1 because of the relationship ofF = LLH. As a result,

the DFDD’s decision variablezDFDD
Nw−1 of Eq. (3.37) is equivalent to the MSDSD’s decision vari-

ablezMSDSD
Nw−1 associated with the SD index ofv = Nw. This implies that DFDD may be simply

implemented by MSDSD’s subfunction findBest in Table 3.1, where only the optimum candidate

associated with the fixed SD index ofv = Nw has to be known. Therefore, it may be expected that

DFDD exhibits a substantially lower complexity than MSDSD,but DFDD may suffer from error

propagation because of its idealized simplifying assumption of having a perfect decision-feedback

{ ˆ̄sv}Nw−1
v=1 .

Historically speaking, the literature has to a certain degree been dismissive of the family of

noncoherent schemes. Nonetheless, it was demonstrated in [120, 121, 126] that a MMSE Linear

Prediction (LP) based blind channel estimator is capable ofproviding a reference for coherently

detecting the data symbolsxNw−1, which was shown to be equivalent to DFDD [121]. Let us

elaborate a little further here in order to bridge the gap between coherent and noncoherent schemes.

First of all, the most recent received signal block within anobservation window may be modelled

as:

YNw = sNw HNw + VNw

≈ sNw ĤNw + VNw ,
(3.40)

where the reference fading vectorĤNw is output by a LP filter. More explicitly, the filter’s output

signal may be produced based on the previous received signalvectors{Yv}Nw−1
v=1 as well as on the
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previous decisions{ŝv}Nw−1
v=1 , which may be expressed as [120,121,126]:

ĤNw =
Nw−1

∑
v=1

wvYv/ŝv,

= wT(ŜN̄w)HYN̄w ,

(3.41)

wherew = [wNw−1, · · · , w1]
T represents the linear filter’s taps, while the decision-feedback ma-

trix ŜN̄w is given by the decisions concerningS of Eq. (3.8) eliminating elementsNw , while YN̄w is

given byY of Eq. (3.8) eliminatingYNw.

As a result, according to Eq. (3.40), the MSE Objective Function (OF) may be formulated as:

σ2
MSE = E

{∥∥YNw − sNw ĤNw

∥∥2
}

= E

{[
HNw + s∗Nw

VNw − wT(ŜN̄w)HYN̄w

] [
HNw + s∗Nw

VNw − wT(ŜN̄w)HYN̄w

]H
}

= 1 + N0 − 2E
{

HNw(YN̄w)HŜN̄w

}
· w + wT · E

{
(ŜN̄w)HYN̄w(YN̄w)HŜN̄w

}
· w

= 1 + N0 − 2eT
Nw

· w + wT · CNw−1 · w,

(3.42)

where the(Nw − 1)-element column vectoreNw and the(Nw − 1) × (Nw − 1)-element matrix

CNw−1 are defined as components of the channel correlation matrixC of Eq. (3.21) as:

C =

[
ρ0 + N0 eT

Nw

eNw CNw−1

]
. (3.43)

The MMSE solution based on Eq. (3.42) is given by∂σ2
MSE

∂w
= 0, which leads to the classic Wiener-

Hopf equation formulated as [125,126,136]:

w = C−1
Nw−1 · eNw , (3.44)

where the partial channel correlation matrixCNw−1 is Hermitian and positive-definite. Further-

more, the MSE of Eq. (3.42) is now a constant, which is given by:

σ2
MSE = 1 + N0 − eT

Nw
C−1

Nw−1eNw

= 1 + N0 − eT
Nw−1 · w.

(3.45)

Similar to the coherent receivers introduced in Chapter 2, the Linear Prediction-based Detec-

tor (LPD) aims for maximizing thea posterioriprobability of:

p(xm|YNw) =
p(YNw |xm)p(xm)

∀xm∈x p(YNw |xm)p(xm)
, (3.46)

where the conditional probability of receivingYNw with the aid of givenxm may be expressed as:

p(YNw |xm) =
1

πNR · σ2
MSE

exp

(
−‖YNw − xmsNw−1ĤNw‖2

σ2
MSE

)

∝
1

πNR · σ2
MSE

exp
(
−|zLPD

Nw−1 − xm|2
)

,

(3.47)
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while the candidates{xm}M−1
m=0 are assumed to be equiprobable, which is formulated as{p(xm) =

1
M}M−1

m=0 . Moreover, the new LPD decision variable in Eq. (3.47) is given by:

zLPD
Nw−1 = s∗Nw−1YNw(ĤNw)H/σ2

MSE

= s∗Nw−1YNw

(
Nw−1

∑
v=1

wv ŝ∗vYv

)H

/σ2
MSE.

(3.48)

We note that the only differences between−‖YNw − xmsNw−1ĤNw‖2/σ2
MSE = −‖YNw‖2/σ2

MSE −
‖ĤNw‖2/σ2

MSE + 2ℜ
{

(xm)∗s∗Nw−1YNw(ĤNw)H
}

/σ2
MSE and−|zLPD

Nw−1 − xm|2 = −|zLPD
Nw−1|2 −

1 + 2ℜ
{

(xm)∗zLPD
Nw−1

}
in Eq. (3.47) are the constants.

Furthermore, according to the channel correlation matrix interpreted by Eq. (3.43), the Her-

mitian matrix used by DFDD may be expressed based on the blockwise matrix inversion prop-

erty [281] as:

F = C−1 =

[
ǫ −ǫ · eT

Nw
· C−1

Nw−1

−ǫ · C−1
Nw−1 · eNw C−1

Nw−1 + ǫ · C−1
Nw−1 · eNw · eT

Nw
· C−1

Nw−1

]
, (3.49)

where we haveǫ =
(

1 + N0 − eT
Nw

· C−1
Nw−1 · eNw

)−1
= (σ2

MSE)−1. The first column ofC−1 in

Eq. (3.49) indicates that[ f2,1, · · · , fNw ,1]
T = −ǫw, which implies that we have{−wt/σ2

MSE =

fNw−t+1,1 = f1,Nw−t+1}Nw−1
t=1 . As a result, the DFDD’s decision variablezDFDD

Nw−1 of Eq. (3.37) and

the LPD’s decision variable ofzLPD
Nw−1 of Eq. (3.48) are exactly the same for DPSK in Rayleigh

fading channels. In other words, the DFDD introduced in thissection may be regarded as either the

low-complexity decision-feedback solution to MSDD or as a blind channel estimation aided data

detector.

3.2.5 Performance Results for Uncoded DPSK

Let us now discuss our simulation results in this section. Inorder to retain the ML detection

capability, all SDs implemented in this treatise are initialized with a sufficiently large sphere radius,

so that MSDSD may achieve exactly the same ML performance as MSDD.

Similar to the performance results of the coherent receivers analyzed in Sec. 2.4, the detection

complexities of CDD, MSDD, MSDSD and DFDD are characterizedin Table 3.2. We note that

unneccessary calculations are eliminated in practical implementations. For example, all theMPSK

constellation points may be pre-stored so that the repeatedcalculations such asexp(−j 2π
M m̌v−1) in

line 6 of Table 3.1 may be avoided. It may be observed in Table 3.2 that CDD and DFDD exhibit

a lower detection complexity compared to the ML MSDD/MSDSD.However, as discussed before,

CDD and DFDD may be regarded as special cases of MSDD/MSDSD, while CDD and DFDD are

expected to suffer from a performance penalty compared to MSDD/MSDSD. Moreover, Table 3.2

demonstrates that a substantial complexity reduction is achieved by MSDSD, where SD enables

MSDD to visit a reduced number of constellation points, which are confined to a search sphere, as

exemplied by Fig. 3.3.
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real-valued multiplications real-valued additions comparisons visited nodes
CDD 4NR + 1 4NR − 2 1
MSDD (4N3

w + 4N2
wNR + 2Nw NR) [4N3

w + (4NR − 2)N2
w − 1] M(Nw−1) M(Nw−1)

×M(Nw−1)/(Nw − 1) ×M(Nw−1)/(Nw − 1) ÷(Nw − 1) ÷(Nw − 1)
MSDSD (findBest) 4NRv + 6NR + 1 4NRv + 4NR − 1 1 1
MSDSD (findNext) 3 1 1
MSDSD Nw NR + 8NR + 13 4NR + 14 − 13/(Nw − 1) 7 (2Nw − 3)

(Lower Bound) +(∑
Nw
v=2 4NRv)/(Nw − 1) +(∑

Nw
v=2 4NRv)/(Nw − 1) −5/(Nw − 1) ÷(Nw − 1)

+(2NR − 8)/(Nw − 1)
DFDD 4Nw NR + 2Nw + 4NR − 1 2Nw NR + 4NR − 2 1

Table 3.2: Complexity (per symbol) of hard-decision-aidednoncoherent receivers for un-
coded DPSK. CDD refers to Eq. (3.5). MSDD refers to Eq. (3.22). MSDSD refers to
Algorithm 3.1, which is detailed in the form of pseudo-code seen in Table 3.1. DFDD
refers to Eq. (3.38).
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Figure 3.4: Complexity (number of real-valued multiplications per symbol) comparison

between the noncoherent receivers conceived for uncoded DQPSK, whereNR = 2 RAs

are employed, while the normalized Doppler frequency is given by fd = 0.03. CDD

refers to Eq. (3.5). MSDD refers to Eq. (3.22). MSDSD refers to Algorithm 3.1, which is

detailed in the form of pseudo-code seen in Table 3.1. DFDD refers to Eq. (3.38).
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Figure 3.5: Complexity (number of real-valued multiplications per symbol) comparison

between MSDSD and DFDD aided uncoded DPSK, whereNR = 2 RAs are used, while

the normalized Doppler frequency is given byfd = 0.03. MSDSD refers to Algorithm 3.1,

which is detailed in the form of pseudo-code seen in Table 3.1. DFDD refers to Eq. (3.38).

The complexity comparisons presented in Table 3.2 are further portrayed in Fig. 3.4, where

the detection complexity is quantified in terms of the total number of real-valued multiplications

required for detecting a single DPSK symbol. Fig. 3.4a showsthat MSDD and CDD exhibit the

highest and the lowest detection complexity, respectively. Furthermore, MSDSD substantially re-

duces the MSDD complexity, and the complexity of DFDD is evenlower than that of MSDSD

associated withNw = 3. Furthermore, Fig. 3.4b presents our complexity comparison between

MSDSD and DFDD. As expected, the SD of Algorithm 3.1 terminates sooner in the higherEb/N0

region, which results in the phenomenon seen in Fig. 3.4b, namely that the MSDSD complexity

gradually converges to its lower bound, asEb/N0 increases. Furthermore, Fig. 3.4b demonstrates

that the MSDSD’s complexity lower bound is even lower than the DFDD complexity, when a long

detection window ofNw = 11 is employed. This is because the DFDD’s decision variablezDFDD
Nw−1

of Eq. (3.37) has to be evaluated for each DFDD window, which only detects a single symbol. By

contrast, the MSDSD decision variables{zMSDSD
v−1 }Nw

v=2 of Eq. (3.28) have to be evaluated for de-

tecting a total number ofNw − 1 symbols, where the complexity of evaluatingzMSDSD
v−1 associated

with a SD index ofv < Nw is generally lower than evaluatingzDFDD
Nw−1. Hence the overall average

complexity (per symbol) of DFDD is higher than the MSDSD’s (per symbol) complexity lower

bound, when a long detection window is employed.

Fig. 3.5 further portrays the effects of detection window length Nw and of the number of mod-

ulation levelsM on the MSDSD complexity and DFDD complexity. It can be seen inFig. 3.5a

that the MSDSD complexity still grows exponentially withNw, when a lowEb/N0 of 0 dB is en-

countered. However, in the highEb/N0 region, the MSDSD complexity trend becomes more linear

with respect toNw, which is similar to the DFDD complexity trend, as evidencedby Fig. 3.5a. Fur-
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Figure 3.6: CCMC capacity and DCMC capacity of DQPSK in Rayleigh fading channels,

as evaluated from Eq. (2.54) and from Eq. (3.50), respectively.

thermore, it may be observed in Fig. 3.5a that the MSDSD complexity recorded at a highEb/N0

of 20 dB becomes lower than the DFDD complexity, asNw increases. Moreover, as presented in

Table 3.2, the MSDSD complexity lower bound and the DFDD complexity do not depend on the

constellations set sizeM, because the hard-decision-aided detectors directly find the closest con-

stellation point, as demonstrated by Table 3.2 and Eq. (3.38). Therefore, it can be seen in Fig. 3.5b

that the MSDSD complexity becomes less dependent onM, asEb/N0 increases.

The capacity of noncoherent schemes is portrayed by Fig. 3.6. The CCMC capacity of the

SIMO Rayleigh fading channels as well as the DCMC capacity ofcoherent schemes relying on

perfect CSI are given by Eq. (2.54) and Eq. (2.56), respectively. Furthermore, the DCMC capacity

of noncoherent schemes, which are modelled by Eq. (3.6), is given by:

CMSDD
DCMC = max

{p(S̄i)}M(Nw−1)−1
i=0

∑
M(Nw−1)−1
i=0

∫
p(Y|S̄i)p(S̄i) log2

p(Y|S̄i)

∑
M(Nw−1)−1
ī=0

p(Y|S̄ ī)p(S̄ ī)
dY

(Nw − 1)

= log2 M −
∑

M(Nw−1)−1
i=0

∫
p(Y|S̄i) log2

∑
M(Nw−1)−1
ī=0

p(Y|S̄ ī)

p(Y|S̄i)
dY

(Nw − 1)M(Nw−1)

= log2 M −
∑

M(Nw−1)−1
i=0 E

{
log2

[
∑

M(Nw−1)−1
ī=0

exp

(
−
∥∥∥LH(S̄ī)HY

∥∥∥
2
+
∥∥LH(S̄i)HY

∥∥2
)] |S̄ = S̄i

}

(Nw − 1)M(Nw−1)
,

(3.50)

where the lower triangular matrixL is defined in Eq. (3.22), while the samples for the received sig-

nal matrixY are generated according to Eq. (3.9) asY = S̄iH̄ + V. Similar to the evaluation of the

coherent scheme’s DCMC capacity of Eq. (2.56), the maximum mutual information of Eq. (3.50)
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Figure 3.7: BER performance of CDD and MSDSD aided DQPSK in Rayleigh fading

channels, evaluated by Monte-Carlo simulation based on107 samples. CDD refers to

Eq. (3.5). MSDSD refers to Algorithm 3.1, which is detailed in the form of pseudo-code

seen in Table 3.1.

is achieved when the combinations of transmitted symbols{S̄i}M(Nw−1)−1
i=0 are equiprobable, i.e. we

have{p(S̄i) = 1
M(Nw−1) }M(Nw−1)−1

i=0 .

It may be observed in Fig. 3.6a that there is a DCMC capacity gap between the noncoherent

DQPSK and coherent QPSK relying on perfect CSI estimation. Furthermore, as expected, the

DCMC capacity of noncoherent DQPSK decreases as the normalized Doppler frequencyfd in-

creases, and the CDD assisted byNw = 2 observations cannot achieve the full DQPSK DCMC

capacity ofCDCMC
max = BPS atfd = 0.03 – not even at high SNRs, as evidenced by Fig. 3.6a. How-

ever, Fig. 3.6b demonstrates that the DCMC capacity of noncoherent schemes may be improved

by increasing the observation windowNw. These capacity trends are verified by the BER perfor-

mance trends of Fig. 3.7. Explicitly, it may be seen in Fig. 3.7a that CDD aided DQPSK suffers

from an irreducible error floor, when the normalized Dopplerfrequency fd is increased. Further-

more, it is demonstrated by Fig. 3.7b that the performance ofnoncoherent receivers recorded in

rapidly fluctuating fading channels gradually approaches that of their coherent counterparts relying

on perfect CSI estimation, as MSDSD windowNw increases, which is an explicit benefit of the

MSDSD scheme.

As discussed in [277,282], Fig. 3.8a demonstrates that the symbols at the middle of the MSDSD

window may be more reliably detected than those at its edges.This is because compared to the

symbols located in the middle of the detection window, the symbols at the edges may benefit less

from the detection of their surrounding symbols. As a result, the MSDSD’s performance may

be improved, if the detection windows are overlapped by morethan one observations so that the

symbols detected at the edges may be discarded, according tothe MSDSD windows arrangement

shown in Fig. 3.2. It is evidenced by Fig. 3.8b that the MSDSD associated withNOL = 3 may be
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Figure 3.8: BER performance of MSDSD (Nw = 6) aided DQPSK in Rayleigh fading

channels, where the normalized Doppler frequency is given by fd = 0.03, which was eval-

uated by Monte-Carlo simulation based on107 samples. MSDSD refers to Algorithm 3.1,

which is detailed in the form of pseudo-code seen in Table 3.1.

sufficient to provide such performance improvement, and increasingNOL beyond three does not

provide any further advantage. Therefore, the MSDD/MSDSD associated withNOL = 3 may be

referred to as Subset MSDD/MSDSD for the rest of this thesis.More explicitly, whenNOL = 3

observations are overlapped by MSDSD window, there are two information symbols which are

detected twice within the consecutive windows according toFig. 3.2, and the ones located at the

edges of the detection windows are discarded.

Fig. 3.9 presents our performance comparison between MSDSDand DFDD conceived for un-

coded DPSK schemes. As expected, the hard-decision-aided MSDSD outperforms its DFDD coun-

terpart, which is evidenced by Fig. 3.9. Furthermore, Fig. 3.9 shows that the performance difference

between MSDSD and DFDD is relatively small in the lowEb/N0 region. In fact, we will further

demonstrate in Sec. 3.3 that the unreliable decisions utilized by DFDD at lowEb/N0 values de-

grade the extrinsic LLR’s reliability, which results in a more substantial performance difference

between MSDSD and DFDD in coded DPSK systems.

3.3 Coded DPSK

In this section, soft-decision-aided noncoherent detectors conceived for coded DPSK are investi-

gated. Firstly, we will introduce the MSDD appropriately modified for amalgamation with turbo

detection [114]. Secondly, the soft-decision-aided MSDSDconceived for DPSK proposed in [132],

which invokes the Max-Log-MAP algorithm is reviewed. Thirdly, we propose to modify the SD’s

output scenario in [132], so that the near-optimum Approx-Log-MAP algorithm may also be imple-

mented by MSDSD. Fourthly, the reduced-complexity design proposed in Chapter 2 is applied to

soft-decision-aided MSDSD, so that the MSDSD complexity may be further reduced with the aid
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Figure 3.9: BER performance of MSDSD and DFDD aided DQPSK andD8PSK in

Rayleigh fading channels, where the normalized Doppler frequency is given byfd = 0.03,

which was evaluated by Monte-Carlo simulation based on107 samples. MSDSD refers

to Algorithm 3.1, which is detailed in the form of pseudo-code seen in Table 3.1. DFDD

refers to Eq. (3.38).

of visiting less constellation points. Lastly, the DFDD conceived for coded DPSK [122, 125, 136]

is also presented. The detection capabilities of these noncoherent receivers are summarized and

compared with the aid of the EXIT charts introduced in Sec. 2.3.2 in order to quantify and predict

the performance of the noncoherent detectors presented in this section.

3.3.1 Soft-Decision-Aided CDD and MSDD Conceived for CodedDPSK

According to thea posterioriprobability of Eq. (3.11), the optimum Log-MAP algorithm invoked

by MSDD may be expressed as [27]:

Lp(bk | Y) = ln
∑S̄i∈S̄bk=1

p
(
Y | S̄i

)
p
(
S̄i
)

∑S̄i∈S̄bk=0
p (Y | S̄i) p (S̄i)

= ln
∑S̄i∈S̄bk=1

exp(di)

∑S̄i∈S̄bk=0
exp(di)

= La(bk) + Le(bk),

(3.51)

whereLp(bk | Y), Le(bk) and La(bk) represent thea posterioriLLR and the extrinsic LLR pro-

duced by the soft MSDD as well as thea priori LLR gleaned from a channel decoder, respectively.

Furthermore,S̄i denotes thei-th element in the MSDD signal setS̄, while S̄bk=1 and S̄bk=0 refer

to the MSDD signal set̄S, when the specific bitbk is set to 1 and 0, respectively. The probability

metric{di}M(Nw−1)−1
i=0 seen in Eq. (3.51) is given by [8,240,241]:

di = −
∥∥∥LH ¯(Si)

H
Y

∥∥∥
2
+

(Nw−1)BPS

∑
k̄=1

b̃k̄La(bk̄), (3.52)
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where{b̃k̄}
(Nw−1)BPS
k̄=1

denotes the bit mapping corresponding to the MSDD candidateSi. Similar

to the soft-decision-aided coherent detection introducedin Sec. 2.3.1, the low-complexity Max-

Log-MAP algorithm of Eq. (2.34) may be invoked for simplifying the Log-MAP aided MSDD of

Eq. (3.51) as:

Lp(bk | Y) = max
S̄i∈S̄bk=1

di − max
S̄i∈S̄bk=0

di. (3.53)

Furthermore, in order to compensate for the sub-optimum nature of the Max-Log-MAP algorithm,

the Approx-Log-MAP algorithm of Eq. (2.35) may be invoked for MSDD as:

Lp(bk | Y) = jacS̄i∈S̄bk=1
di − jacS̄i∈S̄bk=0

di. (3.54)

As demonstrated by Eq. (3.33), CDD is equivalent to MSDD/MSDSD associated withNw = 2,

which only has a single information symbolx1 to detect. Therefore, according to the MSDD

received signal model of Eq. (3.9), the probability metric of Eq. (3.52) may be revised for CDD as:

dm = −‖l2,2s̄∗1Y1‖2 − ‖l2,1s̄∗1Y1 + l1,1(s̄1xm)∗Y2‖2 +
BPS

∑
k̄=1

b̃k̄La(bk̄)

= −‖l2,2Y1‖2 − |l2,1|2 ‖Y1‖2 − |l1,1|2 ‖Y2‖2 − 2ℜ
{

(xm)∗l1,1l2,1Y2YH
1

}
+

BPS

∑
k̄=1

b̃k̄La(bk̄),

(3.55)

where
(
−‖l2,2Y1‖2 − |l2,1|2 ‖Y1‖2 − |l1,1|2 ‖Y2‖2

)
is a constant over all the candidates{xm}M−1

m=0 ,

and hence it may be deleted. When we haveNw = 2, the channel correlation matrixC of Eq. (3.21)

is expressed by Eq. (3.32), and hence the inversion of the channel correlation matrixF = C−1 is

given by:

F =

[
f1,1, f1,2

f2,1, f2,2

]
=




1+N0

(1+N0)2−ρ2
1
, − ρ1

(1+N0)2−ρ2
1

− ρ1

(1+N0)2−ρ2
1

, 1+N0

(1+N0)2−ρ2
1


 . (3.56)

Therefore, according to the relationship ofC−1 = LLH, we havel1,1l2,1 = f1,2 = − ρ1

(1+N0)2−ρ2
1

in

Eq. (3.55). Furthermore, the matrix norm calculation in Eq.(3.55) leads to the following decision

variable:

zCDD = Y2YH
1 . (3.57)

As a result, the CDD’s probability metric may be representedby:

dm = − ρ1

(1 + N0)2 − ρ2
1

·
∣∣∣zCDD − xm

∣∣∣
2
+

BPS

∑
k̄=1

b̃k̄La(bk̄). (3.58)

The differences between Eq. (3.55) and Eq. (3.58) are all constants. Therefore, the MSDD algo-

rithms of Eqs. (3.53) and (3.54) may be invoked for CDD using the probability metric of Eq. (3.58),

where the MSDD signal set̄S may be replaced by theMPSK constellation setx for detecting the

single variable{xm}M−1
m=0 .

As a special case, we haveρ0 = ρ1 = 1 in QS fading channels, and hence Eq. (3.58) becomes:

dm = −
∣∣zCDD − xm

∣∣2

2N0 + N2
0

+
BPS

∑
k̄=1

b̃k̄La(bk̄), (3.59)
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which may also be expressed as:

dm = −‖Y2 − xmY1‖2

2N0 + N2
0

+
BPS

∑
k̄=1

b̃k̄La(bk̄), (3.60)

where the equivalent noise power is given by2N0 + N2
0 ≈ 2N0 [158,159].

3.3.2 Soft-Decision-Aided MSDSD Conceived for Coded DPSK

The Max-Log-MAP algorithm aims for finding the maximum probability metrics, which is similar

to the action of hard-decision-aided detectors. Therefore, in order to invoke SD for the Max-Log-

MAP algorithm, the maximization of Eq. (3.53) has to be revised for the sake of minimization,

while the probability metrics should be guaranteed to have positive values. As a result, similar to

the hard MSDD’s decision metric of Eq. (3.23), the soft MSDD probability metric of Eq. (3.52)

may be transformed into:

d =
Nw

∑
v=1

∥∥∥∥∥
v

∑
t=1

s̄∗t Ut,v

∥∥∥∥∥

2

−
Nw

∑
v=2

(v−1)BPS

∑
k̄=(v−2)BPS+1

[
b̃k̄La(bk̄)− C

MSDSD
a,k̄

]
, (3.61)

where the superscripti ∈ {0, · · · , M(Nw−1) − 1} seen in Eq. (3.52) is deleted for the sake of

convenience, while the polarity of Eq. (3.52) is altered. Furthermore, a constant ofC
MSDSD
a,k̄ =

1
2 [|La(bk̄)| + La(bk̄)] is introduced in Eq. (3.61) so that all probability metrics have non-negative

values, which may be verified by:

−b̃k̄La(bk̄) +
1

2
[|La(bk̄)| + La(bk̄)] =

{
−b̃k̄La(bk̄) + La(bk̄), if La(bk̄) ≥ 0

−b̃k̄La(bk̄), if La(bk̄) < 0
.

=





La(bk̄), if La(bk̄) ≥ 0 andb̃k̄ = 0

−La(bk̄), if La(bk̄) < 0 andb̃k̄ = 1

0, otherwise

.

(3.62)

We note that according to the LLR’s definition ofLa = ln
p(b=1)
p(b=0)

seen in Eq. (2.27), the constant

C
MSDSD
a,k̄ in Eq. (3.61) is formulated asC

MSDSD
a,k̄ = ln ∏

(v−1)BPS
k̄=(v−2)BPS+1

{1 + exp [La(bk̄)]}, which

also guarantees that the ED of Eq. (3.61) is always non-negative. This constant was eliminated

by the the division of the Log-MAP of Eq. (3.51) and by the subtraction of the Max-Log-MAP

of Eq. (3.53). However, bringing back this constant for MSDSD as suggested by [132] introduces

excessive calculations in logarithm domain. Therefore, weadopt the method in [176, 283], which

uses a simple operation ofC
MSDSD
a,k̄ = 1

2 [|La(bk̄)|+ La(bk̄)] to guarantee a non-negative ED for

SD as proven by Eq. (3.62).

As a result, the PED of soft-decision-aided MSDSD may be defined as [132]:

dv =
v

∑
v̄=2

∥∥∥∥∥
v̄

∑
t=1

s̄∗t Ut,v̄

∥∥∥∥∥

2

−
v

∑
v̄=2

(v̄−1)BPS

∑
k̄=(v̄−2)BPS+1

[
b̃k̄La(bk̄) − C

MSDSD
a,k̄

]

= dv−1 + ∆v−1,

(3.63)
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where the PED increment is given by:

∆v−1 =

∥∥∥∥∥
v

∑
t=1

s̄∗t Ut,v

∥∥∥∥∥

2

−
(v−1)BPS

∑
k̄=(v−2)BPS+1

[
b̃k̄La(bk̄)− C

MSDSD
a,k̄

]

=

∥∥∥∥∥s̄∗v−1Uv,v + xm

(
v−1

∑
t=1

s̄∗t Ut,v

)∥∥∥∥∥

2

−
BPS

∑
k̄v=1

[
b̃k̄v

La(bk̄v
)− C

MSDSD
a,k̄v

]
.

(3.64)

For the sake of simplicity, when considering the symbol-based detection of∆v−1, the bit index

subscriptk̄v is ranged from1 to BPS in Eq. (3.64) according to the relationship ofk̄v = k̄ − (v −
2)BPS.

As introduced in Sec. 3.2.3, the Schnorr-Euchner [237] search strategy may be invoked by MS-

DSD in order to effectively search forxv−1 according to∆v−1 of Eq. (3.64). However, unlike the

hard-decision-aided SD, the decision variablezMSDSD
v−1 of Eq. (3.28) cannot be directly used for find-

ing the optimumMPSK phasor, because thea priori information
[
∑

BPS
k̄v=1

b̃k̄v
La(bk̄v

)− C
MSDSD
a,k̄v

]

is not included inzMSDSD
v−1 . In other words, the channel decoder is unaware of which particular

MPSK constellation point (i.e. symbol) is considered, and hence thea priori LLRs obtained from

it are not appropriately mapped to the received signal’s constellation diagram. As a result, in order

to implement the Schnorr-Euchner search strategy, the SD associated with a specific SD indexv

has to consider allMPSK constellation points for deciding uponxv−1 by evaluating and comparing

a total ofM PED increments∆v−1, which are given by Eq. (3.64).

In summary, the soft-decision-aided MSDSD conceived for DPSK is characterized by the

pseudo-code in Table 3.3 [132], and it is exemplified for the cases of employing DQPSK and

D8PSK constellations in Figs. 3.10 and 3.11, respectively.More explicitly, for the DQPSK detec-

tion example, Fig. 3.10-a) shows that the “sortDelta” subfunction of Table 3.3 has to evaluate and

compare all(M = 4) PED increment values of Eq. (3.64) by visiting all the(M = 4) constel-

lation points, when the SD visits the indicesv = 2 and v = 3 for the first time in Step1© and

Step 2©, respectively. After a valid MSDSD solution is found at the SD index v = 3 in Step 2©
of Fig. 3.10-a), the SD radius is updated to the corresponding ED of d = 7.28. For Step 3© of

Fig. 3.10-a), the SD decreases its index tov = 2 in order to visit the second-best candidate, whose

PED value ofd2 = 10.986 turns out to be higher than the SD radius. Hence the SD index may be

decreased tov = 1, which terminates the search in Fig. 3.10-a). Fig. 3.10-b) further portrays the

corresponding constellation points that are visited by theSD’s Schnorr-Euchner search strategy at

SD indexv = 2. Once again, the “sortDelta” subfunction of Table 3.3 is invoked for visiting and

ranking all the constellation points.

The MSDSD algorithm of Table 3.3 is capable of finding both theglobal minimumdMAP

as well as the optimum constellation points{x̂v−1}Nw−1
v=2 , which may be translated into the hard-

bit decisions of{bMAP
k }(Nw−1)BPS

k=1 . In order to produce soft-bit decisions, the Max-Log-MAP

algorithm of Eq. (3.53) may be completed as:

Lp(bk | Y) =

{
−dMAP + d̄MAP, if bMAP

k = 1

−d̄MAP + dMAP, if bMAP
k = 0

. (3.65)
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function: [{x̂v−1}Nw
v=2, dMAP] = Soft-MSDSD({{Ut,v}v

t=1}
Nw
v=1, P, M, Nw, R)

requirements: P is a(Nw − 1) × M matrix with entries{{Pv−1,m+1 = ∑
BPS
k̄v=1

b̃k̄v
La(bk̄v

)− C
MSDSD
a,k̄v

}Nw
v=2}M−1

m=0

in row v − 1 and columnm + 1, where the constantC
MSDSD
a,k̄v

is defined in Eq. (3.61), while the bits
mapping arrangement is given by{[b̃1, · · · , b̃BPS] = dec2bin(m)}M−1

m=0 .
1: d1 = 0 //initialize PED
2: s̄1 = 1 //initialize the first transmitted symbol
3: v = 2 //initialize SD search index
4: [{∆m

v−1}M−1
m=0 , {xm

v−1}M−1
m=0 , nv−1] = sortDelta({Ut,v}v

t=1, {s̄t}v−1
t=1 , P) //sort all child nodes

5: loop

6: dv = dv−1 + ∆
(nv−1)
v−1 //update PED according to Eq. (3.63)

7: if dv < R

8: xv−1 = x
(nv−1)
v−1 //update new child node

9: s̄v = xv−1 s̄v−1

10: if v 6= Nw

11: v = v + 1 //move up indexv
12: [{∆m

v−1}M−1
m=0 , {xm

v−1}M−1
m=0 , nv−1] //sort all child nodes

= sortDelta({Ut,v}v
t=1, {s̄t}v−1

t=1 , P)
13: else
14: R = dNw

//update SD radius
15: {x̂v−1}Nw

v=2 = {xv−1}Nw
v=2 //update the optimum data symbols

16: do
17: if v == 2 return [{x̂v−1}Nw

v=2, R] and exit //terminate SD for the case ofNw = 2
18: v = v − 1 //move down indexv
19: while nv−1 == (M − 1)
20: nv−1 = nv−1 + 1 //visit the next child node
21: end if
22: else
23: do
24: if v == 2 return [{x̂v−1}Nw

v=2, R] and exit //terminate SD whenv = 2 is reached
25: v = v − 1 //move down indexv
26: while nv−1 == (M − 1)
27: nv−1 = nv−1 + 1 //visit the next child node
28: end if
29: end loop

subfunction: [{∆m
v−1}M−1

m=0 , {xm
v−1}M−1

m=0 , nv−1] = sortDelta({Ut,v}v
t=1, {s̄t}v−1

t=1 , P)

1: for m = 0 to (M − 1) //visit all M child nodes

2: ∆m
v−1 =

∥∥∥s̄∗v−1Uv,v + xm(∑
v−1
t=1 s̄∗t Ut,v)

∥∥∥
2
− Pv−1,m+1 //update PED increment according to Eq. (3.64)

3: end for
4: [{∆m

v−1}M−1
m=0 , {xm

v−1}M−1
m=0 ] = sort({∆m

v−1}M−1
m=0 ) //rank PED increments in increasing order

5: nv−1 = 0 //initialize child node counter

Table 3.3: Pseudo-code for conventional soft-decision-aided MSDSD.
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the SD’s decision

the SD’s stepspaths that are visited by the SD

constellation points that are visited by the SD

v=2 −Sort candidates:

v=3

v=2

v=1

PED increments labelled by Gray coded indices

00

01

11

10

5.563

18.4 16.21125.331

8.269 13.692
10.986

7.28

a)Example of Soft−Decision−Aided MSDSD Conceived for DQPSK Detection (labelled with PED values)

b)Example of QPSK constellation digram visited by Soft−Decision−Aided SD (v=2)

1©, 2©, 3©, · · ·

∆3
v−1∆0

v−1∆2
v−1

∆2
v−1 = 5.563

∆0
v−1 = 8.269

∆3
v−1 = 10.986

∆1
v−1 = 13.692

∆1
v−1

∆0,1,2,3
v−1

∆0
v−1

∆1
v−1

∆2
v−1

∆3
v−1

2©2© 2©2©

3© 1© 1© 1©1©

Figure 3.10: Example of soft-decision-aided MSDSD conceived for DQPSK, recorded at

SNR=0 dB, where we haveIA = 0.3, NR = 2 and Nw = 3. The soft-decision-aided

MSDSD algorithm is detailed in the form of pseudo-code seen in Table 3.3.

24.718 22.414 4.246 11.423 26.56 6.6652 15.56927.133

v=2

v=2

v=1

v=3

−Sort candidates:

a) Example of Soft−Decision−Aided MSDSD Conceived for D8PSK Detection (labelled with PED values)
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b) Example of 8PSK constellation digram visited by Soft−Decision−Aided SD (v=2)
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Figure 3.11: Example of soft-decision-aided MSDSD conceived for D8PSK, recorded at

SNR=3 dB, where we haveIA = 0.3, NR = 2 and Nw = 3. The soft-decision-aided

MSDSD algorithm is detailed in the form of pseudo-code seen in Table 3.3.
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v=3

v=2

v=1

8.269 13.692

18.9725.118 20.5 46.615
24.0914.9135.09 35.05

1©1©
3©

2© 4©

Figure 3.12: Example of the soft-decision-aided MSDSD conceived for DQPSK imple-

menting Approx-Log-MAP, which invokes the SD seen in Fig. 3.10 with a fixed bit of

b1 = 0.

whered̄MAP is obtained by invoking the MSDSD again for each soft-bit output, where the search

space is halved by fixing thek-th bit bk to be the flipped version of the MAP decision asbk =

b̄MAP
k . In summary, when the consecutive MSDSD windows are simply overlapped byNOL = 1

observations, the MSDSD algorithm of Table 3.3 has to be invoked once first for finding the global

MAP solutiondMAP in Eq. (3.65), and then it is invoked for an additional(Nw − 1) log2 M number

of times for finding the local MAP solutions̄dMAP in Eq. (3.65), which may be referred to as the

Repeated Tree Search (RTS). In this scenario, the MSDSD has to be invoked for an average number

of (Nw−1) log2 M+1

(Nw−1) log2 M
times for producing a single soft-bit decision.

Alternatively, it’s recently proposed in [175,176] that the Single Tree Search (STS) [284] may

opt to invoke the SD only once for obtaining all the EDs ofdMAP and d̄MAP in Eq. (3.65), which

may induce a potential performance loss. More explicitly, if the hypothesis bit-mapping arrange-

ment fordMAP is updated and changed, all the counter-hypothesis bit-mapping arrangements for

d̄MAP have to be changed accordingly. As a result, the previously dismissed candidates that obey

the new bit-mapping cannot be taken into account again. As a remedy, the sub-optimal detector

has to invoke the LLR correction method [176] for correctingthe LLR results. Against this back-

ground, the RTS is suggested in this report. In fact, the STS’s motivation of visiting a node at most

once can still be accomplished by the RTS, where the previously visited nodes may be labelled so

that the repeated calculations may be avoided by reading thepreviously evaluated PED metrics.

As long as the initial SD radius is set to be sufficiently large, as in [132], the Max-Log-MAP

of Eq. (3.65) is realized with the aid of the MSDSD algorithm of Table 3.3, which retains the orig-

inal detection capability of the Max-Log-MAP aided MSDD of Eq. (3.53). However, as demon-

strated in Sec. 2.3.2.4, the Max-Log-MAP algorithm may impose a performance loss compared to

the near-optimum Approx-Log-MAP. This performance loss isexpected to be more substantial as

MSDD/MSDSD windowNw increases. The reason for this degradation is that the Max-Log-MAP

of Eq. (3.65) only considers the maximum probability metrics, which may hence ignore more can-

didates, as the window length increases. Hence the validityof the resultanta posteriori LLRs

degrades. In order to mitigate this open problem, we proposethe corresponding Approx-Log-MAP

solution for MSDSD as follows:
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Algorithm 3.2: Approx-Log-MAP Implemented by Soft-Decision-Aided MSDSD.

(1) Let us define the leaf nodes of a SD structure as the candidates associated with the SD

index v = Nw. For example, theM = 4 candidates visited at the SD’s step of2©
in Fig. 3.10-a) as well as theM = 8 candidates visited at step2© in Fig. 3.11-a) are

all leaf nodes. This leads us to the proposed change of the MSDSD output scenario.

When the MSDSD algorithm is invoked for the first time, instead of just producing

the global optimumdMAP and the MAP hard-bit decisions{bMAP
k }(Nw−1)BPS

k=1 , all the

PED values of the leaf nodes{dCAN = dv}∀v=Nw
as well as all the corresponding

hard-bit decisions{bCAN
k }(Nw−1)BPS

k=1 may also be recorded and produced. For exam-

ple, the SD of Fig. 3.10-a) may produce both the MAP solution,which is represented

by dMAP = 7.28 and{bMAP
k }(Nw−1)BPS

k=1 = 1010, as well as all the leaf nodes, which

are represented by{dCAN} = {18.4, 25.331, 7.28, 16.211} and{bMAP
k }(Nw−1)BPS

k=1 =

{1000, 1001, 1010, 1011}. We note that the SD search strategy and its termination con-

dition of Table 3.3 may remain unchanged.

(2) For each soft-bit output, the MSDSD algorithm is invokedagain with a fixed bitbk =

b̄MAP
k . Similarly, whenever the SD visits indexv = Nw, the resultantM leaf candidates

{d
bk=b̄MAP

k
CAN } may all be recorded and produced. For example, when the SD of Fig. 3.10-

a) is invoked again with a fixed bitb1 = 0, the resultant SD structure is portrayed

in Fig. 3.12, where the two sub-groups of leaf nodes{25.118, 35.09, 18.97, 14.91} and

{20.05, 24.09, 46.615, 35.05} may be recorded as{d
bk=b̄MAP

k
CAN }. We note that there may

only beM/2 leaf candidates, when the fixed bitbk = b̄MAP
k is at the specific position in

the range ofk ∈ {(Nw − 2)BPS+ 1, · · · , (Nw − 1)BPS}.

(3) Finally, the Max-Log-MAP solution of Eq. (3.65) may be appropriately revised for the

Approx-Log-MAP algorithm as:

Lp(bk) =





jac (−dCAN) − jac (−d
bk=b̄MAP

k
CAN ), if bMAP

k = 1

jac (−d
bk=b̄MAP

k
CAN )− jac (−dCAN), if bMAP

k = 0
. (3.66)

We note that when the sizes of the two candidate groups{dCAN} and{d
bk=b̄MAP

k
CAN } are

not the same, the size of the larger group may be reduced, so that ideally both groups

disregard the same number of candidates. Ideally, any potential deviations introduced

both by the jac(−dCAN) and by jac(−d
bk=b̄MAP

k
CAN ) operations may be cancelled out.

In practice, the SD’s output candidates for{dCAN} and{d
bk=b̄MAP

k
CAN } are always consti-

tuted by either the sub-group ofM leaf candidates or by the sub-group ofM/2 leaf

candidates. Therefore, for the larger-sized group, we may compare the best leaf can-

didates, which are supposed to have the minimum PED values ineach sub-groups, and

then we may delete the sub-groups associated with the highest locally best leaf can-

didate’s PED value. For the example of Fig. 3.12, we may delete the sub-group of
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{20.05, 24.09, 46.615, 35.05}, because the local best leaf candidates from each sub-

group have the relationship of20.05 > 14.91. As a result, the Approx-Log-MAP

of Eq. (3.66) may be implemented for the example seen in Figs.3.10-a) and 3.12 as

Lp(b1) = jac (−{18.4, 25.331, 7.28, 16.211}) − jac (−{25.118, 35.09, 18.97, 14.91}).

One may argue that the SD does not visit all the MSDD candidates, which means that the

group sizes of{dCAN} and{d
bk=b̄MAP

k
CAN } seen in Eq. (3.66) may be smaller than the group sizes of

S̄i ∈ S̄bk=1 andS̄i ∈ S̄bk=0 seen in Eq. (3.54). In other words, ideally, the Approx-Log-MAP of

Eq. (3.54) may include all the MSDD candidates, but naturally the SD may only visit a subset of

them. Nonetheless, as explained in Sec. 2.3.1, when the Approx-Log-MAP corrects the difference

between two probability metrics of|d1 − d2|, only 8 values corresponding to|d1 − d2| ranging

between 0 and 3.7 may be taken into account, as demonstrated by Table 2.2. This implies that large

differences of|d1 − d2| > 3.7 are inherently ignored by the Approx-Log-MAP. Therefore, we may

assume that the leaf candidates ignored by the SD may also be ignored by the Approx-Log-MAP,

so that no extra complexity is imposed on the SD by our proposed Approx-Log-MAP.

We note that for a better implementation, Step (2) may be executed for all BPS(Nw − 1) fixed

bits {bk = b̄MAP
k }BPS(Nw−1)

k=1 before proceeding to Step (3), so that all the leaf nodes visited by

the repeated SD searches may be utilized in Step (3). As a result, {dCAN} in Eq. (3.66) may be

replaced by{d
bCAN

k =bMAP
k

CAN }, and then both{d
bCAN

k =bMAP
k

CAN } and{d
bk=b̄MAP

k
CAN } in Eq. (3.66) may include

all the leaf nodes obtained from Steps (1) and (2) corresponding to the specific bitbk beingbMAP
k

and b̄MAP
k , respectively. We will demonstrate in Sec. 3.3.5 that our proposed Approx-Log-MAP

aided MSDSD of Algorithm 3.2 is capable of matching the performance of the Approx-Log-MAP

aided MSDD of Eq. (3.54).

3.3.3 Reduced-Complexity Soft-Decision-Aided MSDSD Conceived for Coded DPSK

It was demonstrated in Sec. 3.3.2 that the Schnorr-Euchner search strategy utilized by the soft-

decision-aided MSDSD conceived for coded DPSK have to visitall MPSK constellation points in

order to rank their PED increment values∆v−1 of Eq. (3.64) in increasing order. However, since the

MSDSD substantially reduces the MSDD complexity by visiting that specific subset of constella-

tion points, which are confined to a search sphere, the MSDSD complexity may be further reduced

by applying the algorithms proposed in Sec. 2.4, where the Schnorr-Euchner search strategy may

visit a further reduced subset of theMPSK constellation points.

More explicitly, the PED increment∆v−1 of Eq. (3.64) may be further extended to a form which
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Figure 3.13: The rotated QPSK and 8PSK constellation diagrams, where we deliberately

rotate all the detectedMPSK (M ≥ 4) constellation diagrams anti-clockwise by a phase

of π/M, so that there are exactlyM/4 constellation points in each quadrant.

is similar to the coherent detector’s probability metric ofEq. (2.31) as follows:

∆v−1 =
∥∥YMSDD

v−1 − xv−1HMSDD
v−1

∥∥2 −
BPS

∑
k̄v=1

[
b̃k̄v

La(bk̄v
)− C

MSDSD
a,k̄v

]

= −2ℜ
(

x̄∗v−1z̄MSDSD
v−1

)
−

BPS

∑
k̄v=1

b̃k̄v
La(bk̄v

) +
La(b1) + La(b2)

2
+ Cv−1,

(3.67)

where theNR-element vectorsYMSDD
v−1 = s̄∗v−1Uv,v and HMSDD

v−1 = −∑
v−1
t=1 s̄∗t Ut,v are the same

as the ones defined in Eq. (3.27). Furthermore, we deliberately rotate all the detectedMPSK

constellations (except for BPSK) anti-clockwise by(π/M) as seen in Sec. 2.4, i.e. we havex̄v−1 =

xv−1 · exp
(

j π
M

)
, so that there are exactlyM/4 constellation points in each quadrant. The rotated

constellation diagrams of QPSK and 8PSK are redrawn in Fig. 3.13 for the sake of convenience.

Furthermore, the new decision variablez̄MSDSD
v−1 seen in Eq. (3.67) is given by:

z̄MSDSD
v−1 = YMSDD

v−1 (HMSDD
v−1 )H · exp

(
j

π

M

)
, (3.68)

which is rotated anti-clockwise from the decision variablezMSDSD
v−1 of Eq. (3.28) by(π/M) for

detectingx̄v−1, while the constant ofCv−1 seen in Eq. (3.67) is given by:

Cv−1 =
∥∥YMSDD

v−1

∥∥2
+
∥∥HMSDD

v−1

∥∥2
+ C

MSDSD
a,v−1 − La(b1) + La(b2)

2
, (3.69)

and we have the constantC
MSDSD
a,v−1 = ∑

BPS
k̄v=1

C
MSDSD
a,k̄v

. We note thatCv−1 of Eq. (3.69) is invariant

over all the different candidates̄xv−1 in Eq. (3.67).

As a result, comparing theM candidates{xm}M−1
m=0 according to their PED increment values

∆v−1 of Eq. (3.67) is equivalent to comparing the following equivalent PED increment metric over
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all the variables̄xv−1 as:

∆v−1 = −2ℜ
(

x̄∗v−1z̄MSDSD
v−1

)
−

BPS

∑
k̄v=1

b̃k̄v
La(bk̄v

) +
La(b1) + La(b2)

2

= −2ℜ(x̄v−1)ℜ(z̄MSDSD
v−1 ) − 2ℑ(x̄v−1)ℑ(z̄MSDSD

v−1 ) −
BPS

∑
k̄v=1

b̃k̄v
La(bk̄v

) +
La(b1) + La(b2)

2
.

(3.70)

Considering the rotated QPSK constellation of Fig. 3.13a asan example, the four probability

metrics{∆
m
v−1}M−1=3

m=0 of Eq. (3.70) corresponding to theM = 4 rotated QPSK constellation points

{x̄m}M−1=3
m=0 may be expressed as:

∆
0
v−1 = −

√
2ℜ(z̄MSDSD

v−1 ) −
√

2ℑ(z̄MSDSD
v−1 ) + La(b1)+La(b2)

2 = −tRe
v−1 − tIm

v−1,

∆
1
v−1 =

√
2ℜ(z̄MSDSD

v−1 ) −
√

2ℑ(z̄MSDSD
v−1 ) − La(b2) + La(b1)+La(b2)

2 = tRe
v−1 − tIm

v−1,

∆
2
v−1 = −

√
2ℜ(z̄MSDSD

v−1 ) +
√

2ℑ(z̄MSDSD
v−1 ) − La(b1) + La(b1)+La(b2)

2 = −tRe
v−1 + tIm

v−1,

∆
3
v−1 =

√
2ℜ(z̄MSDSD

v−1 ) +
√

2ℑ(z̄MSDSD
v−1 ) − La(b1) − La(b2) + La(b1)+La(b2)

2 = tRe
v−1 + tIm

v−1,
(3.71)

where we associate the real and the imaginary parts ofz̄MSDSD
v−1 with La(b2) andLa(b1) respectively

as:

tRe
v−1 =

√
2ℜ(z̄MSDSD

v−1 ) − La(b2)

2
,

tIm
v−1 =

√
2ℑ(z̄MSDSD

v−1 ) − La(b1)

2
.

(3.72)

After assigning thea priori LLRs to the appropriate parts ofz̄MSDSD
v−1 , the only difference between

the four candidate metrics{∆
m
v−1}M−1=3

m=0 in Eq. (3.71) is the polarity oftRe
v−1 andtIm

v−1. This feature

allows us to directly obtain the minimum metric by simply evaluating:

∆v−1 = −|tRe
v−1| − |tIm

v−1|, (3.73)

and then the ranking order of the rest of the candidates may beevaluated by comparing the two

terms |tRe
v−1| and |tIm

v−1|. In more detail, if we have the condition of|tRe
v−1| > |tIm

v−1|, then the

SD may visit the remaining PED increments according to the steps of∆v−1 = −|tRe
v−1| + |tIm

v−1|,
∆v−1 = |tRe

v−1| − |tIm
v−1| and∆v−1 = |tRe

v−1| + |tIm
v−1|. Otherwise, the remaining steps should be

∆v−1 = |tRe
v−1| − |tIm

v−1|, ∆v−1 = −|tRe
v−1|+ |tIm

v−1| and∆v−1 = |tRe
v−1|+ |tIm

v−1|.

As a result, this revised Schnorr-Euchner search strategy conceived for soft-decision-aided MS-

DSD assisted DQPSK does not have to compare all theM = 4 child nodes in order to determine

the order of the SD’s search steps. Instead, the SD only has tovisit the best candidate by evaluat-

ing ∆v−1 = −|tRe
v−1| − |tIm

v−1|, and also the value of sign(|tRe
v−1| − |tIm

v−1|) has to be tested, if the

SD visits a specific indexv for the second time. Following this, the SD may zigzag through the

remaining constellation points, which is carried out in a fashion similar to the strategy invoked by

the hard-decision-aided MSDSD introduced in Sec. 3.2.3. The only difference is that as seen in Ta-

ble 3.1 the hard-decision-aided MSDSD evaluates sign(pv−1 − ⌊pv−1⌉) for deciding the direction



3.3.3. Reduced-Complexity Soft-Decision-Aided MSDSD Conceived for Coded DPSK 129

function: [{x̂v−1}Nw
v=2, dMAP] = Soft-MSDSD-RC({{Ut,v}v

t=1}
Nw

v=1, {{Lv−1,k
a }Nw

v=2}2
k=1, {C

MSDSD
a,v−1 }Nw

v=2,

{{P
g
v−1}

M/4−1
g=0 }Nw

v=2, Nw, R)

requirements: Thea priori information on group indexg is given by{{P
g
v−1 = ∑

BPS
k=3 b̃kLv−1,k

a }M/4−1
g=0 }Nw

v=2, where

the bits mapping is given by{[b̃3 · · · b̃BPS] = dec2bin(g)}M/4−1
g=0 .

1: d1 = 0 //initialize PED
2: s̄1 = 1 //initialize the first transmitted symbol
3: v = 2 //initialize SD search index
4: (subfunction)findBest-DBPSK/findBest-DQPSK/findBest-DPSK //find the best candidate
5: loop
6: dv = dv−1 + ∆v−1 + Cv−1 //update PED according to Eq. (3.63)
7: if dv < R
8: xv−1 = xmv−1 //update candidate data symbol
9: s̄v = xv−1 s̄v−1· //update candidate transmitted symbol

10: if v 6= Nw

11: v = v + 1 //move up
12: (subfunction)findBest-DBPSK/findBest-DQPSK/findBest-DPSK
13: else
14: R = dNw

//update SD radius
15: {x̂v−1}Nw

v=2 = {xv−1}Nw
v=2 //update the optimum data phasors

16: do
17: if v == 2 return [{x̂v−1}Nw

v=2, R] and exit //terminate SD for the case ofNw = 2
18: v = v − 1 //move down
19: while nv−1 == (M − 1)
20: (subfunction)findNext-DBPSK/findNext-DQPSK/findNext-DPSK //find the next candidate for indexv
21: end if
22: else
23: do
24: if v == 2 return [{x̂v−1}Nw

v=2, R] and exit //terminate SD whenv = 2 is reached
25: v = v − 1 //move down
26: while nv−1 == (M − 1)
27: (subfunction)findNext-DBPSK/findNext-DQPSK/findNext-DPSK //find the next candidate for indexv
28: end if
29: end loop

Table 3.4: Pseudo-code for reduced-complexity soft-decision-aided MSDSD conceived
for coded DPSK.

subfunction: [Cv−1, ∆v−1, mv−1, nv−1] = findBest-DBPSK({Ut,v}v
t=1, {s̄t}v−1

t=1 , {Lv−1,k
a }k=1, C

MSDSD
a,v−1 )

1: YMSDD
v−1 = s̄∗v−1Uv,v //updateYMSDD

v−1 according to Eq. (3.27)
2: HMSDD

v−1 = −(∑
v−1
t=1 s̄∗t Ut,v) //updateHMSDD

v−1 according to Eq. (3.27)
3: z̄MSDSD

v−1 = YMSDD
v−1 (HMSDD

v−1 )H //update decision variable of Eq. (3.28)

4: Cv−1 =
∥∥∥YMSDD

v−1

∥∥∥
2
+
∥∥∥HMSDD

v−1

∥∥∥
2
+ C

MSDSD
a,v−1 − 0.5Lv−1,1

a //update the constant of Eq. (3.69)

5: tRe
v−1 = ℜ(z̄MSDSD

v−1 )− 0.5Lv−1,1
a

6: ∆v−1 = −|tRe
v−1| //update the optimum PED increment

7: mv−1 = (tRe
v−1 < 0) //update the optimum candidate

8: nv−1 = 0 //initialize child node counter

subfunction: [∆v−1, mv−1, nv−1] = findNext-DBPSK(∆v−1, mv−1, nv−1)

1: ∆v−1 = −∆v−1 //the second child node is opposite to the optimum child node
2: mv−1 = 1 − mv−1 //alter the optimum child node
3: nv−1 = nv−1 + 1 //update child node counter

Table 3.5: Pseudo-code for the subfunctions of the reduced-complexity soft-decision-
aided MSDSD of Table 3.4, where DBPSK is employed.
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subfunction: [Cv−1, |tRe
v−1|, |tIm

v−1|, ∆v−1, mv−1, nv−1] = findBest-DQPSK({Ut,v}v
t=1, {s̄t}v−1

t=1 , {Lv−1,k
a }2

k=1, C
MSDSD
a,v−1 )

1: YMSDD
v−1 = s̄∗v−1Uv,v //updateYMSDD

v−1 according to Eq. (3.27)
2: HMSDD

v−1 = −(∑
v−1
t=1 s̄∗t Ut,v) //updateHMSDD

v−1 according to Eq. (3.27)
3: z̄MSDSD

v−1 = YMSDD
v−1 (HMSDD

v−1 )H · exp
(

j π
M

)
//update decision variable of Eq. (3.68)

4: Cv−1 =
∥∥∥YMSDD

v−1

∥∥∥
2
+
∥∥∥HMSDD

v−1

∥∥∥
2
+ C

MSDSD
a,v−1 − 0.5(Lv−1,1

a + Lv−1,2
a ) //update the constant of Eq. (3.69)

5: tRe
v−1 =

√
2ℜ(z̄MSDSD

v−1 ) − 0.5Lv−1,2
a //relateLv−1,2

a to real part ofz̄MSDSD
v−1

6: tIm
v−1 =

√
2ℑ(z̄MSDSD

v−1 ) − 0.5Lv−1,1
a //relateLv−1,1

a to imag part ofz̄MSDSD
v−1

7: ∆v−1 = −|tRe
v−1| − |tIm

v−1| //update the optimum PED increment
8: b1 = (tIm

v−1 < 0) //update the optimum candidate
9: b2 = (tRe

v−1 < 0)
10: mv−1 = bin2dec(b1b2) //translate binary bits to decimal index
11: nv−1 = 0 //initialize child node counter

subfunction: [∆v−1, mv−1, nv−1, cdv−1] = findNext-DQPSK(|tRe
v−1|, |tIm

v−1|, ∆v−1, mv−1, nv−1, cdv−1)

1: nv−1 = nv−1 + 1 //update child node counter
2: switch nv−1

3: case1: b1b2 = dec2bin(mv−1) //translate decimal index to binary bits
4: cdv−1 = sign(|tRe

v−1| − |tIm
v−1|) //update the condition

5: if cdv−1 == 1 //the case of|tRe
v−1| > |tIm

v−1|
6: ∆v−1 = −|tRe

v−1| + |tIm
v−1| //alter the imaginary part of the PED increment

7: mv−1 = bin2dec(b̄1b2) //alterb1 in the optimum child node
8: else //the case of|tRe

v−1| < |tIm
v−1|

9: ∆v−1 = |tRe
v−1| − |tIm

v−1| //alter the real part of the PED increment
10: mv−1 = bin2dec(b1b̄2) //alterb2 in the optimum child node
11: end if
12: break
13: case2: ∆v−1 = −∆v−1 //alter the decision made by the previous step
14: mv−1 = 3 − mv−1

15: break
16: case3: b1b2 = dec2bin(mv−1)
17: ∆v−1 = |tRe

v−1| + |tIm
v−1| //alter the optimum child node

18: if cdv−1 == 1 mv−1 = bin2dec(b̄1b2) //alterb1 in the decision made by the previous step
19: elsemv−1 = bin2dec(b1b̄2) //alterb2 in the decision made by the previous step
20: break
21: end

Table 3.6: Pseudo-code for the subfunctions of the reduced-complexity soft-decision-
aided MSDSD of Table 3.4, where DQPSK is employed.

of SD’s zigzag path, where we havepv−1 = M
2π ∠zMSDSD

v−1 , while the soft MSDSD aided DQPSK

relies on the condition of sign(|tRe
v−1| − |tIm

v−1|).

In more detail, the reduced-complexity soft-decision-aided MSDSD is summarized in the form

of its pseudo-code in Table 3.4, where the simplified Schnorr-Euchner search strategy specifically

tailored for the DBPSK and DQPSK schemes is given by Tables 3.5 and 3.6, respectively. Fur-

thermore, Fig. 3.14 revisits the specific example of soft-decision-aided MSDSD conceived for

DQPSK in Fig. 3.10, subject to the slight difference that thereduced-complexity algorithms of

Tables 3.4 and 3.6 are invoked in Fig. 3.14.

More explicitly, it can be seen in Fig. 3.14-a) that the “findBest-DQPSK” subfunction of Ta-

ble 3.6 opts for obtaining the best phasor candidate by simply evaluating∆v−1 = −|tRe
v−1| − |tIm

v−1|
of Eq. (3.73), when the SD visits the indicesv = 2 andv = 3 for the first time in Step1© and

Step 2©, respectively. The SD radius is updated asd = 7.28, when the SD index reachesv = Nw

in Step 2© of Fig. 3.14-a). Then the SD index is decreased tov = 2 in Step 3©, and the second-
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∆
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Figure 3.14: Example of soft-decision-aided MSDSD conceived for DQPSK, which cor-

responds to the example seen in Fig. 3.10, subject to the slight difference that the reduced-

complexity algorithm of Tables 3.4 and 3.6 are invoked, instead of the conventional algo-

rithm of Table 3.3.

best phasor candidate is obtained by the “findNext-DQPSK” subfunction of Table 3.6, which has

a PED value ofd2 = 8.269 as seen in Fig. 3.14-a). Since this new PED value is higher than the

SD radius, the SD decreases its index tov = 1 and terminates the search. As a result, the reduced-

complexity MSDSD exemplified in Fig. 3.14-a) visits a reduced number of the constellation points

compared to the conventional MSDSD exemplified in Fig. 3.10-a), yet the same SD result is arrived

at. Fig. 3.14-b) further portrays the corresponding constellation points that are visited by the SD’s

Schnorr-Euchner search strategy in a zigzag fashion at SD index v = 2, which becomes similar

to the zigzag constellation points visiting fashion seen inFig. 3.3-b) for the hard-decision-aided

DQPSK detection example.

Let us now consider the rotated 8PSK constellation portrayed by Fig. 3.15-b) as an example,

where theM = 8 constellation points are arranged toM/4 = 2 groups, which are Group G0 of

{± cos( π
8 ) ± j sin( π

8 )} and Group G1 of{± sin( π
8 ) ± j cos( π

8 )}. Accordingly, their probability

metrics{∆
m
v−1}M−1=7

m=0 of Eq. (3.70) may be expressed as:

∆
0
v−1 = −2 cos( π

8 ) · ℜ(z̄v−1) − 2 sin( π
8 ) · ℑ(z̄v−1) + La(b1)

2 + La(b2)
2 = −tRe0

v−1 − tIm0
v−1,

∆
2
v−1 = 2 cos( π

8 ) · ℜ(z̄v−1)− 2 sin( π
8 ) · ℑ(z̄v−1) + La(b1)

2 − La(b2)
2 = tRe0

v−1 − tIm0
v−1,

∆
4
v−1 = −2 cos( π

8 ) · ℜ(z̄v−1) + 2 sin( π
8 ) · ℑ(z̄v−1) − La(b1)

2 + La(b2)
2 = −tRe0

v−1 + tIm0
v−1,

∆
6
v−1 = 2 cos( π

8 ) · ℜ(z̄v−1) + 2 sin( π
8 ) · ℑ(z̄v−1) − La(b1)

2 − La(b2)
2 = tRe0

v−1 + tIm0
v−1.

(3.74)



3.3.3. Reduced-Complexity Soft-Decision-Aided MSDSD Conceived for Coded DPSK 132

∆
1
v−1 = −2 sin( π

8 ) · ℜ(z̄v−1) − 2 cos( π
8 ) · ℑ(z̄v−1) + La(b1)

2 + La(b2)
2 − La(b3) = −tRe1

v−1 − tIm1
v−1 − La(b3),

∆
3
v−1 = 2 sin( π

8 ) · ℜ(z̄v−1) − 2 cos( π
8 ) · ℑ(z̄v−1) + La(b1)

2 − La(b2)
2 − La(b3) = tRe1

v−1 − tIm1
v−1 − La(b3),

∆
5
v−1 = −2 sin( π

8 ) · ℜ(z̄v−1) + 2 cos( π
8 ) · ℑ(z̄v−1) − La(b1)

2 + La(b2)
2 − La(b3) = −tRe1

v−1 + tIm1
v−1 − La(b3),

∆
7
v−1 = 2 sin( π

8 ) · ℜ(z̄v−1) + 2 cos( π
8 ) · ℑ(z̄v−1) − La(b1)

2 − La(b2)
2 − La(b3) = tRe1

v−1 + tIm1
v−1 − La(b3),

(3.75)

where the two real/imaginary terms are given by:

tRe0
v−1 = 2 cos(

π

8
) · ℜ(z̄v−1) −

La(b2)

2
,

tIm0
v−1 = 2 sin(

π

8
) · ℑ(z̄v−1)−

La(b1)

2
,

tRe1
v−1 = 2 sin(

π

8
) · ℜ(z̄v−1)−

La(b2)

2
,

tIm1
v−1 = 2 cos(

π

8
) · ℑ(z̄v−1) −

La(b1)

2
.

(3.76)

It can be seen in Eqs. (3.74) and (3.75) that the only difference between the four component prob-

ability metrics within each group is the polarity of the real/imaginary terms. As a result, the local

minimum metrics of theM/4 = 2 groups may be obtained by:

∆
G0
v−1 = min

m∈{0,2,4,6}
∆

m
v−1 = −|tRe0

v−1| − |tIm0
v−1|,

∆
G1
v−1 = min

m∈{1,3,5,7}
∆

m
v−1 = −|tRe1

v−1| − |tIm1
v−1| − La(b3),

(3.77)

which are evaluated without invoking Eq. (3.70) forM = 8 times in Eqs. (3.74) and (3.75). Finally,

the global minimum over{∆
m
v−1}M−1=7

m=0 of Eq. (3.70) may be simply obtained by comparing the

two local minima as:

∆v−1 = min {∆
G0
v−1, ∆

G1
v−1}. (3.78)

In summary, for a generic high-orderMPSK scheme (M > 4), we may firstly assign theM

constellation points toM/4 groups of QPSK-like constellation points that are associated with the

same magnitudes but different polarities, so that the localminimum metric for{∆
m
v−1}M−1

m=0 of

Eq. (3.70) within each group is simply given by:

∆
Gg
v−1 = −

∣∣∣tReg

v−1

∣∣∣−
∣∣∣tImg

v−1

∣∣∣−
BPS

∑
k̄=3

b̃k̄La(bk̄), (3.79)

where the range for the group index is given byg ∈ {0, · · · , M/4 − 1}, while the real and imagi-

nary parts of̄zv−1 are associated withLa(b2) andLa(b1) respectively as follows:

t
Reg

v−1 = A
g · ℜ(z̄v−1) −

La(b2)

2
,

t
Img

v−1 = B
g · ℑ(z̄v−1) −

La(b1)

2
.

(3.80)

The coordinates of theMPSK constellation points, which are located in the first quadrant may be

denoted by{(Ag, Bg)}M/4−1
g=0 , and we haveA

g
= 2Ag as well asB

g
= 2Bg in Eq. (3.80). As a

result, the global minimum for{∆
m
v−1}M−1

m=0 of Eq. (3.70) may be simply given by:

∆v−1 = min
g∈{0,··· ,M/4−1}

∆
Gg
v−1, (3.81)
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which is obtained by visiting a reduced-subset ofM/4 constellation points that correspond to the

M/4 local minima of Eq. (3.79).

We note that the procedures conceived for obtaining the minimum probability metric of Eq. (3.81)

are similar to those for generic soft-decision-aidedMPSK detection in Sec. 2.4. However, for the

soft-decision-aided MSDSD, the Schnorr-Euchner search strategy also relies on the ranking order

of constellation points. Against this background, we propose to complete the Schnorr-Euchner

strategy by using a Comparison Window (CW). More explicitly, the CW is initialized to have

M/4 local minima of Eq. (3.79), which correspond to local best candidates. Then the CW may

choose the global best candidate which has the global minimum metric by invoking Eq. (3.81).

This is the subfunction of “findBest-DPSK” for the Schnorr-Euchner search strategy tailored for

MPSK (M > 4) in Table 3.7. Furthermore, when the SD re-visits a specific SD index v, the

“findNext-DPSK” subfunction in Table 3.7 may offer the next constellation node. More explicitly,

if previously a local minimum from Group Gg is chosen as the global candidate, i.e. previously we

have∆v−1 = ∆
Gg
v−1 from Eq. (3.81), then Group Gg has to visit a new local candidate in a zigzag

fashion by comparing|tReg

v−1| and |tImg

v−1|. Following this, the CW may once again update the new

global candidate by invoking Eq. (3.81).

Fig. 3.15 portrays the D8PSK example of Fig. 3.11, where the reduced-complexity algorithms

of Tables 3.4 and 3.7 are invoked. More explicitly, it can be seen in Fig. 3.15 that the “findBest-

DPSK” subfunction in Table 3.7 may firstly initialize the CW by the M/4 = 2 local minima of

Eq. (3.79) as∆
G0
v−1 = −3.487 and∆

G1
v−1 = −0.998, and then the CW invokes Eq. (3.81) in order

to obtain the global candidate of∆v−1 = ∆
G0
v−1 = −3.487. Moreover, when the SD re-visits index

v = 2 in Fig. 3.15, the “findNext-DPSK” in Table 3.7 may firstly update a new local candidate

∆
G0
v−1 = 4.364 from Group G0 by visiting the QPSK-like constellation points in a zigzag fashion

relying on the relationship between|tRe0
v−1| and|tIm0

v−1|, and then the CW invokes Eq. (3.81) again in

order to obtain the new global candidate of∆v−1 = ∆
G1
v−1 = −0.998. As a result, the reduced-

complexity MSDSD exemplified in Fig. 3.15 visits a reduced subset of the constellation points

compared to the conventional MSDSD exemplified in Fig. 3.11,yet the same SD result is arrived

at.

Moreover, it is worth pointing out that the conventional MSDSD algorithm in [132] requires

the Schnorr-Euchner search strategy to invoke a sorting algorithm, which was represented by the

“qsort” function in the pseudo-code algorithm table of [132] and also in Table 3.3 of this report.

As a result, allM constellation points{xm}M−1
m=0 are ranked according to an ascending order of

the PED increment values{∆m
v−1}M−1

m=0 , which is explicitly exemplified by Figs. 3.10 and 3.11.

There are numerous sorting algorithms that may be suitable,such as Bubble sort, Timsort, Library

sort [285,286], etc., but the average number of comparisonsrequired by these algorithms is as high

asO(M log M). By contrast, the reduced-complexity MSDSD of Tables 3.5-3.7 does not require

any sorting algorithms. As exemplified by Figs. 3.14 and 3.15, the proposed Schnorr-Euchner

search strategy does not have to maintain the complete ranking order of constellation points, which

dispenses with a considerable number of comparisons.
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subfunction: [{|tReg

v−1|}
M/4−1
g=0 , {|tImg

v−1|}
M/4−1
g=0 , {CW

g
v−1}

M/4−1
g=0 , {CWm

g
v−1}

M/4−1
g=0 , {n

g
v−1}

M/4−1
g=0 , ∆v−1, Cv−1,

mv−1, nv−1] = findBest-DPSK({Ut,v}v
t=1, {s̄t}v−1

t=1 , {Lv−1,k
a }2

k=1, C
MSDSD
a,v−1 , {P

g
v−1}

M/4−1
g=0 )

1: YMSDD
v−1 = s̄∗v−1Uv,v //updateYMSDD

v−1 according to Eq. (3.27)
2: HMSDD

v−1 = −(∑
v−1
t=1 s̄∗t Ut,v) //updateHMSDD

v−1 according to Eq. (3.27)
3: z̄MSDSD

v−1 = YMSDD
v−1 (HMSDD

v−1 )H · exp
(

j π
M

)
//update decision variable of Eq. (3.68)

4: Cv−1 = ‖YMSDD
v−1 ‖2 + ‖HMSDD

v−1 ‖2 + C
MSDSD
a,v−1 − 0.5(Lv−1,1

a + Lv−1,2
a ) //update the constant of Eq. (3.69)

5: for g=0 to (M/4 − 1)

6: t
Reg

v−1 = A
g · ℜ(z̄MSDSD

v−1 ) − 0.5Lv−1,2
a //relateLv−1,2

a to real part ofz̄MSDSD
v−1

7: t
Img

v−1 = B
g · ℑ(z̄MSDSD

v−1 )− 0.5Lv−1,1
a //relateLv−1,1

a to imag part ofz̄MSDSD
v−1

8: CW
g
v−1 = −|tReg

v−1| − |tImg

v−1| − P
g
v−1 //update the local minimum

9: b1 = (t
Img

v−1 < 0)

10: b2 = (t
Reg

v−1 < 0)

11: CWm
g
v−1 = bin2dec(b1b2b3 · · · bBPS) //we have[b3 · · · bBPS] = dec2bin(g)

12: n
g
v−1 = 0 //update child node counter for each group

13: end for

14: [∆v−1, ĝ] = min({CW
g
v−1}

M/4−1
g=0 ) //the global minimum is∆v−1 = CW

ĝ
v−1

15: mv−1 = CWm
ĝ
v−1 //record the global optimum index

16: nv−1 = 0 //update global child node counter

subfunction: [{CW
g
v−1}

M/4−1
g=0 , {CWm

g
v−1}

M/4−1
g=0 , {n

g
v−1}

M/4−1
g=0 , {cd

g
v−1}

M/4−1
g=0 , ∆v−1, mv−1, nv−1]

= findNext-DPSK({|tReg

v−1|}
M/4−1
g=0 , {|tImg

v−1|}
M/4−1
g=0 , {P

g
v−1}

M/4−1
g=0 , {CWg

v−1}
M/4−1
g=0 , {CWm

g
v−1}

M/4−1
g=0 ,

{n
g
v−1}

M/4−1
g=0 , {cd

g
v−1}

M/4−1
g=0 , ∆v−1, mv−1, nv−1)

1: [b1 · · · bBPS] = dec2bin(mv−1) //obtain the previously tested child node
2: g = bin2dec(b3 · · · bBPS) //update the previously tested group’s index

3: n
g
v−1 + + //update child node counter

4: switch n
g
v−1

5: case1: cd
g
v−1 = sign(|tReg

v−1| − |tImg

v−1|) //update the condition of groupg

6: if cdg
v−1 == 1

7: CWg
v−1 = −|tReg

v−1| + |tImg

v−1| − P
g
v−1 //alter the imaginary part of local minimum

8: CWm
g
v−1 = bin2dec(b̄1b2b3 · · · bBPS) //alterb1 in the local optimum child node

9: else

10: CW
g
v−1 = |tReg

v−1| − |tImg

v−1| − P
g
v−1 //alter the real part of local minimum

11: CWm
g
v−1 = bin2dec(b1b̄2b3 · · · bBPS) //alterb2 in the local optimum child node

12: end if
13: break

14: case2: CW
g
v−1 = −∆v−1 − 2P

g
v−1 //alter the second child node

15: CWm
g
v−1 = bin2dec(b̄1b̄2b3 · · · bBPS) //alter bothb1 andb2 in the previous decision

16: break

17: case3: CW
g
v−1 = |tReg

v−1| + |tImg

v−1| − P
g
v−1 //alter the local optimum child node

18: if cd
g
v−1 == 1 CWm

g
v−1 = bin2dec(b̄1b2b3 · · · bBPS) //alterb1 in the previous decision

19: elseCWm
g
v−1 = bin2dec(b1b̄2b3 · · · bBPS) //alterb2 in the previous decision

20: break
21: end switch
22: ∆v−1 = inf //initialize global minimum
23: for g = 0 to (M/4 − 1)
24: if CW

g
v−1 < ∆v−1 and n

g
v−1 <= 3 //compare local minimums from un-full groups

25: ∆v−1 = CW
g
v−1 //update global minimum

26: mv−1 = CWm
g
v−1

27: end if
28: end for
29: nv−1 = nv−1 + 1 //update global child node

Table 3.7: Pseudo-code for the subfunctions of the reduced-complexity soft-decision-
aided MSDSD of Table 3.4, where DPSK (M > 4) is employed.
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Figure 3.15: Example of the soft-decision-aided MSDSD conceived for D8PSK, which

corresponds to the example seen in Fig. 3.11, subject to the slight difference that the

reduced-complexity algorithms of Tables 3.4 and 3.7 are invoked, instead of the conven-

tional algorithm of Table 3.3.

Furthermore, the Approx-Log-MAP proposed in Sec. 3.3.2 mayalso be straightforwardly ap-

plied to the reduced-complexity soft-decision-aided MSDSD of this section, where the simplified

Schnorr-Euchner strategy of Tables 3.5-3.7 can be invoked for all SD indice satisfyingv < Nw.

However, the original Schnorr-Euchner strategy of [132] has to be invoked for the specific SD in-

dex v = Nw, because all the leaf nodes atv = Nw have to be recorded and produced for the

Approx-Log-MAP.

3.3.4 Soft-Decision-Aided DFDD Conceived for Coded DPSK

According to Eq. (3.36), the differences between the hard-decision aided DFDD metric|zDFDD
Nw−1 −

xm|2 and the hard-decision assisted MSDD metric tr
(
FS̄HYYHS̄

)
are all constants, where previous
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decisions{ ˆ̄sv}Nw−1
v=1 are utilized for replacing all variables, except fors̄Nw in the MSDD metric. As a

result, for soft-decision-aided DFDD, the MSDD probability metric of Eq. (3.52) may be simplified

to [122,125,136]:

dm = −
∣∣∣zDFDD − xm

∣∣∣
2
+

BPS

∑
k̄=1

b̃k̄La(bk̄), (3.82)

where the DFDD decision variablezDFDD is given by Eq. (3.37), and the subscript(Nw − 1) of

zDFDD
Nw−1 in Eq. (3.37) is deleted for the sake of simplicity, because only a single variablexNw−1 has

to be detected within a DFDD window. Furthermore, thea priori LLRs of the previous decisions

∑
(Nw−2)BPS
k̄=1

b̃k̄La(bk̄) seen in the MSDD probability metric expression of Eq. (3.52)is ignored in

the DFDD probabilty metric of Eq. (3.82), because the commonconstant may be ignored both by

the Max-Log-MAP algorithm of Eq. (3.53) and by the Approx-Log-MAP algorithm of Eq. (3.54).

In order to further simplify the DFDD symbol metric of Eq. (3.82), it was proposed in [122]

that bit-metric based DFDD may be invoked. More explicitly,a universal maximum probability

based on thea priori LLRs is given by a simple single-step evaluation as:

d̂max = −
∣∣∣zDFDD − x̂

∣∣∣
2
+

BPS

∑
k̄=1

b̂k̄La(bk̄), (3.83)

wherex̂ is modulated by{b̂k̄}BPS
k̄=1

, which are determined by the polarities of thea priori LLRs as

{b̂k̄ = [La(bk̄) > 0]}BPS
k̄=1

. For each single soft-bit output, the complete Max-Log-MAPalgorithm

is given by:

Lp(bk | Y) =

{
d̂max − d̂′max, if b̂k = 1

d̂′max − d̂max, if b̂k = 0
, (3.84)

where d̂′max is given by replacingx̂ in Eq. (3.83) byx̂′ that is modulated by the same decisions

{b̂k̄}k̄ 6=k, except that the specific bitb̂k is flipped, i.e. we havebk 6= b̂k. It can be seen that a total

of only (log2 M + 1)/ log2 M probability metrics have to be estimated by the bit-metric based

DFDD for producing a single soft-bit output, instead of evaluating and comparing theM metrics

of Eq. (3.82) as required by the symbol-metric based DFDD.

However, we will demonstrate in Sec. 3.3.5 that the bit-metric based DFDD of Eq. (3.84) im-

poses a severe degradation on the LLR accuracy, which in turnresults in a substantial BER per-

formance penalty. In order to mitigate this problem, the reduced-complexity probability metric

calculation of Algorithm 2.3 introduced in Sec. 2.4.2 may bedirectly applied to the DFDD using

the symbol-metric of Eq. (3.82) without inflicting any performance loss. More explicitly, Algo-

rithm 2.3 may be invoked, where the equivalent noise power isgiven byN0 = 1
2 , while the decision

variable is given by either̄zn = zDFDD for DBPSK or byz̄n = zDFDD exp(j π
M ) for generic DPSK

associated withM ≥ 4.

3.3.5 Performance Results for Coded DPSK

We further discuss our simulation results in this section. As observed for the hard-decision-aided

MSDSD, the SD radius of the soft-decision-aided MSDSD should be initialized to be sufficiently
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real-valued multiplications real-valued additions comparisons visited
nodes

CDD M + (3M + 4NR)/BPS M + 1 + (3M + 4NR −
2)/BPS

M M

CDD M/4 + (M/2 + 4NR M/4 + 1 + (7M/4 M/8 + 1 + (M/2 M/4
(Algorithm 2.3) +6)/BPS +4NR)/BPS +2)/BPS

(4N3
w + 4N2

w NR + 2Nw NR) [4N3
w + (4NR − 2)N2

w − 1] M(Nw−1) M(Nw−1)

MSDD ×M(Nw−1)/[BPS(Nw −
1)] + M(Nw−1)

×M(Nw−1)/[BPS(Nw −
1)] + M(Nw−1)

÷[BPS(Nw − 1)]

MSDSD’s sortDelta (4NRv + 6NR)M (4NRv + 2NR)M O(M log M) M
MSDSD’s findBest-DBPSK 4NRv + 8NR 4NRv + 4NR 2 1

MSDSD’s findNext-DBPSK 0 2 0 1
MSDSD’s findBest-DQPSK 4NRv + 8NR + 7 4NRv + 4NR + 6 4 1

MSDSD’s findNext-DQPSK ≤ 1 ≤ 4 ≤ 3 1

MSDSD’s findBest-DPSK 4NRv + 8NR + M + 4 4NRv + 4NR + 3M/2 + 2 5M/4 M/4
MSDSD’s findNext-DPSK ≤ 3 ≤ 7 ≤ M/2 + 2 1

DFDD M + (4NRNw + 2M)/BPS M + (4NR Nw − 4NR +
4M − 2)/BPS

M M

DFDD (Algorithm 2.3) M/4 + (4NR Nw + 7)/BPS M/4 + 1 + (4NR Nw −
4NR + 7M/4 + 4)/BPS

M/8 + 1 +
(M/2 + 4)/BPS

M/4

DFDD (bit metric) 2BPS + 3 + (4NRNw +
1)/BPS

2BPS + 6 + (4NR Nw −
4NR + 1)/BPS

2 BPS+
1

Table 3.8: Complexity (per soft-bit output) of soft-decision-aided noncoherent detectors
conceived for coded DPSK using the Max-Log-MAP algorithm. CDD and MSDD refer to
the Max-Log-MAP of Eq. (3.53) using Eq. (3.58) and Eq. (3.52), respectively, where Al-
gorithm 2.3 proposed in Sec. 2.4.2 may be applied for reducing the CDD complexity. The
MSDSD’s Schnorr-Euchner search strategy subfunctions aregiven by Tables 3.3 and 3.5-
3.7. DFDD and bit-metric based DFDD are given by Max-Log-MAPusing Eq. (3.82) and
by Eq. (3.84), respectively, where Algorithm 2.3 may also beinvoked for DFDD.

large, so that the full-search based MSDD’s detection capability may be retained. This is especially

important for the soft-decision-aided MSDSD presented in this section, because any erosion of

the detector’s capability may result inaccurate LLRs, which implies that the performance of the

resultant suboptimal detectors cannot be accurately predicted by the EXIT charts introduced in

Sec. 2.3.2.4. Furthermore, we note that the simulation parameters used in this section are the same

as those in Table 2.3, except that the coherent modulation scheme is replaced by the DPSK scheme

discussed in this chapter.

The detection complexities of Max-Log-MAP aided CDD, MSDD,MSDSD and DFDD con-

ceived for coded DPSK schemes are summarized in Table 3.8. For CDD, MSDD and DFDD,

the Approx-Log-MAP and Max-Log-MAP algorithms generally impose the same number of real-

valued multiplications, but the Approx-Log-MAP algorithmneeds more additions and compar-

isons, when relying on the lookup table of Table 2.2. Similarly, for a MSDSD’s subfunction of

Tables 3.3-3.7, the Approx-Log-MAP and Max-Log-MAP algorithms also have the same number

of multiplications, but the Approx-Log-MAP algorithm may invoke the subfunctions of findNext-

DBPSK, findNext-DQPSK and findNext-DPSK of Tables 3.5-3.7 a higher number of times com-

pared to the Max-Log-MAP in order to take into account more leaf nodes candidates. This results in

an overall complexity increase in all categories. Moreover, we note that some unneccessary calcula-

tions may be eliminated. For example, the expression{0.5Lv−1,1
a }∀v and{0.5Lv−1,2

a }∀v may be cal-
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Figure 3.16: Complexity (number of real-valued multiplications per soft-bit output) com-

parison between the noncoherent detectors conceived for coded DPSK using the Max-

Log-MAP algorithm, whereNR = 2 RAs are used, while the normalized Doppler fre-

quency is given byfd = 0.03.

culated before invoking the MSDSD’s subfunctions. Furthermore, the function of[b1 · · · bBPS] =

dec2bin(m) may be implemented by using a pre-stored lookup table for bit-mapping, while its

inverse functionm = bin2dec(b1 · · · bBPS) = b1 · 2BPS-1+ b2 · 2BPS-2+ · · · + bBPS−1 · 2 + bBPS

may require a total number of (BPS − 1) multiplications as well as (BPS − 1) additions.

The detection complexity comparison of CDD, MSDD, MSDSD andDFDD conceived for

coded DPSK is further characterized by Fig. 3.16 in terms of the total number of real-valued mul-

tiplicationsper soft-bit output, where the Max-Log-MAP algorithm is invoked. We note that Algo-

rithm 2.3 is applied to both CDD and DFDD, while the MSDSD utilizes the reduced-complexity

algorithm of Table 3.4. It may be seen in Fig. 3.16 that the MSDD and CDD exhibit the highest

and the lowest detection complexities, respectively, while the DFDD complexity is lower than the

MSDSD complexity. Moreover, it is demonstrated by Fig. 3.16b that the DFDD complexity and

CDD complexityper soft-bit outputdecreases, asM increases. More explicitly, the application

of Algorithm 2.3 may effectively reduce both CDD complexityand the DFDD complexity from

O(M) to O(M/4), where we haveM/4 ≤ BPS for low-order modulation schemes associated

with M ≤ 16. As a result, the complexities of the CDD and DFDDper soft-bit outputmay be

reduced, asM grows as long as we haveM ≤ 16.

The complexity of the conventional MSDSD algorithm of Table3.3 and that of the reduced-

complexity MSDSD algorithm of Tables 3.4 and 3.6 conceived for coded DQPSK are compared

in Fig. 3.17 in terms of the total number of real-valued multiplications of each algorithm. It is

demonstrated by Fig. 3.17a that the complexities of both soft-decision-aided MSDSD algorithms
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Figure 3.17: Complexity (number of real-valued multiplications) comparison between

the conventional MSDSD algorithm of Table 3.3 and the reduced-complexity MSDSD

algorithm of Tables 3.4 and 3.6 for coded DQPSK, whereNR = 2 RAs are used, while

the normalized Doppler frequency is given byfd = 0.03.

converge to their lower bounds asEb/N0 increases, which is exactly the same as that of the hard-

decision-aided MSDSD presented in Sec. 3.2.5. Furthermore, it is evidenced by Fig. 3.17b that even

at a lowEb/N0 of 0 dB, the complexities of both soft-decision-aided MSDSDalgorithms may also

be reduced to their respective lower bounds, asIA increases. Therefore, we may conclude that

MSDSD based search conceived for coded DPSK terminates earlier, with when provided highera

priori information.

Fig. 3.17 demonstrates that the proposed MSDSD algorithm ofTable 3.4 substantially re-

duces the complexity of the conventional MSDSD of Table 3.3.The CRRs defined by Eq. (2.109)

achieved by our reduced complexity design are futher summarized in Fig. 3.18, where the complex-

ity difference between the Approx-Log-MAP and Max-Log-MAPalgorithms is also portrayed. It

was discussed in Sec. 3.3.2 that all the SD’s child nodes associated with the indexv = Nw which

are also referred to as leaf nodes have to be taken into account by the Approx-Log-MAP Algo-

rithm 3.2. As a result, Fig. 3.18 demonstrates that the Approx-Log-MAP algorithm exhibits a

higher complexity than the Max-Log-MAP for the proposed MSDSD algorithm of Table 3.4, be-

cause the Max-Log-MAP algorithm is not required to visit allthe leaf nodes, as exemplified by

Figs. 3.14 and 3.15. Nonetheless, Fig. 3.18a shows that a significant complexity reduction of up to

CRR = 48.0% is achieved by the Approx-Log-MAP algorithm aided MSDSD of Table 3.4, where

the MSDSD window is increased up toNw = 6 for coded DQPSK detection. Moreover, it may

be seen in Fig. 3.18b that a substantial complexity reduction of up toCRR = 52.2% is achieved

by the Approx-Log-MAP algorithm aided proposed MSDSD associated withNw = 4, where the
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Figure 3.18: Complexity-Reduction Ratio (CRR) achieved bythe reduced-complexity

MSDSD algorithm of Table 3.4 compared to the conventional MSDSD algorithm of Ta-

ble 3.3 recorded atEb/N0 = 0 dB andIA = 1, whereNR = 2 RAs are employed, while

the normalized Doppler frequency is given byfd = 0.03.

number of modulation levels is increased toM = 16. Furthermore, Fig. 3.18 demonstrates that the

proposed MSDSD of Table 3.4 achieves even more substantial CRRs when the Max-Log-MAP al-

gorithm is invoked, where the complexity reductions are up to CRR = 66.7% andCRR = 88.7%

for the two scenarios presented in Fig. 3.18a and Fig. 3.18b,respectively. We note that the com-

plexity reductions achieved by the proposed soft-decision-aided MSDSD are especially substantial,

when the MSDSD is iteratively invoked several times by the turbo detected systems, such as the

TC coded scheme of Fig. 2.8 as well as the IRCC-URC coded scheme of Fig. 2.10.

In order to further investigate the performance of MSDSD, the EXIT charts of coded DPSK

employing both the Approx-Log-MAP aided and the Max-Log-MAP algorithms assisted MSDSD

are portrayed in Fig. 3.19. It can be seen in Fig. 3.19a that the performance of MSDSD aided

DQPSK improves, asNw increases. Moreover, Fig. 3.19a shows that the EXIT curves of CDD

aided DQPSK are horizontal, because Gray labelling does notimpose any bit-dependency during

the QPSK bit-to-symbol mapping. However, the MSDSD observes multiple independently faded

symbols and as a result, the attainable iteration gain is improved asNw increases, as evidenced by

Fig. 3.19a. Fig. 3.19b further demonstrates that the performance of MSDSD decays, as the number

of modulation levelsM increases, but a higher iteration gain is obtained by employing a higher

M. Furthermore, as the iteration gain improves withNw and M, the performance advantage of

the Approx-Log-MAP Algorithm 3.2 compared to the Max-Log-MAP algorithm becomes more

obvious, as seen in Fig. 3.19. It is further demonstrated by Fig. 3.20 that the LLR accuracy of

Max-Log-MAP suffers from an obvious deviation from the LLR definition of Eq. (2.27) for both

the cases of MSDSD aided DQPSK and D16PSK associated withNw = 4. We note that when
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Figure 3.19: EXIT charts of coded DPSK employing Approx-Log-MAP aided and Max-

Log-MAP aided MSDSD, where the reduced-complexity MSDSD algorithm of Table 3.4

is invoked.
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DSD algorithm of Table 3.4 is invoked.
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Figure 3.21: EXIT charts of coded DQPSK using Approx-Log-MAP aided DQPSK,

where the number of overlapped observations between consecutive MSDSD windows

NOL is varied.

there is a beneficial iteration gain, the Max-Log-MAP algorithm may impose an undesirable per-

formance loss, because many valuable candidates are overlooked by the Max-Log-MAP algorithm

as M andNw increase. By contrast, Fig. 3.20 demonstrates that the proposed Approx-Log-MAP

Algorithm 3.2 may successfully improve the MSDSD’s extrinsic LLR accuracy.

Recall from Sec. 3.2.5 that the symbols located at the centreof the MSDSD window may be

detected more reliably than the ones at the edges. Similarly, Fig. 3.21a demonstrates that subset-

based MSDSD associated withNOL = 3 improves the performance of soft-decision-aided MSDSD

with the aid of overlapping three observations amongst the consecutive windows, where the pair

of data symbols detected at the edge of MSDSD window may be dropped. Moreover, Fig. 3.21b

shows that further increasingNOL beyond three does not provide any further benefit.

The BER performance of TC coded as well as IRCC-URC coded DPSKschemes employing

MSDSD is portrayed in Fig. 3.22, while the corresponding Monte-Carlo simulation based stair-

case-shaped decoding trajectories are recorded in the EXITcharts of Fig. 3.23. For TC coded

DQPSK and TC coded D16PSK, it may be seen both in Fig. 3.22a andFig. 3.22b that MSDSD as-

sociated withNw = 4 substantially improves the performance of MSDSD associated with Nw = 2,

which is the case of CDD, and the subset-MSDSD previously discussed in Sec. 3.2.5 provides a

further performance improvement. Furthermore, IRCC-URC coded DQPSK and D16PSK schemes

employing subset-MSDSD achieve a near-capacity performance in Fig. 3.22a and Fig. 3.22b, re-

spectively. Fig. 3.23 also evidences that the Approx-Log-MAP aided MSDSD Algorithm 3.2 gener-

ally outperform its Max-Log-MAP based counterpart. This performance advantage of the Approx-
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Figure 3.22: BER performance of TC/IRCC-URC coded DPSK employing MSDSD,

where the reduced-complexity MSDSD algorithm of Table 3.4 is invoked, while we have

NR = 2 and fd = 0.03.
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Figure 3.23: EXIT charts and decoding trajectories of TC/IRCC-URC coded DPSK em-

ploying subset MSDSD associated withNw = 4, where where the reduced-complexity

MSDSD algorithm of Table 3.4 is invoked, while we haveNR = 2 and fd = 0.03.
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Figure 3.24: Complexity comparison between symbol-metricbased DFDD using

Eq. (3.82), bit-metric based DFDD of Eq. (3.84) as well as thereduced-complexity

symbol-metric based DFDD, where Algorithm 2.3 is applied.

Log-MAP algorithm is especially significant for the case of MSDSD (Nw = 4) aided D16PSK,

as seen in Fig. 3.23b, because among a total number ofMNw−1 = 4096 MSDD candidates, only

two maximum probability metrics associated with bit 1 and bit 0 are taken into account by the

Max-Log-MAP, which results in an inevitable performance erosion.

The detection complexity of Max-Log-MAP aided DFDD using Eq. (3.82) and that of this

symbol-metric based DFDD using Algorithm 2.3 are compared in Fig. 3.25 in terms of the total

number of real-valued multiplicationsper soft-bit output, where the complexity of the bit-metric

based DFDD of Eq. (3.84) is also portrayed as benchmark. As mentioned before, the application

of Algorithm 2.3 may substantially reduce the symbol-metric based DFDD’s complexity, namely

from O(M) to O(M/4). This is achieved without any performance loss, while the bit metric

based DFDD’s complexity order is given byO(BPS), where we haveM/4 ≤ BPS for low-order

modulation schemes associated withM ≤ 16. As a result, Fig. 3.25 demonstrates that the symbol-

metric based DFDD using Algorithm 2.3 exhibits an even lowercomplexity than the bit-metric

based DFDD of Eq. (3.84), provided that we haveM ≤ 16. Furthermore, it is demonstrated by

Fig. 3.24b that a substantial complexity reduction of up toCRR = 57.0% may be achieved by

applying Algorithm 2.3 to DFDD (Nw = 4), as the modulation order increases toM = 16.

Fig. 3.25a portrays a performance comparison amongst the CDD, DFDD and MSDSD with

the aid of EXIT charts. It may be seen in Fig. 3.25a that as expected, the symbol-metric based

DFDD improves the CDD’s performance, but the DFDD’s performance remains inferior to that of

MSDSD. Moreover, it is also demonstrated by Fig. 3.25a that the bit-metric based DFDD performs

poorly at low IA values, yet it has the highest extrinsic informationIE when provided with the

perfecta priori information of IA = 1. Based on this feature, it was proposed in [122] that the
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Figure 3.25: EXIT charts and LLR validity test of symbol-metric based DFDD using

Eq. (3.82) and bit-metric based DFDD of Eq. (3.84) in comparison to MSDSD, where the

Approx-Log-MAP algorithm is applied.
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Figure 3.26: BER performance of TC coded DPSK employing the Approx-Log-MAP

algorithm aided CDD, DFDD and MSDSD, where we haveNR = 2 and fd = 0.03.

The CDD refers to the Approx-Log-MAP of Eq. (3.54) using Eq. (3.58). The MSDSD

using the Approx-Log-MAP of Algorithm 3.2 invokes the Schnorr-Euchner search strat-

egy subfunctions of Tables 3.5-3.7. The DFDD is given by the Approx-Log-MAP using

Eq. (3.82).



3.4. Coherent Versus Noncoherent Performance Comparison 146

CDD may be invoked when there is little or noa priori information. However, as demonstrated by

Fig. 3.25b, the bit-metric based DFDD’s output LLRs accuracy exhibits a severe deviation from the

LLR definition of Eq. (2.27). As a result, it is difficult to predict, when the noncoherent receiver

should be switched from CDD to bit-metric based DFDD. In summary, since the symbol-metric

based DFDD using Algorithm 2.3 exhibits a lower detection complexity without imposing any

performance loss on the DFDD, the employment of bit-metric based DFDD may be avoided for

low-order DPSK schemes associated withM ≤ 16.

The BER performance of the CDD, DFDD and MSDSD aided TC coded DPSK schemes is

portrayed in Fig. 3.26. As the EXIT charts correctly predicted in Fig. 3.25a, the DFDD performs

better than CDD, but MSDSD achieves a more substantial performance improvement compared to

both CDD and DFDD, as evidenced by Fig. 3.26.

3.4 Coherent Versus Noncoherent Performance Comparison

Reliable transmission over rapidly fluctuating fading channels is a challenging task. On one hand,

for a coherent scheme, the pilot-spacing has to be reduced inorder to sample the fading channels,

which implies that more transmission power has to be assigned to the pilot symbols, and the co-

herent receiver’s performance may degrade as a result of imperfect CSI knowledge. On the other

hand, although a differential detection scheme may eliminate the need for CSI knowledge at the

noncoherent receiver, a high-complexity detector such as MSDSD may have to be employed in

order to attain an adequate performance. In order to elaborate on this important issue, we firstly

introduce the concept of channel estimation conceived for continuous fading, and then discuss the

pros and cons of coherent versus noncoherent schemes. Our aim is to identify the most appropriate

scenarios for employing coherent and noncoherent schemes,respectively.

3.4.1 Preliminaries of Pilot Symbol Assisted Modulation [1]

Let us briefly focus our attention on the classic Pilot SymbolAssisted Modulation (PSAM) scheme

proposed by Cavers in [1]. The schematic of PSAM is portrayedin Fig. 3.27. In more detail, pilot

symbols are inserted into the transmitted symbols stream, where the pilot spacing is specified by

NPS. If we define a PSAM frame asNPS transmitted symbols commencing with a pilot, a trans-

mitted symbolsn may be represented bysv,t, where we have the PSAM frame index ofv ≥ 1 and

symbol index of1 ≤ t ≤ NPS, while the transmission frame index is given byn = (v− 1)NPS + t.

The pilot symbols{sv,1}∀v are known by the receiver, and the data symbols{{sv,t}NPS
t=2}∀v are mod-

ulatedMPSK/QAM signals. Therefore, the received signal model of Eq. (2.1) may be rewritten

as:

Yv,t = sv,tHv,t + Vv,t. (3.85)

In order to estimate the fading channel matrix{Hv,t}NPS
t=2 for detecting{sv,t}NPS

t=2 , an observation

window size ofNOW is established utilizing the nearby received pilot samples. In order to guarantee
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Figure 3.27: The schematic of Pilot Symbol Assisted Modulation (PSAM).

a multiplicative channel gain factor for each detected symbol interpolation may be invoked as:

Ĥv,t =
Nb

OW

∑
v̄=−Na

OW

wv̄,tYv+v̄,1/sv+v̄,1

=
NOW

∑
ṽ=1

wṽ,tYv−Na
OW−1+ṽ,1/sv−Na

OW−1+ṽ,1,

(3.86)

where the observation window boundaries are given byNa
OW = ⌊NOW

2 ⌋− 1 andNb
OW = ⌊NOW+1

2 ⌋.
Furthermore, Eq. (3.86) may be modelled in matrix form as:

Ĥv,t = wT
t (SPSAM

v )HYPSAM
v , (3.87)

where the filter taps are given bywt = [w1,t, w2,t, · · · , wNOW,t]
T, while the transmitted pilot sym-

bols and received pilot samples are given bySPSAM
v = diag

{
[sv−Na

OW ,1, · · · , sv,1, · · · , sv+Nb
OW,1]

}

andYPSAM
v = [YT

v−Na
OW,1, · · · , YT

v,1, · · · , YT
v+Nb

OW,1
]T, respectively.

The filter tapswt seen in Eq. (3.87) may be optimized for minimizing the MSE between the

filter outputĤv,t andHv,t. The corresponding MSE cost function may be formulated as:

σ2
MSE = E

{
‖Hv,t − Ĥv,t‖2

}

= E

{[
Hv,t − wT

t (SPSAM
v )HYPSAM

v

] [
Hv,t − wT

t (SPSAM
v )HYPSAM

v

]H
}

= 1 − 2RPSAM
HY wt + wT

t RPSAM
YY wt.

(3.88)

The auto-correlation matrix seen in Eq. (3.88) is given by:

RPSAM
YY = E{(SPSAM

v )HYPSAM
v (YPSAM

v )HSPSAM
v }

= Toeplitz([ρ0, ρNPS
, · · · , ρ(NOW−1)NPS

]) + N0INOW
.

(3.89)

Moreover, the cross-correlation matrix seen in Eq. (3.88) is given by:

RPSAM
HY = E{Hv,t(YPSAM

v )HSPSAM
v }

= [ρNa
OW NPS+t−1, ρ(Na

OW−1)NPS+t−1, · · · , ρt−1, ρNPS+1−t, · · · , ρNb
OW NPS+1−t].

(3.90)
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The MMSE solution based on Eq. (3.88) is given by
∂σ2

MSE
∂wt

= 0, which leads to the classic Wiener-

Hopf equation formulated as [1]:

wt = (RPSAM
YY )−1(RPSAM

HY )T. (3.91)

As a result, the minimized MSE of Eq. (3.88) becomes a constant given by:

σ2
MSE = 1 − RPSAM

HY (RPSAM
YY )−1(RPSAM

HY )T. (3.92)

It was demonstrated in [98, 99] that the MSE lower bound of pilot-training aided sequence-

based channel estimation is given by the Cramer-Rao Bound (CRB). More explicitly, the pilot-

training aided sequence-based channel estimator utilizesNOW pilot samples at the beginning of

each frame, and the fading channel is assumed to be Quasi-Static. The MSE of this estimation

problem is lower-bounded byE{‖H − Ĥ‖2} = 1/F(H), whereH models the fading channel

matrix that remains the same within the estimation frame, while the Fisher information function

defined in [98,99] is given byF(H) = −E
{

∂2 p(Y|H)
∂H2

}
. The PDFp(Y|H) is the same asp(Yn|sm)

of Eq. (2.3), except that the pilot symbolsm is known at the receiver, but the fading channel matrix

H becomes unknown. Therefore, the CRB of the pilot-training sequence-based channel estimation

is given byCRB = N0/NOW , which may decrease as the SNR and/or the pilot sequence length

increased.

However, the PDF of Eq. (2.3) cannot be used for representingPSAM estimation, because

the estimated fading channel matrix and the pilot samples are not located at the same position.

Nonetheless, the lower bound of Eq. (3.92) may still be validfor the case of Quasi-Static fading, in

which case the cross-correlationRPSAM
HY becomes a vector of ones, and the eigenvalues of the auto-

correlation matrixRPSAM
YY are given by(NOW + N0) once andN0 for the remaining(NOW − 1)

values. Therefore, as a result of eigendecomposition, the PSAM’s MSE lower bound is given by [1]:

σ2
MSE−LB = 1 − NOW

N0 + NOW
=

N0

N0 + NOW
. (3.93)

The MSE lower bound of Eq. (3.93) is proportional toN0 and 1
NOW

, which implies that as either the

SNR or NOW increases, the channel estimation may become more accurate. Furthermore, we note

that the throughput of a PSAM aided coherent detection aidedscheme is given by:

R =
BPS(NPS − 1)

NPS
. (3.94)

Therefore, according to the relationshipSNR (dB) = Eb/N0 + log10 R (dB) specified in Eq. (2.51),

the PSAM aided coherent scheme has to have a higherEb/N0 in order to maintain the same SNR

level as a scheme assigning no power to the pilots. This verifies the fact that a fraction of1/NPS

in transmitted symbol power is assigned to the pilots instead of data-carrying symbols.

3.4.2 Uncoded Coherent and Noncoherent Schemes

Let us now investigate the performance of an uncoded PSAM aided coherent receiver in comparison

to uncoded noncoherent receivers. For the sake of simplicity, all the pilot symbols are configured

to be{sv,1 = 1}∀v.
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Figure 3.28: Effect of pilot spacingNPS on PSAM aided QPSK associated withNR = 1,

where the observation window sizeNOW is fixed. The MSE and the MSE lower bound

are given by Eq. (3.92) and Eq. (3.93), respectively.

It is vitally important to choose the appropriate pilot spacing NPS and observation window

NOW for PSAM at different normalized Doppler frequencies. Fig.3.28 portrays the effect ofNPS

on PSAM aided QPSK. It can be seen in Fig. 3.28 that the MSE grows with NPS, as a result

of sampling the fading channels less frequently. Furthermore, Fig. 3.28 shows that the MSE of

Eq. (3.92) is closer to the lower bound of Eq. (3.93) at a low normalized Doppler frequency of

fd = 0.001, but it is hard for PSAM to approach the MSE lower bound, when the fading channel

fluctuates more rapidly, as observed for the case offd = 0.03. Naturally, PSAM has to sample

the fading channels above the Nyqust rate, which implies that NPS ≤ 1
2 fd

is required. In reality,

a substantially higher sampling rate is required, because the signal is faded and contaminated by

noise. As a result, it can be seen in Fig. 3.28 that a lowerNPS is needed for a higherfd. In the rest

of this chapter, we chooseNPS = 22 andNPS = 12 for the cases offd = 0.001 and fd = 0.03,

respectively.

Fig. 3.29 demonstrates the effect of observation window size NOW on PSAM aided QPSK. As

NOW increases, more pilot samples are observed by the PSAM filterof Eq. (3.91), and hence a

better estimation precision is recorded in Fig. 3.29. However, Fig. 3.29 shows that for the case

of fd = 0.03, increasingNOW beyond 12 does not provide a further MSE improvement. This

is because the correlation between the pilot sample and estimated sample is low, when their time

indices are far apart at a high Doppler frequency. In the restof this chapter, we opt for choosing

NOW = 30 andNOW = 12 for the cases offd = 0.001 and fd = 0.03, respectively.

The BER performance comparison between PSAM aided uncoded QPSK and a range of non-

coherent detectors including CDD, MSDSD and DFDD aided uncoded DQPSK is portrayed in

Fig. 3.30. It can be seen in Fig. 3.30a that MSDSD/DFDD does not provide any significant per-
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DQPSK, where we haveNR = 2 and fd = 0.03.

formance improvement, when the fading channel fluctuates slowly, while PSAM aided QPSK per-

forms close to the perfect CSI aided QPSK. However, Fig. 3.30b shows that MSDSD and DFDD

provide a substantial performance improvement over CDD at the normalized Doppler frequency of

fd = 0.03. Furthermore, the performance gap between PSAM aided QPSK and perfect CSI aided

QPSK becomes larger atfd = 0.03, in which case the MSDSD aided DQPSK achieves a compara-

ble performance to the realistic PSAM aided QPSK, as evidenced by Fig. 3.30b. This verifies that

the MSDSD aided noncoherent scheme may be deemed to be a potent alternative to the coherent

scheme, when the Doppler frequency is increased so that accurate CSI estimation becomes less

feasible at the receiver.

Fig. 3.31 further compares the complexity of the PSAM aided coherent receiver to that of a va-

riety of noncoherent receivers. Assuming that the channel characteristicsfd andEb/N0 remain the

same during signal detection, the Wiener-Hopf equation of Eq. (3.91) is only required to be evalu-

ated once, hence this one-off complexity contribution may be ignored. The complexity of PSAM

only has to take into account the evaluation complexity of obtaining the filter output in Eq. (3.87) as

well as the coherent detection complexity, which is the sameas those summarized in Chapter 2. As

expected, the complexity of PSAM is higher than that of CDD, but it is lower than that of MSDSD

and DFDD, as demonstrated by Fig. 3.31. It can also be seen in Fig. 3.31 that MSDSD exhibits an

excessive complexity at a lowEb/N0 = 10 dB, which is an obvious disadvantange of MSDSD. Al-

though the MSDSD complexity becomes five times lower atEb/N0 = 30 dB than atEb/N0 = 10

dB, it is still twice that of the PSAM complexity, as evidenced by Fig. 3.31.
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Figure 3.32: LLR accuracy test for PSAM of Sec. 3.4.1 aided coherent QPSK and for

subset MSDSD of Sec. 3.3 aided DQPSK, where Approx-Log-MAP algorithm is invoked

for both detectors, whileNR = 1 RA is equipped.

3.4.3 Coded Coherent and Noncoherent Schemes

It was demonstrated in the previous section that for uncodedsystems, noncoherent detectors such

as MSDSD impose a higher implementational complexity than coherent detectors, and yet they fail

to provide a performance advantage when employing realistic channel estimation for the coherent

detection. By contrast, in this section, we will demonstrate that MSDSD conceived for coded non-

coherent schemes is capable of offering impressive performance benefits compared to its coherent

counterpart relying on realistic imperfect CSI estimationin rapidly fluctuating fading channels.

First of all, let us compare the LLR accuracy test results forPSAM aided coherent QPSK

and for the subset-MSDSD aided DQPSK in Fig. 3.32. As discussed in Sec. 2.3.2.4, the extrinsic

LLRs produced by soft-decision-aided detector may be deemed to have adequate integrity only

if they comply with the LLR definition of Eq. (2.66). It can be seen in Fig. 3.32a that both the

PSAM aided coherent detector and the subset-MSDSD produce reliable extrinsic LLRs at a low

normalized Doppler frequency offd = 0.001. However, Fig. 3.32b demonstrates that the soft-

bits produced by the PSAM aided coherent detector deviates from the LLR definition, when the

normalized Doppler frequency is increased tofd = 0.03. This is because the coherent detectors

introduced in Chapter 2 assumed perfect CSI knowledge at thereceiver, which cannot be delivered

by realistic channel estimation techniques, when the fading channel fluctuates rapidly unless joint

iterative channel and data estimation is used andEb/N0 is sufficiently high. This problem will

gravely affect the coherent scheme’s performance in coded systems.
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Figure 3.33: EXIT charts of coherent QPSK relying either on perfect CSI or on PSAM

of Sec. 3.4.1 aided channel estimation and EXIT charts of subset-MSDSD (Nw = 4) of

Sec. 3.3 aided DQPSK, where the Approx-Log-MAP algorithm isinvoked for both the

coherent QPSK detector and for the noncoherent subset-MSDSD.

Fig. 3.33 further examines the capability performance of coherent and noncoherent detectors

using EXIT charts. As expected, Fig. 3.33 demonstrates thatthe imperfect channel estimation

provided by realistic PSAM results in a performance loss forcoherent receivers, which is quite

substantial, when we havefd = 0.03 in Fig. 3.33b. It may be further observed in Fig. 3.33b that

PSAM aided coherent detectors produce higher extrinsic information IE than the subset-MSDSD,

when there is noa priori information, which verifies that PSAM aided coherent detection still has

better performance for uncoded systems in this case. However, it can be seen in Fig. 3.33b that

the area under the EXIT curve of the subset-MSDSD is considerably higher than that of the PSAM

aided coherent detector, which implies that the subset-MSDSD may outperform the PSAM aided

coherent scheme, when they rely on turbo detection at a high normalized Doppler frequency of

fd = 0.03.

For a low-complexity RSC coded system, Fig. 3.34 demonstrates that PSAM aided coherent

PSK detectors outperform their subset-MSDSD aided DPSK counterparts, but the performance

difference between the two schemes becomes smaller atfd = 0.03. Recall from Fig. 3.33 that the

PSAM aided coherent scheme exhibits horizontal EXIT curves. and for this reason the number of

iterations between the RSC decoder and the detector is set to1. As a result, in this RSC coded

system design, the subset-MSDSD fail to achieve its full performance potential atfd = 0.03, as

predicted by the EXIT charts of Fig. 3.33b. More powerful channel coding is needed for MSDSD

to demonstrate its advantage in rapidly fading channels.
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Figure 3.34: BER performance comparison between RSC coded PSAM of Sec. 3.4.1

aided coherent PSK and RSC coded subset-MSDSD of Sec. 3.3 aided DPSK, where the

Approx-Log-MAP algorithm is invoked for both detectors, while NR = 2 RAs are used.

The number of iterations between the RSC decoder and the QPSK/DQPSK detector is set

to IRSC−QPSK = IRSC−MSDSD = 1.
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Figure 3.35: BER performance comparison between TC coded PSAM of Sec. 3.4.1 aided

coherent PSK and TC coded subset-MSDSD of Sec. 3.3 aided DPSK, where the Approx-

Log-MAP algorithm is invoked for both detectors, whileNR = 2 RAs are used. For

TC coded PSK, the number of inner TC iterations and outer iterations areITC = 16 and

ITC−PSK = 1, respectively. For TC coded DPSK, we haveITC = 4 and ITC−MSDSD = 4.
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Figure 3.36: BER performance comparison between IRCC-URC coded PSAM of

Sec. 3.4.1 aided coherent QPSK and IRCC-URC coded subset-MSDSD of Sec. 3.3

aided DQPSK, where the Approx-Log-MAP algorithm is invokedfor both detectors,

while NR = 2 RAs are used. For IRCC-URC coded QPSK, we haveIURC−QPSK =

1 and IIRCC−{URC−QPSK} = 60, while for IRCC-URC coded DQPSK, we have

IURC−MSDSD = 2 and IIRCC−{URC−MSDSD} = 30.

Therefore, both the PSAM aided coherent receiver and the subset-MSDSD assisted noncoherent

receiver are protected by TC coding, and their performance results are compared in Fig. 3.35. For

TC coded PSK schemes, the number of inner TC iterations and outer iterations between the TC and

the coherent detector are set toITC = 16 and ITC−PSK = 1, respectively. For the TC coded DPSK

scheme, the number of inner TC iterations and outer iterations between the TC and the subset-

MSDSD are set toITC = 4 andITC−MSDSD = 4, respectively. According to this arrangement, both

schemes may have exactly the same number of total turbo iterations. It can be seen in Fig. 3.35a

that the PSAM aided coherent detector outperforms its subset-MSDSD counterpart, when we have

fd = 0.001. However, Fig. 3.35b demonstrates that the subset-MSDSD achieves a substantial

performance advantage over the coherent detector using imperfect CSI in the context of the same

TC coded system, when a rapidly fluctuating fading channel isspecified byfd = 0.03.

In order to further characterize the performance difference between the coherent and noncoher-

ent receivers in near-capacity scenarios, Fig. 3.36 portrays the performance comparison between a

PSAM aided coherent detector and the corresponding subset-MSDSD in the context of the IRCC-

URC coded system of Fig. 2.10. The Monte-Carlo simulation based stair-case-shaped decoding

trajectories for PSAM aided coherent receivers are recorded in the EXIT-chart of Fig. 3.37. First
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Figure 3.37: Decoding trajectories of TC coded and IRCC-URCcoded PSAM of

Sec. 3.4.1 aided coherent QPSK, whereNR = 2 RAs are employed.

of all, Fig. 3.36 shows that when the fading channel changes slowly as specified byfd = 0.001,

the IRCC-URC coded PSAM aided coherent QPSK scheme achievesa near-capacity performance,

which is within 1.2 dB from the DCMC capacity. Hence it significantly outperforms its nonco-

herent counterpart. However, when the fading channel fluctuates more rapidly atfd = 0.03, the

coherent scheme’s performance degrades substantially as aresult of its less accurate CSI estima-

tion, while the subset-MSDSD aided noncoherent scheme onlysuffers from a small deterioration

in BER performance asfd increases, which gives the noncoherent scheme a significant1.4 dB

performance advantage over its coherent counterpart atfd = 0.03. Furthermore, the PSAM aided

QPSK scheme requires a wider open EXIT tunnel for achieving decoding convergence to an in-

finitesimally low BER for the case offd = 0.03 in Fig. 3.37b compared to the case offd = 0.001

portrayed in Fig. 3.37a. This is because for the case offd = 0.03, the poor extrinsic LLR integrity

of the PSAM aided coherent detector demonstrated in Fig. 3.32b deteriorates its performance. To

elaborate a little further, it is very likely that soft-decision-aided detectors associated with a poor

extrinsic LLR integrity may produce excessively large output LLR values. In this case, the more

turbo iterations are invoked, the harder for the channel decoder to correct the corresponding errors.

This is the reason why the TC coded PSAM aided QPSK scheme achieves decoding convergence

to an infinitesimally low BER at a lowerEb/N0 value than IRCC-URC coded scheme for the case

of fd = 0.03. Again, this is evidenced by Fig. 3.37b.
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DFDD

CDD

Better performance

MSDSD MSDD

Higher complexity

Figure 3.38: A summary on the family of noncoherent detectors in terms of performance

and complexity.

3.5 Chapter Conclusions

In this chapter, we quantified the performance versus complexity trade-off of a variety of non-

coherent receivers and the reduced-complexity design proposed for soft-decision-aided coherent

detection in Chapter 2 was invoked for noncoherent detection in this chapter. For uncoded DPSK,

we have demonstrated in Fig. 3.4 that the CDD of Sec. 3.2.1 exhibits a low detection complexity,

but it was shown in Fig. 3.7 that the CDD also suffers from a severe performance penalty, especially

in rapidly fluctuating fading channels. Observe in Fig. 3.7 that the MSDD aided uncoded DPSK of

Sec. 3.2.2 eliminates the CDD’s error floor encountered at a high Doppler frequency, and the MS-

DSD invokes SD in order to mitigate the excessive MSDD complexity. In Sec. 3.2.3 we proposed

a novel decorrelating operation for hard-decision-aided MSDSD for ensuring that uncoded DPSK

detection associated withNR > 1 may still be carried out by the SD’s Schnorr-Euchner search strat-

egy without visiting all theM constellation points. Furthermore, the DFDD of Sec. 3.2.4 makes

use of previous symbol decisions in order to reduce the complexity of evaluating and comparing

the MSDD’s decision metrics. We have demonstrated in Sec. 3.2.4 that this method is equivalent

to blind channel estimation aided symbol detection. Although DFDD may also improve CDD’s

performance, we drewed in Fig. 3.9 that its detection capability is suboptimal compared to that

of MSDD/MSDSD owing to the DFDD’s error propagation problem. The family of noncoherent

detectors characterized in terms of their performance versus complexity is summarized in Fig. 3.38.

The soft-decision-aided noncoherent detectors of Sec. 3.3conceived for coded DPSK strike a

similar tradeoff between their performance and complexityto that of the hard-decision-aided non-

coherent detectors of Sec. 3.2. The soft-decision-aided MSDD attains the optimum performance

for coded DPSK detection, but observe in Fig. 3.16 that its complexity is the highest. The CDD,

which constitutes a special case of MSDD associated withNw = 2 exhibits the lowest complexity

for coded DPSK, but its performance is seen in Fig. 3.22 to be the poorest. The MSDSD using

the Max-Log-MAP algorithm achieves exactly the same detection capability as the Max-Log-MAP

aided MSDD as presented in Sec. 3.3.2, and the MSDD’s complexity is significantly reduced by

SD. In Sec. 3.3.2, we modified the output scenario of the soft-decision-aided SD, so that the near-

optimum Approx-Log-MAP algorithm may be implemented with the aid of the MSDSD. Further-
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Lower detection complexity: PSAM
Better performance in uncoded system:fd = 0.001 PSAM

fd = 0.03 PSAM and MSDSD
become comparable

RSC-PSK/DPSK fd = 0.001 PSAM
fd = 0.03 PSAM

Better performance in coded system: TC-PSK/DPSK fd = 0.001 PSAM
fd = 0.03 MSDSD

IRCC-URC-PSK/DPSK fd = 0.001 PSAM
fd = 0.03 MSDSD

Table 3.9: Summary of comparisons between PSAM aided coherent receiver and sub-
set MSDSD aided noncoherent receiver based on the simulation results presented in
Sec. 3.4.3.

more, in Sec. 3.3.3 a reduced-complexity design taylored for the Schnorr-Euchner search strategy

of soft-decision-aided MSDSD conceived for coded DPSK was proposed. Explicitly, the detec-

tion candidate may be found by visiting a reduced-size subset of constellation points and then the

rest of the constellation points may be visited in a zigzag fashion if needed. As a result, the MS-

DSD complexity is seen in Figs. 3.17 and 3.18 to be further reduced without any performance

loss. Furthermore, in Sec. 3.3.4 soft-decision-aided DFDDis introduced as the decision-feedback

aided version of MSDD/MSDSD. The DFDD’s error propagation problem severely degrades its

output extrinsic LLR’s integrity as seem in Fig. 3.25b, hence its performance becomes sub-optimal

compared to MSDD/MSDSD, as seen in Fig. 3.26.

Last, but not least, a discussion on coherent versus noncoherent detection was offered in Sec. 3.4.

As representatives of the family of coherent and noncoherent detectors, the PSAM aided coherent

receiver and the subset-MSDSD aided noncoherent receiver were compared in Table 3.9 based on

our simulation results presented in Sec. 3.4. We have demonstrated that the MSDSD aided nonco-

herent receiver is more appropriate for coded system operating in the presence of rapidly fluctuating

fading channels, especially when the number of iterations between the detector and the channel de-

coder is higher than one. The reason for this phenomenon is that it is particularly difficult for the

channel estimation technique to acquire accurate CSI knowledge, when the Doppler frequency is

high. As a result, the extrinsic LLRs produced by a coherent receiver relying on imperfect CSI may

severely deviate from the valid LLR definition, and these high but inaccurate LLR values are hard

to correct for the channel decoder. By contrast, MSDSD is capable of providing reliable extrinsic

LLRs, even for high Doppler frequencies.

The classic noncoherent receivers studied in this chapter are all conceived for DPSK detection.

In the next chapter, we will continue our discourse by solving a range of open problems in the field

of noncoherent detection, when bandwidth efficient high-throughput schemes, such as Differential

Amplitude Phase Shift Keying (DAPSK) are employed.



Chapter4
Noncoherent Detection for Differential

Non-Constant Modulus Modulation –

Part I: Uncoded Systems

4.1 Introduction

Noncoherent detection of DPSK was introduced in Chapter 3, which is capable of mitigating the

pilot overhead of coherent PSK detection for transmission over rapidly fluctuating fading channels.

In order to improve the throughput of noncoherent DPSK systems, it is important to investigate the

family of high-throughput differentially encoded non-constant modulus constellations as nonco-

herent QAM schemes. More explicitly, when bandwidth-efficient coherent QAM is employed, the

Euclidean distances amongst the QAM constellation points is reduced, as the system throughput

increases, which implies that any realistic channel estimation error degrades the performance of

coherent QAM detection. For this reason, the noncoherent counterpart of differential non-constant

modulus QAM schemes may be preferred, since no CSI knowledgeis required at the noncoherent

receivers. Similar to the performance results seen in Chapter 3, we will demonstrate in this chap-

ter that differential non-constant modulus constellations may achieve comparable performance to

their coherent QAM counterparts in uncoded systems, and we will further demonstrate in the next

chapter that these noncoherent schemes may even outperformtheir coherent QAM counterparts in

coded systems under specific conditions, despite their lower complexity.

Let us now focus our attention on the classic Star QAM constellation introduced in Chapter 2.

As an installation of Star QAM, the popular Differential Amplitude Phase Shift Keying (DAPSK)

[142,149,150,154,287] aim for guaranteeing that all transmitted symbols are drawn from the same

Star QAM constellation. As a result, the changes between thering amplitudes of the consecutive

transmitted symbols are data-dependent. Considering the Star QAM constellation associated with

MA = 2 introduced in Sec. 2.2.2.2 as an example, the modulated data-dependent ring amplitudes
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should either be drawn from the set of{1, α} or use the set of{1, 1
α}, when the previous transmitted

symbol’s ring amplitude is either1√
β

or α√
β
, respectively, so that the next transmitted symbol’s ring

amplitude is guaranteed to be drawn from the same Star QAM ring amplitudes set of{ 1√
β

, α√
β
}.

However, it was argued in [136, 288] that the information carried by the DAPSK scheme’s

amplitude changes does not exhibit the best reliability, because the data-carrying magnitude such

as 1
α may even be much smaller than the smallest Star QAM ring amplitude given by 1√

β
, which

may degrade the DAPSK scheme’s achievable performance. Therefore, in addition to the classic

Star QAM, the second solution to the differential non-constant modulus modulation problem is

contributed by Absolute-amplitude Differential Phase Shift Keying (ADPSK), which was proposed

in [136,288], where all the data-carrying symbolsxn−1 are modulated onto classic Star QAM sym-

bols. More explicitly, the ADPSK scheme’s differential encoding for the transmitted symbolssn

is modelled by the revised expression ofsn = 1
|sn−1| xn−1sn−1, where the amplitude of the previ-

ous transmitted symbol|sn−1| is normalized, so that the amplitude of the next transmittedsymbol

|sn| is equal to the absolute amplitude of the data-carrying StarQAM symbol |xn−1|. This trans-

mission regime was originally conceived based on the SquareQAM constellation in [135], which

proposed to be detected noncoherently for recovering the data-carrying phase but coherently for re-

covering the data-carrying amplitude, meaning that the channel amplitude has to be estimated at the

receiver. However, it was later revealed in [136, 288] that noncoherent detection may be invoked

for both amplitude and phase detection for the absolute-amplitude Differential QAM (DQAM)

schemes. Considering CDD in block fading as an example, the signal received at a single Receive

Antenna (RA) may be expressed asyn = snhn + vn = 1
|sn−1| xn−1yn−1 + (vn − 1

|sn−1| xn−1vn−1),

wherehn = hn−1 andvn refer to the block fading and AWGN factors, respectively. Asa result,

the whole data-carrying symbolxn−1 including both its amplitude and phase may be recovered

by the CDD with the aid of both the previous received sampleyn−1 and the previous decision on

|sn−1| = |xn−2|, while the unknown term of(vn − 1
|sn−1| xn−1vn−1) may be treated as an equivalent

AWGN term for the CDD. Statistically, the CDD’s equivalent noise power of(vn − 1
|sn−1|xn−1vn−1)

is exactly twice the noise power of the original AWGN variable vn, which results in the classic 3

dB performance difference between CDD aided DQAM and coherent QAM relying on perfect CSI

in block fading channels.

It’s worthy to note that the problem for using Square QAM constellation for modulating the

data-carrying symbolsxn−1 as suggested in [135] is that there would be no determined constel-

lation set for the transmitted symbolssn, which poses a major hardware difficulty. Consider-

ing Square 16QAM of Fig. 2.5a as an example, the data-carrying phases for∠xn−1 are given

by {arctan(1/3), π/4, arctan(3)} in the first quadrant and their projections in the other three

quadrants, which divide the2π phase circle space unevenly. This is different from, for exam-

ple, a 16PSK constellation of Fig. 2.4d or a Star 16QAM constellation of Fig. 2.5b, which evenly

divide the2π phase circle space by a constant phase step ofπ/16 or π/8, respectively. As a

result, if the absolute-amplitude DQAM scheme modulates the data-carrying symbolsxn−1 ac-

cording to the Square QAM constellation, then the differential encoding on phase, which is given



4.1. Introduction 161

by (∠sn = ∠xn−1 + ∠sn−1 mod 2π), will result in ∠sn having irregular phases that can take

any value from 0 to2π. By contrast, the ADPSK scheme [136, 288] modulates the data-carrying

symbols according to Star QAM constellation, which also results in the same Star QAM constel-

lation for all the transmitted symbolssn. In conclusion, the ADPSK schemes using the Star QAM

constellation are easier to be implemented than the absolute-amplitude DQAM scheme using the

Square QAM constellation. Nonetheless, it is still popularto employ the Square QAM constel-

lations for Differential MIMO schemes as in [139–141], where the absolute-amplitude differential

encoding method is invoked for dynamically restraining thetransmitted symbols’ amplitudes, while

having a determined constellation diagram for the transmitted symbols is not a concern for these

arrangements.

Moreover, it was also claimed in [136, 288] that a consistentring-amplitude-dependent phase

rotation may be applied to twist the constellation diagramsof DAPSK and ADPSK, so that the

distances between the adjacent constellation points whichare associated with different ring ampli-

tudes may be increased. The resultant constellations are referred to as Twisted DAPSK (TDAPSK)

and Twisted ADPSK (TADPSK), respectively. In order to simplify the discussions of the following

sections, we may include DAPSK, TDAPSK, ADPSK and TADPSK as DQAM. Furthermore, all

DQAM schemes may use the same form of notation, namelyM-DQAM(MA,MP) to specify the

number of their modulation levels.

Naturally, the employment of data-dependent ring amplitudes complicate the process of nonco-

herent detection. Since the ring amplitude and the phase areseparately modulated, the CDD aided

DAPSK proposed in [142], which independently detects the amplitude and phase exhibits a low de-

tection complexity. However, it was noted in [159] that completely independently detecting the ring

amplitude and the phase may impose a potential performance loss, which is especially significant

in channel coded systems. Nevertheless, it was demonstrated in [159] that the optimum detection

capability may be retained, when the ring amplitude’s detection is assisted by the phase detection,

and the detection complexity remains low as long as the subset of candidate ring amplitudes and

that of candidate phases are separately visited.

Furthermore, the MSDD aided DQAM technique was proposed in [114] in order to compensate

for the CDD’s performance loss in the absence of CSI estimation. However, the appealing perfor-

mance of DQAM in [114] is achieved at the cost of a substantialMSDD complexity. At the time

writing, the implementation of MSDD by sphere decoding in the context of DQAM detection is

still an open problem. Let us now elaborate a little further here in order to underline this predica-

ment. The MSDD/MSDSD of DPSK [113, 127, 132] requires us to estimate the inversion of the

received signal’s correlation matrixRYY = E
{
[rvec(Y)]H · rvec(Y)

}
. If the MSDD models the

received signals asY = SH + V, whereS, H andV model the transmitted symbols, the Rayleigh

fading channels and the AWGN, respectively, then the received signal’s correlation matrix may be

expressed asRYY =
(
SHCS

)
, whereNR = 1 RA is assumed to be used, as detailed in [127,132].

Moreover, the channel’s correlation matrix is statistically known asC = Rhh + Rvv, where the

fading channel’s correlation matrix is given byRhh = Toeplitz([ ρ0 ρ1 · · · ρNw−1 ]), while
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the AWGN correlation matrix is given byRvv = N0 · INw
, as defined in [127, 132]. The no-

tation Toeplitz([ ρ0 ρ1 · · · ρNw−1 ]) refers to the symmetric Toeplitz matrix generated from

the vector[ ρ0 ρ1 · · · ρNw−1 ], while{ρt}Nw−1
t=0 refers to the time correlation between the fad-

ing samples. Owing to the fact that the transmitted symbol matrix S is unitary, the inversion of the

received signal’s correlation matrix is given byR−1
YY =

(
SHC−1S

)
. Consequently, it was demon-

strated in [127, 132] that the unique structure of the lower triangular matrixL, which is the result

of the decompositionC−1 = LLH may facilitate sphere decoding for MSDSD aided DPSK. By

contrast, for the case of MSDD aided DQAM, the transmitted symbol matrix is given byS = AP,

whereA andP refer to the transmitted ring amplitudes and the transmitted phases, respectively.

Naturally, the matrixP of phases is a unitary matrix, but the matrixA of ring amplitudes is not. As

a result, the inversion of the received signal’s correlation matrix is now given byR−1
YY =

(
PHC−1P

)

for the case of DQAM, where the channel’s correlation matrixof C = AH · Rhh · A + Rvv remains

unknown until all the ring amplitudes inA are detected, which is the most substantial stumbling

block in the way of offering a sphere decoding solution to theproblem of DQAM ring amplitude

detection.

Nonetheless, a low-complexity soft-decision-aided MSDD using Iterative Amplitude/Phase

processing (MSDD-IAP) was proposed for coded DAPSK in [160], where the MSDD is invoked

for ring amplitude detection, while the MSDSD is employed for phase detection. Then these two

detectors may iteratively exchange their decisions in order to improve the overall performance. As

expected, its complexity still grows exponentially with the MSDD window widthNw in the context

of ring amplitude detection. Moreover, although the soft-decision-aided MSDD-IAP of [160] is

capable of achieving a near-optimum MSDD performance for coded DAPSK schemes, its perfor-

mance still suffers from an error floor when the MSDD-IAP is applied to uncoded DAPSK schemes.

The reason for this is that without the aid of channel coding,the MSDD used for ring amplitude

detection and the MSDSD conceived for phase detection may exchange erroneous decisions, which

triggers the problem of error propagation.

Therefore, solving the MSDD aided DQAM detection problem bysphere decoding is still an

open problem at the time of writing, which has been the most substantial obstacle in the way of

offering a solution for MSDSD aided Differential MIMO schemes using QAM [137–141]. Fur-

thermore, the DFDD was conceived for DQAM detection in [136,153, 154], which relies on the

assumption of the channel’s correlation matrixC being independent of symbol-amplitude. The

resultant DFDD solutions are no longer equivalent to MSDD relying on feedback decisions, which

is in direct contrast to the case of DPSK detection [119–121,121,126]. Hence the DFDD proposed

in [136,153,154] is sub-optimal.

As another fact worthnoting, is that the noncoherent detectors characterized in the open liter-

atures have been conceived for specific differential non-constant modulus modulation schemes,

among which the DAPSK detection [114, 142, 153, 154, 157, 159, 160] and the ADPSK detec-

tion [136, 288] are the most popular topics. No wide-rangingsurvey of noncoherent detectors

exists in the open literature that may include CDD, MSDD, MSDSD and DFDD conceived for vir-
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tually all DQAM constellations including DAPSK, TDAPSK, ADPSK and TADPSK. This paucity

of knowledge hampers the application of DQAM schemes in a realistic communication systems.

Against this background, the novel contributions of this chapter are as follows:

1. We observe that although the(Nw × Nw)-element channel correlation matrixC has a total

number ofMNw
A candidates, a(v× v)-element partial channel correlation matrixC̃v that may

be evaluated with the aid of the SD’s previous decisions onlyhasMA candidates according

to the single variable detected by the SD associated with index v. We prove that the(v ×
v)-element lower triangular matrix̃Lv that is directly generated by the decomposition of

C̃v = L̃vL̃H
v is always exactly the same as the sub-matrix of the(Nw × Nw)-element lower

triangular matrixL, and hence sphere decoding may be carried out based on the partial lower

triangular matrices{L̃v}Nw
v=2 without the knowledge of all DQAM ring amplitudes. The

optimum MSDD performance may be retained, provided that thesphere decoder radius is

initialized to be sufficiently large, while the potentiallyexcessive MSDD complexity may be

substantially reduced by invoking sphere decoding.

2. With the advent of solving the open problem of MSDSD aided DQAM detection, both a

DFDD derived from MSDD and a DFDD derived from prediction-based blind channel es-

timation are separately developed for uncoded DQAM schemes. We demonstrate that the

MSDD-based DFDD and the prediction-based DFDD are equivalent for DQAM detection

in Rayleigh fading channels. As expected, the enhanced DFDDproposed in this chapter

outperforms the DFDD aided DQAM of [136,153,154].

3. We provide an indepth study of the family of DQAM constellations, commencing from those

found in the existing literature. A variety of noncoherent detectors including CDD, MSDD,

MSDSD and DFDD are adapted for employment in DQAM schemes, and their pros as well

as cons are discussed in different scenarios. Finally, the performance comparison of DQAM

schemes is carried out in this chapter for uncoded systems, while in the next chapter for

channel coded systems.

The rest of this chapter is organized as follows. The DQAM constellations seen in the exist-

ing literature are studied and summarized in Sec. 4.2. The hard-decision-aided CDD and MSDD

conceived for uncoded DQAM detection are introduced in Secs. 4.3 and 4.4, respectively. The hard-

decision-aided MSDSD is proposed for uncoded DQAM detection in Sec. 4.5. Furthermore, for the

DQAM schemes which separately modulate their data-dependent ring amplitude and data-carrying

MPPSK phase, a reduced-complexity MSDSD is proposed in Sec. 4.5.3, whose sphere decoder

may separately visit the ring amplitude subset and the phasesubset. Finally, hard-decision-aided

DFDD conceived for uncoded DQAM is presented in Sec. 4.6, while Sec. 4.7 provides a summary

of performance results characterizing the class of uncodedDQAM schemes. Our conclusions are

offered in Sec. 4.8.

The hard-decision-aided CDD conceived for uncoded DAPSK introduced in Sec. 4.3 is based
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on our publication of [159]. Furthermore, the hard-decision-aided MSDSD conceived for uncoded

DQAM proposed in Sec. 4.5 is a generalized extension of our publication [235].

4.2 Differential Non-Constant Modulus Modulation

In this section, we focus our attention on the family of DQAM constellations. The DAPSK and the

ADPSK, which adopt the classic Star QAM constellation, are reviewed in Secs. 4.2.1 and 4.2.2,

respectively. The twisted constellations are introduced in Sec. 4.2.3, where the distances between

the adjacent constellation points associated with different ring amplitudes are increased by simply

imposing a ring-amplitude-dependent phase rotation. Furthermore, Sec. 4.2.4 offers a discussion

on the DQAM constellations that jointly modulate the data-carrying MA-level ring amplitude and

the data-carryingMPPSK phase.

4.2.1 Differential Amplitude Phase Shift Keying (DAPSK)

Similar to the differential encoding regime of DPSK seen in Eq. (3.1), the differential encoding

process conceived for DAPSK is formulated as [142,158,159,287]:

sn =





1√
β

, if n = 1,

xn−1sn−1, if n > 1,
(4.1)

where the normalization factor is given byβ =
∑

MA−1

µ=0 α2µ

MA
[159] andα refers to the ring ratio

[158, 253, 289]. Note that in Rayleigh fading channels, the advantageous choices of ring ratios are

α = 2.0 for two-ring DAPSK [253, 289] andα = 1.4 for four-ring DAPSK [155], respectively. In

the absence of any better alternative, we will continue to use these optimized ring ratios throughout

this chapter.

The basic notations that are shared by all DQAM schemes are summarized in Table 4.1. Specif-

ically, the DAPSK’s data-carrying symbolxn−1 in Eq. (4.1) may be represented by aMA-level ring

amplitudeγn−1 combined with anMPPSK phaseωn−1 as:

xn−1 = γn−1ωn−1. (4.2)

Similarly, the DAPSK’s transmitted symbolsn in Eq. (4.1) may also be represented by aMA-level

ring amplitudeΓn combined with anMPPSK phaseΩn as:

sn = ΓnΩn. (4.3)

As a result, the DAPSK’s differential encoding process of Eq. (4.1) may be applied to the ring

amplitude as:

Γn = γn−1Γn−1. (4.4)

Similarly, the differential encoding on the DAPSK phase is given by:

Ωn = ωn−1Ωn−1. (4.5)
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data-carrying amplitude: γn−1

data-carrying phase: ωn−1

data-carrying symbol: xn−1

(a) Notations for data-carrying symbol

transmitted amplitude: Γn

transmitted phase: Ωn

transmitted symbol: sn

(b) Notations for transmitted symbol

Table 4.1: Basic notations that are shared by all DQAM schemes.

16-DAPSK(2,8):

1/
√

β−1/
√

β α/
√

β−α/
√

β

sn
α = 2.0
β = 2.5

Figure 4.1: Constellation diagrams for the trans-

mitted symbols of the 16-DAPSK(2,8) scheme.

b1b2b3 ωn−1 Ωn

000 1 Ωn−1

001 exp(j π
4 ) exp(j π

4 )Ωn−1

010 exp(j 3π
4 ) exp(j 3π

4 )Ωn−1

011 exp(j π
2 ) exp(j π

2 )Ωn−1

100 exp(j 7π
4 ) exp(j 7π

4 )Ωn−1

101 exp(j 3π
2 ) exp(j 3π

2 )Ωn−1

110 exp(jπ) exp(jπ)Ωn−1

111 exp(j 5π
4 ) exp(j 5π

4 )Ωn−1

Table 4.2: Example of dif-

ferential encoding applied to

the 16-DAPSK(2,8) scheme’s

data-carrying phase and trans-

mitted phase.

Let us consider the example of the classic 16-DAPSK(2,8) scheme, which employs the Star

16QAM constellation for all the transmitted symbols, as portrayed in Fig. 4.1. More explicitly, the

16-DAPSK(2,8) scheme maps a total number of(BPS = log2 M = 4) source information bits

to the data-carrying symbolxn−1 of Eq. (4.2). For the 16-DAPSK(2,8) scheme’s phase, the first

(BPSP = log2 MP = 3) bits are assigned to a data-carrying 8PSK symbolωn−1, and then the

transmitted phaseΩn may be obtained by the differential encoding process of Eq. (4.5), which is

summarized in Table 4.2. It can be seen that the 16-DAPSK(2,8) scheme’s differential encoding

process related to the phase is exactly the same as that of theDPSK scheme that was previously

introduced in Sec. 3.2.

Following this, the 16-DAPSK(2,8) scheme’s last(BPSA = log2 MA = 1) bit is assigned

to modulate the change in the consecutive transmitted ring amplitudes, which is summarized in

Table 4.3. Explicitly,b4 = 0 andb4 = 1 determines whether the consecutive transmitted symbols’

ring amplitudeΓn−1 andΓn should remain unchanged or be altered, respectively, whilebothΓn−1

andΓn are drawn from the same two-ring Star 16QAM amplitude set{Γn−1, Γn} ∈ { 1√
β

, α√
β
}.

As a result, according to the ring amplitude relationship ofγn−1 = Γn
Γn−1

defined by Eq. (4.4), there

are two candidate sets for the data-carrying ring amplitudeγn−1 in Eq. (4.2), as summarized in

Table 4.4. More explicitly, when we haveΓn−1 = 1√
β
, the source bitb4 ∈ {0, 1} is mapped to
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b4 Γn−1 = 1√
β

Γn−1 = α√
β

0 Γn = 1√
β

Γn = α√
β

1 Γn = α√
β

Γn = 1√
β

Table 4.3: Example of differential encoding applied to the 16-DAPSK(2,8) scheme’s
transmitted ring amplitudes.

b4 γn−1 Γn

0 1 1√
β

1 α α√
β

(a) Γn−1 = 1√
β

b4 γn−1 Γn

0 1 α√
β

1 1
α

1√
β

(b) Γn−1 = α√
β

Table 4.4: Example of differential encoding applied to the 16-DAPSK(2,8) scheme’s data-
carrying ring amplitude and transmitted ring amplitude.

γn−1 ∈ {1, α}. Furthermore, when we haveΓn−1 = α√
β
, the source bitb4 ∈ {0, 1} is mapped to

γn−1 ∈ {1, 1
α}. Therefore, the choice of the data-carrying ring amplitudes set forγn−1 is explicitly

determined by the previous transmitted ring amplitudeΓn−1 = 1√
β
.

As a result, there are also two constellation diagrams for the 16-DAPSK(2,8) scheme’s data-

carrying symbolxn−1 = γn−1ωn−1 of Eq. (4.2), which are portrayed in Fig. 4.2. In summary,

for the classic 16-DAPSK(2,8) scheme, when we haveΓn−1 = 1√
β

and Γn−1 = α√
β
, the four

source information bits should be mapped to the constellation diagrams of Fig. 4.2a and Fig. 4.2b,

respectively, so that all transmitted symbols{sn}∀n of Eq. (4.1) are drawn from the same Star

16QAM constellation of Fig. 4.1.

Let us further extend the example of the 16-DAPSK(2,8) scheme to the genericM-DAPSK(MA,MP)

scheme, where the ring amplitudeγn−1 and phaseωn−1 of the data-carrying symbolxn−1 of

Eq. (4.2) are always separately encoded. More explicitly, the first BPSP = log2 MP source

information bits are assigned to modulate the data-carrying MPPSK phaseωp = exp(j 2π
MP

p̌),

wherep = bin2dec(b1 · · · bBPSP) represents the Gray coded indexp̌. Then the following BPSA =

log2 MA source information bits are assigned to the data-carrying ring amplitudeγn−1, which has

to guarantee that the next transmitted symbolsn of Eq. (4.1) is drawn from the same Star QAM

constellation as the previous transmitted symbolsn−1. Therefore, on the basis of a pre-determined

transmitted amplitude set{Γn−1, Γn} ∈ { αµ√
β
}MA−1

µ=0 the data-carrying amplitudesγn−1 may be

modulated according to:

γa =
Γn

Γn−1
=

αǎ+µn−1 mod MA

αµn−1
, (4.6)

wherea = bin2dec(bBPSP+1 · · · bBPS) is the Gray coded index̌a. It can be seen in Eq. (4.6) that the

DAPSK data-carrying ring amplitudeγn−1 is not determined uniquely by the data-carrying index

a, but it also depends on the previous transmitted ring amplitude index ofµn−1, where we have

Γn−1 = αµn−1√
β

.

Therefore, the constellation setx = {xm}M−1
m=0 of the data-carrying symbolxn−1 of Eq. (4.2)
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Figure 4.2: Constellation diagrams for the data-carrying symbols of the 16-DAPSK(2,8)

scheme.

is also supposed to be determined by the previous transmitted ring amplitudeΓn−1 = αµn−1√
β

. More

explicitly, the modulation process of the DAPSK data-carrying symbol may be formulated as:

xm = γaωp = α(ǎ+µn−1 mod MA)−µn−1 · exp(j
2π

MP
p̌), (4.7)

where the data-carrying modulation index ism = bin2dec(b1 · · · bBPS), while the index ranges

of m, a andp are given by[0 ≤ m ≤ (M − 1)], [0 ≤ a ≤ (MA − 1)] and[0 ≤ p ≤ (MP − 1)],

respectively. We note that the relationship between the modulation indices seen in Eq. (4.7) is given

by m = a + pMA, and the relationship between their modulation levels is given byM = MA MP.

4.2.2 Absolute-Amplitude Differential Phase Shift Keying(ADPSK)

The DAPSK introduced in Sec.4.2.1 relies on the same Star QAMconstellation for all transmitted

symbolssn. Alternatively, it was proposed in [136,288] that all the data-carrying symbolsxn−1 may

be directly modulated as regular Star QAM symbols. As a result, if the differential encoding process

of Eq. (4.1) is applied to this mechanism, the transmitted symbol’s ring amplitude may become

variable and unconstrained. In order to prevent this situation, the so-called absolute-amplitude is

utilized in the alternative differential encoding processformulated as:

sn =





1√
β

, if n = 1,

1
|sn−1| xn−1sn−1, if n > 1,

(4.8)

where the transmitted symbol’s ring amplitude is dynamically normalized by 1
|sn−1| . More explicitly,

for a genericM-ADPSK(MA,MP) scheme, the data-carrying quantity may still be represented by

a MA-level ring amplitude combined with aMPPSK phase asxn−1 = γn−1ωn−1, which is in the
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Figure 4.3: Constellation diagrams for the 16-ADPSK(2,8) scheme.

same form as the DAPSK’s data-carrying symbol of Eq. (4.2). Similarly, the ADPSK’s transmitted

symbol may also be represented by aMA-level ring amplitude combined with aMPPSK phase as

sn = ΓnΩn, which is in the same form as the DAPSK’s transmitted symbol of Eq. (4.3). Therefore,

according to Eq. (4.8), the ADPSK differential encoding applied to the phase is as same as the

DAPSK of Eq. (4.5), i.e. we still haveΩn = ωn−1Ωn−1. However, there is no differential encoding

on ring amplitude for the ADPSK. In fact, according to Eq. (4.8), the ADPSK always have the

absolute-amplitude formulated as:

Γn = |sn| = |xn−1| = γn−1. (4.9)

As a result, the data-carrying symbolxn−1 seen in Eq. (4.8) may be directly modulated as a Star

QAM symbol as

xm = γaωp =
αǎ

√
β

exp(j
2π

MP
p̌), (4.10)

where the index ranges ofm, a and p are given by[0 ≤ m ≤ (M − 1)], [0 ≤ a ≤ (MA − 1)]

and [0 ≤ p ≤ (MP − 1)], respectively. More explicitly, the first BPSP = log2 MP source in-

formation bits may be assigned to the data-carryingMPPSK phaseωp = exp(j 2π
MP

p̌), where

p = bin2dec(b1 · · · bBPSP
) is Gray coded index̌p. Following this, the remaining BPSA = log2 MA

source information bits are assigned to the data-carrying Star QAM ring amplitudeγa = αǎ√
β
,

wherea = bin2dec(bBPSP+1 · · · bBPS) is the Gray coded index̌a. The relationship between the

modulation indices seen in Eq. (4.10) is given bym = bin2dec(b1 · · · bBPS) = a + pMA.

An example of the constellation diagram of the 16-ADPSK(2,8) scheme’s data-carrying sym-

bols and that of its transmitted symbols are portrayed by Fig. 4.3a and Fig. 4.3b, respectively. More-

over, the 16-ADPSK(2,8) scheme’s differential encoding onphase is exactly as same as the case of

the 16-DAPSK(2,8) scheme’s phases summarized in Table 4.2.Furthermore, the 16-ADPSK(2,8)
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b4 γn−1 Γn

0 1√
β

1√
β

1 α√
β

α√
β

Table 4.5: Example of absolute-amplitude encoding appliedto the 16-ADPSK(2,8)
scheme’s data-carrying ring amplitude and transmitted ring amplitude.

scheme’s absolute-amplitude encoding is summarized in Table 4.5, where the data-carrying ring

amplitude and the transmitted ring amplitude are always thesame, as defined in Eq. (4.9).

Comparing to the 16-DAPSK(2,8) scheme’s data-carrying symbol in Fig. 4.2, it can be seen

in Fig. 4.3a that the ADPSK data-carrying symbol’s constellation set no longer depends on the

previous transmitted ring amplitude. Instead, the same Star QAM constellation is relied upon for

all ADPSK’s data-carrying symbols. Furthermore, the ADPSKtransmitted symbols are also drawn

from the same Star QAM constellation, as exemplified by Fig. 4.3b, which is facilitated by the

differential encoding process of Eq. (4.8).

4.2.3 Twisted DAPSK (TDAPSK) and Twisted ADPSK (TADPSK)

As proposed in [136, 288], a ring-amplitude-dependent phase rotation of the DAPSK constella-

tion and of the ADPSK constellation is capable of increasingthe distance between the constella-

tion points, which are located on different amplitude ring.Let us firstly consider a genericM-

TDAPSK(MA,MP) scheme as an example of the so-called twisted modulation. The differential

encoding process of TDAPSK is the same as that of DAPSK as specified by Eq. (4.1). However,

the TDAPSK data-carrying symbolxn−1 = γn−1ωn−1ψn−1 contains the extra phase rotation term

of ψn−1, which may be mapped by the data-carrying amplitude index asψa = exp(j 2π
M ǎ). There-

fore, the modulation of the TDAPSK’s data-carrying symbolxn−1 is now given by:

xm = γaωpψa = α(ǎ+µn−1 mod MA)−µn−1 exp(j
2π

MP
p̌) exp(j

2π

M
ǎ). (4.11)

As a result, the transmitted symbolsn of the TDAPSK in Eq. (4.1) also contains an extra term of

ring-amplitude-dependent phase rotationΨn, i.e. we havesn = ΓnΩnΨn, where the differential

encoding processes performed on the ring amplitude,MPPSK phase and ring-amplitude-dependent

phase rotation are given byΓn = γn−1Γn−1, Ωn = ωn−1Ωn−1 andΨn = ψn−1Ψn−1, respectively.

Considering the 16-TDAPSK(2,8) scheme as an example, the twisted constellation diagrams of

the data-carrying symbols are presented in Fig. 4.4, while the resultant constellation diagram for

the transmitted symbols is portrayed in Fig. 4.5. It can be seen in Fig. 4.4a for 16-TDAPSK(2,8)

that the distance between the constellation point labelledby source bits ”0000” and ”0001” is

higher than for the case of 16-DAPSK(2,8) depicted in Fig. 4.2a. In fact, the distances between the

constellation points associated with different amplituderings are increased by twisted modulation,

but the distances between the constellation points associated with the same amplitude ring remain

unchanged.
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Figure 4.4: Constellation diagrams for the data-carrying symbols of the 16-TDAPSK(2,8)

scheme.
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Figure 4.5: Constellation diagrams for the transmitted symbols of the 16-TDAPSK(2,8)

scheme.
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Figure 4.6: Constellation diagrams for the 16-TADPSK(2,8)scheme.

Similarly, a genericM-TADPSK(MA,MP) scheme may be obtained by twisting the constella-

tion of the genericM-ADPSK(MA,MP) scheme. The differential encoding process of TADPSK

is the same as that of ADPSK formulated by Eq. (4.8). However,the modulation of the TADPSK

data-carrying symbolxn−1 = γn−1ωn−1ψn−1 may be modified as:

xm = γaωpψa =
αǎ

√
β

exp(j
2π

MP
p̌) exp(j

2π

M
ǎ). (4.12)

Therefore, the TADPSK transmitted symbol may be represented by sn = ΓnΩnΨn. According

to Eq. (4.8), the differential encoding process is performed on both theMPPSK phase term of

Ωn = ωn−1Ωn−1 and on the ring-amplitude-dependent phase rotation termΨn = ψn−1Ψn−1, but

we still have the absolute-amplitude ofΓn = |sn| = |xn−1| = γn−1 as specified by Eq. (4.9).

As an example, Fig. 4.6a and Fig. 4.6b portray the constellation diagram of both the 16-

TADPSK(2,8) scheme’s data-carrying symbols and of its transmitted symbols, respectively. It can

be seen in Fig. 4.6b that each transmitted symbol’s ring amplitude hasM = 16 phase candidates,

which results in an increased number ofMA M = 32 constellation points for the 16-TADPSK(2,8)

scheme’s transmitted symbol. However, we note that the TADPSK receiver is only required to de-

code the source information according to theM-point twisted Star QAM constellation such as for

the example of the 16-TADPSK(2,8) seen in Fig. 4.6a, while the transmitted symbol’s constellation

exemplified in Fig. 4.6b does not influence the TADPSK detection.

Table 4.6 summarizes our comparison between DAPSK, ADPSK, TDAPSK and TADPSK in

terms of their constellation distance. Since the minimum distance between the constellation points

is determined by the adjacent constellation points locatedon the smallest amplitude ring, twisted

modulation can only offer a small improvement on the averagedistance between all constellation

points, as indicated by Table 4.6. We will demonstrate laterthat the small improvement offered by

twisted modulation can barely provide any benefit in uncodedsystems. However, since the ring-
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min∀{xm 6=xm′} |xm − xm′ | E∀{xm 6=xm′}{|xm − xm′ |}
16DAPSK(2,8) 0.382683 1.60486

16ADPSK(2,8) 0.484061 1.35334

16TDAPSK(2,8) 0.382683 1.60501

16TADPSK(2,8) 0.484061 1.35346

64DAPSK(4,16) 0.142194 1.58381

64ADPSK(4,16) 0.206137 1.29281

64TDAPSK(4,16) 0.142194 1.58383

64TADPSK(4,16) 0.206137 1.29282

Table 4.6: Comparison of DAPSK, ADPSK, TDAPSK and TADPSK constellations.

amplitude-dependent phase rotation imposes a correlationbetween the ring amplitude and phase,

the iteration gain achieved by soft-decision-aided TDAPSK/TADPSK demodulator may be higher

than that of their DAPSK/ADPSK counterparts, which impliesthat twisted modulation may offer

certain performance advantages in coded systems, providedthat appropriate coding schemes are

used.

4.2.4 DQAM Associated with Joint Mapping on Ring Amplitude and Phase

All the aforementioned DQAM constellations including DAPSK, ADPSK, TDAPSK and TADPSK

separately modulate the data-carryingMA-level ring amplitude indexa = bin2dec(bBPSP+1 · · · bBPS)

and the data-carryingMPPSK phase indexp = bin2dec(b1 · · · bBPSP). The rationale is that

if the ring amplitude and theMPPSK phase are encoded independently at the transmitter, they

may be detected separately at the receiver, which results ina lower detection complexity of order

O(MA + MP).

By contrast, it was introduced in [136,288] that the ring amplitude and theMPPSK phase may

be jointly modulated for DQAM, which may be represented in the form of DQAMJM in order to

explicitly exploit the benefits of joint mapping. For example, the joint mapping conceived for the

TDAPSK constellation of Eq. (4.11) may be expressed as:

xm =
α[(m̌ mod MA)+µn−1] mod MA

αµn−1
exp(j

2π

M
m̌), (4.13)

where all the BPS= log2 M number of source bits are assigned to encode the global modulation

index ofm = bin2dec(b1 · · · bBPS), which is the Gray coded index̌m. The resultant constellation

may be referred to as TDAPSKJM. Similarly, the joint mapping designed for TADPSK constellation

of Eq. (4.12) may be formulated as:

xm =
α(m̌ mod MA)

√
β

exp(j
2π

M
m̌), (4.14)

which may now be referred to as TADPSKJM.
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Figure 4.7: Constellation diagrams for the data-carrying symbols of the 16-

TDAPSKJM(2,8) scheme.
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Data-Carrying

Symbol

Example for

Data-Carrying

Symbol

Differential Encod-

ing for Transmitted

Symbol

Example for

Transmitted

Symbol

DAPSK Eq. (4.7) Fig. 4.2 Eq. (4.1) Fig. 4.1

ADPSK Eq. (4.10) Fig. 4.3a Eq. (4.8) Fig. 4.3b

TDAPSK Eq. (4.11) Fig. 4.4 Eq. (4.1) Fig. 4.5

TADPSK Eq. (4.12) Fig. 4.6a Eq. (4.8) Fig. 4.6b

TDAPSKJM Eq. (4.13) Fig. 4.7 Eq. (4.1) Fig. 4.5

TADPSKJM Eq. (4.14) Fig. 4.8 Eq. (4.8) Fig. 4.6b

Table 4.7: Summary of DQAM constellations and their examples.

An example of the constellation diagrams of the 16-TDAPSKJM(2,8) scheme’s data-carrying

symbols are portrayed in Fig. 4.7. The constellation diagrams of the 16-TDAPSKJM(2,8) scheme’s

transmitted symbols is as same as that of the 16-TDAPSK(2,8)scheme of Fig. 4.5. Moreover, an

example of the constellation diagram of the 16-TADPSKJM(2,8) scheme’s data-carrying symbols

is depicted by Fig. 4.8. Similarly, the constellation diagrams of the 16-TADPSKJM(2,8) scheme’s

transmitted symbols is as same as that of the 16-TADPSK(2,8)scheme of Fig. 4.6b.

We note that owing to the fact that the DQAMJM schemes including TDAPSKJM and TADPSKJM

jointly modulate their ring amplitude and phase, the two variables have to be jointly detected at the

DQAMJM receiver, which implies that the complexity of DQAMJM demodulation should be of

orderO(M).

Furthermore, we would like to note that DQAM and its DQAMJM counterpart which have the

same constellation topology may achieve the same DCMC capacity despite their different mapping

arrangements. This is similar to the situation of Gray and Anti-Gray mapping, as featured in [86,

250]. However, similarly, the iteration gain achieved by DQAMJM may be higher than that of its

DQAM counterpart in coded systems. This is because unlike DQAM schemes which encode their

ring amplitude index andMPPSK phase index separately using a Gray code, the joint mapping of

DQAMJM imposes a higher source bits dependency. Owing to this dependency, all the BPS number

of source information bits have to be detected jointly by theDQAMJM receiver. We will continue to

discuss the pros and cons of these differential nonconstantmodulus constellations in the following

sections.

For the sake of clarification, this section is summarized by Table 4.7, where all the equations

for DQAM constellations as well as all the figures for DQAM examples are listed. In the rest of

this chapter, we will frequently refer to this table for the different DQAM constellations.
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4.3 Hard-Decision-Aided CDD Conceived for Uncoded DQAM

Again, based on the assumption of Quasi-Static (QS) fading channels, where we haveHn = Hn−1

for a block ofTQS symbol periods, the received signal matrix of Eq. (2.1) may be further extended

as:

Yn = sn (Yn−1 − Vn−1) /sn−1 + Vn

=
sn

sn−1
Yn−1 + Ṽn,

(4.15)

where the equivalent noise term̃Vn = − sn
sn−1

Vn−1 + Vn has a zero mean and a variance of(1 +
Γ2

n

Γ2
n−1

)N0. For differentially encoded modulations,sn
sn−1

in Eq. (4.15) carrys source information.

More explicitly, we have sn
sn−1

= xn−1 for DAPSK/TDAPSK based on Eq. (4.1), and we have
sn

sn−1
= xn−1

Γn−1
for ADPSK/TADPSK based on Eq. (4.8). These two cases are considered separately

in the following sections.

4.3.1 DAPSK and TDAPSK

First of all, let us introduce CDD aided DAPSK, which was investigated in our publication of [159].

Based on Eq. (4.15), the hard-decision-aided CDD conceivedfor uncoded DAPSK (e.g. the 16-

DAPSK(2,8) constellation of Figs. 4.1-4.2) may be formulated as [142,158,159]:

x̂n−1 = arg min
∀xm∈x(Γ̂n−1)

‖Yn − xmYn−1‖2, (4.16)

where the constellation set forxn−1 is determined by the previous transmitted symbol’s ring am-

plitude Γ̂n−1, whereΓ̂n−1 may be fed back from previous CDD decision.

The demodulator of Eq. (4.16) operates on a vector-by-vector basis, where the detection com-

plexity is expected to increase withNR. As a remedy, Eq. (4.16) may be simplified to be operated

on a symbol-by-symbol basis as:

x̂n−1 = arg min
∀xm∈x(Γ̂n−1)

|zCDD
n−1 − xm|2, (4.17)

where the decision variable is given by:

zCDD
n−1 = YnYH

n−1/‖Yn−1‖2. (4.18)

The only differences between‖Yn − xmYn−1‖2 = ‖Yn‖2 + |xm|2‖Yn−1‖2 − 2ℜ
[
(xm)∗YnYH

n−1

]

of Eq. (4.16) and|zCDD
n−1 − xm|2 = |zCDD

n−1 |2 + |xm|2 − 2ℜ
[
(xm)∗zCDD

n−1

]
of Eq. (4.17) are constants.

Ideally, the decision variablezCDD
n−1 of Eq. (4.18) may be used for detecting the ring amplitude and

phase ofxn−1 = γn−1ωn−1 separately as:

γ̂n−1 = arg min
∀γa∈γ(Γ̂n−1)

∣∣∣|zCDD
n−1 | − γa

∣∣∣
2

, (4.19a)

ω̂n−1 = arg min
∀ωp∈ω

|zCDD
n−1 − ωp|2, (4.19b)
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Figure 4.9: BER Performance comparison between the ML DAPSKdetection of

Eq. (4.16) and the simplified DAPSK detection of Eqs. (4.19a)and (4.19b).

For the special case ofNR = 1, we have|zCDD
n−1 | =

|yn·y∗n−1|
|yn−1|2 = |yn|

|yn−1| and∠zCDD
n−1 = ∠

zCDD
n−1

|zCDD
n−1 | =

∠
yn·y∗n−1

|yn·y∗n−1|
= ∠yn − ∠yn−1. Therefore, Eqs. (4.19a) and (4.19b) are equivalent to the hard-

decision-aided DAPSK detection introduced in [142].

However, the ML DAPSK detector of Eq. (4.16) and the simplified DAPSK detector of Eq. (4.19)

do not have the same detection capability, as evidenced by Fig. 4.9, where the performance loss as-

sociated with detecting the ring amplitude and phase separately in Eqs. (4.19a) and (4.19b) becomes

more significant asNR increases. We also note that this performance difference iseven more sub-

stantial for soft-decision-aided CDD conceived for coded DAPSK, as demonstrated in [159]. To

elaborate a little further, the phase of a received DAPSK symbol may change the magnitudes along

both the real and the imaginary axes of the received signal’sconstellation diagram, which implies

that the detection of the DAPSK ring amplitude in fact relieson the detection of the DAPSK phase.

Therefore, in order to restore the ML DAPSK detector’s detection capability, we return to

Eqs. (4.16) and (4.17), which may be simplied as:

{γ̂n−1, ω̂n−1} = arg min
∀xm∈x(Γ̂n−1)

|xm|2 − 2ℜ
[
(xm)∗zCDD

n−1

]

= arg min
∀γa∈γ(Γ̂n−1), ∀ωp∈ω

(γa)2 − 2γaℜ
[
(ωp)∗zCDD

n−1

]
.

(4.20)

If we define the local minimum of the metric of(γa)2 − 2γaℜ
[
(ωp)∗zCDD

n−1

]
in Eq. (4.20) as the

minimum over the set ofMPPSK phasesωp ∈ ω only, then Eq. (4.20) may be transformed to:

ω̂n−1 = arg min
∀ωp∈ω

(γa)2 − 2γaℜ
[
(ωp)∗zCDD

n−1

]

= arg min
∀ωp∈ω

−ℜ
[
(ωp)∗zCDD

n−1

]
,

(4.21)

where a fixed ring amplitude is chosen from the set ofγa ∈ γ(Γ̂n−1). After deleting the constants
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in Eq. (4.19b), it can be seen that Eq. (4.19b) and Eq. (4.21) are equivalent. Since the optimum

phase is the same for all local minima associated with different γa, the phase detection process of

DAPSK may be summarized as:

ω̂n−1 = exp(j
2π

MP
p̌n−1), where p̌n−1 = ⌊MP

2π
∠zCDD

n ⌉. (4.22)

Furthermore, the global minimum in Eq. (4.20) may now be obtained by comparing the local min-

ima of the metrics, which may be expressed as:

γ̂n−1 = arg min
∀γa∈γ(Γ̂n−1)

(γa)2 − 2γaℜ(ω̂∗
n−1zCDD

n−1 ), (4.23)

whereω̂n−1 is obtained by Eq. (4.22). As a result, Eqs. (4.22) and (4.23)result in exactly the

same detection capability as Eq. (4.16). We have arranged for both detectors to process the same

channel output, and they always produce the same decisions.Moreover, Eqs. (4.22) and (4.23)

separately evaluate theMPPSK phase set and the ring amplitude set, hence a low DAPSK detection

complexity is retained.

When the TDAPSK constellation (e.g. the 16-TDAPSK(2,8) constellation of Figs. 4.4-4.5) is

employed, the phase of the data-carrying symbol is twisted by a ring-amplitude-dependent phase

rotation. In order to retain the ML TDAPSK detection capability, Eqs. (4.16) and (4.17) may now

be simplied to:

{γ̂n−1, ω̂n−1} = arg min
∀γa∈γ(Γ̂n−1), ∀ωp∈ω

(γa)2 − 2γaℜ
[
(ωpψa)∗zCDD

n−1

]
. (4.24)

The local minimum of the metric of(γa)2 − 2γaℜ
[
(ωpψa)∗zCDD

n−1

]
in Eq. (4.24), which is con-

stituted by the minimum over theMPPSK-related variableωp ∈ ω, is no longer independent of

the candidate ring amplitudesγa ∈ γ(Γ̂n−1). In fact, the local minimum metric associated with a

specific ring amplitude indexa is given by:

ω̂a
n−1 = arg min

∀ωp∈ω
−ℜ

[
(ωpψa)∗zCDD

n−1

]

= exp(j
2π

MP
p̌a

n−1), where p̌a
n−1 =

⌊
MP

2π
∠

[
(ψa)∗zCDD

n

]⌉
.

(4.25)

Naturally, there is a total number ofMA local minima corresponding to the localMPPSK phases

{ω̂a
n−1}

MA−1
a=0 of Eq. (4.25). Therefore, all the local minima may be compared in order to achieve

the global minimum as:

γ̂n−1 = arg min
∀γa∈γ(Γ̂n−1)

(γa)2 − 2γaℜ
[
(ω̂a

n−1ψa)∗zCDD
n−1

]
,

ω̂n−1 = ω̂ â
n−1,

(4.26)

where the globally optimal ring amplitude indexâ corresponds to the globally optimal solution of

γ̂n−1 = γâ.
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4.3.2 ADPSK and TADPSK

Let us continue by investigating the hard-decision-aided CDD conceived for uncoded ADPSK (e.g.

the 16-ADPSK(2,8) constellation of Fig. 4.3) and TADPSK (e.g. the 16-TADPSK(2,8) constella-

tion of Fig. 4.6). Similar to Eq. (4.16), the CDD aided ADPSK/TADPSK based on Eq. (4.8) is

given by:

x̂n−1 = arg min
∀xm∈x

∥∥∥∥Yn −
xm

Γ̂n−1

Yn−1

∥∥∥∥
2

, (4.27)

where the constellation setx for xn−1 is no longer determined bŷΓn−1, nonetheless,̂Γn−1 still has

to be known from the previous CDD decisions for the sake of evaluating the decision metric of

Eq. (4.27).

Similar to Eq. (4.17), the CDD aided ADPSK/TADPSK detectionmay be simplified to a

symbol-by-symbol basis as:

x̂n−1 = arg min
∀xm∈x

∣∣∣∣z
CDD
n−1 − xm

Γ̂n−1

∣∣∣∣
2

, (4.28)

where the decision variablezCDD
n−1 is the same as the DAPSK decision variable defined by Eq. (4.18).

The only differences between‖Yn − xm

Γ̂n−1
Yn−1‖2 = ‖Yn‖2 + |xm|2

Γ̂2
n−1

‖Yn−1‖2 − 2
Γ̂n−1

ℜ
[
(xm)∗YnYH

n−1

]

of Eq. (4.27) and|zCDD
n−1 − xm

Γ̂n−1
|2 = |zCDD

n |2 + |xm|2
Γ̂2

n−1

− 2
Γ̂n−1

ℜ
[
(xm)∗zCDD

n

]
of Eq. (4.28) are con-

stants.

Furthermore, similar to the DAPSK detection of Eqs. (4.22) and (4.23), the CDD aided ADPSK

may be simplied from Eq. (4.28) to separate phase and ring amplitude detection as:

ω̂n−1 = exp(j
2π

MP
p̌n−1), where p̌n−1 = ⌊MP

2π
∠zCDD

n ⌉,

γ̂n−1 = arg min
∀γa∈γ(Γ̂n−1)

(γa)2

Γ̂2
n−1

− 2γa

Γ̂n−1

ℜ(ω̂∗
n−1zCDD

n−1 ),
(4.29)

where the optimum detection capability of Eq. (4.28) is retained.

Moreover, similar to the TDAPSK detection of Eq. (4.26), theCDD aided TADPSK may be

simplified from Eq. (4.28) to separate phase and ring amplitude detection as:

γ̂n−1 = arg min
∀γa∈γ(Γ̂n−1)

(γa)2

Γ̂2
n−1

− 2γa

Γ̂n−1

ℜ
[
(ω̂a

n−1ψa)∗zCDD
n−1

]
,

ω̂n−1 = ω̂ â
n−1,

(4.30)

where the locally optimalMPPSK phases are given by:

ω̂a
n−1 = exp(j

2π

MP
p̌a

n−1), where p̌a
n−1 =

⌊
MP

2π
∠

[
(ψa)∗zCDD

n

]⌉
. (4.31)

4.3.3 TDAPSKJM and TADPSKJM

When either the TDAPSKJM constellation (e.g. the 16-TDAPSKJM(2,8) constellation of Fig. 4.7)

or the TADPSKJM constellation (e.g. the 16-TADPSKJM(2,8) constellation of Fig. 4.8) is em-

ployed, the ring amplitude and theMPPSK phase of the data-carrying symbol are jointly encoded
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as specified by Eqs. (4.13) and (4.14), respectively. Therefore, the ring amplitude and theMPPSK

phase have to be detected jointly for both TDAPSKJM and TADPSKJM by invoking Eq. (4.17) and

Eq. (4.28), respectively, which results in a higher detection complexity. In more detail, the CDD

complexity of DAPSK and ADPSK is of orderO(1 + MA), where the evaluation of the local

minimum only requires visiting the closestMPPSK phase by using the decision variablezCDD
n−1

of Eq. (4.18), while the global minimum is found by visiting all MA ring amplitude candidates.

Furthermore, the CDD complexity of both TDAPSK and TADPSK isof orderO(MA + MA), be-

cause the total number of local minima is now given byMA. By contrast, the CDD of uncoded

TDAPSKJM and TADPSKJM has the highest complexity order ofO(M), where all theM constel-

lation points have to be visited in order to retain the globally optimum solution.

4.4 Hard-Decision-Aided MSDD Conceived for Uncoded DQAM

Similarly to the MSDD aided DPSK introduced in Sec. 3.2.2, the performance of differential non-

constant modulus constellations may be improved by observing Nw received signal blocks of

Eq. (2.1). Similarly to Eq. (3.6), for MSDD we may model the multiple received signal vectors

as:

Y = SH + V

= APOH + V,
(4.32)

where the corresponding matrices are given by:

Y =
[
YT

n , YT
n−1, · · · , YT

n−Nw+1

]T
, S = diag{[sn, sn−1, · · · , sn−Nw+1]} ,

H =
[
HT

n , HT
n−1, · · · , HT

n−Nw+1

]T
, V =

[
VT

n , VT
n−1, · · · , VT

n−Nw+1

]T
,

A = diag{[Γn, Γn−1, · · · , Γn−Nw+1]} , P = diag{[Ωn, Ωn−1, · · · , Ωn−Nw+1]} ,

O = diag{[Ψn, Ψn−1, · · · , Ψn−Nw+1]} .

(4.33)

We note that the ring-amplitude-dependent phase rotation matrix O is taken into account in the

MSDD model in order to include the constellation twisting actions of TDAPSK and TADPSK,

while the matrixO is simply an identity matrix for the cases of DAPSK and ADPSK.Furthermore,

with a little inaccuracy of notation, we drop the time indexn for all MSDD windows as1:

Y =
[
YT

Nw
, YT

Nw−1, · · · , YT
1

]T
, S = diag{[sNw , sNw−1, · · · , s1]} ,

H =
[
HT

Nw
, HT

Nw−1, · · · , HT
1

]T
, V =

[
VT

Nw
, VT

Nw−1, · · · , VT
1

]T
,

A = diag{[ΓNw , ΓNw−1, · · · , Γ1]} , P = diag{[ΩNw , ΩNw−1, · · · , Ω1]} ,

O = diag{[ΨNw , ΨNw−1, · · · , Ψ1]} .

(4.34)

The MSDD’s received signal matrixY, the MSDD’s fading channel matrixH and the MSDD’s

AWGN matrix V are all of size(Nw × NR). Moreover, the observed transmitted symbol matrixS

1We note thatY in Eq. (4.32) stores received signal vectors in a reverse order compared to the one seen in [127,132].

As a result, the MSDSD introduced in the next section may detect the transmitted symbols according to their differential

encoding order, i.e. we havēΩv = ωv−1Ω̄v−1, instead of detecting them backwardly asΩ̄v = ω∗
vΩ̄v+1 in [127,132].
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as well as the associated ring amplitude matrixA, MPPSK phase matrixP and the ring-amplitude-

dependent phase rotation matrixO are all of size(Nw × Nw).

The first transmitted symbol’sMPPSK phaseΩ1 and the first ring-amplitude-dependent phase

rotationΨ1 are constant with respect to the followingMPPSK phases{Ωt}Nw
t=2 and phase rotation

elements{Ψt}Nw
t=2. Hence we have:

Y = ĀP̄ŌH̄ + V, (4.35)

where thevth diagonal element in theMPPSK matrixP̄ is given by:

Ω̄v = ΩvΩ∗
1 =

{
1, n = 1

ωv−1Ω̄v−1 = ∏
v−1
t=1 ωt, n > 1

, (4.36)

while thevth diagonal element in the ring-amplitude-dependent phase rotations matrixŌ is given

by:

Ψ̄v = ΨvΨ∗
1 =

{
1, n = 1

ψv−1Ψ̄v−1 = ∏
v−1
t=1 ψt, n > 1

. (4.37)

As a result, thevth row in H̄ is given byH̄v = Ω1Ψ1Hv. There are a total ofMNw−1
P candidates

for the MPPSK phase matrix̄P. Moreover, the equivalent ring amplitude matrixĀ in Eq. (4.35)

depends on the ring amplitudes matrixA in Eq. (4.32), where the first transmitted ring amplitude

Γ1 is being decided with the aid of previous MSDD decisions, or it is treated as a separate variable.

More specifically, for the DAPSK/TDAPSK constellations (e.g. the 16-DAPSK(2,8) constellation

of Figs. 4.1-4.2 and the 16-TDAPSK(2,8) constellation of Figs. 4.4-4.5), which are differentially

encoded according to Eq. (4.1), thevth diagonal element in̄A is given by:

Γv = γv−1Γv−1 =

(
v−1

∏
t=1

γt

)
Γ1. (4.38)

By contrast, the ADPSK/TADPSK constellations (e.g. the 16-ADPSK(2,8) constellation of Fig. 4.3

and the 16-TADPSK(2,8) constellation of Fig. 4.6) rely on absolute data-carrying ring amplitudes

according to the differential encoder of Eq. (4.8). Hence its vth diagonal element in̄A is given by:

Γv = γv−1. (4.39)

Therefore, there is a total number ofMNw−1
A candidates for the ring amplitude matrixĀ of Eq. (4.35).

We note that the ring-amplitude-dependent phase rotation matrix Ō is uniquely and unambiguously

determined by the ring amplitudes̄A, i.e. Ō is known as long as̄A is detected.

In order to detect the ring amplitudesĀ andMPPSK phases̄P from the MSDD’s received signal

matrix Y of Eq. (4.35), the MSDD aims for maximizing the followinga posterioriprobability:

p(Ā, P̄|Y) = ∑
∀Γ1

p(Ā, P̄|Y, Γ1)p(Γ1)

= ∑
∀Γ1

p(Y|Ā, P̄, Γ1)p(Ā)p(P̄)

∑∀Ā,∀P̄ p(Y|Ā, P̄, Γ1)p(Ā)p(P̄)
p(Γ1),

(4.40)
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where p(Γ1), p(Ā) and p(P̄) refer to thea priori probabilities ofΓ1, Ā and P̄, respectively,

which may all be assumed to be equiprobable for hard-decision-aided MSDD. Hence we have{
p(Γ1) = 1

MA

}
∀Γ1

,
{

p(Ā) = 1

(MA)Nw−1

}

∀Ā
and

{
p(P̄) = 1

(MP)Nw−1

}

∀P̄
, respectively. Further-

more, according to the MSDD received signal model of Eq. (4.35), the probability of receivingY

givenĀ, P̄ andΓ1is formulated as [113,114,127]:

p(Y|Ā, P̄, Γ1) =
exp

{
−rvec(Y) · R−1

YY[rvec(Y)]H
}

πNR Nw det(RYY)
, (4.41)

where the operation rvec(Y) forms a(1 × NRNw)-element row vector by taking the rows ofY

one-by-one. The conditional probabilityp(Y|Ā, P̄, Γ1) of Eq. (4.41) is given by the PDF of the

multi-variate Gaussian-distributed MSDD’s received signal matrixY of Eq. (4.35) [278].

Similarly to the case of DPSK in Eq. (3.12), the MSDD receivedsignal matrixY of Eq. (4.35) is

vectorized in Eq. (4.41) in order to form a vector of Gaussian-distributed variables. The equivalent

MSDD received signal model now becomes:

rvec(Y) = rvec(H̄) · [(ĀP̄Ō) ⊗ INR
] + rvec(V), (4.42)

where the operation⊗ represents the Kronecker product. As a result, the correlation matrix of the

received signalRYY seen in Eq. (4.41) may be expressed as:

RYY = E
{
[rvec(Y)]H · rvec(Y)

}

=
[
(ŌHP̄HĀH) ⊗ INR

]
E
{
[rvec(H̄)]

H · rvec(H̄)
}

[(ĀP̄Ō)⊗ INR
]

+ E
{
[rvec(V)]H · rvec(V)

}

= (ŌHP̄HCP̄Ō) ⊗ INR
,

(4.43)

where bothP̄ and Ō are unitary matrices. Moreover, the fading channel’s correlation matrix

E
{
[rvec(H̄)]

H · rvec(H̄)
}

seen in Eq. (4.43) was defined in Eq. (3.15), while the AWGN cor-

relation matrixE
{
[rvec(V)]H · rvec(V)

}
was defined in Eq. (3.18). Furthermore, the channel’s

characteristic correlation matrixC seen in Eq. (4.43) is given by:

C = ĀHRhhĀ + Rvv, (4.44)

where the fading characteristic correlation matrixRhh and the AWGN characteristic correlation

matrix Rvv were defined in Eq. (3.16) and Eq. (3.19), respectively, which are the same as in the

case of DPSK usingNR = 1 in [127, 132]. We note that since the ring amplitude matrixĀ is

not a unitary matrix, it cannot be separated from the channel’s characteristic correlation matrixC,

which is in contrast tōP andŌ seen in Eq. (4.43). As a result, in contrast to Eq. (3.21) derived for

the case of uncoded DPSK detection,ĀHRhhĀ seen in Eq. (4.44) is neither a constant matrix nor

a Toeplitz matrix. This implies that for all the DQAM constellations, the channel’s characteristic

correlation matrixC of Eq. (4.44) does not become known until all the ring amplitudes inĀ are

detected, which is the most substantial stumbling block in the way of offering a sphere decoding

solution to the DQAM ring amplitude detection problem.
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In summary, once again, assuming that the ring amplitude matrix Ā, the phase matrix̄P and the

initial ring amplitude variableΓ1 all represent equiprobable variables, the MSDD that maximizes

thea posterioriprobability of Eq. (4.40) may be formulated as:

{ ˆ̄A, ˆ̄P} = max ln [p(Ā, P̄|Y)]

≈ max
∀Γ1

max
∀Ā,∀P̄

− tr(YHP̄ŌC−1ŌHP̄HY)− NR ln[det(C)],
(4.45)

where we haveln [∑∀d exp(d)] ≈ max∀d d [27], while the determinant of the correlation matrix

RYY seen in Eq. (4.41) is given bydet(RYY) = det(C)NR for the DQAM schemes. We note that

Eq (4.45) is obtained following the same steps as illustrated in Eq. (3.22) and derived for the case

of DPSK.

Furthermore, if the first transmitted ring amplitudeΓ̂1 is fed back from the previous MSDD

decisions, then a Hard-Decision-Directed MSDD (HDD-MSDD)may be simply formulated as:

{ ˆ̄A, ˆ̄P} = max
∀Ā,∀P̄

− tr(YHP̄ŌC−1ŌHP̄HY)− NR ln[det(C)]. (4.46)

Then the newly detected̂ΓNw in ˆ̄A may be passed on to the next MSDD window. For the MSDD

of Eq. (4.45), a total number ofMAMNw−1 candidates have to be evaluated and compared. For

HDD-MSDD of Eq. (4.46), the total number of candidates is reduced to beMNw−1.

We note that both the MSDD of Eq. (4.45) and the HDD-MSDD of Eq.(4.46) are amenable

to DAPSK and TDAPSK detection. However, both ADPSK and TADPSK which rely on having

an absolute data-carrying ring amplitude can only employ the HDD-MSDD of Eq. (4.46). Let us

consider MSDD aided ADPSK associated withNw = 2 as an example. The channel’s characteristic

correlation matrixC of Eq. (4.44) becomes:

C =

[
Γ2

1 + N0, Γ1γ1ρ1

Γ1γ1ρ1 γ2
1 + N0

]
. (4.47)

This implies that if bothΓ1 andγ1 are random variables, then for example the combination of[Γ1 =
1√

β
, γ1 = 1√

β
] and the combination of[Γ1 = α√

β
, γ1 = α√

β
] will result in the same channel’s

characteristic correlation matrixC, which imposes ambiguity for the data detection. Hence, for

the cases of ADPSK/TADPSK, the first transmitted ring amplitude Γ1 is supposed to be treated

as a known term based on previous decision feedback and henceonly the HDD-MSDD regime of

Eq. (4.46) may be employed by the ADPSK/TADPSK detector.

Furthermore, it can be shown that the CDD introduced in Sec. 4.3 is equivalent to a suboptimal

version of HDD-MSDD associated withNw = 2. More explicitly, the HDD-MSDD of Eq. (4.46)

may be formulated for the special case ofNw = 2 as:

{γ1, ω1} = min
∀γ1,∀ω1

(Γ2
2 + N0)‖Y1‖2 + (Γ̂2

1 + N0)‖Y2‖2 − 2Γ̂1Γ2ρ1ℜ(ω∗
1 ψ∗

1 Y2YH
1 )

det(C)
+ NR ln[det(C)],

(4.48)

whereΓ̂1 is obtained by decision feedback, while we have eitherΓ2 = γ1Γ̂1 for the DAPSK/TDAPSK

constellations (e.g. the 16-DAPSK(2,8) constellation of Figs. 4.1-4.2 and the 16-TDAPSK(2,8)
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constellation of Figs. 4.4-4.5) orΓ2 = γ1 for the ADPSK/TADPSK constellations (e.g. the 16-

ADPSK(2,8) constellation of Fig. 4.3 and the 16-TADPSK(2,8) constellation of Fig. 4.6). Let us

now assume that the fading channel is quasi-static, i.e. we haveρ1 = 1 in Eq. (4.48). Furthermore,

the determinantdet(C) = (Γ̂2
1 + N0)(Γ2

2 + N0)− Γ̂2
1Γ2

2ρ2
1 in Eq. (4.48) is approaching zero as the

noise powerN0 tends to zero, which implies that the variableγ1 has a modest effect on the value of

det(C) at high SNRs, and hence this term may be ignored by a sub-optimal solution. As a result,

Eq, (4.48) may be further simplified for the idealistic simplifed situation ofρ1 = 1 andN0 ≈ 0 as:

{γ1, ω1} = min
∀γ1,∀ω1

‖s1Y2 − s2Y1‖2, (4.49)

which may also be obtained based on the CDD’s received signalmodel of Eq. (4.15), when drop-

ping the time indexn. Hence, we may conclude that the CDD introduced in Sec. 4.3 isequivalent

to the special case of HDD-MSDD associated withNw = 2 under the simplified idealistic situation

of ρ1 = 1 andN0 ≈ 0.

In summary, we have demonstrated that for MSDD aided DQAM, the channel’s characteristic

correlation matrixC of Eq. (4.44) is non-constant, which is in stark contrast to the MSDD/MSDSD

aided DPSK scheme introduced in Chapter 3. Therefore, solving the detection problem associ-

ated with a non-constantC by a sphere decoder has been an open problem for MSDSD aided

DQAM schemes. Hence, it has also been an obstacle in the way ofoffering a solution for MSDSD

aided differential MIMO schemes using QAM [137–141]. Furthermore, since the DFDD aided

DAPSK/ADPSK literature [136,153,154] tends to rely on the assumption of the channel’s charac-

teristic correlation matrixC being constant, the resultant DFDD solutions are no longer equivalent

to those of the MSDD/MSDSD relying on feedback decisions. Hence their performance remains

sub-optimal. We will continue by tackling these open problems in the following sections.

4.5 Hard-Decision-Aided MSDSD Conceived for Uncoded DQAM

In order to invoke SD for MSDD aided DQAM, we firstly have to rewrite the MSDD metric of

Eq. (4.45), which may be referred to as the Euclidean Distance (ED). Specifically, our goal is to

reformulate it as a summation of incremental metrics, so that the SD becomes capable of evaluating

a single increment according to a single variable at a time. In other words, as suggested by the MS-

DSD aided DPSK in [127,132], the Partial Euclidean Distance(PED) of{dv = dv−1 + ∆v−1}Nw
v=2

that may unambiguously restore the MSDD’s ED has to be definedfor SD. Secondly, the Schnorr-

Euchner search strategy of [237] should be tailored for MSDSD aided DQAM. Thirdly, the de-

tection of DQAM schemes that separately modulate their ringamplitude and phase may lead to a

reduced-complexity search strategy, so that the reduced-cardinality subsets of ring amplitudes and

MPPSK phases may be separately visited. Let us now continue by providing further insights into

these three areas.
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4.5.1 Partial Euclidean Distance

First of all, the MSDD of Eq. (4.45) may be rewritten in form ofthe ED as:

{ ˆ̄A, ˆ̄P} = min
∀Γ1

{
min
∀Ā,∀P̄

∥∥∥LTŌHP̄HY

∥∥∥
2
+ NR · ln[det(C)]

}
, (4.50)

where the lower triangular matrixL is derived from decomposition ofC−1 = LLT. More explic-

itly, as a covariance matrix,̄AHRhhĀ of Eq. (4.44) is Hermitian positive-semidefinite, and hence

C = ĀHRhhĀ + N0INw
of Eq. (4.44) is Hermitian positive-definite. Furthermore,the matrix

inversion C−1 also results in an Hermitian positive-definite matrix. Hence the lower triangular

matrix L may be obtained by the Cholesky decomposition ofC−1. As defined in Eq. (4.44), the

channel’s characteristic correlation matrixC is a variable determined bȳA andΓ1. As a result,L

andln[det(C)] of Eq. (4.50) remain unknown, until the entire ring amplitude matrixĀ is detected.

In order to mitigate this problem, we conceive two propositions as follows:

Proposition 1:The first metric term
∥∥LTŌHP̄HY

∥∥2
seen in the ED of Eq. (4.50) may be rep-

resented as:

∥∥∥LTŌHP̄HY

∥∥∥
2

=
Nw

∑
v=1

∥∥∥∥∥
v

∑
t=1

lNw−t+1,Nw−v+1Ψ̄∗
t Ω̄∗

t Yt

∥∥∥∥∥

2

= ‖lNw,NwY1‖2 +
Nw

∑
v=2

∥∥∥∥∥
v

∑
t=1

lNw−t+1,Nw−v+1Ψ̄∗
t Ω̄∗

t Yt

∥∥∥∥∥

2

,

(4.51)

where the coefficients{{lNw−t+1,Nw−v+1}v
t=1}Nw

v=1 are elements inL. It can be seen in Eq. (4.51)

that for a specific indexv, only a subset of the coefficients{lNw−t+1,Nw−v+1}v
t=1 is required. More

explicitly, the lower triangular matrixL in Eq. (4.50) may be expressed in the form of submatrices

as:

L =

[
Ẽv 0Nw−v,v

D̃v L̃v

]
, (4.52)

where the lower triangular submatricesẼv and L̃v are of size(Nw − v) × (Nw − v) andv × v,

respectively, while the submatrix̃Dv and theall-zerosubmatrix0Nw−v,v are of sizev × (Nw − v)

and(Nw − v) × v, respectively. We will formally show below that for a specific SD indexv, the

coefficients{lNw−t+1,Nw−v+1}v
t=1 may be taken from the submatrix̃Lv defined in Eq. (4.52), which

may always be obtained by the Cholesky decompositionL̃vL̃T
v = C̃−1

v . AlthoughL is unknown, the

partial channel correlation matrix̃Cv may be evaluated with the aid of the SD’s previous decisions

concerning{Γt}v−1
t=1 and a single variableΓv as:

C̃v =




Γ2
vρ0 + N0 ΓvΓv−1ρ1 · · · ΓvΓ1ρv−1

Γv−1Γvρ1 Γ2
v−1ρ0 + N0 · · · Γv−1Γ1ρv−2

...
...

. ..
...

Γ1Γvρv−1 Γ1Γv−1ρv−2 · · · Γ2
1ρ0 + N0




=

[
Γ2

vρ0 + N0 ẽT
v

ẽv C̃v−1

]
, (4.53)

where we have the(v − 1)-element vector̃ev = [ΓvΓv−1ρ1, · · · , ΓvΓ1ρv−1]
T.
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Proof. Similar to the lower triangular matrixL expressed in Eq. (4.52), the Hermitian matrixC of

Eq. (4.44) may be expressed in the form of submatrices as:

C =

[
Ãv B̃T

v

B̃v C̃v

]
, (4.54)

whereÃv and B̃v are of size(Nw − v) × (Nw − v) and v × (Nw − v), respectively, whilẽCv

was defined in Eq. (4.53). According to the blockwise matrix inversion property [290], the matrix

inverseC−1 may be expressed as:

C−1 =

[
Q̃v −Q̃vB̃T

v C̃−1
v

−C̃−1
v B̃vQ̃v C̃−1

v B̃vQ̃vB̃T
v C̃−1

v + C̃−1
v

]
, (4.55)

whereQ̃v = (Ãv − B̃T
v C̃−1

v B̃v)
−1

is a Hermitian matrix, because both̃Av andC̃−1
v are Hermitian

matrices. According toLLT = C−1, we have the following relationships based on Eqs. (4.52) and (4.55):

ẼvẼT
v = Q̃v, (4.56a)

D̃vẼT
v = −C̃−1

v B̃vQ̃v, (4.56b)

D̃vD̃T
v + L̃vL̃T

v = C̃−1
v B̃vQ̃vB̃T

v C̃−1
v + C̃−1

v , (4.56c)

which leads to the following conclusions:

D̃v = −C̃−1
v B̃vẼv, (4.57a)

D̃vD̃T
v = C̃−1

v B̃vQ̃vB̃T
v C̃−1

v , (4.57b)

L̃vL̃T
v = C̃−1

v . (4.57c)

Therefore, the lower triangular submatrix̃Lv may be obtained from the Cholesky decomposition

of C̃−1
v .

Proposition 2:We propose that the second metric termln[det(C)] seen in the ED expression

of Eq. (4.50) may be evaluated as:

ln[det(C)] = ln
(
Γ2

1ρ0 + N0

)
+

Nw

∑
v=2

ln[
(
Γ2

vρ0 + N0

)
− ẽT

v C̃−1
v−1ẽv]. (4.58)

Proof. According to the Leibniz formula [290], the determinant ofC̃v in Eq. (4.53) may be eval-

uated bydet(C̃v) = det(C̃v−1)[(Γ2
vρ0 + N0) − ẽT

v C̃−1
v−1ẽv]. Therefore, the complete determi-

nant termln[det(C)] may be calculated from the initial term that is associated with the index

v = 1 as ln[det(C̃1)] = ln
(
Γ2

1ρ0 + N0

)
, in addition to the summation of all incremental terms

∑
Nw
v=2 ln[

(
Γ2

vρ0 + N0

)
− ẽT

v C̃−1
v−1ẽv].

As a result, the MSDD’s task of finding the minimum ED expressed in Eq. (4.50) may be solved
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by a SD. In more detail, the SD’s PED based on Eqs. (4.51) and (4.58) may be defined as:

dv = ‖lNw,NwY1‖2 + NR · ln
(
Γ2

1ρ0 + N0

)
+

v

∑
v̄=2

∥∥∥∥∥
v̄

∑
t=1

lNw−t+1,Nw−v̄+1Ψ̄∗
t Ω̄∗

t Yt

∥∥∥∥∥

2

+ NR ·
v

∑
v̄=2

ln
[(

Γ2
v̄ρ0 + N0

)
− ẽT

v̄ C̃−1
v̄−1ẽv̄

]

= dv−1 + ∆v−1.

(4.59)

This implies that at each SD’s tree-search parent node associated with indexv, the SD may test the

child nodes regarding their PED increment values∆v−1 of Eq. (4.59), which is given by:

∆v−1 =

∥∥∥∥∥lNw−v+1,Nw−v+1Ψ̄∗
v−1Ω̄∗

v−1Yv + ωv−1ψv−1

(
v−1

∑
t=1

lNw−t+1,Nw−v+1Ψ̄∗
t Ω̄∗

t Yt

)∥∥∥∥∥

2

+ Ξv

=

∥∥∥∥∥l̃1,1Ψ̄∗
v−1Ω̄∗

v−1Yv + ωv−1ψv−1

(
v−1

∑
t=1

l̃v−t+1,1Ψ̄∗
t Ω̄∗

t Yt

)∥∥∥∥∥

2

+ Ξv,

(4.60)

where the coefficients{l̃v−t+1,1}v
t=1 are elements in the(v × v) lower triangular submatrix̃Lv de-

fined in Eq. (4.52). According to Proposition 1, we always have {lNw−t+1,Nw−v+1 = l̃v−t+1,1}v
t=1.

The previous ring amplitudes{Γt}v−1
t=1 in C̃v of Eq. (4.53) are known from previous SD search,

and hence there is a total ofMA candidates forΓv, which determinesMA candidates for̃Lv. The

previous ring-amplitude-dependent phase rotations{Ψt}v−1
t=1 and the variable termψv−1 are also

uniquely and unambiguously determined by the previous decisions{Γt}v−1
t=1 and the variableΓv,

respectively. Moreover, the previousMPPSK phases{Ω̄t}v−1
t=1 have also been decided by the pre-

vious SD steps. As a result, there are a total ofMP candidates forωv−1 in Eq. (4.60). Furthermore,

the determinant termΞv in Eq. (4.60) is given by:

Ξv = NR · ln
[
(Γ2

vρ0 + N0)− ẽT
v C̃−1

v−1ẽv

]
− ξv−1. (4.61)

In order to guarantee that all the PED increments of Eq. (4.60) have positive values, an extra con-

stantξv−1 is introduced in Eq. (4.61), which is defined as:

ξv−1 = min
∀{Γt}v

t=1

NR · ln
[
(Γ2

vρ0 + N0) − ẽT
v C̃−1

v−1ẽv

]
. (4.62)

This constant is pre-evaluated and pre-stored before performing MSDSD. We note that adding a

constant of(∑
Nw
v=2 −ξv−1) to the MSDD metric of Eq. (4.50) does not impose any performance

difference. The only variable in the determinant termΞv of Eq. (4.61) isΓv, and hence there are a

total of MA candidates forΞv.

4.5.2 Schnorr-Euchner Search Strategy

In summary, the MSDSD algorithm [127, 132] summarized in Tables 3.1 and 3.3 may be invoked

for DQAM detection based on the PED defined in Eq. (4.59). In fact, according to the Schnorr-

Euchner [237] search strategy used by MSDSD, the SD associated with a specific indexv has
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subfunction: [{∆m̄
v−1}M−1

m̄=0 , {xm̄
v−1}M−1

m̄=0 , nv−1] = sortDelta({Yt}v
t=1, {Γ̂t}v−1

t=1 , {Ψ̂t}v−1
t=1 , {Ω̂t}v−1

t=1 )

input: {Yt}v
t=1 refer to received signal vectors.{Γ̂t}v−1

t=1 , {Ψ̂t}v−1
t=1 and{Ω̂t}v−1

t=1 are SD’s previous decisions.
output: {∆m

v−1}M
m=1 and{xm

v−1}M
m=1 are the sorted PED increments and their corresponding constellation points.

nv−1 is SD’s child node counter.
require: {l̃v−t+1,1}v

t=1 in Eq. (4.60) are taken from̃L({Γ̂t}v−1
t=1 , Γv) = L̃v, which are pre-evaluated and pre-

stored.Ξ({Γ̂t}v−1
t=1 , Γv) = Ξv in Eq. (4.60) are also pre-evaluated and pre-stored.

1: for m=0 to M − 1 //visit all M child nodes.
2: (DAPSK/TDAPSK:) Γv = γa

v−1 · Γ̂v−1 //visit xm
v−1 = γa

v−1 · ω
p
v−1 · ψa

v−1.
(ADPSK/TADPSK:) Γv = γa

v−1

3: ∆m
v−1 = ‖l̃1,1Ψ̂∗

v−1Ω̂∗
v−1Yv + ω

p
v−1ψa

v−1(∑
v−1
t=1 l̃v−t+1,1Ψ̂∗

t Ω̂∗
t Yt)‖2 //evaluate PED increments of Eq. (4.60).

+Ξ({Γ̂t}v−1
t=1 , Γv)

4: end for
5: nv−1 = 0 //initialize child node counter.
6: [{∆m̄

v−1}M−1
m̄=0 , {xm̄

v−1}M−1
m̄=0 ] = sort({∆m

v−1}M−1
m=0 ) //sort PED increments in increasing order.

Table 4.8: Pseudo-code for the Schnorr-Euchner search strategy tailored for hard-
decision-aided MSDSD conceived for uncoded DQAM.

to sort all theM candidates∆v−1 of Eq. (4.60) according to their increasing values. Therefore,

the MSDSD algorithm of [132] summarized in Table 3.3 should be invoked for hard-decision-

aided MSDSD conceived for uncoded differential nonconstant modulus constellations, where the

Schnorr-Euchner search strategy is summarized in Table 4.8.

Once again, we note that the subscriptm ∈ {0, · · · , M − 1} represents the data-carrying Gray

coded constellation point indices which may be directly translated to binary source bits. Further-

more, the subscriptm ∈ {0, · · · , M − 1} represents the constellation point index ordered accord-

ing to the increasing values of PED increment∆v−1.

Similar to the pseudo-code presented in [132] and summarized in Table 4.8, the MSDSD

may start with the initial PEDd1 = 0 for the sake of simplicity, but theΓ1-related termd1 =

‖lNw,NwY1‖2 + NR · ln
(
Γ2

1ρ0 + N0

)
should be added to the SD’s output radius before the ED

comparisons carried out overΓ1 in Eq. (4.50). Therefore, the complexity of the MSDSD algorithm

of [132] relying on Eq. (4.50) using the PED increment∆v−1 of Eq. (4.60) is lower-bounded by

the order ofO [MA · M · (Nw − 1)]. Furthermore, when the first transmitted ring amplitudeΓ̂1

is fed back from the previous MSDSD decision, then a Hard-Decision-Directed MSDSD (HDD-

MSDSD) implementing the HDD-MSDD of Eq. (4.46) may be completed by using the same PED

increment∆v−1 of Eq. (4.60). Its complexity order is lower-bounded byO [M · (Nw − 1)].

It is worth noting that all the candidates ofL̃v andΞv over{Γt}v
t=1 seen in Eq. (4.60) may be

pre-evaluated and pre-stored before MSDSD. There is a totalnumber of∑Nw
v=1 Mv

A candidates for

L̃v andΞv stored in memory. As a special case of DAPSK associated withMA = 1, the DPSK

schemes only have to evaluate and store a single candidate for the constant̃LNw
= L in memory.

The memory required for storing̃Lv and Ξv is small compared to that of MSDD. Furthermore,

the evaluation of̃Lv and Ξv should not be added to the MSDSD complexity, since they remain

fixed as long as the constellation, the noise powerN0, the normalized Doppler frequencyfd and

the MSDSD window lengthNw are fixed.
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4.5.3 Reduced-Complexity MSDSD Algorithm

When DQAMJM is employed, the Schnorr-Euchner search strategy of Table 4.8, which exhaus-

tively visits and ranks allM constellation points is the only choice. However, a reduced-complexity

search strategy should be conceived for detecting DQAM constellations including DAPSK, ADPSK,

TDAPSK and TADPSK, which modulates the data-carrying ring amplitude and the data-carrying

MPPSK phase independently, with the motivation of visiting the subsets of both the ring ampli-

tude andMPPSK phase candidates separately. In order to achieve this goal, we separate the PED

increment of Eq. (4.60) into two terms as:

∆v−1 = ∆Γ
v−1 + ∆

ω|Γ
v−1, (4.63)

where the ring-amplitude-related term is given by:

∆Γ
v−1 =

∥∥∥l̃1,1Ψ̄∗
v−1Ω̄∗

v−1Yv

∥∥∥
2
+

∥∥∥∥∥
v−1

∑
t=1

l̃v−t+1,1Ψ̄∗
t Ω̄∗

t Yt

∥∥∥∥∥

2

+ Ξv, (4.64)

and∆Γ
v−1 only hasMA candidates over the single variableΓv. Moreover, theMPPSK-related term

conditioned on the ring amplitude∆ω|Γ
v−1 in Eq. (4.63) is given by:

∆
ω|Γ
v−1 = 2ℜ


l̃1,1Ψ̄∗

v−1Ω̄∗
v−1Yvω∗

v−1ψ∗
v−1

(
v−1

∑
t=1

l̃v−t+1,1Ψ̄∗
t Ω̄∗

t Yt

)H



= −2ℜ(ω∗
v−1z

ω|Γ
v−1),

(4.65)

where the decision variable is formulated as:

z
ω|Γ
v−1 = −l̃1,1ψ∗

v−1Ψ̄∗
v−1Ω̄∗

v−1Yv

(
v−1

∑
t=1

l̃v−t+1,1Ψ̄∗
t Ω̄∗

t Yt

)H

= YSD
v−1(HSD

v−1)
H.

(4.66)

The NR-element vectorsYSD
v−1 = l̃1,1ψ∗

v−1Ψ̄∗
v−1Ω̄∗

v−1Yv and HSD
v−1 = −∑

v−1
t=1 l̃v−t+1,1Ψ̄∗

t Ω̄∗
t Yt

seen in Eq. (4.66) may be interpreted as the equivalent ”received signal vector” and the equivalent

”fading channel vector” formulated for detecting theMPPSK variable ofωv−1 in Eq. (4.65).

When the ring amplitudeΓv is assumed to be fixed, the lower triangular matrix specific elements

{l̃v−t+1,1}v
t=1 and the ring-amplitude-dependent phase rotationψv−1 of Eq. (4.65) are given, hence

there areMP ∆
ω|Γ
v−1 candidates over the single variableωv−1. Therefore, given a specific ring

amplitude candidateΓv, finding the local minimum∆
ω|Γ
v−1 of Eq. (4.65) over all theMP phase

candidates ofωv−1 is equivalent to minimizing|zω|Γ
v−1 − ωv−1|2 = |zω|Γ

v−1|2 + 1 − 2ℜ(ω∗
v−1z

ω|Γ
v−1),

where|zω|Γ
v−1|2 + 1 is a constant. As a result, the decision variablez

ω|Γ
v−1 of Eq. (4.66) may be directly

used for detecting theMPPSK variableωv−1.

More explicitly, the locally optimumMPPSK candidate associated with a specific ring ampli-

tudeΓv is directly given byωv−1 = exp(j 2π
MP

p̌), wherep̌ = ⌊MP
2π ∠z

ω|Γ
v−1⌉, and the remaining local

MPPSK candidates associated with the sameΓv may be visited later in a zigzag fashion by the SD in
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subfunction: [{∆Γa

v−1}
MA−1
a=0 , {z

ω|Γa

v−1 }
MA−1
a=0 , { p̌a

v−1}
MA−1
a=0 , {stepav−1}

MA−1
a=0 , {∆a

v−1}
MA−1
a=0 , {na

v−1}
MA−1
a=0 ,

∆v−1, âv−1, nv−1]

= findBest({Yt}v
t=1, {Γ̂t}v−1

t=1 , {Ψ̂t}v−1
t=1 , {Ω̂t}v−1

t=1 )

output: {∆Γa

v−1}
MA−1
a=0 , {z

ω|Γa

v−1 }
MA−1
a=0 , { p̌a

v−1}
MA−1
a=0 , {stepav−1}

MA−1
a=0 , {∆a

v−1}
MA−1
a=0 and{na

v−1}
MA−1
a=0 are local

minimum parameters.∆v−1, âv−1 andnv−1 are global minimum parameters.
1: ∆v−1 = inf //initialize ∆v−1 to be a sufficiently large number.
2: for a = 0 to (MA − 1) //visit all MA local minimums.
3: (DAPSK/TDAPSK:) Γv = γa

v−1 · Γ̂v−1 //fix the specificΓv for L̃v andΞv.
(ADPSK/TADPSK:) Γv = γa

v−1

4: YSD
v−1 = l̃1,1(ψa

v−1)
∗Ψ̂∗

v−1Ω̂∗
v−1Yv //updateYSD

v−1 according to Eq. (4.66).

5: HSD
v−1 = − ∑

v−1
t=1 l̃v−t+1,1Ψ̂∗

t Ω̂∗
t Yt //updateHSD

v−1 according to Eq. (4.66).
6: ∆Γa

v−1 = ‖YSD
v−1‖2 + ‖HSD

v−1‖2 + Ξ({Γ̂t}v−1
t=1 , Γv) //evaluate ring-amplitude-related term of Eq. (4.64).

7: z
ω|Γa

v−1 = YSD
v−1(HSD

v−1)
H //evaluateMPPSK-related decision variable of Eq. (4.66).

8: p̃ = MP
2π ∠z

ω|Γa

v−1 //update the local optimumMPPSK candidate.
9: p̌a

v−1 = ⌊ p̃⌉
10: stepav−1 = sign( p̃ − p̌a

v−1) //store step size for the next child node.

11: ∆
ω|Γa

v−1 = −2ℜ[exp(−j 2π
MP

p̌a
v−1) · z

ω|Γa

v−1 ] //update localMPPSK-related term of Eq. (4.65).

12: ∆a
v−1 = ∆Γa

v−1 + ∆
ω|Γa

v−1 //update local minimum.
13: if ∆a

v−1 < ∆v−1 //update global minimum parameters.
14: ∆v−1 = ∆a

v−1
15: âv−1 = a //update ring amplitude index.
16: end if
17: na

v−1 = 0 //initialize MPPSK counter.
18: end for
19: nv−1 = 0 //initialize child node counter.

subfunction: [{ p̌a
v−1}

MA−1
a=0 , {stepav−1}

MA−1
a=0 , {∆a

v−1}
MA−1
a=0 , {na

v−1}
MA−1
a=0 , ∆v−1, âv−1, nv−1]

= findNext({∆Γa

v−1}
MA−1
a=0 , {z

ω|Γa

v−1 }
MA−1
a=0 , { p̌a

v−1}
MA−1
a=0 , {stepav−1}

MA−1
a=0 , {∆a

v−1}
MA−1
a=0 ,

{na
v−1}

MA−1
a=0 , âv−1, nv−1)

1: â = âv−1 //update the previously visited ring amplitude index
2: nâ

v−1 = nâ
v−1 + 1 //update the local child node counter

3: if nâ
v−1 < MP //visit the next localMPPSK candidate associated withâ

4: p̌â
v−1 = p̌â

v−1 + step̂av−1
5: step̂av−1 = −step̂av−1 − sign(step̂av−1)

6: ∆â
v−1 = ∆

Γâ
v−1 − 2ℜ[exp(−j 2π

MP
p̌â

v−1) · z
ω|Γâ

v−1 ]

7: end if
8: ∆v−1 = inf
9: for a = 0 to (MA − 1) //update the next global child node

10: if na
v−1 < MP and ∆a

v−1 < ∆v−1

11: ∆v−1 = ∆a
v−1

12: âv−1 = a
13: end if
14: end for
15: nv−1 = nv−1 + 1 //update the global child node counter

Table 4.9: Pseudo-code for the reduced-complexity Schnorr-Euchner search strategy tai-
lored for the hard-decision-aided MSDSD conceived for uncoded DQAM schemes which
modulate the data-carrying ring amplitude and the data-carrying MPPSK phase separately.
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v=3

v=2

v=1

the SD’s decision

v=3

v=2

v=1

2.41 7.17
7.72

27.98 4.72

71.8

10.6 23.79 103.0
3.36

107.78 76.01 50.89 80.98 7.14 39.29 84.46
30.1644.1819.0571.2771.84

6.08 18.7 41.3 56.1239.852.81 31.08 22.94 12.58 71.18 89.83 75.4283.34 24.12 63.04

JMa) Example of Hard−Decision−Aided MSDSD Conceived for 16−TDAPSK     (2,8) (labelled with PED values)

constellation points that are visited by the SD

paths that are visited by the SD the SD’s steps

b) Example of Hard−Decision−Aided MSDSD Conceived for 16−DAPSK(2,8) (labelled with PED values)

1©

2©

3© 3©

2©

1©

a = 0 a = 1

a = 0
p̌ = 5

p̌ = 6 p̌ = 6

a = 0 a = 1

1©

2©

3©

p̌ = 3 p̌ = 3

1©, 2©, 3©, · · ·

Figure 4.10: Example of hard-decision-aided MSDSD conceived for 16-TDAPSKJM(2,8)

and reduced-complexity hard-decision-aided MSDSD conceived for 16-DAPSK(2,8)

recorded at SNR=15 dB, where we haveNR = 2 andNw = 3.

the same way as the Schnorr-Euchner search strategy conceived for MSDSD aided uncoded DPSK

seen in Table 3.1 and [127]. Once the localMPPSK candidates related to eachΓv have been deter-

mined by the SD, the globally minimum PED increment may be found by comparing theMA local

minimum candidates for∆v−1 of Eq. (4.63) over the variableΓv. The detailed Schnorr-Euchner

search strategy conceived for reduced-complexity MSDSD aided uncoded DQAM is summarized

in form of its pseudo-code in Table 4.9, which is in a similar form to that of the strategy seen in

Table 3.1 and [127] that was conceived for DPSK detection.

Observe in Table 4.9 that the “findBest” subfunction evaluates MA PED increments forMA

candidate child nodes, while the ”findNext” subfunction evaluates only a single new PED incre-

ment until all the local child nodes have been checked. Therefore, the reduced-complexity hard-

decision-aided MSDSD using Table 4.9 has a complexity lowerbound ofO{MA[MA(Nw − 1) +

(Nw − 2)]}. Furthermore, when the first transmitted ring amplitude ofΓ̂1 is fed back from the pre-

vious MSDSD decisions, the HDD-MSDSD implementing the HDD-MSDD regime of Eq. (4.46)

exhibits a complexity lower bound ofO [MA(Nw − 1) + (Nw − 2)].

As mentioned, the reduced-complexity design introduced earlier in this section can only be ap-

plied to the constellations, which independently modulatethe data-carrying ring amplitude and the

data-carryingMPPSK phase at the DQAM transmitter. As a result, when the DQAM schemes asso-

ciated with joint bit-to-symbol mapping to the ring amplitude and phase are employed as introduced

in Sec. 4.2.4, the conventional MSDSD using the Schnorr-Euchner search strategy of Table 4.8 may
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exhibit a higher detection complexity, owing to the fact that all the M candidate child nodes have

to be visited by the SD.

An example of the MSDSD aided 16-TDAPSKJM(2,8) of Fig. 4.7 using the conventional Schnorr-

Euchner search strategy of Table 4.8 is portrayed in Fig. 4.10-a). Specifically. Fig. 4.10-a) shows

that for the MSDSD aided 16-TDAPSKJM(2,8) detection, the “sortDelta” subfunction of Table 4.8

has to evaluate and compare all(M = 16) PED increment values∆v−1 of Eq. (4.60) by visiting

all the(M = 16) constellation points, when the SD visits the indicesv = 2 andv = 3 for the first

time in Step1© and Step2©, respectively. The PEDdv = dv−1 + ∆v−1 defined in Eq. (4.59) may

be updated, when the SD increases or decreases its indexv. After a valid MSDSD solution is found

at the SD indexv = 3 in Step 2©, the SD radius is updated to the corresponding ED ofd = 6.08.

For Step3©, the SD decreases its index tov = 2 in order to visit the second-best candidate, whose

PED value ofd2 = 7.14 turns out to be higher than the SD radius. Hence the SD index may be

decreased tov = 1, which terminates the search.

By contrast, an example of the reduced-complexity MSDSD assisted 16-DAPSK(2,8) of Figs. 4.1-

4.2 using the simplified Schnorr-Euchner search strategy ofTable 4.9 is further portrayed in Fig. 4.10-

b). In more detail, Fig. 4.10-b) shows that when the SD visitsindex v = 2 for the first time in

Step 1©, the “findBest” subfunction of Table 4.9 firstly evaluates the decision variables{z
ω|Γa

v−1 }1
a=0

of Eq. (4.66) associated with the two ring amplitudes, and then the two locally best phase indices

are directly given by{p̌ = ⌊MP
2π ∠z

ω|Γa

v−1 ⌉}1
a=0. The PED increments for these two locally best can-

didates associated with the ring amplitude index and the phase index of(a = 0, p̌ = 3) as well as

those of(a = 1, p̌ = 3) are evaluated according to Eq. (4.63), and the candidate of(a = 0, p̌ = 3)

is chosen as the best candidate forv = 2, which has the globally minimum PED value ofd2 = 2.41,

where the PED value ofdv = dv−1 + ∆v−1 is updated according to Eq. (4.59). Then the SD may

increase its index tov = 3 in Step 2©, and the same “findBest” subfunction of Table 4.9 may be

invoked. After a valid MSDSD solution is found at SD indexv = 3 in Step 2©, the SD radius

is updated to the corresponding ED ofd = 4.72. Following this, the SD index is decreased to

v = 2, where the “findNext” subfunction of Table 4.9 may be invokedfor checking the second-best

candidate forv = 2. This also requires a local phase candidate for each ring amplitude index.

Since the constellation point of(a = 0, p̌ = 3) was previously chosen as the globally optimum for

v = 2, the next local phase candidate associated with the ring amplitude indexa = 0 has to be

visited in a zig-zag fashion. There are two adjacent phase candidates associated with the indices

of p̌ = 3 and p̌ = 5 according to the constellation of Fig. 4.2. Since∠z
ω|Γ0

v−1 is closer to the latter

in this case, hence(a = 0, p̌ = 5) is the local candidate associated witha = 0. Furthermore,

since(a = 1, p̌ = 3) was not selected by the SD for the globally best candidate, itcan still be

the local candidate for the second-best. In summary, the “findNext” subfunction of Table 4.9 may

now find the second-best candidate by comparing the local candidates of(a = 0, p̌ = 5) and

(a = 1, p̌ = 3), and the latter is chosen as a benefit of its lower PED value ofd2 = 7.17. However,

this PED is already higher than the SD sphere radius. Therefore, the SD may further reduce its

index tov = 1 and terminate its search.
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In summary, the comparison example of Fig. 4.10 clearly demonstrates that given the same

number of SD steps, the MSDSD aided 16-DAPSK(2,8) visits a considerably lower number of

constellation points, compared to the MSDSD aided 16-TDAPSKJM(2,8). We will continue to

provide detailed discussions on the complexity and performance comparison between the different

DQAM schemes in Sec. 4.7.

4.6 Hard-Decision-Aided DFDD Conceived for Uncoded DQAM

The DFDD aided uncoded DAPSK and ADPSK schemes have been conceived with a linear pre-

diction based blind channel estimator in [136, 153, 154], which may also be termed as Linear

Prediction-based Detection (LPD). However, the aforementioned contributions ignored the prob-

lem of having a symbol-amplitude-dependent channel correlation matrix, which is caused by the

non-constant modulus of the constellation. Since we have solved this problem for MSDD/MSDSD,

in this section, both a DFDD derived from the MSDD/MSDSD and aLPD derived from blind chan-

nel estimation will be developed. Similarly to the DFDD/LPDaided DPSK schemes of [121, 125]

summarized in Chapter 3, we will demonstrate that the DFDD and LPD aided nonconstant modulus

constellations operating in Rayleigh fading channels are also equivalent.

4.6.1 DFDD Derived from MSDD/MSDSD

As discussed in Sec. 3.2.4, DFDD may be regarded as a special case of MSDD/MSDSD. Specifi-

cally, given the decision-feedback for(Nw − 2) data-carrying symbols, only a single data-carrying

symbol has to be detected within an observation window. According to Eqs. (4.45) and (4.46), the

MSDD Euclidean distance may be expressed as:

d = tr(YHP̄ŌFŌHP̄HY) + ln[det(C̃Nw−1)] + Ξ̃Nw , (4.67)

where we defineF = C−1, while we havẽΞNw = ln
[
(Γ2

Nw
+ N0) − ẽT

Nw
C̃−1

Nw−1ẽNw

]
. The con-

stantξNw seen in Eq. (4.61) may be ignored by DFDD.

For DFDD, the previous(Nw − 1) transmitted symbols’ ring amplitudes{Γ̂t}Nw−1
t=1 , ring-

amplitude-dependent phase rotations{Ψ̂t}Nw−1
t=1 and theMPPSK phases{Ω̂t}Nw−1

t=1 have been de-

termined. Therefore, only the latest phaseΩNw = ωNw−1Ω̂Nw−1 in P̄ and the latest ring amplitude

ΓNw in F andΞ̃Nw have to be detected. The latest ring-amplitude-dependent phase rotationΨNw =

ψNw−1Ψ̂Nw−1 is also determined by the latest data-carrying ring amplitudeγNw−1, where we have

ΓNw = γNw−1Γ̂Nw−1 for DAPSK/TDAPSK andΓNw = γNw−1 for ADPSK/TADPSK. Owing to

the fact thatF is a Hermitian matrix, i.e. we have{ fNw−v+1,Nw−t+1 = fNw−t+1,Nw−v+1}Nw
v,t=1,
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Eq. (4.67) may be further extended as:

d =
Nw

∑
v=1

(
Nw

∑
t=1

fNw−v+1,Nw−t+1Ψ̄∗
t Ω̄∗

t Yt

)
Ω̄vΨ̄vYH

v + Ξ̃Nw

=
Nw−1

∑
v=1

(
Nw−1

∑
t=1

fNw−v+1,Nw−t+1Ψ̂∗
t Ω̂∗

t Yt

)
Ω̂vΨ̂vYH

v

+ 2ℜ
(

Nw−1

∑
t=1

f1,Nw−t+1Ψ∗
Nw

Ω∗
Nw

Ω̂tΨ̂tYNw YH
t

)
+ f1,1‖YNw‖2 + Ξ̃Nw ,

(4.68)

where the constantln[det(C̃Nw−1)] in Eq. (4.67) is ignored. According to the relationship of

F = LLT, all elements inF may be represented by the combinations of elements in the lower

triangular matrixL as:

fNw−v+1,Nw−t+1 =
Nw

∑
q=max(v,t)

lNw−v+1,Nw−q+1lNw−t+1,Nw−q+1. (4.69)

Furthermore, according to the proof of Propositions 1 and 2,bothC̃Nw−1 in Eq. (4.53) and̃LNw−1

in Eq. (4.52) are determined by the known ring amplitudes{Γ̂t}Nw−1
t=1 . Therefore, the specific

elements{{lNw−v+1,Nw−t+1}Nw−1
t=v }Nw−1

v=1 are constants. As a result, Eq. (4.68) may be further

simplified to:

d =
Nw−1

∑
v=1

(
Nw−1

∑
t=1

lNw−v+1,1lNw−t+1,1Ψ̂∗
t Ω̂∗

t Yt

)
Ω̂vΨ̂vYH

v

+ 2ℜ
(

Nw−1

∑
t=1

lNw−t+1,1l1,1Ψ∗
Nw

Ω∗
Nw

Ω̂tΨ̂tYNwYH
t

)
+ l2

1,1‖YNw‖2 + Ξ̃Nw

=

∥∥∥∥∥l1,1Ψ̂∗
Nw−1Ω̂∗

Nw−1YNw + ωNw−1ψNw−1

(
Nw−1

∑
t=1

lNw−t+1,1Ψ̂∗
t Ω̂∗

t Yt

)∥∥∥∥∥

2

+ Ξ̃Nw ,

(4.70)

where a constant of∑Nw−1
v=1

[
∑

Nw−1
t=1 (∑

Nw−1
q=max(v,t)

lNw−v+1,Nw−q+1lNw−t+1,Nw−q+1)Ψ̂∗
t Ω̂∗

t Yt

]
Ω̂vΨ̂vYH

v

is ignored. It can be seen that the DFDD metric of Eq. (4.70) iscompletely equivalent to the

MSDSD’s PED increment formulated in Eq. (4.60) associated with the indexv = Nw. The

difference between the MSDSD and the DFDD is that the DFDD windows are overlapped with

NOL = (Nw − 1) observations, while only the best candidate for the last symbol within the win-

dow is detected by the DFDD.

Therefore, the DFDD aided DQAMJM constellations of Sec. 4.2.4 may be simply completed

by the “sortDelta” subfunction in Table 4.8, and DFDD aided DQAM which separately modulates

the ring amplitude and theMPPSK phase may be implemented by the “findBest” subfunction of

Table 4.9, where both subfunctions are supposed to be associated with a fixed index ofv = Nw. We

also note thatΞNw in Tables 4.8 and 4.9 may be replaced byΞ̃Nw defined in Eq. (4.67) for DFDD.

4.6.2 DFDD Derived from Linear Prediction

It was demonstrated in [136,153,154] that the LPD aided DQAMmay employ a blind channel es-

timator in order to perform coherent detection based on the estimated reference of fading channels.
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Firstly, the most recent received signal block within an observation window is given by:

YNw = sNw HNw + VNw

≈ ΩNw ΨNw Href
Nw

+ VNw ,
(4.71)

where the reference fading vectorHref
Nw

is output from a linear prediction filter, which observes

the previous received signal vectors{Yv}Nw−1
v=1 as well as the previous decisions{ŝv}Nw−1

v=1 . The

input-output relationship of the linear prediction filter may be expressed as [125,126,136]:

Href
Nw

=
Nw−1

∑
v=1

wvYv/(Ω̂vΨ̂v)

= wT(ÔN̄w)H(P̂N̄w)HYN̄w ,

(4.72)

wherew = [wNw−1, · · · , w1]
T represents the linear filter’s taps, while the diagonal matrices P̂N̄w

andÔN̄w are given by the decisions onMPPSK phasesP and by the decisions on ring-amplitude-

dependent phase rotationsO of Eq. (4.32) eliminatingΩNw andΨNw , respectively. Moreover,YN̄w

in Eq. (4.72) is given by the received signalsY of Eq. (4.32) eliminatingYNw.

The LPD aims for minimizing the Mean Square Error (MSE), which is defined as:

σ2
MSE = ε

{∥∥YNw /(ΩNw ΨNw) − Href
Nw

∥∥2
}

= ε

{∥∥∥ΓNw HNw + Ψ∗
Nw

Ω∗
Nw

VNw − wT(ÔN̄w)H(P̂N̄w)HYN̄w

∥∥∥
2
}

= Γ2
Nw

+ N0 − 2E
{

ΓNw HNw(YN̄w)HP̂N̄wÔN̄w

}
w

+ wTE
{
(ÔN̄w)H(P̂N̄w)HYN̄w(YN̄w)HP̂N̄w ÔN̄w

}
w

= Γ2
Nw

+ N0 − 2ẽT
Nw

w + wTC̃Nw−1w,

(4.73)

where the auto-correlation matrix̃CNw−1 and cross-correlation vector̃eNw are defined as subma-

trices ofC̃Nw
in Eq. (4.53) associated with the indexv = Nw.

As a result, the MMSE solution for∂σ2
MSE

∂w
= 0 based on the MSEσ2

MSE defined in Eq. (4.73) is

given by [125,126,136]:

w = C̃−1
Nw−1ẽNw , (4.74)

whereẽNw is determined by the unknown variable ring amplitudeΓNw . The resultant MSE is now

simply given by:

σ2
MSE = Γ2

Nw
+ N0 − ẽT

Nw
C̃−1

Nw−1ẽNw . (4.75)

Given the referenceHref
Nw

defined in Eq. (4.71), the LPD may opt for maximizing the following

a posterioriprobability:

p(ΓNw , ΩNw |YNw) =
p(YNw |ΓNw , ΩNw)p(ΓNw)p(ΩNw)

∑∀ΓNw ,∀ΩNw
p(YNw |ΓNw , ΩNw)p(ΓNw)p(ΩNw)

, (4.76)

where the probability of receivingYNw givenΓNw andΩNw is formulated as:

p(YNw |ΓNw , ΩNw) =
1

πσ2
MSE

exp

(
−
‖YNw − ΩNw ΨNw Href

Nw
‖2

σ2
MSE

)
. (4.77)
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Let us assume that the data-carrying ring amplitudeγNw−1 and theMPPSK variableωNw−1 are

both equiprobable. Then the LPD may minimize the following decision metric:

d =
‖YNw − ΩNw ΨNw Href

Nw
‖2

σ2
MSE

+ ln(σ2
MSE)

=
‖YNw − ωNw−1ψNw−1Ψ̂Nw−1Ω̂Nw−1(∑

Nw−1
t=1 wtΨ̂

∗
t Ω̂∗

t Yt)‖2

σ2
MSE

+ Ξ̃Nw

=

∥∥∥∥∥l1,1Ω̂∗
Nw−1Ψ̂∗

Nw−1YNw − ωNw−1ψNw−1

(
Nw−1

∑
t=1

l1,1wtΨ̂
∗
t Ω̂∗

t Yt

)∥∥∥∥∥

2

+ Ξ̃Nw ,

(4.78)

where according tõΞNw defined in Eq. (4.67) andσ2
MSE of Eq. (4.75), we haveln(σ2

MSE) = Ξ̃Nw .

Furthermore, according to the proof of Proposition 1,Q̃v defined in Eq. (4.55) associated with

index v = Nw − 1 is given byQ̃Nw−1 = (Γ2
Nw

ρ0 + N0 − ẽT
Nw

C̃−1
Nw−1ẽNw)

−1
= 1/σ2

MSE and we

also haveQ̃Nw−1 = f1,1 = l2
1,1 as a benefit of the relationship ofF = C−1 = LLT. Therefore, the

MSE may be rewritten asσ2
MSE = 1/Q̃Nw−1 = 1/l2

1,1, which results in the LPD decision metric

presented in Eq. (4.78).

Furthermore, Eq. (4.55) indicates that[ f2,1, · · · , fNw,1]
T = −C̃−1

Nw−1ẽNw Q̃Nw−1 = −Q̃Nw−1w,

which implies that we have{ fNw−t+1,1 = −l2
1,1wt}Nw−1

t=1 . Because of the relationship offNw−t+1,1 =

lNw−t+1,1l1,1, according to Eq. (4.69) we may conclude that−l1,1wt = lNw−t+1,1. As a benefit, the

LPD decision metric of Eq. (4.78) becomes the same as the DFDDdecision metric of Eq. (4.70).

In summary, both the DFDD metric of Eq. (4.70) and the LPD metric of Eq. (4.78) are equiva-

lent to the MSDSD’s PED increment of Eq. (4.60) associated with the index ofv = Nw. We hereby

note that the DFDD is equivalent to a joint blind channel estimator and a data detector, where the

previous(Nw − 1) detected decisions of{Γ̂t}Nw−1
t=1 , {Ψ̂t}Nw−1

t=1 and{Ω̂t}Nw−1
t=1 are used for esti-

mating theNw-th fading channel sample, and then theNw-th transmitted symbol may be detected

with the aid of the blindly estimated CSI reference. Therefore, MSDD/MSDSD may be viewed as

an improved joint blind channel estimator and data detector, whose decision metric is equivalent

to that of the DFDD/LPD. The difference between the MSDD/MSDSD and DFDD is that all the

transmitted symbols{Γt}Nw
t=2 and{Ωt}Nw

t=2 within the observation window are detected together by

MSDD/MSDSD in order to avoid the DFDD’s problem of error propagation.

By contrast, the DFDD/LPD aided DAPSK/TDAPSK proposed in [153, 154] minimizes the

following decision metric:

d =

∥∥∥∥∥YNw − xNw−1ŝNw−1

[
Nw

∑
t=1

wtYt/(ŝt)

]∥∥∥∥∥

2

, (4.79)

while DFDD/LPD aided ADPSK/TADPSK proposed in [136] minimizes the following decision

metric:

d =

∥∥∥∥∥YNw −
xNw−1ŝNw−1

Γ̂Nw−1

[
Nw

∑
t=1

wtYt/(ŝt)

]∥∥∥∥∥

2

, (4.80)

where the filter taps are given byw = [wNw−1, · · · , w1]
T = C−1

Nw−1eNw , which are the same as

the filter taps of DPSK detection as seen in [121, 125, 126] andas summarized in Sec. 3.2.4, i.e.
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we haveCNw−1 = toeplitz([ρ0, · · · , ρNw−2]) + N0INw−1 and eNw = [ρ1, · · · , ρNw−1]
T. Since

the problem of symbol-amplitude-dependent channel correlation matrix is ignored inCNw−1, this

DFDD/LPD arrangement imposes a performance loss compared to our proposed DFDD/LPD. We

will continue by comparing the performance difference between the noncoherent detectors in the

following section.

4.7 Performance Results for Uncoded DQAM

In this section, the performance results of uncoded DQAM schemes are organized according to

three different aspects. First of all, the achievable capacities of the DQAM constellations are eval-

uated and compared in Sec. 4.7.1. Secondly, the noncoherentdetectors conceived for uncoded

DQAM are examined in terms of their BER performance in Sec. 4.7.2. Last but not least, Sec. 4.7.3

offers a discussion on the complexity comparison a range of uncoded DQAM detectors.

4.7.1 Capacity Results

Let us firstly determine the DCMC capacity of the DQAM constellations. Similar to the DCMC

capacity of the coherent schemes defined in Eq. (2.56) and to that of DPSK defined in Eq. (3.50),

the DCMC capacity of differential nonconstant modulus constellations is given by:

CMSDD
DCMC = max

{p(S̄i)}M(Nw−1)−1
i=0

∑
MA−1
a=0 ∑

M(Nw−1)−1
i=0

∫
p(Y|S̄i, Γa)p(S̄i)p(Γa) log2

[
∑

MA−1
ã=0 p(Y|S̄i,Γã)p(Γã)

∑
MA−1

ā=0 ∑
M(Nw−1)−1
ī=0

p(Y|S̄ ī,Γā)p(S̄ ī)p(Γā)

]

(Nw − 1)

=

∑
MA−1
a=0 ∑

M(Nw−1)−1
i=0 E

{
log2

[
M(Nw−1)·∑MA−1

ã=0 p(Y|S̄i,Γã)p(Γã)

∑
MA−1
ā=0 ∑

M(Nw−1)−1
ī=0

p(Y|S̄ ī,Γā)p(Γā)

]
|S̄ = S̄i, Γ1 = Γa

}

(Nw − 1)MA M(Nw−1)
,

(4.81)

where the conditions of̄S = S̄i and Γ1 = Γa indicate that the received signal matrixY of the

MSDD defined by Eq. (4.35) is obtained by sending the transmitted signal matrixS̄ = ĀP̄Ō

determined bȳSi andΓa over Rayleigh fading channels. Furthermore, the conditional probability

p(Y|S̄i, Γa) in Eq. (4.81) is directly given by Eq. (4.41), while the maximum mutual information

between the channel’s discrete input and continuous outputis given by equiprobable combinations

of {p(S̄i) = 1
M(Nw−1) }M(Nw−1)−1

i=0 and{p(Γa) = 1
MA

}MA−1
a=0 .

For the optimum MSDD aided DAPSK/TDAPSK, the first transmitted symbol’s ring amplitude

is treated as an equiprobable variable, i.e. we have{p(Γã) = p(Γā) = 1
MA

}∀ã,∀ā. Therefore, the

DCMC capacity of Eq. (4.81) may be revised for MSDD aided DAPSK/TDAPSK as:

CMSDD−DAPSK
DCMC =

∑
MA−1
a=0 ∑

M(Nw−1)−1
i=0 E

{
log2

[
M(Nw−1)·∑MA−1

ã=0 p(Y|S̄i,Γã)

∑
MA−1
ā=0 ∑

M(Nw−1)−1
ī=0

p(Y|S̄ ī,Γā)

]
|S̄ = S̄i, Γ1 = Γa

}

(Nw − 1)MA M(Nw−1)
.

(4.82)
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Figure 4.11: Capacity of MSDD aided 16-DAPSK(2,8) and HDD-MSDD aided 16-

ADPSK(2,8).

By contrast, ADPSK and TADPSK can only employ HDD-MSDD, which means that the full

DCMC capacity of HDD-MSDD aided ADPSK/TADPSK can only be achieved, when thea priori

information on the first transmitted symbol’s ring amplitude Γ1 is available from decision feedback,

i.e. we have{p(Γã) = p(Γā) = 1}ã=ā=a and{p(Γã) = p(Γā) = 0}∀ã 6=a,∀ā 6=a. As a result, the

DCMC capacity of Eq. (4.81) may be revised for HDD-MSDD aidedADPSK/TADPSK as:

CHDD−MSDD−ADPSK
DCMC =

∑
MA−1
a=0 ∑

M(Nw−1)−1
i=0 E

{
log2

[
M(Nw−1) p(Y|S̄i,Γa)

∑
M(Nw−1)−1
ī=0

p(Y|S̄ ī,Γa)

]
|S̄ = S̄i, Γ1 = Γa

}

(Nw − 1)MA M(Nw−1)
.

(4.83)

The DCMC capacities of DAPSK and ADPSK evaluated by Eqs. (4.82) and (4.83) are por-

trayed in Fig. 4.11. It can be seen in Fig. 4.11a that when accurate channel estimation is achieved

in slowly fluctuating fading channels, coherent Square 16QAM may significantly outperform both

noncoherent 16-DAPSK(2,8) and 16-ADPSK(2,8). However, when the normalized Doppler fre-

quency is as high asfd = 0.03, accurate channel estimation becomes unattainable. Underthis

condition, MSDD aided DAPSK and HDD-MSDD aided ADPSK may be preferred, owing to the

fact that the noncoherent schemes do not require CSI knowledge, and their capacity may be further

improved by increasing the MSDD window length, as demonstrated by Fig. 4.11b.

Moreover, it is also demonstrated in Fig. 4.11 that althoughboth 16-ADPSK(2,8) and 16-

DAPSK(2,8) may achieve their full DCMC capacity of BPS= 4 at a similarly high SNR, HDD-

MSDD aided ADPSK is capable of achieving a higher capacity than MSDD assisted DAPSK before

reaching their saturation points. This implies that both ADPSK and DAPSK may achieve a similar

performance in uncoded systems, but HDD-MSDD aided ADPSK may outperform MSDD aided
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Figure 4.12: DCMC capacity comparison between DAPSK, ADPSK, and their twisted

modulation counterparts.

DAPSK with the aid of channel coding.

Fig. 4.12 compares the DCMC capacities of DAPSK, ADPSK, and their twisted modulation

counterparts. As expected, there is no capacity differencebetween DQAM and its DQAMJM

counterpart, as seen Fig. 4.12, because their different mapping arrangements do not change the

achievable capacity. This trend is similar to the situationof the Gray and Anti-Gray mapping fea-

tured in [86, 250]. Furthermore, it can be seen in Fig. 4.12a that TDAPSK and TDAPSKJM do

not achieve any noticeable capacity improvement over DAPSK, while Fig. 4.12b demonstrates that

ADPSK, TADPSK and TADPSKJM also exhibit a similar capacity. We will demonstrate in the

next section that although the twisted modulation schemes cannot provide any noticeable capacity

improvement, their soft-decision-aided detectors are capable of producing an improved iteration

gain in channel coded systems, owing to the fact that the data-carrying symbol’s ring amplitude

and phase are correlated in twisted modulation schemes. A higher iteration gain implies that the

extrinsic informationIE becomes higher with the aid of perfecta priori information of IA = 1,

which is beneficial, provided that the appropriate coding scheme is invoked.

4.7.2 BER Performance Results

Let us now proceed to verify the capacity results presented in Figs. 4.11 and 4.12 with the aid

of our BER performance results. Fig. 4.13 presents the BER performance of MSDSD and HDD-

MSDSD aided uncoded DAPSK, while Fig. 4.14 portrays the BER performance of HDD-MSDSD

aided uncoded ADPSK. It can be seen in Figs. 4.13 and 4.14 thatthe HDD-MSDSD associated

with Nw = 2, which is shown to be equivalent to CDD, suffers from an errorfloor at fd = 0.03.
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Figure 4.13: BER performance of MSDSD and HDD-MSDSD aided DAPSK.
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Figure 4.14: BER performance of HDD-MSDSD aided ADPSK.
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Figure 4.15: BER performance comparison between PSAM aideduncoded Square

16QAM and HDD-MSDSD aided uncoded 16-DAPSK/ADPSK(2,8).

This error floor is irreducible even at highEb/N0 values. Nonetheless, HDD-MSDSD mitigates

the performance degradation of CDD and its performance gradually approaches that of the coherent

scheme relying on idealistic perfect CSI within about 3 dB, as evidenced by Figs. 4.13 and 4.14.

We will demonstrate later in this section that the coherent schemes cannot acquire accurate CSI,

when the fading channels fluctuate as rapidly as specified byfd = 0.03, which may result in an

erosion of the performance advantage of coherent Square QAMover noncoherent DAPSK/ADPSK.

Moreover, it is also demonstrated by Fig. 4.13 that HDD-MSDSD does not impose any significant

performance loss on MSDSD, when employed for DAPSK detection. Therefore, the HDD-MSDSD

is capable of facilitating both DAPSK detection and ADPSK detection in uncoded systems.

Fig. 4.15 provides a BER performance comparison between PSAM aided uncoded Square

16QAM and HDD-MSDSD aided uncoded DAPSK/ADPSK. Realistic imperfect channel estima-

tion is performed by PSAM [1], which was introduced in Sec. 3.4.1. The PSAM parameters used

for Fig. 4.15 are the same as those chosen in Sec. 3.4.2. It canbe seen in Fig. 4.15a that when

the fading channel fluctuates as slowly as specified byfd = 0.001, PSAM is capable of providing

accurate CSI estimation, which results in a small performance difference between coherent Square

16QAM using perfect CSI and coherent Square 16QAM using PSAMaided CSI. However, as the

normalized Doppler frequency is increased tofd = 0.03, the performance gap between PSAM

aided coherent Square 16QAM and HDD-MSDSD assisted noncoherent DAPSK/ADPSK is sig-

nificantly reduced, especially for the case ofNR = 2, as evidenced by Fig. 4.15b. In fact, we will

demonstrate in the next chapter that the performance loss ofcoherent detectors caused by inaccurate

CSI estimation becomes much more substantial in coded systems. Hence the soft-decision-aided

MSDSD associated with a much smallerNw conceived for coded DAPSK/ADPSK is capable of

outperforming coded PSAM aided Square 16QAM, when the fading channels fluctuate rapidly.
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Figure 4.16: BER performance of DFDD aided DAPSK and ADPSK. The performance

of the DFDD (Schober et al.) conceived for DAPSK in [154] and the DFDD conceived

for ADPSK (Lampe et al.) in [136] are also portrayed as benchmarks.

The reason is that the LLRs produced by the coherent detectors suffer from poor integrity and

credibility, when the normalized Doppler frequency is high.

Fig. 4.16 portrays the BER performance of DFDD aided uncodedDAPSK/ADPSK. As demon-

strated in Sec. 4.6, the proposed DFDD is a special case of theHDD-MSDSD, where only a single

variable is detected based on the decision feedback for(Nw − 2) observations within a DFDD win-

dow. As a result, the DFDD is also capable of mitigating the error floor that is often encountered

by the CDD, when the fading channels fluctuate rapidly, but the HDD-MSDSD still appears to be

superior to DFDD, as evidenced by Fig. 4.16. Furthermore, asexpected, the DFDD that minimizes

the decision metric of Eq. (4.79) as proposed in [154] imposes a performance loss on DAPSK

detection, which is demonstrated by Fig. 4.16a. Similarly,the DFDD that aims for minimizing

the decision metric of Eq. (4.80) as proposed in [136] also inflicts a performance degradation on

ADPSK detection, as evidenced by Fig. 4.16b.

It was demonstrated in Fig. 4.15 that DAPSK and ADPSK may achieve a comparable perfor-

mance in uncoded systems, which is consistent with the capacity results presented in Fig. 4.11,

where both DAPSK and ADPSK achieve the saturation point of DCMCmax = BPS at a similar

SNR. We note that as demonstrated by Fig. 4.11, the DCMC capacities of DAPSK and ADPSK

are different in the low SNR region, which implies that theirperformance difference may become

more distinct in coded systems. Furthermore, Fig. 4.17 presents a performance comparison be-

tween DAPSK and its twisted modulated counterparts. As expected, Fig. 4.17 shows that there is

no significant performance difference between DAPSK and TDAPSK, which is also in line with the

results of Fig. 4.12. However, Fig. 4.17 demonstrates that TDAPSKJM generally performs worse

than DAPSK and TDAPSK in the context of uncoded systems. Thisis because the joint mapping

of the ring amplitude andMPPSK phase may result in an improved iteration gain for TDAPSKJM
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Figure 4.17: BER performance comparison between DAPSK, TDAPSK and TDAPSKJM,

where HDD-MSDSD and DFDD are employed.

real-valued multiplications real-valued additions comparisons visited nodes
CDD (TDAPSKJM) 6NR + 2M + 2 6NR + 3M − 3 M M
CDD (DAPSK) 6NR + 3MA + 7 6NR + MA − 1 MA MA

HDD-MSDD (12N2
w NR [(12Nw − 6)Nw NR M(Nw−1) M(Nw−1)

(DAPSK/TDAPSKJM) + 4Nw N2
R)M(Nw−1) + (4Nw − 2)N2

R

+ NR + 2]M(Nw−1)

MSDSD’ssortDelta [(4NR + 6)v (4NRv + 2v O(M log M) M

(TDAPSKJM) + 6NR + 5]M + 2NR − 1)M

MSDSD’sfindBest [(4NR + 2)v (4NRv MA MA

(DAPSK) + 8NR + 7]MA + 4NR)MA

MSDSD’sfindNext (DAPSK) ≤ 5 ≤ 7 ≤ 2MA + 1 ≤ 1

Table 4.10: Complexity summary of hard-decision-aided CDD/HDD-MSDD/HDD-
MSDSD conceived for uncoded DAPSK and TDAPSKJM.

in coded systems, which implies that TDAPSKJM detection may produce a lower extrinsic infor-

mation IE without a priori information i.e. atIA = 0, but the extrinsic informationIE achieved by

TDAPSKJM detection may be higher than that of DAPSK and TDAPSK in the presence of perfect

a priori information of IA = 1. According to this feature, it is expected that both DAPSK and

TDAPSK outperform TDAPSKJM in uncoded systems, owing to the complete absence of thea pri-

ori information i.e. forIA = 0. However, it may also be expected that TDAPSKJM is capable of

outperforming both DAPSK and TDAPSK in coded systems, provided that the appropriate channel

coding arrangement is selected. We will continue by exploring these features in the next chapter.

4.7.3 Complexity Comparison

As argued before, the data-carrying ring amplitude and the data-carryingMPPSK phase candidate

may be detected either separately or jointly, which dependson their source-bit mapping mecha-

nisms introduced in Sec. 4.2. We provide here a complexity comparison between DAPSK and
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Figure 4.18: Complexity comparison between hard-decision-aided HDD-MSDD, HDD-

MSDSD and DFDD associated withNw = 3 conceived for 16-DAPSK(2,8) and 16-

TDAPSKJM(2,8), where we haveNR = 2 and fd = 0.03.

TDAPSKJM as representatives of DQAM and DQAMJM, respectively. In more detail, the com-

plexities of CDD, HDD-MSDD and subfunctions of HDD-MSDSD for DAPSK and TDAPSKJM

detection are summarized in Table 4.10, where different types of calculations are separately cate-

gorized. Naturally, unneccessary calculations have to be eliminated in practical implementations.

For example, all theMPPSK candidates may be stored so that the repeated calculations such as

exp(−j 2π
MP

p̌a
v−1) in line 11 of Table 4.9 may be avoided. Moreover, the DAPSK constellation does

not have the amplitude-dependent phase rotation, and hence{ψt}∀t and{Ψt}∀t may be deleted

from all DAPSK detectors.

It may be observed in Table 4.10 that CDD generally exhibits alow detection complexity,

while the MSDD complexity may be excessively high. Furthermore, Table 4.10 demonstrates that

the MSDSD’s “sortDelta” subfunction for TDAPSKJM detection has a higher complexity order

than the MSDSD’s “findBest” and “findNext” subfunctions for DAPSK detection. We note that the

“sortDelta” subfunction of Table 4.8 used for TDAPSKJM detection requires a sorting algorithm,

where as exemplified by Fig. 4.10, allM constellation points{xm}M−1
m=0 are ranked according to

the increasing order of PED increment values{∆m
v−1}M−1

m=0 . There are numerous sorting algorithms

(e.g. Bubble sort, Timsort, Library sort [285, 286], etc.),and the average number of comparisons

required by these algorithms is as high asO(M log M). By contrast, the “findBest” and “find-

Next” subfunctions of Table 4.9 for DAPSK detection does notrequire any sorting algorithms. As

exemplified by Fig. 4.10, the revised Schnorr-Euchner search strategy does not have to know the

complete list of constellation points, which saves a considerable amount of computational com-

plexity.

Fig. 4.18 provides a complexity comparison between HDD-MSDD, HDD-MSDSD and DFDD

conceived for 16-DAPSK(2,8) and 16-TDAPSKJM(2,8), where the detection complexity is quan-
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Figure 4.19: Complexity comparison between HDD-MSDSD’s lower bounds associated

with different Nw for DAPSK and TDAPSKJM detection, where we haveNR = 2 and

fd = 0.03. The Complexity Reduction Ratios (CRRs) achieved by DAPSK detection

compared to TDAPSKJM detection are marked in figures.

tified in terms of the total number of real-valued multiplications required for detecting a single

data-carrying symbol. It can be seen in Fig. 4.18 that the MSDSD introduced in Sec. 4.5 substan-

tially reduces the excessive MSDD complexity, and asEb/N0 increases, the MSDSD complexity

may converge to its lower bound, which is as low as the DFDD complexity. Furthermore, Fig. 4.18

evidences that compared to TDAPSKJM detection, both HDD-MSDSD and DFDD exhibit a signif-

icant complexity reduction for DAPSK detection.

In order to demonstrate the complexity reduction achieved by separately decoding the ring am-

plitude and theMPPSK phase, a complexity comparison between HDD-MSDSD aidedTDAPSKJM

using Table 4.8 and HDD-MSDSD assisted DAPSK using Table 4.9is portrayed by Fig. 4.19. The

CRR marked in Fig. 4.19 was defined in Eq. (2.109). As expected, Fig. 4.19a demonstrates that

HDD-MSDSD conceived for 16-DAPSK(2,8) achieves a substantial complexity reduction of up to

84.5% compared to 16-TDAPSKJM(2,8) detection, while an even more significant complexity re-

duction of up to92.6% is achieved by HDD-MSDSD conceived for 64-DAPSK(4,16), as evidenced

by Fig. 4.19b.

4.8 Chapter Conclusions

In Sec. 4.2, we firstly surveyed a variety of bandwidth-efficient DQAM constellations found in the

literature, and then their conventional hard-decision-aided CDD and MSDD solutions were summa-

rized in Sec. 4.3 and Sec. 4.4, respectively. Furthermore, we have proposed the hard-decision-aided

MSDSD conceived for uncoded DQAM in Sec. 4.5, which is capable of carrying out MSDD by
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sphere decoding without imposing any performance loss. We have also revised the hard-decision-

aided DFDD conceived for uncoded DQAM schemes in Sec. 4.6, which is equivalent to both the

MSDD/MSDSD aided uncoded DQAM associated with decisions feedback and to the linear pre-

diction based blind channel estimation aided coherent detection conceived for uncoded DQAM

operating in Rayleigh fading channels.

We have demonstrated in this chapter that similar to uncodedDPSK, the differential noncon-

stant modulus constellations may employ the popular noncoherent detectors including CDD, HDD-

MSDD, HDD-MSDSD and DFDD. As demonstrated by Table 4.10 and Fig. 4.18, the CDD and the

DFDD exhibit a low complexity, but the HDD-MSDSD may be preferred when the fading chan-

nels fluctuate rapidly, because Figs. 4.13 and 4.14 demonstrated that the HDD-MSDSD achieves

the same detection capability as the HDD-MSDD, while the complexity of the HDD-MSDSD is

substantially lower than that of the HDD-MSDD, as presentedin Table 4.10 and in Fig. 4.18.

One may argue that DAPSK and ADPSK may be the preferred choices among the DQAM

constellations in uncoded systems. We have demonstrated inFig. 4.15 that DAPSK and ADPSK

achieve a similar performance in uncoded systems, and Fig. 4.17 evidenced that the twisted mod-

ulated schemes cannot outperform their counterpart of DAPSK in uncoded systems. Considering

that there are no ring-amplitude-dependent phase rotations for the DAPSK and ADPSK constella-

tions, the noncoherent detectors for DAPSK and ADPSK may be more straightforward as all phase

rotation terms may be deleted. Furthermore, we have demonstrated in Fig. 4.19 that the DQAMJM

schemes exhibit higher detection complexity than the DQAM schemes, which separately modulate

the data-carrying ring amplitude and the data-carryingMPPSK phase. Moreover, the DQAMJM

schemes also perform worse than their DQAM counterparts in uncoded systems, which was exem-

plified in Fig. 4.17.

In the next chapter, we will continue by investigating the performance features of different

DQAM constellations in channel coded systems. The capacitydifference between DAPSK and

ADPSK will be explicitly reflected in the performance of coded schemes. The potential perfor-

mance advantage of twisted modulated schemes may also be better observed, when channel coding

is applied.



Chapter5
Noncoherent Detection for Differential

Non-Constant Modulus Modulation –

Part II: Coded Systems

5.1 Introduction

In order to enhance the achievable error-free transmissionfor differential non-constant modulus

modulations, the noncoherent detectors presented in Chapter 4 should be revised to be able to pro-

cess soft-bit LLRs. Substantial research efforts have beeninvested in this area [114, 136, 153, 154,

160]. The classic soft-decision-aided MSDD conceived for coded DQAM is proposed in [114],

where an appealing performance is achieved at the cost of theMSDD’s exponentially increasing

complexity. The typical constellation set size of DQAM is generally larger than that of DPSK,

becauseM-ary DQAM tends to outperformM-ary DPSK for high values ofM, which restricts

the employment of DPSK to lowM. Hence using MSDD is hardly affordable, especially when

an increased observation window length is required for rapidly fluctuating fading channels. As a

remedy, a low-complexity soft-decision-aided MSDD using Iterative Amplitude/Phase processing

(MSDD-IAP) was proposed for coded DAPSK in [160]. More explicitly, the MSDD is invoked for

ring amplitude detection, which may be referred to as the Multiple-Symbol Differential Amplitude

Detector (MSDAD), while the MSDSD invoked for phase detection may be termed as Multiple-

Symbol Differential Phase Sphere Detector (MSDPSD). The MSDAD and the MSDPSD may it-

eratively exchange their decisions in order to improve the overall performance. Owing to the fact

that the constellation set of DQAM’s ring amplitude is smaller than its complete constellation set,

the employment of MSDAD is more realistic for general DQAM detection than the MSDD. How-

ever, how to implement the MSDD using a sphere decoder for ring amplitude detection is an open

problem at the time of writing.

Let us recall that the unique structure of the lower triangular matrixL, which is generated by
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the decomposition of the fading channel correlation matrixinverseC according toC−1 = LLT

facilitates the sphere decoding of MSDSD aided DPSK, as shown in [113,127,132]. However, for

the case of MSDD aided DQAM, the fading channel correlation matrix C in fact depends on the

DQAM ring amplitudes, as clearly demonstrated in [159]. This implies that the lower triangular

matrix L required by the sphere decoder cannot be obtained, unless all the DQAM ring amplitudes

are known. In Chapter 4, we proposed to tackle this problem byproving that the partial triangular

matrix L̃v defined in (4.52) may be obtained from decomposing the inversion of the partial channel

correlation matrix̃Cv according tõC−1
v = L̃vL̃T

v in (4.57), which only requires the SD’s previous

decisions concerning the ring amplitudes and only containsa single ring amplitude variable for the

SD to detect. Following this effort, in Sec. 5.3, we will propose soft-decision-aided MSDSD solu-

tions for coded DQAM schemes, where sphere decoding may be invoked for both ring amplitude

detection and phase detection.

Furthermore, as mentioned in Sec. 4.6, the DFDD aided DQAM proposed in [136, 153, 154]

stipulates compromised assumption namely that the channelcorrelation matrixC is a constant that

is independent of symbol-amplitude, and hence these soft-decision-aided DFDD solutions are sub-

optimal. In Sec. 5.4, we will further develop the soft-decision-aided DFDD conceived for DQAM

of Sec. 4.2, which is also equivalent to the MSDD/MSDSD scheme of Sec. 5.3 associated with

decisions feedback.

We summarize the novel contributions provided by this chapter as follows:

1. First of all, the soft-decision-aided MSDD conceived forcoded DQAM is introduced in

Sec. 5.2. As we demonstrated in Sec. 4.4, the first transmitted symbol’s ring amplitudeΓ1

within an observation window may be treated either as an unknown variable by the MSDD

or as a known term obtained from the previous decisions feedback provided by the HDD-

MSDD of Sec. 4.4. In coded systems, we may still have both MSDDand HDD-MSDD

for coded DQAM detection, and yet a new Soft-Decision-Directed MSDD (SDD-MSDD)

may be developed for coded DQAM schemes, where the previous decisions onΓ1 are in

the form of a priori probabilities instead of hard-bit decisions. We will demonstrate for

diverse DQAM schemes that SDD-MSDD may achieve the optimum detection capability

for the DAPSK/TDAPSK schemes of Sec. 4.2, while HDD-MSDD mayattain a competent

performance for ADPSK/TADPSK at the cost of a lower detection complexity.

2. Secondly, the soft-decision-aided MSDSD conceived for coded DQAM is proposed in Sec. 5.3,

where sphere decoding is invoked for both ring amplitude detection and phase detection. Ac-

cording to the MSDD arrangements, the soft-decision-aidedMSDSD may also be further im-

plemented in the forms of HDD-MSDSD and SDD-MSDSD, where thesuitable choices for

the different DQAM schemes are the same as for the previouslydiscussed MSDD arrange-

ments, namely SDD-MSDSD for DAPSK/TDAPSK and HDD-MSDSD forADPSK/TADPSK.

Moreover, both the Max-Log-MAP and Approx-Log-MAP algorithms may be invoked by the

soft-decision-aided MSDSD, HDD-MSDSD and SDD-MSDSD conceived for coded DQAM,
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where the Approx-Log-MAP of Algorithm 3.2, which was proposed for MSDSD aided

DPSK may be applied for coded DQAM detection.

3. Thirdly, since Gray-coded labelling is applied to the DQAM constellations, we propose to

apply the reduced-complexity design conceived in Sec. 3.3.3 for MSDSD aided DPSK also to

the soft-decision-aided MSDSD conceived for coded DQAM. More explicitly, thanks to the

constellation symmetry of Gray labelling, the SD does not have to visit all the constellation

points for obtaining the best candidate. Instead, only the constellation points located in the

first quadrant have to be visited, and then the rest of the constellation points may be later

visited by the SD in a zigzag pattern if required, where the new metric values may be simply

obtained by toggling the polarities of the metrics calculated for the constellation points of

the first quadrant. In this way, the complexity of the soft-decision-aided MSDSD may be

substantially reduced without imposing any performance loss.

4. Fourthly, the soft-decision-aided MSDD-IAP conceived for coded DAPSK in [160] is revised

in order to make it applicable to all DQAM constellations, which map the bits to the data-

carrying ring amplitude index and to the data-carryingMPPSK index separately. We pro-

pose to implement the MSDAD in [160] by sphere decoding, and hence the terminology may

be revised to Multiple-Symbol Differential Amplitude Sphere Detection (MSDASD). Since

both ring amplitude detection and phase detection are carried out by SD, the terminology

of MSDD-IAP may be revised to MSDSD-IAP, which may also be implemented as HDD-

MSDSD-IAP and SDD-MSDSD-IAP, if required. Furthermore, the reduced-complexity de-

sign conceived for MSDSD aided DPSK in Sec. 3.3.3 may be directly applied to the MS-

DPSD, so that the total number of constellation points visited by the MSDSD-IAP may

be substantially reduced. We will demonstrate that the MSDSD-IAP designed for coded

DAPSK and HDD-MSDSD-IAP conceived for coded ADPSK are capable of achieving their

respective near-optimum MSDD performance at a substantially reduced detection complex-

ity.

5. Furthermore, the soft-decision-aided DFDD is conceivedfor coded DQAM in Sec. 5.4 based

on the hard-decision-aided DFDD introduced in Sec. 4.6. We will demonstrate that the pro-

posed DFDD outperforms the suboptimal DFDD solutions of [136,153,154], which assume

a constant fixed channel correlation matrixC that is independent of symbol-amplitude.

6. Last but not least, a survey of the performance results of soft-decision-aided noncoherent

detectors conceived for coded DQAM is offered in this chapter, and suitable design choices

are suggested for different DQAM constellations. The capacity of DQAM is more closely

approached with the aid of channel coding. Furthermore, we also demonstrate that when the

fading channels fluctuate rapidly, the soft-decision-aided HDD-MSDSD-IAP conceived for

ADPSK may even outperform PSAM aided coherent QAM detectionin a variety of channel

coding assisted systems.

The rest of this chapter is organized as follows. The soft-decision-aided MSDD conceived for
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general coded DQAM detection is presented in Sec. 5.2. The soft-decision-assited MSDSD is pro-

posed in Sec. 5.3 for coded DQAM, which highlights the principles of the MSDSD algorithm, the

reduced-complexity MSDSD algorithm, the MSDD-IAP generalized for all DQAM constellations,

which modulate the ring amplitude index and theMPPSK phase index separately and the reduced-

complexity MSDSD-IAP. The soft-decision-aided DFDD conceived for coded DQAM is proposed

in Sec. 5.4. Furthermore, our performance results are presented in Sec. 5.5, and the chapter conclu-

sions are offered in Sec. 5.6.

5.2 Soft-Decision-Aided MSDD Conceived for Coded DQAM

According to the MSDD scheme of Fig. 1.12, thea posterioriprobability of Eq. (4.40) derived for

the optimum Log-MAP algorithm [27,240,241] and invoked by MSDD may be represented by:

Lp(bk|Y) = ln
∑∀Γ1

∑∀S̄∈S̄bk=1
p(S̄|Y)

∑∀Γ1
∑∀S̄∈S̄bk=0

p(S̄|Y)

= ln
∑∀Γ1

∑∀S̄∈S̄bk=1
p(Y|S̄, Γ1)p(S̄)p(Γ1)

∑∀Γ1
∑∀S̄∈S̄bk=0

p(Y|S̄, Γ1)p(S̄)p(Γ1)

= ln
∑∀Γ1

∑∀S̄∈S̄bk=1
exp{d(Γ1, S̄)}

∑∀Γ1
∑∀S̄∈S̄bk=0

exp{d(Γ1, S̄)} ,

(5.1)

where the subsets̄Sbk=1 andS̄bk=0 refer to the MSDD combination sets associated withS̄ = ĀP̄Ō

of Eq. (4.35), with the specific bitbk being fixed to 1 and 0, respectively. We may assume that the

first transmitted symbol’s ring amplitudeΓ1 is random uniformly distributed according to{p(Γ1) =
1

MA
}∀Γ1

, becauseΓ1 does not carry any source information and it is not aimed for detection. As a

result, the probability metricd(Γ1, S̄) seen in Eq. (5.1) may be expressed as:

d(Γ1, S̄) = −tr(YHP̄ŌC−1ŌHP̄HY) − ln[det(C)] +
(Nw−1)BPS

∑
k̄=1

b̃k̄La(bk̄), (5.2)

where{b̃k̄}
(Nw−1)BPS
k̄=1

denotes the bit mapping corresponding to the MSDD candidateS̄ of Eq. (4.35),

while {La(bk̄)}
(Nw−1)BPS
k̄=1

denotes thea priori LLRs gleaned from a channel decoder. The low-

complexity Max-Log-MAP algorithm may be invoked by the MSDDfor the sake of simplifying

the Log-MAP of Eq. (5.1), and it is given by [27]:

Lp(bk|Y) = max
∀Γ1

max
∀S̄∈S̄bk=1

d(Γ1, S̄) − max
∀Γ1

max
∀S̄∈S̄bk=0

d(Γ1, S̄), (5.3)

which imposes a performance loss, owing to the fact that onlythe maximum probability metrics

are taken into account. In order to compensate for the sub-optimum nature of the Max-Log-MAP

algorithm, the near-optimum Approx-Log-MAP algorithm maybe formulated as [28,239]:

Lp(bk|Y) = jac∀Γ1
jac∀S̄∈S̄bk=1

d(Γ1, S̄) − jac∀Γ1
jac∀S̄∈S̄bk=0

d(Γ1, S̄), (5.4)

where jac denotes the corrected Jacobian algorithm of Eq. (2.36). We note that a total number

of MA M(Nw−1) candidates have to be evaluated and compared by the MSDD using either the



5.2. Soft-Decision-Aided MSDD Conceived for Coded DQAM 210

Log-MAP algorithm of Eq. (5.1), or the Max-Log-MAP of Eq. (5.3) or alternatively, the Approx-

Log-MAP algorithm of Eq. (5.4).

For uncoded systems, the so-called HDD-MSDD of Eq. (4.46) may conveniently facilitate

the first transmitted symbol’s ring amplitudeΓ1 by feeding back the previous hard-bit decisions.

For coded systems, however, we may utilize soft-decisions,which may lead us to the optimum

Soft-Decision-Directed MSDD (SDD-MSDD). In more detail, instead of assuming thatΓ1 is an

equiprobable variable, thea priori probabilities{p(Γ1)}∀Γ1
may be obtained from the previous

MSDD window. Therefore, the probability metric seen in Eq. (5.2) may be modified to take

{p(Γ1)}∀Γ1
into account as:

d(Γ1, S̄) = −tr(YHP̄ŌC−1ŌHP̄HY) − ln[det(C)] +
(Nw−1)BPS

∑
k̄=1

b̃k̄La(bk̄) + ln[p(Γ1)]. (5.5)

Once all the probability metrics{d(Γ1, S̄)}∀Γ1 ,∀S̄ of Eq. (5.5) have been evaluated for producing

soft-bit decisions, the probability of the last transmitted symbol’s ring amplitudep(ΓNw) may be

updated according to the Log-MAP, to the Max-Log-MAP or to the Approx-Log-MAP as:

ln [p(ΓNw)] = ln



 ∑

∀Ā∈〈∀Γ1,ΓNw 〉
exp [d(Γ1, S̄)]





≈ max
∀Ā∈〈∀Γ1,ΓNw 〉

d(Γ1, S̄)

≈ jac∀Ā∈〈∀Γ1,ΓNw 〉 d(Γ1, S̄).

(5.6)

In Eq. (5.6), the ring amplitudes transmitted both at the start of the MSDD window and at the end of

the MSDD window may represent trellis states〈Γ1, ΓNw〉, while the data-carrying ring amplitudes

Ā govern the state transition. As a result, all possible initial states∀Γ1 and all possible transi-

tions∀Ā that lead to the specific trellis termination state ofΓNw have to be taken into account for

evaluatingln
[
p(ΓNNw

)
]
, as seen in Eq. (5.6).

As an example, the SDD-MSDD invoking the Approx-Log-MAP algorithm is summarized in

the form of its psudo-code in Table 5.1, which demonstrates that updating{ln [p(Γ1)]}∀Γ1
accord-

ing to Eq. (5.6) does not impose any significant amount of extra complexity. We note that the

original MSDD invoking the Approx-Log-MAP algorithm may beimplemented by the pseudo-

code presented in Table 5.1, where the probability metric evaluation in line 4 may be replaced

by Eq. (5.2), while the lines 1,5,6,9 conceived for the stateprobability update may be deleted ac-

cordingly. Similarly to the MSDD, a total ofMA M(Nw−1) candidates have to be evaluated and

compared by the SDD-MSDD.

Moreover, similar to the uncoded system of Sec. 4.4, the HDD-MSDD may also be invoked

for coded nonconstant modulus constellations. Once a hard-decision concerninĝΓ1 is determined

from the previous MSDD window, the HDD-MSDD associated witha known Γ̂1 only has to

test M(Nw−1) candidates. However, for coded systems, the HDD-MSDD only works reliably for

ADPSK/TADPSK. More explicitly, for ADPSK/TADPSK, the mostrecent transmitted symbol’s

ring amplitudeΓNw of each MSDD block is given by the most recent data-carrying symbol’s ring
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Function: [{Lp(bk)}(Nw−1)BPS
k=1 ] = SDD-MSDD(Y, {La(bk)}(Nw−1)BPS

k=1 )
Requirements: As long as the normalized Doppler frequencyfd and noise powerN0 are known, all theMA MNw−1

candidates for the variableC−1 andln[det(C)] may be evaluated according to Eq. (4.44) and stored
in memory before calling this function.

All the MNw−1 combinations of bits mapping{[b̃1 · · · b̃(Nw−1)BPS] = dec2bin(i)}MNw−1−1
i=0 deter-

mining MSDD candidatēS = ĀP̄Ō of Eq. (4.35) may also be pre-stored.
1: {ln[p(ΓNNw

)] = − inf}∀ΓNw
//initialize the termination states

2: for µ1 = 0 to MA − 1 //evaluate all initial statesΓ1 = αµ1√
β

3: for i = 0 to MNw−1 − 1 //evaluate all data-carrying MSDD candidates
4: d(Γ1, S̄) = −tr(YH P̄ŌC−1ŌHP̄HY)− ln[det(C)] //update probability metrics according to Eq. (5.5)

+ ∑
(Nw−1)BPS
k̄=1

b̃k̄La(bk̄) + ln[p(Γ1)]

5: (DAPSK/TDAPSK:) ΓNw
= Γ1 ∑

Nw−1
t=1 γt //evaluate state transition

(ADPSK/TADPSK:) ΓNw
= γNw−1

6: ln[p(ΓNNw
)] = jac{ln[p(ΓNNw

)], d(Γ1, S̄)} //update the termination state according to Eq. (5.6)
7: end for
8: end for
9: {ln[p(ΓN1

)] = ln[p(ΓNNw
)]}∀ΓN1

//update{p(ΓN1
)}∀ΓN1

for the next window
10: for k = 1 to (Nw − 1)BPS //produce soft-bit decisions
11: ζ1 = − inf
12: ζ0 = − inf
13: for µ1 = 0 to MA − 1 //visit all candidateΓ1

14: for i = 0 to MNw−1 − 1 //visit all candidateS̄
15: if b̃k = 1 //we have[b̃1 · · · b̃(Nw−1)BPS] = dec2bin(i)

16: ζ1 = jac[ζ1, d(Γ1, S̄)]
17: else
18: ζ0 = jac[ζ0, d(Γ1, S̄)]
19: end if
20: end for
21: end for
22: Lp(bk) = ζ1 − ζ0 //output the a posteriori LLR forbk

23: end for

Table 5.1: Pseudo-code for SDD-MSDD invoking the Approx-Log-MAP algorithm.

amplitude asΓNw = γNw−1, which directly becomesΓ1 of the next MSDD block. By contrast,

for DAPSK/TDAPSK, the most recent transmitted symbol’s ring amplitude depends on all data-

carrying symbol’s ring amplitudes since we haveΓNw =
(

∏
Nw−1
t=1 γt

)
Γ1, where all the MSDD

decisions are made for the data-carrying symbols’ ring amplitudes{γt}, rather than for{Γt}. This

implies that the MSDD decisions concerningΓNw = γNw−1 are more reliable for ADPSK/TADPSK

than the corresponding MSDD decisions onΓNw =
(

∏
Nw−1
t=1 γt

)
Γ1 of DAPSK/TDAPSK. This

problem does not affect the hard-decision-aided MSDD/MSDSD conceived for DAPSK/TADPSK

in uncoded systems, but the soft-decision-aided MSDD requires better LLR integrity. We will

further characterize this feature in terms of our performance results in Sec. 5.5.

As a special case, the soft-decision-aided CDD may be implemented by the MSDD associated

with Nw = 2. According to the hard-decision-aided CDD of Eq. (4.48), the MSDD metric of
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Eq. (5.2) may be extended for CDD as:

d(Γ1, x1) = −tr(YHP̄ŌC−1ŌHP̄HY) − ln[det(C)] +
BPS

∑
k̄=1

b̃k̄La(bk̄)

= − (Γ2
2 + N0)‖Y2

1‖2 + (Γ2
1 + N0)‖Y2

2‖2 − 2Γ1Γ2ρ1ℜ(ω∗
1 ψ∗

1Y2YH
1 )

det(C)

− ln[det(C)] +
BPS

∑
k̄=1

b̃k̄La(bk̄),

(5.7)

where onlyx1 = γ1ω1ψ1 carries source information, while the determinant of the channel corre-

lation matrix associated withNw = 2 is given bydet(C) = (Γ2
2ρ0 + N0)(Γ2

1ρ0 + N0) − Γ2
1Γ2

2ρ2
1.

Explicitly, we haveΓ2 = γ1Γ1 for DAPSK/TDAPSK orΓ2 = γ1 for ADPSK/TADPSK. Further-

more, CDD may also be implemented in the forms of Soft-Decision-Directed CDD (SDD-CDD)

and Hard-Decision-Directed CDD (HDD-CDD), as special cases of the SDD-MSDD and HDD-

MSDD of this section, respectively, where the observation window length is fixed to be the mini-

mum of Nw = 2. We also note that soft-decision-aided CDD conceived for DAPSK was proposed

in [157–159] for the case of Quasi-Static Rayleigh fading channels, which are expected to experi-

ence a performance loss in continuously fading channels.

5.3 Soft-Decision-Aided MSDSD Conceived for Coded DQAM

In this section, we propose to implement the soft-decision-aided MSDD introduced in Sec. 5.2 by

invoking sphere decoding, and we dedicate substantial efforts to reducing the MSDSD complex-

ity. In more detail, based on the development of the hard-decision-aided MSDSD conceived for

uncoded DQAM in Sec. 4.5, the principles of the MSDSD algorithm designed for coded DQAM

detection are formulated in Sec. 5.3.1. Following this, a reduced-complexity MSDSD algorithm is

proposed in Sec. 5.3.2 in order to reduce the number of constellation points visited by the SD, which

is achieved by exploring the symmetry of the Gray labelling.In Sec. 5.3.3, the efficient MSDD-IAP

proposed in [160] is generalized for all DQAM constellations, which modulate the ring amplitude

index and theMPPSK phase index separately. Furthermore, the reduced-complexity MSDSD-IAP

is proposed in Sec. 5.3.4, where sphere decoding is invoked for ring amplitude detection, while the

reduced-complexity design proposed for soft-decision-aided MSDSD conceived for coded DPSK

in Sec. 3.3.3 is applied toMPPSK phase detection.

5.3.1 MSDSD Algorithm

Similar to the soft-decision-aided MSDSD for DPSK detection of Sec. 3.3.2, SD may be invoked

for MSDD aided DQAM using the Max-Log-MAP algorithm of Eq. (5.3), where the maximization

has to be converted to minimization, while the probability metrics should be guaranteed to have

positive values. Therefore, according to the hard-decision-aided MSDSD’s PED of Eq. (4.59) and

to the PED increment of Eq. (4.60), the MSDD probability metric of Eq. (5.3) may be transformed
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to:

d =
Nw

∑
v=1

∥∥∥∥∥
v

∑
t=1

lNw−t+1,Nw−v+1Ψ̄∗
t Ω̄∗

t Yt

∥∥∥∥∥

2

+ ln[det(C)] + (
Nw

∑
v=2

−ξv−1)

−
Nw

∑
v=2




(v−1)BPS

∑
k̄=(v−2)BPS+1

b̃k̄La(bk̄) − ln C
v−1
A


 ,

(5.8)

where the constant ofξv−1 = min∀{Γt}v
t=1

ln
[
(Γ2

vρ0 + N0) − ẽT
v C̃−1

v−1ẽv

]
defined in Eq. (4.62)

and the constant ofC
v−1
A = ∏

(v−1)BPS
k̄=(v−2)BPS+1

{1 + exp [La(bk̄)]} are artificially added in order to

maintain a positive ED. Moreover, the elements{{lNw−t+1,Nw−v+1}v
t=1}Nw

v=1 are from the lower

triangular matrixL defined in Eq. (4.50).

As a result, the MSDSD’s PED based on Eq. (5.8) is given by:

dv = ‖lNw,NwY1‖2 + ln
(
Γ2

1ρ0 + N0

)
+

v

∑
v̄=2

∥∥∥∥∥
v̄

∑
t=1

lNw−t+1,Nw−v̄+1Ψ̄∗
t Ω̄∗

t Yt

∥∥∥∥∥

2

+
v

∑
v̄=2

ln
[(

Γ2
v̄ρ0 + N0

)
− ẽT

v̄ C̃−1
v̄−1ẽv̄

]
−

v

∑
v̄=2

ξv̄−1

−
v

∑
v̄=2




(v̄−1)BPS

∑
k̄=(v̄−2)BPS+1

b̃k̄La(bk̄) − ln C
v̄−1
A




= dv−1 + ∆v−1.

(5.9)

According to Propositions 1 and 2 of Sec. 4.5, the PED increment ∆v−1 seen in Eq. (5.9) may be

defined as:

∆v−1 =

∥∥∥∥∥l̃1,1Ψ̄∗
v−1Ω̄∗

v−1Yv + ωv−1ψv−1

(
v−1

∑
t=1

l̃v−t+1,1Ψ̄∗
t Ω̄∗

t Yt

)∥∥∥∥∥

2

+ Ξv

−
[

BPS

∑
k̄v=1

b̃k̄v
La(bk̄v

) − ln C
v−1
A

]
,

(5.10)

where the determinant termΞv is defined by Eq. (4.61), while the coefficients{l̃v−t+1,1}v
t=1 are

elements in the(v × v) lower triangular submatrix̃Lv defined in Eq. (4.52). Once again, according

to Proposition 1 in Sec. 4.5, we always have{lNw−t+1,Nw−v+1 = l̃v−t+1,1}v
t=1. We note that for

the symbol-based detection of∆v−1, the bit index subscript̄kv in Eq. (5.10) ranges from1 to BPS

according to the relationship ofk̄v = k̄ − (v − 2)BPS.

Therefore, the SD algorithm proposed in [132] and summarized in Table 3.3 may be invoked

for soft-decision-aided MSDSD conceived for coded DQAM, where the Schnorr-Euchner search

strategy using the PED increment of Eq. (5.10) is summarizedin Table 5.2. It can be seen that the

SD associated with indexv has to order all theM candidate child nodes by evaluating and compar-

ing their PED increments{∆m
v−1}M−1

m=0 according to their ascending order. The sorting algorithm

may involve an average ofO(M log M) comparisons [285,286].

We note that the SD algorithm may commence from the initial PED d1 = 0 for the sake of

simplicity, but theΓ1-related termd1 = ‖lNw,Nw Y1‖2 + ln
(
Γ2

1ρ0 + N0

)
seen in Eq. (5.9) should
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Subfunction: [{∆m̄
v−1}M−1

m̄=0 , {xm̄
v−1}M−1

m̄=0 , nv−1] = sortDelta({Yt}v
t=1, {Γ̂t}v−1

t=1 , {Ψ̂t}v−1
t=1 , {Ω̂t}v−1

t=1 , {Lv−1,k
a }BPS

k=1,

ln C
v−1
A )

Requirements: {l̃v−t+1,1}v
t=1 in Eq. (5.10) are taken from̃L({Γ̂t}v−1

t=1 , Γv) = L̃v, which are pre-evaluated and pre-

stored.Ξ({Γ̂t}v−1
t=1 , Γv) = Ξv in Eq. (5.10) are also pre-evaluated and pre-stored.

1: for m=0 to M − 1 //visit all M child nodes.
2: (DAPSK/TDAPSK:) Γv = γv−1 · Γ̂v−1 //visit xm

v−1 = γv−1 · ωv−1 · ψv−1.
(ADPSK/TADPSK:) Γv = γv−1

3: ∆m
v−1 = ‖l̃1,1Ψ̂∗

v−1Ω̂∗
v−1Yv + ωv−1ψv−1(∑

v−1
t=1 l̃v−t+1,1Ψ̂∗

t Ω̂∗
t Yt)‖2 //evaluate PED increments of Eq. (5.10).

+Ξ({Γ̂t}v−1
t=1 , Γv)− ∑

BPS
k=1 b̃kLv−1,k

a + ln C
v−1
A

4: end for
5: [{∆m̄

v−1}M−1
m̄=0 , {xm̄

v−1}M−1
m̄=0 ] = sort({∆m

v−1}M−1
m=0 ) //rank PED increments in increasing order.

6: nv−1 = 0 //initialize child node counter.

Table 5.2: Pseudocode for the Schnorr-Euchner search strategy tailored for the SD algo-
rithm of Table 3.3, when it’s invoked for soft-decision-aided MSDSD conceived for coded
DQAM.

be added to the SD’s output radius before the associated ED comparison over the different values

of Γ1, as seen in the Max-Log-MAP formula of Eq. (5.3). Therefore,the optimum ED is given by

dMAP = max∀Γ1

(
max∀Ā,P̄ d

)
, where

(
max∀Ā,P̄ d

)
is found by the SD, while the corresponding

MAP hard-bit decisions{bMAP
k }(Nw−1)BPS

k=1 are also obtained along withdMAP. Therefore, the

Max-Log-MAP formula of Eq. (5.3) may be completed accordingto:

Lp(bk) =

{
−dMAP + d̄MAP, if bMAP

k = 1

−d̄MAP + dMAP, if bMAP
k = 0

. (5.11)

The second term of the probability metric in Eq. (5.11) namely d̄MAP is obtained by invoking the

SD for each soft-bit decisionLp(bk), where the specific bitbk is fixed to be the toggled MAP

decisionb̄MAP
k , where we havēdMAP = max∀Γ1

(
max∀{Ā,P̄}

bk=b̄MAP
k

d

)
. Furthermore, we note

that Eq. (5.11) may be revised according to Algorithm 3.2, sothat the near-optimum Approx-Log-

MAP algorithm may also be invoked by the MSDSD aided DQAM.

In summary, for detecting each MSDD/MSDSD window, the MSDSDaided DQAM introduced

in this section may invoke the SD for a total number ofMA · [1 + (Nw − 1)BPS] times. Conse-

quently, the total of visited nodes is reduced fromMA × M(Nw−1) as required by the MSDD to a

lower bound of{MA × (Nw − 1) × M + MA × (Nw − 1) × BPS× [(Nw − 2) × M + M/2]},

as necessitated by the MSDSD.

Moreover, the SDD-MSDD of Table 5.1 may also be implemented in form of Soft-Decision-

Directed MSDSD (SDD-MSDSD), where theΓ1-related term added to the SD’s output radius seen

in Eq. (5.9) has to take into account thea priori probabilities concerningΓ1 namely p(Γ1) as

d1 = ‖lNw,Nw Y1‖2 + ln
(
Γ2

1ρ0 + N0

)
+ ln [p(Γ1)]. In order to obtain thea priori probabilities of

{ln [p(Γ1)]}∀Γ1
, the SD’s output EDs may be utilized for evaluating thea posterioriprobabilities

of ΓNw according to the Max-Log-MAP and Approx-Log-MAP algorithms as:

ln [p(ΓNw)] ≈ max
∀ ˆ̄A∈〈∀Γ1,ΓNw 〉

d(Γ1, ˆ̄S)

≈ jac∀ ˆ̄A∈〈∀Γ1,ΓNw 〉
d(Γ1, ˆ̄S),

(5.12)
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where we have{d(Γ1, ˆ̄S) = max∀Ā,P̄ d}∀Γ1 ,∀ ˆ̄A
and the corresponding transitions{ ˆ̄A} are output

by each of theMA · [1 + (Nw − 1)BPS] number of SD search operations. Following this, the

a posterioriprobabilities{ln [p(ΓNw)]}∀ΓNw
of Eq. (5.12) may become thea priori probabilities

{ln [p(Γ1)]}∀Γ1
for the next MSDSD window. Apart from the extra term of{ln [p(Γ1)]}∀Γ1

, the

SDD-MSDSD may proceed in the exact by the same way, as the MSDSD.

Similarly, the HDD-MSDD may also be implemented in form of the HDD-MSDSD, where a

decision concerningΓNw may be obtained according to the SD search for
(
max∀Ā,P̄ d

)
, given a

specificΓ̂1 value. We note that the first transmitted symbol’s ring amplitudeΓ̂1 is known from pre-

vious decision feedback. Therefore, the HDD-MSDSD may alsoproduce thea posterioriLLRs in

the same way as the MSDSD, except that the comparisons over the differentΓ1 values for obtaining

dMAP and d̄MAP in Eq. (5.11) may be eliminated, and there is no need to evaluate theΓ1-related

termd1 = ‖lNw,NwY1‖2 + ln
(
Γ2

1ρ0 + N0

)
for HDD-MSDSD.

5.3.2 Reduced-Complexity MSDSD Algorithm

It was proposed in Sec. 3.3.3 that by exploring the constellation symmetry provided by theMPPSK

scheme’s Gray-coded labelling, the number of constellation points visited by the SD’s Schnorr-

Euchner search strategy may be reduced for the soft-decision-aided MSDSD conceived for coded

DPSK detection. In this section, we propose to apply the samereduced-complexity design to

the soft-decision-aided MSDSD conceived for coded DQAM. The resultant reduced-complexity

soft-decision-aided MSDSD proposed in this section is applicable to a range of constellations,

including DAPSK, TDAPSK, ADPSK and TADPSK, which modulate the data-carryingMA-level

ring amplitude indexa = bin2dec(bBPSP+1 · · · bBPS) and the data-carryingMPPSK phase index

p = bin2dec(b1 · · · bBPSP
) separately, since theirMPPSK detection may be performed in the same

way as the DPSK detection of Sec. 3.3.3.

First of all, let us extend the PED increment of Eq. (5.10) so that the ring-amplitude-related

term and theMPPSK-related term may be separated as:

∆v−1 = ∆̃v−1 + ∆v−1, (5.13)

where the ring amplitude-related term̃∆v−1 derived from Eq. (5.10) is given by:

∆̃v−1 =
∥∥∥l̃1,1Ψ̄∗

v−1Ω̄∗
v−1Yv

∥∥∥
2
+

∥∥∥∥∥
v−1

∑
t=1

l̃v−t+1,1Ψ̄∗
t Ω̄∗

t Yt

∥∥∥∥∥

2

+ ln C
v−1
A + Ξv −

La(b1) + La(b2)

2
,

(5.14)

which is invariant over theMPPSK parameterωv−1 in Eq. (5.10). Furthermore, theMPPSK-related

term∆v−1 seen in Eq. (5.13) is given by:

∆v−1 = −2ℜ
[
(ω′

v−1)
∗z′v−1

]
−

BPS

∑
k̄v=1

b̃k̄v
La(bk̄v

) +
La(b1) + La(b2)

2

= −2ℜ(ω′
v−1)ℜ(z′v−1) − 2ℑ(ω′

v−1)ℑ(z′v−1) −
BPS

∑
k̄v=1

b̃k̄v
La(bk̄v

) +
La(b1) + La(b2)

2
,

(5.15)
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Figure 5.1: Constellation diagrams for detecting 8PSK and 16PSK. We deliberately rotate

all the detectedMPPSK constellations of Fig. 2.4 (except the special case ofMP = 2)

anti-clockwise by(π/MP), so that there are exactlyMP/4 constellation points in each

quadrant.

where we deliberately rotate all the detectedMPPSK constellations1 (except for the special case of

MP = 2) anti-clockwise by(π/MP) as seen in [159, 236]. Explicitly, we invokeω′
v−1 = ωv−1 ·

exp
(

j π
MP

)
, so that there are exactly(MP/4) PSK phases in each quadrant. The corresponding

examples of rotated 8PSK and rotated 16PSK constellation diagrams are portrayed in Fig. 5.1. As

a result, theMPPSK-related decision variablez′v−1 used for detecting the variableω′
v−1 seen in

Eq. (5.15) is given by:

z′v−1 = −l̃1,1ψ∗
v−1Ψ̄∗

v−1Ω̄∗
v−1Yv

(
v−1

∑
t=1

l̃v−t+1,1Ψ̄∗
t Ω̄∗

t Yt

)H

· exp

(
j

π

MP

)

= YSD
v−1(HSD

v−1)
H · exp

(
j

π

MP

)
,

(5.16)

which is rotated from the decision variblez
ω|Γ
v−1 of Eq. (4.66), and we have theNR-element equiva-

lent “received signal vector”YSD
v−1 = l̃1,1ψ∗

v−1Ψ̄∗
v−1Ω̄∗

v−1Yv and theNR-element equivalent “fading

channel vector”HSD
v−1 = −∑

v−1
t=1 l̃v−t+1,1Ψ̄∗

t Ω̄∗
t Yt for detecting the phase variable ofω′

v−1.

When a specific ring amplitude candidateΓv is fixed, ranking theMP candidates ofω′
v−1

according to their PED increment values∆v−1 of Eq. (5.13) is equivalent to comparing the values

of the PSK-related local PED increment∆v−1 of Eq. (5.15). ForMPPSK phase detection, an

example of reduced-complexity soft-decision-aided MSDSDconceived for coded DQPSK may be

found in Sec. 3.3.3. For a generic differential nonconstantmodulus constellation, we may consider

1We note that only the detectedMPPSK constellation diagrams are rotated at the receiver. Theencoding process

introduced in Sec. 4.2 remains unchanged.
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the M constellation points asM/4 groups of QPSK-like constellation points that are associated

with the same magnitudes but different polarities. As a result, the local minimum within each

group is simply given by:

∆
g
v−1 = −

∣∣∣tReg

v−1

∣∣∣−
∣∣∣tImg

v−1

∣∣∣−
BPS

∑
k̄v=3

b̃k̄v
La(bk̄v

). (5.17)

where the real and the imaginary part ofz′v−1 are associated withLa(b2) andLa(b1), respectively,

as:
t
Reg

v−1 = 2Ag · ℜ(z′v−1)−
La(b2)

2 ,

t
Img

v−1 = 2Bg · ℑ(z′v−1)−
La(b1)

2 .
(5.18)

The specific coordinates of theMPPSK phasesω′
v−1 of Eq. (5.15) which are located in the first

quadrant are given by{(Ag, Bg)}MP/4−1
g=0 , that are used in Eq. (5.18). We note that there are a total

number ofMP/4 PSK phases in the first quadrant, but there areM/4 constellation points in the

first quadrant. More explicitly, for each data-carrying constellation point, its source bit-mapping for

a specific group index seen in Eq. (5.17) is given by{b̃k̄}BPS
k̄=3

, where the relationship between the

group indexg = bin2dec(b̃3 · · · b̃BPS), the PSK phase group indexg = bin2dec(b̃3 · · · b̃BPSP) and

the ring amplitude indexa = bin2dec(b̃BPSP+1 · · · b̃BPS) is given by{{g = g · MA + a}MP/4−1
g=0 }MA−1

a=0 .

As a result, the globally minimum PED increment of Eq. (5.13)is given by:

∆v−1 = min
∀g

∆
g
v−1 + ∆̃a

v−1, (5.19)

where both theMPPSK-related term of∆
g
v−1 and the ring amplitude-related term of∆̃a

v−1 are

determined by the group indexg.

In order to obtain a legitimate child node associated with the PED increment∆v−1 when the

SD visits indexv, a Comparion Window (CW) may be introduced for the Schnorr-Euchner search

strategy. At the beginning, the CW stores the local minimum of the PED increments{∆
g
v−1 +

C
a
v−1}M/4−1

g=0 from all groups and produces the global minimum according toEq. (5.19), which is

represented by the “findBest” subfunction of Table 5.3. To find the next tentative child node, CW

has to visit the next child node within the group which is the one that produced the previous global

child node. A group may be marked ‘completed’ when all its four QPSK-like child nodes have

been tested using a zigzag pattern. By contrast, each incomplete group may provide a local child

node candidate in the CW, and the CW may choose the specific global child node, which has the

minimum metric. This strategy is represented by the “findNext” subfunction of Table 5.4.

Compared to the Schnorr-Euchner algorithm conceived for the hard-decision-aided MSDSD

summarized in Table 4.9, it is more difficult for the soft-decision-aided MSDSD to visit the con-

stellation points in a zigzag pattern, when thea priori LLRs gleaned from a channel decoder are uti-

lized, because the bit-based channel decoders are unaware of which particular modulation scheme

is employed. In fact, for a DQAM constellation, theBPSA bits mapped to the ring amplitude

and theBPSP − 2 bits mapped to theMPPSK magnitudes joinly determine the constellation mag-

nitudes in the first quadrant. As a result, in order to maintain the optimum performance, a total
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Subfunction: [{|tReg

v−1|}
M/4−1
g=0 , {|tImg

v−1|}
M/4−1
g=0 , {∆̃a

v−1}
MA−1
a=0 , {CW

g
v−1}

M/4−1
g=0 , {CWm

g
v−1}

M/4−1
g=0 , {n

g
v−1}

M/4−1
g=0 ,

∆v−1, mv−1, nv−1] = findBest({Yt}v
t=1, {Γ̂t}v−1

t=1 , {Ψ̂t}v−1
t=1 , {Ω̂t}v−1

t=1 , {Lv−1,k
a }BPS

k=1, ln C
v−1
A )

Input: {Yt}v
t=1, {Γ̂t}v−1

t=1 , {Ψ̂t}v−1
t=1 , {Ω̂t}v−1

t=1 , {Lv−1,k
a }BPS

k=1 andln C
v−1
A are required for evaluatingz′v−1 of

Eq. (5.16) and{∆̃a
v−1}

MA−1
a=0 of Eq. (5.14).

Output: {|tReg

v−1|}
M/4−1
g=0 and {|tImg

v−1|}
M/4−1
g=0 are defined in Eq. (5.18). {CW

g
v−1}

M/4−1
g=0 and

{CWm
g
v−1}

M/4−1
g=0 store local minima and their corresponding constellation point indices, re-

spectively.{n
g
v−1}

M/4−1
g=0 refers to local child node counter for each group.∆v−1 andmv−1 are the

global minimum PED increment and its corresponding constellation point index.nv−1 refers to global
child node counter.

Requirements: Coordinates ofMPPSK phases which are located in the first quadrant are given by{(Ag, Bg)}MP/4−1
g=0 .

For the sake of simplicity, the doubled coordinate values{(A
g
, B

g
)}MP/4−1

g=0 are pre-stored, where

we have{A
g

= 2Ag}∀g and{B
g

= 2Bg}∀g. We define thea priori knowledge of group index as

{Pg = ∑
BPS
k=3 b̃kLv−1,k

a }M/4−1
g=0 .

1: for a = 0 to MA − 1

2: (DAPSK/TDAPSK:) Γv = γa
v−1 · Γ̂v−1 //fix the specificΓv for L̃v andΞv

(ADPSK/TADPSK:) Γv = γa
v−1

3: YSD
v−1 = l̃1,1ψ∗

v−1Ψ̄∗
v−1Ω̄∗

v−1Yv //evaluateYSD
v−1 according to Eq. (5.16)

4: HSD
v−1 = − ∑

v−1
t=1 l̃v−t+1,1Ψ̄∗

t Ω̄∗
t Yt //evaluateHSD

v−1 according to Eq. (5.16)

5: z′v−1 = YSD
v−1(HSD

v−1)
H · exp

(
j π

MP

)
//evaluateMPPSK-related decision varible of Eq. (5.16)

6: ∆̃a
v−1 = ‖YSD

v−1‖2 + ‖HSD
v−1‖2 + ln C

v−1
A //evaluate ring-amplitude-related term of Eq. (5.14)

+Ξv − Lv−1,1
a +Lv−1,2

a
2

7: for g = 0 to MP/4 − 1
8: g = g · MA + a //update group index

9: |tReg

v−1| = |Ag · ℜ(z′v−1) − Lv−1,2
a
2 | //associateℜ(z′v−1) to Lv−1,2

a as defined in Eq. (5.18)

10: |tImg

v−1| = |Bg · ℑ(z′v−1)− Lv−1,1
a
2 | //associateℑ(z′v−1) to Lv−1,1

a as defined in Eq. (5.18)

11: CW
g
v−1 = −|tReg

v−1| − |tImg

v−1| − Pg + ∆̃a
v−1 //update local minimum of each group

12: b1 = (t
Img

v−1 < 0) //update local optimum child node index

13: b2 = (t
Reg

v−1 < 0)

14: CWm
g
v−1 = bin2dec(b1b2) · M/4 + g //recall that we have[b3 · · · bBPS] = dec2bin(g)

15: n
g
v−1 = 0 //initialize child node counter for each group

16: end for
17: end for
18: [∆v−1, ĝ] = min({CW

g
v−1}

M/4−1
g=0 ) //update global minimum

19: mv−1 = CWm
ĝ
v−1 //initialize global optimum child node index

20: nv−1 = 0 //update global child node counter

Table 5.3: Pseudo-code for the Schnorr-Euchner search strategy tailored for the reduced-
complexity soft-decision-aided MSDSD conceived for codedDQAM (Part I).
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Subfunction: [{CW
g
v−1}

M/4−1
g=0 , {CWm

g
v−1}

M/4−1
g=0 , {n

g
v−1}

M/4−1
g=0 , {cd

g
v−1}

M/4−1
g=0 , ∆v−1, mv−1, nv−1]

= findNext({|tReg

v−1|}
M/4−1
g=0 , {|tImg

v−1|}
M/4−1
g=0 , {∆̃a

v−1}
MA−1
a=0 , {CW

g
v−1}

M/4−1
g=0 , {CWm

g
v−1}

M/4−1
g=0 ,

{n
g
v−1}

M/4−1
g=0 , {cd

g
v−1}

M/4−1
g=0 , ∆v−1, mv−1, nv−1)

1: b1 · · · bBPS = dec2bin(mv−1) //obtain the previously tested child node
2: â = bin2dec(bBPSP+1 · · · bBPS) //previously tested group’s amplitude index
3: ĝ = bin2dec(b3 · · · bBPSP

) · MA + â //update previously tested group’s index

4: n
ĝ
v−1 + + //update child node counter

5: switch n
ĝ
v−1

6: case1: cd
ĝ
v−1 = sign(|tRe ĝ

v−1| − |tImĝ

v−1|) //update the condition of group̂g

7: if cd
ĝ
v−1 == 1 //the case of|tRe ĝ

v−1| > |tImĝ

v−1|
8: CW

ĝ
v−1 = −|tRe ĝ

v−1| + |tImĝ

v−1| − Pĝ + ∆̃â
v−1 //alter the imaginary part of the local minimum

9: CWm
ĝ
v−1 = bin2dec(b̄1b2) · M/4 + ĝ //alterb1 in the mapping of the local optimum

10: else

11: CW
ĝ
v−1 = |tRe ĝ

v−1| − |tImĝ

v−1| − Pĝ + ∆̃â
v−1 //alter the real part of the local minimum

12: CWm
ĝ
v−1 = bin2dec(b1b̄2) · M/4 + ĝ //alterb2 in the mapping of the local optimum

13: end if
14: break

15: case2: CW
ĝ
v−1 = −∆v−1 − 2Pĝ + 2∆̃â

v−1 //alter decision made in Case 1
16: CWmv−1(ĝ) = bin2dec(b̄1b̄2) · M/4 + ĝ
17: break

18: case3: CW
ĝ
v−1 = |tRe ĝ

v−1| + |tImĝ

v−1| − Pĝ + ∆̃â
v−1 //alter the local optimum child node

19: if cd
ĝ
v−1 == 1 CWm

ĝ
v−1 = bin2dec(b̄1b2) · M/4 + ĝ //alterb1 in the mapping decision maded in Case 2

20: else CWm
ĝ
v−1 = bin2dec(b1b̄2) · M/4 + ĝ //alterb2 in the mapping decision maded in Case 2

21: break
22: end switch
23: ∆v−1 = inf //initialize global minimum
24: for g = 0 to M/4 − 1

25: if CWg
v−1 < ∆v−1 and n

g
v−1 < 4 //compare local minimums from un-full groups

26: ∆v−1 = CW
g
v−1 //update global minimum

27: mv−1 = CWm
g
v−1 //update global child node

28: end if
29: end for
30: nv−1 + + //update global child node counter

Table 5.4: Pseudo-code for the Schnorr-Euchner search strategy tailored for the reduced-
complexity soft-decision-aided MSDSD conceived for codedDQAM (Part II).

of 2(BPSA+BPSP−2) = M/4 groups have to be evaluated and compared within the CW. Nonethe-

less, up to75% of the child nodes are avoided by our reduced-complexity design in the soft MS-

DSD, as verified by the examples portrayed in Fig. 5.2. It can be seen in Fig. 5.2 that with the

same number of SD steps, the soft-decision-aided MSDSD for 16-DAPSK(2,8) detection using the

Schnorr-Euchner algorithm of Tables 5.3 and 5.4 visits a substantially reduced number of constel-

lation points compared to the soft-decision-aided MSDSD aided 16-TDAPSKJM(2,8) detector of

Table 5.2.

More explicitly, Fig. 5.2-a) shows that for the MSDSD aided 16-TDAPSKJM(2,8) detection,

the “sortDelta” subfunction of Table 5.2 has to evaluate andcompare all(M = 16) PED increment

values∆v−1 of Eq. (5.10) by visiting all the(M = 16) constellation points, when the SD visits

the indicesv = 2 and v = 3 for the first time in Step1© and Step2©, respectively. The PED

dv = dv−1 + ∆v−1 defined in Eq. (5.9) may be updated, when the SD increases or decreases its

indexv. After a valid MSDSD solution is found at the SD indexv = 3 in Step 2©, the SD radius is
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the SD’s decision

the SD’s stepspaths that are visited by the SD

constellation points that are visited by the SD

v=3

v=2

v=1

v=2

v=1

v=3

13.4519.57 23.70 33.05 37.53 55.84 47.29
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b) Example of Soft−Decision−Aided MSDSD Conceived for 16−DAPSK(2,8) (labelled with PED values)

a) Example of Soft−Decision−Aided MSDSD Conceived for 16−TDAPSK     (2,8) (labelled with PED values)JM
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Figure 5.2: Example of soft-decision-aided MSDSD for 16-TDAPSKJM(2,8) detection

invoking the Schnorr-Euchner search strategy of Table 5.2 in comparison to soft-decision-

aided MSDSD for 16-DAPSK(2,8) detection invoking Tables 5.3 and 5.4, which are

recorded at SNR=9 dB,fd = 0.03 and IA = 0.3, where we haveNR = 2 andNw = 3.

updated to the corresponding ED ofd = 3.39. For Step3©, the SD decreases its index tov = 2 in

order to visit the second-best candidate, whose PED value ofd2 = 9.67 turns out to be higher than

the SD radius. Hence the SD index may be decreased tov = 1, which terminates the search.

By contrast, for the reduced-complexity MSDSD aided 16-DAPSK(2,8) detection, Fig. 5.2-b)

shows that when the SD visits indexv = 2 for the first time in Step1©, the “findBest” subfunction of

Table 5.3 firstly evaluates theMA = 2 ring amplitude-related PED increment values{∆̃a
v−1}

MA−1
a=0

of Eq. (5.14) and theM/4 = 4 local minima{∆
g
v−1}M/4−1

g=0 of Eq. (5.17) for the phase-related

PED increment values∆v−1 of Eq. (5.15). As a result, a total ofM/4 = 4 nodes are visited in

Step 1© of Fig. 5.2-b), where the optimum PED atv = 2 is given byd2 = d1 + ∆1 = 4.2 according

to the maximum PED increment value for∆1 evaluated by Eq. (5.19). Similarly, when the SD visits

indexv = 3 for the first time in Fig. 5.2-b), a total ofM/4 = 4 nodes are visited by the “findBest”

subfunction of Table 5.3, and then the SD radius is updated tod = 3.61 in Step 1©. Moreover,

when the SD visits the indexv = 2 for the second time in Step3© of Fig. 5.2-b), the “findNext”

subfunction of Table 5.4 firstly visits a new child node having d2 = 8.37 in the group which

previously producedd2 = 4.2 in Step 2©, and then the global minimum is updated tod2 = 8.37

according to Eq. (5.19). However, this PED is already higherthan the SD sphere radius. Therefore,

the SD may further reduce its index tov = 1 and terminate its search.

In summary, the conventional Schnorr-Euchner search strategy of Table 5.2 has to visit all the
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constellation points in order to find the best candidate for the SD to visit first and then a sorting

algorithm [285, 286] is required for ranking the prioritiesof the remaining constellation points, in

order to assit the next decision candidate that the SD may visit later. By contrast, only the constella-

tion points located in the first quadrant are visited by the “findBest” subfunction of Table 5.3, while

then the rest of the constellation points may be visited by the “findNext”subfunction of Table 5.4

in a zigzag-pattern, as and when required by the SD, where their PED increment metric values

may be simply obtained by toggling the polarities of those evaluated by “findBest”. There is no

need for invoking any sorting algorithm. As a result, the reduced-complexity MSDSD algorithm

of Tables 5.3 and 5.4 is capable of skipping up to75% of the total number of constellation points

visited by the SD compared to the MSDSD algorithm of Table 5.2, which is clearly exemplified in

Fig. 5.2.

As a result, for the sake of detecting the symbols of a MSDSD window, the total number of

nodes visited is reduced to a lower bound of{MA × [(Nw − 1) × M/4 + (Nw − 2)] + MA ×
(Nw − 1) × BPS× [(Nw − 1) × M/4 + (Nw − 2)]}, where the subfunctions “findBest” and

“findNext” of Tables 5.3 and 5.4 are invoked at least(Nw − 1) and(Nw − 2) times, respectively,

for completing a SD search.

5.3.3 MSDD-Iterative Amplitude/Phase Algorithm

It is widely recognized that the MSDD complexity of DQAM detection may be significantly re-

duced, if the ring amplitudes and phases may be separately detected. However, it was demon-

strated in the previous sections that completely independently detecting the ring amplitude and

the phase may lead to a performance loss. It was proposed in [160] that a MSDD using Iterative

Amplitude/Phase processing (MSDD-IAP) is capable of achieving a near-optimum performance

for coded DAPSK detection, while the detection complexity may be subtantially reduced, since

reduced subsets of ring amplitudes andMPPSK phase candidates are visited separately.

More explicitly, a MSDD is conceived for ring amplitude detection, which is termed as Multiple-

Symbol Differential Amplitude Detection (MSDAD), and similarly, a MSDSD is dedicated for

MPPSK phase detection, which is termed as Multiple-Symbol Differential Phase Sphere Detec-

tion (MSDPSD). The MSDAD and the MSDPSD may iteratively exchange their decisions in order

to improve the overall performance. We will demonstrate in Sec. 5.5.2 that although the perfor-

mance of uncoded DQAM using MSDD-IAP still suffers from an irreducible error floor, its soft-

decision-aided coded counterpart may indeed approach the optimum performance in the low-SNR

region.

First of all, let us generalize the steps of MSDD-IAP using the Max-Log-MAP algorithm pro-

posed in [160] for all DQAM constellations, which modulate the ring amplitude index and the

MPPSK phase index separately as follows:
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Algorithm 5.1: Procedures of Soft-Decision-Aided MSDD-IAP Conceived for Coded

DQAM Using Max-Log-MAP.

(1) An initial estimate of theMPPSK phases in the matrix̄P of Eq. (4.35) may be obtained

by the CDD introduced in Sec. 4.3.

(2) Upon obtainingˆ̄P in Step (1) above, an estimate of the first transmitted symbol’s ring

amplitudeΓ1 and the ring amplitudes matrix̄A of Eq. (4.35) may be obtained by the

MSDAD as: {
Γ̂1, ˆ̄A

}
= arg max

∀Γ1

max
∀Ā

d(Γ1, Ā, ˆ̄P), (5.20)

where the MSDAD metricd(Γ1, Ā, ˆ̄P) is given by the MSDD metric of Eq. (5.2) associ-

ated with a fixedMPPSK phase matrix̂̄P, and it may be represented as:

d(Γ1, Ā, ˆ̄P) = −tr(YH ˆ̄PŌC−1ŌH ˆ̄PHY)− ln[det(C)]+
Nw

∑
v=2

(v−1)BPS

∑
k̄=(v−2)BPS+BPSP+1

b̃k̄La(bk̄).

(5.21)

The channel correlation matrixC and the ring-amplitude-induced phase rotationsŌ in

Eq. (5.21) are determined by the ring amplitude variablesΓ1 andĀ. There are a total of

MNw
A MSDAD metric candidates in Eq. (5.20).

(3) After estimatingΓ̂1, ˆ̄A and ˆ̄O in Step (2) above, the channel correlation matrixĈ is

determined accordingly. As a result, the estimate of theMPPSK candidates may be

improved according to:

ˆ̄P = arg max
∀P̄

d(Γ̂1, ˆ̄A, P̄)

= arg min
∀P̄

dMSDPSD,
(5.22)

where the MSDPSD metric is given by the toggled MSDD metric ofEq. (5.2) associated

with the fixed ring amplitudeŝΓ1, ˆ̄A and ˆ̄O as:

dMSDPSD = −d(Γ̂1, ˆ̄A, P̄)

=
∥∥∥L̂T ˆ̄OHP̄HY

∥∥∥
2
−

Nw

∑
v=2




(v−2)BPS+BPSP

∑
k̄=(v−2)BPS+1

b̃k̄La(bk̄)− ln C
ωv−1

A


 .

(5.23)

The lower triangular matrix̂L in Eq. (5.22) is decomposed from̂LL̂H = Ĉ−1, and the

MPPSK-related constantC
ωv−1

A = ∏
(v−2)BPS+BPSP

k̄=(v−2)BPS+1
{1 + exp [La(bk̄)]} aims for guar-

anteeing that the MSDPSD metric of Eq. (5.23) always has positive values. Moreover,

the determinant termln[det(C)] in Eq. (5.2) becomes a constant forMPPSK detection,

and hence it is eliminated from the MSDPSD metric of Eq. (5.23). As mentioned before,

the MSDPSD invokes SD for solving Eq. (5.22), which is the same as the MSDSD aided

DPSK proposed in [127,132] and summarized by Table 3.3.
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(4) In order to achieve a near-optimum MSDD performance, Steps (2) and (3) above may be

repeatedIRAP times. Finally, the soft-bit decisions may be made by the MSDAD as:

Lp(bk) = max
∀Γ1

max
∀{Ā}bk=1

d(Γ1, Ā, ˆ̄P)− max
∀Γ1

max
∀{Ā}bk=0

d(Γ1, Ā, ˆ̄P), (5.24)

where the bit index range is specified as{{Lp(bk)}(v−1)BPS
k=(v−2)BPS+BPSP+1

}Nw
v=2. Further-

more, theMPPSK-related soft-bit decisions may be produced by the MSDPSD as:

Lp(bk) = max
∀{P̄}bk=1

d(Γ̂1, ˆ̄A, P̄) − max
∀{P̄}bk=0

d(Γ̂1, ˆ̄A, P̄),

=

{
−dMSDPSD

MAP + d̄MSDPSD
MAP , if bMAP

k = 1

−d̄MSDPSD
MAP + dMSDPSD

MAP , if bMAP
k = 0

,

(5.25)

where dMSDPSD
MAP = min∀P̄ dMSDPSD may be obtained by Eq. (5.22) in Step (3),

while d̄MSDPSD
MAP is obtained by invoking the SD again for each soft-bit decision

{{Lp(bk)}(v−2)BPS+BPSP

k=(v−2)BPS+1
}Nw

v=2, when the specific bitbk is fixed to be the flipped MAP

decision, i.e. the SD is invoked to obtain̄dMSDPSD
MAP = min∀{P̄}

bk=b̄MAP
k

dMSDPSD.

As a result, the MSDD-IAP reduces the total number of nodes visited by the MSDD fromMA ·
M(Nw−1) to a lower bound of(Nw − 1)MP + IRAP[MNw

A +(Nw − 1)MP]+ (Nw − 1)BPSP[(Nw −
2)MP + MP/2], where the SD is invokedIRAP times by the MSDPSD for the sake of determin-

ing the final decisions on̄̂P, and then the SD has to be further invoked(Nw − 1)BPSP times in

Eq. (5.25) for producing theMPPSK-related soft-bit decisions. It can be seen that the MSDD-IAP

complexity associated with ring amplitude detection stillgrows exponentially asNw increases,

because the SD was not invoked for MSDAD.

5.3.4 Reduced-Complexity MSDSD-Iterative Amplitude/Phase Algorithm

As we demonstrated in Sec. 4.5, the effects of the amplitude-dependent channel correlation matrix

C may be eliminated with the aid of incremental steps. This implies that the MSDAD problem

of MSDD-IAP [160] may also be solved by SD, which may be referred to as Multiple-Symbol

Differential Amplitude Sphere Detection (MSDASD). More explicitly, the PED of Eq. (5.9) may

be revised for MSDAD’s metric of Eq. (5.21) as:

dMSDASD
v = ‖lNw,NwY1‖2 + ln

(
Γ2

1ρ0 + N0

)
+

v

∑
v̄=2

∆MSDASD
v̄−1

= dMSDASD
v−1 + ∆MSDASD

v−1 ,

(5.26)
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where the PED increment is given by:

∆MSDASD
v−1 =

∥∥∥∥∥l̃1,1
ˆ̄Ψ∗

v−1
ˆ̄Ω∗

v−1Yv + ω̂v−1ψv−1

(
v−1

∑
t=1

l̃v−t+1,1
ˆ̄Ψ∗

t
ˆ̄Ω∗

t Yt

)∥∥∥∥∥

2

+ Ξv

−
[

BPS

∑
k̄v=BPSP+1

b̃k̄v
La(bk̄v

) − ln C
γv−1

A

]
.

(5.27)

All the transmitted symbols’MPPSK phases{ ˆ̄Ωt}∀t and their data-carryingMPPSK candidates

{ω̂v−1}∀v seen in Eq. (5.27) are known from the already determined phase matrix ˆ̄P, while the con-

stant ofC
γv−1

A = ∏
BPS
k̄v=BPSP+1

{
1 + exp

[
La(bk̄v

)
]}

ensures that all PED increments of Eq. (5.27)

are positive. As a result, the MSDAD metric of Eq. (5.21) is given by the flipped MSDASD metric

of Eq. (5.26) associated with the SD indexv = Nw, i.e. we haved(Γ1, Ā, ˆ̄P) = −dMSDASD
Nw

.

Therefore, the MSDAD of Eq. (5.20) may be explicitly implemented by the MSDASD as:
{

Γ̂1, ˆ̄A
}

= arg max
∀Γ1

max
∀Ā

d(Γ1, Ā, ˆ̄P)

= arg min
∀Γ1

min
∀Ā

dMSDASD
Nw

.
(5.28)

The MSDASD using the PED of Eq. (5.26) may be implemented in the same way as the MSDSD

algorithm of [132] and summarized in Table 3.3. The MSDASD may commence its action with the

initial PED d1 = 0 for the sake of simplicity, but theΓ1-related termdMSDASD
1 = ‖lNw,NwY1‖2 +

ln
(
Γ2

1ρ0 + N0

)
should be added to the SD’s output radius before the EDs comparison over the

legitimateΓ1 values in Eq. (5.28). Finally, the ring amplitude-related soft-bit decisions of Eq. (5.24)

may be carried out by the MSDASD as:

Lp(bk) =

{
−dMSDASD

MAP + d̄MSDASD
MAP , if bMAP

k = 1

−d̄MSDASD
MAP + dMSDASD

MAP , if bMAP
k = 0

, (5.29)

wheredMSDASD
MAP is obtained by Eq. (5.28), whilēdMSDASD

MAP may also be obtained by the MSDASD

of Eq. (5.28), wherebk is fixed to be the flipped MAP decision̄bMAP
k since we havēdMSDASD

MAP =

min∀Γ1
min∀{Ā}

bk=b̄MAP
k

dMSDASD
Nw

.

In summary, both the ring amplitude detection and theMPPSK phase detection of Algo-

rithm 5.1 may invoke the MSDSD algorithm. Hence this detector may now be termed as the MS-

DSD using Iterative Amplitude/Phase processing (MSDSD-IAP). Furthermore, as the MSDPSD

used by the MSDD-IAP of Algorithm 5.1 always utilizes a fixed constant channel correlation ma-

trix Ĉ, the reduced-complexity soft-decision-aided MSDSD conceived for the coded DPSK and

proposed in Sec. 3.3.3 may be directly applied to the MSDPSD,which may result in a considerable

reduction in the number of constellation points visited by the SD. Fig. 5.3 portrays an example of

the comparison between the MSDD-IAP and the reduced-complexity MSDSD-IAP conceived for

64-DAPSK(4,16). It is evidenced by Fig. 5.3 that with the aidof sphere decoding, the MSDASD

effectively reduces the number of ring amplitude candidates visited by the MSDAD, while with

the aid of the reduced-complexityMPPSK phase detection proposed in Sec. 3.3.3, the reduced-

complexity MSDPSD also successfully reduces the number ofMPPSK candidates visited by the

conventional MSDPSD.
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Figure 5.3: Example of comparison between soft-decision-aided MSDD-IAP and

reduced-complexity soft-decision-aided MSDSD-IAP conceived for 64-DAPSK(4,16),

recorded at SNR=9 dB,fd = 0.03 and IA = 0.3, where we haveNR = 2 andNw = 3.
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More explicitly, Fig. 5.3 a) shows that MSDAD of MSDD-IAP employs MSDD for the ring

amplitude detection, which has to visit and compare all theMNw−1
A = 16 MSDD candidates for

the 64-DAPSK(4,16) scheme in order to obtain the optimum solution having the ED ofd = 10.9.

By contrast, the MSDASD of the proposed MSDSD-IAP in Fig. 5.3b) employs the SD for the ring

amplitude detection, where only theMA = 4 ring amplitude candidates are visited, when the SD

visits the indicesv = 2 andv = 3 for the first time in Step1© and Step2©, respectively. After

the MSDASD of Fig. 5.3 b) has updated the SD radius ofd = 10.9 in Step 2©, the SD index is

decreased tov = 2 and the second-best candidate having the PED value ofd2 = 15.468 is visited

in Step 3©. Since this new PED value is higher than the SD radius, the SD proceeds to decrease its

index tov = 1 and terminates the search without visiting all theMNw−1
A = 16 MSDD candidates.

Moreover, MSDPSD of MSDD-IAP seen in Fig. 5.3 a) invokes the conventional soft-decision

MSDSD algorithm of Table 3.3 in Sec. 3.3.2 for the 64-DAPSK(4,16) phase detection. As a result,

the MSDPSD of Fig. 5.3 a) may invoke the “sortDelta” subfunction of Table 3.3 in order to evaluate

and compare allMP = 16 phase candidates, when the SD visits the indicesv = 2 and v = 3

for the first time in Step1© and Step2©, respectively. The MSDPSD’s SD radius is updated to

d = 4.42 in Step 2© of Fig. 5.3 a), and then the SD visits the second-best candidate atv = 2 in

Step 3©, which has a higher PED value ofd2 = 4.89 than the SD radius, hence the SD search is

terminated. By contrast, the MSDPSD of the proposed MSDSD-IAP seen in Fig. 5.3 b) invokes

the reduced-complexity MSDSD algorithm of Tables 3.4-3.7 in Sec. 3.3.3 for the 64-DAPSK(4,16)

phase detection. Hence the MSDPSD of Fig. 5.3 b) may invoke the “findBest-DPSK” subfunction

of Table 3.7, which only visits a reduced subset ofMP/4 = 4 phase candidates, when the SD visits

the indicesv = 2 andv = 3 for the first time in Step1© and Step2©, respectively. The SD radius

of d = 4.42 is found by the MSDPSD of MSDSD-IAP in Fig. 5.3 b) in Step2©, which is the same

as that found by the conventional MSDPSD of MSDD-IAP in Fig. 5.3 a). When the MSDPSD

of Fig. 5.3 b) visits the indexv = 2 for the second time, the “findNext-DPSK” subfunction of

Table 3.7 is invoked to check the second-best candidate, which has a higher PED increment value

and hence the SD decreases its index tov = 1 and terminates its search accordingly.

It may be readily shown that the total number of nodes visitedby the reduced-complexity

MSDSD-IAP is given by(Nw − 1)MP + IRAP[(Nw − 1)M2
A + (Nw − 1)MP/4 + (Nw − 2)] +

(Nw − 1)BPSA[(Nw − 2)M2
A + M2

A/2] + (Nw − 1)BPSP[(Nw − 2)MP/4 + MP/8 + (Nw −
2)]. We note that the Approx-Log-MAP of Algorithm 3.2 proposed for soft-decision-aided MS-

DSD may be directly applied to the reduced-complexity MSDSD-IAP introduced in this section.

Moreover, it is also straightforward to implement the SDD-MSDSD and HDD-MSDSD intro-

duced in Sec. 5.3.1 as Soft-Decision-Directed MSDSD using Iterative Amplitude/Phase process-

ing (SDD-MSDSD-IAP) and Hard-Decision-Directed MSDSD using Iterative Amplitude/Phase

processing (HDD-MSDSD-IAP).
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5.4 Soft-Decision-Aided DFDD Conceived for Coded DQAM

It was demonstrated in Sec. 4.6 that DFDD aided DQAM is equivalent to MSDSD aided DQAM

associated with a fixed index ofv = Nw, where the decision feedback based on the(Nw − 2)

data-carrying symbols are exploited for reducing the search-space, so that only a single variable

has to be detected by the DFDD within an observation window. The consecutive DFDD windows

are supposed to overlap byNOL = (Nw − 1) observations. Therefore, the DFDD aided DQAM

using the Max-Log-MAP algorithm has thea posterioriLLRs of:

Lp(bk) = max
∀{γNw−1,ωNw−1}bk=1

d(γNw−1, ωNw−1)− max
∀{γNw−1,ωNw−1}bk=0

d(γNw−1, ωNw−1), (5.30)

where the DFDD scheme’s decision metric is given by togglingthe polarity of the MSDSD’s PED

increment∆v−1 of Eq. (5.10) associated with the SD indexv = Nw as:

d(γNw−1, ωNw−1) = −
∥∥∥∥∥l1,1Ψ̂∗

Nw−1Ω̂∗
Nw−1YNw + ωNw−1ψNw−1

(
Nw−1

∑
t=1

lNw−t+1,1Ψ̂∗
t Ω̂∗

t Yt

)∥∥∥∥∥

2

− Ξ̃Nw +
BPS

∑
k̄=1

b̃k̄La(bk̄).

(5.31)

The variable ring amplitudeγNw−1 determines{lNw−t+1,1}Nw
t=1, ψNw−1 and Ξ̃Nw in Eq. (5.31),

where we havẽΞNw = ln
[
(Γ2

Nw
+ N0)− ẽT

Nw
C̃−1

Nw−1ẽNw

]
as defined by the hard-decision-aided

DFDD’s ED of Eq. (4.67). The constantξNw in ΞNw as well as the constantln C
Nw−1
A seen in

Eq. (5.10) may be ignored by the DFDD. Moreover, the Approx-Log-MAP algorithm may also be

conceived for the DFDD by replacing themax operations in Eq. (5.30) by the modified Jacobian

algorithm jac defined by Eq. (2.36).

Furthermore, according to our experimental observation not documented here, the first trans-

mitted ring amplitudeΓ1 of each DFDD window should still be treated as a separate variable

for the case of DAPSK/TDAPSK detection in order to avoid the potential error propagation be-

tween DFDD windows. More explicitly, let us assume that a long frame of DAPSK/TADPSK

symbols is transmitted and a transmitted ring amplitude at any position of the frame is given by

Γv = Γ1

(
∏

v−1
t=1 γt

)
, whereΓ1 refers to the first transmitted symbol’s ring amplitude at the begin-

ning of the transmission frame. It may be observed that any erroneous decisions concerning{γt}∀t

may degrade the decision reliablility concerningΓv, whereΓv within the transmission frame may

act as the first transmitted ring amplitudeΓ1 of a DFDD window. By contrast, we always have

Γv = γv−1 for ADPSK/TADPSK schemes, where the potentially erroneousdecision concerning

γv−1 would only affect a single DFDD window, i.e. there is no errorpropagation across the DFDD

windows. Therefore, thea posteriori LLR of Eq. (5.31) derived for soft-decision-aided DFDD

conceived for coded DAPSK/TDAPSK using the Max-Log-MAP algorithm may be revised as:

Lp(bk) = max
∀ Γ1

max
∀{γNw−1,ωNw−1}bk=1

d(Γ1, γNw−1, ωNw−1)

− max
∀ Γ1

max
∀{γNw−1,ωNw−1}bk=0

d(Γ1, γNw−1, ωNw−1),
(5.32)
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so that the complete MSDSD’s ED of Eq. (5.8) may be restored with the aid of decision feedback

based on the(Nw − 2) data-carrying symbols as:

d(Γ1, γNw−1, ωNw−1) = −‖lNw,NwY1‖2 − ln
(
Γ2

1ρ0 + N0

)
−

Nw−1

∑
v=2

∥∥∥∥∥
v

∑
t=1

lNw−t+1,Nw−v+1
ˆ̄Ψ∗

t
ˆ̄Ω∗

t Yt

∥∥∥∥∥

2

−
∥∥∥∥∥l1,1Ψ̂∗

Nw−1Ω̂∗
Nw−1YNw + ωNw−1ψNw−1

(
Nw−1

∑
t=1

lNw−t+1,1Ψ̂∗
t Ω̂∗

t Yt

)∥∥∥∥∥

2

−
Nw

∑
v=2

Ξ̃v +
BPS

∑
k̄=1

b̃k̄La(bk̄),

(5.33)

where{γ̂t}Nw−2
t=1 , {Ψ̂t}Nw−1

t=1 and{ ˆ̄Ωt}Nw−1
t=1 are known from previous decisions, while the lower

triangular matrix elements of{{lNw−t+1,Nw−v+1}v
t=1}Nw

v=1, as well as the determinant term[− ln
(
Γ2

1ρ0 + N0

)
−

∑
Nw
v=2 Ξ̃v] and the ring-amplitude-induced phase rotation variableψNw−1 are determined by the vari-

ables ofΓ1 andγNw−1. We note that the constant of∑
Nw−1
v=2 [∑

(v−1)BPS
k̄=(v−2)BPS+1

b̃k̄La(bk̄)− ln C
v−1
A ]−

ln C
Nw−1
A in the MSDSD’s ED of Eq. (5.8) is ignored for the DFDD metric ofEq. (5.33). In this

way, the potentially erroneous decision concerningΓNw made during the current DFDD window

will not degrade the following DFDD windows. However, the soft-decision-aided DFDD conceived

for the DAPSK/TDAPSK of Eq. (5.32) has a higher detection complexity than the soft-decision-

aided DFDD conceived for the ADPSK/TADPSK of Eq. (5.30).

We note that the DFDD aided DQAM proposed in [136,153,154] ignored the problem of having

a ring-amplitude-dependent channel correlation matrix. More explicitly, the DFDD decision metric

of DAPSK/TDAPSK detection is given by [154]:

d(xNw−1) = −

∥∥∥YNw − xNw−1ŝNw−1

[
∑

Nw
t=1 wtYt/(ŝt)

]∥∥∥
2

1 + N0 − eT
Nw

w
+

BPS

∑
k̄=1

b̃k̄La(bk̄), (5.34)

while that of ADPSK/TADPSK is given by [136]:

d(xNw−1) = −

∥∥∥YNw − xNw−1 ŝNw−1

Γ̂Nw−1

[
∑

Nw
t=1 wtYt/(ŝt)

]∥∥∥
2

1 + N0 − eT
Nw

w
+

BPS

∑
k̄=1

b̃k̄La(bk̄), (5.35)

where the decision-feedback filter taps are given byw = [wNw−1, · · · , w1]
T = CNw−1

−1eNw ,

which are directly given by the filter taps of classic DPSK detection [121, 125, 126] as introduced

in Chapter 3. We will demonstrate in the next section with theaid of our performance results

that this sub-optimal DFDD evaluating the probability metrics of Eqs. (5.34) and (5.35) imposes a

performance loss compared to the optimum DFDD using the probability metric of Eqs. (5.33) and

(5.31).

5.5 Performance Results for Coded DQAM

In this section, we offer detailed comparisons of the soft-decision-aided noncoherent detectors

conceived for coded DQAM schemes. Naturally, all noncoherent detectors may invoke either the
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Approx-Log-MAP or Max-Log-MAP algorithms. Furthermore, similar to coded DPSK detection,

all the classic detectors, including the CDD, MSDD, MSDSD and DFDD may be invoked also for

coded DQAM detection. Moreover, the soft-decision-aided MSDD may be implemented as either

MSDD, or HDD-MSDD or alternatively as SDD-MSDD, while the soft-decision-aided MSDSD

may also be implemented as either MSDSD, or as HDD-MSDSD or alternatively as SDD-MSDSD.

Furthermore, for the DQAM constellations, which map the bits to the data-carrying ring amplitude

index and to the data-carryingMPPSK phase index separately, the soft-decision-aided MSDSD

may be carried out by either the MSDSD-IAP, or by the HDD-MSDSD-IAP or indeed also by the

SDD-MSDSD-IAP.

Let us recall that as we demonstrated in Sec. 5.2, the CDD is a special case of the MSDD

associated withNw = 2. Moreover, the MSDSD may retain the MSDD’s detection capability,

as long as the initial SD’s radius is set to be sufficiently large. Therefore, in this section, we fo-

cus our attention on the performance of both the MSDSD and of the DFDD. In more detail, the

performance of MSDSD employing the Approx-Log-MAP and Max-Log-MAP algorithms is pre-

sented in Sec. 5.5.1. The different MSDSD arrangements are compared and discussed in Sec. 5.5.2

for a variety of coded DQAM schemes, so that the most appropriate MSDSD implementation for

each DQAM constellation may be suggested. Sec. 5.5.3 provides performance comparisons be-

tween different coded DQAM schemes employing their respective MSDSD arrangements. The

MSDSD complexity results are presented in Sec. 5.5.4. Moreover, the performance results the soft-

decision-aided DFDD conceived for coded DQAM are portrayedin Sec. 5.5.5. Last but not least,

our performance comparison between PSAM aided Square QAM and MSDSD aided DQAM in a

variety of coded systems is demonstrated in Sec. 5.5.6.

5.5.1 Performance of MSDSD Employing Approx-Log-MAP and Max-Log-MAP

The EXIT charts of both DAPSK employing MSDSD and of ADPSK relying on HDD-MSDSD

are portrayed in Fig. 5.4, where both the Approx-Log-MAP andMax-Log-MAP algorithms are

invoked. First of all, in terms of the MSDSD performance, it can be clearly seen in Fig. 5.4a that

the DAPSK detection capability improves, as MSDSD window length Nw is increased, which is

reflected both by the increased area under the EXIT curves andby the improved iteration gain. This

feature may also be seen in Fig. 5.4b for the case of HDD-MSDSDaided coded ADPSK detection.

Furthermore, Fig. 5.4 demonstrates that the Approx-Log-MAP algorithm outperforms the Max-

Log-MAP algorithm, which becomes more noticeable in the charts of Fig. 5.4 as the iteration gain

improves with bothNw and M. This is because the Max-Log-MAP algorithm only takes into

account the pair of maximuma posterioriprobabilities associated withbk = 1 andbk = 0, which

implies that some of the valuable probability candidates may be overlooked by the Max-Log-MAP

algorithm, asNw andM are increased.

Fig. 5.5 presents BER performance of both DAPSK employing MSDSD and of ADPSK re-

lying on HDD-MSDSD in TC coded systems, where the Approx-Log-MAP and Max-Log-MAP
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Figure 5.4: EXIT charts of both DAPSK employing MSDSD and of its ADPSK counter-

part relying on HDD-MSDSD recorded at SNR=9 dB andfd = 0.03, where the Approx-

Log-MAP and Max-Log-MAP algorithms are invoked, whileNR = 2 RAs are used.
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Figure 5.5: BER performance of both DAPSK employing MSDSD and of its ADPSK

counterpart relying on HDD-MSDSD in TC coded systems, wherethe Approx-Log-MAP

and Max-Log-MAP algorithms are invoked. We havefd = 0.03 andNR = 2.
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Figure 5.6: EXIT charts of both DAPSK and of its ADPSK counterpart employing MS-

DSD, SDD-MSDSD and HDD-MSDSD recorded at SNR=9 dB andfd = 0.03, where the

Max-Log-MAP algorithm is invoked, whileNR = 2 RAs are used.

algorithms are invoked. It was demonstrated in Fig. 5.4 thatincreasing the MSDSD window length

Nw beyond 4 only offers a limited performance improvement, henceNw = 4 is chosen to represent

the performance of MSDSD in Fig. 5.5. Moreover, we note that MSDD/MSDSD associated with

Nw = 2 is equivalent to CDD. It is demonstrated by Fig. 5.5 that as the MSDSD window length is

increased fromNw = 2 to Nw = 4, the system’s performance is improved in Fig. 5.5a by0.6 ∼ 0.8

dB for DAPSK employing MSDSD and by1.1 ∼ 1.5 dB for ADPSK employing HDD-MSDSD,

as seen in Fig. 5.5b. Furthermore, it is also demonstrated byFig. 5.5 that the Approx-Log-MAP

algorithm outperforms the Max-Log-MAP algorithm by0.1 ∼ 0.3 dB, when they are invoked by

DAPSK employing MSDSD and by ADPSK using HDD-MSDSD in TC coded systems. Since

this performance difference is relatively small compared to the performance difference between

different noncoherent detectors, the Max-Log-MAP algorithm is employed by all detectors in the

following sections.

5.5.2 Comparison Amongst MSDSD Arrangements

In this section, we aim for identifying the best MSDSD arrangements for each DQAM constellation.

Fig. 5.6 portrays the EXIT charts of DAPSK and ADPSK employing MSDSD, SDD-MSDSD and

HDD-MSDSD. For the case of DAPSK recorded in Fig. 5.6a, when there is noa priori information

associated withIA = 0, SDD-MSDSD and MSDSD produce the same extrinsic information IE,

but the HDD-MSDSD’sIE output is lower. Moreover, when the fulla priori information ofIA = 1

is provided for coded DAPSK detection, both SDD-MSDSD and HDD-MSDSD may achieve a
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Figure 5.7: LLR validity test of both 16-DAPSK(2,8) and of its 16-ADPSK(2,8) counter-

part employing MSDSD, SDD-MSDSD and HDD-MSDSD recorded at SNR=9 dB and

fd = 0.03, where the Max-Log-MAP algorithm is invoked, whileNR = 2 RAs are used.

higher IE than MSDSD, as evidenced by Fig. 5.6a. In summary, Fig. 5.6a demonstrates that the

SDD-MSDSD exhibits the optimum detection capability for coded DAPSK. However, considering

that SDD-MSDSD has to produce a soft decision feedback, which only provides a marginal perfor-

mance improvement in Fig. 5.6a, we opted for the MSDSD relying on the low-complexity iterative

amplitude-phase detection aided MSDSD-IAP, since there isno noticeable performance difference

between the MSDSD and the MSDSD-IAP associated withIRAP = 1, as evidenced by Fig. 5.6a.

Furthermore, for the ADPSK of Fig. 5.6b, both SDD-MSDSD and HDD-MSDSD achieve a

very similar detection capability as MSDSD. This is in contrast to the coded DAPSK detection

portrayed by Fig. 5.6a. Let us hence elaborate a little further here. The DAPSK schemes dif-

ferentially encode their ring amplitudes, so that we have{Γv =
(

∏
v−1
t=1 γt

)
Γ1}Nw

v=2 within an

MSDSD observation window. This implies that the DAPSK detection may suffer from error prop-

agation, where the potentially erroneous decision feedback concerning first ring amplitudeΓ1 and

the potentially erroneous decisions concerning{γt}∀t may degrade the accuracy of the following

decisions. Therefore, the performance of DAPSK detection is highly dependent on how we treat

Γ1 by the different MSDSD arrangements. By contrast, the ADPSKschemes utilize the absolute

data-carrying ring amplitude, where we have{Γv = γv−1}Nw
v=2 within an MSDSD observation win-

dow. As a result, there is no error propagation in ADPSK detection, hence the different MSDSD

arrangements exhibit a similar detection capability. Therefore, we may implement HDD-MSDSD

by the low-complexity iterative amplitude-phase detection in form of the HDD-MSDSD-IAP for

coded ADPSK detection, where HDD-MSDSD-IAP associated with IRAP = 1 is also capable of

achieving the near-optimum HDD-MSDSD performance, as demonstrated by Fig. 5.6b.
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Figure 5.8: BER performance comparison of MSDSD, SDD-MSDSDand HDD-MSDSD

when they are employed both for coded DAPSK detection and forits coded ADPSK de-

tection counterpart in TC coded system, where the Max-Log-MAP algorithm is invoked,

while we haveNw = 4, fd = 0.03 andNR = 2.

As a further insightful aspect, Fig. 5.7 presents the LLR validity test of both 16-DAPSK(2,8)

and of 16-ADPSK(2,8) employing MSDSD, SDD-MSDSD and HDD-MSDSD. Fig. 5.7a shows

that MSDSD, SDD-MSDSD and MSDSD-IAP are capable of producing reliable extrinsic LLRs

that comply with the LLR definition of Eq. (2.27), but HDD-MSDSD’s output LLRs exhibit poorer

integrity for coded 16-DAPSK(2,8) detection, owing to its potential error propagation problem.

Moreover, for the case of 16-ADPSK(2,8) detection, it is demonstrated by Fig. 5.7b that MSDSD,

SDD-MSDSD, HDD-MSDSD and HDD-MSDSD-IAP are all competent soft-decision-aided non-

coherent detectors that are capable of producing reliable extrinsic LLRs.

The BER performance of DAPSK and ADPSK employing different MSDSD arrangements

in TC coded systems is portrayed by Fig. 5.8. In TC coded DAPSKsystems, Fig. 5.8a demon-

strates that MSDSD, SDD-MSDSD and MSDSD-IAP perform similarly, but HDD-MSDSD per-

forms much worse than its counterparts. Hence the BER curve of TC coded 64-DAPSK(4,16) em-

ploying HDD-MSDSD cannot even be portrayed within our standard Eb/N0 range. As mentioned

in Sec. 5.2, it is advisable to avoid hard-decision-directed detection for coded DAPSK because of

its error propagation problem. Furthermore, in TC coded ADPSK systems, the performance dif-

ferences amongst MSDSD, SDD-MSDSD, HDD-MSDSD and HDD-MSDSD-IAP are all within

0.2 dB. Therefore, based on our observations gleaned from Figs. 5.6-5.8, we may now conclude

that the soft-decision-aided MSDSD-IAP may be recommendedfor coded DAPSK detection, while

the soft-decision-aided HDD-MSDSD-IAP may be suggested for coded ADPSK detection.

Although MSDSD-IAP and HDD-MSDSD-IAP have been shown to be competent arrange-

ments in Fig. 5.8 for the coded DAPSK and ADPSK detection, respectively, Fig. 5.9 explicitly
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Figure 5.9: BER performance of both uncoded DAPSK employingMSDSD-IAP and of its

uncoded ADPSK counterpart employing HDD-MSDSD-IAP, wherewe havefd = 0.03

andNR = 1.

evidences that these detectors still suffer from irreducible error floors for uncoded DAPSK and

ADPSK detection. The reason for this phenomenon is that without the assistance of channel cod-

ing, the MSDASD and the MSDPSD schemes may exchange erroneous decisions, which severely

degrades the performance of MSDSD-IAP and HDD-MSDSD-IAP inuncoded systems. There-

fore, the conventional hard-decision-aided HDD-MSDSD is recommended for uncoded DQAM

schemes, as discussed in Chapter 4.

Let us now proceed by identifying the most appropriate MSDSDarrangements both for coded

TDAPSK and TADPSK detection. Similarly to DAPSK, TDAPSK also differentially encodes the

ring amplitudes, hence HDD-MSDSD should still be avoided for coded TDAPSK detection. There-

fore, similar to coded DAPSK detection, we opt for implementing MSDSD by the low-complexity

iterative amplitude-phase detection in the form of MSDSD-IAP for coded TDAPSK detection,

which is characterized by the EXIT charts of Fig. 5.10a. However, in contrast to the EXIT charts of

coded DAPSK seen in Fig. 5.6a, the EXIT charts of coded TDAPSKshown in Fig. 5.10a demon-

strate that MSDSD-IAP associated withIRAP = 1 clearly suffers from a performance loss com-

pared to MSDSD. Upon increasingIRAP, MSDSD-IAP may become capable of producing the

sameIE as MSDSD with the aid of perfecta priori information ofIA = 1, but its performance gap

at IA = 0 cannot be compensated, as evidenced by Fig. 5.10a. The EXIT charts of coded TADPSK

detection seen in Fig. 5.10b show a similar trend, where a performance gap persists between HDD-

MSDSD and HDD-MSDSD-IAP. The reason for this performance gap is that the twisted modu-

lations - including TDAPSK and TADPSK - introduce a ring-amplitude-induced phase rotation,

which implies that the potentially erroneous ring amplitude detection may impose a false phase

rotation upon theMPPSK phase detection process. This error propagation can only be mitigated,

when the perfecta priori information of IA = 1 is supplied, which is demonstrated by the EXIT
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Figure 5.10: EXIT charts of both TDAPSK employing MSDSD-IAPand of its TADPSK

HDD-MSDSD-IAP counterpart recorded at SNR=9 dB andfd = 0.03, where Max-Log-

MAP is invoked, whileNR = 2 RAs are equipped.

charts of Fig. 5.10. It can also be seen in Fig. 5.10 that the performance difference between the

MSDSD and MSDSD-IAP counterpart for coded TDAPSK detectionand that of the HDD-MSDSD

and HDD-MSDSD-IAP version for coded TADPSK detection become much less significant, as the

number of modulation levels is increased toM = 64. This is because the ring-amplitude-induced

phase rotation becomes smaller asM increases, which implies that the potentially erroneous phase

rotation of MPPSK detection imposed by the ring amplitude detection process may become less

significant.

The specific characteristics of coded TDAPSK and TADPSK detection demonstrated by the

EXIT charts of Fig. 5.10 are further verified both by the LLRs validity test of Fig. 5.11 and by

the BER performance of Fig. 5.12. In more detail, it is demonstrated by Fig. 5.11 that the ex-

trinsic LLRs produced by both MSDSD-IAP invoked for coded TDAPSK detection and by HDD-

MSDSD-IAP used for coded TADPSK detection suffer from a severe deviation from the LLR

definition of Eq. (2.27). Furthermore, the BER performance of Fig. 5.12a confirms that there

is a significant performance gap between the MSDSD and MSDSD-IAP based coded TDAPSK

detection, which becomes especially obvious for the 16-TDAPSK(2,8) scheme of Fig. 4.4. By

increasingIRAP, the performance of MSDSD-IAP conceived for coded TDAPSK detection may

be improved, but the performance gap between the MSDSD and MSDSD-IAP schemes cannot be

effectively compensated, as demonstrated by Fig. 5.12a. Similarly, Fig. 5.12b shows that for coded

TADPSK detection, HDD-MSDSD-IAP also imposes a performance loss on HDD-MSDSD, which

becomes especially substantial for the 16-TADPSK(2,8) scheme, and this performance loss cannot

be completely compensated by increasingIRAP.
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Figure 5.11: LLR validity test of both 16-TDAPSK(2,8) employing MSDSD-IAP and

of its 16-ADPSK(2,8) HDD-MSDSD-IAP counterpart recorded at SNR=9 dB andfd =

0.03, where the Max-Log-MAP algorithm is invoked, whileNR = 2 RAs are used.
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Figure 5.12: BER performance of both TC coded TDAPSK employing MSDSD-IAP and

of its TC coded TADPSK HDD-MSDSD-IAP counterpart, where theMax-Log-MAP al-

gorithm is invoked, while we haveNw = 4, fd = 0.03 andNR = 2.
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Figure 5.13: EXIT charts and BER performance comparison between coded DAPSK,

TDAPSK and TDAPSKJM, where the Max-Log-MAP algorithm is invoked, while we

haveNw = 4, fd = 0.03 andNR = 2.

In summary, we may suggest that the soft-decision-aided MSDSD is the suitable choice for

coded TDAPSK detection, while the soft-decision-aided HDD-MSDSD is the suitable choice for

coded TADPSK detection. Naturally, TDAPSKJM and TADPSKJM cannot invoke iterative amplitude-

phase detection, owing to the fact that all DQAMJM constellations jointly map the bits to the

data-carrying ring amplitude and phase. Therefore, the soft-decision-aided MSDSD may be rec-

ommended for coded TDAPSKJM detection, because TDAPSKJM differentially encodes the ring

amplitudes as DAPSK and TDAPSK. Moreover, the soft-decision-aided HDD-MSDSD may be ad-

vocated for coded TADPSKJM detection, where TADPSKJM relies on absolute data-carrying ring

amplitudes in the same form as ADPSK and TADPSK.

5.5.3 Comparison Between DQAM Constellations

In this section, we comparatively study the different DQAM constellations in the context of both

TC coded systems, RSC coded systems as well as in IRCC and URC coded near-capacity sys-

tems. We would like to link the BER performance in this section to the DQAM capacity results

of Fig. 4.12 presented in Sec. 4.7.1. Furthermore, different soft-decision-aided MSDSD arrange-

ments are employed for different DQAM constellations according to the suggestions discussed in

Sec. 5.5.2, so that each DQAM scheme may achieve its best attainable performance at the lowest

possible detection complexity.

First of all, since DAPSK, TDAPSK and TDAPSKJM employ the same differential encoding

process of Eq. (4.1), these three DQAM constellations are compared in Fig. 5.13, where MSDSD-

IAP is employed for coded DAPSK detection, while MSDSD is invoked for coded TDAPSK and
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TDAPSKJM detection. It was demonstrated in Fig. 4.12a that DAPSK, TDAPSK and TDAPSKJM

may achieve the same DCMC capacity, but Fig. 4.17 also shows that DAPSK and TDAPSK per-

form better than TDAPSKJM in uncoded systems, regardless, whether HDD-MSDSD or DFDD is

employed. By observing the EXIT charts of Fig. 5.13a, it may be confirmed that coded DAPSK

detection is capable of producing the highestIE, when there is noa priori information, but both

TADPSK and TDAPSKJM are capable of producing a higher iteration gain, where the steepest

curve of coded TDAPSKJM detection produces both the lowestIE at IA = 0 and the highestIE at

IA = 1. Nonetheless, Fig. 5.13a shows that DAPSK, TDAPSK and TDAPSKJM exhibits the same

achievable rate, where the areas under the EXIT curves of theabove-mentioned three counterparts

are always the same. This verifies the capacity results presented in Fig. 4.12a.

Our BER performance comparison of DAPSK, TDAPSK and TDAPSKJM in a variety of coded

systems is portrayed by Fig. 5.13b, while the Monte-Carlo simulation based decoding trajecto-

ries of coded DAPSK detection are recorded in Fig. 5.16a, as an example. It is demonstrated in

Fig. 5.13b that TDAPSKJM outperforms its counterparts of DAPSK and TDAPSK in RSC coded

system, while DAPSK performs better than TDAPSK and TDAPSKJM in TC coded system. This

is because that the steep EXIT curve of TDAPSKJM matches better the EXIT curve shape of RSC,

while the less steep EXIT curve of DAPSK matches better to thehorizontal EXIT curve of TC.

The shape matching between the EXIT curve of the inner demodulator and of the outer channel

decoder minimizes the area of the open tunnel, which resultsin the best performance [86, 243].

Furthermore, Fig. 5.13b also shows that TDAPSK may outperform its counterparts of DAPSK and

TDAPSKJM in IRCC and URC coded near-capacity system. Essentially, all the three constella-

tions have the same DCMC capacity, but TDAPSK and TDAPSKJM exhibit a higher iteration gain

than DAPSK, as demonstrated by Fig. 5.13a. Naturally, the improved iteration gain is beneficial,

especially when turbo detection exchanges extrinsic information between the URC and MSDSD

schemes. However, the number of iterations between the URC and MSDSD schemes is given by

IRURC−MSDSD = 2, which may not be sufficient for reaping the full benefit of thehigh iteration

gain achieved by TDAPSKJM, but unfortunately a higher number of iterations between the URC

and MSDSD schemes may not be affordable because of the potentially excessive decoding com-

plexity of the near-capacity system. Therefore, TDAPSKJM performs even worse than DAPSK in

IRCC and URC coded system, as evidenced by Fig. 5.13b.

In summary, DAPSK, TDAPSK and TDAPSKJM attain their full potential in the context of dif-

ferent coded systems. In terms of the BER performance demonstrated by Fig. 5.13b, TDAPSKJM,

DAPSK and TDAPSK are the best choices for an RSC coded system,for an TC coded system and

for an IRCC-URC coded system, respectively.

Secondly, our performance comparisons of ADPSK, TADPSK andTADPSKJM employing

the same differential encoding process of Eq. (4.8) are portrayed in Fig. 5.14. As suggested in

Sec. 5.5.2, HDD-MSDSD-IAP is employed for coded ADPSK detection, while its HDD-MSDSD

counterpart is used for coded TADPSK and TADPSKJM detection. Similar to the EXIT chart based

comparison of Fig. 5.13a, Fig. 5.14a also demonstrates thatthe twisted modulation of TADPSK
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Figure 5.14: EXIT chart and BER performance comparison of coded ADPSK, TADPSK

and TADPSKJM, where the Max-Log-MAP algorithm is invoked, while we haveNw = 4,

fd = 0.03 andNR = 2.

exhibits a slightly higher iteration gain than its originalun-twisted DQAM constellation based

ADPSK counterpart, while the joint amplitude and phase mapped twisted constellation of TADPSKJM

is capable of producing the highest iteration gain. The capacity results of Fig. 4.12b suggest that the

ADPSK, TADPSK and TADPSKJM constellations may achieve the same DCMC capacity, which

is also confirmed by the EXIT charts of Fig. 5.14a, where the areas under the EXIT curves of the

three counterparts are always the same.

Furthermore, Fig. 5.14b portrays our BER comparison of ADPSK, TADPSK and TADPSKJM.

As a further example, the decoding trajectories of coded ADPSK detection observed in a variety of

coded systems are recorded in Fig. 5.16b. Once again, similar to the BER comparison of Fig. 5.13b,

Fig. 5.14b further evidences that the joint mapped twisted modulation of TADPSKJM outperforms

its counterparts in the context of RSC coded systems. By contrast, the original un-twisted DQAM

constellation of ADPSK is the best choice for TC coded systems, while the twisted modulation of

TADPSK achieves the best performance in the IRCC and URC coded near capacity systems.

Having compared the un-twisted DQAM constellations to their twisted counterparts in Figs. 5.13

and 5.14, we may proceed to offer a comparison between the original DQAM constellations of

DAPSK and ADPSK. Let us recall that DAPSK and ADPSK are conceived according to different

design guidelines. As discussed in Sec. 4.2, the DAPSK constellation is a differential-amplitude

DQAM scheme, which employs the differential encoding process of Eq. (4.1), where all the trans-

mitted symbols includingsn and sn−1 in sn = xn−1sn−1 of Eq. (4.1) are drawn from the same

Star QAM constellation. By constrast, the ADPSK constellation is an absolute-amplitude DQAM

scheme, which employs the differential encoding process ofEq. (4.8), where all the data-carrying
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Figure 5.15: EXIT chart and BER performance comparison between coded DAPSK and

ADPSK, where the Max-Log-MAP algorithm is invoked, while wehaveNw = 4, fd =

0.03 andNR = 2.
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Figure 5.16: EXIT chart and Monte-Carlo simulation based decoding trajectories

of RSC/TC/IRCC-URC coded 16-DAPSK(2,8) employing MSDSD-IAP as well as

its RSC/TC/IRCC-URC coded 16-ADPSK(2,8) based HDD-MSDSD-IAP counterpart,

where the Max-Log-MAP algorithm is invoked, and we haveNw = 4, fd = 0.03 and

NR = 2.
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real-valued multiplications real-valued additions comparisons visited nodes
sortDelta [(4NR + 2)v + 6NR +

BPS− 1]M
(4NRv + 2NR + BPS+
1)M

O(M log M) M

findBest [(4NR + 2)v + 8NR +
5]MA + BPS· M/2 + 2

(4NRv + 4NR + 3)MA +
(BPS+ 1)M/2

5M/4 M/4

findNext ≤ 2BPS− 2 ≤ 2BPS ≤ 2 + M/2 ≤ 1

Table 5.5: Complexity summary of the subfunctions of soft-decision-aided MSDSD con-
ceived for coded DAPSK detection.

symbolsxn−1 are directly mapped to the Star QAM symbols. In order to avoidhaving an un-

constrained transmitted symbol power, the ring amplitude normalization ofsn = 1
|sn−1| xn−1sn−1

seen in Eq. (4.8) results in the absolute-amplitude of|sn| = |xn−1| for ADPSK. Against this

background, the capacity results of Fig. 4.11 suggest that the ADPSK detection associated with

effective decision-feedback may achieve a higher DCMC capacity than the DAPSK detection, but

the BER results of Fig. 4.15 demonstrate that the performance advantage of ADPSK over DAPSK

is negligible in uncoded systems.

However, in coded systems, the EXIT chart comparison of Fig.5.15a clearly indicates that

ADPSK outperforms DAPSK, where MSDSD-IAP and HDD-MSDSD-IAP are employed by coded

DAPSK and ADPSK detection, respectively, according to the discussions of Sec. 5.5.2. Further-

more, the BER performance comparison of Fig. 5.15b explicitly demonstrates that 16-ADPSK(2,8)

outperforms its 16-DAPSK(2,8) counterpart in all three of the RSC coded system, namely in the

context of the TC coded system as well as in the IRCC and URC coded system. In conclusion, we

may argue that ADPSK may be a better choice than DAPSK in codedsystems, according to the

performance comparisons seen in Fig. 5.15. Additionally, it would also be reasonable to choose the

ADPSK’s twisted modulated counterparts - including both TADPSK and TADPSKJM - to be em-

ployed in different coded systems, as discussed during the performance comparisons of Fig. 5.14.

5.5.4 Complexity Results for MSDSD

In this section, we present our complexity results for the soft-decision-aided MSDSD conceived

for coded DQAM. Our complexity comparison amongst the MSDSDof Sec. 5.3.1, the reduced-

complexity MSDSD algorithm of Sec. 5.3.2, the MSDD-IAP of Sec. 5.3.3 and the reduced-complexity

MSDSD-IAP of Sec. 5.3.4 is firstly discussed in the context ofcoded DAPSK detection for demon-

strating the efficiency of the proposed reduced-complexitydesign. Following this, the different

DQAM constellations will be compared from a complexity perspective.

First of all, the complexities of the MSDSD’s subfunctions presented in Sec. 5.3 are summa-

rized in Table 5.5 for coded DAPSK detection, where the different types of calculations are sep-

arately categorized. We note that the DAPSK constellation does not have the amplitude-induced

phase rotation, hence the{ψt}∀t and{Ψt}∀t contributions may be deleted from all DAPSK de-

tectors. Furthermore, the subfunctions of MSDASD and MSDPSD constitute special cases of the

subfunctions of MSDSD, where either theMPPSK phases or the ring amplitudes are fixed. Ta-
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Figure 5.17: Complexity (number of real-valued multiplications) comparison between the

SD algorithm using the subfunction “sortDelta” in Table 5.2and the reduced-complexity

SD algorithm using the subfunctions “findBest” and “findNext” of Tables 5.3 and 5.4. The

results are recorded at SNR=0 dB andfd = 0.03, whereNR = 2 RAs are used.

ble 5.5 demonstrates that the subfunction “sortDelta” of Table 5.2 has to visit all theM candidate

constellation points and has to rank their priorities by invoking a sorting algorithm that generally

involvesO(M log M) comparisons [285,286]. By contrast, the subfunction “findBest” of Table 5.3

visits only the constellation points located in the first quadrant. Then the subfunction “findNext”

of Table 5.4 may be called to further visit a new candidate constellation point by proceeding in

zigzag-order. This is achieved by toggling the polarities of the metric evaluated by “findBest” of

Table 5.3. In this way, the detection complexity of the subfunctions of “findBest” and “findNext”

is lower than that of “sortDelta”, as evidenced by Table 5.3.

The complexity of the SD algorithm of Table 3.3 invoking the subfunction “sortDelta” of

Table 5.2 and that of Table 3.4 relying on the subfunctions “findBest” and “findNext” of Ta-

bles 5.3 and 5.4 are compared in Fig. 5.17 in terms of the totalnumber of real-valued multipli-

cations. First of all, it may be seen in Fig. 5.17 that the complexities of both soft-decision-aided

SD algorithms converge to their lower bounds asIA is increased from 0 to 1, even when the SNR is

as low as 0 dB. Furthermore, Fig. 5.17 explicitly confirms that a significant complexity reduction

is offered by invoking the reduced-complexity SD search strategy specified in Tables 5.3 and 5.4.

The complexity reductions achieved by our proposed MSDSD design are further quantified in

Fig. 5.18 and Fig. 5.19 for coded 16-DAPSK(2,8) and for coded64-DAPSK(4,16) detection, re-

spectively. In more detail, Fig. 5.18a demonstrates that the reduced-complexity MSDSD algorithm

of Sec. 5.3.2 offers a substantial73.8% ∼ 80.7% complexity reduction compared to the conven-

tional MSDSD algorithm of Sec. 5.3.1. In other words, a complexity reduction up a factor five is

achieved without a performance reduction. As a result, the MSDSD complexity becomes as low

as that of the MSDD-IAP. Let us recall that the MSDD-IAP proposed in [160] and summarized
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Figure 5.18: Complexity (number of real-valued multiplications) comparison between

MSDSD of Sec. 5.3.1, reduced-complexity MSDSD of Sec. 5.3.2, MSDD-IAP [160] of

Sec. 5.3.3 and reduced-complexity MSDSD-IAP of Sec. 5.3.4 employed by coded 16-

DAPSK(2,8). The results are recorded at SNR=0 dB andfd = 0.03, whereNR = 2 RAs

are equipped. The Complexity-Reduction Ratios (CRRs) of Eq. (2.109) achieved by the

reduced-complexity design are indicated.
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Figure 5.19: Complexity (number of real-valued multiplications) comparison between

MSDSD of Sec. 5.3.1, reduced-complexity MSDSD of Sec. 5.3.2, MSDD-IAP [160] of

Sec. 5.3.3 and reduced-complexity MSDSD-IAP of Sec. 5.3.4 employed by coded 64-

DAPSK(4,16). The results are recorded at SNR=0 dB andfd = 0.03, whereNR = 2 RAs

are equipped. The Complexity-Reduction Ratios (CRRs) of Eq. (2.109) achieved by the

reduced-complexity design are indicated.
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Figure 5.20: Complexity (number of real-valued multiplications) comparison between

DQAM schemes employing the different MSDSD arrangements ofSec. 5.5.2. The results

are recorded at SNR=0 dB andfd = 0.03, whereNR = 2 RAs are used.

in Sec. 5.3.3 exhibits a low detection complexity in Fig. 5.18a, because it separately carries out

the ring amplitude detection and theMPPSK phase detection by the MSDAD and by MSDPSD

schemes, respectively, where only a single iteration associated with IRAP = 1 is invoked between

the MSDAD and MSDPSD schemes. Furthermore, Fig. 5.18b showsthat the reduced-complexity

MSDSD-IAP of Sec. 5.3.4 achieves an additional65.2% ∼ 80.0% complexity reduction compared

to the conventional MSDD-IAP of Sec. 5.3.3. Again, this corresponds to a complexity reduction

of up to a factor five without a performance erosion. Similarly, it is also evidenced by Fig. 5.19

that for the case of coded 64-DAPSK(4,16) detection,84.6% ∼ 89.2% complexity reduction is

attained by the reduced-complexity MSDSD algorithm, whichexhibits a similar detection com-

plexity as MSDD-IAP, while the reduced-complexity MSDSD-IAP further cuts the complexity of

MSDD-IAP by 57.1% ∼ 92.3%.

Therefore, as expected, the different MSDSD arrangments ofSec. 5.3 impose different levels

of detection complexity. It is demonstrated by Fig. 5.18 andFig. 5.19 that the reduced-complexity

MSDSD-IAP of Sec. 5.3.4 associated withIRAP = 1 may exhibit the lowest detection complexity,

but as discussed in Sec. 5.5.2, only DAPSK and ADPSK benefit from the employment of MSDSD-

IAP and HDD-MSDSD-IAP, respectively. Furthermore, Sec. 5.5.2 also suggests that TDAPSK

and TADPSK benefit from using MSDSD and HDD-MSDSD relying on the reduced-complexity

MSDSD algorithm introduced in Sec. 5.3.2. Moreover, TDAPSKJM and TADPSKJM may bene-

ficially employ MSDSD and HDD-MSDSD according to the conventional MSDSD algorithm of

Sec. 5.3.1, where all the BPS bits that are jointly mapped to the ring amplitude and to theMPPSK

phase have to be detected together in order to avoid any potential performance loss.

Fig. 5.20 provides our complexity comparison of the DQAM schemes which employ the dif-
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Figure 5.21: EXIT charts of DAPSK and ADPSK employing DFDD recorded at

SNR=9 dB andfd = 0.03, where the Max-Log-MAP algorithm is invoked, whileNR = 2

RAs are used.

ferent MSDSD arrangements of Sec. 5.5.2. It can be seen in Fig. 5.20 that the list of coded DQAM

detection complexities ranging from high to low is given by TDAPSKJM, TADPSKJM, TDAPSK,

TADPSK, DAPSK and ADPSK. This implies that the twisited modulations exhibit a higher detec-

tion complexity in coded systems than their original un-twisted counterparts, while joint mapping of

bits to the ring amplitude and phase imposes the highest detection complexity. Moreover, Fig. 5.20

also shows that the HDD-MSDSD arrangements employed by the family of absolute-amplitude

DQAM constellations - including ADPSK, TADPSK and TADPSKJM which rely on the differen-

tial encoding process of Eq. (4.8) - generally exhibit a lower detection complexity than the MSDSD

arrangements employed by their differential-amplitude DQAM counterparts of DAPSK, TDAPSK

and TDAPSKJM, which utilize the differential encoding process of Eq. (4.1).

5.5.5 Performance Results for DFDD

Let us now proceed with the performance characterization ofthe soft-decision-aided DFDD con-

ceived for the coded DQAM detection scheme of Sec. 5.4. Firstof all, Fig. 5.21 portrays the EXIT

charts of coded DAPSK and ADPSK employing DFDD. It can be seenthat, the soft-decision-

aided DFDD of Sec. 5.4 is capable of improving the CDD’s performance for both DAPSK and

ADPSK, but the additional improvements become negligible when the observation window length

is increased beyondNw = 3. We note that the DFDD arrangements of Sec. 5.4 are directly de-

rived from the MSDD/MSDSD decision metric and hence DFDD associated withNw = 2 is also

equivalent to CDD.
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Figure 5.22: EXIT charts of both DAPSK and of ADPSK employingDFDD recorded at

SNR=9 dB andfd = 0.03, where the Max-Log-MAP algorithm is invoked, andNR = 2

RAs are used. The performance of the DFDD (Schoberet al.) conceived for DAPSK

in [154] and the DFDD conceived for ADPSK (Lampeet al.) in [136] are also portrayed

as benchmarks.

Fig. 5.22 presents our EXIT chart comparison between the DFDD arrangements proposed in

[136, 154] and those derived from the optimum MSDD/MSDSD, aspresented in Sec. 5.4. As

expected, since the DFDD arrangements of [136, 154] ignore the ring-amplitude-dependent nature

of the nonconstant channel correlation matrix, a performance loss is imposed both on the coded

DAPSK detection and on the ADPSK counterpart, as demonstrated by Fig. 5.22.

The BER performance of the MSDSD, of the DFDD of Sec. 5.4 and ofthe DFDD of [136,154]

are compared in Fig. 5.23, where they are employed by the TC coded DAPSK and ADPSK systems.

As demonstrated by Fig. 5.23a, in TC coded DAPSK systems, theoptimal MSDSD outperforms

the DFDD presented in Sec. 5.4 by 0.5 dB, and the DFDD (Schoberet al.) of [154] imposes a

further substantial performance loss of 1.3 dB. Similar results can be observed in Fig. 5.23b, where

HDD-MSDSD outperforms DFDD for the case of TC coded ADPSK by amoderate 0.3 dB, while

the DFDD of Sec. 5.4 outperforms the DFDD (Lampe et al.) of [136] by a more substantial 1.4 dB.

5.5.6 Comparison Between Coherent and Noncoherent Detection

When the complex-valued fading envelope exhibits correlation, the Pilot Symbol Assisted Modu-

lation (PSAM) technique proposed by Cavers [1] is capable ofproviding reliable but imperfect CSI

estimation. It was demonstrated by Fig. 4.15 that although PSAM aided coherent QAM detection

suffers from a performance erosion, when the normalized Doppler frequency is increased, uncoded
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Figure 5.23: BER performance comparison of the MSDSD, of theDFDD of Sec. 5.4

and of the DFDD (Schober et al.) of [154], when they are invoked for coded DAPSK

detection in TC coded systems. The DAPSK BERs of Fig. 5.23a may be contrasted to

the BER comparison of the HDD-MSDSD, of the DFDD of Sec. 5.4 and of the DFDD

(Lampe et al.) of [136], when they are employed for coded ADPSK detection in TC coded

systems. We haveNw = 3, fd = 0.03 andNR = 2.

DQAM detection employing HDD-MSDSD is still outperformed by its coherent counterpart.

As discussed in Sec. 3.2.5, Subset MSDSD is capable of improving the MSDSD performance

by a simple adjustment at the cost of an incremental complexity increase. More explicitly, as por-

trayed by Fig. 3.1, Subset MSDSD increases the number of overlapping samples of the adjacent

observation windows toNOL = 3, so that the less reliably detected data-carrying symbols lo-

cated at the edge of each observation window may be discarded. Furthermore, it was suggested

by Fig. 5.16 that ADPSK employing HDD-MSDSD-IAP may outperform its DAPSK counterpart,

while Fig. 5.20 explicitly demonstrates that the coded ADPSK detection complexity is considered

to be the lowest among that of the DQAM schemes. Therefore, inthis section, ADPSK employing

HDD-Subset MSDSD-IAP associated withNw = 4 and IRAP = 1 is employed as our representa-

tive noncoherent scheme in coded systems.

Fig. 5.24 compares PSAM aided coherent Square 16QAM detection and HDD-Subset MSDSD-

IAP aided noncoherent 16-ADPSK(2,8) detection using EXIT charts. When the fading channels

fluctuate slowly, as specified byfd = 0.001 in Fig. 5.24a, the performance difference between

coherent detectors either relying on perfect CSI or employing PSAM is small, and coherent Square

16QAM detection clearly outperforms noncoherent 16-ADPSK(2,8) detection in this scenario.

However, as the normalized Doppler frequency increases tofd = 0.03 in Fig. 5.24b, the per-

formance gap between perfect CSI aided coherent detection and PSAM aided coherent detection

becomes substantial, while the area under the EXIT curve of the ADPSK detection is considerably

bigger than that of PSAM aided coherent detection, which implies that the noncoherent scheme
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Figure 5.24: EXIT charts of PSAM aided Square 16QAM in comparison to 16-

ADPSK(2,8) employing HDD-Subset MSDSD-IAP recorded atEb/N0 = 2 dB, where

the Max-Log-MAP algorithm is invoked.

may outperform its coherent counterpart in coded systems, when turbo detection is invoked for

exchanging extrinsic information between the channel decoder and the coherent or noncoherent

demodulator.

Let us further examine the detection capabilities of the coherent and noncoherent detectors by

carrying out the LLR validity test in Fig. 5.25. It can be seenin Fig. 5.25a that both the PSAM aided

coherent 16QAM detector and the HDD-Subset MSDSD-IAP aidednoncoherent 16-ADPSK(2,8)

detector are capable of producing reliable extrinsic LLRs,provided that the fading channels fluc-

tuate slowly. However, Fig. 5.25b shows that the extrinsic LLRs produced by the PSAM aided

coherent 16QAM detector suffer from a severe deviation fromthe LLR definition of Eq. (2.66),

when the normalized Doppler frequency is increased tofd = 0.03. This is because the coherent

detectors assume having perfect knowledge of the CSI, whichis especially unrealistic when the

fading channel fluctuates rapidly. This problem substantially affects the attainable performance of

coherent detectors in coded systems, owing to the potentialrisk that the channel decoder may be

fed with unreliable LLRs.

Finally, our BER performance comparison between the RSC/TC/IRCC-URC coded PSAM

aided Square 16QAM and its 16-ADPSK(2,8) counterpart employing HDD-Subset MSDSD-IAP is

portrayed in Fig. 5.26. As expected, when we havefd = 0.001, PSAM aided coherent 16QAM out-

performs HDD-Subset MSDSD-IAP assisted 16-ADPSK(2,8) in the RSC coded system, TC coded

system as well as in the IRCC and URC coded system, as demonstrated by Fig. 5.26a. However,

observe in the figure that when the fading channels fluctuate rapidly, as specified byfd = 0.03,

16-ADPSK(2,8) exhibits an impressive performance advantage over coherently detected Square

16QAM. In summary, we may conclude that the soft-decision-aided MSDSD is capable of produc-
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Figure 5.25: LLR validity test of PSAM aided Square 16QAM in comparison to 16-

ADPSK(2,8) employing HDD-Subset MSDSD-IAP recorded atEb/N0 = 2 dB andIA =

0, where the Max-Log-MAP algorithm is invoked.
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Figure 5.26: BER performance comparison between RSC/TC/IRCC-URC coded PSAM

aided Square 16QAM and its 16-ADPSK(2,8) counterpart employing HDD-Subset

MSDSD-IAP, where the Max-Log-MAP algorithm is invoked.
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Noncoherent Detectors

MSDD

SDD−MSDD HDD−MSDD

CDD

HDD−CDDSDD−CDD HDD−MSDSD

HDD−MSDSD−IAP

Figure 5.27: Summary of soft-decision-aided noncoherent detectors conceived for coded

DQAM detection.

ing reliable extrinsic LLRs at any normalized Doppler frequencies and it exhibits a performance

advantage over the coherent detector relying on realistic imperfect CSI, when the fading channels

fluctuate rapidly.

5.6 Chapter Conclusions

In this chapter, we have developed the family of soft-decision-aided noncoherent detectors con-

ceived for coded DQAM detection, which are briefly summarized in Fig. 5.27. Generally, the

typical types of noncoherent detectors - including CDD, MSDD, MSDSD and DFDD - may be

invoked for coded DQAM detection. The classic MSDD proposedin [114] was introduced in

Sec. 5.2, which may be implemented in the forms of SDD-MSDD and HDD-MSDD for coded

DQAM detection. The soft-decision-aided CDD arrangements- including CDD, SDD-CDD and

HDD-CDD - may be considered to be equivalent to the corresponding MSDD arrangements asso-

ciated withNw = 2, as demonstrated in Sec. 5.2. The soft-decision-aided MSDSD conceived for

coded DQAM detection was proposed in Sec. 5.3, where sphere decoding may be invoked for both

the ring-amplitude detection and for theMPPSK phase detection. The optimum MSDD detection

capability may be retained by MSDSD, provided that the initial SD’s radius is set to be sufficiently

large, despite its reduced complexity. Furthermore, the soft-decision-aided DFDD conceived for

coded DQAM was detailed in Sec. 5.4, and this solution was shown to be able to outperform the

suboptimal DFDD solutions in [136,153,154], which assume aconstant channel correlation matrix

C, which is independent of the variable ring-amplitudes of transmitted DQAM symbols.

We have dedicated substantial efforts to streamlining the MSDSD algorithm in Sec. 5.3 in order

to maintain the MSDSD’s performance at the lowest possible detection complexity. More explicitly,

a reduced-complexity design was proposed in Sec. 3.3.3 for soft-decision-aided MSDSD conceived

for coded DPSK, which was invoked for coded DQAM, where the total number of constellation

points visited by the SD was reduced by exploring the symmetry provided by classic Gray labelling.

Furthermore, we have generalized the MSDD-IAP proposed in [160] to all DQAM constellations,

which map their bits to the data-carrying ring amplitude index and to the data-carryingMPPSK
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DAPSK CDD MSDD MSDSD-IAP DFDD
ADPSK HDD-CDD HDD-MSDD HDD-MSDSD-IAP DFDD
TDAPSK CDD MSDD MSDSD DFDD
TADPSK HDD-CDD HDD-MSDD HDD-MSDSD DFDD

Table 5.6: Summary of soft-decision-aided noncoherent detectors that are suggested for
different DQAM constellations.

RSC-DQAM ADPSK
Better performance: TC-DQAM ADPSK

IRCC-URC-DQAM ADPSK
Lower detection complexity: ADPSK

Table 5.7: Summary of comparisons between coded DAPSK detection employing
MSDSD-IAP and coded ADPSK detection employing HDD-MSDSD-IAP.

phase index separately. Since MSDD-IAP is capable of approaching the near-optimum MSDD

performance for both coded DAPSK detection and coded ADPSK detection, we further reduced its

detection complexity by invoking sphere decoding for ring amplitude detection and the reduced-

complexity design of Sec. 3.3.3 forMPPSK phase detection.

In order to simplify our discussions, in Table 5.6, we provide a summary of the set of soft-

decision-aided noncoherent detectors recommended for different DQAM constellations, which

emerged from our performance discussions of Sec. 5.5. In general, hard-decision-directed ar-

rangements - including HDD-CDD, HDD-MSDD and HDD-MSDSD - can only be applied to

ADPSK and TADPSK/TADPSKJM in coded systems. They exhibit a lower detection complexity

than their corresponding original counterparts, including CDD, MSDD and MSDSD that are ap-

plied to DAPSK and TDAPSK/TDAPSKJM. Furthermore, MSDSD-IAP and HDD-MSDSD-IAP

are recommended for coded DAPSK detection and coded ADPSK detection, respectively, which

subtantially reduce the complexity of their original MSDSDand HDD-MSDSD.

The performance results of MSDSD are summarized in Table 5.7, where we observe that the

RSC coded-, TC coded- as well as IRCC-and-URC coded ADPSK systems employing HDD-

MSDSD-IAP detection is capable of achieving a better performance at a lower detection complexity

than coded DAPSK detection employing MSDSD-IAP. Furthermore, as summarized in Table 5.7,

TADPSKJM, ADPSK and TADPSK constitute a better choice for RSC coded-,TC coded- as well as

IRCC-and-URC coded systems, respectively, in terms of their BER performance. Amongst these

the coded ADPSK detector imposes the lowest detection complexity. As discussed in Sec. 4.2,

DAPSK and ADPSK are conceived according to different designguidelines, where DAPSK is a

differential-amplitude DQAM scheme that invokes the differential encoding process of Eq. (4.1),

while ADPSK is an absolute-amplitude DQAM scheme that employs the differential encoding pro-

cess of Eq. (4.8). According to the performance results summarized in Tables 5.6-5.8, one may

argue that ADPSK and its twisted constellations may be preferred over DAPSK. This discussion

is beneficial, because the differential DQAM constellationusing an absolute amplitude, such as

ADPSK is also often applied to Differential MIMO schemes using QAM [139–141], where it is
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RSC-DQAM TADPSKJM

Better performance: TC-DQAM ADPSK
IRCC-URC-DQAM TADPSK

Lower detection complexity: ADPSK

Table 5.8: Summary of comparisons between coded ADPSK detection employing HDD-
MSDSD-IAP as well as coded TADPSK/TADPSKJM detection employing HDD-MSDSD.

more important to use the classic QAM constellation for the data-carrying symbols. The hard-

decision-aided noncoherent detectors discussed in Chapter 4 and the soft-decision-aided nonco-

herent detectors explored in this chapter will be helpful for developing noncoherent receivers for

Differential MIMO schemes, which is discussed in our futurework of Sec. 8.2.6.

In the previous chapters, we have focused our attention on the reduced-complexity design of

basic modulations, including both coherent and noncoherent schemes. As a further step, in the

popular MIMO systems, where several symbols are transmitted together, the challenge of retaining

the optimum performance at a low detection complexity becomes more difficult to tackle albeit it

is of greater significance. We will carry on by investigatingthis topic in the following chapters.



Chapter6
Reduced-Complexity MIMO Design –

Part I: Uncoded Systems

6.1 Introduction

Multiple-Input Multiple-Output (MIMO) wireless communication systems, whose transmitter and

receiver are both equipped with multiple antenna elements as portrayed by Fig. 6.1, provide an in-

creased capacity [165,166,291] and/or improved transmission reliability [177,178,292]. It is widely

recognized that the classic V-BLAST system [162] aims for anincreased data rate by simultane-

ously transmitting independent data streams, while the family of Space-Time Block Code (STBC)

[177, 178, 292] aims to achieve a diversity gain by transmitting redundant information so that the

receiver may obtain several replicas of the faded data-carrying signals. Owing to the fact that V-

BLAST cannot benefit from the STBC’s transmit diversity gain, which combats the detrimental

effects of fading channels, while that STBC is incapable of achieving the V-BLAST’s full multi-

plexing gain because of the STBC’s repetitive transmission, striking a compelling tradeoff between

the multiplexing and diversity gain has inspired numerous research efforts [8].

In order to better understand this tradeoff, let us firstly introduce the two key mathematical

measures used in MIMO system design, which are the achievable capacity and the error probability.

As portrayed by Fig. 6.1, a typical MIMO system may employNT Transmit Antenna (TA) and

NR Receive Antenna (RA). Moreover, a transmission block of MIMO signals may be constituted

by a total number ofNQ modulatedMPSK/QAM symbols, and this transmission block may be

transmitted overNP symbol periods. Therefore, in the presence of the ubiquitous multipath fading

as well as the Gaussian-distributed noise, the signal received by theNR RAs overNP Time Slot (TS)

at the receiver may be modelled as:

Y = SH + V, (6.1)

where the(NP × NT)-element matrixS and the(NP × NR)-element matrixY represent the input

and output signals of the MIMO channels. Furthermore, the(NT × NR)-elementH in Eq. (6.1)
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MIMO

Transmitter Receiver

MIMO

Y = SH + VS

H

Figure 6.1: Schematic of MIMO transceiver.

MIMO Scheme Transmitted Matrix Parameters
V-BLAST [162] S =

[
s1, · · · , sNT

]
NT > 1 NR ≥ 1 NP = 1 NQ = NT R = NTBPS

G2-STBC [177] S =

[
s1 s2

−s∗2 s∗1

]
NT = 2 NR ≥ 1 NP = 2 NQ = 2 R = BPS

LDC [188] S = ∑
NQ

q=1 Aqsq NT > 1 NR ≥ 1 NP > 1 NQ ≥ NT NP R =
NQBPS

NP

SM [197] S = [0 · · · 0︸ ︷︷ ︸
v−1

, sm, 0 · · · 0︸ ︷︷ ︸
NT−v

] NT > 1 NR ≥ 1 NP = 1 NQ = 1 R = log2 NT + BPS

STSK [216] S = Aqsq NT > 1 NR ≥ 1 NP > 1 NQ ≥ 1 R =
log2 NQ+BPS

NP

Table 6.1: A brief summary of the transmitted matrices and parameters of classic MIMO
representatives.

models the MIMO’s Rayleigh fading channels, which is assumed to be time-invariant overNP

symbol periods. The(NP × NR)-element AWGN matrixV in Eq. (6.1) models the independent

and identically distributed (i.i.d.) zero-mean Gaussian random variables with a common complex

variance ofN0, whose PDF is given by:

p(V) = p(Y|Si) =
1

(πN0)NRNP
exp(−‖Y − SiH‖2

N0
), (6.2)

where there are a total ofI combinations{Si}I−1
i=0 for the MIMO transmission matrixS in Eq. (6.1).

The MIMO transmission matrices and parameters are briefly summarized in Table 6.1. The details

of these classic MIMO schemes will be introduced later.

The CCMC capacity of the MIMO channels is given by maximizingthe mutual information

between the input signal and the output signal per channel use as [17]:

CCCMC(SNR) = max
p(S)

1

NP
I(S; Y)

= max
p(S)

1

NP
H(Y)− 1

NP
H(Y|S).

(6.3)

Based on the Gaussian PDFp(V) of Eq. (6.2), we haveH(Y|S) = H(V) = H [rvec(V)] =

log2 det [πeN0INP NR
], where the operation rvec(·) forms a row vector by concatenating the rows

in a matrix one-by-one. For example, we have rvec(V) = [V1,− · · · VNP,−], where{Vt,−}NP
t=1

refers to thet-th row in the AWGN matrixV. Furthermore, in order to maximize the entropyH(Y)

in Eq. (6.3), both the input signal and the output signal havebe Gaussian distributed. The received

signal matrixY of Eq. (6.1) may also be vectorized as rvec(Y) = rvec(S) (INP
⊗ H) + rvec(V),

which results inH(Y) = H [rvec(Y)] = log2 det
{

πe
[

1
NT

(
INP

⊗ HH
)
(INP

⊗ H) + N0INP NR

]}
.
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We note that the autocorrelation of the input signals is given byE
[
rvec(S)Hrvec(S)

]
= 1

NT
INPNT

,

which complies with the transmit power constraint ofE
{

tr
[
rvec(S)Hrvec(S)

]}
= NP. There-

fore, the ergodic CCMC capacity of Eq. (6.3) that is averagedover all channel realizations is given

by:

CCCMC(SNR) =
1

NP
E

{
log2 det(INP NR

+
η

NT

[
INP

⊗ (HHH)
]}

= E

[
log2 det(INR

+
η

NT
HHH)

]
,

(6.4)

whereSNR = 10 log10 η is the normalized signal-to-noise ratioη = 1
N0

represented on the loga-

rithmic decibel scale. When the number of TAs grows towards infinity, the mutual information of

Eq. (6.4) may be further extended as [165,166]:

lim
NT→∞

CCCMC(SNR) = log2 det(INR
+ ηINR

)

= Nmin log2(1 + η),

(6.5)

where we havelimNT→∞ E
(

1
NT

HHH

)
= INR

, while Nmin = min(NT, NR) represents the min-

imum of the number of the TAs and RAs. It can be readily seen in Eq. (6.5) that as the number

of antennas grows, the MIMO capacity grows linearly withmin(NT, NR). Let us recall that the

CCMC capacity of SIMO systems in Eq. (2.54) grows logarithmically with NR. Therefore, com-

pared to SIMO systems and also to SISO systems, the MIMO systems are capable of providing a

higher data rate without requiring more signal bandwidth. We will demonstrate in Sec. 6.3.1 that

the STBCs based on orthogonal design [177,178,293] and those relying on the so-called Amicable

orthogonal design principle [181–183] cannot achieve the full MIMO capacity of Eq. (6.4), because

their linear receivers operate based on the decoupled individual fading channels instead of relying

on the original MIMO fading channelsH exhibiting cross-coupling.

When the supposedly continuous Gaussian-distributed input signal is discretized for transmit-

ting practicalMPSK/QAM symbols, the CCMC capacity of Eq. (6.3) has to be replaced by the

more realistic measure of DCMC capacity of [4,8,244]:

CDCMC(SNR) = max
{p(Si)}I−1

i=0

1

NP

I−1

∑
i=0

∫
p(Si, Y) log2

p(Si, Y)

p(Si)p(Y)
dY

= max
{p(Si)}I−1

i=0

1

NP

I−1

∑
i=0

∫
p(Y|Si)p(Si) log2

p(Y|Si)

∑
I−1
ī=0

p(Y|Sī)p(Sī)
dY.

(6.6)

The DCMC capacity of Eq. (6.6) is maximized, when the MIMO transmission matrix candidates

are equiprobable, i.e. we have{p(Si) = 1
I }I−1

i=0 . Based on the PDFp(Y|Si) given by Eq. (6.2), the

DCMC capacity of Eq. (6.6) may be further simplified as:

CDCMC(SNR) =
1

I · NP

I−1

∑
i=0

E

{
log2

[
I · p(Y|Si)

∑
I−1
ī=0

p(Y|Sī)

]}

= R − 1

I · NP

I−1

∑
i=0

E

{
log2

[
I−1

∑
ī=0

exp(
−‖(Si − Sī)H + V‖2 + ‖V‖2

N0
)

]}
,

(6.7)
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where the MIMO throughput is given byR =
log2 I

NP
, which is expected to be achieved by the DCMC

capacity ofCDCMC(SNR) in the high-SNR region.

In particular, the STBC throughput is given byR =
NQBPS

NP
. It was demonstrated in [178] that

Alamouti’s G2-STBC associated withNT = NP = NQ = 2 is the only full unity-rate orthogonal

STBC employing a complex-valued signal constellation, where the STBC’s normalized throughput

is defined asR = NQ/NP. WhenNT > 2 is used for orthogonal STBC schemes, we always have

R < 1 for complex-valued signalling. Hence the orthogonal STBCsdo not have the advantage of

a higher data rate than SISO or SIMO schemes, albeit they havea diversity gain. By contrast, the

V-BLAST’s maximum achievable rate of Eq. (6.7) is given byR = NTBPS, which isNT times

higher than that of the SIMO of Eq. (2.57). Again, the V-BLAST’s feature of maximized MIMO

throughput is often interpreted asmultiplexing gain.

Nonetheless, a higher attainable capacity cannot guarantee a lower error probability. Let us

now consider the average BER of a MIMO scheme, which is given by [223,294,295]:

Pe,bit = E

{
I−1

∑
i=0

I−1

∑
ī=0,ī 6=i

dH(i, ī)

I log2 I
p(Ŝ = Sī|Si)

}
, (6.8)

where dH(i, ī) refers to the Hamming distance between the bit-mappings ofSi and Sī, which

may be directly obtained by conveying the indicesi and ī back to log2 I bits. Furthermore,

the average Pairwise Error Probability (PEP)E
{

p(Si → Sī)
}

, which is the average probability

E
{

p(Ŝ = Sī|Si)
}

of choosingSī whenSi was transmitted, may be expressed as [3,4,296]:

E
{

p(Si → Sī)
}

= E
{

p
(
‖Y − SīH‖2 < ‖V‖2

)}

≤ E



Q




√∥∥(Si − Sī)H
∥∥2

2N0






 ,

(6.9)

whereQ(·) represents the integral form of the Q-function. In order to find the ingredients that

fundamentally determine the error probability, the average PEP of Eq. (6.9) may be further extended

as [297–299]:

E
{

p(Si → Sī)
}
≤ E





exp


−

∥∥∥(Si − Sī)H

∥∥∥
2

4N0








(6.10a)

≤
[

1

det (INT
+ 0.25η∆)

]NR

(6.10b)

≤ (0.25η)−rank(∆)·NR

[
rank(∆)

∏
k=1

λk(∆)

]−NR

, (6.10c)

where we have∆ = (Si − Sī)H(Si − Sī). In more detail, firstly, Eq. (6.10a) is obtained by

applying the Chernoff bound to Eq. (6.9). Secondly, Eq. (6.10b) may be obtained by transform-

ing
∥∥∥(Si − Sī)H

∥∥∥
2

=
∥∥∥
[

INR
⊗ (Si − Sī)

]
vec(H)

∥∥∥
2

and taking the expectation over the fading

channel matrixH. We note that⊗ denotes the Kronecker product, while the operation vec(·)
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forms a column vector by stacking the columns in the matrix one-by-one. For example, we

have vec(H) =
[
HT

−,1 · · · HT
−,NR

]T
, where{H−,v}NR

v=1 refers to thev-th column inH. Lastly,

Eq. (6.10c) is approximated in the high-SNR region ofη ≫ 1 by det(∆) = ∏
rank(∆)
k=1 λk(∆), where

{λk(∆)} refers to thek-th eigenvalue of matrix∆, while rank(∆) denotes the rank of matrix∆.

As discussed in [297–299], Eq. (6.10c) suggests that there are two major factors that may

minimize the error probability in the high-SNR region, which are often referred to as the rank cri-

terion and the determinant criterion in the literature of analysing the MIMO systems’ performance.

In more detail, firstly, it may be observed in Eq. (6.10c) thatthe first term of(0.25η)−rank(∆)·NR

decreases as the SNR increases.Furthermore, the rate of decline for the error probability, which

may be interpreted as diversity order, is explicitly determined by rank(∆) · NR. Therefore, this

rank criterion indicates that the full MIMO diversity - which is the parlance used for represent-

ing the maximum attainable diversity order - is given bymin(NT, NP) · NR, where the full rank

of ∆ is the minimum betweenNT and NP. Furthermore, when∆ achieves full rank, the second

term
[
∏

rank(∆)
k=1 λk(∆)

]NR

in Eq. (6.10c) is a function of the determinant of∆. As a result, this

so-called determinant criterion indicates that a higher coding gain is achieved by maximizing the

minimum determinantdet(∆) over all legitimate combinations ofSi andSī. When Hadamard’s

inequality [281] is applied to the determinant term of Eq. (6.10c), it can be seen that the optimal

condition is that of∆ being unitary, which may be guaranteed by both the classic STBCs based

on orthogonal design [177, 178, 293] and the STBCs relying onthe Amicable orthogonal design

criterion [181–183]. By contrast, it is plausible that the classic V-BLAST associated withNP = 1

does not minimize the error probability, which is due to the fact that V-BLAST has neither transmit

diversity - since we havemin(NT , NP) = 1 - nor has it unitary transmission matrices. The STBC’s

feature of minimizing the PEP in the high-SNR region according to the rank and determinant crite-

ria is often referred to asdiversity gain.

The tradeoff between the diversity gainD and the multiplexing gainR =
NQ

NP
is quantified

as D = (NT − R)(NR − R) in [185], which portrays the diversity and multiplexing capability

as rivals in MIMO systems design. As a breakthrough, the development of Linear Dispersion

Code (LDC) [188, 189, 300] suceeded in perfectly accommodating this tradeoff. In more details,

it was recognized in [184, 189, 301] that the STBC’s orthogonal design prevents it from achieving

the full MIMO capacity, albeit it facilitates an appealing simple separate detection of the MIMO

streams. Therefore, without being constrained by the orthogonal design, the LDC of [189] proposed

to randomly generate the so-called dispersion matrices{Aq}NQ

q=1 and{Bq}NQ

q=1, which disperse a

total number ofNQ modulatedMPSK/QAM symbols{sq}NQ

q=1 across both spatial domain and the

time domain of the transmission matrixS = ∑
NQ

q=1

[
Aqℜ(sq) + jBqℑ(sq)

]
. The set of dispersion

matrices that results in the highest CCMC capacity may be selected by a random search. The LDC

of [189] was shown to have a higher CCMC capacity than orthogonal STBCs, but the full MIMO

capacity was still not achieved. In order to solve this problem, the LDC transmission model was

further simplifed in [188], which is summarized in Table 6.1, and it was shown in [188] that the full

MIMO capacity may be achieved by this LDC design, provided that the parameters satisfyNQ ≥
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NT NP. Furthermore, as demonstrated in [188], the dispersion matrices{Aq}NQ

q=1 may be randomly

generated, and the specific set, which results in the lowest error probability that requires full rank

and the lowest determinant for∆ may be selected from the random search. Consequently, the LDC

may benefit from both V-BLAST’s maximized multiplexing gainof R ≥ NT and from STBC’s full

diversity gain ofD = min(NT, NP) · NR. The best LDCs generated from a sufficiently exhaustive

random search are capable of outperforming both V-BLAST andSTBC in MIMO systems.

There is an other arguably more important problem in MIMO system design, which is the

tradeoff between performance and complexity. This tradeoff is also pertinent in the context of

V-BLAST receiver design. On the one hand, it is well known that ML detector and Sphere De-

coder (SD) [10–12, 173–176] are capable of achieving the optimum V-BLAST performance, but

their detection complexity may be deemed excessively high.On the other hand, linear V-BLAST

receivers [13,14,14–16] such as the classic MMSE receiver may separate the multiple data streams

so that the family of low-complexity linearMPSK/QAM demodulators may be directly invoked for

decoding each data stream, However, encountering a performance penalty is inevitable, as the inter-

ference between these data streams cannot be completely eliminated. This tradeoff also exists for

the family of LDCs. We will demonstrate in Sec. 6.3.1 that allorthogonal STBCs may effectively

separate the parallel data streams at the receiver without encountering the V-BLAST’s inherent in-

terference problem. However, since LDCs were proposed for overcoming the STBC’s limitations

of low data rate and high transmission delay, the STBC’s orthogonality requirement is abandoned

in LDC design. Hence the LDC receiver becomes more complex than that of the STBC’s. In fact,

the LDC may employ all V-BLAST detectors with the aid of low-complexity signal processing at

the receiver, and as a result, the above-mentioned tradeoffbetween performance and complexity

emerges once again.

It is worth noting that the family of suboptimal detectors designed for V-BLAST and LDC

not only suffer from a performance penalty in uncoded systems, but they may also impose further

constraints on the turbo detection of channel coded systems. As demonstrated in Chapter 2, the

suboptimal detectors tend to produce unreliable soft output LLRs that fail to accurately represent

the true probabilities and these flawed LLRs cannot be readily corrected by the channel decoder.

In order to avoid this situation, numerous researchers designed MIMO schemes that may achieve

the optimal ML detection capability at a reduced receiver complexity. For this reason, Spatial

Modulation (SM) was proposed in [195–197], where a single one out of a total number ofNT

TAs is activated to transmit a single modulatedMPSK/QAM symbol, as presented in Table 6.1. A

low-complexity SM receiver is capable of separately detecting the BPST = log2 NT bits used for

TA activation and the BPS= log2 M bits for classic modulation, so that its detection complexity

order may be reduced from the conventional MIMO’sO(I) to O(NT + M). Furthermore, in order

to benefit from a diversity gain, Space-Time Shift Keying (STSK) was proposed in [216], where a

single one out of a total number ofNQ LDC dispersion matrices is activated for dispersing a single

MPSK/QAM symbol, which is also shown in Table 6.1. It was demonstrated in [216] that the

STSK receiver may employ SM detectors with the aid of low-complexity signal processing. The
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transmit diversity design of SM can be found in [218–221], and they all can be categorized under

the framework of Generalized Space-Time Shift Keying (GSTSK), as summarized in [217,302].

In summary, against this background, we aim to offer the following novel discussions and

contributions in this chapter:

1. The tradeoff between the attainable diversity and multiplexing gain is discussed in the context

of each MIMO scheme introduced in this chapter. The mathematical measures of capacity

and error probability are used in our analysis for quantifying this tradeoff. We demonstrate

that although this tradeoff that famously manifests itselfin the V-BLAST versus STBC con-

text may be completely resolved by the LDC design, but it still exists for the family of

reduced-complexity MIMO systems of SM and STSK, which leaves room for further inves-

tigations.

2. The importance of the tradeoff between performance and complexity is stressed in the context

of MIMO systems design throughout this chapter. This tradeoff exists both for the classic V-

BLAST and LDC as well as for the new SM and STSK. We demonstratein this chapter that

the performance differences between the MIMO schemes including V-BLAST, STBC, LDC,

SM and STSK may vary depending on the different MIMO system setups, since the diversity-

oriented MIMO schemes may loses their performance advantage, when an increased number

of time slotsNP is required for the MIMO systems equipped with a high number of TAs NT.

But we will also demonstrate in the next chapter that these different MIMO schemes may

perform similarly with the aid of channel coding, provided that they rely on their optimum

detectors. Against this background, the design of MIMO transceivers that may achieve the

optimum detection capability at a substantially reduced detection complexity is critically

important for high-rate communication systems.

3. Altough the development of SM and STSK is motivated by their potentially low detection

complexity, it was demonstrated in [198] that completely independently detecting the TA

activation index and the modulatedMPSK/QAM symbol imposes a performance loss to the

SM receiver. In order to mitigate this problem, in this chapter, we summarize the reduced-

complexity hard-decision-aided SM detector design based on our previous publications of

[141, 202, 203, 234], where the optimal SM performance is retained by taking into account

the correlation between the TA activation index and theMPSK/QAM classic modulated

symbol index. A range of other optimal and suboptimal SM detectors exist in the literature

[141,204–213], which are also summarized for the sake of comparison.

The rest of this chapter is organized as follows. The classicV-BLAST transceiver design is

introduced in Sec. 6.2. Both the STBC and LDC schemes involvesignal processing in both the

spatial domain and the time domain, hence they are referred to as Space-Time Modulation (STM)

in Sec. 6.3. The newly developed SM and STSK arrangements arepresented in Sec. 6.4. Our

performance results derived for uncoded MIMO systems are summarized in Sec. 6.5, while our

chapter conclusions are offered in Sec. 6.6.
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Figure 6.2: Schematic of V-BLAST transmitter.

The following notations are used throughout this chapter. The acronyms V-BLAST(NT,NR)-

MPSK/QAM as well as SM(NT,NR)-MPSK/QAM refer to the V-BLAST scheme and to the

SM scheme equipped withNT TAs and NR RAs. Furthermore, the LDC and STSK schemes

are denoted by the acronyms of LDC(NT,NR,NP,NQ)-MPSK/QAM and STSK(NT,NR,NP,NQ)-

MPSK/QAM, respectively, whereNP andNQ represent the number of symbol periods per trans-

mission block and the total number of dispersion matrices employed, respectively.

6.2 Uncoded V-BLAST

The classic V-BLAST MIMO, which multiplexesNT data streams with the aid ofNT TAs, maxi-

mizes the MIMO capacity and throughput. This multiplexing gain of V-BLAST may be quantified

in terms of the CCMC capacity of Eq. (6.4) and the DCMC capacity of Eq. (6.7), as analysed pre-

viously in Sec. 6.1. The challenge in V-BLAST system design is to deal with the Inter-Antenna

Interference (IAI) at an affordable signal processing complexity, which clearly strikes a tradeoff

between performance and complexity. In this section, first of all, the V-BLAST transceiver is in-

troduced in Sec. 6.2.1, where the ML detection is shown to be capable of achieving the optimum

performance at the great expense of a potentially excessivedetection complexity. In order to miti-

gate this complexity, the SDs conceived for V-BLAST employing PSK and QAM are presented in

Sec. 6.2.2 and Sec. 6.2.3, respectively. We proceed in Sec. 6.2.4 to demonstrate that low-complexity

linear MPSK/QAM demodulators may be invoked by the V-BLAST receiverafter the linear filters

separate the multiplexed data streams. However, encountering a performance penalty is inevitable

for these suboptimal linear V-BLAST receivers.

6.2.1 V-BLAST Transceiver

The schematic of a classic V-BLAST transmitter is portrayedby Fig. 6.2, where a total ofNQ = NT

modulated symbols are transmitted by theNT TAs duringNP = 1 symbol periods. Therefore, the
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MPSK SquareMQAM StarMQAM

sm = exp(j 2π
M m̌) sm = smRe

Re + jsmIm
Im sm = ΓaΩp = α ǎ√

β
exp(j 2π

MP
p̌)

Modulation = MRe−2m̌Re−1√
β

+ j MIm−2m̌Im−1√
β

sm = M(m) m is Gray codedm̌ mRe andmIm are Gray codeďmRe andm̌Im a andp are Gray codeďa and p̌
m = mRe+ MRemIm m = a + MA p

sm̂ = exp(j 2π
M m̌) sm̂ = MRe−2m̌Re−1√

β
+ j MIm−2m̌Im−1√

β
sm̂ = α ǎ√

β
exp(j 2π

MP
p̌)

Demodulation m̌ = ⌊ M
2π ∠z⌉ m̌Re = max [min (⌊gRe⌉, MRe− 1) , 0] p̌ = ⌊ MP

2π ∠z⌉
m̂ =
M−1(z)

gRe =
[
MRe−

√
βℜ(z) − 1

]
/2 ǎ = arg min∀ǎ {( α ǎ√

β
)2

m̌Im = max [min (⌊gIm⌉, MIm − 1) , 0] −( 2α ǎ√
β
)ℜ
[
exp(−j 2π

MP
p̌)z
]
}

gIm =
[
MIm −

√
βℑ(z) − 1

]
/2

Table 6.2: Summary ofMPSK/QAM modulation and demodulation. The source infor-
mation is carried by the classic modulated symbol indexm = bin2dec(b1, · · · , bBPS).
The demodulation is operated based on a decision variable ofz, i.e. we havesm̂ =
min∀m |z − sm|2. More details may be found in Chapter 2.

(1 × NT)-element V-BLAST transmission matrix is given by:

S =
[

s1, · · · , sNT

]

=
[

1√
NT

sm1 , · · · , 1√
NT

smNT

]
,

(6.11)

where theMPSK/QAM symbols are separately modulated as{smv = M(mv)}NT
v=1. For the sake

of convenience, theMPSK/QAM modulation and demodulation introduced in Chapter2 are sum-

marized in Table 6.2, and this table will be often utilized throughout this chapter.

Upon obtaining the(1 × NR)-element received signal matrixY of Eq. (6.1), the Maximum-

Likelihood (ML) detector may opt for maximizing the following a posterioriprobability over the

entire set ofI = MNT candidates{Si}I−1
i=0 for the transmit vectorS in Eq. (6.1) as:

p(Si|Y) =
p(Y|Si)p(Si)

∑∀Si p(Y|Si)p(Si)
, (6.12)

where thea priori probability{p(Si)}∀Si may be assumed to be a constant of1
MNT

for the equiprob-

able source symbols of an uncoded system. Furthermore, the conditional probability{p(Y|Si)}∀Si

in Eq. (6.12) is given by the PDF of the(1 × NR)-element AWGN matrixV of Eq. (6.1), which

was expressed by Eq. (6.2). Therefore, the ML aided V-BLAST detection may be expressed as:

Ŝ = arg min
∀Si

‖Y − SiH‖2. (6.13)

As a result, the V-BLAST scheme may achieve a high data rate ofR = NT log2 M = NTBPS at a

potentially excessive detection complexity, where the ML detection complexity order of Eq. (6.13)

is given byO(MNT).

The reason for this high detection complexity is illustrated in Fig. 6.3. Although theNT data

streams defined in Eq. (6.11) are separately modulated and transmitted, they experience fading

channels and arrive at the RAs simultaneously as expressed by Eq. (6.1). Therefore, for each

individual data stream, all the other data streams impose interference, and hence the ML aided
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]

H
S = [s1, · · · , ŝv, · · · , ŝNT
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Figure 6.3: A simple demonstration of V-BLAST detection.

V-BLAST scheme of Eq. (6.13) has to detect the transmit vector S as a whole and consider all its

possible combinations by exhaustive search, as portrayed by Fig. 6.3-a).

In order to mitigate this complexity problem, the detectorsshould search through each individ-

ual constellation diagram for detecting each data stream separately, rather than jointly. There are

two ways of achieving this objective, as illustrated by Fig.6.3-b) and c). The first option is to invoke

the Sphere Decoder (SD) of [10–12], which only detects a single symbolsv at a time, while the

previous decisions concerning{ŝt}∀t>v are invoked in order to cancel out the known interference.

The potential error propogation problem caused by decisionfeedback may be avoided by confining

the SD search to SNR-dependent decoding sphere. In more detail, the SD’s search indexv may be

reduced to find a new legitimate candidate within this sphere, and it may also be increased. Even-

tually, the search is terminated, when there is no new candidate left for replacing the previous SD

decisions within this sphere. Therefore, the SD aided V-BLAST is capable of retaining the opti-

mum ML detection capability at a substantially reduced complexity, but its complexity may still

be deemed as unaffordable, especially when the noise power is high and hence the sphere-radius is

large. The SD search may be accelerated by manipulating the SD sphere radius, but the optimum

decoding capability would inevitably become compromised.

The second option is to separate the multiple data streams byinvoking a Linear Filter (LF), as

portrayed by Fig. 6.3-c). The filter output is anNT-element vectorZ, whose elements{zv}NT
v=1

may be directly utilized for making decisions on theNT individual data streams{ŝv}NT
v=1. In this

way, the V-BLAST detection complexity order may become impressively low such asO(NT ·
M). However, although the linear filters are generally conceived for reducing the interference,

completely independently detecting theNT data streams still results in a sub-optimal performance

because of the interference residue. We will proceed to discuss the details of these V-BLAST

detectors and their performance-complexity tradeoff in the rest of this section.
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6.2.2 Hard-Decision-Aided SD Conceived for Uncoded V-BLAST Employing PSK

In order to invoke the SD, the V-BLAST receiver may apply the classic QR decomposition to

HH [173–176] as follows:

HH =
[

Q, Q′
] [ U

0

]
, (6.14)

where
[

Q, Q′
]

is a(NR × NR)-element unitary matrix, and the(NR × NT)-element submatrix

Q has orthogonal columns satisfyingQHQ = INT
. Furthermore,U in Eq. (6.14) is a(NT × NT)-

element upper triangular matrix, while0 refers to a[(NR − NT)× NT]-element all-zero matrix. It

is a natural requirement that we haveNR ≥ NT, so that the QR decomposition of Eq. (6.14) may

proceed. The generalized rank-deficient scenario ofNR < NT is discussed in [303–305]. For the

sake of simplicity, we only consider the situation ofNR ≥ NT, which is generally compatible with

the industrial MIMO standards [306,307]. According to Eq. (6.14), the(NT × NR)-element fading

channel matrixH may now be represented as:

H = (QU)H = LQH, (6.15)

whereL = UH is a (NT × NT)-element lower triangular matrix. As a result, the receivedsignal

model of Eq. (6.1) may be modified as:

YQ = SL + VQ, (6.16)

whereVQ has exactly the same statistics as the AWGN matrixV. Therefore, the ML decision

metric of Eq. (6.13), which may also be referred to as Euclidean Distance (ED), may be rewritten

as:
∥∥∥Ỹ − SL

∥∥∥
2
=

NT

∑
v=1

∣∣∣∣∣Ỹv −
NT

∑
t=v

lt,vst

∣∣∣∣∣

2

. (6.17)

The (1 × NT)-element vector̃Y = YQ in Eq. (6.17) is defined in Eq. (6.16), and{Ỹv}NT
v=1 are

elements taken from̃Y. Furthermore,{{lt,v}NT
t=v}NT

v=1 and{st}NT
t=v in Eq. (6.17) are elements from

the lower triangular matrixL defined in Eq. (6.15) and elements from the V-BLAST transmit vector

S of Eq. (6.11), respectively.

The SD aims for finding the specific detection candidates thatlie within the decoding sphere

radiusR, which is formulated as: ∥∥∥Ỹ − SL

∥∥∥
2

< R2. (6.18)

This detection problem may be solved step-by-step. According to the ED of Eq. (6.17), the Partial

Euclidean Distance (PED) evaluated by the SD may be defined as:

dv =
NT

∑
v̄=v

∣∣∣∣∣Ỹv̄ −
NT

∑
t=v̄

lt,v̄st

∣∣∣∣∣

2

= dv+1 + ∆v,

(6.19)
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where the PED increment∆v is given by:

∆v =

∣∣∣∣∣Ỹv −
NT

∑
t=v

lt,vst

∣∣∣∣∣

2

=

∣∣∣∣∣

(
Ỹv −

NT

∑
t=v+1

lt,vst

)
− lv,vsv

∣∣∣∣∣

2

.

(6.20)

The only variable in the PED increment of Eq. (6.20) issv, as elements{st}NT
t=v+1 are known from

previous SD decisions.

For a SD based on the PED increment of Eq. (6.20), the Pohst searching strategy of [11, 308,

309] requires the SD to enumerate all candidates forsv within the SNR-dependent decoding sphere,

as defined by the condition ofdv < R2. The Schnorr-Euchner search strategy of [12,237] efficiently

refines the Pohst strategy, where the priorities of all the legitimate candidates forsv are ranked

according to the increasing order of their corresponding PED increment values∆v. Therefore,

when the SD reaches a specific indexv for the first time, the candidate associated with the highest

priority is visited. Then, when the SD reachesv again for them-th time, the candidate associated

with them-th highest priority should be visited. In this way, the SD always knows, which specific

candidate should be examined without repeating the enumeration.

For MPSK signalling, the legitimate constellation points may bevisited in a zigzag fashion.

More explicitly, the PED increment of Eq. (6.20) may be further extended as:

∆v =
∣∣∣ỹSD

v − h̃SD
v sv

∣∣∣
2

=
∣∣∣ỹSD

v

∣∣∣
2
+

1

NT

∣∣∣h̃SD
v

∣∣∣
2
− 2ℜ

(
s∗v z̃SD

v

)
,

(6.21)

where the equivalent “received signal” and “fading channel” associated with detectingsv are given

by (ỹSD
v = Ỹv − ∑

NT
t=v+1 lt,vst) and(h̃SD

v = lv,v), respectively, while the decision variable is given

by:

z̃SD
v = ỹSD

v (h̃SD
v )∗. (6.22)

As a result, detecting theMPSK variablesv according to Eq. (6.21) becomes the same as that of

genericMPSK detection. In other words, for the SD, the candidateMPSK constellation point

associated with the highest priority is given by1:

sv = 1√
NT

exp
(

j 2π
M m̌v

)
, where m̌v = ⌊pv⌉,

pv = M
2π∠z̃SD

v .
(6.23)

The remainingMPSK constellation points may be visited in a zigzag fashion by the SD. In more

details, if the phasor index̌mv is rounded down frompv, i.e. we havem̌v ≤ pv, then the SD

may visit the remaining constellation points according to the steps ofm̌v = m̌v + 1, m̌v = m̌v − 2,

1The notationm̌ associated with superscripť(·) represents the natural constellation index, which directly links to

the MPSK constellation point ofexp
(

j 2π
M m̌

)
. We will also frequently use the notation ofMPSK indexm without

superscript, which is Gray coded natural indexm = Gray(m̌), and it may be directly translated from the source binary

bits asm = bin2dec(b1 · · · bBPS).
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m̌v = m̌v + 3, etc. By contrast, for the case ofm̌v > pv, the SD based steps of visiting constellation

points arem̌v = m̌v − 1, m̌v = m̌v + 2, m̌v = m̌v − 3, etc.

The SD tree search may be performed either by breadth-first [310–312] or by depth-first ap-

proach [10, 12, 313]. The breadth-first tree search, which may also be termed as the K-best tree

search, reduces the SD index fromv = NT down tov = 1, where only K candidates associated

with the higher priorities are retained at each level. The major advantage of the K-best approach

is that the total number of nodes visited by the SD is constant, but K-best algorithm is unable to

guarantee to spot the ML solution. The depth-first tree search, which is also popularly adopted by

the MSDSD aided noncoherent detection introduced in the previous chapters, commence its search

by decreasing the SD index fromv = NT down tov = 1 as well, but only the best candidate is

visited on each level. When the SD index ofv = 1 is reached, the SD radius is shrunk to be con-

sistent with the newly found contender candidateS. Then the SD index is increased again in order

to check if there is any other nodes that may lie inside the updated decoding sphere. If a new valid

candidate is found within the sphere at any value of the SD index v, the SD index may decrement

down towardsv = 1 again. Otherwise, the search may terminate, once the SD index of v = NT

is reached. Therefore, the depth-first tree search has a nonconstant complexity, but spotting the

optimum ML solution may be only guaranteed, if the initial SDradius is set to be sufficiently large.

Similar to the MSDSD aided noncoherent detection introduced in Chapters 3-5, the depth-first

tree search is recommended for SD aided V-BLAST detection inthis chapter. Since the SD indices

of V-BLAST detection are different from those of noncoherent detection, we re-summarize the

pseudo-code of SD conceived for uncoded V-BLAST employingMPSK in Table 6.3. One may

initialize the SD’s input radiusR as infinity in order to maintain the ML optimality. In practice, a

possible choice of the initial SD radiusR may be found from the statistical properties of the ED of

Eq. (6.18) as [173]:

R2 = JNR N0 − Y

[
INR

− HH(HHH)−1H

]
YH, (6.24)

where an integerJ ≥ 1 may be selected in order to strike a tradeoff between the performance

and complexity. Furthermore, it was demonstrated in [314] that both the selection of an SNR-

dependent R and the potential SD search failure may be avoided by defining the intial SD radiusR

as the distance between the received signal and the MMSE solution formulated as:

R2 = ‖Y − YMMSE‖2, (6.25)

where the MMSE solution is given by:

YMMSE = Y(HHH + N0NTINR
)−1HH. (6.26)

The details of this MMSE solution will be elaborated on in Sec. 6.2.4.
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Function: [Ŝ] = SD-MPSK(Ỹ, L, M, NT, R)

1: dNT+1 = 0 //initialize PED
2: v = NT //initialize SD search index
3: [m̌v, stepv, nv, z̃SD

v , CSD
v ] = findBest(Ỹv, {lt,v}NT

t=v, {st}NT
t=v+1) //visit the best child node

4: loop

5: ∆v = CSD
v − 2√

NT
ℜ
[
exp(−j 2π

M m̌v) · z̃SD
v

]
//update∆v according to Eq. (6.21)

6: dv = dv+1 + ∆v //update PED according to Eq. (6.19)
7: if dv < R2

8: sv = 1√
NT

exp(j 2π
M m̌v) //update new child node

9: if v 6= 1
10: v = v − 1 //move down indexv
11: [m̌v, stepv, nv, z̃SD

v , CSD
v ] = findBest(Ỹv, {lt,v}NT

t=v, {st}NT
t=v+1) //visit the best child node

12: else
13: R2 = d1 //update SD radius
14: Ŝ = [s1, · · · , sNT

] //update the optimum data symbols
15: do
16: if v == NT return Ŝ and exit //terminate SD
17: v = v + 1 //move up indexv
18: while nv == (M − 1)
19: [m̌v, stepv, nv] = findNext (m̌v, stepv, nv) //visit the next child node
20: end if
21: else
22: do
23: if v == NT return Ŝ and exit //terminate SD
24: v = v + 1 //move up indexv
25: while nv == (M − 1)
26: [m̌v, stepv, nv] = findNext (m̌v, stepv, nv) //visit the next child node
27: end if
28: end loop

Subfunction: [m̌v, stepv, nv, z̃SD
v , CSD

v ] = findBest(Ỹv, {lt,v}NT
t=v, {st}NT

t=v+1)

1: ỹSD
v = Ỹv − ∑

NT
t=v+1 lt,vst //evaluatẽySD

v according to Eq. (6.21)

2: h̃SD
v = lv,v //evaluatẽhSD

v according to Eq. (6.21)
3: z̃SD

v = ỹSD
v (h̃SD

v )∗ //update decision variable of Eq. (6.22)

4: CSD
v =

∣∣ỹSD
v

∣∣2 + 1
NT

∣∣∣h̃SD
v

∣∣∣
2

//evaluate the constant in Eq. (6.21)

5: pv = M
2π ∠zMSDSD

v //update the best child node
6: m̌v = ⌊pv⌉
7: stepv = sign(pv − m̌v) //store the step size for the next child node
8: nv = 0

Subfunction: [m̌v, stepv, nv] = findNext (m̌v, stepv, nv)

1: m̌v = m̌v + stepv //visit the next child node
2: stepv = −stepv − sign(stepv)
3: nv = nv + 1

Table 6.3: Pseudocode for hard-decision-aided SD conceived for uncoded V-BLAST em-
ploying MPSK.
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6.2.3 Hard-Decision-Aided SD Conceived for Uncoded V-BLAST Employing Square

QAM

It was suggested in [10, 172, 315] that the real part and the imaginary part of the Square QAM

constellation should be separately visited by the SD. To this purpose, the received signal model of

Eq. (6.1) has to be decoupled as:

[
ℜ(Y) ℑ(Y)

]

︸ ︷︷ ︸
Y

=
[
ℜ(S) ℑ(S)

]

︸ ︷︷ ︸
S

[
ℜ(H) ℑ(H)

−ℑ(H) ℜ(H)

]

︸ ︷︷ ︸
H

+
[
ℜ(V) ℑ(V)

]

︸ ︷︷ ︸
V

, (6.27)

where the(1 × 2NR)-element received signal vectorY, the (1 × 2NT)-element transmit signal

vectorS, the(2NT × 2NR)-element fading matrixH and the(1 × 2NR)-element AWGN matrix

V are all real-valued.

The V-BLAST receiver may now apply QR decomposition toH
T

as expressed in Eq. (6.14),

so that the received signal matrix may be decomposed as:

H = LQT, (6.28)

whereL is a(2NT × 2NT)-element real-valued lower triangular matrix, while the(2NR × 2NT)-

element real-valued matrixQ has orthogonal columns asQTQ = I2NT
. Similar to Eq. (6.14),

NR ≥ NT is also assumed for V-BLAST employing Square QAM.

After applying the fading channel matrix decompostion of Eq. (6.28), the received signal model

of Eq. (6.27) may be rewritten as:

YQ = SL + VQ, (6.29)

whereQ obtained from Eq. (6.28) does not change the statistics of the AWGN matrixV. Therefore,

the ED of the ML detection of Eq. (6.13) may now be expressed as:

∥∥∥Ỹ − SL

∥∥∥
2
=

2NT

∑
v=1

(
Ỹv −

2NT

∑
t=v

lt,vst

)2

, (6.30)

whereỸ = YQ is defined in Eq. (6.29). By exploiting the structure of the lower triangular matrix

L, the PED utilized by the SD may be defined according to the ED ofEq. (6.30) as:

dv =
2NT

∑
v̄=v

(
Ỹv̄ −

2NT

∑
t=v̄

lt,v̄st

)2

= dv+1 + ∆v,

(6.31)

where the PED increment∆v is given by:

∆v =

(
Ỹv −

2NT

∑
t=v

lt,vst

)2

=
(

ỹSD
v − h̃SD

v sv

)2
.

(6.32)
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The equivalent “received signal” and “fading channel” associated with detecting the variable PAM

symbolsv in Eq. (6.32) are given by(ỹSD
v = Ỹv − ∑

2NT
t=v+1 lt,vst) and(h̃SD

v = lv,v), respectively.

In this section, we only consider the family of Square QAM constellations associated with an

even BPS, hence both the real part and the imaginary part of the SquareMQAM constellation are

given by the same
√

MPAM constellation. We note that it is straightforward to extend the method

advocated in this section to the case of Square QAM associated with an odd value of BPS.

The PED increment of Eq. (6.32) leads to a decision variable as:

z̃SD
v = ỹSD

v /h̃SD
v , (6.33)

which may be directly used to visit the
√

MPAM constellation points in a zigzag fashion according

to their Schnorr-Euchner search priorities, which are quantified as their PED increment values

ranked in an increasing order. In particular, the best
√

MPAM candidate associated with the lowest

PED increment value of Eq. (6.32) is given by:

sv = 1√
NT

·
√

M−2m̌v−1√
β

, where m̌v = max
[
min

(
qv,

√
M − 1

)
, 0
]

,

qv = ⌊gv⌉,

gv =
√

M−
√

NT·β·z̃SD
v −1

2 .

(6.34)

In contrast to theMPSK phase, which rotates a circle over an unlimited phase range, the index range

of m̌v ∈ [0,
√

M − 1] has to be enforced for Square QAM detection, as seen in the “findBest” sub-

function of Table 6.4. According to the PED defined in Eq. (6.31) and to the best Schnorr-Euchner

search candidate defined in Eq. (6.34), the SD conceived for uncoded V-BLAST employingMPSK

in Table 6.3 may be adopted for the case of employing SquareMQAM, but the following modifi-

cations have to be carried out:

1. The SD search should start with the indexv = 2NT on line 2, and it may terminate with the

indexv = 2NT on lines 16 and 23 in Table 6.3 for Square QAM detection. Accordingly, the

PED initialization may be modified asd2NT+1 = 0 on line 1 in Table 6.3.

2. The subfunctions of “findBest” and “findNext” in Table 6.3 are modified for the case of

SquareMQAM detection in Table 6.4 according to Eqs. (6.32) and (6.34).

3. The PED increment on line 5 in Table 6.3 may be replaced by∆v =
(

ỹSD
v − h̃SD

v sv

)2

according to Eq. (6.32) for Square QAM, where we have the symbol update ofsv = 1√
NT

·
√

M−2m̌v−1√
β

.

In summary, with the aid of SD, the hard-decision-aided V-BLAST detection complexity may

be lower bounded byO(2NT − 1) and byO(4NT − 1) for the case ofMPSK and for the case

of SquareMQAM, respectively. For example, it can be seen in Table 6.3 that the “findBest”

subfunction may be invoked at leastNT times, when the SD index is reduced fromv = NT down

to v = 1, while the “findNext” subfunction may be invoked at least(NT − 1) times when the SD

index increases fromv = 2 up tov = NT.
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Subfunction: [ỹSD
v , h̃SD

v , m̌v, stepv, nv] = findBest(Ỹv, {lt,v}2NT
t=v , {st}2NT

t=v+1)

1: ỹSD
v = Ỹv − ∑

2NT
t=v+1 lt,vst //evaluatẽySD

v according to Eq. (6.32)

2: h̃SD
v = lv,v //evaluatẽhSD

v according to Eq. (6.32)
3: z̃SD

v = ỹSD
v /h̃SD

v //update decision variable of Eq. (6.33)

4: gv =
√

M−
√

NT ·β·z̃SD
v −1

2 //visit the best child node
5: qv = ⌊gv⌉
6: m̌v = max

[
min

(
qv,

√
M − 1

)
, 0
]

7: stepv = sign(gv − qv) //store the step size for the next child node
8: nv = 0

Subfunction: [m̌v, stepv, nv] = findNext (m̌v, stepv, nv)

1: do
2: m̌v = m̌v + stepv //visit the next child node
3: stepv = −stepv − sign(stepv)
4: while (m̌v < 0)||(m̌v >

√
M − 1) //index range ofm̌v ∈ [0,

√
M − 1] has to be guaranteed

5: nv = nv + 1

Table 6.4: Pseudocode for subfunctions of hard-decision-aided SD conceived for uncoded
V-BLAST employing SquareMQAM.

The SD complexity lower bounds can only be approached in the high-SNR region, where the

ED differences between the candidates are large so that the optimum solution may be found without

any ambiguity. However, it is also demonstrated in [214] that the average SD complexity is a

polynomial function, which is often approximately cubic, while [215] demonstrates that the SD

complexity is still exponential at low SNR region. Therefore, in the coming section, we further

introduce LF aided V-BLAST receivers, which exhibit a detection complexity that may as low as

single-antenna-based detection, but the sub-optimal performance is inevitable.

6.2.4 Hard-Decision-Aided Linear Filters Conceived for Uncoded V-BLAST

For low-complexity V-BLAST detection, LFs may be conceivedfor detecting the paralleled data-

streams separately, while suppressing the interference asbest as possible. More explicitly, under

the idealized assumption of having perfect knowledge of theCSI, the basic Matched Filter (MF)

output becomes [13]:

ZMF = YGMF = SHHH + VHH, (6.35)

where the(NR × NT)-element MF weight matrix in Eq. (6.35) is given byGMF = HH. Further-

more, thev-th element in the(1× NT)-element decision variable vectorZMF of Eq. (6.35) is given

by:

zMF
v = sv‖Hv,−‖2 + ∑

∀v̄ 6=v

sv̄Hv̄,−(Hv,−)H + V(Hv,−)H, (6.36)

where the(1× NR)-element vectorHv,− refers to thev-th row of fading matrixH. It can be seen in

Eq. (6.36) that the second term of∑∀v̄ 6=v sv̄Hv̄,−(Hv,−)H introduces severe interference. Without

dealing with this interference term, directly demodulating the single symbolsv by carrying out the

operationzMF
v /‖Hv,−‖2 according to Eq. (6.36) results in an irreducible error floor.

In order to mitigate this problem, the Zero-Forcing (ZF) detector aims for cancelling the inter-

ference term of the(NR × NT)-element ZF weight matrixGZF = HH(HHH)−1, so that the ZF
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filter output is given by [14–16]:

ZZF = YGZF = S + Ṽ, (6.37)

where the(1 × NT)-element noise term̃V = VGZF has an increased noise power of‖GZF‖2 ·
N0. The ZF’s problem of noise enhancement may result in a severeperformance contamination,

especially in the low-SNR region.

The Minimum Mean Squared Error (MMSE) filter may further reduce the noise power by

minimizing the Mean Squared Error (MSE), which is defined as the Euclidean distance between

the MMSE filter output and the transmitted V-BLAST vector [13,14,16]. The MMSE filter output

may be expressed as:

ZMMSE = YGMMSE = SHGMMSE + VGMMSE, (6.38)

where the(NR × NT)-element MMSE weight matrixGMMSE is conceived for minimizing the

following MSE expression:

σ2
MSE = E

(
‖ZMMSE − S‖2

)

= E
{

tr
[
(YGMMSE − S)H(YGMMSE − S)

]}

= tr
[
(GMMSE)HE

(
YHY

)
GMMSE

]
− 2ℜ

{
tr
[
(GMMSE)HE

(
YHS

)]}
+ 1,

(6.39)

where the auto-correlation matrix is given byE
{

YHY
}

= 1
NT

HHH + N0INR
, while the cross-

correlation matrix is given byE
{

YHS
}

= 1
NT

HH. Therefore, the MMSE solution of∂σ2
MSE

∂GMMSE = 0

leads us to the MMSE weight matrix of:

GMMSE =
(

HHH + N0 · NT · INR

)−1
HH. (6.40)

As a result, thev-th element in the MMSE filter output vectorZMMSE of Eq. (6.38) may be rewritten

as:

zMMSE
v = svHv,−GMMSE

−,v + ∑
∀v̄ 6=v

sv̄Hv̄,−GMMSE
−,v + VGMMSE

−,v , (6.41)

where the(NT × 1)-element vectorGMMSE
−,v denotes thev-th column of MMSE weight matrix

GMMSE of Eq. (6.40). Finally, the linearMPSK/QAM demodulator may be invoked for recovering

the data-carrying modulation indices as:

m̂v = M
−1(z̃v), v = {1, · · · , NT}, (6.42)

where we havẽzv =
√

NT · zMMSE
v · (Hv,−GMMSE

−,v )∗/|Hv,−GMMSE
−,v |2 according to Eq. (6.41).

It was proposed in [164, 316–320] that the interference cancellation techniques based on ei-

ther ZF receivers or MMSE receivers may further improve the LF aided V-BLAST detection

performance. Moreover, the interference nulling and cancelling proposed for Multi-User Detec-

tion (MUD) in CDMA systems [321–324] may be adopted by V-BLAST, since the V-BLAST

scheme’s multiple TAs may be considered to be equivalent to CDMA’s multiple users. For exam-

ple, the Successive Interference Cancelling (SIC) may opt for detecting the data streams one by
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one from the strongest to the weakest. When the LF makes a decision concerning a single data

stream, it may be remodulated and then subtracted from the received signal so that the remaining

data streams may be detected successively, while having to cope with a reduced amount of inter-

ference. We note that the interference cancellation techniques still suffer from error propagation,

which means that the optimum performance of ML detection andSD cannot be closely approached

by the LF-based detection techniques.

6.3 Uncoded Space-Time Modulation

In this section, we offer further insights into the state-of-the-art STM schemes including both the

family of STBCs and LDCs, whose signal processing is typically carried out both in the spatial

domain and time domain. First of all, the classic STBCs are summarized in Sec. 6.3.1, where the

code construction is introduced. Following this, we demonstrate that although orthogonal STBCs

effectively minimize the error probability, they cannot achieve the full MIMO capacity. Therefore,

the concept of LDC is described in Sec. 6.3.2 in order to resolve the tradeoff between the diversity

gain and multiplexing gain.

6.3.1 Space-Time Block Coding

In order to better present the family of STBC techniques, we firstly summarize the general orthog-

onal design guideline in Sec. 6.3.1.1, followed by a generalframework of low-complexity linear

STBC receivers. Secondly, as the most important example, namely the full unity-rate STBC relying

on a complex-valued orthogonal design is presented in Sec. 6.3.1.2. Following this, the STBCs re-

lying on the half-rate Hurwitz-Radon orthogonal design aredetailed in Sec. 6.3.1.3, and the STBCs

that minimize the transmission delay by using the theory of Amicable orthogonal design are pre-

sented in Sec. 6.3.1.4. Lastly, the error probability and capacity of STBC schemes are analysed in

Sec. 6.3.1.5.

6.3.1.1 General Orthogonal Design Guidelines

The schematic of orthogonal STBC transceivers is depicted in Fig. 6.4. An STBC transmitter

firstly encodes theNQBPS source bits intoNQ modulatedMPSK/QAM symbols{sq}NQ

q=1. During

NP symbol periods, the(NP × NT)-element symbol-matrix transmitted from theNT TAs may be

formulated by:

S =
√

PtGNT
({sq}NQ

q=1) (6.43a)

=
√

Pt

NQ

∑
q=1

[
Aqℜ(sq) + jBqℑ(sq)

]
, (6.43b)

whereGNT
(·) represents the real and imaginary parts of the transmissionmatrix by dispersing

the real and imaginary parts of the modulatedMPSK/QAM symbols into the(NP × NT)-element
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Figure 6.4: Schematic of an orthogonal STBC transceiver.

real-valued matrices{Aq}NQ

q=1 and{Bq}NQ

q=1, respectively, while the normalization factorPt is in-

troduced in order to guarantee satisfying the power constraint of E
[
tr(SHS)

]
= NP.

We note that the V-BLAST transmission matrix of Eq. (6.11) may also be framed according to

Eq. (6.43b). The corresponding dispersion matrices used for V-BLAST are given by:

Aq = Bq = [0 · · · 0︸ ︷︷ ︸
q−1

, 1, 0 · · · 0︸ ︷︷ ︸
NT−q

], 1 ≤ q ≤ NT, (6.44)

where we haveNT = NQ and NP = 1. Moreover, the power normalization factor is given by

Pt = 1
NT

. It can be seen in Eq. (6.44) that the V-BLAST transmission matrix is constructed in

spatial domain only.

The objectives of the STBC design are two-fold: to minimize the error probability of Eq. (6.8)

and to employ the low-complexity linear receiver portrayedin Fig. 6.4 without encountering the

V-BLAST’s inter-antenna interference problem. In order toachieve the former goal, the PEP of

Eq. (6.9) should be minimized by achieving full diversity and maximizing the coding gain as pre-

sented in Eq. (6.10). In order to achieve the second objective, the MIMO’s inter-antenna interfer-

ence should be able to be cancelled out before invoking a linear MPSK/QAM demodulator at the

receiver. Let us firstly consider the codeword difference formulated in the PEP upper bound of

Eq. (6.10) according to the STBC transmission matrix of Eq. (6.43) as:

Si − Sī =
√

Pt

NQ

∑
q=1

[
Aqℜ(si

q − sī
q) + jBqℑ(si

q − sī
q)
]

=
√

PtGNT
({si

q − sī
q}

NQ

q=1).

(6.45)

Therefore, when Hadamard’s inequality [281] is applied to the determinant term of Eq. (6.10c), it

can be seen that the optimality condition is that∆ = (Si −Sī)H(Si −Sī) is unitary, which requires
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thatSi − Sī =
√

PtGNT
({si

q − sī
q}

NQ

q=1) have orthogonal columns. This reveals that in general, the

STBC transmission matrixS =
√

PtGNT
({sq}NQ

q=1) should always have orthogonal columns, which

requiresNP ≥ NT. Furthermore, when the signal vectors transmitted byNT TAs are orthogonal to

each other, they are expected to be decoupled at the receiverwithout encountering the V-BLAST’s

IAI problem.

If we also take into account all the considerations including performance, cost and delay, the

STBC from orthogonal design may be translated into the following stringent design requirements

[8,177,178,181–183,293,325]:

(R1) Full Unity-Rate Requirement:NP = NQ.

(R2) Delay Optimality Requirement:NP = NT.

(R3) Hardware Simplicity Requirement: all the elements inGNT
({sq}NQ

q=1) of Eq. (6.43)

should be taken from{0,±sq,±s∗q}
NQ

∀q=1.

(R4) Orthogonality Requirement: the transmission matrix of Eq. (6.43) should have orthogo-

nal columns so that we have:

SHS =
NP

NT

∑
NQ

q=1 |sq|2

NQ
INT

, (6.46)

which complies with the power constraint ofE
[
tr(SHS)

]
= NP.

The first requirement (R1) results in the maximum attainablenormalized throughput ofR =
NQ

NP
= 1, so that the employment of multiple TAs for STBC systems would not end up with a

lower throughput than that of the SISO and SIMO systems. The second requirement (R2) min-

imizes the transmission delay while maintaining the transmit diversity order, which is given by

min{NT , NP} according to Eq. (6.10c). The third requirement (R3) simplifies the hardware design

of the RF amplifiers by minimizing the peak-to-average ratio. Lastly, the orthogonality requirement

(R4) is the key both to the minimized error probability and tothe low-complexity interference-free

linear STBC receiver, where the multiple streams may be individually detected. For the sake of

code construction, the orthogonality requirement (R4) maybe further translated to the following

requirements imposed on the dispersion matrices{Aq}NQ

q=1 and{Bq}NQ

q=1, which are three-fold:

AH
q Aq = INT

, BH
q Bq = INT

, ∀q ∈ {1, · · · , NQ}, (6.47a)

AH
q Aq̄ = −AH

q̄ Aq, BH
q Bq̄ = −BH

q̄ Bq, ∀q 6= q̄ ∈ {1, · · · , NQ}, (6.47b)

AH
q Bq̄ = BH

q̄ Aq, ∀q∀q̄ ∈ {1, · · · , NQ}. (6.47c)

Let us now proceed to characterize the interference-free linear STBC receiver by further explor-

ing the orthogonality requirement (R4). First of all, the STBC transmission matrix of Eq. (6.43)
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may be expressed in the following alternative form:

S =
√

Pt

NQ

∑
q=1

(
D+

q sq + D−
q s∗q
)

, (6.48)

where the alternative dispersion matrices in Eq. (6.48) aregiven by
{

D+
q = 1

2(Aq + Bq)
}NQ

q=1
and

{
D−

q = 1
2(Aq − Bq)

}NQ

q=1
. Following this, the matrix norm term in the probabilityp(Y|S) expres-

sion of Eq (6.2) may be extended as [325]:

‖Y − SH‖2 = ‖Y‖2 − tr(YHSH)− tr(HHSHY) + tr(HHSHSH)

= ‖Y‖2 +
NQ

∑
q=1

{−
√

Pttr
[
YHD+

q Hsq + YHD−
q Hs∗q + HH(D+

q )HYs∗q + HH(D−
q )HYsq

]

+
NP‖H‖2

NT NQ
|sq|2}

=
NQ

∑
q=1

(
NP‖H‖2

NT NQ
|zq − sq|2

)
+ ̺,

(6.49)

where the decision variable is given by:

zq =
NT NQ

√
Pt

NP‖H‖2
tr
[
YHD−

q H + HH(D+
q )HY

]
, (6.50)

and the constant is given by̺= ‖Y‖2 −∑
NQ

q=1
NP‖H‖2

NT NQ
|zq|2. As a result, the conditional probability

of receivingY, whenS is transmitted in Eq (6.2) becomes:

p(Y|S) = ϑ
NQ

∏
q=1

p(zq|sq), (6.51)

where the constant is given byϑ = (πN0)
NQ

(πN0)
NR NP

exp(− ̺
N0

), so that the equivalent conditional prob-

ability of receivingzq, whensq is transmitted may be expressed as:

p(zq|sq) =
1

πN0

exp

(
−|zq − sq|2

N0

)
, (6.52)

where the equivalent noise power is given byN0 =
NT NQ

NP‖H‖2 N0. The ML detector aims for maxi-

mizing thea posterioriprobability p(S|Y) of Eq. (6.12), where the constantϑ in Eq. (6.51) may be

cancalled out by the division operation in Bayes’ law seen inEq. (6.12). Therefore, we may now

conclude that the STBC may invoke a linearMPSK/QAM demodulator for recoveringsq from zq

without encountering the BLAST MIMO’s IAI problem. More explicitly, the demodulation may

be carried out as:

ŝq = M−1(zq), ∀q ∈ {1, · · · , NQ}. (6.53)

If the full unity-rate requirement (R1) is guaranteed in theSTBC design, the equivalent noise power

in the linear STBC receiver of Eq. (6.53) is given byN0 = NT

‖H‖2 N0 = 1(
∑

NT
v=1 ‖Hv,−‖2

)
/NT

N0, which
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explicitly reveals the benefit of having diversity gain. Letus recall that the decision variable for a

SIMO scheme associated withNP = NQ = 1 is given byz̃q = Y1,−HH
1,−/‖H1,−‖2 as seen in

Eq. (2.14), and the equivalent noise power is given byÑ0 = 1
‖H1,−‖2 N0. This implies that when

the single TA experience a deep fade, the equivalent noise power of the SIMO demodulator may

be amplified by the reduced divisor of‖H1,−‖2. By contrast, the STBC’s equivalent noise power

encountered by the linear demodulator has the divisor of
(

∑
NT
v=1 ‖Hv,−‖2

)
/NT, which is averaged

over the fading samples gleaned from theNT TAs. Therefore, an extra hardware requirement

is imposed, when aiming for achieving the STBC’s diversity gain potential, because we have to

separate the multipe TAs sufficiently far apart, so that theywill not experience a deep fade at the

same time.

6.3.1.2 Full Unity-Rate Space-Time Block Code

When complex-valued high-throughputMPSK/QAM constellations are employed, it was proven

in [178] that the only STBC satisfying all the requirements listed in Sec. 6.3.1.1 is Alamouti’s

G2-STBC [177], whose codeword is constructed by:

G2(s1, s2) =

[
s1 s2

−s∗2 s∗1

]
. (6.54)

It can be seen in Eq. 6.54 that Alamouti’s G2-STBC transmits(NQ = 2) modulatedMPSK/QAM

symbols by(NT = 2) TAs over(NP = 2) ’channel uses’. Therefore, the G2-STBC satisfies the

full unity-rate requirement (R1), the delay optimal requirement (R2) and the transmitter’s hardware

requirement (R3) discussed in Sec. 6.3.1.1. Furthermore, we also have[G2(s1, s2)]
H G2(s1, s2) =

(|s1|2 + |s2|2)I2 according to Eq. (6.54). Therefore, according to Eq. (6.43a), the G2-STBC’s

transmission matrix is given by:

S =
1√
2

G2(s1, s2), (6.55)

since the power normalization factor in Eq. (6.43) is given by Pt = 1
2 , so that the orthogonality

requirement (R4) in Sec. 6.3.1.1 may also be fully met. Moreover, the dispersion matrices designed

for G2-STBC according to Eq. (6.43b) may be expressed as:

A1 =

[
1 0

0 1

]
, A2 =

[
0 1

−1 0

]
, B1 =

[
1 0

0 −1

]
, B2 =

[
0 1

1 0

]
. (6.56)

As expected, these dispersion matrices completely comply with the orthogonality requirement for-

mulated in Eq. (6.47).

The signals received at theNR RAs are modelled by Eq. (6.1), which may be further extended

according to Eq. (6.54) as:

Y1,− =
s1√

2
H1,− +

s2√
2

H2,− + V1,−,

Y2,− = − s∗2√
2

H1,− +
s∗1√

2
H2,− + V2,−,

(6.57)
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where the(1 × NR)-element row vector{Yt,−}2
t=1 refers to thet-th row in the received signal

matrix Y of Eq. (6.1), which models the signal received accross allNR RAs during thet-th time

slot. Similarly, the(1 × NR)-element AWGN row vector{Vt,−}2
t=1 is taken from thet-th row

of the AWGN matrixV in Eq. (6.1). Furthermore, the(1 × NR)-element row vector{Hv,−}2
v=1

refers to thev-th row in the fading channel matrixH in Eq. (6.1), which models the fading samples

received from thev-th TA by all NR RAs.

Owing to the fact that the signal-vector transmitted from the two TAs are mutually orthogo-

nal, the received signals of Eq. (6.57) may be decoupled without encountering any inter-antenna

interference as [177]:

z1 =
√

2(Y1,−)(H1,−)H

‖H‖2 +
√

2(H2,−)(Y2,−)H

‖H‖2 = s1 +
√

2(V1,−)(H1,−)H

‖H‖2 +
√

2(H2,−)(V2,−)H

‖H‖2 ,

z2 =
√

2(Y1,−)(H2,−)H

‖H‖2 −
√

2(H1,−)(Y2,−)H

‖H‖2 = s2 +
√

2(V1,−)(H2,−)H

‖H‖2 −
√

2(H1,−)(V2,−)H

‖H‖2 .
(6.58)

Therefore, the G2-STBC receiver’s decision on{ŝq}2
q=1 may be directly obtained by demodulating

the decision variables{zq}2
q=1 in Eq. (6.58) as{ŝq = M−1(zq)}2

q=1, and the equivalent noise

power for the linearMPSK demodulators is given byN0 = 2
‖H‖2 .

We note that the decision variables{zq}2
q=1 in Eq. (6.58) may also be obtained according to

the general linear STBC receiver design of Eq. (6.50). In more details, according to Eq. (6.56),

the equivalent dispersion matrices in the alternative transmitted signal model of Eq. (6.48) may be

formulated for G2-STBC as:

D+
1 =

[
1 0

0 0

]
, D−

1 =

[
0 0

0 1

]
, D+

2 =

[
0 1

0 0

]
, D−

2 =

[
0 0

−1 0

]
. (6.59)

As a result, the decision variables in Eq. (6.50) may be extended for G2-STBC as:

z1 =
√

2
‖H‖2 tr

[
YHD−

1 H + HH(D+
1 )HY

]
=

√
2

‖H‖2 tr
[
(Y2,−)H(H2,−) + (H1,−)H(Y1,−)

]
,

z2 =
√

2
‖H‖2 tr

[
YHD−

2 H + HH(D+
2 )HY

]
=

√
2

‖H‖2 tr
[
−(Y2,−)H(H1,−) + (H2,−)H(Y1,−)

]
.

(6.60)

It can be seen that the decision variables of Eq. (6.60) obtained according to the general STBC

design of Eq. (6.50) are exactly the same as the ones presented in Eq. (6.58) obtained by observ-

ing the G2-STBC’s received signal model of Eq. (6.57). This verifies that Alamouti’s G2-STBC

belongs to the family of orthognal STBCs, which not only minimizes the error probability, but it

is also capable of employing low-complexity single-streamlinear MPSK/QAM demodulators at

STBC receiver without encountering the problem of inter-antenna interference.

6.3.1.3 Half-Rate Space-Time Block Code

When the family of real-valued constellations is considered, the orthogonal design satisfying the

four requirements listed in Sec. 6.3.1.1 does exist forNT =2, 4 or 8 [178], which may be solved

by the Hurwitz-Radon theory of [179, 180]. We note that the conjugation operation{s∗q}
NQ

q=1 may

be eliminated from the requirement (R3) of Sec. 6.3.1.1 for real-valued signalling, and only the

dispersion matrices{Aq}NQ

q=1 designed for dispersing real symbols are of concern in this scenario.
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For NT = 2 TAs, the real-valued orthogonal designGℜ
2 (s1, s2) is the same as Alamouti’s G2-

STBC design ofG2(s1, s2) seen in Eq. (6.54) without the conjugation operations. For the case of

NT = 4, the STBC from real-valued orthogonal design is given by [178]:

Gℜ
4 (s1, s2, s3, s4) =




s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1




. (6.61)

For the case ofNT = 8, the STBC generated from real-valued orthogonal design is given by [178]:

Gℜ
8 (s1, s2, s3, s4, , s5, s6, s7, s8) =




s1 s2 s3 s4 s5 s6 s7 s8

−s2 s1 s4 −s3 s6 −s5 −s8 s7

−s3 −s4 s1 s2 s7 s8 −s5 −s6

−s4 s3 −s2 s1 s8 −s7 s6 −s5

−s5 −s6 −s7 −s8 s1 s2 s3 s4

−s6 s5 −s8 s7 −s2 s1 −s4 s3

−s7 s8 s5 −s6 −s3 s4 s1 −s2

−s8 −s7 s6 s5 −s4 −s3 s2 s1




. (6.62)

In order to accommodate complex-valuedMPSK/QAM symbols, the Half-Rate (HR)-G4-

STBC may be obtained by vertically concatenating the STBC from real-valued orthogonal design

and its conjugates as:

G4(s1, s2, s3, s4) =

[
Gℜ

4 (s1, s2, s3, s4)

Gℜ
4 (s1, s2, s3, s4)

∗

]
=




s1 s2 s3 s4

−s2 s1 −s4 s3

−s3 s4 s1 −s2

−s4 −s3 s2 s1

s∗1 s∗2 s∗3 s∗4
−s∗2 s∗1 −s∗4 s∗3
−s∗3 s∗4 s∗1 −s∗2
−s∗4 −s∗3 s∗2 s∗1




. (6.63)

Furthermore, the HR-G3-STBC design ofG3(s1, s2, s3, s4) may be constructed by taking the first

three columns inG4(s1, s2, s3, s4). Similarly, the HR-G8-STBC may also be obtained by vertically

concatenatingGℜ
8 (s1, s2, s3, s4, , s5, s6, s7, s8) and its conjugates as:

G8(s1, s2, s3, s4, , s5, s6, s7, s8) =

[
Gℜ

8 (s1, s2, s3, s4, , s5, s6, s7, s8)

Gℜ
8 (s1, s2, s3, s4, , s5, s6, s7, s8)

∗

]
. (6.64)

Accordingly, the HR-GNT-STBC design ofGNT
(s1, s2, s3, s4, , s5, s6, s7, s8) associated with5 ≤

NT ≤ 7 may be constructed by taking the firstNT columns inG8(s1, s2, s3, s4, , s5, s6, s7, s8). For

the sake of clarity, the parameters of these half-rate STBCsare summarized in Table 6.5.

It may be observed that all the HR-GNT-STBCs associated with3 ≤ NT ≤ 8 fail to meet

the full unity-rate requirement (R1) of Sec. 6.3.1.1, resulting in a normalized throughput ofR =
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HR-STBCs NO. of TAs NO. of channel uses NO. of transmitted symbols
HR-G3-STBC NT = 3 NP = 8 NQ = 4

HR-G4-STBC NT = 4 NP = 8 NQ = 4

HR-G5-STBC NT = 5 NP = 16 NQ = 8

HR-G6-STBC NT = 6 NP = 16 NQ = 8

HR-G7-STBC NT = 7 NP = 16 NQ = 8

HR-G8-STBC NT = 8 NP = 16 NQ = 8

Table 6.5: A summary of the parameters of Half-Rate (HR) STBCs (R =
NQ

NP
= 1

2 ).

NQ

NP
= 1

2 . Similarly, the delay optimal requirement (R2) becomesNP = 2NQ. However, the

transmitter’s hardware requirement (R3) is still satisfiedby the half-rate STBCs. Furthermore, it

may be observed that we always haveGNq(s1, · · · , sNQ
)HGNq(s1, · · · , sNQ

) = ∑
NQ

q=1 2|sq|2INT
for

3 ≤ NT ≤ 8 according to the half-rate STBC design, hence the HR-STBC’stransmission matrix

of Eq. (6.43a) may be expressed as:

S =

√
NP

2NT NQ
GNT

(s1, · · · , sNQ
), (6.65)

since the power normalization factor of Eq. (6.43) is given by Pt = NP
2NT NQ

. As a result, the

orthogonality requirement (R4) facilitating single-stream detection is fully satisfied by the half-rate

STBCs. Therefore, the linear STBC receiver developed in Sec. 6.3.1.1 may also be applied to them.

We note that no STBCs havingNT > 8 were explicitly constructed in the open literature, but it

was proven in [178] that such a design may impose a substantial delay growing exponentially with

NT, which is given byNP = 16 × 16(NT/8−1) for NT > 8 with NT being a power of 2.

6.3.1.4 Amicable Orthogonal Space-Time Block Code

In order to improve the throughput of STBCs associated withNT > 2, it was demonstrated in

[181–183] that rate 3/4 STBC exists forNT = 4. More explicitly, the Amicable Orthogonal (AO)-

G4-STBC obtained according to the theory of amicable orthogonal design [179] may be expressed

as:

GAO
4 (s1, s2, s3) =




s1 s2 s3 0

−s∗2 s∗1 0 s3

−s∗3 0 s∗1 −s2

0 −s∗3 s∗2 s1




. (6.66)

This AO-G4-STBC design complies with the delay optimal requirement of (R2), the transmit-

ter’s hardware requirement of (R3) and the orthogonality requirement of (R4), which are listed

in Sec. 6.3.1.1. Moreover, an alternative form of AO-G4-STBC design was also presented in
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AO-STBCs NO. of TAs NO. of channel uses NO. of transmitted symbols
AO-G3-STBC NT = 3 NP = 4 NQ = 3

AO-G4-STBC NT = 4 NP = 4 NQ = 3

AO-G5-STBC NT = 5 NP = 8 NQ = 4

AO-G6-STBC NT = 6 NP = 8 NQ = 4

AO-G7-STBC NT = 7 NP = 8 NQ = 4

AO-G8-STBC NT = 8 NP = 8 NQ = 4

Table 6.6: A summary of the parameters of Amicable Orthogonal (AO) STBCs.

[178,293] as:

G
AO
4 (s1, s2, s3) =




s1 s2
s3√

2

s3√
2

−s∗2 s∗1
s3√

2
− s3√

2
s∗3√

2

s∗3√
2

−ℜ(s1) + jℑ(s2) −ℜ(s2) + jℑ(s1)
s∗3√

2
− s∗3√

2
ℜ(s2) + jℑ(s1) −ℜ(s1) − jℑ(s2)




. (6.67)

However, this alternative AO-G4-STBC does not obey the transmitter’s hardware requirement of

(R3) in Sec. 6.3.1.1, which implies that the linear region ofthe MIMO’s amplifier has to be ex-

tended.

The AO-G4-STBC design of Eq. (6.66) is further extended for any values ofNT in [326–328].

In more details, if the number of TAs is a power of 2 asNT = 2ι for a positive integer ofι ≥ 1, the

general AO-GNT-STBC design may be formulated as:

GAO
2ι (s1, · · · , sι+1) =

[
GAO

2ι−1(s1, · · · , sι) sι+1I2ι−1

−s∗ι+1I2ι−1 GAO
2ι−1(s1, · · · , sι)H

]
. (6.68)

It can be seen in Eq. (6.68) that if the AO-STBC design starts from ι = 1 andGAO
1 (s1) = s1, then

Alamouti’s G2-STBC of Eq. (6.54) may be obtained from Eq. (6.68) asGAO
2 (s1, s2) = G2(s1, s2).

Furthermore, based on the G2-STBC of Eq. (6.54), the AO-G4-STBC of Eq. (6.66) may also be

constructed by Eq. (6.68). Similarly, for all the cases of AO-GNT-STBC associated withNT = 2ι,

the STBC design requirements of (R2), (R3) and (R4) in Sec. 6.3.1.1 are satisfied.

For the scenarios ofNT not being a power of 2, the AO-GNT-STBC design may be obtained

by taking the firstNT columns ofGAO
2ι (s1, · · · , sι+1), where we haveι = ⌈log2 NT⌉. These

AO-STBCs do not obey the delay optimal requirement of (R2) inSec. 6.3.1.1. Nonetheless, their

transmission delay is still substantially lower than that of their HR-STBC counterparts discussed

in Sec. 6.3.1.3. For example, the AO-G3-STBC and AO-G4-STBChaveNP = 4, while the AO-

GNT-STBC for5 ≤ NT ≤ 8 haveNP = 8, which are halves of the parameters of the HR-STBCs

seen in Table 6.5. The parameters of the AO-GNT-STBC for 3 ≤ NT ≤ 8 are summarized in

Table 6.6.

In summary, owing to the fact that we always haveGAO
NT

(s1, · · · , sNQ
)

H
GAO

NT
(s1, · · · , sNQ

) =

∑
NQ

q=1 |sq|2INT
according to Eq. (6.68), the AO-STBC transmission matrix may be expressed ac-
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cording to Eq. (6.43a) as:

S =

√
NP

NT NQ
GAO

NT
(s1, · · · , sNQ

), (6.69)

where the power normalization factor seen in Eq. (6.43) is given byPt = NP
NT NQ

. Since the trans-

mission matrix of Eq. (6.69) satisfies the orthogonality requirement (R4) of Sec. 6.3.1.1, the linear

STBC receiver developed in Sec. 6.3.1.1 may be directly invoked for the AO-STBCs.

Furthermore, the number of time slotsNP will not increase exponentially withNT for the AO-

STBC design according to Eq. (6.68), as opposed to the HR-STBCs in Sec. 6.3.1.3. However, it can

be observed that the AO-STBCs associated with5 ≤ NT ≤ 7 also have a normalized throughput of

R = 1
2 , which is exactly the same as that of their HR-STBCs counterparts of Sec. 6.3.1.3. Moreover,

since the AO-STBC’s number of transmitted symbolsNQ only increases logarithmically withNT

according toNQ = ⌈log2 NT⌉ + 1, the normalized throughput of AO-STBC is expected to be

lower thanR = 1
2 for NT > 8.

6.3.1.5 Error Probability and Capacity of Space-Time BlockCodes

In Sec. 6.3.1.1, we have discussed how the orthogonal designof STBCs may improve the perfor-

mance of MIMO systems and how a simple low-complexity linearreceiver may be employed for

STBC schemes without encountering the BLAST MIMO’s problemof inter-antenna interference.

However, as demonstrated in the previous sections, the price paid is the reduced MIMO through-

put. Except for the classic Alamouti G2-STBC that maintainsthe maximum attainable throughput

of SISO/SIMO systems, the rest of the STBCs employing complex-valuedMPSK/QAM constel-

lations all have even lower throughputs. In fact, it was recognized in [184, 189, 301] that STBCs

cannot achieve the full MIMO capacity except for a single special case, which is Alamouti’s G2-

STBC system associated with a single RANR = 1. Let us now elaborate a little further here on

this issue, so that the multiplexing versus diversity tradeoff of MIMO system design may be better

augmented.

It is shown by Eq. (6.51) that the STBC detection in fading channels may be transformed into

decoupledMPSK/QAM detection in AWGN channels without any performanceloss. Therefore,

the STBC receiver operates based on the decoupled conditional probability p(zq|sq) of Eq. (6.52),

which implies that the equivalent input/output relationship may now be formulated as:

zq = sq + vq, 1 ≤ q ≤ NQ, (6.70)

where vq models a complex Gaussian variable having a zero mean and a variance of N0 =
NT NQ

NP‖H‖2 N0 according to Eq. (6.52). Considering that the average BER ofEq. (6.8) is approxi-

mated based on the evaluation of the PEP, which is only accurate in the high-SNR region, the error

probability of the STBC in fading channels may be more closely evaluated by the performance of

MPSK/QAM schemes in AWGN channels [2,3], as summarized in Table 6.7.

It is worth noting that the STBCs that minimize the PEP’s union bound of Eq. (6.10) have a

dominant performance advantage in the high SNR region. For STBCs that require a high number
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MPSK/QAM Approximate Bit Error Probability

BPSK Pe,bit = Q
(√

2
N0

)

QPSK Pe,bit = Q
(√

1
N0

)

GeneralMPSK Pe,bit ≈ 2
BPSQ

[√
2

N0
sin( π

M )
]

Square 16QAM Pe,bit = 3
4 Q
(√

1
5N0

)
+ 1

2 Q
(

3
√

1
5N0

)
− 1

4 Q
(

5
√

1
5N0

)

GeneralMQAM Pe,bit ≈ 4
BPSQ

[√
3

(M−1)N0

]

Table 6.7: A summary of the approximate bit error probability for STBC employing
MPSK/QAM.

of time slotsNP, there is no guarantee that their performance - given the noise power normalized

per channel use - can always be better than that of other MIMO schemes in the low-SNR region.

We will continue this discussion in Sec. 6.5 related to our performance results.

According to the equivalent input/output relationship of Eq. (6.70), the maximized mutual in-

formation of STBC is given by:

CCCMC
STBC (SNR) = max

{p(sq)}
NQ
q=1

1

NP

NQ

∑
q=1

I(sq; zq)

= max
{p(sq)}

NQ
q=1

1

NP

NQ

∑
q=1

[
H(zq) − H(zq|sq)

]

=
NQ

NP
E

[
log2

(
1 +

NP‖H‖2

NT NQ
η

)]
,

(6.71)

where we haveH(zq|sq) = log2

[
πe
(

NT NQ

NP‖H‖2 N0

)]
and H(zq) = log2

[
πe
(

1 +
NT NQ

NP‖H‖2 N0

)]

according top(zq|sq) of Eq. (6.52) and the assumption of Gaussian input PDFs{p(sq)}NQ

q=1.

Considering a V-BLAST MIMO system equipped withN′
T and N′

R antennas operating at an

SNR of η′, the term of η ′

N ′
T

H′HH′ in the MIMO capacity of Eq. (6.4) can only be equal to the

term of NP‖H‖2

NT NQ
η in the STBC capacity of Eq. (6.71), when we haveN′

T = NT NR, N′
R = 1 and

η′ = NRNP
NQ

η. In other words, the relationship between the STBC capacityand the V-BLAST

MIMO capacity may be expressed as [184,189,301]:

CCCMC
STBC (NT, NR, η) =

NQ

NP
CCCMC

MIMO(NT NR, 1,
NRNP

NQ
η)

≤ CCCMC
MIMO(NT , NR, η),

(6.72)

where the equality only holds, when we haveNT = NP = NQ andNR = 1, which may only be

satisfied by Alamouti G2-STBC scheme equipped with a single RA of NR = 1.

It becomes clear now that there is a tradeoff amongst the conflicting capacity, performance and

complexity in MIMO systems design. More explicitly, the V-BLAST MIMO introduced in Sec. 6.2

achieves the maximum attainable MIMO throughput that isNT times higher than a SISO/SIMO

system throughput. By contrast, the STBC MIMO introduced inSec. 6.3.1 minimizes the MIMO’s
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PEP bound and benefits from a low signal processing complexity at the receiver, but it cannot

achieve the maximum achievable MIMO capacity. Motivated byimproving the capacity limit of

STBCs, we embark on introducing the concept of LDCs in the next section, which are capable of

resolving the tradeoff between a diversity gain and a multiplexing gain.

6.3.2 Linear Dispersion Codes

In this section, we firstly introduce the family of Quasi-Orthogonal (QO)-STBCs [186, 187, 328–

332] as the intermediate step for improving the STBC capacity, which can only be achieved by

relaxing the orthogonality requirements detailed in Sec. 6.3.1.1. In Sec. 6.3.2.2, the STBC capac-

ity is further improved by the high-rate LDC design philosophy of [189] proposing to randomly

populate the dispersion matrices of Eq. (6.43) in order to find the specific set, which maximizes

the CCMC capacity. However, we will also demonstrate in Sec.6.3.2.2 that the LDCs of [189],

which separately disperse the real and imaginary parts of the modulated symbols fail to achieve

the maximum attainable MIMO capacity. In order to mitigate this problem, the set of so-called

capacity-achieving LDCs proposed in [188,300] are summarized in Sec. 6.3.2.3, where the MIMO

capacity may be approached, while attaining a beneficial diversity gain.

6.3.2.1 Quasi-Orthogonal Space-Time Block Codes

In order to improve the attainable STBC throughput, the firststep is to relax the orthogonality

requirement of Sec. 6.3.1.1 at the cost of encountering IAI and hence requiring multi-stream detec-

tion. In the light of this principle, the concept of QO-STBC design was proposed in [186, 329]. In

more details, provided that the number of TAs is a power of 2 according toNT = 2ι and (ι > 1), the

QO-STBC transmission codeword is constructed from the AO-STBC of Eq. (6.68) as [186,328]:

GQO
2ι (s1, · · · , s2ι) =

[
GAO

2ι−1(s1, · · · , sι) GAO
2ι−1(sι+1, · · · , s2ι)

−GAO
2ι−1(sι+1, · · · , s2ι)∗ GAO

2ι−1(s1, · · · , sι)∗

]
. (6.73)

It can be seen that the termsι+1I2ι−1 that can only transmit a single modulated symbol in the

context of the AO-STBC design of Eq. (6.68) is replaced by thetermGAO
2ι−1(sι+1, · · · , s2ι) that may

transmit ι symbols in conjunction with the QO-STBC design of Eq. (6.73). As a result, for any

number of TAs, the normalized throughput of QO-STBC is increased toR = 2ι
2ι , where we have

ι = ⌈log2 NT⌉.

It may be observed in Eq. (6.73) that we always have tr
[

GQO
2ι (s1, · · · , s2ι)HGQO

2ι (s1, · · · , s2ι)
]

=

NT(∑
NQ

q=1 |sq|2). Therefore, the power normalization factor of Eq. (6.43a) is given byPt = NP
NT NQ

,

and the QO-STBC transmission matrix may be formulated as:

S =

√
NP

NT NQ
GQO

2ι (s1, · · · , s2ι), (6.74)

so that the power constaint ofE
[
tr(SHS)

]
= NP may be satisfied. However, the orthogonality

requirement of (R4) in Sec. 6.3.1.1 cannot be satisfied, because the columns inGAO
2ι−1(s1, · · · , sι)
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and the columns inGAO
2ι−1(sι+1, · · · , s2ι) are not orthognal to each other, despite the fact that the

columns are orthogonal within each transmission sub-group.

Let us consider the case ofNT = 4 as an example, where a full unity-rate ofR = 1 is achieved.

According to the codeword construction of Eq. (6.73), the QO-G4-STBC transmission matrix of

Eq. (6.74) is given by [186,328]:

S =
1

2

[
G2(s1, s2) G2(s3, s4)

−G2(s3, s4)
∗ G2(s1, s2)∗

]
=

1

2




s1 s2 s3 s4

−s∗2 s∗1 −s∗4 s∗3
−s∗3 −s∗4 s∗1 s∗2
s4 −s3 −s2 s1




. (6.75)

Therefore, according to Eq. (6.75), the maximum throughputrequirement (R1), the delay optimal

requirement (R2) and the transmitter’s hardware requirement (R3) listed in Sec. 6.3.1.1 are all

satisfied by the QO-G4-STBC associated withNT = NP = NQ = 4. However, the orthogonality

requirement of (R4) in Sec. 6.3.1.1 is violated because:

SHS =




∑
4
q=1 |sq|2

4 0 0
ℜ(s1s∗4−s2s∗3)

2

0
∑

4
q=1 |sq|2

4 −ℜ(s1s∗4−s2s∗3)
2 0

0 −ℜ(s1s∗4−s2s∗3)
2

∑
4
q=1 |sq|2

4 0

ℜ(s1s∗4−s2s∗3)
2 0 0

∑
4
q=1 |sq|2

4




(6.76)

is not a scaled identity matrix. As a result, the linear STBC receiver developed in Sec. 6.3.1.1

cannot be invoked for QO-STBC systems. Nonetheless, the QO-STBC receiver still has a lower

detection complexity than the conventional MIMO receiver.More specifically, the decision metric

of the ML MIMO detection of Eq. (6.13) may be extended for QO-G4-STBCs as:

‖Y − SH‖2 = ‖Y‖2−
4

∑
q=1

ℜ
{

tr

[
YHD+

q H + HH
(

D−
q

)H
Y

]
sq −

|sq|2
4

‖H‖2

}

+ ℜ(s1s∗4 − s2s∗3)ℜ
[
(H1,−)(H4,−)H − (H2,−)(H3,−)H

]
,

(6.77)

where the extra term ofℜ(s1s∗4 − s2s∗3)ℜ
[
(H1,−)(H4,−)H − (H2,−)(H3,−)H

]
introduces inter-

ference compared to the case of orthognal design in Eq. (6.49). In order to retain the ML detection

capability of Eq. (6.13), the four symbols have to be detected in pairs as:

{ŝ1, ŝ4} = arg min
∀s1,∀s4

∑
q=1&q=4

ℜ
{
|sq|2

4
‖H‖2 − tr

[
YHD+

q H + HH
(

D−
q

)H
Y

]
sq

}

+ℜ(s1s∗4)ℜ
[
(H1,−)(H4,−)H − (H2,−)(H3,−)H

]
,

{ŝ2, ŝ3} = arg min
∀s2,∀s3

∑
q=2&q=3

ℜ
{
|sq|2

4
‖H‖2 − tr

[
YHD+

q H + HH
(

D−
q

)H
Y

]
sq

}

−ℜ(s2s∗3)ℜ
[
(H1,−)(H4,−)H − (H2,−)(H3,−)H

]
.

(6.78)

It was suggested in [187,329] that linear MIMO receivers such as the MMSE detector or the ZF

detector may be invoked for QO-STBC systems. However, this may not be an ideal solution because
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the sub-optimal linear MIMO receivers fail to fully exploitQO-STBC’s diversity gain. Moreover,

a lot of research efforts [187, 328, 330–332] have been dedicated to improving both the capacity

and the performance of QO-STBC designs by modifying the signal constellations. Nonetheless,

the QO-STBC serves as an intermediate solution between the STBC and V-BLAST MIMO design,

while the STBC’s limitations imposed on the capacity and throughput have not been completely

solved. In the following section, we continue by introducing the concept of LDC, which aims for

systematically bridging the gap between the STBC and V-BLAST.

6.3.2.2 Capacity-Improving Linear Dispersion Codes

Motivated by the limitations of STBCs, the LDC concept was proposed in [189] in order to improve

the STBC’s capacity, while attaining the maximum achievable diversity order. First of all, the

STBC’s transmission matrix model of Eq. (6.43) may be rewritten for LDCs as:

S =
NQ

∑
q=1

[
Aqℜ(sq) + jBqℑ(sq)

]
, (6.79)

where the dispersion matrices{Aq}NQ

q=1 and{Bq}NQ

q=1 are constructed according to our capacity-

improving and diversity-maintaining requirements, whichwill be detailed later. Moreover,{sq}NQ

q=1

represent modulatedMPSK/QAM symbols, which are dispersed in both the spatial domain and

time domain by the dispersion matrices of Eq. (6.79). We notethat the transmission model of

Eq. (6.79) may include both the STBC and V-BLAST schemes, where the dispersion matrices of

Eq. (6.79) are normalized version of those introduced in Sec. 6.3.1.1, so that the power constraint

of E
[
tr(SHS)

]
= NP may be satisfied.

In order to overcome the throughput disadvantage of STBCs, the number of transmitted sym-

bols NQ may be increased even beyondNP, so that the V-BLAST throughput may be approached.

Furthermore, the LDCs are still suggested to maintainNT = NP in order to retain the maximum

attainable transmit diversity order at the lowest transmission delay. According to the MIMO re-

ceived signal model of Eq. (6.1), the LDC’s signal received during thet-th time slot (1 ≤ t ≤ NP)

may be expressed as:

Yt,− =
NQ

∑
q=1

[
A

t,−
q Hℜ(sq) + jB

t,−
q Hℑ(sq)

]
+ Vt,−, (6.80)

where the(1 × NR)-element row vectors{Yt,−}NP
t=1 and{Vt,−}NP

t=1 are taken from the received
signal matrixY and the AWGN matrixV in Eq. (6.1), respectively. Moreover, the(1 × NT)-

element row vectors{A
t,−
q }NP

t=1 and{B
t,−
q }NP

t=1 are taken from the dispersion matrices of Eq. (6.79).
Let us now decouple the real and imaginary parts of the received signal in Eq. (6.80) as:

ℜ(Yt,−) =
NQ

∑
q=1

{[
ℜ(A

t,−
q )ℜ(H)−ℑ(A

t,−
q )ℑ(H)

]
ℜ(sq) −

[
ℜ(B

t,−
q )ℑ(H) + ℑ(B

t,−
q )ℜ(H)

]
ℑ(sq)

}
+ ℜ(Vt,−),

ℑ(Yt,−) =
NQ

∑
q=1

{[
ℜ(A

t,−
q )ℑ(H) + ℑ(A

t,−
q )ℜ(H)

]
ℜ(sq) +

[
ℜ(B

t,−
q )ℜ(H) −ℑ(B

t,−
q )ℑ(H)

]
ℑ(sq)

}
+ ℑ(Vt,−),

(6.81)
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which leads to the following equivalent received signal model for the LDC of Eq. (6.79) as:

Ỹ = S̃ · χ̃ · H̃ + Ṽ, (6.82)

where the matrices are given by:

Ỹ = [ℜ{rvec(Y)},ℑ{rvec(Y)}] , S̃ =
[
ℜ(s1), · · · ,ℜ(sNQ

),ℑ(s1), · · · ,ℑ(sNQ
)
]

,

χ̃ =




ℜ{rvec(A1)}, ℑ{rvec(A1)}
...

...

ℜ{rvec(ANQ
)}, ℑ{rvec(ANQ

)}
−ℑ{rvec(B1)}, ℜ{rvec(B1)}

...
...

−ℑ{rvec(BNQ
)}, ℜ{rvec(BNQ

)}




,

H̃ =

[
INP

⊗ℜ(H) INP
⊗ℑ(H)

−INP
⊗ℑ(H) INP

⊗ℜ(H)

]
,

Ṽ = [ℜ{rvec(V)},ℑ{rvec(V)}] .

(6.83)

If the fading channels are assumed to be known at the receiver, then the general ML MIMO detec-

tion may be reformulated for LDCs as:

ˆ̃
S = arg min

∀S̃i
‖Ỹ − S̃i · χ̃ · H̃‖2, (6.84)

where the equivalent dispersion matrixχ̃ is known to both the transmitter and receiver. According

to the transmit power constraint, we always have tr(χ̃Tχ̃) = 2NP. It is also worth noting that there

is a total number ofI = MNQ combinations for the LDC codeword of{S̃i}I−1
i=0 in Eq. (6.84).

It can be seen in Eq. (6.82) that the equivalent LDC received signal model is the same as the

V-BLAST received signal model of Eq. (6.1), where the LDC’s equivalent fading channels matrix

is given byχ̃ · H̃. Therefore, the LDC’s ML detection of Eq. (6.94) may also be solved by the SD

or by the sub-optimal linear V-BLAST detectors (e.g. MMSE/ZF) introduced in Sec. 6.2.

According to the LDC’s input-output relationship of Eq. (6.82), the CCMC capacity of the LDC

is given by:

CCCMC
LDC (SNR) = max

p(S̃)

1

2NP
H(Ỹ) − 1

2NP
H(Ỹ|S̃)

=
1

2NP
E
[
log2 det

(
I2NP NR

+ ηH̃T χ̃Tχ̃H̃

)]
,

(6.85)

where the entropies are given byH(Ỹ) = log2 det
(

πe
2 H̃Tχ̃Tχ̃H̃ + πeN0

2 I2NP NR

)
andH(Ỹ|S̃) =

H(Ṽ) = log2 det
(

πeN0
2 I2NP NR

)
. We note that the CCMC capacity of virtually all MIMO schemes,

whose transmission matrix may be expressed in the form of Eq.(6.79), may be evluated by Eq. (6.85).

Obviously, wheñχ is a scaled unitary matrix formulated as:

χ̃Tχ̃ =
1

NT
I2NT NP

, (6.86)

the CCMC capacity of the LDC in Eq. (6.85) may achieve its highest possible value of:

CCCMC
LDC (SNR) =

1

2NP
E

[
log2 det

(
I2NP NR

+
η

NT
H̃TH̃

)]
. (6.87)
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Furthermore, it may be readily seen that the LDC’s capacity of Eq. (6.87) may achieve the maxi-

mum MIMO capacity of Eq. (6.4), if and only if we havẽHTH̃ = I2NP
⊗ (HHH). Unfortunately,

this is only true when a single RANR = 1 is used. This is because the term ofH̃TH̃ in Eq. (6.87)

may be extended as:

H̃TH̃ =

[
INP

⊗
[
ℜ(HT)ℜ(H) + ℑ(HT)ℑ(H)

]
INP

⊗
[
ℜ(HT)ℑ(H) −ℑ(HT)ℜ(H)

]

INP
⊗
[
ℑ(HT)ℜ(H) −ℜ(HT)ℑ(H)

]
INP

⊗
[
ℜ(HT)ℜ(H) + ℑ(HT)ℑ(H)

]
]

,

(6.88)

which only becomes equal toI2NP
⊗ (HHH), when we haveℜ(HT)ℑ(H) = ℑ(HT)ℜ(H) for

NR = 1. In summary, the relationship between the LDC capacity of Eq. (6.87) and the MIMO

capacity of Eq. (6.4) may be expressed asCCCMC
LDC (SNR) ≤ CCCMC

MIMO(SNR), where the equality

only holds forNR = 1.

Nonetheless, the LDC capacity is expected to be higher than STBC capacity summarized in

Sec. 6.3.1.5. Considering Alamouti’s classic G2-STBC as anexample, according to Eq. (6.56), the

equivalent dispersion matrix̃χ is given by:

χ̃ =




1√
2

0 0 1√
2

0 0 0 0

0 1√
2

− 1√
2

0 0 0 0 0

0 0 0 0 1√
2

0 0 − 1√
2

0 0 0 0 0 1√
2

1√
2

0




, (6.89)

and it may be readily seen that it does not have orthogonal columns, since we havẽχTχ̃ 6= 1
2 I8. We

also note that it is straightforward to prove that the capacity of Alamouti’s G2-STBC evaluated by

Eq. (6.85) based on the equivalent LDC dispersion matrix of Eq. (6.89) is exactly the same as that

calculated by Eq. (6.71).

In fact, in order to guarantee that the LDC’s equivalent dispersion matrixχ̃ has orthogonal

columns as specified by Eq. (6.86), we may haveNQ ≥ NT NP. Considering that further increas-

ing NQ will inevitably reduce the codewords’ difference‖Si − Sī‖, which degrades the PEP of

Eq. (6.9), the LDC design is suggested to satisfyNQ = NT NP. Owing to the earlier suggestion

of NT = NP recommended owing to its diversity and delay benefits, the LDC may achieve the

throughput ofR =
NQ

NP
BPS= NTBPS, which is exactly the same as the V-BLAST throughput.

In summary, according to Eq. (6.86), the LDC dispersion matrix χ̃ may be randomly gener-

ated as a(2NQ × 2NQ)-element unitary matrix scaled by1√
NT

, so that the CCMC capacity is

maximized. Moreover, in order to also retain the maximum attainable diversity order, the randomly

generated dispersion matrix should have a full rank for all∆ = (Si − Sī)H(Si − Sī) in Eq. (6.10c).

Since it is also important to maximize the coding gain in Eq. (6.10c), the optimum LDC dispersion

matrix chosen from random search should satisfy:

max {det(∆)}min, (6.90)

where {det(∆)}min is the minimum determinantdet(∆) among all legitimate∆ values for a

randomly generated̃χ. Further developments on LDC codeword generation may be found in
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[190–194], which also tackle the problem of having a diminishing distance between legitimate

codewords, when aiming for the high-throughput LDC codeword generation. Nonetheless, the

random generation according to the above design guidelinesis sufficiently effective for producing

good LDCs that achieve both a multiplexing gain and a diversity gain.

6.3.2.3 Capacity-Achieving Linear Dispersion Codes

In order to achieve the maximum attainable MIMO capacity, itwas proposed in [188] that the

LDC’s dispersion matrices in Eq. (6.79) should satisfy{Aq = Bq}NQ

q=1, just like the V-BLAST

characterized in Eq. (6.44), so that the real and imaginary parts of the modulatedMPSK/QAM

symbols may be dispersed together as:

S =
NQ

∑
q=1

[
Aqsq

]
. (6.91)

In this way, the real and the imaginary parts of the received signal model do not have to be decou-

pled, as seen in Eq. (6.82). Instead, vectorizing the received MIMO signal matrixY of Eq. (6.1)

leads to the new received LDC signal model of:

Y = S · χ · H + V, (6.92)

where the matrices are given by:

χ =




rvec(A1)
...

rvec(ANQ
)


 ,

Y = rvec(Y), S = [s1, · · · , sNQ
],

H = INP
⊗ H, V = rvec(V).

(6.93)

It can be seen that the new LDC’s received signal model of Eq. (6.92) is equivalent to that of an

V-BLAST system equipped withNQ TAs andNRNP RAs. Therefore, all the V-BLAST detectors

introduced in Sec. 6.2 may be invoked for LDC detection, where the equivalent multiplexed trans-

mitted symbol vector and the fading channel matrix of the V-BLAST system are given by 1√
NQ

S

and
√

NQχH, respectively. More specifically, the ML detection seen in Eq. (6.13) for V-BLAST

may be invoked for LDC in the form of:

Ŝ = arg min
∀S

i
‖Y − S

i · χ · H‖2, (6.94)

where the equivalent dispersion matrixχ is known to both the transmitter and receiver, while there

is a total number ofI = MNQ combinations for the LDC’s transmission matrix{S
i}I−1

i=0 . The LDC

transceiver is summarized in the schematic diagram of Fig. 6.5.

According to the new input-output relationship of Eq. (6.92), the CCMC capacity of the LDC

model of Eq. (6.91) is given by:

CCCMC
LDC (SNR) = max

p(S)

1

NP
H(Y) − 1

NP
H(Y|S)

=
1

NP
E
[
log2 det

(
INP NR

+ ηH
H

χHχH

)]
,

(6.95)
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Figure 6.5: Schematic of the optimized LDC transceiver.

where the related entropies are given byH(Y) = log2 det
(

πeH
H

χHχH + πeN0INP NR

)
and

H(Y|S) = H(V) = log2 det (πeN0INP NR
). It can be seen in Eq. (6.95) that the CCMC capacity

is maximized when the equivalent dispersion matrixχ has orthogonal columns as represented by:

χHχ =
1

NT
INT NP

, (6.96)

which is scaled according to the power constraint ofE
[
tr(SHS)

]
= NP. As a result, the CCMC

capacity of Eq. (6.95) becomes:

CCCMC
LDC (SNR) =

1

NP
E

{
log2 det

[
INP NR

+
η

NT
(INP

⊗ H)H(INP
⊗ H)

]}

= E

[
log2 det(INR

+
η

NT
HHH)

]
,

(6.97)

which is exactly the same as the full MIMO capacity of Eq. (6.4). Therefore, in order to avoid

any ambiguity, the terminology of LDCs may generally refer to the capacity-achieving model of

Eq. (6.91), rather than to the conventional model of Eq. (6.79).

We note that Eq. (6.96) requiresNQ ≥ NT NP. Hence, for the case of full transmit diver-

sity associated withNT = NP, NQ = NT NP leads to the LDC throughput being the same as

the V-BLAST throughput ofR = NTBPS. Similar to the discussions in Sec. 6.3.2.2, the genera-

tion of LDCs may follow the guidelines of maximizing the CCMCcapacity of Eq. (6.95) and of

minimizing the PEP of Eq. (6.9), which may be summarized as:

(1) Randomly generate a unitary matrixχ of size (N × N), where we haveN = max(NQ, NT NP).
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(a) If NQ > NT NP is required, the LDC dispersion matrix is given by taking thefirst

NT NP columns of the scaled unitary matrix asχ = 1√
NT

χ

[
INT NP

0

]
, where0 is a

(NQ − NT NP)× NT NP-element all-zero matrix.

(b) If NQ = NT NP is required, the LDC’s dispersion matrix is directly given by χ =
1√
NT

χ.

(c) If NQ < NT NP is required, the LDC’s dispersion matrix is given by taking the first

NQ rows of the scaled unitary matrix asχ =
√

NP
NQ

[
INQ

, 0
]

χ, where0 is a NQ ×
(NT NP − NQ)-element all-zero matrix.

(2) Rank criterion: for the resultantI = MNQ LDC codewords{Si}I−1
i=0 of Eq. (6.91), hav-

ing a full rank should be guaranteed for all combinations of∆ = (Si − Sī)H(Si − Sī) as

rank(∆) = min(NT, NP).

(3) Determinant criterion: The minimum determinant among all combinations of∆ is given by

{det(∆)}min. The related random search may be conducted by repeating Steps (1) as well

as (2), and the chosen one should maximize{det(∆)}min.

It is worth emphasizing once again that the LDC’s CCMC capacity is only maximized when

NQ ≥ NT NP. Nonetheless,NQ < NT NP is acceptable in Step (1) for the sake of meeting

specific system requirements, because a lower number of transmitted symbolsNQ normally leads

to a higher Euclidean distance among the LDC codewords‖Si − Sī‖2, which may minimize the

PEP union bound of Eq. (6.9).

Furthermore, according to Hadamard’s inequality, the determinantdet(∆) is maximized when

∆ is unitary, which is the foundation of the orthogonal STBC design. It was proposed in [300] that

the determinant criterion in the LDC design may be translated into making∆ as close to unitary as

possible, which may be quantified as minimizing the following two metrics:

d1 =
NQ

∑
q=1

κ(Aq) =
NQ

∑
q=1

‖A
−1
q ‖ · ‖Aq‖, (6.98a)

d2 = ∑
∀q 6=q̄

‖A
H
q Aq̄ + A

H
q̄ Aq‖, (6.98b)

where the operationκ(·) refers to the condition number of the matrix [281], where we haveκ(A) ≥
1 and the equality only holds for unitary matrices. It can be readily seen that orthogonal codes may

haved1 = NQ andd2 = 0. Moreover, it was also proposed in [8,333] that the determinant criterion

of max {det(∆)}min in the LDC design may be revised for the sake of maximizing theLDC’s

DCMC capacity of Eq. (6.7) in order to pursue an improved near-capacity performance. In fact,

minimizing the PEPE
{

p
(
‖Y − SīH‖2 < ‖V‖2

)}
= E

{
p
[
‖(Si − Sī)H + V‖2 < ‖V‖2

]}

of Eq. (6.9) would automatically result in minimizing the term exp(−‖(Si−S ī)H+V‖2+‖V‖2

N0
) in the

DCMC capacity of Eq. (6.7). Consequently, the LDCs conceived for minimizing the PEP generally

also have a maximized DCMC capacity.
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6.4 Uncoded Spatial Modulation and Space-Time Shift Keying

The development of LDCs has resolved the tradeoff between the diversity and multiplexing gain,

but it is a retrograde step for the tradeoff between performance and complexity. Given that the

STBC’s orthogonality requirement is abandoned, the LDC receivers have to invoke V-BLAST-style

multi-stream detectors, which may exhibit an excessive complexity, when aiming for attaining an

optimal performance. Considering that the family of suboptimal V-BLAST detectors would not

be deemed desirable, especially not in coded systems, because they tend to produce unreliable

soft output LLRs that do not represent the true probabilities as demonstrated in Chapter 2, in this

section, we focus our attention to the SM and STSK families, which are explicitly designed for low-

complexity receivers. The development of SM is introduced in Sec. 6.4.1, and the STSK transceiver

is introduced in Sec. 6.4.2, while their error probability and capacity are analysed in Sec. 6.4.3.

6.4.1 Spatial Modulation

The schematic of the SM transmitter is portrayed in Fig. 6.6.In more details, the first BPS=

log2 M bits are assigned to a singleMPSK/QAM symbolsm = M(m), while the following

BPST = log2 NT source information bits are assigned to activate a single TAout of a total ofNT

TAs. As a result, the (1 × NT)-element SM transmission vector may be expressed as [195–197]:

S = [0 · · · 0︸ ︷︷ ︸
v−1

, sm, 0 · · · 0︸ ︷︷ ︸
NT−v

]. (6.99)

Based on the received MIMO signal model of Eq. (6.1), the full-search ML MIMO detection of

Eq. (6.13) may also be invoked for SM. However, as it was demonstrated in Sec. 6.2 for V-BLAST,

the MIMO detection complexity may increase exponentially with the throughputR. More explic-

itly, the complexity order of the MIMO detection of Eq. (6.13) is given byO(I), where the total

number of combinations is given byI = 2R for both V-BLAST and SM.

Owing to the fact that only a single TA is activated, opposed to V-BLAST, SM does not intro-
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duce any IAI. Therefore, in order to conceive a single-antenna-based low complexity SM detector,

the TA activation index and the classic modulated symbol index are suggested to be detected sep-

arately in [197], so that the complexity order of this so-called Maximum Ratio Combining (MRC)

based SM detection may be reduced toO(NT + M). In more details, under the assumption of

having perfect CSI knowledge at the receiver, the matched filter output may be recorded as:

Z = YHH, (6.100)

where thev-th element in the(1 × NT)-element vectorZ is given by{zv = YHH
v,−}NT

v=1, and the

(1 × NR)-element vector{Hv,−}NT
v=1 refers to thev-th row in H. The MRC based SM detector

may determine the TA activation index by comparing the absolute values of the elements in the

matched filter’s output vectorZ as [197]:

v̂ = arg max
∀v∈{1,··· ,NT}

|zv|. (6.101)

Upon obtaining the TA activation index̂v, the v̂-th element inZ may be demodulated as:

m̂ = M
−1(zv̂). (6.102)

Therefore, the complexity order of MRC based SM detection isin fact given byO(NT + 1), where

Eq. (6.102) directly mapszv̂ to the closest constellation point.

Unfortunately, as demonstrated in [198], the MRC based SM detection suffers from an irre-

ducible error floor. It can be seen in Eq. (6.102) that the demodulator may be misled into detecting

the wrong classic modulated symbol, if the TA activation index obtained in Eq. (6.101) is erroneous.

In order to restore the ML detection capability, the simplified SM detector of [198] streamlines the

ML MIMO detector of Eq. (6.13) as:

Ŝ = arg min
∀m∈{0,··· ,M−1},∀v∈{1,··· ,NT}

‖Y‖2 + κ2
v|sm|2 − 2ℜ

[
(sm)∗YHH

v,−
]

= arg min
∀m∈{0,··· ,M−1},∀v∈{1,··· ,NT}

κ2
v|sm|2 − 2ℜ [(sm)∗zv] ,

(6.103)

where we have{κv = ‖Hv,−‖}NT
v=1, and the constant of‖Y‖2 is omitted from the MIMO decision

metric of Eq. (6.13). As a benefit of having (NT − 1) zeros in the SM transmission vector of

Eq. (6.99), the computational complexity of the SM detection of Eq. (6.103) is considerably lower

than that of the conventional MIMO detection of Eq. (6.13). Nonetheless, the complexity order of

the simplified SM detection of Eq. (6.103) is still given byO(I).

When SM was first proposed as an alternative to V-BLAST MIMO, the most appealing feature

of SM was its design objective of imposing a low receiver complexity. Therefore, in this section,

we focus our attention on the strategically important subject of reduced-complexity SM detectors.

The SM detector design has been developed in two directions in the open literature. The first option

is to develop the optimal SM detection [201–204] that endeavours to reduce the complexity order

of the simplified SM detection of Eq. (6.103) without imposing any performance loss. The second

approach elaborated on in [141, 205–210] aims for improvingthe performance of the sub-optimal
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MRC based SM detection of Eqs. (6.101) and (6.102), but attaining the optimal SM performance

is not guaranteed.

For the optimal SM detectors, we firstly propose a hard-decision-aided reduced-scope SM de-

tection in Sec. 6.4.1.1 by relying on our previous publications of [141, 202, 203, 234]. In more

details, by exploring the symmetry provided by the Gray-labelled MPSK/QAM constellation di-

agrams, the normalized matched filter output elements may befirst partially demodulated, so that

the correlation between the TA index and the classic modulated symbol index may be taken into

account, when the TA index is detected. The schematic of thisreduced-scope SM receiver is por-

trayed by Fig. 6.7, where only the constellation points located in the first quadrant are visited by

the “magnitude demodulator” before TA index detection, which leads to a reduced SM detection

search scope. Following this, according to the already detected TA activation index, only a single

MPSK/QAM demodulation has to be completed by the “polarity demodulator”, which determines

the quadrant of the demodulated symbol. The reduced-scope SM detection will be detailed in

Sec. 6.4.1.1. Secondly, the recently proposed hard-decision-aided hard-limiter-based SM detec-

tion [204] is introduced in Sec. 6.4.1.2, where full classicdemodulation is performed before the

TA index detection, as depicted by Fig. 6.8. Owing to the factthat the linearMPSK/QAM de-

modulation complexity is quite low, as presented by Table 6.2, the hard-limiter-based SM detection

complexity may not increase with theMPSK/QAM constellation size. We will demonstrate in

Sec. 6.5 based on our performance results that the hard-limiter-based SM detection only exhibits a

complexity advantage, when high-order PSK/QAM is employed. Furthermore, the hard-decision-

aided SD that is specifically modified for SM [211–213] is alsosummarized in Sec. 6.4.1.3.

For the sub-optimal SM detectors, fist of all, the so-called normalized-MRC-based SM detec-

tion of [205–207] is introduced in Sec. 6.4.1.4, where the MRC’s TA index detection is improved

by normalizing the matched filter output{zv}NT
v=1 obtained from Eq. (6.100). The terminology of

List normalized-MRC based SM detection [205,206,208] willbe introduced in Sec. 6.4.1.5, where

instead of making a decision on the optimum TA index in Eq. (6.101), a list of possible TA indices
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Figure 6.8: Schematic of the hard-decision-aided hard-limiter-based SM receiver. Its dif-

ference to Fig. 6.7 is that full classic demodulation is performed before the TA index

detection, because the hard-decision-aided linearMPSK/QAM demodulation complexity

is quite low in uncoded systems.

are recorded and then the optimum TA index may be decided after invoking the classic demodulator

for all the TA index candidates in the list. Furthermore, theunity-constellation-power-based SM

detection [141] will be presented in Sec. 6.4.1.6, which is capable of further improving the MRC’s

TA index detection of Eq. (6.101) by also taking into accountall the non-negativeMPSK/QAM

constellation points, whose signal powers were normalizedto unity. Accordingly, a List unity-

constellation-power based SM detection algorithm [209] isalso introduced in Sec. 6.4.1.6. Lastly,

Sec. 6.4.1.7 describes the so-called distance-based-detection aided SM receiver [210], which estab-

lishes the TA index list based on the distances between the demodulated symbols and the matched

filter output elements.

6.4.1.1 Hard-Decision-Aided Reduced-Scope-Based Optimal SM Detection

The reduced-scope SM detection [203] portrayed by Fig. 6.7 aims for restoring the ML detection

capability of the MRC-based SM detection by separating the TA index and the classic modulated

symbol index from the optimal SM detection of Eq. (6.103) without imposing any performance

loss. First of all, we may further extend the optimal SM detection of Eq. (6.103) as:

Ŝ = arg max
∀v∈{1,··· ,NT},∀m∈{0,··· ,M−1}

ℜ(z̃v)ℜ(sm) +ℑ(z̃v)ℑ(sm) − κ2
v|sm|2, (6.104)

where we have{z̃v = 2zv}NT
v=1. Let us now consider QPSK aided SM detection as an exam-

ple. We deliberately rotate QPSK’s detected constellationdiagram anti-clockwise byπ/4, so

that there is only a single constellation point in each quadrant. As a result, the decision vari-

able should be rotated asz′v = z̃v exp(j π
4 ), and the detected constellation points are given by

{s′m = sm exp(j π
4 )}M−1

m=0 = { 1√
2
+ j 1√

2
, 1√

2
− j 1√

2
,− 1√

2
+ j 1√

2
,− 1√

2
− j 1√

2
}. For a specific TA
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indexv, the maximum metric over all rotated QPSK constellations isgiven by:

dv = max





ℜ(z′v)√
2

+ ℑ(z′v)√
2

− κ2
v, ℜ(z′v)√

2
− ℑ(z′v)√

2
− κ2

v,

−ℜ(z′v)√
2

+ ℑ(z′v)√
2

− κ2
v, −ℜ(z′v)√

2
− ℑ(z′v)√

2
− κ2

v



 (6.105a)

=

∣∣∣∣
ℜ(z′v)√

2

∣∣∣∣+
∣∣∣∣
ℑ(z′v)√

2

∣∣∣∣− κ2
v. (6.105b)

It can be seen in Eq. (6.105) that the four comparisons involving four metric evaluations of

Eq. (6.105a) may be carried out by a single metric evaluationaccording to Eq. (6.105b). As a

result, the optimum TA activation index̂v may be found by searching for the maximum metric over

all theNT candidates{dv}NT
v=1, regardless of which particular QPSK symbol was transmitted. This

may be expressed as:

v̂ = arg max
∀v∈{1,··· ,NT}

dv. (6.106)

Unlike the MRC-based detection of Eq. (6.101), the reduced-scope-based TA index detection of

Eq. (6.106) is directly derived from the ML detection of Eq. (6.104), which does not impose any

performance loss. Furthermore, upon finding the optimum TA index v̂, QPSK demodulation may

be concluded by directly testing thev̂-th decision variablez′v̂ as:

b̂1 =

{
1, if ℑ(z′v̂) < 0

0, otherwise
, b̂2 =

{
1, if ℜ(z′v̂) < 0

0, otherwise
. (6.107)

Similarly, when Square 16QAM is employed, the maximum metrics{dv}NT
v=1 seen in Eq. (6.104)

may be obtained by testing both the real and the imaginary parts of the QAM constellation sepa-

rately, which may be expressed as:

dv,0
Re = max

{
1√
10
ℜ(z̃v) − 1

10κ2
v, − 1√

10
ℜ(z̃v)− 1

10κ2
v

}
=
∣∣∣ 1√

10
ℜ(z̃v)

∣∣∣− 1
10κ2

v,

dv,1
Re = max

{
3√
10
ℜ(z̃v) − 9

10κ2
v, − 3√

10
ℜ(z̃v)− 9

10κ2
v

}
=
∣∣∣ 3√

10
ℜ(z̃v)

∣∣∣− 9
10κ2

v,

dv,0
Im = max

{
1√
10
ℑ(z̃v) − 1

10κ2
v, − 1√

10
ℑ(z̃v)− 1

10κ2
v

}
=
∣∣∣ 1√

10
ℑ(z̃v)

∣∣∣− 1
10κ2

v,

dv,1
Im = max

{
3√
10
ℑ(z̃v) − 9

10κ2
v, − 3√

10
ℑ(z̃v)− 9

10κ2
v

}
=
∣∣∣ 3√

10
ℑ(z̃v)

∣∣∣− 9
10κ2

v,

(6.108)

where each one of them only has to be evaluated once. Furthermore, for a specific TA indexv, the

maximum metric is given by:

dv = max
g∈{0,1}

d
v,g
Re + max

f∈{0,1}
d

v, f
Im , (6.109)

where the optimum PAM magnitude index pairsĝ and f̂ obtained for each{dv}NT
v=1 may be

recorded. There are a total ofNT pairs, hence they may be represented by{ĝv}NT
v=1 and{ f̂v}NT

v=1.

Based on Eq. (6.109), the TA activation index detection of Eq. (6.106) may be invoked, and then

the second part of the Square 16QAM demodulation may be concluded as follows:

b̂1 =

{
1, if ℑ(z̃v̂) < 0

0, otherwise
, b̂2 =

{
1, if f̂v̂ = 1 for dv̂

0, otherwise
,

b̂3 =

{
1, if ℜ(z̃v̂) < 0

0, otherwise
, b̂4 =

{
1, if ĝv̂ = 1 for dv̂

0, otherwise
.

(6.110)
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(1) Define the metrics that test the real and imaginary parts separately as:
d

v,g
Re =

∣∣Agℜ(z̃v)
∣∣− A2

gκ2
v,

d
v, f
Im =

∣∣B fℑ(z̃v)
∣∣− B2

f κ
2
v,

where{Ag}MRe/2−1
g=0 and {B f }MIm/2−1

f =0 are the positive real PAM magnitudes on the x-
axis and y-axis of SquareMQAM constellation diagram, respectively. For SquareMQAM
associated with an even BPS, we haveMRe = MIm =

√
M. For the case of BPS being an

odd number, we haveMRe =
√

2M andMIm =
√

M/2.
(2) For a specific TA activation indexv, the maximum metric over all SquareMQAM constel-

lations is given by testing the real and imaginary parts separately as:

dv = maxg∈{0,··· ,MRe/2−1} d
v,g
Re + max f∈{0,··· ,MIm/2−1} d

v, f
Im ,

where the optimum PAM magnitudes index pairsĝ and f̂ obtained for each{dv}NT
v=1 may

be recorded as{ĝv}NT
v=1 and{ f̂v}NT

v=1.
(3) The optimum TA activation index may be found by:

v̂ = arg max∀v∈{1,··· ,NT} dv,
and then the corresponding(BPST = log2 NT) hard-bit decisions may be obtained by
translatingv̂ back to binary bits as[b̂BPS+1, · · · , b̂BPS+BPST

] = dec2bin(v̂ − 1).
(4) The first bit and the(BPSIm + 1 = log2 MIm + 1)-th bit which determine the signs may be

demodulated as:

b̂1 =

{
1, if ℑ(z̃v̂) < 0
0, otherwise

, b̂BPSIm+1 =

{
1, if ℜ(z̃v̂) < 0
0, otherwise

.

(5) For the remaining (BPS− 2) bits which determine the magnitudes, we have
[b̂BPSIm+2, · · · , b̂BPS] = dec2bin(ĝv̂) and [b̂2, · · · , b̂BPSIm ] = dec2bin( f̂v̂), whereĝv̂ and
f̂v̂ are the specific PAM magnitude index pairs that are recorded for dv̂ in Step (2).

Table 6.8: Algorithm 6.1: Hard-decision-aided reduced-scope optimal SM detection,
when SquareMQAM is employed.

The specific index pair̂fv̂ andĝv̂ are recovered from Eq. (6.109).

The reduced-scope optimal SM detection conceived for the case of employing SquareMQAM

is summarized in Table 6.8, while its detection complexity order is given byO(MReNT/2 +

MImNT/2). Furthermore, the reduced-scope optimal SM detection derived for the case of em-

ploying genericMPSK/QAM is summarized in Table 6.9, whose detection complexity order is

given byO(MNT/4). We note that if theMPSK or StarMQAM constellations are rotated at

the transmitter according to the instructions in Step (1) ofTable 6.9, the rotation of the decision

variable{z̃v}NT
v=1 may be omitted from the SM receiver’s signal processing operations. A common

rotation of all theMPSK/QAM constellation points does not change the performance results.

It can be seen in Tables 6.8 and 6.9 that the optimum TA index detection of Step (3) in both

Algorithm 6.1 and 6.2 requires partial demodulation, whichimplies that although the classic mod-

ulated symbol index has not been explicitly detected beforeobtaining the TA activation index, the

MPSK/QAM constellation points in the first quadrant are visited in Steps (1) and (2) of both Al-

gorithm 6.1 and 6.2. However, we would like to stress that thefull MPSK/QAM demodulation

has not been invokedNT times for determining the TA activation index, because after all, the TA

index detection does not rely on the knowledge of which specific MPSK/QAM constellation point

was transmitted. Instead, the correlation between the classic modulated symbol index and the TA

index is carefully taken into accout. As a result, the complexity order of reduced-scope optimal SM
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(1) Define the new test metrics as:
dv,g =

∣∣Agℜ(z′v)
∣∣+

∣∣Bgℑ(z′v)
∣∣− (A2

g + B2
g)κ2

v,

where{(Ag, Bg)}M/4−1
g=0 denote the coordinates of the rotatedMPSK/QAM constellation

points in the first quadrant. The detector’s rotatedMPSK constellation points are{s′m =
sm exp(j π

M )}M−1
m=0 , and the corresponding decision variables are{z′v = z̃v exp(j π

M )}NT
v=1.

For StarMQAM, the detector’s rotated constellation points are{s′m = sm exp(j π
MP

)}M−1
m=0 ,

and hence we have{z′v = z̃v exp(j π
MP

)}NT
v=1. In this way, there are exactlyM/4 constella-

tion points in each quadrant.
(2) For a specific TA activation indexv, the maximum metric over allMPSK/QAM constella-

tions is given by:
dv = maxg∈{0,··· ,M/4−1} dv,g,

where the optimum constellation index̂g obtained for each{dv}NT
v=1 may be recorded as

{ĝv}NT
v=1.

(3) The optimum TA activation index may be found by:
v̂ = arg maxv∈{1,··· ,NT} dv,

and then the corresponding(BPST = log2 NT) hard-bit decisions may be obtained by
translatingv̂ back to binary bits as[b̂BPS+1, · · · , b̂BPS+BPST

] = dec2bin(v̂ − 1).
(4) The first bit and the second bit, which determine the signs, may be demodulated as:

b̂1 =

{
1, if ℑ(z′v̂) < 0
0, otherwise

, b̂2 =

{
1, if ℜ(z′v̂) < 0
0, otherwise

.

(5) For the remaining (BPS− 2) bits which determine the magnitudes, we have
[b̂3, · · · , b̂BPS] = dec2bin(ĝv̂), where ĝv̂ is the specific group index recorded fordv̂ in
Step (2).

Table 6.9: Algorithm 6.2: Hard-decision-aided reduced-scope optimal SM detection,
when genericMPSK/QAM is employed.

detection is expected to be higher than that of the MRC-basedsuboptimal SM detection.

However, considering that the ML SM detection capability isretained, the reduced-scope opti-

mal SM detection exhibits a subtantially lower detection complexity than the conventional optimal

SM detection, espcially when either the number of modulation levels M or that of the TAsNT

increases. It is worth noting that all the computational complexity quantified in terms of the real-

valued multiplications is imposed during Step (1) of both Algorithm 6.1 and 6.2, which implies

that the practical complexity reduction ratio provided by the proposed algorithms may become

substantial, since all the unneccessary calculations are avoided.

6.4.1.2 Hard-Decision-Aided Hard-Limiter-Based OptimalSM Detection

Due to the fact that detecting the TA index is generally much more computationally complex than

demodulation, the hard-limiter-based optimal SM detection portrayed by Fig. 6.8 invokes the full

MPSK/QAM demodulators first in order to obtain the optimum modulation indices for all can-

didate TA indices and then the TA index detection is performed with the aid of the demodulated

MPSK/QAM symbols. This method was first advocated in [201] andfurther interpreted in [204].

Let us assume that a tentative TA activation indexv is fixed, and then the SM detection of
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Eq. (6.103) may be rewritten as:

m̂v = arg min
∀m∈{0,··· ,M−1}

(|ẑv − sm|2 − |ẑv|2)κ2
v

= arg min
∀m∈{0,··· ,M−1}

|ẑv − sm|2

= M
−1(ẑv),

(6.111)

where the demodulator’s decision variable is given by{ẑv = zv/κ2
v}NT

v=1. In this way, the optimum

modulated symbol index̂mv associated with all TA activation indices may be obtained bydirectly

demappinĝzv to the closest legitimate constellation point.

Upon obtaining the optimum constellation points for all candidate TA activation indices{sm̂v}NT
v=1,

the optimum TA index may be obtained based on Eq. (6.103) as:

v̂ = arg min
∀v∈{1,··· ,NT}

(
∣∣ẑv − sm̂v

∣∣2 − |ẑv|2)κ2
v (6.112)

and then the corresponding(BPST = log2 NT) hard-bit decisions may be obtained by translating

v̂ back to binary bits. Furthermore, the remaining(BPS = log2 M) hard-bit decisions may be

obtained by directly translating the specific modulated symbol indexm̂v̂ back to binary bits.

The hard-limiter-based optimal SM detection’s complexityorder is given byO(NT + NT),

where the demodulator has to be invokedNT times before TA index detection. It can be seen that

the detection complexity order does not grow with the numberof modulation levelsM, which is

one of the most appealing advantages of hard-limiter-basedoptimal SM detection, espcially for the

case of employing high-orderMPSK/QAM schemes.

6.4.1.3 Hard-Decision-Aided SD Conceived for SM Detection

It was suggested in [211, 212] that the conventional MIMO detector’s transmit search space in

Eq. (6.13) may be reduced by the so-called Transmitter-centric SD (Tx-SD) as:

{m̂, v̂} = arg min
∀{m,v}∈S

‖Y − smHv,−‖2 , (6.113)

whereS denotes the Tx-SD search space. In more details, whenMPSK is employed, the V-BLAST

SD’s PED increment of Eq. (6.20) may be simplified for SM Tx-SDas:
∣∣∣Ỹv − lv,vsv

∣∣∣
2
< R2, (6.114)

because only one transmit TA is activated. Therefore, the PED increment of Eq. (6.114) defines a

new search space for{m, v}, since only the candidates that lie inside the sphere have tobe taken

into account by the SM detection of Eq. (6.113).

Similarly, when SquareMQAM is employed, the SD’s PED increment of Eq. (6.32) may be

simplified for SM as:
(

Ỹv − lv,vsv

)2
< R2, ∀v ∈ {NT + 1, · · · , 2NT}, (6.115a)

(
Ỹv − lv+NT,vsv+NT

− lv,vsv

)2
< R2, ∀v ∈ {1, · · · , NT}. (6.115b)
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The new search space defined in Eq. (6.115) may be further reformulated as [211,212]:

−R + Ỹv

lv,v
< sv <

R + Ỹv

lv,v
, ∀v ∈ {NT + 1, · · · , 2NT}, (6.116a)

−R + (Ỹv − lv+NT,vsv+NT
)

lv,v
< sv <

R + (Ỹv − lv+NT,vsv+NT
)

lv,v
, ∀v ∈ {1, · · · , NT}.

(6.116b)

This Tx-SD-defined search space may effectively reduce the SM detector’s search space formulated

in Eq. (6.113).

Furthermore, it was also proposed in [213] that the receive search space of the conventional

MIMO detection of Eq. (6.13) may be reduced by the so-called Receiver-centric SD (Rx-SD) as:

{m̂, v̂} = arg max
∀{m,v}

{
n(m, v)|

n(m,v)

∑
r=1

|Yr − smHv,r|2 < R2

}
, (6.117)

whereYr refers to the signal received at ther-th RA, whileHv,r models the fading channel spanning

from the v-th TA to the r-th RA. The Rx-SD of Eq. (6.117) aims for finding the optimum pair

{m̂, v̂}, which may maximize the countern(m, v). More explicitly, for a specific data-carrying

index pair{m, v}, the following PED is examined:

d
{m,v}
r = d

{m,v}
r−1 + |Yr − smHv,r|2 < R2. (6.118)

If the PEDd
{m,v}
r lies inside the Rx-SD sphere specified by Eq. (6.118), the counter may be incre-

mented according ton(m, v) = n(m, v) + 1, and the Rx-SD indexr may continue to be increased.

Otherwise, the PED evaluation of Eq. (6.118) may be terminated, and the next index pair{m, v}
shall be examined. The sphere radius may be updated asR2 = d

{m,v}
NR

, when the Rx-SD index

reachesr = NR. The Rx-SD tree search is supposed to be experienced by all the I = NT M can-

didates of the index pair{m, v}, but a reduced-complexity termination may be expected, when the

sphere radiusR is swiftly reduced in the high-SNR region. The optimum indexpair {m̂, v̂} seen

in Eq. (6.117) is the one, which maximizes the counternmax = max∀{m,v} n(m, v) with the aid of

the minimum final PED value as{m̂, v̂} = arg min d
{m,v}
nmax .

As demonstrated in [211,212], the Tx-SD of Eq. (6.113) and the Rx-SD of Eq. (6.118) may be

combined as:

{m̂, v̂} = arg max
∀{m,v}∈S

{
n(m, v)|

n(m,v)

∑
r=1

|Yr − smHv,r|2 < R2

}
, (6.119)

where the transmit search space is limited withinS, while the receive search space is confined by

the Rx-SD countern(m, v).

For the sake of discussion, it was thoroughly reviewed in [211–213] that as a benefit of the SM’s

specific feature of single TA activation, the SD conceived for SM exhibits a substantially reduced

computational complexity compared to the SD conceived for conventional V-BLAST. Furthermore,

the optimum SM performance may be attained by the SD, provided that the sphere radius is ini-

tialized to be sufficiently large. However, the SD complexity still remains SNR-dependent, since
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its complexity the lower bound can only be reached in the high-SNR region. Moreover, it is im-

portant to note that the hard-limiter-based SM detection presented in Sec. 6.4.1.2 may be seen as a

special case of the SD aided SM detection. This is because that the transmit search space associ-

ated with the classic modulated symbol indexm is limited by minimizing the hard-limiter metric in

Eq. (6.111), while the receive search space is reduced to a single-antenna-based scenario, since the

hard-limiter-based SM detector examines the matched filteroutputs{zv}NT
v=1 instead of the received

signals{Yr}NR
r=1.

6.4.1.4 Hard-Decision-Aided Normalized-MRC-Based Suboptimal SM Detection

First of all, let us introduce the normalized matched filter output as:

Z = Y
(
H
)H

, (6.120)

where each row in the normalized(NT × NR)-element fading channels matrixH is given by
{

Hv,− = Hv,−/κv

}NT

v=1
, and thev-th element in the(1 × NT)-element normalized matched fil-

ter output vectorZ is given by{zv = YH
H
v,− = zv/κv}NT

v=1.

It was demonstrated in [205–207] that a more accurate estimate of the TA activation index may

be delivered by testing the normalized matched filter outputof Eq. (6.120) instead of the direct

matched filter output in the MRC based SM detection of Eq. (6.101). Therefore, the normalized-

MRC-based SM detection may determine the TA index by :

v̂ = arg max
∀v∈{1,··· ,NT}

|zv|. (6.121)

Upon obtaining the TA activation index̂v, the linearMPSK/QAM demodulator of Eq. (6.111) may

be invoked for detecting the classic modulated symbol indexas:

m̂ = M
−1(zv̂/κv̂). (6.122)

Therefore, the complexity order of normalized-MRC-based SM detection is also given byO(NT +

1).

The so-called signal-vector-based detection proposed in [207] operates based on the fact that the

SquareMQAM symbol does not change the direction of the received signal vectorY = smHv,−.

The signal-vector-based detection’s estimate of the TA activation index is given by:

v̂ = arg min
∀v∈{1,··· ,NT}

arccos

(
|YHH

v,−|
‖Y‖‖Hv,−‖

)

= arg min
∀v∈{1,··· ,NT}

arccos

( |zv|
‖Y‖

)
,

(6.123)

which is in fact equivalent to the normalized-MRC-based estimation of Eq. (6.121), becausearccos(·)
is a function that monotonically decreases with respect to its argument, and‖Y‖ in Eq. (6.123) is a

constant.
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6.4.1.5 Hard-Decision-Aided List-Normalized-MRC-BasedSuboptimal SM Detection

The normalized-MRC-based SM detection still suffers from the problem of imperfect TA index

estimation. Therefore, to circumvent this, the List-normalized-MRC-based SM detection is intro-

duced in [205, 206, 208], where a total ofNList TA indices are taken into account in order to avoid

the situation of missing the optimum TA index candidate.

More explicitly, instead of selecting a single TA index in Eq. (6.121), a list ofNList possible TA

candidates is compiled as:

[v1, · · · , vNList ] = arg sortD∀v∈{1,··· ,NT} |zv|. (6.124)

where the operation “sortD” sorts all the elements{|zv|}NT
v=1 in decreasing order. In the TA index

list, v1 represents the TA index associated with the highest metric|zv1
|, andvNList associated with

the lowest metric|zvNList
|. We have1 ≤ NList ≤ NT, where the special cases ofNList = 1

andNList = NT correspond to the normalized-MRC-based SM detection and tothe optimum SM

detection, respectively.

Following this, the demodulator may be invokedNList times for all the candidates on the list as:

m̂vt = M
−1(zvt /κvt), 1 ≤ t ≤ NList. (6.125)

The TA activation index may now be confirmed by comparing theNList candidates associated

with their respective optimum classic modulated symbol indices according to Eq. (6.103) as:

v̂ = vt̂ = arg min
∀t∈{1,··· ,NList}

κ2
vt
|sm̂vt |2 − 2κvtℜ{(sm̂vt )∗zvt}. (6.126)

Then the classic modulated symbol index may be given bym̂vt̂
, which is obtained from Eq. (6.125).

The detected classic modulated symbol index as well as the detected TA activation index may now

be translated back to bits. The complexity order of the List-normalized-MRC-based SM detector

is given byO(NT + 2NList), where the demodulator has to be invokedNList times in Eq. (6.125)

before comparing theNList candidates in Eq. (6.126).

As a further advance, it was proposed in [334, 335] that a classic modulated symbol index list

may be introduced in order to strike a tradeoff between the performance and complexity of the

demodulator. More explicitly, a list of constellation points is established for replacing the complete

search space for{sm}M−1
m=0 of Eq. (6.103). In [334], all Square QAM constellations are partitioned

into level-1 subsets as well as level-2 subsets, and onlyNList−m1 constellation points in the level-1

subset andNList−m2 constellation points in the level-2 subset are considered for the demodulation.

In [335], the3 ∼ 5 constellation points that surround the decision variablezv/κv are considerred

for demodulation. As summarized in Table 6.2, the hard-decision-aidedMPSK/QAM demodula-

tion may be implemented at a very low detection complexity, and hence the further discussion of

sub-optimal modulation list establishment in [334, 335] may be avoided in uncoded systems. We

note that the TA index list based SM detection of [205, 206] may be considered to represent the

upper bound for [334,335] in terms of both performance and complexity.
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6.4.1.6 Hard-Decision-Aided Unity-Constellation-Power-Based Suboptimal SM Detection

The unity-constellation-power-based suboptimal SM detection is proposed in [141], where a total of

M̃ candidates of non-negative constellation points associated with unity constellation power{s̃m̃ =
|ℜ(sm)|
|sm| + j |ℑ(sm)|

|sm| }M̃
m̃=1 are taken into account for the sake of more reliable TA index estimation. In

more details, the unity-constellation-power-based TA index detection is given by:

v̂ = arg max
∀v∈{1,··· ,NT},∀m̃∈{1,··· ,M̃}

|ℜ(zv)|ℜ(s̃m̃) + |ℑ(zv)|ℑ(s̃m̃), (6.127)

and then the demodulation regime of Eq. (6.122) may be invoked in order to detect the classic

modulated symbol index. The complexity order of unity-constellation-power-based SM detection is

given byO(NT M̃ + 1). This method was shown to be especially beneficial [141] for Star MQAM

detection, because when the constellation power is normalized, only a total of(MP/4+ 1) MPPSK

phase candidates focused in the first quadrant has to be considered.

In order to improve the TA index detection of Eq. (6.127), List-unity-constellation-power based

SM detection was proposed in [209], which may follow the sameprocedures as the List-normalized-

MRC-based SM detection of Sec. 6.4.1.5, except that the listestablishment of Eq. (6.124) should

use the metric of|ℜ(zv)|ℜ(s̃m̃) + |ℑ(zv)|ℑ(s̃m̃) in Eq. (6.127) instead of|zv|. As a result, the

complexity order of List-unity-constellation-power-based SM detection is given byO(NT M̃ +

2NList).

6.4.1.7 Hard-Decision-Aided Distance-Ordered-Based Suboptimal SM Detection

The distance-ordered-based suboptimal SM detection of [210] performs classic symbol demodu-

lation first, and then a list of candidate TA indices is established based on the Euclidean distances

between the demodulated symbols and the decision variables.

More explicitly, the hard-limiter-based demodulator of Eq. (6.111) is invoked in order to iden-

tify the optimum classic modulated symbol indices{m̂v}NT
v=1 for all TA index candidates. Following

this, the distance-based TA index list is established by:

[v1, · · · , vNList ] = arg sortI∀v∈{1,··· ,NT} |sm̂v − ẑv|κv, (6.128)

where the sorting operation “sortI” orders all the elements{|sm̂v − ẑv|κv}NT
v=1 according to their

increasing values. Therefore, the TA activation index detected from the list may be decided based

on Eq. (6.103) as:

v̂ = vt̂ = arg min
∀t∈{1,··· ,NList}

(
∣∣ẑvt − sm̂vt

∣∣2 − |ẑvt |2)κ2
vt

. (6.129)

Naturally, the classic modulated symbol index may be directly obtained bym̂vt̂
. The complexity

order of distance-ordered-based SM detection is given byO(2NT + NList).
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Figure 6.9: Schematic of the STSK transceiver, which relieson the LDC schematic of

Fig. 6.5, but instead of a TA, a LDC matrix is activated.

6.4.2 Space-Time Shift Keying Transceiver

The concept of STSK was proposed in [216] as a combination of SM and LDC, so that a transmit

diversity gain may be obtained by the family of SM-style low-complexity MIMO systems. The

schematic of the STSK transceiver is portrayed in Fig. 6.9. The STSK transmitter is modified from

the LDC transmitter of Fig. 6.5, where only a single one out ofa total ofNQ dispersion matrices is

selected for dispersing a singleMPSK/QAM symbol. As a result, the(NP × NT)-element STSK

transmission matrix created from the LDC transmission matrix of Eq. (6.91) may be expressed

as [216]:

S = Aqsm, (6.130)

where the first BPS= log2 M source information bits are assigned to modulate a singleMPSK/QAM

symbolsm = M(m), while the following BPSQ = log2 NQ source information bits are assigned

to select a single dispersion matrixAq among a total number ofNQ candidates. There are a

total of (I = NQ M) STSK codewords for Eq. (6.130), and the STSK throughput is given by

(R =
log2 I

NP
=

BPS+BPSQ

NP
), where the employment ofNP time slots is considered.

Similarly to the signal processing performed at the LDC receiver of Fig. 6.5, the STSK receiver

presented in Fig. 6.9 firstly vectorizes the received MIMO signal model of Eq. (6.1) in order to form

the received LDC signal model of Eq. (6.92), which is rewritten here for the sake of convenience:

Y = S · χ · H + V, (6.131)

where the(1 × NPNR)-element equivalent received signal matrixY = rvec(Y), the (NQ ×
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NP NT)-element equivalent dispersion matrixχ, the(NPNT × NP NR)-element equivalent fading

matrix H = INP
⊗ H and the(1 × NP NR)-element equivalent AWGN matrixV = rvec(V) are

all exactly the same as those of the LDC in Eq. (6.93). However, the(1 × NQ)-element equivalent

STSK input signal vector in Eq. (6.131) is given by:

S = [0 · · · 0︸ ︷︷ ︸
q−1

, sm, 0 · · · 0︸ ︷︷ ︸
NQ−q

], (6.132)

which is in the same form as the SM input signal vector of Eq. (6.99). Therefore, according to the

STSK received signal model of Eq. (6.131), a STSK(NT,NR,NP,NQ) scheme is equivalent to a SM

system associated withNQ TAs andNPNR RAs, where the equivalent SM fading matrix is given

by STSK’sH̆ = χH, as defined in Eq. (6.131). As a result, all the SM detectors summarized in

Sec. 6.4.1 may be invoked by the STSK receivers depicted in Fig. 6.9.

Since only a single dispersion matrix is activated, STSK loses the LDC’s capacity advantage,

which will be further discussed in Sec. 6.4.3. Nonetheless,the generation of the STSK’s dispersion

matrices may still rely on populating them with the aid of a random search, and then the specific

dispersion matrix set that minimize the PEP of Eq. (6.9) may be selected. As discussed before, the

PEP union bound of Eq. (6.10b) is minimized, when∆ = (Si − Sī)H(Si − Sī) is unitary, which is

equivalent to the following requirements:

A
H
q Aq = NP

NT
INT

, ∀q ∈ {1, · · · , NQ}, (6.133a)

A
H
q Aq̄ = −A

H
q̄ Aq, ∀q 6= q̄ ∈ {1, · · · , NQ}. (6.133b)

We note that the first requirement of Eq. (6.133a) may be readily satisfied by directly generating the

scaled unitary matrices for the case ofNP ≥ NT, while the second requirement of Eq. (6.133b) can

only be approached by maximizing either the minimum determinant{det(∆)}min or the second

metric∑∀q 6=q̄ ‖A
H
q Aq̄ + A

H
q̄ Aq‖ in Eq. (6.98) according to the suggestions in [300].

In more details, the generation of STSK may be summarized as:

(1) Randomly generate a group ofNQ unitary matrices{Ãq}NQ

q=1 of size (N × N), where we

haveN = max(NT, NP).

(a) If NP > NT is required, the STSK dispersion matrices are given by taking the firstNT

columns of the scaled unitary matrices as{Aq =
√

NP
NT

Ãq

[
INT

0

]
}NQ

q=1, where0 is a

(NP − NT) × NT-element all-zero matrix.

(b) If NP = NT is required, the STSK dispersion matrices are directly given by {Aq =

Ãq}NQ

q=1.

(c) If NP < NT is required, the STSK dispersion matrices are given by taking the first

NP rows of the scaled unitary matrices as{Aq = [INP
, 0] Ãq}NQ

q=1, where0 is a NP ×
(NT − NP)-element all-zero matrix.
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(2) Rank criterion: for the resultant(I = NQ M) STSK codewords{Si}I−1
i=0 of Eq. (6.130),

having a full rank should be guaranteed for all combinationsof ∆ = (Si − Sī)H(Si − Sī) as

rank(∆) = min(NT, NP).

(3) Determinant criterion: The minimum determinant among all combinations of∆ is given

by {det(∆)}min. The related random search may be carried out by repeating Steps (1)

and (2), while the chosen set should maximize{det(∆)}min. For the sake of designing

high-throughput STSK schemes, the chosen set may aim for maximizing ∑∀q 6=q̄ ‖A
H
q Aq̄ +

A
H
q̄ Aq‖ instead of determinant for the sake of faster random search termination.

When more than one dispersion matrices are allowed to be activated for the sake of achieving

an increased throughput, the STSK scheme may be further developed to the concept of General-

ized Space-Time Shift Keying (GSTSK), as presented in [217,302], where both STSK and LDC

constitute special cases of GSTSK. Furthermore, since LDC was proposed for generalizing both

V-BLAST and STBC, GSTSK may include virtually all MIMO schemes. In more details, the dis-

persion matrix of V-BLAST is given by Eq. (6.44), while the dispersion matrix design of STBC

was discussed in Sec. 6.3. The classic MIMO schemes of V-BLAST, STBC and LDC may all

be deemed to be special GSTSK cases, which rely on activatingall TAs. Moreover, SM may be

considered to be a special case of STSK, where the SM dispersion matrices are given by:

Aq = [0 · · · 0︸ ︷︷ ︸
q−1

, 1, 0 · · · 0︸ ︷︷ ︸
NT−q

], ∀q ∈ {1, · · · , NT}. (6.134)

Furthermore, in [218–221], SM was improved for the sake of achieving a transmit diversity gain by

activating more than one TAs in order to convey STBC codewords, which can be readily subsumed

by the framework of GSTSK according to the STBC dispersion matrix design of Sec. 6.3. How-

ever, the orthogonal channels of STBC-aided transmit diversity were created either by employing

the idealistic orthogonal shapping filters of [222–224] or the orthogonal frequency-hopping codes

of [225]. These schemes no longer fit into the scope of GSTSK due to their additional hardware re-

quirements. Moreover, when more than one classic modulatedsymbols are transmitted by GSTSK,

the problem of IAI once again arises, unless orthogonal STBCcodewords are transmitted. As a

result, sub-optimal interference-rejecting receivers are proposed to be employed by the family of

GSTSK receivers in [226, 229], which are less consistent with the SM/STSK motivation of low-

complexity ML receiver designs. However, it was suggested in [230,231] that the IAI may vanish,

if the multiple activated TAs of the Generalized Spatial Modulation (GSM) opt for transmitting the

same symbol. Further discussions on relaxing the GSM scheme’s constraints concerningNT may

be found in [336–339].

Against this background, the concept of a GSM/GSTSK scheme that achieves an improved

capacity without imposing IAI remains an open prospect, which we set aside for future work. In

order to better prepare for this ambitious objective, we offer a discussion on the SM/STSK scheme’s

error probability and capacity, so that their strength and limitations may be better understood.
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6.4.3 Error Probability and Capacity Analysis

The theoretical average BER of virtually all MIMO schemes ischaracterized by Eq. (6.8), where

each PEP is bounded by Eq. (6.9). For the case of SM, the Pairwise Squared Euclidean Dis-

tance (PSED) that directly determines the PEP of Eq. (6.9) may be expressed as:

‖Si − Sī‖2
=





|sm|2 + |sm̄|2, Case 1:v 6= v̄, m 6= m̄

2|sm|2, Case 2:v 6= v̄, m = m̄

|sm − sm̄|2, Case 3:v = v̄, m 6= m̄

, (6.135)

where the SM codeword indicesi andī represent the TA activation indices and the classic modulated

symbol indices{v, m} and {v̄, m̄}, respectively. The corresponding relationships are givenby

(i = mNT + v − 1) and (ī = m̄NT + v̄ − 1). For the sake of comparison, the PSED of the

V-BLAST scheme may be expressed in a similar form as:

‖Si − Sī‖2
=

NT

∑
v=1

|si
v − sī

v|2. (6.136)

For the case of V-BLAST, the worst case of the minimum PSED that may maximize the PEP bound

of Eq. (6.9) occurs, when the two V-BLAST codeword vectorsSi and Sī only differ in a single

element, which corresponds to SM’s Case 3 in Eq. (6.135). However, any SM codeword has a total

number of(NT − 1) zeros, which means that any two SM vectorsSi andSī in Eq. (6.135) share

at least(NT − 2) zero elements. However, V-BLAST’s pairwise codewords are often different in

more than two elements for(NT > 2).

Moreover, since the throughput of V-BLAST is given byR = NTBPS while that of SM by

R = BPST + BPS, the SM system has to employ a higher-orderMPSK/QAM constellation in

order to match the throughput of the V-BLAST system equippedwith the same number ofNT

TAs. For example, a V-BLAST(4,NT)-QPSK scheme has a throughput ofR = 8, which requires

the SM(4,NR) system to employ a 64QAM scheme. As a result, the SM’s PSED ofEq. (6.135)

is substantially degraded owing to both the reduced constellation point powers and the reduced

Euclidean distances between the constellation points.

For these reasons, SM is unlikely to outperform V-BLAST at the same system throughput under

the same hardware and software conditions, albeit SM has a potential low-complexity advantage.

Indeed, this would only be possible for SM systems, under theemployment of extra hardware for

creating transmit diversity techniques [224, 226, 227], orthogonal shapping filters [222, 224, 227],

or when aiming for a reduced SM throughput [228] or when usingmore complex ML SM detec-

tors while opting for suboptimal V-BLAST detectors [197, 204, 205, 212, 218]. In order to clarify

this matter, we will provide a discussion on the performanceand complexity tradeoff between V-

BLAST and SM in Sec. 6.5, where the system requirements are the same for both of them.

It is also interesting to see in Eq. (6.135) that the SM’s PEP experienced in some combinations

is determined by constellation point power{|sm |2}M−1
m=0 , which is not the case for V-BLAST, as

presented in Eq. (6.136). The same feature may also be observed in terms of the STSK’s PSED,
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Figure 6.10: Performance comparison between SM/STSK employing different

MPSK/QAM constellations.

which may be expressed as:

‖Si − Sī‖2
=





∥∥Aqsm − Aq̄sm̄
∥∥2

, Case 1:q 6= q̄, m 6= m̄
∥∥Aq − Aq̄

∥∥2 · |sm|2, Case 2:q 6= q̄, m = m̄
∥∥Aq

∥∥2 · |sm − sm̄|2, Case 3:q = q̄, m 6= m̄

, (6.137)

where the STSK codeword indices are formulated as(i = mNQ + q− 1) and(ī = m̄NQ + q̄− 1).

It can be seen in both Eq. (6.135) and Eq. (6.137) that a highervalue ofmin∀sm |sm|2 is required by

Case 2, while a highermin∀{sm 6=sm′} |sm − sm′ | value is required by Case 3 for both SM and STSK.

These two requirements cannot be satisfied by theMPSK/QAM constellations at the same time.

Let us recall from Table 2.1 that SquareMQAM exhibits the highest minimum constellation

point distance ofmin∀{sm 6=sm′} |sm − sm′ |, but bothMPSK and StarMQAM have a higher con-

stellation point power ofmin∀sm |sm|2. Fig. 6.10 portrays our performance comparison between

SM/STSK employing differentMPSK/QAM constellations. It may be observed in Fig. 6.10 that

for a lower modulation order ofM = 16, SM(16,2) and STSK(4,2,2,16) employing 16PSK per-

form even better than their Square 16QAM and Star 16QAM basedcounterparts, which is an ex-

plicit benefit of 16PSK’s dominant advantage of having a higher constellation point power as seen

in Table 2.1. However, as the number of modulation levels is increased toM = 64, SM(16,2) and

STSK(4,2,2,16) employing Star 64QAM perform the best, where the 64PSK’s reduced constel-

lation point distance ofmin∀{sm 6=sm′} |sm − sm′ | shown in Table 2.1 severely degrades its perfor-

mance in the concept of SM/STSK systems. We note that although MPSK and StarMQAM may

exhibit a performance advantage of SM/STSK, the detection complexity for SM/STSK employing

SquareMQAM becomes the lowest, when the reduced-scope SM detector is employed, which was

discussed in Sec. 6.4.1.1.

Even though its complexity advantage is attractive, SM and STSK fail to achieve the full MIMO

capacity of Eq. (6.4). In more details, the SM’s mutual information between the input and output
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signals may be formulated as [201,204]:

CCCMC
SM (SNR) = max

p(sm),p(v)
I({sm, v}; Y)

= max
p(sm)

I(sm; Y|v) + max
p(v)

I(v; Y),
(6.138)

where the input signal vectorS is given by Eq. (6.99), while the output signal vectorY is given by

Eq. (6.1). The first term in Eq. (6.138) represents a SIMO system’s capacity, which is maximized,

when the input is assumed to be a Gaussian-distributed continuous signal. This may be expressed

as:

CCCMC
SM,1 (SNR) = max

p(sm)
I(sm; Y|v)

=
1

NT

NT

∑
v=1

log2 det
(

INR
+ ηHH

v,−Hv,−
)

=
1

NT

NT

∑
v=1

log2(1 + η‖Hv,−‖2),

(6.139)

where the entropy of the AWGN variable is given byH(Y|{sm, v}) = H(V) = log2 det [πeN0INR
],

while that of the Gaussian-distributed output signal byH(Y|v) = log2 det
[
πe(HH

v,−Hv,− + N0INR
)
]
.

Furthermore, the second capacity term of Eq. (6.138) is alsomaximized by the Gaussian PDF of

the output signal, which is given by:

p(Y|v) =
1

det(πRYY|v)
exp

[
−YR−1

YY|vYH
]

, (6.140)

where provided that thev-th TA is active, the autocorrelation matrix of received signal Y is given

by:

RYY|v = E
(

YHY|v
)

= HH
v,−Hv,− + N0INR

. (6.141)

Therefore, the determinant term in Eq. (6.140) is given by:

det(πRYY|v) = πNR NNR
0 det(INR

+ ηHH
v,−Hv,−) = πNR NNR

0 (1 + ηκ2
v), (6.142)

where we haveκ2
v = ‖Hv,−‖2, as defined in Eq. (6.103). As a result, the second capacity term of

Eq. (6.138) may be further extended as:

CCCMC
SM,2 (SNR) = max

p(v)
I(v; Y)

= max
p(v)

∫ ∫
p(Y|v)p(v) log2

p(Y|v)

p(Y)
dvdY,

(6.143)

where the average output signal PDF is given byp(Y) =
∫

p(Y|v)p(v)dv, while the conditional

PDFp(Y|v) is given by Eq. (6.140). Naturally, Eq. (6.143) is maximized, when the input PDFp(v)

is Gaussian. However, the TA activation indexv is confined to the limited range of(1 ≤ v ≤ NT),

which cannot be generalized by lettingNT tend to infinity. Therefore, we have to accept the fact that

the TA activation indexv can only be interpreted as a discrete input signal, and henceEq. (6.143)
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is maximized for equiprobable sources of{p(v) = 1
NT

}NT
v=1 as:

CCCMC
SM,2 (SNR) =

1

NT

NT

∑
v=1

E

{
log2

p(Y|v)

p(Y)

}

=
1

NT

NT

∑
v=1

E



log2

NT

1+ηκ2
v

exp
[
−Y

(
HH

v,−Hv,− + N0INR

)−1
YH
]

∑
NT
v̄=1

1
1+ηκ2

v̄
exp

[
−Y

(
HH

v̄,−Hv̄,− + N0INR

)−1
YH
]



 ,

(6.144)

where the statistically Gaussian output signal may be directly generated, given the sole input signal

v asY = Hv,− + V, which was appropriately revised from Eq. (6.1).

For the case of STSK, the CCMC capacity may also be evaluated based on Eq. (6.138), where

the equivalent fading channel of SM is given byH̆ = χH according to the received signal vec-

torization of Eq. (6.131). Naturally, the STSK capacity hasto be normalized byNP owing to the

employment of multiple time slots. Therefore, the SM’s CCMCcapacity of Eq. (6.138) may be

revised for STSK as:

CCCMC
STSK (SNR) = max

p(sm),p(q)

1

NP
I({sm, q}; Y)

= max
p(sm)

1

NP
I(sm; Y|q) + max

p(q)

1

NP
I(q; Y).

(6.145)

The first part of Eq. (6.145) may be modified from Eq. (6.139) as:

CCCMC
STSK,1(SNR) = max

p(sm)

1

NP
H(Y|q) − 1

NP
H(Y|{sm , q}) (6.146a)

=
1

NPNQ

NQ

∑
q=1

log2 det
(

INPNR
+ ηH

H
χH

q,−χq,−H

)
(6.146b)

=
1

NPNQ

NQ

∑
q=1

log2

(
1 + η‖χq,−H‖2

)
, (6.146c)

where the related entropies are given byH(Y|{sm, q}) = H(V) = log2 det [πeN0INP NR
] and

H(Y|q) = log2 det
[
πe(H̆H

q,−H̆q,− + N0INP NR
)
]

according to the STSK’s equivalent received

signal model of Eq. (6.131), while{H̆q,−}NQ

q=1 and{χq,−}
NQ

q=1 refer to the q-th row vectors obtained

from H̆ = χH andχ of Eq. (6.131), respectively. Comparing Eq. (6.146b) to theLDC capacity

of Eq. (6.95), it may be observed that the STSK capacity cannot reach the full MIMO capacity

by forcing χH
q,−χq,− = INP NT

, because it requires that the elements of the dispersion matrix Aq

satisfy both{{|At,v
q |2 = 1}NP

t=1}
NT
v=1 and{{(A

t̄,v̄
q )∗A

t,v
q = 0}∀t̄ 6=t}∀v̄ 6=v, which cannot be achieved.

Comparing Eq. (6.146c) to Eq. (6.139), it may also be observed that the first term of the STSK

capacity expression is smaller than that of the SM capacity.In more details, for the case ofNP ≥
NT, all STSK dispersion matrices may satisfyA

H
q Aq = NP

NT
INT

, as discussed in Sec. 6.4.2. Hence

Eq. (6.146c) may be further extended as:

CCCMC
STSK,1(η) =

1

NPNQ

NQ

∑
q=1

log2

(
1 +

NPη

NT
‖H‖2

)
=

1

NP
CCCMC

SIMO (
NPη

NT
, NRNP)

< CCCMC
SIMO (η, NR) = CCCMC

SM,1 (η, NR),

(6.147)
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where we have‖χq,−H‖2 = ‖AqH‖2 according to Eq. (6.131). It is shown by Eq. (6.147) that

the first term of the STSK capacityCCCMC
STSK,1(η) of Eq. (6.146) is equivalent to the SIMO system’s

capacity of Eq. (2.54) associated with the scaled SNR ofNPη
NT

as well as with the increased number

of NRNP RAs, which is normalized overNP channel uses. Therefore, the first STSK capacity term

CCCMC
STSK,1(η) of Eq. (6.146) is smaller than the first SM capacity termCCCMC

SM,1 (η) of Eq. (6.139),

which equals to the SIMO system’s capacity of Eq. (2.54).

Finally, the second part of the STSK capacity of Eq. (6.145) may be obtained by modifying the

SM’s Eqs. (6.143) and (6.144) according to Eq. (6.131) as:

CCCMC
STSK,2(SNR) = max

p(q)

1

NPNQ

NQ

∑
q=1

∫
p(Y|q)p(q) log2

p(Y|q)
p(Y)

dY

=
1

NPNQ

NQ

∑
q=1

E





log2

NQ

1+ηκ2
q

exp

[
−Y

(
H̆H

q,−H̆q,− + N0INP NR

)−1
Y

H
]

∑
NT
q̄=1

1
1+ηκ2

q̄
exp

[
−Y

(
H̆H

q̄,−H̆q̄,− + N0INPNR

)−1
Y

H
]





,

(6.148)

where the STSK dispersion matrix selection is discretized similarly to the SM TA selection, and

hence the mutual informationI(q; Y) is maximized for the equiprobable source of{p(q) = 1
NQ

}NQ

q=1,

while we have{κ2
q = ‖H̆q,−‖2} for the STSK’s equivalent received signal model of Eq. (6.131).

Since the first STSK capacity term of Eq. (6.146) is lower thanthe SIMO capacity, while the

second STSK capacity term of Eq. (6.148) saturates according tomaxSNR CCCMC
STSK,2(SNR) =

BPSQ

NP
,

the overall STSK capacity of Eq. (6.145) is expected to be lower than the SIMO system capacity in

the high-SNR region.

6.5 Performance Results for Uncoded MIMO Systems

In this section, we provide simulation results for characterizing the pair of important MIMO de-

sign tradeoffs, namely the multiplexing versus diversity tradeoff as well as the performance versus

complexity tradeoff.

6.5.1 The Multiplexing Versus Diversity Tradeoff

First of all, let us appraise the multiplexing versus diversity tradeoff that exist for conventional

MIMO schemes, including V-BLAST, STBC and LDC. Fig. 6.11 presents our capacity comparison

between the conventional MIMO schemes including V-BLAST, STBC and LDC. It can be seen

in Fig. 6.11a that both V-BLAST and LDC achieve the highest MIMO capacity, as analysed in

Sec. 6.1 and Sec. 6.3.2.3, respectively, but Alamouti’s G2-STBC associated withNR = 2 can only

achieve the capacity of another V-BLAST system that is associated with NT = 4 and NR = 1

having a doubled SNR of2η, which was explicitly discussed in Sec. 6.4.3. The MIMO’s DCMC

capacity of Eq. (6.7) often predicts the achievable performance. For this spirit, it can be seen in
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Figure 6.11: Capacity comparison between V-BLAST, Alamouti’s G2-STBC and

LDC, where NT = 2 TAs are employed and the throughput is given byR = 4

bits/block/channel-use.

Fig. 6.11b that Alamout’s G2-STBC and LDC achieve their fullDCMC capacity quantified in terms

of bits/block/channel-use at a lower SNR than V-BLAST for the case ofNR = 1, which confirms

the beneficial transmit diversity gain of both STBC and LDC. However, whenNR = 2 RAs are

used, Alamouti’s G2 STBC exhibits a lower DCMC capacity in the low SNR region, as evidenced

in Fig. 6.11b. We will augment the reasons for this feature later.

Fig. 6.12 portrays our performance comparison between V-BLAST, STBC and LDC associated

with the same throughput ofR = 4. It is evidenced by Fig. 6.12a that both LDC(2,2,2,4)-QPSK

and Alamouti’s G2-STBC (NR = 2) employing Square 16QAM significantly outperform their

multiplexing-oriented counterpart of V-BLAST(2,2)-QPSK, especially in the high SNR region.

Furthermore, Fig. 6.12a demonstrates that LDC(2,2,2,4)-QPSK performs even slightly better than

its STBC counterpart. Fig. 6.12b also shows that LDC(4,4,2,8)-QPSK is capable of outperforming

both its multiplexing-oriented counterpart of V-BLAST(4,4)-BPSK and its STBC counterpart of

HR-G4-STBC (NR = 4) employing Square 256QAM for the case ofNT = 4.

However, it is also demonstrated by Fig. 6.12b that althoughHR-G4-STBC retains its full

diversity order, its performance remains modest, unless the SNR is expected to be extremely high.

This is because G4-STBC has a low normalized throughput ofR = 0.5, which requires us to

employ a high-order 256QAM scheme in order to achieve the required system throughput. The

orthogonal STBC design aims for achieving the lowest error probability at high SNRs, when the

determinant termdet(0.25η∆) dominants the divisor of the PEP in Eq. (6.10b). Since∆ is unitary

as guaranteed by the STBC, it was shown in Table 6.7 that the number of modulation levelsM is

the only factor that affects the error probability in the lowSNR region. This is also the reason why

Alamouti’s G2-STBC employing a higher-order 16QAM scheme associated withNR = 2 cannot

achieve the best DCMC capacity in the low SNR region of Fig. (6.11b).
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Figure 6.12: Performance comparison between V-BLAST, STBCand LDC associated

with the same throughput ofR = 4 bits/block/channel-use.

In summary, the LDC was shown in Fig. 6.11 to be able to achievethe V-BLAST’s full MIMO

capacity, and it is also capable of retaining the STBC’s fulldiversity gain, hence offering the best

performance, as shown in Fig. 6.12. Therefore, the LDC may resolves the tradeoff between the

multiplexing and diversity gain in MIMO systems design, provided that the conditions of Eq. (6.96)

as well as the rank and determinant criteria presented in Sec. 6.3.2.3 are satisfied. However, as

demonstrated in Sec. 6.3.2.3, the LDC receivers have to employ the V-BLAST’s ML detector,

whose detection complexity grows exponentially with the system throughput. Furthermore, it is

demonstrated by Fig. 6.12 that the low-complexity V-BLAST’s MMSE detectors inevitably impose

a severe performance loss.

6.5.2 The Performance Versus Complexity Tradeoff

Therefore, as discussed in Sec. 6.4, both SM and STSK constitute attractive design alternatives to

multiplexing- and diversity-oriented MIMO schemes as a benefit of their lower detection complex-

ity. Let us examine the capacity of SM and STSK first. Fig. 6.13a shows that SM(2,2) cannot

achieve the V-BLAST(2,2)’s full MIMO capacity, but the SM capacity is evidently higher than that

of both Alamouti’s G2-STBC and of the SIMO system. By contrast, STSK(2,2,2,NQ) performs

poorly in terms of CCMC capacity, as seen in Fig. 6.13a, wherethe STSK capacity is seem to be

even lower than the capacity of the SIMO system, as previously predicted in Sec. 6.4.3.

Fig. 6.13b demonstrates furthermore that Alamouti’s G2-STBC approaches its full DCMC ca-

pacity at a lower SNR than the others for the case ofNR = 1. However, whenNR = 2 RAs are

employed, both Alamouti’s G2-STBC and STSK exhibit a lower DCMC capacity in the low SNR

region, as evidenced by Fig. 6.13b. This is because both the diversity-oriented schemes have to

employ higher-order modulations in order to achieve the same throughput, as their multiplexing-

oriented counterparts.
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Figure 6.13: Capacity comparison between V-BLAST, SM, Alamouti’s G2-STBC and

STSK, whereNT = 2 TAs are employed.

Our BER performance comparison between V-BLAST, SM, STBC and STSK associated with

the same throughput ofR = 4 bits/block/channel-use is depicted in Fig. 6.14. Explicitly, it can be

seen in Fig. 6.14a that when there is no receive diversity, SM(2,1)-8PSK performs slightly worse

than V-BLAST(2,1)-QPSK, while STSK(2,1,2,4)-Star 64QAM has an improved performance as a

benefit of its diversity gain, but Alamouti’s G2-STBC employing Square 16QAM exhibits the best

performance. However, Fig. 6.14a also shows that asNR is increased, both the SM scheme and

the V-BLAST scheme perform better at low SNRs, because the STSK and the G2-STBC arrange-

ments have to employ high-order QAM in order to compensate for their throughput loss owing to

utilizing NP symbol periods. Similar trends may be observed in Fig. 6.14bfor the case ofNT = 4.

Explicitly, it is worth noting that the transmit diversity order of STSK(4,NR,2,16)-16PSK is given

by min(NT, NP) = 2, which is lower than the full diversity order of HR-G4-STBC.The number

of symbol periodsNP is flexibly adjustable for STSK, which results in a very flexible system de-

sign. More explicitly, the STSK associated withNP = NT may achieve the full diversity order of

NT NR, while a lowerNP < NT allows the STSK scheme to employ a lower-order modulation to

be used for achieving the same system throughput, which may result in a better performance in the

low SNR region.

Comparing the results of Fig. 6.12 and Fig. 6.14, it is essential to note that the performance

loss imposed by employing SM instead of V-BLAST is significantly lower than that of employing

a low-complexity linear MMSE receiver for V-BLAST in Fig. 6.12. The same trend prevails, when

STSK is compared to LDC in Fig. 6.12. Therefore, the ultimatebenefit of the SM and STSK

systems lies on their complexity advantage.

Let us now elaborate a little further on the performance of MIMO systems associated with a

higher number of antennas. Fig. 6.15 shows that the transmitdiversity gain obtained by STSK

only becomes advantageous, when there is no receive diversity owing to usingNR = 1 RA. As

the number of RAs increases toNR = 2, NR = 4 and even toNR = 8, the performance of
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Figure 6.14: Performance comparison between V-BLAST, SM, STBC and STSK associ-

ated with the same throughput ofR = 4 bits/block/channel-use.

Optimal SM Detectors Complexity Order Computational Related
Complexity Literatures

MIMO Detector (Eq. (6.13)) O(NT M) (4NT NR + 2NR)NT M [3, 4,8]
Simplified SM Detector (Eq. (6.103)) O(NT M) 6NT NR + 6NT M [198]
Reduced-scope SM MPSK:O(NT M/4) (6NR + M/2 + 2)NT

[202,203,234]Detector (Tables 6.8 and 6.9) SquareMQAM: (6NR + MRe + MIm

O(NT MRe/2 + NT MIm/2) + 2)NT

Hard-limiter-based SM
O(2NT)

MPSK:(6NR + 9)NT

[201,204]Detector (Eqs. (6.111) and (6.112)) SquareMQAM:
(6NR + 11)NT

Table 6.10: Summary of hard-decision-aided optimal SM detectors introduced in
Sec. 6.4.1.

V-BLAST and SM becomes better and the performance difference between V-BLAST and SM is

increased. This is because the high multiplexing gain of V-BLAST allows it to employ the low-

order BPSK modulation for achieving the same throughput as SM and STSK employing higher-

order modulation schemes. This important feature implies that altough STBC and STSK may be

conceived for any arbitrary number of TAs, V-BLAST may be preferred for large-scale MIMO

systems equipped with a large number of antennas at the base stations [227, 340–342]. SM may

act as an alternative to V-BLAST at the cost of a slightly degraded performance achieved at a

substantially reduced detection complexity.

In order to explicitly quantify the associated complexity versus performance tradeoffs, the op-

timal SM detectors and the suboptimal SM detectors introduced in Sec. 6.4.1 are summarized at

a glance in Tables 6.10 and 6.11, respectively. The optimal SM detectors of Table 6.10 were de-

veloped for reducing the MIMO detection complexity, while maintaining their ML detection capa-

bility. By contrast, the suboptimal SM detectors of Table 6.11 aim for improving the performance

of the MRC aided SM detector of [197], which is the problematic TA activation index detection.

The associated computational complexity is summarized in terms of the total number of real-valued

multiplications. It is assumed that allMPSK/QAM constellation points are stored in memory, so
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Figure 6.15: Performance comparison between V-BLAST, SM and STSK associated with

a high number of TAsNT = 8 and a higher throughput ofR = 8 bits/block/channel-use.

that the unneccessary calculations of reconstructing theMPSK/QAM symbols based on their mod-

ulated constellation-point indices are eliminated. Hence, for example, the computational complex-

ity of MPSK demodulation and that of SquareMQAM demodulation seen in Table 6.2 is given by

2 and 4, respectively, where the complexity of thearctan function in∠z = arctan [ℑ(z)/ℜ(z)] of

theMPSK demodulation is ignored, because a look-up-table basedstored input-output relationship

is assumed in order to avoid the discussion of specific implementations.

Fig. 6.16 portrays our performance comparison between the different SM detectors, when they

are invoked by the SM receivers and by the STSK receivers. It can be seen in Fig. 6.16a that both

the normalized-MRC and List normalized-MRC detectors of Secs. 6.4.1.4 and 6.4.1.5 exhibit an

error floor for SM detection, when there is no receive diversity gain owing to havingNR = 2,

but their performance improves asNR increases. It may also be observed in Fig. 6.16 that unity-

constellation-power detector of Sec. 6.4.1.6 performs better than normalized-MRC detector and that

the list-based detectors such as the List unity-constellation-power and List normalized-MRC detec-

tors outperform their respective unity-constellation-power and normalized-MRC counterparts. In

general, all optimal SM detectors of Table 6.10 achieve the same ML performance, while all subop-

timal SM detectors of Table 6.11 impose a performance loss onboth SM and STSK in Fig. 6.16 in

a conceptually similar manner to the MMSE detector’s performance loss inflicted upon V-BLAST

as seen in Fig. 6.12.

Our detection complexity comparison of the different SM detectors is presented in Fig. 6.17.

First of all, compared to the simplified SM detector of Eq. (6.103) proposed in [198], our reduced-

scope SM detector conceived in Sec. 6.4.1.1 offers a substantial complexity reduction, which is as

high as84.3% for SM(NT,1)-Square 16QAM (1 ≤ BPST ≤ 4) in Fig. 6.17a, and is up to93.8% for

SM(4,1)-MPSK/QAM (1 ≤ BPS≤ 6), as seen in Fig. 6.17b. Furthermore, the hard-limiter-based

SM detector proposed in [204] only provides a slightly lowercomplexity than the reduced-scope

SM detector, when the number of modulation levels is as high as M = 64 in Fig. 6.17b. For the SM
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Suboptimal SM Detectors Complexity Order Computational Complexity
Related
Literatures

Maximum Ratio Combining (MRC)
O(NT + 1)

MPSK:4NR + 2
[197]

SM Detector (Eqs. (6.100)-(6.102)) SquareMQAM: 4NR + 4
Normalized-MRC-based SM

O(NT + 1)
MPSK:(6NR + 2)NT + 4

[205–207]
Detector (Eqs. (6.120)-(6.122)) SquareMQAM: (6NR + 2)NT + 6
List normalized-MRC-based SM

O(NT + 2NList)
MPSK:(6NR + 2)NT + 9NList

[205,206,208]Detector (Eqs. (6.124)-(6.126)) SquareMQAM:
(6NR + 2)NT + 11NList

Unity-constellation-power
O(NT M̃ + 1)

MPSK:(6NR + 2M̃ + 2)NT + 4
[141]based SM Detector (Sec. 6.4.1.6) SquareMQAM:

(6NR + 2M̃ + 2)NT + 6

List unity-constellation-power
O(NT M̃ + 2NList)

MPSK:(6NR + 2M̃ + 2)NT + 9NList

[209]based SM Detector (Sec. 6.4.1.6) SquareMQAM:
(6NR + 2M̃ + 2)NT + 11NList

Distance-ordered-based SM
O(2NT + NList)

MPSK:(6NR + 7)NT + 5NList

[210]Detector (Sec. 6.4.1.7) SquareMQAM:
(6NR + 9)NT + 5NList

Table 6.11: Summary of hard-decision-aided suboptimal SM detectors introduced in
Sec. 6.4.1.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

-10 0 10 20 30 40 50 60

Eb/N0 [dB]

ML/Reduced-scope-/Hard-limiter-based SM detectors

Normalized-MRC-based SM detector
List normalized-MRC-based SM detector

Unity-constellation-power-based SM detector
List unified-constellation-power-based SM detector

Distance-ordered-based SM detector

NR=1

NR=2

(a) SM(4,NR)-Square 16QAM

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

-10 0 10 20 30 40 50 60

Eb/N0 [dB]

ML/Reduced-scope-/Hard-limiter-based SM detectors

Normalized-MRC-based SM detector
List Normalized-MRC-based SM detector

Unity-constellation-power-based SM detector
List unified-constellation-power-based SM detector

NR=1

NR=2

(b) STSK(4,NR,2,16)-Square 16QAM

Figure 6.16: Performance comparison between different SM detectors summarized in

Sec. 6.4.1, when they are invoked by SM and STSK receivers.
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Figure 6.17: Complexity comparison between optimal and suboptimal SM detectors.

schemes employing a lower-order modulation scheme, our proposed reduced-scope SM detector

exhibits a lower complexity. For the representatives of suboptimal SM detectors, it can be seen in

Fig. 6.17 that the normalized-MRC and List normalized-MRC detectors do not show a significant

complexity advantage. Considering their suboptimal performance quantified in Fig. 6.16, we may

conclude that both our proposed reduced-scope SM detector and the hard-limiter-based SM detector

are more attractive candidates in terms of offering a substantially reduced detection complexity,

while maintaining the optimum SM performance.

In order to offer a quantitative complexity comparison between the conventional MIMO re-

ceivers designed for V-BLAST and STBC as well as the low-complexity optimal MIMO receivers

conceived for SM and STSK, it is assumed that the fading channels do not change for a sufficiently

long period of time, so that the MMSE filters taps of Eq. (6.38)adjusted for V-BLAST are not

required to be updated frequently, while the fading channelpowers{κv}NT
v=1 estimated by the SM

detectors of Sec. 6.4.1 and the STSK scheme’s equivalent fading matrix H̆ = χH of Eq. (6.131)

may also remain unchanged. Under this condition, it can be seen in Fig. 6.18 that the orthogonal

STBC achieves the lowest detection complexity for bothNT = 2 andNT = 4. It is also evidenced

by Fig. 6.18 that the ML MIMO detector designed for V-BLAST exhibits the highest complexity,

while the linear MMSE receiver successfully mitigates thiscomplexity problem, at the cost of an

eroded performance as seen in Fig. 6.12. Against this background, the SM detectors are capable of

offering a complexity that is slightly higher than that of the MMSE receiver of V-BLAST, but still

substantially lower than that of the ML MIMO detector of V-BLAST, as demonstrated by Fig. 6.18.

Let us recall from Sec. 6.4.2 that the STSK receivers requireextra signal processing, before being

able to invoke the SM detectors. Therefore, it is shown by Fig. 6.18 that the STSK detection com-

plexity is higher than the SM detection complexity. Nonetheless, considering that STSK is capable

of offering a diversity gain for SM, as demonstrated by Fig. 6.14, the employment of STSK is ben-

eficial, because its detection complexity is considerably lower than that of both the V-BLAST and
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Figure 6.18: Complexity comparison between V-BLAST, SM, STBC and STSK associ-

ated with the same throughput ofR = 4 bits/block/channel-use, where the fading channels

are assumed to be constant, so that the same operations do nothave to be repeated by the

MIMO receivers.

the LDC receivers invoking the ML MIMO detector, as evidenced by Fig. 6.18.

6.6 Chapter Conclusions

In this chapter, two salient tradeoffs of MIMO system designwere analysed. First of all, the conven-

tional MIMO systems have to strike a tradeoff between the attainable multiplexing and diversity

gain. Observe in Table 6.12 that both V-BLAST and LDC achievethe full MIMO capacity of

Eq. (6.4) in Fig. 6.11, provided that the LDC’s parameters satisfy NQ ≥ NT NP. Both V-BLAST

and LDC are capable of achieving the full multiplexing gain of (R = R
BPS = NT), which leads

to a high system throughput that isNT times higher than that of a SISO and SIMO system. Fur-

thermore, as documented in Table 6.12, both STBC and LDC may achieve the full diversity gain

of D = NT NR as seen in Fig. 6.12, provided that a sufficiently high numberof symbol periods

NP ≥ NT are reserved for the STM transmission. Moreover, the LDC is capable of providing an

even better performance than its STBC counterpart as exemplified by Fig. 6.12, because the LDC

can employ low-orderMPSK/QAM schemes for maintaining the same throughput as its STBC

counterpart.

In summary, the LDCs of Sec. 6.3.2.3 constitute the only family of MIMO schemes, which al-

lows us to avoid striking a tradeoff between the attainable multiplexing and diversity gains, as also

evidenced by Figs. 6.11 and 6.12, provided that the conditions of Eq. (6.96) as well as the rank and
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Full MIMO capacity: V-BLAST, LDC
Full multiplexing gain (R = R

BPS = NT): V-BLAST, LDC
High multiplexing gain (R = R

BPS > 1): SM, STSK
Full diversity gain (D = NT NR): STBC, LDC, STSK
Low PEP at high SNR region: STBC, LDC, STSK
Low PEP at low SNR region when equipping
a high number of RAsNR ≫ 1:

multiplexing schemes employing low-levelMPSK/QAM

Employing low-complexity linear receivers
without imposing a performance loss:

STBC, SM, STSK

Flexible MIMO systems design: LDC, STSK

Table 6.12: A brief summary of the advantages of differet MIMO design.

determinant criteria presented in Sec. 6.3.2.3 are satisfied. More explicitly, observe in Fig. 6.11a

that the LDC exhibits the same CCMC capacity as V-BLAST forNT = NR = 2. Furthermore,

as seen in Fig. 6.11b and Fig. 6.12a, the LDC(2,2,2,4)-QPSK scheme outperforms its identical-

throughput counterparts of G2-STBC Square 16QAM and V-BLAST(2,2)-QPSK schemes. Simi-

larly, for NT = NR = 4, the LDC(4,4,2,8)-QPSK outperforms all the other identical-throughput

arrangements of Fig. 6.12b.

The other MIMO system design tradeoff between performance and complexity is also of con-

cern for conventional MIMO systems. Unfortunately, both V-BLAST and LDC suffer from a severe

performance erosion when the low-complexity linear receivers of Sec. 6.2.4 are employed. Against

this background, the tradeoff between the performance attained and the complexity imposed has

inspired the development of SM and STSK, which are capable ofretaining the optimal detection

capability at a substantially reduced complexity, as evidenced by Figs. 6.16 and 6.17. We have

demonstrated in Sec. 6.4.3 and confirmed by Figs. 6.14 and 6.15 that although SM may not be

capable of outperforming V-BLAST, the performance difference between V-BLAST and SM is al-

most negligible compared to that imposed by employing MMSE detector for V-BLAST in Fig. 6.12.

The same trends are observed in Figs. 6.14 and 6.15, when STSKis compared to LDC. We will

demonstrate in Chapter 7 that the performance difference between these MIMO schemes may be-

come relatively small when channel coding is applied. In this realistic scenario, SM and STSK will

become more favoured, because they offer optimum detectioncapability, whilst the linear MMSE

detectors of V-BLAST and LDC are prone to producing unreliable LLRs, which misinform the

turbo detection in coded systems.

In Sec. 6.4.1.1, we have also proposed a novel hard-decision-aided reduced-scope SM detector

based on our previous publications of [141, 202, 203, 234], which circumvent the problem of erro-

neous TA activation index detection by taking into account the correlation between the TA index

and the classic modulated symbol index. The family of optimal and suboptimal SM detectors is

characterized in Sec. 6.4.1 and summarized in Tables 6.10 and 6.11. Our conclusion is that the

reduced-scope optimal SM detector [204] is a meritorious candidate for SM schemes employing

low-orderMPSK/QAM constellations, while the recently proposed hard-limiter-based optimal SM

detector is preferred for SM schemes employing high-orderMPSK/QAM constellations. In the
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next chapter, we will continue by proposing a soft-decision-aided reduced-scope SM detector for

the set of coded MIMO systems.

It is also shown in Table 6.12 that both LDC and STSK benefit from a flexible MIMO system

design. They can be designed for any arbitrary number of antennasNT and NR, for any number

of channel usesNP and for any number of transmitted symbolsNQ. More particularly, when

NP ≥ NT is satisfied, the full transmit diversity gain may be achieved by LDC and STSK, while

decreasingNP below NT may also offer an increased system throughput. The major drawback of

LDC and STSK is that although their transmission matrices are populated by a random generation

process performed in a offline search, the transmitted signals are no longer classicMPSK/QAM

symbols, which imposes an increased complexity on the poweramplifiers at the transmitters.

The recent developments in the millimeter-wave band [227, 343, 344] allow us to use a high

number of antennas, especially at the base stations [227,340–342]. This opens an exciting prospect

for low-complexity MIMO system design. However, both SM andSTSK still have their own lim-

itations. As demonstrated in Table 6.12, although SM and STSK are good candidates for striking

a tradeoff between performance and complexity, the tradeoff between the attainable multiplexing

and diversity gain arises again for SM and STSK. As discussedin Sec. 6.4.3 and demonstrated by

Fig. 6.13, SM is not capable of achieving the full MIMO capacity, while the STSK capacity is even

lower than the SIMO capacity in the high SNR region. This leaves room for further research on

GSM and GSTSK [217,302], where several symbols per channel use are transmitted. However, the

problem of IAI resurfaces again for GSM and GSTSK, unless theSTBC codewords are transmitted

by multiple active TAs. As a result, sub-optimal interference-suppression aided receivers are pro-

posed for GSTSK receivers in [226,229], which however fail to satisfy the SM/STSK motivation of

low-complexity ML receiver design. As a remedy, it was suggested in [230, 231] that the multiple

activated TAs for GSM should transmit the same signal in order to eliminate the IAI. We leave the

further discussions on the topic of GSM and GSTSK design for our future work.



Chapter7
Reduced-Complexity MIMO Design –

Part II: Coded Systems

7.1 Introduction

Inspired by the turbo principles [2,8,38,39,80,239], the hard-decision-aided conventionalMPSK/QAM

demodulators are revised to be able to accept soft-bit inputand to produce soft-bit decisions

[66, 240, 241, 345], so that the soft-decision-aidedMPSK/QAM demodulator may iteratively in-

teract with a channel decoder, as discussed in Chapter 2. Theemployment of a soft-decision-aided

demodulator in turbo detection was shown to be fundamentally important for wireless communica-

tion systems to approach their capacity predictions [8,86,243].

It is straightforward to transform the hard-decision-aided ML MIMO detector of Eq. (6.13)

into a soft-decision-aided Log-MAP MIMO detector, as seen in [8, 346], where thea priori LLRs

gleaned from the channel decoder may be directly added to theMIMO decision metrics of Eq. (6.11).

However, the beneficial exploitation of thea priori probabilities poses a major challenge in the

context of reduced-complexity MIMO detectors, including the soft-decision-aided SD and MMSE

detectors conceived for coded V-BLAST systems as well as thereduced-complexity design of soft-

decision-aided SM detectors.

In more details, considering that ana posterioriLLR produced by a soft-decision-aided MIMO

detector requires twoa posterioriprobabilities associated with the specific bit being 1 and 0,re-

spectively, the hard-decision-aided SDs of Secs. 6.2.2 and6.2.3 cannot directly deliver these soft-bit

decisions. Therefore, it was proposed in [173] that the hard-decision-aided SD may be revised for

generating a list of candidates that minimize the ML MIMO metric of Eq. (6.11). Then the two

groups of candidates associated with the bit being 0 or 1 may be compared by the Max-Log-MAP

algorithm or by the Approx-Log-MAP algorithm for evaluating the corresponding pair of output

a posterioriprobability metrics. However, owing to the fact that thea priori probabilities are not

incorporated in the SD search, there is no guarantee that theoptimala posterioriMIMO probabil-
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ity metrics can be found. Against this background, numerousresearch efforts [347–350] have been

dedicated to improving the suboptimal soft-decision-aided SD. Following this, the optimum soft-

decision-aided SD that invoked the depth-first algorithm and incorporated thea priori probabilities

was proposed in [174]. This method was also adopted by the soft-decision-aided MSDSD [132]

presented in Chapters 3 and 5. The optimum soft-decision-aided SD’s PED increment is revised

from its hard-decision counterpart by adding a non-negative a priori probability term to the PED

increment, so that the outputa posterioriprobability becomes optimum for coded V-BLAST de-

tection, as we will detail in Sec. 7.2.2.

In order to invoke low-complexity linearMPSK/QAM detectors for our V-BLAST receivers,

the MMSE filter of Sec. 6.2.4 may be employed. The major challenge of tailoring the MMSE

solution for coded V-BLAST detection is that thea priori probabilities are no longer identical for

all constellation points. In order to solve this problem, the exact MMSE solution incorporating

the candidate-dependenta priori probabilities was derived for turbo equalization in [70–72], for

CDMA MUDs in [75, 76] and for linear V-BLAST receivers in [13,77, 78]. The interference

cancellation techniques of [351–353] may improve the MMSE receiver’s performance in coded V-

BLAST systems, but the additional complexity and the resultant problem of error propagation may

further complicate the coded MIMO system’s design.

For the sake of achieving a low detection complexity withoutcompromising the optimum

MIMO detection capability, in Sec. 7.4, we will propose reduced-complexity soft-decision-aided

detectors for coded SM systems. It is not straightforward torevise the low-complexity hard-

decision-aided SM detectors of Sec. 6.4 for coded systems. First of all, the substantial com-

plexity reduction provided by the hard-limiter-based SM detection of Sec. 6.4.1.2 relies on the

low-complexity implementation of hard-decision-aidedMPSK/QAM demodulators. However, as

demonstrated in Sec. 2.3, the soft-decision-aidedMPSK/QAM demodulators cannot directly map

the channel’s output signal onto theMPSK/QAM constellation diagram, when thea priori LLRs

gleaned from the channel decoder are taken into account. This is because the channel decoder is

unaware of whichMPSK/QAM modulation scheme is employed. More explicitly, the channel de-

coder invoking the BCJR Log-MAP algorithm [26–28, 239] relies on bit-based signal processing

by accepting thea priori soft-bit LLRs from the demodulator and by producing thea posteriori

LLRs for the demodulator, as depicted by Fig. 2.2. However, the soft-decision-aided demodulator

has to rely on symbol-based signal processing, where both the channel’s output signal as well as the

a priori LLRs gleaned from the channel decoder have to be transformedback into modulated sym-

bols according to the constellation diagram. As a result, all probability metrics corresponding to

all constellation points have to be evaluated and compared in order to retain the optimum detection

capability. Secondly, the sub-optimal hard-decision-aided SM detectors of Secs. 6.4.1.4-6.4.1.7 are

not recommended for employment in coded SM systems. This is because these sub-optimal SM de-

tectors may falsify the reliability of the output LLRs, which may fail to reflect the truea posteriori

probabilities by producing LLRs having excessively high values. This flawed situation cannot be

readily rectified by the channel decoder, as discussed in Sec. 2.3.2. The sub-optimal soft-decision-
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aided SM detectors may also be found in [228,354–357], wherethe beneficiala priori information

is not exploited by the SM detectors.

We note that as previously demonstrated in Sec. 6.3.2.3, theLDC receiver may still invoke

V-BLAST detectors in coded MIMO systems, and the STSK receiver may invoke soft-decision-

aided SM detectors. Coded MIMO systems exhibit the same features as uncoded MIMO systems,

including the tradeoff between the attainable multiplexing versus diversity gain as well as the trade-

off between the performance versus complexity, which were discussed in Chapter 6.

Against this background, in this chapter, we invoke the previously introduced reduced com-

plexity design of Sec. 2.4, Sec. 3.3.3 and Sec. 6.4.1.1 to thesoft-decision-aided MIMO detectors.

The novel contributions of this chapter are as follows:

1. We demonstrate the benefits of the reduced-complexity design proposed in Sec. 2.4 for

the soft-decision-aidedMPSK/QAM demodulators in the context of both channel coded V-

BLAST as well as channel coded STBC systems. More explicitly, the exact MMSE solution

conceived for soft-decision-aided V-BLAST detection and the soft-decision-aided STBC de-

tection relying on processing decoupled data streams are presented in the context of reduced-

complexity soft-decision-aidedMPSK/QAM detectors. This contribution is based on our

publication [236].

2. Similar to the soft-decision-aided MSDSD conceived for DPSK in Chapter 3, the reduced-

complexity SD previously proposed for MSDSD in Sec. 3.3.3 isnow invoked for the soft-

decision-aided V-BLAST detection, whenMPSK constellations are employed1. More ex-

plicitly, by exploring the symmetry provided by the Gray-labelled MPSK constellation, the

SD’s Schnorr-Euchner search strategy becomes capable of visiting a reduced number of con-

stellation points in a zig-zag fashion, without invoking any complex sorting algorithm. Mean-

while, the optimum SD capability is retained.

3. Furthermore, we apply the reduced-scope SM detector design of Sec. 6.4.1.1 to both channel

coded SM and STSK systems. In more details, the maximuma posteriori probability re-

quired by the Max-Log-MAP algorithm may be obtained by tentatively invoking the reduced-

complexity soft-decision-aidedMPSK/QAM demodulators proposed in Sec. 2.4 before de-

ciding on the SM’s TA activation index, where the correlation between the classic modulated

symbol index and the TA index is taken into account, so that the detected TA index is always

the MAP solution. In this way, only a subset of theMPSK/QAM constellation points are

visited, while the optimum SM detection capability is retained. Both the Approx-Log-MAP

algorithm and the Max-Log-MAP algorithm are conceived for this soft-decision-aided SM

detector design. This contribution is based on our publications [202,203].

1The case of SD aidedMQAM detection in coded V-BLAST systems is very different from our previous reduced-

complexity design for SD aidedMPSK detection. We demonstrate in this chapter the soft-decision-aided V-BLAST SD

conceived for SquareMQAM constellations, but the corresponding reduced complexity design is left to our future work.
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The rest of this chapter is organized as follows. The coded V-BLAST system design is intro-

duced in Sec. 7.2, where the reduced-complexity soft-decision-aided SD and MMSE receivers are

discussed. Moreover, the reduced-complexity soft-decision-aided STBC detectors are presented in

Sec. 7.3. Furthermore, the reduced-complexity SM detection design conceived for coded SM and

STSK systems is proposed in Sec. 7.4. Our performance results recorded for coded MIMO systems

are summarized in Sec. 7.5, while our chapter conclusions are offered in Sec. 7.6

7.2 Coded V-BLAST

As discussed in the previous section, there are numerous challenges in designing V-BLAST de-

tectors for coded applications. In this section, we introduce a variety of soft-decision-aided V-

BLAST detectors that are constructed from the hard-decision-aided V-BLAST detectors presented

in Sec. 6.2. More explicitly, we are going to apply the previously proposed reduced complexity

design of Sec. 3.3.3 and Sec. 2.4 to the family of soft-decision-aided SD and MMSE receivers con-

ceived for coded V-BLAST systems. More explicitly, first of all, the optimum soft-decision-aided

MAP V-BLAST detection is introduced in Sec. 7.2.1, which exhibits an excessive detection com-

plexity. In order to mitigate this problem, the soft-decision-aided SDs conceived forMPSK and

SquareMQAM are presented in Secs. 7.2.2 and 7.2.3, respectively. Furthermore, in order to benefit

from the linearMPSK/QAM detector’s low complexity, the exact MMSE solutionconceived for

coded V-BLAST systems is derived in Sec. 7.2.4.

7.2.1 Soft-Decision-Aided Optimum MAP V-BLAST Detection

According to the received signal model of Eq. (6.1), the V-BLAST detector may aim for maximiz-

ing thea posterioriprobability of Eq. (6.12) in the logarithmic domain, which may produce thea

posterioriLLRs as [8,27,240,241,346]:

Lp(bk) = ln
∑∀Si∈{Si}bk=1

p(Si|Y)

∑∀Si∈{Si}bk=0
p(Si|Y)

= ln
∑∀Si∈{Si}bk=1

p(Y|Si)p(Si)

∑∀Si∈{Si}bk=0
p(Y|Si)p(Si)

,

(7.1)

where the subsets{Si}bk=1 and{Si}bk=0 represent the V-BLAST combinations set forS of Eq. (6.11),

when the specific bitbk is fixed to be 1 and 0, respectively. There are a total number ofI = MNT

combinations forS of Eq. (6.11). Furthermore, the conditional probabilityp(Y|Si) in Eq. (7.1) is

given by Eq. (6.2). Let us assume that all source informationbits are mutually independent. Then

thea priori probabilities{p(Si)}I−1
i=0 may be expressed as:

p(Si) =
NTBPS

∏
k̄=1

exp
[
b̃k̄La(bk̄)

]

1 + exp [La(bk̄)]
, (7.2)
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where{La(bk)}NTBPS
k=1 denote thea priori LLRs gleaned from a channel decoder, while[b̃1 · · · b̃NTBPS] =

dec2bin(i) refers to the bit mapping of V-BLAST to the signalSi. Therefore, thea posterioriLLRs

produced the Log-MAP algorithm of Eq. (7.1), may be rewritten as:

Lp(bk) = ln
∑∀Si∈{Si}bk=1

exp(di)

∑∀Si∈{Si}bk=0
exp(di)

, (7.3)

where the probability metricdi in Eq. (7.3) is given by:

di = −‖Y − SiH‖2

N0
+

NTBPS

∑
k̄=1

b̃k̄La(bk̄). (7.4)

We note that the common constant of 1

∏
NTBPS

k̄=1
{1+exp[La(bk̄)]}

in all V-BLAST combinations{Si}I−1
i=0

of Eq. (7.2) is eliminated by the division operation in Eq. (7.1). The resultant extrinsic LLRs

produced by the Log-MAP algorithm may be further expressed as Le(bk) = Lp(bk) − La(bk).

In practice, the low-complexity Max-Log-MAP [27] algorithm may be invoked by the optimum

V-BLAST detector relying on the simplified Obejctive Function (OF) of:

Lp(bk) = max
∀Si∈{Si}bk=1

di − max
∀Si∈{Si}bk=0

di, (7.5)

which imposes a performance loss owing to the fact that only the pair of maximuma posteriori

probabilities associated withbk = 1 and bk = 0 are taken into account. In order to mitigate

this problem, the so-called Approx-Log-MAP algorithm [28,239] may be invoked by the optimum

V-BLAST relying on the simplified OF of:

Lp(bk) = jac∀Si∈{Si}bk=1
di − jac∀Si∈{Si}bk=0

di, (7.6)

where the corrected Jacobian algorithm jac compensates forthe inaccuracy imposed by the maxi-

mization operation of Eq. (7.5) by taking into account the difference between every pair of proba-

bility metrics, when their values are compared, which is demonstrated by Eq. (2.36).

The optimum V-BLAST detection introduced in this section requires us to evaluate and com-

pare all I = 2NTBPS combinations of MIMO signals, which imposes an unaffordable detection

complexity. Therefore, as introduced in Sec. 6.2.1 for uncoded V-BLAST transceivers, the SD and

the family of linear receivers may be introduced in order to visit all the NT parallel MPSK/QAM

constellation diagrams separately, so that the signal processing complexity may be reduced for

coded V-BLAST systems.

7.2.2 Soft-Decision-Aided SD Conceived for Coded V-BLAST Employing PSK

In order to invoke SD for the Max-Log-MAP optimum V-BLAST detection, it may be observed in

Eq. (7.5) that the Max-Log-MAP algorithm aims to find the maximum probability metric, which

is similar to the action of the hard-decision-aided ML-optimum V-BLAST detection of Eq. (6.13).
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Therefore, the problem of finding the maximum probability metric di of Eq. (7.4) may be trans-

formed to the problem of searching for the minimum ED formulated as:

d =
∑

NT
v=1

∣∣∣Ỹv − ∑
NT
t=v lt,vst

∣∣∣
2

N0
−

NT

∑
v=1

{
BPS

∑
k̄v=1

[
b̃k̄v

La(bk̄v
)− C

SD
a,k̄v

]}
, (7.7)

which is obtained by toggling the polarity of the probability metricdi of Eq. (7.4). The first term in

Eq. (7.7) is revised from the hard-decision-aided SD’s ED ofEq. (6.17). We note that the SD aided

V-BLAST employingMPSK operates based on the equivalent received signal model of Eq. (6.16)

after the QR decomposition of Eq. (6.14). The(NR × NT)-element submatrixQ has orthogonal

columns satisfyingQHQ = INT
, and hence it does not change the statistics of the AWGN matrix V

in Eq. (6.16). The second term in Eq. (7.7) is revised from thea priori probability term of Eq. (7.4),

where an extra constantC
SD
a,k̄v

= 1
2

[
|La(bk̄v

)| + La(bk̄v
)
]

is introduced in order to guarantee that

the ED of Eq. (7.7) remains non-negative all the time [176,283], which may be verified by:

−b̃k̄v
La(bk̄v

) +
1

2

[
|La(bk̄v

)|+ La(bk̄v
)
]

=

{
−b̃k̄v

La(bk̄v
) + La(bk̄v

), if La(bk̄v
) ≥ 0

−b̃k̄v
La(bk̄v

), if La(bk̄v
) < 0

.

=





La(bk̄v
), if La(bk̄v

) ≥ 0 andb̃k̄v
= 0

−La(bk̄v
), if La(bk̄v

) < 0 andb̃k̄v
= 1

0, otherwise

.

(7.8)

As a result, the maximization operation of the Max-Log-MAP of Eq. (7.5) is transformed into

finding the optimal candidate that lies within the decoding sphere radiusR, which is formulated as:

∑
NT
v=1

∣∣∣Ỹv − ∑
NT
t=v lt,vst

∣∣∣
2

N0
−

NT

∑
v=1

{
BPS

∑
k̄v=1

[
b̃k̄v

La(bk̄v
)− C

SD
a,k̄v

]}
< R2. (7.9)

In order to solve Eq. (7.9) step by step, the SD may evaluate the PED according to the ED of

Eq. (7.7) as:

dv =
∑

NT
v̄=v

∣∣∣Ỹv̄ − ∑
NT
t=v̄ lt,v̄st

∣∣∣
2

N0
−

NT

∑
v̄=v

{
BPS

∑
k̄v̄=1

[
b̃k̄v̄

La(bk̄v̄
)− C

SD
a,k̄v̄

]}
,

= dv+1 + ∆v,

(7.10)

where the PED increment∆v is given by:

∆v =

∣∣∣Ỹv − ∑
NT
t=v lt,vst

∣∣∣
2

N0
−

BPS

∑
k̄v=1

[
b̃k̄v

La(bk̄v
)− C

SD
a,k̄v

]

=

∣∣∣
(

Ỹv − ∑
NT
t=v+1 lt,vst

)
− lv,vsv

∣∣∣
2

N0
−

BPS

∑
k̄v=1

[
b̃k̄v

La(bk̄v
) − C

SD
a,k̄v

]
.

(7.11)

It may be observed that the V-BLAST SD’s PED increment of Eq. (7.11) is in the same form as

the MSDSD’s PED increment of Eq. (3.64). Therefore, in this chapter, the V-BLAST SD tree search
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Function: [Ŝ, dMAP] = SoftSD-MPSK(Ỹ, L, P, N0, M, NT, R2)

Requirements: P is a (NT × M)-element matrix with entries{{Pv,m+1 = ∑
BPS
k̄v=1

[
b̃k̄v

La(bk̄v
) − C

SD
a,k̄v

]
}NT

v=1}M−1
m=0 ,

which is thea priori probability term in the PED increment of Eq. (7.11). The bitsmapping arrange-
ment is directly given by{[b̃1, · · · , b̃BPS] = dec2bin(m)}M−1

m=0 .
1: dNT+1 = 0 //initialize PED
2: v = NT //initialize SD search index
3: [{∆m

v }M−1
m=0 , {sm

v }M−1
m=0 , nv] = sortDelta(Ỹv, {lt,v}NT

t=v, {st}NT
t=v+1, Pv,m+1, N0) //sort all child nodes

4: loop
5: dv = dv+1 + ∆

nv
v //update PED of Eq. (7.10)

6: if dv < R2

7: sv = snv
v //update new child node

8: if v 6= 1
9: v = v − 1 //move down indexv

10: [{∆m
v }M−1

m=0 , {sm
v }M−1

m=0 , nv] = sortDelta(Ỹv, {lt,v}NT
t=v, {st}NT

t=v+1, Pv,m+1, N0) //sort all child nodes
11: else
12: R2 = d1 //update SD radius
13: Ŝ = [s1, · · · , sNT

] //update candidates
14: do
15: if v == NT return [Ŝ, R2] and exit //terminate SD
16: v = v + 1 //move up indexv
17: while nv == (M − 1)
18: nv = nv + 1 //visit the next child node
19: end if
20: else
21: do
22: if v == NT return [Ŝ, R2] and exit //terminate SD
23: v = v + 1 //move up indexv
24: while nv == (M − 1)
25: nv = nv + 1 //visit the next child node
26: end if
27: end loop

Subfunction: [{∆m
v }M−1

m=0 , {sm
v }M−1

m=0 , nv] = sortDelta(Ỹv, {lt,v}NT
t=v, {st}NT

t=v+1, Pv,m+1, N0)

1: for m = 0 to (M − 1) //visit all M child nodes
2: sm

v = sm√
NT

//visit them-th child node

3: ∆m
v =

∣∣∣
(

Ỹv−∑
NT
t=v+1 lt,vst

)
−lv,vsm

v

∣∣∣
2

N0
− Pv,m+1 //update PED increment according to Eq. (7.11)

4: end for
5: [{∆m

v }M−1
m=0 , {sm

v }M−1
m=0 ] = sortI ({∆m

v }M−1
m=0 ) //rank PED increments in increasing order

6: nv = 0 //initialize child node counter

Table 7.1: Pseudo-code for soft-decision-aided SD conceived for coded V-BLAST em-
ploying MPSK.

is also implemented by depth-first algorithm of [10,12,313]using the Schnorr-Euchner search strat-

egy [237], as demonstrated in Sec. 3.3.2, so that the Max-Log-MAP optimum V-BLAST detection

capability may be retained. Since the V-BLAST SD indices aredifferent from those of the MS-

DSD, the pseudo-codes tailored for V-BLAST SD are summarized in Table 7.1. Similar to our

discussion of Sec. 3.3.2 on soft-decision-aided MSDSD, thedecision variablẽzSD
v of Eq. (6.22)

cannot be directly used to find the optimumMPSK phasor in coded V-BLAST systems, because

the channel decoder is unaware of whichMPSK constellation diagram is considered. Hence the

a priori probability terms of∑BPS
k̄v=1

[
b̃k̄v

La(bk̄v
) − C

SD
a,k̄v

]
are not appropriately mapped to the re-

ceived signal’s constellation diagram. As a result, the Schnorr-Euchner search strategy has to be

implemented by enumerating and comparing all probability metrics corresponding to allMPSK

constellation points, which is summarized by the subfunction “sortDelta” in Table 7.1.
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Nonetheless, due to the similarity between the V-BLAST SD and MSDSD scheme, we pro-

pose to appropriately adapt our reduced-complexity designof Sec. 3.3.3 for our soft-decision-aided

MSDSD to the soft-decision-aided SD of Table 7.1. More explicitly, the SD’s PED increment of

Eq. (7.11) may be further extended as:

∆v =
∣∣∣ỹSD

v − sm
v h̃SD

v

∣∣∣
2
−

BPS

∑
k̄v=1

[
b̃k̄v

La(bk̄v
)− C

SD
a,k̄v

]

= −2ℜ
[
(s̄m

v )∗z̃SD
v

]
−

BPS

∑
k̄v=1

b̃k̄v
La(bk̄v

) +
La(b1) + La(b2)

2
+ C̃SD

v ,

(7.12)

where the equivalent “received signal” and “fading factor”are given byỹSD
v =

Ỹv−∑
NT
t=v+1 lt,vst√

N0

and h̃SD
v = lv,v√

N0NT
, respectively. Similar to our discussions in Sec. 3.3.3, the MPSK constel-

lation diagram (except BPSK) is rotated anti-clockwise by(π/M) at the receiver as{s̄m
v =

sm
v exp(j π

M )}M−1
m=0 , so that there are exactlyM/4 constellation points in each quadrant. The new

decision variable seen in Eq. (7.12) is then given by:

z̃SD
v = ỹSD

v (h̃SD
v )∗ exp(j

π

M
). (7.13)

We note that if theMPSK constellation diagram rotation of{s̄m
v = sm

v exp(j π
M )}M−1

m=0 is carried out

at the V-BLAST transmitter, which implies that the rotatedMPSK symbols{s̄m
v }M−1

m=0 are transmit-

ted instead of the originalMPSK symbols{sm
v }M−1

m=0 , the rotation termexp(j π
M ) in the decision

variable calculation of Eq. (7.13) may be eliminated. Moreover, the constant̃CSD
v seen in Eq. (7.12)

is given by:

C̃SD
v = |ỹSD

v |2 + |h̃SD
v |2 +

BPS

∑
k̄v=1

C
SD
a,k̄v

− La(b1) + La(b2)

2
, (7.14)

which is invariant over allMPSK candidates{s̄m
v }M−1

m=0 .

Therefore, the reduced-complexity design of Sec. 3.3.3 maybe directly applied to soft-decision-

aided V-BLAST SD. More explicitly, the subfunction “sortDelta” in Table 7.1 may be replaced

by the subfunctions of “findBest” and “findNext” in Tables 3.5-3.7, where the MSDSD terms of

YMSDSD
v−1 , HMSDSD

v−1 , z̄MSDSD
v−1 andC

MSDSD
v−1 may be respectively replaced byỹSD

v , h̃SD
v , z̃SD

v andC̃SD
v

in Eq. (7.12), while the MSDSD indexv− 1 may be replaced by V-BLAST SD indexv. In this way,

the soft-decision-aided V-BLAST SD may visit theMPSK constellation points in a zigzag fashion,

in a similar manner to the hard-decision-aided V-BLAST SD, so that only a subset of constellation

points have to be evaluated by the SD. Moreover, the sorting algorithm required by subfunction

“sortDelta” in Table 7.1, whose complexity order may be as high asO(M log M) [285, 286], is

avoided by the reduced complexity design.

In summary, with the aid of SD, the minimum EDdMAP as well as the optimum V-BLAST

candidateŜ may be obtained. The optimum candidateŜ may further be translated into hard-bit

decisions{b̂MAP
k }NTBPS

k=1 . In order to produce the soft-bit decisions according to theMax-Log-

MAP algorithm of Eq. (7.5), the SD is invoked again for producing the second ED̄dMAP, where

the search space is halved by fixing the k-th bitbk to the flipped MAP decision asbk = b̄MAP
k . In
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summary, the Max-Log-MAP algorithm of Eq. (7.5) may be completed as:

Lp(bk) =

{
−dMAP + d̄MAP, if bMAP

k = 1

−d̄MAP + dMAP, if bMAP
k = 0

. (7.15)

In this way, the SD has to be invoked(NTBPS+ 1)/(NTBPS) times for producing a single soft-bit

output, which is often referred to as the Repeated Tree Search (RTS) [132,284].

Recently, it was proposed in [175, 176] that a Single Tree Search (STS) [284] may avoid the

RTS by establishing a list administration in the SD’s tree search. In other words, the SD may only

be invoked once for obtaining bothdMAP as well as a total number ofNTBPS EDsd̄MAP. The SD

using STS may be implemented according to the following rules:

1. The list includes the MAP optimum ED hypothesis ofdMAP and a total ofNTBPS counter-

hypothesis EDs̄db̄k
MAP, which may be initialized to infinity. All the bit-mapping arrangements

corresponding to the EDs in the list are recorded.

2. When a leaf node associated with the PEDd1 at the SD index ofv = 1 is examined, if a new

ED hypothesis is found and updated because we haved1 < dMAP, the former ED hypothesis

becomes a new counter-hypothesis ED metric.

3. If the visited leaf node associated with the PEDd1 at the SD index ofv = 1 is not a new ED

hypothesis because ofd1 > dMAP, the PEDd1 is a new counter-hypothesis ED metric.

4. A new counter-hypothesis ED metric has to be checked against at least one existing counter-

hypothesis EDs. For example, considering a V-BLAST system associated withNT = 2 em-

ploying QPSK, if the ED hypothesisdMAP is associated with the bit-mapping arrangement of

[b1b2b3b4] = [0000], the new counter-hypothesis ED metric associated with the bit-mapping

arrangement of[b1b2b3b4] = [0101] has to be compared to both̄db̄2
MAP andd̄b̄4

MAP. The tested

counter-hypothesis ED may be updated, when a case ofd1 < d̄b̄k
MAP occurs.

5. A SD subtree may be prunned at index1 < v < NT, if the PEDdv is higher than all the ED

entries ofdMAP andd̄b̄k
MAP in the list.

The downside of the STS is that the bit-mapping arrangementshave to be recorded and traced

along with the SD tree search. In fact, the STS’s motivation of visiting a node at most once can also

be accomplished by RTS, provided that the same SD tree is re-used when the SD search is invoked

again. The extra requirement imposed on RTS is that the nodesthat have previously been visited

should be labelled, so that any repeated calculations may beavoided by reading the previously

evaluated PED metrics. The labelling of SD nodes also requires extra memory, hence the choice

between RTS and STS depends on the practical circuit design and implementation.
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subfunction: [{∆m
v }

√
M−1

m=0 , {sm
v }

√
M−1

m=0 , nv] = sortDelta(Ỹv, {lt,v}2NT
t=v , {st}2NT

t=v+1, Pv,m+1, N0)

1: for m = 0 to (
√

M − 1) //visit all
√

M child nodes
2: sm

v = sm√
NT

//visit them-th child node

3: ∆m
v =

[(
Ỹv−∑

2NT
t=v+1 lt,vst

)
−lv,vsm

v

]2

N0
− Pv,m+1 //update PED increment according to Eq. (7.18)

4: end for

5: [{∆m
v }

√
M−1

m=0 , {sm
v }

√
M−1

m=0 ] = sortI ({∆m
v }

√
M−1

m=0 ) //rank PED increments in increasing order
6: nv = 0 //initialize child node counter

Table 7.2: Pseudo-code for soft-decision-aided SD conceived for coded V-BLAST em-
ploying SquareMQAM.

7.2.3 Soft-Decision-Aided SD Conceived for Coded V-BLAST Employing Square

QAM

As demonstrated in Sec. 6.2.3, when SquareMQAM is employed for V-BLAST, the received

signal model of Eq. (6.1) may be decoupled as seen in Eq. (6.27), so that the real and imaginary

parts of the SquareMQAM constellation may be detected separately. As a result, the ED of the

soft-decision-aided V-BLAST SD of Eq. (7.7) may be revised for the case of SquareMQAM as:

d =
∑

2NT
v=1

(
Ỹv − ∑

2NT
t=v lt,vst

)2

N0
−

2NT

∑
v=1

{
BPS/2

∑
k̄v=1

[
b̃k̄v

La(bk̄v
) − C

SD
a,k̄v

]}
, (7.16)

where the first term is revised from the hard-decision-aidedSD’s ED of Eq. (6.30). The equivalent

received signal model is given by Eq. (6.29) after applying the QR decomposition of Eq. (6.28).

The(2NR × 2NT)-element real-valued matrixQ has orthogonal columns, yieldingQTQ = I2NT
,

hence it does not change the statistics of the AWGN matrixV in Eq. (6.29). In this section, we only

consider the SquareMQAM constellations associated with an even BPS, although itis straightfor-

ward to extend this solution to the case of odd BPS.

In order to minimize the ED of Eq. (7.16) by SD, the PED may be expressed as:

dv =
∑

2NT
v̄=v

(
Ỹv̄ − ∑

2NT
t=v̄ lt,v̄st

)2

N0
−

2NT

∑
v̄=v

{
BPS/2

∑
k̄v̄=1

[
b̃k̄v̄

La(bk̄v̄
) − C

SD
a,k̄v̄

]}

= dv+1 + ∆v,

(7.17)

where the PED increment∆v is given by:

∆v =

(
Ỹv − ∑

2NT
t=v lt,vst

)2

N0
−

BPS/2

∑
k̄v=1

[
b̃k̄v

La(bk̄v
) − C

SD
a,k̄v

]

=

[(
Ỹv − ∑

2NT
t=v+1 lt,vst

)
− lv,vsv

]2

N0
−

BPS/2

∑
k̄v=1

[
b̃k̄v

La(bk̄v
)− C

SD
a,k̄v

]
.

(7.18)

Therefore, based on the PED increment of Eq. (7.18), the soft-decision-aided V-BLAST SD of

Table 7.1 may be invoked for detecting SquareMQAM symbols. Owing to the fact that the real

and imaginary parts of the SquareMQAM constellation are decoupled, the SD index of Table 7.1
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should be starting and terminating atv = 2NT instead ofv = NT, and the constellation set size is

given by
√

M instead ofM. The subfunction “sortDelta” in Table 7.1 is tailored for SquareMQAM

in Table 7.2, where{sm}
√

M−1
m=0 are

√
MPAM symbols that constitute the real and imaginary parts

of the SquareMQAM constellation. The V-BLAST Max-Log-MAP algorithm obeys Eq. (7.15)

following our discussions in Sec. 7.2.2.

The Schnorr-Euchner search strategy tailored for SquareMQAM in Table 7.2 not only requires

to visit all legitimate
√

MPAM constellation points, but it also invokes sorting algorithms for sort-

ing the PED increments in ascending order. More efficient calculation methods may be found

in [358–360], where the SD visits only a subset of
√

MPAM constellation points. However, these

existing solutions only take into account the channel-output-related PED increment term, which is

the hard-decision-aided SD metric. Thea priori information is beneficial, especially for MIMO

detectors, where the streams impose interference on each other. Therefore, it is desirable to sim-

plify the Schnorr-Euchner search strategy of Table 7.2 without avoiding thea priori information,

following the reduced complexity design proposed forMPSK constellations in Sec. 3.3.3. We will

tailor the reduced complexity design for SquareMQAM constellations in our future research.

7.2.4 Soft-Decision-Aided MMSE Receiver Conceived for Coded V-BLAST

Although SD may effectively reduce the MIMO system’s detection complexity, its complexity is

still substantially higher than linearMPSK/QAM receivers’ detection complexity. Therefore, as

discussed in the context of uncoded V-BLAST, linear filters such as the ZF and MMSE receivers

may be conceived for decoupling the parallel data streams that are separately transmitted but amal-

gamated at the receiver. However, imposing a performance loss is inevitable due to the presence

of interference amongst the data streams, hence a tradeoff between the performance attained and

the complexity imposed has to be taken into account. In this section, we provide insights into the

soft-decision-aided MMSE solution conceived for coded V-BLAST receivers.

If we directly revise the hard-decision-aided V-BLAST MMSEof Sec. 6.2.4 for employment

in coded systems, the linearMPSK/QAM detection algorithms introduced in Sec. 2.3.1 may be

invoked for detecting the decoupled data streams, where thesymbol-by-symbol baseda posteriori

probability metrics are given by:

dm = −
∣∣zMMSE

v − smHv,−GMMSE
−,v /

√
NT

∣∣2

N0‖GMMSE
−,v ‖2

+
BPS

∑
k̄v=1

b̃k̄v
La(bk̄v

). (7.19)

The decision variable{zMMSE
v }NT

v=1 is given by Eq. (6.41), while the MMSE filters taps{GMMSE
−,v }NT

v=1

are formulated in Eq. (6.40). When the fading channels envelope remains near-constant, the

MMSE filters taps{GMMSE
−,v }NT

v=1 do not have to be updated. Therefore, the soft-decision-aided

MPSK/QAM detection algorithms of Eqs. (2.30), (2.34) and (2.35) invoking Eq. (7.19) exhibit a

low detection complexity. However, this simple mechanism does not deliver the exact MMSE so-

lution [13,77,78] for coded V-BLAST systems, hence it suffers from a performance loss. In order
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to mitigate this problem, we have to introduce the exact MMSEsolution, which takes into account

thea priori knowledge of the V-BLAST symbols.

Let us firstly assume that thev-th elementsv in the V-BLAST transmit signal vector of Eq. (6.11)

has to be detected, while the remainingNT − 1 signals are deemed to be interference. As a result,

the received signal model of Eq. (6.1) may be further extended as:

Y = svHv,− + ∑
∀v̄ 6=v

sv̄Hv̄,− + V

= svHv,− + Sv̄Hv̄ + V,

(7.20)

where the[1 × (NT − 1)]-element interference vectorSv̄ = [s1, · · · , sv−1, sv+1, · · · , sNT
] may be

obtained by omitting thev-th element of the V-BLAST transmit signal vectorS of Eq. (6.11), while

the [(NT − 1) × NR]-element fading matrixHv̄ =
[
HT

1,−, · · · , HT
v−1,−, HT

v+1,−, · · · , HT
NT,−

]T
is

obtained by omitting thev-th row in the fading matrixH of Eq. (6.1).

According to Eq. (7.20), the MMSE filter conceived for detecting sv produces the following

output signal:

zMMSE
v = YG

MMSE
v

= svHv,−G
MMSE
v + Sv̄Hv̄G

MMSE
v + VG

MMSE
v ,

(7.21)

where the(NR × 1)-element MMSE filter taps vectorG
MMSE
v aims for minimizing the interference

term ofuv = Sv̄Hv̄G
MMSE
v without increasing the noise power. In the presence ofa priori LLRs,

the residual interference term after MMSE filtering may be further mitigated by the following

operations [13,77,78,353]:

žMMSE
v = zMMSE

v − ûv

= zMMSE
v − Ŝv̄Hv̄G

MMSE
v ,

(7.22)

whereŜv̄ = E(Sv̄) referred to as the estimate of the interference vector. Thet-th (1 ≤ t ≤ NT − 1)

elementŝt = E(st) in Ŝv̄ may be obtained from thea priori probabilities as [13,72,75]:

ŝt =
1√
NT

M−1

∑
m=0

sm p(st = sm)

=
1√
NT

M−1

∑
m=0

sm
exp

[
∑

BPS
k̄=1 b̃k̄La(bk̄)

]

∏
BPS
k̄=1 {1 + exp [La(bk̄)]}

,

(7.23)

where{b̃k̄}BPS
k̄=1

refers to the bit-mapping arrangement corresponding to theconstellation pointsm.

The MMSE filter taps should be formulated by minimizing the OFconstituted by the difference

between the filter outpuťzMMSE
v which was decontaminated from the interference and the target

signalsv as [13,77,78,353]:

E
(
|žMMSE

v − sv|2
)

= E
[
|YG

MMSE
v − (ûv + sv)|2

]

= (G
MMSE
v )HE(YHY)G

MMSE
v − (G

MMSE
v )HE

[
YH(ûv + sv)

]

− E [(ûv + sv)
∗Y] G

MMSE
v + E(|ûv + sv|2).

(7.24)
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From the MMSE filter’s perspective, only the target signalsv is an unknown variable, while the

rest of the transmitted symbols{st}NT−1
t=1 in Sv̄ are assumed to be known that may be evaluated

according to Eq. (7.23). As a result, the correlation between the interferring signals is given by:

E(s∗t st̄) =

{
ŝ∗t ŝt̄, t 6= t̄

E(|st|2), t = t̄
, (7.25)

where the estimation of the interference power relies on:

E(|st|2) =
1

NT

M−1

∑
m=0

|sm|2 p(st = sm)

=
1

NT

M−1

∑
m=0

|sm|2
exp

[
∑

BPS
k̄=1

b̃k̄La(bk̄)
]

∏
BPS
k̄=1 {1 + exp [La(bk̄)]}

.

(7.26)

As a special case, we haveE(|st|2) = 1
NT

for MPSK constellations. Moreover, the correlation

between the target signalsv and the interference is simply given by{E(s∗vst) = 0}NT−1
t=1 . As a

result, the correlation of received signalsY in Eq. (7.24) is given by:

E(YHY) =
1

NT
HH

v,−Hv,− + (Hv̄)HE
[
(Sv̄)HSv̄

]
Hv̄ + N0INR

=
1

NT
HH

v,−Hv,− + (Hv̄)H
[
(Ŝv̄)HŜv̄ − diag

(
(Ŝv̄)HŜv̄

)
+ Rv̄

|s|

]
Hv̄ + N0INR

,

(7.27)

where the[(NT − 1) × (NT − 1)]-element matrixRv̄
|s| refers to the estimate of the interference

powers asRv̄
|s| = diag

[
E(|s1|2), · · · , E(|sv−1|2), E(|sv+1|2), · · · , E(|sNT

|2)
]
. Similarly, the cross-

correlation in Eq. (7.24) may be further extended as:

E
[
YH(ûv + sv)

]
=

1

NT
HH

v,− + (Hv̄)H(Ŝv̄)Hûv

=
1

NT
HH

v,− + (Hv̄)H(Ŝv̄)HŜv̄Hv̄G
MMSE
v .

(7.28)

Furthermore, the correlation of(ûv + sv) in Eq. (7.24) is given by:

E(|ûv + sv|2) =
1

NT
+ (G

MMSE
v )H(Hv̄)H(Ŝv̄)HŜv̄Hv̄G

MMSE
v . (7.29)

In summary, the MSE OF of Eq. (7.24) may be rewritten as:

E
(
|žMMSE

v − sv|2
)

= (G
MMSE
v )H{ 1

NT
HH

v,−Hv,− + (Hv̄)H
[
(Ŝv̄)HŜv̄ − diag

(
(Ŝv̄)HŜv̄

)
+ Rv̄

|s|

]
Hv̄

+ N0INR
}G

MMSE
v − (G

MMSE
v )HHH

v,−
NT

− (G
MMSE
v )H(Hv̄)H(Ŝv̄)HŜv̄Hv̄G

MMSE
v

− Hv,−G
MMSE
v

NT
+

1

NT

= (G
MMSE
v )H

{
1

NT
HH

v,−Hv,− + (Hv̄)H
[
Rv̄
|s| − diag

(
(Ŝv̄)HŜv̄

)]
Hv̄ + N0INR

}
G

MMSE
v

− (G
MMSE
v )HHH

v,−
NT

− Hv,−G
MMSE
v

NT
+

1

NT
.

(7.30)
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As a result, the MMSE solution of
∂E(|žMMSE

v −sv|2)
∂G

MMSE
v

= 0 leads to the filter taps of:

G
MMSE
v =

{
HH

v,−Hv,− + NT(Hv̄)H
[
Rv̄
|s| − diag

(
(Ŝv̄)HŜv̄

)]
Hv̄ + NT N0INR

}−1
HH

v,−.

(7.31)

When there is noa priori information as represented byIA = 0, we haveRv̄
|s| = 1

NT
INT−1 and

Ŝv̄ = 01×(NT−1), and the MMSE filter taps of Eq. (7.31) become:

G
MMSE
v =

(
HHH + NT N0INR

)−1
HH

v,−, (7.32)

which is exactly the same as the hard-decision-aided MMSE solution of Eq. (6.40). By contrast,

when perfecta priori information of IA = 1 is available, we haveRv̄
|s| = diag

(
(Ŝv̄)HŜv̄

)
, which

results in the following MMSE filter taps:

G
MMSE
v =

(
HH

v,−Hv,− + NT N0INR

)−1
HH

v,−. (7.33)

We note that the case ofIA = 1 leads to the perfect estimation of the interference termûv =

Sv̄Hv̄G
MMSE
v of Eq. (7.22), which implies that the optimum MIMO detectioncapability may be

achieved by the MMSE detector atIA = 1.

As a result, the interference-decontaminated MMSE filter output of Eq. (7.22) may now be

rewritten as:

žMMSE
v = svHv,−G

MMSE
v + (Sv̄ − Ŝv̄)Hv̄G

MMSE
v + VG

MMSE
v , (7.34)

where the residual interference term(Sv̄ − Ŝv̄)Hv̄G
MMSE
v and the AWGN termVG

MMSE
v may be

jointly considered as a Gaussian-distributed variable with a zero mean and a variance ofNMMSE
0 =

E
[
|(Sv̄ − Ŝv̄)Hv̄G

MMSE
v + VG

MMSE
v |2

]
, which may be further extended as [72,75,353,361]:

NMMSE
0 = (G

MMSE
v )H

{
(Hv̄)H

[
E
(
(Sv̄)HSv̄

)
− (Ŝv̄)HŜv̄

]
Hv̄ + N0INR

}
G

MMSE
v

= (G
MMSE
v )H

{
(Hv̄)H

[
Rv̄
|s| − diag

(
(Ŝv̄)HŜv̄

)]
Hv̄ + N0INR

}
G

MMSE
v

= (G
MMSE
v )H

(
1

NT
Hv,−

)H

− (G
MMSE
v )H

(
1

NT
HH

v,−Hv,−

)
G

MMSE
v

=
1

NT
(G

MMSE
v )H(Hv,−)H − 1

NT

∣∣∣(G
MMSE
v )H(Hv,−)H

∣∣∣
2

.

(7.35)

Finally, the linear soft-decision-aidedMPSK/QAM detector of Sec. 2.3.1 may be invoked

based on the equivalent received signal model of Eq. (7.34).The a posteriori probability met-

rics {dm}M−1
m=0 of Eq. (2.30) formulated in the Log-MAP algorithm, the Max-Log-MAP algorithm

of Eq. (2.34) and the Approx-Log-MAP algorithm of Eq. (2.35)are given by:

dm = −

∣∣∣žMMSE
v − 1√

NT
smHv,−G

MMSE
v

∣∣∣
2

NMMSE
0

+
BPS

∑
k̄=1

b̃k̄La(bk̄). (7.36)

The calculation of the MMSE filter taps{G
MMSE
v }NT

v=1 of Eq. (7.31) specifically calculated for

detecting all the V-BLAST symbols{sv}NT
v=1 requires us to perform an matrix-element inversion
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for a total number ofNT times, which may be excessive for practical implementations. Simplified

matrix inversion techniques were proposed in [72, 362], butthe matrix inversion still had to be

carried outNT times. Moreover, it was proposed in [353] that bothRv̄
|s| andŜv̄ may be estimated

by averaging over all samples of a detection frame, so that the matrix inversion did not have to be

updated for detecting each transmitted V-BLAST symbol. However, this method imposes a sub-

stantial performance loss. Against this background, a better choice is proposed in [78], where the

matrix inversion only has to be performed once for detectingall theNT transmitted V-BLAST sym-

bols. In order to achieve this goal, let us firstly rewrite theMMSE filter tapsG
MMSE
v of Eq. (7.31)

as:

G
MMSE
v =

(
Q + evHH

v,−Hv,−
)−1

HH
v,−, (7.37)

where the(NR × NR)-element matrixQ is given by:

Q = NTHH
[
R|s| − diag

(
ŜHŜ

)]
H + NT N0INR

, (7.38)

and we haveR|s| = diag[E(|s1|2), · · · , E(|sNT
|2)] as well asŜ = E(S) = [ŝ1, · · · , ŝNT

], which

are respectively revised fromRv̄
|s| andŜv̄ in Eq. (7.31). Moreover, the constantev in Eq. (7.37) is

given by:

ev = 1 − NTE(|sv|2) + NT|ŝv|2. (7.39)

According to the Sherman-Morrison formula of [363–365], the matrix inversion of Eq. (7.37)

may be extended as:

(
Q + evHH

v,−Hv,−
)−1

= Q−1 − evQ−1HH
v,−Hv,−Q−1

1 + evHv,−Q−1HH
v,−

. (7.40)

As a result, the MMSE filter tapG
MMSE
v of Eq. (7.37) may be further extended as [78]:

G
MMSE
v = Q−1HH

v,− − evQ−1HH
v,−Hv,−Q−1HH

v,−
1 + evHv,−Q−1HH

v,−

= G̃MMSE
v C̃MMSE

v ,

(7.41)

where the equivalent MMSE filter taps vector is given by:

G̃MMSE
v = Q−1HH

v,−

=
{

NTHH
[
R|s| − diag

(
ŜHŜ

)]
H + NT N0INR

}−1
HH

v,−,
(7.42)

while the constant̃CMMSE
v is given by:

C̃MMSE
v = 1 − evHv,−G̃MMSE

v

1 + evHv,−G̃MMSE
v

=
1

1 + evHv,−G̃MMSE
v

.

(7.43)

We note thatG̃MMSE
v of Eq. (7.42) may be obtained by simply retaining thev-th column of

G̃MMSE = Q−1HH. Hence the matrix inversion only has to be performed once forobtaining

all the equivalent MMSE filter taps vectors{G̃MMSE
v }NT

v=1.
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It is maybe readily shown that using the equivalent MMSE filter taps vectors{G̃MMSE
v }NT

v=1

of Eq. (7.42) instead of{G
MMSE
v }NT

v=1 of Eq. (7.31) does not change the MMSE detection results.

More explicitly, thea posterioriprobability metricdm of Eq. (7.36) may be further extended as:

dm = −

∣∣∣YG̃MMSE
v C̃MMSE

v − Ŝv̄Hv̄G̃MMSE
v C̃MMSE

v − 1√
NT

smHv,−G̃MMSE
v C̃MMSE

v

∣∣∣
2

∣∣∣C̃MMSE
v

∣∣∣
2
(G̃MMSE

v )H
{
(Hv̄)H

[
Rv̄
|s| − diag

(
(Ŝv̄)HŜv̄

)]
Hv̄ + N0INR

}
G̃MMSE

v

+
BPS

∑
k̄=1

b̃k̄La(bk̄)

= −

∣∣∣YG̃MMSE
v − Ŝv̄Hv̄G̃MMSE

v − 1√
NT

smHv,−G̃MMSE
v

∣∣∣
2

(G̃MMSE
v )H

{
(Hv̄)H

[
Rv̄
|s| − diag

(
(Ŝv̄)HŜv̄

)]
Hv̄ + N0INR

}
G̃MMSE

v

+
BPS

∑
k̄=1

b̃k̄La(bk̄),

(7.44)

which verifies that replacingG
MMSE
v by G̃MMSE

v does not change thea posteriori probability

metricdm of Eq. (7.36). Finally, Eq. (7.44) may be simplified to:

dm = −
∣∣z̃MMSE

v − sm
∣∣2

ÑMMSE
0

+
BPS

∑
k̄=1

b̃k̄La(bk̄), (7.45)

where the decision variable is given by:

z̃MMSE
v =

(
YG̃MMSE

v − Ŝv̄Hv̄G̃MMSE
v

)
/h̃MMSE

v , (7.46)

while the equivalent fading factor̃hMMSE
v = 1√

NT
Hv,−G̃MMSE

v obtained from Eq. (7.44) is sup-

posed to be a real number according to the MMSE receiver’s equivalent noise power calculation of

Eq. (7.35) [78]. Furthermore, the new equivalent noise power ÑMMSE
0 in Eq. (7.45) is given by:

ÑMMSE
0 = (G̃MMSE

v )H
{
(Hv̄)H

[
Rv̄
|s| − diag

(
(Ŝv̄)HŜv̄

)]
Hv̄ + N0INR

}
G̃MMSE

v /(h̃MMSE
v )2

=
(G̃MMSE

v )HHH
v,−

NT(h̃MMSE
v )2

+

[
|ŝv|2 − E(|sv|2)

] ∣∣∣(G̃MMSE
v )HHH

v,−
∣∣∣
2

(h̃MMSE
v )2

=
1√

NT · h̃MMSE
v

+ NT

[
|ŝv|2 − E(|sv|2)

]
.

(7.47)

Considering that the V-BLAST MMSE receiver’sa posteriori probability metric{dm}M−1
m=0

of Eq. (7.45) is in the same form as the generalMPSK/QAM cases of Eqs. (2.37) and (2.38),

the reduced-complexity soft-decision-aidedMPSK/QAM detectors proposed in Sec. 2.4 may be

directly invoked for the coded V-BLAST scheme’s linear MMSEreceiver, wherẽzn and Ñ0 in

Sec. 2.4 may be respectively replaced byz̃MMSE
v of Eq. (7.46) and̃NMMSE

0 of Eq. (7.47).

7.3 Coded Space-Time Block Code

It was demonstrated in Sec. 6.3.1 that the STBCs, which comply with the orthogonality require-

ment may invoke the low-complexity linearMPSK/QAM receivers for detecting the decoupled
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data streams without encountering V-BLAST’s IAI problem. As a result, based on the decoupled

conditional probability of receivingY in Eq. (6.51) when the STBC codewordS is transmitted, the

Log-MAP algorithm conceived for optimum MIMO detection in Eq. (7.1) may be simplified for

optimum STBC detection as:

Lp(bk) = ln
∑∀sm∈{sm}bk=1

p(zq|sm)p(sm)

∑∀sm∈{sm}bk=0
p(zq|sm)p(sm)

= ln
∑∀sm∈{sm}bk=1

exp(dm)

∑∀sm∈{sm}bk=0
exp(dm)

,

(7.48)

where the decoupled conditional probabilityp(zq|sm) is given by Eq. (6.52). Hence thea posteriori

probability metric of Eq. (7.48) is given by:

dm = −|zq − sm|2
N0

+
BPS

∑
k̄=1

b̃k̄La(bk̄). (7.49)

The decision variablezq and the equivalent noise powerN0 are defined in Eq. (6.52). Therefore, the

Log-MAP algorithm conceived for STBC detection in Eq. (7.48) produces thek-th soft-bit decision

for theq-th STBC stream’s transmitted symbol by visiting only a single MPSK/QAM constellation

diagram.

Therefore, the Max-Log-MAP algorithm of Eq. (2.34) and the Approx-Log-MAP algorithm

of Eq. (2.35) designed for a linear soft-decision-aidedMPSK/QAM detector may also be directly

invoked by the STBC receiver, where thea posterioriprobability metric is given by Eq. (7.49). Fur-

thermore, the reduced-complexity soft-decision-aidedMPSK/QAM detectors proposed in Sec. 2.4

may also be applied to coded STBC detection, wherez̃n and Ñ0 of Sec. 2.4 may be respectively

replaced byzq andN0 of Eq. (7.49)

As discussed in Sec. 6.3.1, the STBCs generated from orthogonal design cannot achieve the full

MIMO capacity. Explicitly, the CCMC capacity of orthogonalSTBCs was shown in Sec. 6.3.1.5

to be lower than the full MIMO capacity. Hence in practice thethroughput of orthogonal STBCs

can only achieve at most the SISO/SIMO system’s throughput.Owing to this throughput loss,

the STBC systems have to employ high-orderMPSK/QAM constellations, when they are com-

pared to V-BLAST systems at the sameEb/N0 per channel use. Moreover, the employment of

high-orderMPSK/QAM results in a performance disadvantage, especiallyfor MIMO systems em-

ploying more than two TAs.

In order to mitigate this problem, the attractive LDC schemewas introduced in Sec. 6.3.2,

which are capable of achieving both the full MIMO capacity and the full STM diversity order.

Hence the LDCs are capable of accommodating the multiplexing and diversity tradeoff of MIMO

systems. However, the STBC’s orthogonality requirement isabandoned in the context of LDC de-

sign. Hence the LDC receiver has to employ the high-complexity V-BLAST detectors, as shown in

Sec. 6.3.2.3. In coded MIMO systems, LDC still has to employ the soft-decision-aided V-BLAST

detectors of Sec. 7.2 based on the equivalent received signal model of Eq. (6.92). Therefore, the

same performance versus complexity tradeoff is encountered in the context of coded MIMO system
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design, where V-BLAST and LDC may compensate the STBC’s throughput loss, but the V-BLAST

and LDC receivers cannot employ low-complexity linearMPSK/QAM detectors without compro-

mising their optimal detection capability.

7.4 Coded Spatial Modulation and Space-Time Shift Keying

As discused in Sec. 6.4.1, the SM’s transmit signals vector of Eq. (6.99) only activates a single

TA to transmit a modulatedMPSK/QAM symbol. As a result, the matched filter output vector

Z = YHH of Eq. (6.100) does not encounter the V-BLAST’s IAI problem.Therefore, we may

revise the general MIMO detector’sa posteriori probability metric of Eq. (7.4) to be evaluated

based on the matched filter outputZ instead of the received signalsY as:

di = −κ2
v|sm|2 − 2ℜ [(sm)∗zv]

N0
+

log2 I

∑
k̄=1

b̃k̄La(bk̄), (7.50)

where we have{κv = ‖Hv,−‖}NT
v=1 as defined in Eq. (6.103), while{zv}NT

v=1 are elements taken

from Z of Eq. (6.100). The relationship between the SM indexi, the TA activation indexv and the

classic modulated symbol indexm is given byi = v − 1 + mNT according to the SM transceiver

design in Sec. 6.4.1. The only difference between Eq. (7.4) and Eq. (7.50) is a constant of− ‖Y‖2

N0
,

which may be eliminated by the division operation of the Log-MAP of Eq. (7.3). Therefore, all

general MIMO’s detection algorithms including Log-MAP of Eq. (7.3), Max-Log-MAP of Eq. (7.5)

and Approx-Log-MAP of Eq. (7.6) may invoke the probability metric of Eq. (7.50) instead of

Eq. (7.4) for SM detection without imposing any performanceloss.

The soft-decision-aided SM detection using Eq. (7.50) is the coded version of the conventional

hard-decision-aided SM detection [198] of Eq. (6.103). There are a total number ofI = NT M

combinations for{di}I
i=0, which means that the conventional soft-decision-aided SMdetection

still exhibits the general MIMO detection complexity orderof O(I). Therefore, we propose to

further revise the reduced-scope SM detector for employment in coded systems, so that the soft-

decision-aided SM detection complexity may be further reduced by visiting a reduced number of

constellation points.

Similar to Eq. (6.104), thea posterioriprobability metric of Eq. (7.50) may be extended as:

dv,m =
ℜ(z̃v)ℜ(sm)

N0
+

ℑ(z̃v)ℑ(sm)

N0
− κ2

v|sm|2
N0

+
log2 I

∑
k̄=1

b̃k̄La(bk̄), (7.51)

where we have{z̃v = 2zv}NT
v=1. Let us firstly consider the Max-Log-MAP algorithm of Eq. (7.5),

which may evaluate thea posterioriprobability metrics according to Eq. (7.51). For the BPST =

log2 NT bits that are assigned to modulate the TA activation indexv, the soft-bit decisions produced

by the Max-Log-MAP of Eq. (7.5) may be expressed as:

Lp(bk) = max
∀v∈{1,··· ,NT}bk=1

dv − max
∀v∈{1,··· ,NT}bk=0

dv, (7.52)
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where{1, · · · , NT}bk=1 and{1, · · · , NT}bk=0 refer to the index set forv, when the specific bit

{bk}log2 I

k=BPS+1 is fixed to 1 and 0, respectively. In order to produce thea posterioriLLR in Eq. (7.52),

we have to obtain the maximum probability metric for each TA activation indexv as:

dv = max
∀m∈{0,··· ,M−1}

dv,m. (7.53)

Let us consider QPSK as an example. We deliberately rotate QPSK’s detected constellation dia-

gram anti-clockwise byπ/4, so that there is only a single constellation point in each quadrant. As

a result, the decision variable should be rotated asz′v = z̃v exp(j π
4 ), and the detected constella-

tion points are given by{s′m = sm exp(j π
4 )}M−1

m=0 = { 1√
2
+ j 1√

2
, 1√

2
− j 1√

2
,− 1√

2
+ j 1√

2
,− 1√

2
−

j 1√
2
}2. Therefore, the maximum probability metric of Eq. (7.53) over four QPSK constellation

points is given by:

dv = max





ℜ(z′v)√
2N0

+ ℑ(z′v)√
2N0

− κ2
v

N0
+ pa

v

−ℜ(z′v)√
2N0

+ ℑ(z′v)√
2N0

+ La(b2) − κ2
v

N0
+ pa

v

ℜ(z′v)√
2N0

− ℑ(z′v)√
2N0

+ La(b1) − κ2
v

N0
+ pa

v

−ℜ(z′v)√
2N0

− ℑ(z′v)√
2N0

+ La(b1) + La(b2) − κ2
v

N0
+ pa

v





= max





tv
Re+ tv

Im − κ2
v

N0
+ pa

v

−tv
Re+ tv

Im − κ2
v

N0
+ pa

v

tv
Re− tv

Im − κ2
v

N0
+ pa

v

−tv
Re− tv

Im − κ2
v

N0
+ pa

v





+
La(b1) + La(b2)

2
,

(7.54)

where thea priori probability metric for the TA activation indexv is given bypa
v = ∑

log2 I

k̄=BPS+1
b̃k̄La(bk̄),

while the two new variables associated with testing the realand imaginary parts separately are de-

fined as:

tv
Re =

ℜ(z′v)√
2N0

− La(b2)

2
,

tv
Im =

ℑ(z′v)√
2N0

− La(b1)

2
.

(7.55)

As a result, the maximum probability of Eq. (7.54) may be simply given by a one-step evaluation

as:

dv = |tv
Re| + |tv

Im| −
κ2

v

N0
+ pa

v, (7.56)

where a constant ofLa(b1)+La(b2)
2 is discarded from Eq. (7.54), because this term may be eliminated

by the subtraction in the Max-Log-MAP of Eq. (7.52). Therefore, instead of evaluating and com-

paring a total number ofM = 4 probability metrics corresponding to all QPSK constellation points

in Eq. (7.54), the calculation of Eq. (7.56) in fact only visits a single constellation point, which is

located in the first quadrant.

2We note that if the QPSK constellation is rotated at the transmitter, the operation ofz′v = z̃v exp(j π
4 ) may be

eliminated at the SM receiver.



7.4. Coded Spatial Modulation and Space-Time Shift Keying 339

Similarly, when the Approx-Log-MAP of Eq. (7.6) is invoked for producing{Lp(bk)}log2 I

k=BPS+1,

the maximuma posterioriprobability metric of Eq. (7.56) may be reformulated as:

dv = Λ(|tv
Re|) + Λ(|tv

Im|) −
κ2

v

N0
+ pa

v, (7.57)

where the corrected Jacobian algorithm ofΛ(·) is given by Eq. (2.78). As a result, the Approx-

Log-MAP of Eq. (7.6) may be accomplished by using Eq. (7.57) as:

Lp(bk) = jac∀v∈{1,··· ,NT}bk=1
dv − jac∀v∈{1,··· ,NT}bk=0

dv. (7.58)

In summary, the detection algorithms of Eq. (7.52) and Eq. (7.58) only have to evaluate and

compare theNT a posterioriprobability metrics{dv}NT
v=1 of Eq. (7.56) and Eq. (7.57), respectively.

Therefore, the SM-QPSK detection complexity order has beenreduced fromO(NT M) to O(NT)

for detecting the BPST = log2 NT bits that are assigned to the TA activation indexv.

For the BPS= log2 M = 2 bits that are assigned to encode the QPSK’s classic modulated

symbol indexm, when a specific bit{bk}2
k=1 is set to 1 or 0 as required by the Max-Log-MAP of

Eq. (7.5), the QPSK constellation set has to be updated. Morespecifically, when the first bit is set

to beb1 = 1 or b1 = 0, the QPSK constellation set has to be updated as{ 1√
2
− j 1√

2
, ,− 1√

2
− j 1√

2
}

or { 1√
2
+ j 1√

2
,− 1√

2
+ j 1√

2
}, respectively. As a result, the Max-Log-MAP algorithm of Eq. (7.5)

may be simplified for producing the first soft-bit decision as:

Lp(b1) = max
v∈{1,··· ,NT}

[
max

m∈{2,3}
(dv,m)

]
− max

v∈{1,··· ,NT}

[
max

m∈{0,1}
(dv,m)

]

= max
v∈{1,··· ,NT}

(
|tv

Re| − tv
Im − κ2

v

N0
+ pa

v

)
− max

v∈{1,··· ,NT}

(
|tv

Re|+ tv
Im − κ2

v

N0
+ pa

v

)
,

(7.59)

where the imaginary term of|tv
Im| in Eq. (7.56) is replaced by(−tv

Im) and(tv
Im), whenb1 is fixed

to 1 and 0, respectively. Similarly, the second soft-bit decision is given by:

Lp(b2) = max
v∈{1,··· ,NT}

(
−tv

Re+ |tv
Im| −

κ2
v

N0
+ pa

v

)
− max

v∈{1,··· ,NT}

(
tv
Re+ |tv

Im| −
κ2

v

N0
+ pa

v

)
.

(7.60)

The complexity order of Eqs. (7.59) and (7.60) is given byO(2NT), where the TA index detector

is invoked twice according to the updated QPSK constellation set, when the specific bit is fixed to

1 and 0.

Let us further consider the example of SM employing Square 16QAM. Owing to the fact that

the real and the imaginary parts of the Square 16QAM constellation may be separately visited, the

maximum probability metric for each TA indexv of Eq. (7.56) may be rewritten as:

dv = dv
Re + dv

Im + pa
v. (7.61)
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The real termdv
Re in Eq. (7.61) may be further extended as:

dv
Re = max





ℜ(z̃v)√
10N0

+ La(b4) − κ2
v

10N0
, − ℜ(z̃v)√

10N0
+ La(b3) + La(b4)− κ2

v
10N0

,

3ℜ(z̃v)√
10N0

− 9κ2
v

10N0
, − 3ℜ(z̃v)√

10N0
+ La(b3) − 9κ2

v
10N0





= max

{
|tv,1

Re|+ La(b4) − κ2
v

10N0
,

|tv,0
Re| −

9κ2
v

10N0

}
+

La(b3)

2

= max

{
dv,1

Re,

dv,0
Re

}
+

La(b3)

2
,

(7.62)

where the constant ofLa(b3)
2 may be deleted, while the pair of test-variables are defined as:

tv,1
Re =

ℜ(z̃v)√
10N0

− La(b3)

2
,

tv,0
Re =

3ℜ(z̃v)√
10N0

− La(b3)

2
.

(7.63)

Similarly, the imaginary termdv
Im in Eq. (7.61) may be formulated as:

dv
Im = max

{
|tv,1

Im |+ La(b2)− κ2
v

10N0
,

|tv,0
Im | − 9κ2

v
10N0

}
= max

{
dv,1

Im

dv,0
Im

}
, (7.64)

where the constant ofLa(b1)
2 is discarded, while the pair of test-variables are defined as:

tv,1
Im =

ℑ(z̃v)√
10N0

− La(b1)

2
,

tv,0
Im =

3ℑ(z̃v)√
10N0

− La(b1)

2
.

(7.65)

Therefore, for the Max-Log-MAP algorithm, the TA index detector of Eq. (7.52) may be invoked

by utilizing the NT a posteriori probabilities{dv}NT
v=1 defined in Eq. (7.61), in order to produce

the(BPST = log2 NT) soft bit decisions{Lp(bk)}log2 I

k=BPS+1. The complexity order is reduced from

O(NT · 16) to O(NT · 4), where a total of four constellation points have been visited in Eqs. (7.62)

and (7.64).

When the first bitb1, which determines the sign of the imaginary part of a Square 16QAM

symbol is fixed to 1 or 0,{|tv,1
Im |, |tv,0

Im |} seen in Eq. (7.64) may be replaced by{−tv,1
Im ,−tv,0

Im } and

{tv,1
Im , tv,0

Im }, respectively. More explicitly, the Max-Log-MAP producesthe first soft bit as:

Lp(b1) = max
v∈{1,··· ,NT}

(
dv,b1=1

)
− max

v∈{1,··· ,NT}

(
dv,b1=0

)

= max
v∈{1,··· ,NT}

{
dv

Re+ max
[
−tv,1

Im + La(b2) − κ2
v

10N0
, −tv,0

Im − 9κ2
v

10N0

]
+ pa

v

}

− max
v∈{1,··· ,NT}

{
dv

Re+ max
[

tv,1
Im + La(b2)− κ2

v
10N0

, tv,0
Im − 9κ2

v
10N0

]
+ pa

v

}
,

(7.66)

wheredv
Re does not have to be estimated again. The complexity order of detectingLa(b1) is given

by O(NT · 4).
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When the second bitb2 which determines the magnitude of the imaginary part of a Square

16QAM symbol is fixed to 1 or 0, Eq. (7.64) should be updated asdv
Im = dv,1

Im or dv
Im = dv,0

Im ,

respectively. As a result, the second soft bit decision is given by:

Lp(b2) = max
v∈{1,··· ,NT}

(dv
Re+ dv,1

Im + pa
v) − max

v∈{1,··· ,NT}
(dv

Re+ dv,0
Im + pa

v), (7.67)

where there is no new variable to evaluate, i.e. only additions and comparisons are made in

Eq. (7.67). The complexity order of detecting the second bitis given byO(NT · 2).

Similarly, the third bit which determines the sign of the real part of a Square 16QAM symbol

may be detected by the Max-Log-MAP algorithm as:

Lp(b3) = max
v∈{1,··· ,NT}

(
dv,b3=1

Re + dv
Im + pa

v

)
− max

v∈{1,··· ,NT}

(
dv,b3=0

Re + dv
Im + pa

v

)
, (7.68)

wheredv,b3=1
Re and dv,b3=0

Re are obtained by replacing{|tv,1
Re|, |tv,0

Re|} seen indv
Re of Eq. (7.62) by

{−tv,1
Re,−tv,0

Re} and{tv,1
Re, tv,0

Re}, respectively.

Furthermore, the fourth bit, which modulates the magnitudeof the real part of a Square 16QAM

symbol may be detected as:

Lp(b4) = max
v∈{1,··· ,NT}

(dv,1
Re + dv

Im + pa
v) − max

v∈{1,··· ,NT}
(dv,0

Re + dv
Im + pa

v), (7.69)

wheredv
Re in Eq. (7.61) is replaced bydv,1

Re or dv,0
Re for b4 = 1 or b4 = 0, respectively.

Based on the examples of QPSK and Square 16QAM aided SM detection, we summarize the

reduced-complexity Max-Log-MAP algorithm conceived for SquareMQAM aided SM detection

as:

Algorithm 7.1: Reduced-Complexity Max-Log-MAP Algorithm Conceived for Square

MQAM Aided SM Detection.

(1) Define the variables testing the real and imaginary partsof the matched filter variablẽzv

separately as:

t
v,g
Im =

Agℑ(z̃v)

N0
− La (b1)

2
,

t
v, f
Re =

A fℜ(z̃v)

N0
− La (bBPS/2+1)

2
,

(7.70)

where{Ag}MIm/2−1
g=0 and{A f }MRe/2−1

f =0 are the positive PAM magnitudes on the y-axis

and x-axis of the Gray-labelled SquareMQAM constellation diagram, respectively. As

demonstrated in Chapter 2, for SquareMQAM associated with an even BPS= log2 M,

we haveMRe = MIm =
√

M. For SquareMQAM associated with an odd BPS, we

haveMRe = 2MIm =
√

2M.
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(2) Thea posterioriprobability metric of a specific TA indexv is given by:

dv = dv
Re+ dv

Im + pa
v, (7.71)

where the a priori probability metric for the TA indexv is given by pa
v =

∑
log2 I

k̄=BPS+1
b̃k̄La(bk̄). The corresponding bit-mapping arrangement for each TA index

candidate may be directly obtained by[b̃BPS+1, · · · , b̃log2 I ] = bin2dec(v − 1). The real

and imaginary terms of the probability metric are given by:

dv
Im = max

g∈{0,··· ,MIm/2−1}

(
d

v,g
Im

)
,

dv
Re = max

f∈{0,··· ,MRe/2−1}

(
d

v, f
Re

)
.

(7.72)

The MIm/2 candidates of{d
v,g
Im }MIm/2−1

g=0 and theMRe/2 candidates of{d
v, f
Re}MRe/2−1

f =0

may be evaluated by:

d
v,g
Im = |tv,g

Im | + pa
g −

A2
gκ2

v

N0
,

d
v, f
Re = |tv, f

Re |+ pa
f −

A2
f κ

2
v

N0
,

(7.73)

where thea priori probability metrics for group indicesg and f are respectively given

by pa
g = ∑

BPS/2
k̄=2

b̃k̄La(bk̄) and pa
f = ∑

BPS
k̄=BPS/2+2

b̃k̄La(bk̄), while the bits-mapping

arrangements{b̃k̄}BPS/2
k̄=2

and{b̃k̄}BPS
k̄=BPS/2+2

may be obtained by respectively translating

the group indicesg and f to binary streams.

(3) The BPST = log2 NT bits which determine the TA activation indexv may be detected

as:

Lp(bk) = max
∀v∈{1,··· ,NT}bk=1

dv − max
∀v∈{1,··· ,NT}bk=0

dv, k ∈ {BPS+ 1, · · · , log2 I}.

(7.74)

The TA activation index set∀v ∈ {1, · · · , NT} is reduced by half when the specific bit

is fixed to bebk = 1 or bk = 0.

(4) The first bit and the(BPS/2 + 1)-th bit which determine the signs may be detected as:

Lp(b1) = max
v∈{1,··· ,NT}

(
dv

Re + dv,b1=1
Im + pa

v

)
− max

v∈{1,··· ,NT}

(
dv

Re+ dv,b1=0
Im + pa

v

)
,

(7.75)

Lp(bBPS/2+1) = max
v∈{1,··· ,NT}

(
d

v,bBPS/2+1=1
Re + dv

Im + pa
v

)

− max
v∈{1,··· ,NT}

(
d

v,bBPS/2+1=0
Re + dv

Im + pa
v

)
,

(7.76)

wheredv,b1=1
Im anddv,b1=0

Im may be obtained by replacing{|tv,g
Im |}MIm/2−1

g=0 for evaluating

dv
Im in Step (2) by{−t

v,g
Im }MIm/2−1

g=0 and{t
v,g
Im }MIm/2−1

g=0 , respectively, whiled
v,bBPS/2+1=1
Re

andd
v,bBPS/2+1=0
Re may be obtained by replacing{|tv, f

Re |}MRe/2−1
f =0 for evaluatingdv

Re in Step

(2) by{−t
v, f
Re}MRe/2−1

f =0 and{t
v, f
Re}MRe/2−1

f =0 , respectively.
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(5) The rest(BPS− 2) bits which determine the real PAM magnitudes may be detectedas:

Lp(bk) = max
v∈{1,··· ,NT}

[
dv

Re+ max
bk=1

(d
v,g
Im ) + pa

v

]

− max
v∈{1,··· ,NT}

[
dv

Re+ max
bk=0

(d
v,g
Im ) + pa

v

]
,

k ∈ {2, · · · , BPS/2},

(7.77)

Lp(bk) = max
v∈{1,··· ,NT}

[
max
bk=1

(d
v, f
Re) + dv

Im + pa
v

]

− max
v∈{1,··· ,NT}

[
max
bk=0

(d
v, f
Re ) + dv

Im + pa
v

]
,

k ∈ {BPS/2 + 2, · · · , BPS}.

(7.78)

The total number of candidates for{d
v,g
Im }MIm/2−1

g=0 and that for{d
v, f
Re}MRe/2−1

f =0 are reduced

by half when the specific bit is fixed to bebk = 1 or bk = 0.

When either a high-orderMPSK (M > 4) or a StarM-QAM scheme is employed, the real

and imaginary parts of the matched filter output variablez̃v cannot be detected separately. There-

fore, similar to Algorithm 6.2, we summarize the reduced-complexity Max-Log-MAP algorithm

conceived for generalMPSK/QAM aided SM detection as:

Algorithm 7.2: Reduced-Complexity Max-Log-MAP Algorithm Conceived for General

MPSK/QAM Aided SM Detection.

(1) Define the test-variables as:

t
v,g
Im =

Bgℑ(z′v)

N0
− La (b1)

2
,

t
v,g
Re =

Agℜ(z′v)

N0
− La (b2)

2
,

(7.79)

where{(Ag, Bg)}M/4−1
g=0 denote the coordinates of the rotatedMPSK/QAM constel-

lation points in the first quadrant. The detector’s rotatedMPSK constellation points

are {s′m = sm exp(j π
M )}M−1

m=0 , and the corresponding decision variables are{z′v =

z̃v exp(j π
M )}NT

v=1. For Star MQAM, the detector’s rotated constellation points are

{s′m = sm exp(j π
MP

)}M−1
m=0 , and hence we have{z′v = z̃v exp(j π

MP
)}NT

v=1. In this way,

there are exactlyM/4 constellation points in each quadrant.

(2) Thea posterioriprobability metric of a specific TA indexv is given by:

dv =

[
max

g∈{0,··· ,M/4−1}
(dv,g)

]
+ pa

v, (7.80)
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where the a priori probability metric for the TA indexv is given by pa
v =

∑
log2 I

k̄=BPS+1
b̃k̄La(bk̄), while theM/4 candidates of{dv,g}M/4−1

g=0 are evaluated by:

dv,g = |tv,g
Re |+ |tv,g

Im |+ pa
g −

(A2
g + B2

g)κ2
v

N0
, (7.81)

where thea priori probability metric for group indexg is given bypa
g = ∑

BPS
k̄=3

b̃k̄La(bk̄),

while the bit-mapping arrangement{b̃k̄}BPS
k̄=3

may be obtained by directly translating the

group indexg back to binary stream.

(3) The BPST = log2 NT bits which determine the TA activation index may be detectedas:

Lp(bk) = max
v∈{1,··· ,NT}bk=1

(dv) − max
v∈{1,··· ,NT}bk=0

(dv) , k ∈ {BPS+ 1, · · · , log2 I}.

(7.82)

The TA activation index set∀v ∈ {1, · · · , NT} is reduced by half when the specific bit

is fixed to bebk = 1 or bk = 0.

(4) The first two bits which determine the signs may be detected as:

Lp(b1) = max
v∈{1,··· ,NT}

(dv,b1=1) − max
v∈{1,··· ,NT}

(dv,b1=0),

Lp(b2) = max
v∈{1,··· ,NT}

(dv,b2=1) − max
v∈{1,··· ,NT}

(dv,b2=0).
(7.83)

where dv,b1=1 and dv,b1=0 may be obtained by replacing{|tv,g
Im |}M/4−1

g=0 for evaluat-

ing dv in Step (2) by{−t
v,g
Im }M/4−1

g=0 and{t
v,g
Im }M/4−1

g=0 , respectively, whiledv,b2=1 and

dv,b2=0 may be obtained by replacing{|tv,g
Re |}M/4−1

g=0 for evaluatingdv in Step (2) by

{−t
v,g
Re}M/4−1

g=0 and{t
v,g
Re}M/4−1

g=0 , respectively

(5) The rest(BPS− 2) bits which determine the magnitude of the transmittedMPSK/QAM

symbol may be detected as:

Lp(bk) = max
v∈{1,··· ,NT}

[
max
bk=1

(dv,g)

]
− max

v∈{1,··· ,NT}

[
max
bk=0

(dv,g)

]
, k ∈ {3, · · · , BPS}.

(7.84)

The number of candidates for{dv,g}M/4−1
g=0 is reduced by half when a specific bit is fixed

asbk = 1 or bk = 0.

The corresponding reduced-complexity Approx-Log-MAP algorithm conceived for SM detec-

tion may be obtained by appropriately modifying Algorithms7.1 and 7.2, where themax operation

should be replaced by the corrected Jacobian operation of jac defined in Eq. (2.36), while the ab-

solute value calculation of(|t|) should be replaced by the special corrected Jacobian algorithm of

Λ(|t|) of Eq. (2.36).

For the BPST = log2 NT bits assigned to the TA index, the 1PSK/BPSK/QPSK aided SM de-
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Figure 7.1: EXIT charts and LLR validity test for soft-decision-aided V-BLAST detectors,

where the throughput is given byR = 4 bits/block/channel use.

tection operates at the complexity order lower bound ofO(NT), while the SquareMQAM aided

SM detection of Algorithm 7.1 and theMPSK/QAM aided SM detection of Algorithm 7.2 have the

complexity order ofO( MRe
2 · NT + MIm

2 · NT) andO( M
4 · NT), respectively. For the pair of specific

bits, which determine the sign of the transmittedMPSK/QAM symbol, the BPSK/QPSK aided SM

detection complexity is lower bounded by the order ofO(2NT), while the SquareMQAM aided

SM detection complexity order and the generalMPSK/QAM aided SM detection complexity or-

der are given byO(MRe · NT) or O(MIm · NT) andO( M
2 · NT), respectively. For the remaining

(BPS− 2) bits, which determine the specific magnitudes of theMPSK/QAM symbols, the com-

plexity order of the SquareMQAM aided SM detection and that of the generalMPSK/QAM aided

SM detection are given byO( MRe
2 · NT) or O( MIm

2 · NT) andO( M
4 · NT), respectively. In sum-

mary, the SquareMQAM aided SM detection of Algorithm 7.1 has a lower complexity compared

to Algorithm 7.2, where the latter may be applied to high-order MPSK, StarMQAM and Cross

MQAM aided SM schemes.

For coded STSK schemes, the soft-decision-aided SM detectors may all be invoked by the

STSK receiver. According to the signal processing of Eq. (6.131), a STSK(NT,NR,NP,NQ) scheme

may be transformed to a SM scheme associated withNQ TAs andNPNR RAs. The STSK detec-

tion complexity is expected to be higher than the SM detection complexity due to the extra signal

processing operations in Eq. (6.131).
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Figure 7.2: BER performance of half-rate TC coded V-BLAST associated with the same

system throughput ofRcR = 2. The schematic of the TC coded systems is portrayed

in Fig. 2.8, where the MIMO transmitter and the MIMO receivermay replace the con-

ventional modulation and the demodulation blocks. The system parameters are given by

Table 2.3.

7.5 Performance Results for Coded MIMO Systems

In this section, we provide performance results for a variety of coded MIMO systems. First of

all, Figs. 7.1 and 7.2 portrays the performance of coded V-BLAST schemes, where the optimum

detectors of Sec. 7.2.1, the SD of Sec. 7.2.2 that retains theoptimum detection capability and the

sub-optimal MMSE detectors of Sec. 7.2.4 are employed. We note that the “Hard MMSE” seen in

Figs. 7.1 and 7.2 refers to the soft-decision-aidedMPSK/QAM detectors invoking the probability

metric of Eq. (7.19), which is directly derived from the hard-decision-aided V-BLAST MMSE of

Sec. 6.2.4. Moreover, the “Exact MMSE” solution refers to the soft-decision-aidedMPSK/QAM

detectors invoking the probability metric of Eq. (7.45), which is obtained by taking into account

thea priori LLRs for updating the MMSE filter taps, as derived in Sec. 7.2.4.

It can be seen in Fig. 7.1a that the “Hard MMSE” used for detecting V-BLAST signals em-

ploying BPSK/QPSK exhibits horizontal EXIT curves, while the optimum/SD aided V-BLAST

detection benefits from a significant iteration gain. Furthermore, it was discussed in Sec. 7.2.4 that

the exact MMSE solution associated withIA = 0 is equivalent to the hard-decision-aided MMSE

detector, while the exact MMSE solution associated withIA = 1 is equivalent to the optimum V-

BLAST detector, which is verified by Fig. 7.1a. Despite the associated performance loss, Fig. 7.1b

shows that the “Hard MMSE” may produce unreliable LLRs, which deviate from the true proba-

bilities. These unreliable LLRs cannot be readily corrected by the channel decoder, hence “Hard

MMSE” is not recommended for turbo detection.

Fig. 7.2 further characterizes the performance of these soft-decision-aided V-BLAST detectors

in the context of TC coded systems. In order to achieve an iteration gain,IRTC = 4 inner itera-
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tions are carried out within the TC andIRTC−MIMO = 4 outer iterations are employed between

the TC and MIMO receiver for MAP-optimum/SD V-BLAST detection and exact MMSE solution.

Meanwhile, we haveIRTC = 16 and IRTC−MIMO = 1, when “Hard MMSE” is employed, so

that the turbo detection is configured to maintain the same total number of iterations. It can be

seen in Fig. 7.2 that the MAP-optimum/SD V-BLAST detectors may achieve an excellent perfor-

mance that is within 1.0 dB from the maximum achievable rate,which is theEb/N0 bound that

has to be satisfied for achieving half of the full DCMC capacity of Eq. (6.6). By contrast, the low-

complexity “Hard MMSE” imposes a substantial performance loss, as evidenced by Fig. 7.2. It is

further demonstrated by Fig. 7.2 that the exact MMSE detector is capable of performing close to

the optimum V-BLAST detector.

However, the soft-decision-aided exact MMSE detector of Sec. 7.2.4 is more complex than

the hard-decision-aided MMSE of Sec. 6.2.4. More explicitly, we discussed in Sec. 7.2.4 that

even when the fading channel envelope remains near-constant, the MMSE filter taps of Eq. (7.42)

still have to be calculated by the matrix inversion of Eq. (7.42), because thea priori LLRs are

updated by turbo detection. Moreover, the current versionsof the SD and MMSE detectors of

Secs. 7.2.2-7.2.4 only work for fully-loaded MIMO systems associated withNT ≤ NR. For the

rank-deficient MIMO systems associated withNT > NR, which are often encountered in realistic

wireless communication systems, the SD is recommended for detectingNR symbols, while the ML

detector is invoked for the remaining symbols [303–305]. This complication may be avoided by

using LDC instead of V-BLAST as discussed in Sec. 6.3.2.3, where we have the design-freedom

to adjust the LDC arguments ofNP and NQ in order to create an equivalent full-loaded MIMO

system. However, considering that the LDC’s dispersion matrices are randomly populated, the LDC

transmitter may be required to transmit symbols that are notdrawn from the classicMPSK/QAM

constellations, which further complicates the hardware design of the related MIMO systems.

In order to overcome these limitations of the conventional MIMO systems design, it is desirable

for the SM to implement its optimum detector at a reduced detection complexity. Let us firstly ex-

amine the performance of V-BLAST and SM together with STBC and STSK in the context of coded

systems with the aid of the EXIT charts of Fig. 7.3 and the BER performance curves of Fig. 7.4.

It can be seen in Fig. 7.3 that the STBC’s orthogonal design results in a near-horizontal EXIT

curve, similarly to a classic SISO scheme. By contrast, the V-BLAST, SM and STSK schemes

exhibit a considerable iteration gain. For this reason, thenumber of iterations is set toIRTC = 4

and IRTC−MIMO = 4 for the TC coded V-BLAST, SM and STSK systems, whileIRTC = 8

and IRTC−MIMO = 2 are used for the TC coded STBC systems. The BER performance of

Fig. 7.4 shows that when there is no receive diversity, SM(2,1)-8PSK and SM(4,1)-QPSK perform

worse than their respective V-BLAST counterparts of V-BLAST(2,1)-QPSK and V-BLAST(4,1)-

BPSK in the context of the TC coded MIMO systems, but the STSK(2,1,2,4)-Square 64QAM and

STSK(4,1,2,4)-Square 64QAM schemes offer a performance improvement over their SM counter-

parts, as a benefit of STSK’s transmit diversity gain. It can be seen in Fig. 7.4a that the G2 STBC

employing Square 16QAM exhibits the best performance amongst the TC coded MIMO systems,
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Figure 7.3: EXIT chart comparison of V-BLAST, SM, STBC and STSK associated with

the same system throughput ofRcR = 2 bits/block/channel use.
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Figure 7.4: BER performance comparison between half-rate TC V-BLAST, SM, STBC

and STSK associated with the same system throughput ofRcR = 2 bits/block/channel

use. The schematic of the TC systems is portrayed in Fig. 2.8,and the system parameters

are given by Table 2.3.
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Figure 7.5: BER performance comparison between V-BLAST andSM in the context of

RSC, TC and IRCC-URC coded systems associated with the same system throughput of

RcR = 2 bits/block/channel use. The schematics of the RSC coded systems, the TC

coded systems and the IRCC-URC coded systems are portrayed in Fig. 2.2, Fig. 2.8 and

Fig. 2.10, respectively. The system parameters are given byTable 2.3.

when we haveNR = 1. However, when all MIMO schemes benefit from a receive diversity gain

owing to NR = 2, V-BLAST(2,2)-QPSK performs the best in Fig. 7.4a, SM(2,2)-8PSK performs

similarly to G2 STBC, while STSK(2,2,2,4)-Square 64QAM performs the worst. This is because

the diversity-oriented STBC and STSK schemes have to employhigher order QAM arrangements

in order to compensate for their throughput loss. Hence STBCand STSK generally perform worse

at low SNRs than their V-BLAST and SM counterparts employinglower orderMPSK/QAM, when

all of them benefit from a diversity gain owing to employingNR > 1. For the same reason, it may

be observed in Fig. 7.4b that V-BLAST(4,2)-BPSK performs the best amongst the TC MIMO sys-

tems, while SM(4,2)-QPSK performs better than its STSK(4,2,2,4)-Square 64QAM counterpart.

Furthermore, it can be seen that the TC half-rate G4 STBC arrangement performs the worst for

both NR = 1 andNR = 2 in Fig. 7.4b, because it has to employ a high-order 256QAM scheme in

order to provide the same system throughput, and its diversity advantage exhibited at high SNRs is

eroded in channel coded systems operating at relatively lowSNRs.

Although the EXIT charts of Fig. 7.3 predict a similar detection capability for V-BLAST and

SM, the BER performance of Fig. 7.4 demonstrates that SM performs worse than V-BLAST by

about 0.8 dB in TC MIMO systems associated with the same throughput ofRcR = 2 bits/block/channel

use. As discussed in Chapter 2, TC associated withIRTC = 4 exhibits a horizontal EXIT curve,

which does not match well with the steep EXIT curves of V-BLAST and SM. In order to pro-

vide a more thorough comparison, Fig. 7.5 shows the BER performance of V-BLAST and SM in

the context of RSC, TC and IRCC-URC coded systems, while the corresponding decoding trajec-

tories are recorded in Fig. 7.6. It can be seen in Fig. 7.5a that RSC coded SM(2,2)-8PSK per-
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Figure 7.6: Decoding trajectories recorded for V-BLAST andSM in the context of RSC,

TC and IRCC-URC coded systems associated with the same system throughput ofRcR =

2 bits/block/channel use.

forms very close to RSC coded V-BLAST(2,2)-QPSK, while the performance difference between

the IRCC-URC coded SM(2,2)-8PSK and IRCC-URC coded V-BLAST(2,2)-QPSK arrangements

is only 0.3 dB. Furthermore, Fig. 7.5b shows that RSC coded SM(4,2)-QPSK outperforms RSC

coded V-BLAST(4,2)-BPSK. This is because SM(4,2)-QPSK exhibits a higher iteration gain than

V-BLAST(4,2)-BPSK, as demonstrated by Figs. 7.3 and 7.6, which benefits its performance in the

context of RSC coded systems, because the EXIT curve of the RSC decoder is much steeper than

that of the TC decoder. For the same reason, IRCC-URC coded SM(4,2)-QPSK also slightly out-

performs IRCC-URC coded V-BLAST(4,2)-BPSK, as evidenced by Fig. 7.5b. In summary, we

may conclude that SM is capable of achieving a comparable performance to V-BLAST in coded

systems, provided that the appropriate channel coding schemes are selected.

In Fig. 7.7, we quantify the computational complexity of thesoft-decision-aided SM detectors

considered in terms of the total number of real-valued multiplications. The conventional SM de-

tectors invoke the Max-Log-MAP algorithm of Eq. (7.5) or theApprox-Log-MAP algorithm of

Eq. (7.6) relying on the probability metric of Eq. (7.50). The reduced-complexity SM detectors

invoke the proposed Algorithms 7.1 and 7.2 for implementingeither the Max-Log-MAP or the

Approx-Log-MAP regimes. We note that the calculations are carefully streamlined for the sake

of offering a fair comparison. More specifically,{κv}NT
v=1 defined in Eq. (6.103) and{zv}NT

v=1

of Eq. (6.100) are evaluated before calculating the probability metric of Eq. (7.50) for a total of

I = NT M times for the detection algorithms, while the constellation power of{A2
g}MIm/2−1

g=0 and

{A2
f }

MRe/2−1
f =0 in Algorithm 7.1 as well as{A2

g}M/4−1
g=0 and{B2

g}M/4−1
g=0 in Algorithm 7.2 are as-
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Figure 7.7: Complexity comparison between the conventional soft-decision-aided SM de-

tection algorithms using the probability metric of Eq. (7.50) and the proposed reduced-

complexity soft-decision-aided SM detection of Algorithms 7.1 and 7.2.

sumed to be stored before performing SM detection.

Owing to the zeros in the SM transmitted symbol vector of Eq. 6.99, the SM probability

metric estimation of Eq. (7.50) is already less computationally complex than the MIMO proba-

bility metric estimation of Eq. (7.4). Nonetheless, Fig. 7.7 evidences a further substantial com-

plexity reduction offered by the proposed algorithms, which is as high as85.9% ∼ 88.5% for

SM(NT,1)-Square 16QAM employing different number of TAs from thesetNT = {2, 4, 8, 16} in

Fig. 7.7a and up to56.7% ∼ 95.2% for SM(4,1) employing differentMPSK/QAM constellations

of M = {2, 4, 8, 16, 32, 64} in Fig. 7.7b. We note that the SM schemes employing SquareMQAM

should be detected according to Algorithm 7.1, while the SM schemes employingMPSK or Star

MQAM should be detected according to Algorithm 7.2. It is demonstrated by Fig. 7.7b that the de-

tection complexity of SM employing SquareMQAM is lower than that of employing StarMQAM,

because the real and imaginary parts of the SquareMQAM constellation may be separately visited.

It is worth noting that the complexity reduction demonstrated in Fig. 7.7 is particularly benefi-

cial for turbo detection assisted MIMO schemes, where the soft-decision-aided MIMO detector is

invoked several times in order to achieve the best possible performance promised by the MIMO

capacity predictions.

Fig. 7.8 further compares the computational complexities of different soft-decision-aided MIMO

detectors. It can be seen in Fig. 7.8 that both the STBC and theSTSK schemes exhibit a lower de-

tection complexity than the conventional MIMO detector, but the SM detectors offer the lowest

detection complexity in the context of coded MIMO systems. We note that in terms of the over-

all system complexity, the coded STBC system is the best, because the soft-decision-aided STBC

detector has to be invoked for a lower number of times, albeitonly, because it benefits to a lesser

extent from thea priori information, which suggests to limit the number of iterations. Nonethe-

less, for both cases ofNT = 2 andNT = 4 in Fig. 7.8, the SM detection complexity is as low as
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Figure 7.8: Complexity comparison between the soft-decision-aided detectors conceived

for V-BLAST, SM, STBC and STSK associated with the same throughput of R = 4

bits/block/channel use, where the fading channel envelopeis assumed to be constant for

the duration of a channel use.

10% of the V-BLAST detection complexity, which offers a substantial reduction of both the signal

processing complexity and the delay.

7.6 Chapter Conclusions

In this chapter, we provide insights into the tradeoff between the performance attained and the

complexity imposed by coded MIMO system design. More explicitly, in order to achieve the best

possible performance that is promised by the MIMO capacity predictions, the soft-decision-aided

MIMO detector has to be invoked several times for turbo detection in the context of coded MIMO

systems. In this scenario, the conventional optimum MAP V-BLAST detection complexity be-

comes excessive. In order to mitigate this problem, SD and MMSE detectors may be invoked

in order to achieve an optimal or near-optimal V-BLAST detection capability in the context of

coded MIMO systems. However, the state-of-the-art V-BLASTSD only works for full-loaded

MIMO systems associated withNT ≤ NR. For the rank-deficient MIMO systems associated with

NT > NR, the extra signal processing complexity imposed by detecting theNT − NR symbols also

has to be taken into account. Moreover, the exact MMSE solution conceived for coded V-BLAST

schemes has to be evaluated for each turbo iteration when thea priori LLRs are updated. In order

to overcome these limitations, we demonstrate in Fig. 7.5 that the coded SM systems are capable

of achieving a comparable performance to their V-BLAST counterparts, provided that the channel

coding arrangements are appropriately selected. At the same time, the soft-decision-aided SM de-
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tectors are capable of providing a substantial detection complexity reduction without imposing any

performance loss on its optimum MAP detection.

The solutions conceived in this chapter reap the benefits of the complexity reduction proposed

in the previous chapters. First of all, we demonstrate in Sec. 7.2.2 that the soft-decision-aided

V-BLAST SD may be presented in a similar form to the soft-decision-aided MSDSD. Hence the

reduced-complexity Schnorr-Euchner search strategy proposed in Sec. 3.3.3, which visits a reduced

number of constellation points and avoids the extra complexity of a sorting algorithm, is applied

to the soft-decision-aided V-BLAST SD in Sec. 7.2.2. Secondly, we demonstrate that the linear

MIMO detectors including the soft-decision-aided V-BLASTMMSE detection of Sec. 7.2.4 and the

soft-decision-aided orthogonal STBC detection of Sec. 7.3may directly invoke theMPSK/QAM

detectors of Sec. 2.3.1. Therefore, the reduced-complexity soft-decision-aidedMPSK/QAM de-

tection algorithms proposed in Sec. 2.4 are applied to linear MIMO receivers. Thirdly, based on the

uncoded SM detection proposed in Sec. 6.4.1.1, we conceivedreduced-complexity soft-decision-

aided SM detection algorithms, which may retain the optimumdetection capability, despite offering

a substantial detection complexity reduction of up to over90%, as seen in Fig. 7.7. The complexity

reduction is particularly beneficial for coded MIMO systems, since the soft-decision-aided MIMO

detectors have to be invoked several times. Furthermore, the optimality of SM detection is also

important in the context of coded MIMO systems, because as demonstrated in Sec. 2.3.2 that any

compromise concerning the detectors’ optimality results in unreliable LLRs, which cannot be read-

ily corrected by the channel decoder in coded MIMO systems.



Chapter8
Conclusions and Future Research

In this chapter, a summary of the report is provided in Sec. 8.1, while a few future research sugges-

tions are presented in Sec. 8.2.

8.1 Summary and Conclusions

8.1.1 Chapter 1: Introduction

In Chapter 1, the subjects related to this report are reviewed from a historical perspective. First

of all, we summarized the consideration factors for wireless communications system design in

Fig. 1.1, and we explicitly declared that the work in this report mainly deals with the tradeoff

between performance and complexity. In order to better demonstrate this topic, an example of

performance and complexity tradeoff that exists between the MIMO receivers including the ML,

the SD and the LF was depicted in Fig. 1.2.

A historical perspective on near-capacity communicationssystem design was offered in Sec. 1.1.

As a brief summary, a historical chart for the major milestones is further portrayed in Fig. 8.1.

Explicitly, Shannon [17] established the communications theory of capacity limit in 1949, which

defined the maximum data rate that can be transmitted over thechannel at the unconstrained cost

of delay and complexity. Inspired by this promised capacity, a variety of channel coding schemes

including Hamming code [18], convolutional code [19], BCH code [20–22] and LDPC code [46],

which are still commonly used today, were developed in the 1950s and the 1960s. Following

this, the classic decoding algorithms including the Viterbi algorithm [23–25] and the BCJR al-

gorithm [26] were also proposed in the late 1960s and the early 1970s. In order to system-wise

optimize the communications systems, the MLC [52] and the TCM [50] were proposed from the

late 1970s, which started the era of joint channel coding andmodulation design in [53–61] in the

1980s. Furthermore, the SOVA [35] proposed in 1989 improvedthe Viterbi algorithm by using

soft-bits, while the Max-Log-MAP [27] proposed in 1990 further reduced the complexity of the
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Figure 8.1: Historical chart for major milestones of near-capacity systems design.

BCJR algorithm. These improvements on decoding algorithm offered necessary preparations for

the thrilling era of near-capacity systems design that opened by the invention of TC [38] in 1993.

The PCC portrayed in Fig. 1.3 was generalized in [44] 1996, where any combination of block and

convolutional codes was deemed to be possible, and the TC wasincluded as a special case. In

order to eliminate the PCC’s puncturing, the SCC portrayed in Fig. 1.7 was generalized in [40,45],

where the SCC component detectors may exchange their decisions for the same binary bits. As

an implementation of the SCC, the BICM-ID [65–67] proposed to follow the idea of breaking up

channel coding and modulation, which was previously introduced by the BICM [63, 64], while

iterative decoding between demodulator and channel decoder was adopted in order to achieve a

system-wise near-capacity performance. The EXIT charts [83] offered an accurate and efficient

tool for decoding convergence analysis as exemplied by Fig.1.9, which has been used intensely

in the near-capacity systems design [86–88, 92, 93] in the 21st century. In summary, the three key

factors for achieving a near-capacity performance was depicted in Fig. 1.8, which are turbo de-

tection (iterative decoding), soft-decision-aided detector/decoder and convergence analysis. The

near-capacity system design and our proposed reduced-complexity soft-decision-aided PSK/QAM

detectors were future presented in Chapter 2.

In Sec. 1.2, a historical perspective on noncoherent detection was provided. First of all, channel

estimation for coherent schemes was introduced and exemplied in Fig. 1.10, which demonstrated

that channel estimation becomes more difficult when the fading channels fluctuate rapidly. In order

to eliminate the cost of channel estimation, the differential schemes and their noncoherent detectors

have attracted a lot of research interests. Owing to the factthat the family of noncoherent detec-

tors have been proposed over similar period of time, insteadof portraying a historical chart, we

summarize the noncoherent detectors including CDD, MSDD, MSDSD and DFDD into categories

in Table 8.1. In more detail, after Lawton’s early work on DPSK [106, 107], Cahn [108] found
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DPSK DQAM

CDD

Hard: AWGN: Lawton [106,107] 1959 Hard: AWGN: Simon et al. [135] 1982

Cahn [108] 1959 Fading: Webb et al. [142] 1991

Fading: Bello et al. [109] 1962 Soft: Fading: Ishibashi et al. [157] 2005

Liang et al. [158] 2011

MSDD

Hard: AWGN: Divsalar et al. [7] 1990 Hard/Soft: AWGN/Fading: Divsalar et al. [114] 1994

Mackenthun [115] 1994

Fading: Ho et al. [113] 1992

Soft: Fading: Divsalar et al. [114] 1994

MSDSD
Hard: Fading: Lampe et al. [127] 2005

Soft: Fading: Pauli et al. [132] 2006 Soft: Fading: Wang et al. [160] 2012

DFDD

Hard: AWGN: Leib et al. [117] 1988 Hard: AWGN: Adachi et al. [150] 1996

Hard: Fading: Schober et al. [121] 1999 Schober et al. [152] 1998

Schober et al. [126] 2000 Hard: Fading: Gerstacker et al. [153] 1999

Soft: Fading: Hoeher et al. [125] 1999 Schober et al. [154] 2001

Lampe et al. [122] 2001 Soft: Fading: Lampe et al. [136] 2001

Table 8.1: Historical and technical summary of noncoherentreceivers for differential

schemes, where “Hard” and “Soft” refer to the hard-decision-aided detector and the soft-

decision-aided detector, respectively.

in 1959 that the CDD aided DPSK scheme suffered from a 3 dB performance penalty in AWGN

channels, while Bello et al. [109] found in 1962 that the CDD aided DPSK scheme suffered from

an irreducible error floor in the rapidly fluctuating fading channels. Despite of the CDD’s low com-

plexity, the DPSK’s performance limitations obstructed the development of differential scheme

until the invention of DFDD [117] and MSDD [7] from the late 1980s. As portrayed by Fig. 1.12,

the MSDD extends the CDD’s observation window from two toNw ≥ 2, where a total number

of (Nw − 1) data-carrying symbols are jointly detected. Furthermore,the DFDD portrayed in

Fig. 1.13 aims to detect a single data-carrying symbol basedon the decision feedback of the previ-

ous(Nw − 2) data-carrying symbols. Both MSDD and DFDD were originally proposed for DPSK

in AWGN channels, and they have been further tailored for fading channels and further revised as

soft-decision-aided detectors for coded systems as summarized in Table 8.1. Moreover, in order

to reduce the MSDD complexity while maintaining the optimumperformance, the MSDSD was

proposed in [127,132], where the SD was invoked. It was portrayed by Fig. 1.15 that the same per-

formance and complexity tradeoff exists in both MIMO receivers design and noncoherent receivers

design.

The noncoherent receivers conceived for DQAM schemes are also surveyed in Table 8.1. It can

be seen in Table 8.1 that the development of CDD, MSDD and DFDDfor DQAM also started from

hard-decision-aided detection in AWGN channels, and then they have been extended to fading

and coded scenarios. Nonetheless, the noncoherent receivers summarized in Table 8.1 were all

conceived for specific DQAM constellations such as DAPSK or ADPSK. In other words, there is no

systematic review of all noncoherent receivers for all DQAMconstellations in open literatures at the
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Figure 8.2: Historical chart for major milestones of Multiple-Input Multiple-Output

(MIMO) schemes.

time of writing. Moreover, the MSDSD solution for DAPSK proposed by Wang et al. [160] invoked

the SD only for the phase detection, and also an error floor wasincurred in the absence of channel

coding. Therefore, how to solve the DQAM’s amplitude detection by the SD without compromising

the MSDD performance remains another open problem at the time of writing. Furthermore, the

DFDD solutions for DQAM summarized in Table 8.1 were all directly derived from the DPSK

solutions, where the problem of non-constant DQAM amplitude was also ignored. These unsolved

issues surveyed in Chapter 1 were aimed to be tackled in depthin the later technical chapters of

Chapters 3-5 in this report.

In Sec. 1.3, a historical perspective on MIMO schemes is provided, and the major milesteones

are summarized in the form of a historical chart in Fig. 8.2. The BLAST MIMO schemes [162,164]

proposed in the late 199s were illustrated in Fig. 1.18, where the multiple transmit antennas transmit

independent data streams in order to achieve a potentially linearly increasing capacity [165, 166].

However, the multiple data streams that simultaneously arrived at the receiver have to be jointly

detected by the ML detector if the full capacity potential ofBLAST MIMO systems is pursued,

which imposes an exponentially increasing detection complexity. In order to mitigate this prob-

lem, the BLAST MIMO schemes [162, 164] were originally proposed to employ the MUD of the

CDMA systems [167, 168], where “nulling” and “cancelling” were in effect together for tack-

ling the BLAST MIMO’s interference problem. However, theselow-complexity LF-based BLAST

MIMO detectors cannot completely eliminate the interferences, which results in a sub-optimal per-

formance. In order to balance the performance-complexity tradeoff, the SD was proposed to be

invoked for the BLAST MIMO detection in [172–176].

Alternative to the BLAST MIMO’s beneficial multiplexing gain, the revolutionary invention

of Alamouti’s G2 STBC [177] proposed in 1998 aims to pursue a transmit diversity gain in order

to better combat fading. The schematics of the G2 STBC transceiver was portrayed in Fig. 1.19,

where theNQ = 2 symbols are redundantly transmitted by theNT = 2 transmit antennas over

the NP = 2 time slots, so that the receiver may obtain replicas of the independently faded signals.

Owing to the fact that the STBC transmission is in the form of unitary matrix constructed from
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orthogonal design, the STBC receiver may decouple the multiple data streams without encountering

the BLAST MIMO’s interference problem. The Alamouti’s G2 STBC has a unity symbol rate

R =
NQ

NP
= 1, which was proven to be the only full-rate STBC [178]. Nonetheless, HR STBCs

associated withR = 0.5 were proposed in [178] in 1999, which were constructed according to

the Hurwitz-Radon theory [179, 180]. In order to achieve a higher symbol rate ofR = 3/4 for

NT = 3, 4 and to reduce the HR STBC’s transmission delayNP, the AO STBCs [181–183] were

invented in 2001 according to the theory of amicable orthogonal design [179].

Although the beneficial diversity gain is achieved, the STBCsuffers from a throughput and

capacity loss compared to the BLAST MIMO [184]. As a result, aclassic tradeoff between multi-

plexing and diversity exists in MIMO systems design [185]. In order to improve the STBC capacity,

the so-called capacity-improving LDC was proposed in [189]in 2002, which completely droped

the STBC’s orthogonality while retaining the full diversity gain by separately dispersing the real

and imaginary parts of a total number ofNQ ≥ NT NP modulatedMPSK/QAM symbols into

both spatial and temporal dimensions. The so-called capacity-achieving LDC was further proposed

in [188] in 2002, whose transceiver was portrayed by Fig. 1.20. The capacity-achieving LDC may

retain both the full multiplexing gain and the full diversity gain by jointly dispersing the real and

imaginary parts of theNQ ≥ NT NP modulatedMPSK/QAM symbols [188]. The development of

LDC successfully solves the problem of diversity versus multiplexing tradeoff, but the performance

versus complexity tradeoff once again emerges, as the LDC receivers have to employ the BLAST

MIMO detectors because the STBC’s orthogonality is abandoned by the LDC design.

Against this background, a newly-developed SM technique was firstly proposed in [195] in

2004, and it was re-introduced and analysed in [197] in 2008.The schematics of the SM transmitter

was portrayed in Fig. 1.21, where a single out ofNT transmit antenna was activated to transmit a

single modulatedMPSK/QAM symbol. The motivations of the SM are twofold. Firstly, the SM

transmitter may just employ a single RF chain, which reducesthe MIMO’s hardware complexity.

Secondly, the optimum MIMO detection may be implemented by the SM at a substantially reduced

complexity, where two parts of source information carried by the antenna activation index and the

MPSK/QAM modulation index may be separately detected. In order to further introduce a diversity

gain to the SM technique, the STSK scheme [216] was proposed in 2010. The schematics of the

STSK portrayed by Fig. 1.23 was developed from the LDC’s schematics of Fig. 1.20, where only a

single LDC dispersion matrix was activated by the STSK, so that the low-complexity SM detector

may be employed by the STSK receiver.

It can be seen from Fig. 8.2 that the research on MIMO techniques has been driven by two

important tradeoffs since the late 1990s, which are the multiplexing and diversity tradeoff as well

as the performance and complexity tradeoff. The key MIMO schemes and the two important design

tradeoffs that motivated their development were summarized in Fig. 1.24. We further investigated

these issues in Chapters 6 and 7. Furthermore, we surveyed the optimal and sub-optimal low-

complexity SM detectors in Chapters 6 and 7, where our reduced-complexity optimal SM detection

algorithms were also summarized based on our previous publications of [141,202,203,234].
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At the end of the first chapter, we demonstrated the outline and novel contributions of this report

in Sec. 1.4. Explicitly, the outline of the report was portrayed by the block diagram of Fig. 1.25,

which demonstrated that the communications systems were summarized from coherent to nonco-

herent, from uncoded to coded, and also from SISO/SIMO to MIMO in this report. Furthermore,

the essence of this report is to apply our reduced-complexity design to these communications sys-

tems based on our previous publications of [159, 202, 203, 233–236]. The reduced-complexity

design is demonstrated to be beneficial especially for codedsystems, where a detector may be

invoked several times by the turbo detection.

8.1.2 Chapter 2: Coherent Detection for PSK and QAM

In this chapter, the basic PSK and QAM modulation schemes in both uncoded and coded sys-

tems are studied. First of all, the Gray-labelled PSK/QAM constellations and their hard-decision-

aided low-complexity detectors are reviewed in Sec. 2.2. More explicitly, the hard-decision-aided

PSK/QAM detector may directly find the constellation point that is the closest to the channel’s

output signal based on the Gray-labelled PSK/QAM constellation diagram, which results in a low

detection complexity for all the uncoded PSK/QAM schemes. We have also demonstrated that

SquareMQAM generally enjoys a higher minimum distance among its constellation points than

its counterparts of StarMQAM and MPSK, as summarized in Table 2.1. As a result, Fig. 2.6

demonstrates that the SquareMQAM exhibits a superior performance in the uncoded coherent

systems.

Secondly, the classic soft-decision-aided PSK/QAM detection algorithms are summaried in

Sec. 2.3, where the optimum Log-MAP, the low-complexity Max-Log-MAP and the near-optimum

Approx-Log-MAP are introduced. Furthermore, the EXIT charts is introduced in Sec. 2.3.2 for

analysing the convergence behaviour, when the soft-decision-aided PSK/QAM demodulation is

invoked in turbo detection. Explicitly, in Sec. 2.3.2.1, the EXIT module is built in Algorithm 2.1

in order to evaluate the extrinsic informationIE that may be produced by a soft-decision-aided

detector/decoder with given a specific amount ofa priori information IA, whereIE or IA are the

mutual information between the source binary bits and the detector/decoder’s extrinsic LLRsLe or

a priori LLRs La, respectively. Following this, the transfer functions of both the inner code and the

outer code of a concatenated scheme are drawn on the same EXITcharts in Sec. 2.3.2.2, where the

BER performance and the required number of iterations may beefficiently predicted by the EXIT

charts as exemplified in Fig. 2.9. It is also demonstrated in Sec. 2.3.2.2 that an infinitesimally

low BER performance may be achieved by a concatenated scheme, when the EXIT curves of the

inner and coder codes only intersect at the (1.0,1.0) point on the EXIT charts. The communications

capacity theory is linked to the area property of EXIT chartsin Sec. 2.3.2.3, where an infinitesimally

low BER performance may be achieved at a SNR that is very closeto the capacity limit when the

area between the EXIT curves of the inner and coder codes is minimized, which is exemplifed by

Fig. 2.13. The efficient computation for EXIT charts is further discussed in Sec. 2.3.2.4, where the

extrinsic informationIE may be evaluated without the knowledge of the source information bits,
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Lp(b1) Lp(b2) · · · Lp(bBPSIm) Lp(bBPSIm+1) Lp(bBPSIm+2) · · · Lp(bBPS)

Conventional O(MIm) O(MIm) O(MRe) O(MRe)

Proposed O(MIm/2) O(MIm/4) O(MRe/2) O(MRe/4)

Table 8.2: Complexity orders of the soft-decision-aided SquareMQAM detectors. The

conventional detection refers to the Max-Log-MAP of Eq. (2.34) and the Approx-Log-

MAP of Eq. (2.35) using Eq. (2.39). The proposed detection refers to the reduced-

complexity Max-Log-MAP of Algorithm 2.2 and its Approx-Log-MAP correction.

Lp(b1)Lp(b2) Lp(b3) · · · Lp(bBPS)

Conventional O(M) O(M)

Proposed O(M/4) O(M/8)

Table 8.3: Complexity orders of the soft-decision-aided general MQAM detectors. The

conventional detection refers to the Max-Log-MAP of Eq. (2.34) and the Approx-Log-

MAP of Eq. (2.35) using Eq. (2.38). The proposed detection refers to the reduced-

complexity Max-Log-MAP of Algorithm 2.3 and its Approx-Log-MAP correction.

provided that the PDFs of the extrinsic LLRs produced by a soft-decision-aided detector/decoder

satisfy both the symmetric condition ofp(Le|x) = p(−Le| − x) and the consistency condition

of p(Le|x = +1) = p(Le|x = −1)eLe . If the symmetricity condition cannot be satisfied, the

EXIT charts has to be calculated with the aid of the source information bits, so that the PDFs

{p(Le|b)}b={0,1} may be obtained by estimating the histograms ofLe with the source bits being

b = {0, 1}. However, if the consistency condition cannot be guaranteed, the LLR definition of

Le = ln
p(Le|b=1)
p(Le|b=0)

will be violated. Therefore, the LLR validity test is introduced in Fig. 2.14b in

order to confirm that a soft-decision-aided detector/decoder is capable of producing reliable LLRs

that obey the LLR definition. Otherwise, the unreliable LLR values may become unproportionately

large after a few iterations, which may become difficult to correct in turbo detection.

As introduced in Sec. 2.3, the classic soft-decision-aidedSquareMQAM detection has a lower

detection complexity than its counterparts of other PSK/QAM schemes, because the real and the

imaginary parts of the SquareMQAM constellation can always be separately detected. Nonethe-

less, the conventional Max-Log-MAP of Eq. (2.34) and the conventional Approx-Log-MAP of

Eq. (2.35) have to estimate and compare all theMRe andMIm probability metrics using Eq. (2.39)

according to theMRePAM and MImPAM constellations, when both the channel’s output signal

and thea priori information obtained from a channel decoder are taken into account by the soft-

decision-aided SquareMQAM detector. Similarly, the conventional soft-decision-aided PSK and

general QAM detectors have to estimate and compare all theM probability metrics using Eq. (2.37)

and Eq. (2.38), respectively. Against this background, we proposed the reduced-complexity PSK/QAM

detection algorithms in Sec. 2.4 based on our publication of[236]. More explicitly, after link-

ing eacha priori LLR to a reduced-size fraction of the channel’s output signal constellations,
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only the positive PAM constellation points have to be visited by the proposed soft-decision-aided

SquareMQAM detection algorithm, which is exemplified by Fig. 2.16a and summarized by Al-

gorithm 2.2. Similarly, for soft-decision-aided general PSK/QAM detection, only the constella-

tion points located in the first quadrant have to be visited, which is exemplied by Fig. 2.16b and

summarized by Algorithm 2.3. The complexity order reductions achieved by Algorithm 2.2 and

Algorithm 2.3 are summarized in Table 8.2 and Table 8.3, respectively. We have demonstrated in

Figs. 2.17a and 2.17b that the CRR achieved by Algorithms 2.2and 2.3 approaches their upper

bound of50% and75% respectively asM increases, because50% and75% of the constellation

points have been avoided by the respective algorithms. Thissubstantial complexity reduction is

achieved without imposing any performance loss, which is beneficial especially when the soft-

decision-aided PSK/QAM detector is invoked several times in turbo detection.

We have also demonstrated in the performance results of Figs. 2.18 and 2.19 that the turbo

coded schemes achieve a better performance than their RSC coded counterparts, while the IRCC

and URC coded schemes are capable of achieving a performancethat is closest to capacity. How-

ever, the highest complexity is imposed by the IRCC-URC coded scheme, followed by the TC

coded scheme and the RSC coded scheme.

8.1.3 Chapter 3: Noncoherent Detection for DPSK

The coherent detection techniques introduced in Chapter 2 rely on the availability of channel

knowledge at the receiver. Alternatively, in this chapter,noncoherent detection for DPSK was

investigated, where the reduced-complexity design was tailored for noncoherent receivers in both

uncoded DPSK and coded DPSK systems.

The hard-decision-aided noncoherent receivers conceivedfor uncoded DPSK are introduced

in Sec. 3.2. Explicitly, thanks to the DPSK’s differential encoding of Eq. (3.1), the data-carrying

MPSK symbol is mapped onto the phase change of the consecutiveDPSK transmitted symbols.

As a result, the channel estimation may be eliminated by the DPSK’s noncoherent receivers, be-

cause the information may be recovered by observing the phase change of the consecutive re-

ceived samples. The classic hard-decision-aided CDD conceived for uncoded DPSK is introduced

in Sec. 3.2.1, where a single data-carrying symbol is recovered by observing two received signal

samples. The CDD decision of Eq. (3.5) has a low detection complexity order ofO(1), where the

closest constellation point is directly found based on the channel’s output signal as the coherent

MPSK detection of Eq. (2.9).

However, the low-complexity CDD suffers from a 3 dB performance penalty in slowly fluctu-

ating fading channels compared to its coherent counterpartrelying on perfect CSI estimation, and

it also suffers from an irreducible error floor in rapidly fluctuating fading channels. In order to

mitigate this problem, the hard-decision-aided MSDD conceived for uncoded DPSK is introduced

in Sec. 3.2.2, which extends the CDD’s observation window from two toNw ≥ 2 in order to further

trace the fading channels’ temporal memory for a longer period of time. As a result, the MSDD of
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Eq. (3.22) has an exponentially increasing complexity order of O( MNw−1

Nw−1 ), where a total number of

(Nw − 1) data-carrying symbols have to be jointly detected by the MSDD.

As a remedy, the hard-decision-aided MSDSD conceived for uncoded DPSK is introduced in

Sec. 3.2.3, where the SD is invoked in order to separately visit the constellation diagrams of the

(Nw − 1) data-carrying symbols. In this section, we further extend the classic MSDSD aided un-

coded DPSK [127] to the case of employing multiple receive antennasNR ≥ 1, while maintaining

a low complexity for the SD’s Schnorr-Euchner [237] search strategy. More explicitly, the MSDSD

conceived for multiple antennas aided differential schemes in [277] requires us to evaluate and sort

all M constellation points for each SD index. A similar problem arises when we employ multiple

receive antennas for MSDSD aided uncoded DPSK [127]. However, we propose to introduce a

simple decorrelating operation, so that the MSDSD may stillrely on the Schnorr-Euchner search

strategy by first visiting the specific constellation point that are near the decorrelated variable. Then

the rest of the constellation points may be visited in a zig-zag fashion, if required, which is similar

to the original case ofNR = 1 in [127]. The MSDSD algorithm is summarized by Algorithm 3.1

and its pseudo-code is presented by Table 3.1, where the optimum MSDD solution is guaranteed to

be found by the SD, provided that the SD’s initial radius is set to be sufficiently large. The MSDSD

complexity lower bound is given byO( 2Nw−3
Nw−1 ), where the best constellation points are directly

found based on the decorrelated variables when the SD index is increased fromv = 2 to v = Nw

and then decreased fromv = (Nw − 1) back tov = 2.

The MSDSD complexity lower bound can only be approached at high SNRs, and the MS-

DSD complexity may increase as the SNR decreases, because the SD terminates slower when the

increased noise level reduces the distances between the noise contaminated received signal’s con-

stellation points. In order to further reduce the MSDSD complexity, the hard-decision-aided DFDD

conceived for uncoded DPSK is introduced in Sec. 3.2.4. The DFDD in Sec. 3.2.4 is firstly intro-

duced as the decision-feedback version of the MSDD/MSDSD, where only a single data-carrying

symbol is aimed to be detected by the DFDD, as the remaining(Nw − 2) data-carrying symbols

in the MSDD/MSDSD decision metrics are obtained from the decision-feedback. Furthermore, the

DFDD is also derived in an alternative prediction-based form in Sec. 3.2.4, which performs coher-

ent detection for a single unknown DPSK symbol, where the estimated CSI sample is estimated

and predicted by a MMSE Wiener filter based on the previousNw − 1 received signal samples and

the previous decisions for theNw − 1 DPSK transmitted symbols. It is demonstrated in Sec. 3.2.4

that the MSDD/MSDSD-based DFDD and the prediction-based DFDD are equivalent for DPSK

in Rayleigh fading channels. The DFDD decision of Eq. (3.38)also exhibits a low detection com-

plexity order ofO(1), which is similar to the CDD.

The performance and complexity tradeoff between the hard-decision-aided noncoherent de-

tectors is analysed in Sec. 3.2.5. It is demonstrated by Figs. 3.4-3.5 that the MSDD and the CDD

exhibit the highest and the lowest detection complexities,respectively, while the DFDD complexity

is generally lower than the MSDSD complexity. Moreover, it is demonstrated by Figs. 3.6-3.7 that

the MSDD/MSDSD effectively improves the CDD’s suboptimal performance, while Fig. 3.9 fur-
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CDD MSDD MSDSD DFDD

Complexity order: O(1) O( MNw−1

Nw−1 ) Lower bound:O( 2Nw−3
Nw−1 ) O(1)

Performance results: 3 dB penalty compared

to MPSK, error floor in

rapidly fading channels

Optimum Optimum (when the SD ra-

dius is initialized to be suf-

ficiently large)

better than the CDD

but suboptimal to

the MSDD/MSDSD

Table 8.4: Complexity orders and performance results of thehard-decision-aided nonco-

herent detectors conceived for uncoded DPSK in Sec. 3.2.

ther evidences that although both the MSDD/MSDSD and the DFDD may mitigate the CDD’s error

floor in rapidly fading channels, the MSDD/MSDSD outperforms its DFDD counterpart. The de-

tection complexity orders of the hard-decision-aided noncoherent detectors conceived for uncoded

DPSK and their performance results are summarized in Table 8.4.

The soft-decision-aided noncoherent receivers conceivedfor coded DPSK are introduced in

Sec. 3.3. First of all, the soft-decision-aided MSDD and CDDare presented in Sec. 3.3.1, where

the CDD is the special case of MSDD associated withNw = 2. The soft-decision-aided MSDSD

is investigated in Sec. 3.3.2. More explicitly, as proposedin [132], the Max-Log-MAP algorithm

invoked by the MSDD aims for finding the maximum probabilities, which is similar to the ac-

tion of the hard-decision-aided MSDD. Therefore, the polarity of the MSDD probability metric

may be altered and the maximization of the Max-Log-MAP may berevised to be the minimiza-

tion, so that the same SD algorithm used by the hard-decision-aided MSDSD may be adopted by

the soft-decision-aided MSDSD. The major differences between the hard-decision-aided MSDSD

of Sec. 3.2.3 and the soft-decision-aided MSDSD may be deemed as twofold. Firstly, the hard-

decision-aided MSDSD’s decorrelating variables cannot directly be used for finding the closest

constellation point by the soft-decision-aided MSDSD, because thea priori information obtained

from a channel decoder is not included. As a result, the soft-decision-aided MSDSD’s Schnorr-

Euchner search strategy once again requires us to sort a total number ofM probability metrics by

visiting all theM constellation points. The corresponding soft-decision-aided MSDSD algorithm

is summarized as pseudo-code in Table 3.3. Secondly, the soft-decision-aided MSDSD algorithm

of Table 3.3 has to be invoked[(Nw − 1) log2 M + 1] / [(Nw − 1) log2 M] times for producing

a single soft-bit output, because only a single minimized Euclidean distance may be obtained by

invoking once the SD algorithm, but each Max-Log-MAP’s soft-bit decision requires a pair of

maximized probability metrics.

We have further proposed two improvements to the soft-decision-aided MSDSD in [132]. First

of all, we propose to modify the output of the SD algorithm of Table 3.3, where multiple candidates

may be produced by the SD so that the Approx-Log-MAP may be implemented. The corresponding

Approx-Log-MAP algorithm implemented by the soft-decision-aided MSDSD is summarized in

Algorithm 3.2 in Sec. 3.3.2. Secondly, in Sec. 3.3.3, the reduced-complexity design proposed

in Chapter 2 is further revised for simplifying the Schnorr-Euchner search strategy used by the

conventional soft-decision-aided MSDSD in [132], where the optimum candidate may be found by
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visiting a reduced-size subset of constellation points, and then the rest of the constellation points

may be visited in a zig-zag fashion, if needed. The corresponding soft-decision-aided MSDSD

algorithm is summarized as pseudo-code in Tables 3.4-3.7. Moreover, it is worth pointing out

that the conventional MSDSD in [132] requires the Schnorr-Euchner search strategy to invoke a

sorting algorithm, where all theM constellation points are ranked according to their corresponding

probability metrics. The average number of comparisons required by a sorting algorithm (e.g.

Bubble sort, Timsort, Library sort [285, 286], etc.) may be as high asO(M log M). By contrast,

the reduced-complexity Schnorr-Euchner search strategy of Tables 3.5-3.7 does not require any

sorting algorithms.

The soft-decision-aided DFDD conceived for coded DPSK is introduced in Sec. 3.3.4. As the

decision-feedback version of MSDD/MSDSD, the soft-decision-aided DFDD that aims to detect

a single symbol based on the previous decisions on theNw − 2 data-carrying symbols as seen

in [122, 125, 136] may be termed as the symbol-metric based DFDD. Furthermore, the bit-metric

based DFDD proposed in [122] is also introduced, where the probability metrics are evaluated based

on the hard-decision-aided DFDD of Sec. 3.2.4. Although thebit-metric based DFDD may achieve

a complexity reduction, a severe degradation on the LLR accuracy has also imposed. In order

to mitigate this problem, we propose to apply the reduced-complexity soft-decision-aided PSK

detection algorithm proposed in Chapter 2 to the symbol-metric based DFDD, where a substantial

complexity reduction may be achieved without imposing any performance loss.

The performance and complexity tradeoff in coded DPSK systems is analysed in Sec. 3.3.5.

Similar to Fig. 3.4 for uncoded DPSK, Fig. 3.16 demonstratesthat the CDD and the MSDD ex-

hibit the lowest and the highest detection complexities in coded DPSK systems, while the MSDSD

complexity is higher than the DFDD complexity. Fig. 3.17 further shows that the complexity lower

bound may be approached by the soft-decision-aided MSDSD given a high SNR and/or the fulla

priori information. Furthermore, Fig. 3.18a shows that a significant complexity reduction of up to

CRR = 66.7% is achieved by the proposed MSDSD of Table 3.4, when the MSDSDwindow is

increased up toNw = 6 for coded DQPSK detection. Moreover, it may be seen in Fig. 3.18b that

a substantial complexity reduction of up toCRR = 88.7% is achieved by the proposed MSDSD

associated withNw = 4, when the number of modulation levels is increased toM = 16. Figs. 3.19-

3.22 further demonstrate that the soft-decision-aided MSDSD is capable of improving the CDD’s

performance for coded DPSK schemes. For the performance of DFDD, Figs. 3.24 and 3.25 evi-

dence that the bit-metric based DFDD imposes a severe performance degradation without offering

any significant complexity reduction. By contrast, it is demonstrated by Fig. 3.24b that a substantial

complexity reduction of up toCRR = 57.0% may be achieved by applying Algorithm 2.3 to the

symbol-metric based DFDD (Nw = 4), as the modulation order increases toM = 16, where no

performance loss is imposed. Fig. 3.26 further demonstrates that the soft-decision-aided DFDD is

also capable of improving the CDD’s performance, but the soft-decision-aided MSDSD performs

better than both DFDD and CDD.

In summary, the reduced-complexity design has been appliedto the noncoherent receivers in
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Novelty Conventional method Proposed improvement

The hard-decision-aided

MSDSD for the case

of employing NR ≥ 1

receive antennas.

The MSDSD conceived for multi-

ple antennas in [277] requires us to

sort all constellation points for each

SD index. A similar problem arises

when we employNR ≥ 1 for MS-

DSD aided uncoded DPSK [127].

We propose to introduce a decorrelating operation, so that

the Schnorr-Euchner strategy may simply visit the closest

constellation point, and then the rest of the constellation

points may be visited in a zig-zag fashion, if required,

which is similar to the original case ofNR = 1 in [127].

The Approx-Log-MAP

algorithm implemented

by the soft-decision-aided

MSDSD.

The MSDSD in [132] retains the

detection capability of the Max-

Log-MAP aided MSDD.

We propose to modify the output of the SD algorithm of

[132], where multiple candidates may be produced by the

SD so that the near-optimum Approx-Log-MAP may be

implemented.

The reduced-complexity

Schnorr-Euchner search

strategy for the soft-

decision-aided MSDSD.

When thea priori LLRs gleaned

from a channel decoder are taken

into account by the MSDSD in

[132], the Schnorr-Euchner strategy

once again requires us to visit and

rank all theM constellation points

for each SD index.

We proposed to simply the Schnorr-Euchner strategy in

[132], where the optimum candidate is found by visiting

a reduced-size subset of constellation points, and then the

rest of the constellation points may be visited in a zig-zag

fashion, if required. The sorting algorithm required by

the conventional Schnorr-Euchner strategy in [132] may

also be eliminated.

The reduced-complexity

soft-decision-aided

DFDD.

The bit-metric based DFDD [122]

evaluate the probability metrics

based on the hard-decision-aided

DFDD of Sec. 3.2.4 in order to re-

duce the complexity of the symbol-

metric based DFDD [122,125,136].

Since the bit-metric based DFDD [122] imposes a per-

formance degradation, we propose to apply the reduced-

complexity soft-decision-aided PSK detection algorithm

proposed in Chapter 2 to the symbol-metric based

DFDD, where a substantial complexity reduction may be

achieved without imposing any performance loss.

Table 8.5: A brief summary of the proposed improvements to the noncoherent receivers

conceived for DPSK in Chapter 3.

Chapter 3 from uncoded DPSK systems to coded DPSK systems. The proposed improvements to

the noncoherent receivers are summarized in Table 8.5.

Last but by no means least, a discussion on the important subject of coherent versus noncoher-

ent detection is offered in Sec. 3.4. When the fading channelvaries potentially for each consecu-

tive transmitted symbol, the accurate channel estimation may become more and more difficult as

the Doppler frequency increases. Against this background,the classic PSAM [1] is introduced in

Sec. 3.4.1, where the known pilot symbols are periodically transmitted through the fading channels.

The receiver aims to recover the CSI knowledge by minimizingthe MSE between the estimated fad-

ing sample and the objective fading sample, where the input signal to the MMSE filter is constituted

by a window of received pilot observations. In Sec. 3.4.2, the realistic PSAM aided coherent PSK

schemes are compared to their noncoherent DPSK counterparts in uncoded systems. First of all,

the choice of pilot spacing and that of the MMSE filter’s observation window length are discussed

in Figs. 3.28-3.29, which evidence that more transmission power has to be dedicated to the pilot

symbols, when the Doppler frequency is increased. Fig. 3.30shows that the noncoherent receivers

including the MSDSD associated with a long detection windowof Nw = 11 can hardly provide any

performance advantage over the PSAM aided coherent receivers in uncoded systems. Furthermore,
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Fig. 3.31 demonstrates that although the noncoherent receiver of CDD exhibits a lower detection

complexity than the PSAM aided coherent detection, both theMSDSD complexity and the DFDD

complexity are higher than the PSAM complexity.

Although the noncoherent receivers fail to provide a performance advantage in uncoded sys-

tems, Sec. 3.4.3 further demonstrates that the noncoherentreceivers may even outperform the real-

istic PSAM aided coherent schemes in coded systems, when thefading channels fluctuate rapidly,

provided that the appropriate channel coding arrangement is selected. More explicitly, it is demon-

strated by Fig. 3.32 that the LLRs produced by the PSAM aided coherent detector severely deviate

from the true probabilities, when the Doppler frequency is increased. This is because that the coher-

ent detectors alway rely on the idealistic assumption of perfect channel estimation, which cannot

be delivered by the PSAM especially when the fading channelsfluctuate rapidly. This problem

may not affect the performance of the PSAM aided coherent scheme in uncoded systems seen in

Sec. 3.4.2, but the unreliable LLRs will gravely affect the coherent scheme’s performance in coded

systems, because the high but inaccurate LLR values are hardto be corrected by the channel de-

coder after a few turbo iterations. By contrast, the soft-decision-aided MSDSD is always capable

of providing reliable extrinsic LLRs, even for high Dopplerfrequencies, as seen in Fig. 3.32. As a

result, although the PSAM aided coherent schemes still outperform their noncoherent counterparts

in RSC, TC and IRCC-URC coded systems at a low normalized Doppler frequency offd = 0.001

as seen in Fig. 3.34a , Fig. 3.35a and Fig. 3.36, respectively, Fig. 3.35b and Fig. 3.36 evidence that

the TC and IRCC-URC coded DPSK employing subset MSDSD are capable of even outperform

their coherent counterparts, when the normalized Doppler frequency is increased tofd = 0.03.

As representatives of the family of coherent and noncoherent detectors, the PSAM aided coher-

ent receiver and the subset-MSDSD aided noncoherent receiver are compared in Table 3.9 based

on our simulation results presented in Sec. 3.4.

8.1.4 Chapter 4: Noncoherent Detection for Differential Non-Constant Modulus

Modulation – Part I: Uncoded Systems

Chapter 4 continues to investigate the noncoherent detection for differential non-constant modu-

lus modulation, which is also referred to as the DQAM schemesin uncoded systems. A variety of

DQAM constellations are surveyed in Sec. 4.2, which are alsosummarized in categories in Fig. 8.3.

First of all, the classic DAPSK [142,158,159,287] is introduced in Sec. 4.2.1. The DAPSK invokes

the conventional differential encoding processsn = xn−1sn−1 of Eq. (4.1), which imposes the

differential encoding on both amplitude and phase as expressed by Eq. (4.4) and Eq. (4.5), respec-

tively. The DAPSK aims to guarantee that all the transmittedsymbolssn are drawn from the classic

Star MQAM constellation. As a result, the choice of the constellation diagram for a DAPSK’s

data-carrying symbolxn−1 depends on the previous transmitted ring amplitudeΓn−1 = |sn−1|.
Considering the 16-DAPSK(2,8) as an example, the data-dependent ring amplitudes should either

be drawn from the set of{1, α} or use the set of{1, 1
α}, when the previous transmitted ring am-
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DAPSK
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TDAPSKJM
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Figure 8.3: A summary of the DQAM constellations introducedin Sec. 4.2.

plitude is either 1√
β

or α√
β
, respectively, so that the next transmitted symbol’s ring amplitude is

guaranteed to be drawn from the same Star QAM ring amplitudesset of{ 1√
β

, α√
β
}. The differen-

tial encoding applied to the 16-DAPSK(2,8) scheme’s ring amplitudes is exemplied in Tables 4.3

and 4.4, while the differential encoding on the 16-DAPSK(2,8) scheme’s phases is summarized

in Table 4.2, which is exactly the same as a D8PSK scheme. As a result, there are two constel-

lation diagrams for the 16-DAPSK(2,8) scheme’s data-carrying symbolsxn−1, which is drawn in

Fig. 4.2, while the constellation for the 16-DAPSK(2,8) scheme’s transmitted symbolssn is guar-

anteed to be Star 16QAM, which is portrayed in Fig. 4.1. The modulation process for a generic

M-DAPSK(MA,MP) scheme’s data-carrying symbol is formulated in Eq. (4.7).

However, the information carried by the DAPSK scheme’s ringamplitude changes may not ex-

hibit the best reliability, because the data-carrying magnitude such as1α may even be much smaller

than the smallest Star QAM ring amplitude given by1√
β
, which may degrade the achievable per-

formance. Therefore, in addition to the classic DAPSK, the ADPSK [136, 288] is introduced in

Sec. 4.2.2. The ADPSK directly modulate all the data-carrying symbolsxn−1 as regular Star QAM

symbols as formulated in Eq. (4.10). Moreover, the ADPSK utilizes the absolute-amplitude in the

alternative differential encoding processsn = 1
|sn−1| xn−1sn−1 of Eq. (4.8), which prevents the situ-

ation of having variable and unconstrained transmitted ring amplitudes. As a result, the ADPSK’s

differential encoding on phase is as same as that of the DAPSK, but the ADPSK always has the

absolute amplitude ofΓn = |sn| = |xn−1| = γn−1. For example, the constellation diagram of

the 16-ADPSK(2,8) scheme’s data-carrying symbols is drawnin Fig. 4.3a, which is the classic Star

16QAM constellation regardless of the previous transmitted ring amplitude. The constellation di-

agram of the 16-ADPSK(2,8) scheme’s transmitted symbols isfurther shown in Fig. 4.3b, which

is also the Star 16QAM constellation, thanks to the absolute-amplitude in the differential encoding

processsn = 1
|sn−1|xn−1sn−1 of Eq. (4.8).

As proposed in [136,288], a ring-amplitude-dependent phase rotation of the DAPSK constella-

tion and of the ADPSK constellation is capable of increasingthe distance between the constellation

points from different amplitude ring, which leads us to the twisted constellations of TDAPSK and

TADPSK. The modulation of the TDAPSK’s data-carrying symbols is formulated in Eq. (4.11).

For example, the constellation diagrams of the 16-TDAPSK(2,8) scheme’s data-carrying symbols
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are portrayed in Fig. 4.4, where all the constellation points in the second amplitude ring are rotated

anti-clockwisely byπ/8. The TDAPSK still invokes the DAPSK’s differential encoding process

sn = xn−1sn−1 of Eq. (4.1), and the example of the constellation diagram ofthe 16-TDAPSK(2,8)

scheme’s transmitted symbols is drawn in Fig. 4.5. Similarly, the modulation of the TADPSK’s

data-carrying symbols is formulated in Eq. (4.12), and the TADPSK still invokes the ADPSK’s

differential encoding processsn = 1
|sn−1| xn−1sn−1 of Eq. (4.8). For example, the constellation

diagrams of the 16-TADPSK(2,8) scheme’s data-carrying symbols and transmitted symbols are

shown in Fig. 4.6a and Fig. 4.6b, respectively. Since the minimum distance between the constel-

lation points is determined by the adjacent constellation points located on the smallest amplitude

ring, twisted modulation can only offer a small improvementon the average distance between all

constellation points, which is represented in Table 4.6. However, since the amplitude-dependent

phase rotation imposes a correlation between the amplitudeand phase, it may be expected that the

iteration gain achieved by soft-decision-aided TDAPSK/TADPSK demodulator may be higher than

that of their DAPSK/ADPSK counterparts, which implies thattwisted modulation may offer certain

performance advantages in coded systems, provided that appropriate coding schemes are used.

The DQAM constellations including DAPSK, ADPSK, TDAPSK andTADPSK opt for sepa-

rately modulating the amplitude and phase, which are aimed to be detected separately by their non-

coherent receivers at a lower detection complexity. Alternatively, it was introduced in [136, 288]

that the amplitude and the phase may be jointly modulated forDQAM, which may be referred to

as the DQAMJM schemes. For example, the joint mapping conceived for the TDAPSKJM based

on the constellation of TDAPSK is formulated in Eq. (4.13), while the joint mapping designed

for TADPSKJM based on the constellation of TADPSK is formulated in Eq. (4.14). The con-

stellation diagram of the 16-TDAPSKJM(2,8) scheme’s data-carrying symbols and that of the 16-

TADPSKJM(2,8) scheme’s data-carrying symbols are depicted in Fig. 4.7 and Fig. 4.8, respectively.

It may be expected that the DQAM and its DQAMJM counterpart may achieve the same DCMC

capacity. However, owing to the further improved dependency between the modulated amplitude

and phase, the DQAMJM arrangement may benefit from an improved iteration gain in the coded

systems.

For the sake of clarification, the equations both for modulating and for differentially encoding

as well as the figures for the example constellation diagramsare summarized in Table 4.7 for all

DQAM constellations introduced in Sec. 4.2.

The hard-decision-aided CDD conceived for uncoded DQAM is introduced in Sec. 4.3. More

explicitly, the CDD conceived for the differential-amplitude DQAM schemes which separately

modulate the amplitude and phase is developed in Sec. 4.3.1.We demonstrate in Fig. 4.9 that com-

pletely independently detecting the DAPSK’s ring amplitude and phase by Eqs. (4.19a) and (4.19b)

as suggested by [142] may impose a performance loss. As a remedy, we propose to detect the

DAPSK’s phase first by Eq. (4.22), and then the detected phasemay assist the ring amplitude de-

tection by Eq. (4.23), which retains the optimum detection capability. Since the CDD decision

variable of Eq. (4.18) may be directly used for finding the closest phase constellation point in
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Eq. (4.22), the CDD aided DAPSK has a complexity order ofO(1 + MA). By contrast, in the

presence of the ring-amplitude-dependent phase rotation,the CDD aided TDAPSK has to find a

total number ofMA phase candidates forMA ring amplitudes in Eq. (4.25), and then the ampli-

tude detection may be completed with the aid of the detectedMA phase candidates by Eq. (4.26).

As a result, the CDD aided TDAPSK has a complexity order ofO(MA + MA). Similarly, the

CDD conceived for the absolute-amplitude DQAM schemes which separately modulate the am-

plitude and phase is developed in Sec. 4.3.2. The CDD aided ADPSK of Eq. (4.29) also utilizes

the decision variable to find the optimum phase first, and thenthe detected phase may be used for

the amplitude detection, which results in a complexity order of O(1 + MA). Moreover, the CDD

aided TADPSK of Eq. (4.30) requires to detect a total number of MA phase candidates for the ring

amplitude detection, which imposes a complexity order ofO(MA + MA). Furthermore, the CDD

aided DQAM schemes which jointly modulate the amplitude andphase is introduced in Sec. 4.3.3,

where the CDD for both TDAPSKJM and TADPSKJM has the highest complexity order ofO(M),

because their amplitude and phase have to be jointly detected. The complexity orders of the CDD

conceived for different DQAM constellations are summarized in Table 8.6.

The hard-decision-aided MSDD conceived for uncoded DQAM isdeveloped in Sec. 4.4. The

differences between the MSDD aided DPSK of Sec. 3.2.2 and theMSDD aided DQAM of Sec. 4.4

are three-fold. First of all, the MSDD aided DPSK models the transmitted symbols in a single

(Nw × Nw)-element unitary matrixS in Eq. (3.6), which is further replaced bȳS in Eq. (3.9),

where the first transmitted symbol in̄S is simply fixed tos̄1 = 1 because it is a common phase

rotation to all the following DPSK symbols. By contrast, theMSDD aided DQAM respectively

models the transmitted ring amplitudes, phases and ring-amplitude-dependent phase rotations as

separate(Nw × Nw)-element matrices ofA, P andO in Eq. (4.32). They are further represented

by Ā, P̄ andŌ in Eq. (4.35), where the first transmitted symbol’s ring amplitude, phase and ring-

amplitude-dependent phase rotation are put aside. Secondly, for the MSDD aided DPSK, the chan-

nel’s characteristic correlation matrixC = Rhh + Rvv of Eq. (3.21) is constant and known, where

the fading channel’s characteristic correlation matrixRhh of Eq. (3.16) is determined by the time

correlation between the fading samples, while the AWGN characteristic correlation matrixRvv of

Eq. (3.19) is determined by the noise power. However, for theMSDD aided DQAM, the channel’s

characteristic correlation matrixC = ĀHRhhĀ + Rvv of Eq. (4.44) is not a constant, where the

ring amplitudes matrix̄A is not a unitary matrix and hence it cannot be separated fromC. As a re-

sult, the channel’s characteristic correlation matrixC of Eq. (4.44) does not become known until all

the ring amplitudes in̄A are detected, which is the most substantial stumbling blockin the way of

offering a sphere decoding solution to the DQAM ring amplitude detection problem. Thirdly, both

the first transmitted phase inP and the first transmitted ring-amplitude-dependent phase rotation in

O may be fixed to be 1 bȳP andŌ in Eq. (4.35) because they are common phase rotations for the

following DQAM symbols, which is as same as the case of DPSK. However, the first transmitted

ring amplitude has to be treated either as a separate variable or a known term based on the previous

MSDD decision, which leads us to the two MSDD arrangements ofthe MSDD of Eq. (4.45) and the
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HDD-MSDD of Eq. (4.46), respectively. We have also demonstrated that the differential-amplitude

DQAM schemes may employ both MSDD and HDD-MSDD, but the absolute-amplitude DQAM

scheme can only employ HDD-MSDD. The complexity order of theMSDD and HDD-MSDD

conceived for different DQAM constellations are summarized in Table 8.6.

In Sec. 4.5, we proposed the hard-decision-aided MSDSD conceived for uncoded DQAM. In

order to solve the MSDD’s ED of Eq. (4.50) by a sphere decoder,firstly, the PED is developed in

Sec. 4.5.1. More explicitly, both the lower triangular matrix L obtained from the decomposition of

C−1 = LLT and the determinant term ofdet(C) remain unknown, until the entire ring amplitude

matrix Ā is detected. In order to mitigate this problem, we proposed in Proposition 1 that although

the (Nw × Nw)-elementC and L are unknown, the(v × v)-element partial channel correlation

matrix C̃v may be evaluated with the aid of the SD’s previous decisions concerning{Γt}v−1
t=1 and

a single variableΓv. We proved in Proposition 1 that for a specific SD indexv, only the(v × v)-

element lower triangular submatrix̃Lv is required by the SD, which may be obtained from the

Cholesky decomposition of̃LvL̃T
v = C̃−1

v . Furthermore, we proposed in Proposition 2 that the

determinant in logarithm domain ofln[det(C)] may also be written as a summation of incremental

metrics by using the Leibniz formula, so that only a single variable Γv is required to be evaluated

by the SD associated with indexv. As a result, the PED of{dv = dv−1 + ∆v−1}Nw
v=2 that may

unambiguously restore the MSDD’s ED is formulated by Eq. (4.59).

Secondly, in Sec. 4.5.2, the MSDSD’s Schnorr-Euchner search strategy is tailored for the

DQAM constellations as pseudo-code in Table 4.8 based on thePED of Eq. (4.59), where the

MSDSD algorithm of [132] summarized in Table 3.3 may be invoked for the hard-decision-aided

MSDSD conceived for uncoded DQAM. As a result, the SD associated with a specific indexv may

sort all theM candidates∆v−1 of Eq. (4.60) according to their increasing values, when theSchnorr-

Euchner search strategy of Table 4.8 is employed. The resultant MSDSD implementing the MSDD

of Eq. (4.45) and the resultant HDD-MSDSD implementing the HDD-MSDD of Eq. (4.46) have

the complexity order lower bounds ofO(MA · M) andO(M), respectively.

Thirdly, we further proposed the reduced-complexity MSDSDalgorithm for the DQAM con-

stellations of DAPSK, ADPSK, TDAPSK and TADPSK which separately modulate the ampli-

tude and phase in Sec. 4.5.3. More explicitly, the PED increment ∆v−1 of Eq. (4.60) is sepa-

rated into the ring-amplitude-related term∆Γ
v−1 of Eq. (4.64) and theMPPSK-related term con-

ditioned on the ring amplitude∆ω|Γ
v−1 of Eq. (4.65) in Eq. (4.63). We propose to formulate a de-

cision variablez
ω|Γ
v−1 in Eq. (4.66), which may be directly used for visiting theMPPSK phase

candidates in a zig-zag fashion similar to the case of DPSK seen in Table 3.1 and [127]. As

a result, given a specific ring amplitude candidateΓv, the localMPPSK-related term∆
ω|Γ
v−1 may

be obstained without visiting all theMP phase candidates, and then the global PED increment

∆v−1 of Eq. (4.60) may be found by comparing theMA ring amplitude candidates with the aid of

their local MP phase decisions. The resultant reduced-complexity Schnorr-Euchner search strat-

egy is summarized as pseudo-code in Table 4.9, where the MSDSD algorithm of [127] summa-

rized in Table 3.1 may be invoked for the reduced-complexityhard-decision-aided MSDSD con-
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DAPSK ADPSK TDAPSK TADPSK TDAPSKJM TADPSKJM

CDD O(1 + MA) O(MA + MA) O(M)

MSDD O
(

MA MNw−1

Nw−1

)
O
(

MA MNw−1

Nw−1

)
O
(

MA MNw−1

Nw−1

)

HDD-MSDD O
(

MNw−1

Nw−1

)

MSDSD

(Lower Bound)

O{MA[MA(Nw −
1) + (Nw −
2)]/(Nw − 1)}

O{MA[MA(Nw −
1) + (Nw −
2)]/(Nw − 1)}

O(MA · M)

HDD-MSDSD

(Lower Bound)

O{[MA(Nw − 1) + (Nw − 2)]/(Nw − 1)} O(M)

DFDD O(MA) O(M)

Table 8.6: Complexity orders of the hard-decision-aided noncoherent detectors conceived

for uncoded DQAM schemes.

ceived for uncoded DQAM. The resultant complexity lower bounds of the reduced-complexity

MSDSD and HDD-MSDSD are given byO{MA[MA(Nw − 1) + (Nw − 2)]/(Nw − 1)} and

O{[MA(Nw − 1) + (Nw − 2)]/(Nw − 1)], respectively, which are also summarized in Table 8.6.

For example, the MSDSD aided 16-TDAPSKJM(2,8) and the MSDSD aided 16-DAPSK(2,8) are

portrayed in Fig. 4.10, which demonstrates that the 16-DAPSK(2,8) scheme’s MSDSD using the

reduced-complexity Schnorr-Euchner search strategy of Table 4.9 is capable of visiting a substan-

tially reduced number of constellation points.

Moreover, the hard-decision-aided DFDD conceived for uncoded DQAM is developed in Sec. 4.6.

More explicitly, the DFDD conceived for DQAM in fading channels in the existing literatures

[136,153,154] are all derived from the linear prediction filter that was originally conceived for the

DPSK detection in [121, 122, 125]. This implies that these DFDD solutions are sub-optimal and

they are not equivalent to the decision-feedback version ofMSDD. As a remedy, first of all, we de-

rive the DFDD from the MSDD’s ED in Sec. 4.6.1. Since the DFDD utilizes the decision-feedback

for (Nw − 2) data-carrying symbols, only a single data-carrying symbolhas to be detected within

a DFDD observation window. As a result, all the metrics in theMSDD’s ED which are related

to the decision-feedback symbols become constant for the DFDD. After eliminating the constants,

the DFDD decision metric of Eq. (4.70) becomes equivalent tothe MSDSD’s PED increment of

Eq. (4.60) associated with the indexv = Nw. Secondly, the prediction-based DFDD is derived in

Sec. 4.6.2, where a CSI sample is estimated and predicted by aMMSE filter based on the previous

(Nw − 1) received signal samples and the decision-feedback for the(Nw − 1) DQAM transmitted

symbols, so that the next unknown data-carrying symbol may be detected coherently with the aid

of the estimated CSI sample. It was proven in Sec. 4.6.2 that both the MSDSD-based DFDD metric

of Eq. (4.70) and the prediction-based DFDD metric of Eq. (4.78) are once again equivalent to the

MSDSD’s PED increment of Eq. (4.60) associated with the index of v = Nw. The complexity

orders of the DFDD conceived for different DQAM constellations are compared in Table 8.6.

The performance results for the uncoded DQAM schemes are presented in Sec. 4.7 according

to three aspects, which are the capacity, the BER performance and the detection complexity. First
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of all, the capacity results of the DQAM schemes are examinedin Sec. 4.7.1. It is demonstrated

by Fig. 4.11a that the noncoherent DQAM schemes of DAPSK/ADPSK exhibit a capacity loss

compared to their coherent QAM counterpart relying on perfect CSI. When the fading channels

fluctuate rapidly as specified byfd = 0.03 in Fig. 4.11b, accurate channel estimation becomes

difficult for the coherent QAM schemes, and hence the noncoherent DQAM may be perferred in

this scenario, where the DAPSK capacity and the ADPSK capacity are effectively improved by the

MSDSD and the HDD-MSDSD, respectively. It is also demonstrated by Fig. 4.11 that the ADPSK

achieves a higher DCMC capacity than the DAPSK especially atlow SNR region, which predicts a

better performance for the ADPSK especially in coded systems. Moreover, it is further evidenced

by Fig. 4.12 that the twisted modulations doesn’t provide any noticeable capacity improvement

over the original DAPSK/ADPSK.

In Sec. 4.7.2, the capacity results of Fig. 4.11b are confirmed by the BER performance results

of Figs. 4.13 and 4.14, where the CDD’s error floor in rapidly fluctuating fading channels is mit-

igated by the MSDSD for the DAPSK and by the HDD-MSDSD for the ADPSK. Moreover, it is

evidenced by Fig. 4.13 that the HDD-MSDSD does not impose anysignificant performance loss

on MSDSD for the DAPSK detection. Therefore, the HDD-MSDSD is capable of facilitating both

DAPSK detection and ADPSK detection in uncoded systems. TheBER performance of Fig. 4.15

further demonstrates that the performance gap between the coherent QAM scheme relying on re-

alistic channel estimation technique of PSAM and the noncoherent DAPSK/ADPSK employing

HDD-MSDSD is significantly reduced when the normalized Doppler frequencyfd and the number

of receive antennasNR are increased. Moreover, Fig. 4.16 evidences that our proposed DFDD in

Sec. 4.6, which is equivalent to the decision-feedback version of the optimum MSDD/MSDSD, out-

performs the conventional DFDD solutions in literatures [136,154]. Furthermore, we have demon-

strated in Fig. 4.15 that DAPSK and ADPSK achieve a similar performance in uncoded systems,

and Fig. 4.17 further evidences that the twisted modulated schemes cannot outperform their coun-

terpart of DAPSK in uncoded systems, where the joint mappingDQAM scheme of TDAPSKJM

even imposes a slight performance loss.

The detection complexity results are offered in Sec. 4.7.3,where the complexities of the non-

coherent detectors conceived for different DQAM schemes are summarized in Table 4.10 in de-

tails. Similar to the complexity summary of Table 3.8 for theDPSK detection, Table 4.10 also

shows that the HDD-MSDD exhibits the highest detection complexity for the DQAM detection,

followed by the HDD-MSDSD, the DFDD and the CDD, which is confirmed by Fig. 4.18. It is

further evidenced by Figs. 4.18 and 4.19 that the reduced-complexity MSDSD algorithm proposed

in Sec. 4.5.3 achieves a substantial complexity reduction compared to the conventional MSDSD

algorithm developed in Sec. 4.5.2. More specifically, it is demonstrated by Fig. 4.19a that HDD-

MSDSD conceived for 16-DAPSK(2,8) achieves a complexity reduction of up to84.5% compared

to 16-TDAPSKJM(2,8) detection, while an even more significant complexity reduction of up to

92.6% is achieved by HDD-MSDSD conceived for 64-DAPSK(4,16), as evidenced by Fig. 4.19b.

Let us recall that the reduced-complexity MSDSD algorithm proposed in Sec. 4.5.3 can only be
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employed by the DQAM constellations including DAPSK, ADPSK, TDAPSK and TADPSK which

separately modulate the amplitude and phase. Therefore, wemay suggest that the DAPSK and the

ADPSK are perferred choices for uncoded DQAM systems, because their noncoherent detectors

generally exhibit a lower complexity as demonstrated by Table 8.6 and Table 4.10, while their

performance results are similar in the uncoded systems as evidenced by Fig. 4.15. Nonetheless,

as predicted by the capacity results in Sec. 4.7.1, the performance difference between the DAPSK

and the ADPSK may be increased in coded systems. Moreover, asintroduced in the constellation

design of Sec. 4.2, the twisted modulations and their joint mapping schemes may exhibit certain

performance advantages in coded systems, where the dependency between the amplitude and phase

is beneficial especially in turbo detection, provided that appropriate coding schemes are used.

8.1.5 Chapter 5: Noncoherent Detection for Differential Non-Constant Modulus

Modulation – Part II: Coded Systems

In Chapter 5, the noncoherent detectors investigated in Chapter 4 are revised to be able to process

soft-bit LLRs, so that they may be involved in turbo detection in coded DQAM systems. First of

all, the soft-decision-aided MSDD conceived for coded DQAMis developed in Sec. 5.2. As we

demonstrated in Chapter 4, the first transmitted symbol’s ring amplitudeΓ1 within a observation

window may be treated either as an unknown variable by the MSDD or as a known term obtained

from the previous decisions feedback by the so-called HDD-MSDD. In coded systems, we still

have both MSDD and HDD-MSDD for coded DQAM detection, and yeta new SDD-MSDD is also

developed for coded DQAM schemes, where the previous decisions onΓ1 are in the form ofa priori

probabilities instead of hard-bit decisions. All the decoding algorithms including the optimum Log-

MAP, the low-complexity sub-optimum Max-Log-MAP and the near-optimum Approx-Log-MAP

may be invoked for the three MSDD arrangements. As an example, the SDD-MSDD invoking

Approx-Log-MAP is summarized as pseudocodes in Table 5.1, which demonstrates that updating

the soft-decision feedback does not impose any appreciableamount of extra complexity. Moreover,

the soft-decision-aided CDD conceived for coded DQAM is also presented in Sec. 5.2, which is

implemented by the MSDD associated with the minimum observation window length ofNw = 2.

The CDD may also be further implemented to be SDD-CDD and HDD-CDD as special cases

of SDD-MSDD and HDD-MSDD, respectively. The complexity orders of the CDD and MSDD

arrangements are summerized in Table 8.7.

The soft-decision-aided MSDSD arrangements conceived forcoded DQAM are proposed in

Sec. 5.3. First of all, based on the development of the hard-decision-aided MSDSD conceived

for uncoded DQAM in Sec. 4.5, the principles of the MSDSD algorithm conceived for coded

DQAM detection is proposed in Sec. 5.3.1. The MSDSD’s PED is formulated in Eq. (5.9) based

on the MSDD’s ED of Eq. (5.8), and the Schnorr-Euchner searchstrategy tailored for the soft-

decision-aided MSDSD conceived for coded DQAM is presentedin the form of pseudocode in

Table 5.2. Furthermore, both the SDD-MSDD and the HDD-MSDD may be implemented as the

SDD-MSDSD and the HDD-MSDSD, respectively. Moreover, boththe Max-Log-MAP and the
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CDD SDD-CDD HDD-CDD

O(MAM) O(MAM) O(M)

MSDD SDD-MSDD HDD-MSDD

O
(

MA MNw−1

Nw−1

)
O
(

MA MNw−1

Nw−1

)
O
(

MNw−1

Nw−1

)

MSDSD (lower bound) HDD-MSDSD (lower bound) HDD-MSDSD (lower bound)

O{MAM + MABPS[(Nw − 2)M +
M
2 ]}

O{MAM + MABPS[(Nw − 2)M +
M
2 ]}

O{M + BPS[(Nw − 2)M + M
2 ]}

Reduced-Complexity MSDSD Reduced-Complexity SDD-MSDSD Reduced-Complexity HDD-MSDSD

(lower bound) (lower bound) (lower bound)

O{ MA M
4 + MA(Nw−2)

Nw−1 +

MABPS[ (Nw−1)M
4 + (Nw − 2)]}

O{ MA M
4 + MA(Nw−2)

Nw−1 +

MABPS[ (Nw−1)M
4 + (Nw − 2)]}

O{ M
4 + (Nw−2)

Nw−1 + BPS[ (Nw−1)M
4 +

(Nw − 2)]}
MSDD-IAP (lower bound) SDD-MSDD-IAP (lower bound) HDD-MSDD-IAP (lower bound)

O{MP +
IRAPMNw

A
Nw−1 + IRAPMP +

BPSP[(Nw − 2)MP + MP
2 ]}

O{MP +
IRAPMNw

A
Nw−1 + IRAP MP +

BPSP[(Nw − 2)MP + MP
2 ]}

O{MP +
IRAPMNw−1

A
Nw−1 + IRAP MP +

BPSP[(Nw − 2)MP + MP
2 ]}

Reduced-Complexity MSDSD-IAP

(lower bound)

Reduced-Complexity SDD-MSDSD-

IAP (lower bound)

Reduced-Complexity HDD-MSDSD-

IAP (lower bound)

O{MP + IRAP(M2
A + MP

4 +
Nw−2
Nw−1 ) + BPSA[(Nw − 2)M2

A +
M2

A
2 ] + BPSP[

(Nw−2)MP

4 + MP
8 +

(Nw − 2)]}

O{MP + IRAP(M2
A + MP

4 +
Nw−2
Nw−1 ) + BPSA[(Nw − 2)M2

A +
M2

A
2 ] + BPSP[

(Nw−2)MP

4 + MP
8 +

(Nw − 2)]}

O{MP + IRAP(MA + MP
4 +

Nw−2
Nw−1 ) + BPSA[(Nw − 2)MA +
MA
2 ] + BPSP[ (Nw−2)MP

4 + MP
8 +

(Nw − 2)]}

DFDD (absolute-amplitude DQAM) DFDD (differential-amplitude DQAM)

O(M) O(MAM)

Table 8.7: Complexity orders of soft-decision-aided noncoherent detectors for coded

DQAM in Chapter 5.

Approx-Log-MAP may be implemented by the soft-decision-aided MSDSD, HDD-MSDSD and

SDD-MSDSD, where the Approx-Log-MAP of Algorithm 3.2 originally proposed for MSDSD

aided DPSK may be applied for coded DQAM detection. The complexity order lower bounds of

the soft-decision-aided MSDSD arrangements are summarized in Table 8.7, where the MSDD’s

exponentially increasing complexity is mitigated, because the sphere decoding is invoked for both

ring amplitude detection and phase detection.

In Sec. 5.3.2, the reduced-complexity design originally proposed for the soft-decision-aided

MSDSD conceived for coded DPSK in Sec. 3.3.3 is applied to thecoded DQAM detection. More

explicitly, the MSDSD’s PED increment of Eq. (5.10) is splitted into the ring-amplitude-related

term and theMPPSK-related term, so that the decision variable of Eq. (5.16) may be utilized for

detecting theMPPSK phase. As introduced in Sec. 3.3.3, when the soft-decision-aided SD is

invoked for phase detection, only the constellation pointslocated in the first quadrant are required

to be visited, and then the rest of the constellation points may be later visited in a zig-zag fashion

by the SD if required. The reduced-complexity Schnorr-Euchner search strategy tailored for the

soft-decision-aided MSDSD conceived for coded DQAM is presented in the form of pseudocode in

Tables 5.3 and 5.4. Fig. 5.2 further portrays an example of the sphere decoding comparison between

the 16-DAPSK(2,8) detection using the Schnorr-Euchner algorithm of Tables 5.3-5.4 and the 16-
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TDAPSKJM(2,8) detection invoking Table 5.2, where up to75% of the child nodes are avoided to be

visited by using the reduced-complexity Schnorr-Euchner algorithm. The complexity order lower

bounds of the reduced-complexity soft-decision-aided MSDSD arrangements are summarized in

Table 8.7.

The low-complexity soft-decision-aided MSDD-IAP that wasoriginally proposed for coded

DAPSK detection [160] is summarized and revised in Sec. 5.3.3, so that it may be employed by all

DQAM constellations which modulate the ring amplitude and phase separately. More explicitly,

the MSDD-IAP invokes the MSDD for ring amplitude detection,which may be referred to as the

MSDAD, and it invokes the MSDSD for phase detection, which may be termed as the MSDPSD.

The MSDAD and the MSDPSD iteratively exchange their decisions in order to improve the overall

performance. The complexity order lower bound of the MSDD-IAP arrangements are summarized

in Table 8.7. It can be seen that the MSDD-IAP complexity for ring amplitudes detection still grows

exponentially asNw increases, because the SD was not invoked for MSDAD.

Against this background, the reduced-complexity soft-decision-aided MSDSD-IAP is proposed

in Sec. 5.3.4. The MSDSD-IAP implements the MSDAD for ring amplitude detection by SD, which

may now be referred to as MSDASD. The MSDASD’s PED of Eq. (5.26) is revised from the gen-

eral MSDSD’s PED of Eq. (5.9), where the phases are known fromthe decision feedback from the

MSDPSD. Furthermore, the reduced-complexity soft-decision-aided MSDSD conceived for coded

DPSK proposed in Sec. 3.3.3 may be directly applied to the MSDPSD, which may result in a

considerable reduction in the number of constellation points visited by the SD. Fig. 5.3 portrays

an example of the comparison between the MSDD-IAP and the reduced-complexity MSDSD-IAP

conceived for 64-DAPSK(4,16), which evidences that both the number of ring amplitude candi-

dates and that of phase candidates visited by the MSDD-IAP are effectively reduced by the pro-

posed reduced-complexity MSDSD-IAP. The complexity orderlower bounds of the MSDSD-IAP

arrangements are summaried in Table 8.7.

Furthermore, the soft-decision-aided DFDD conceived for coded DQAM is proposed in Sec. 5.4

based on the hard-decision-aided DFDD introduced in Chapter 4. Especially, for the differential-

amplitude DQAM schemes including DAPSK, TDAPSK and TDAPSKJM, the first transmitted ring

amplitudeΓ1 of each DFDD window should still be treated as a separate variable in order to evade

the potential error propagation problem between DFDD windows. The complexity orders of the

soft-decision-aided DFDD arrangements are also summarized in Table 8.7.

It can be seen in Table 8.7 that there are plenty of choices forthe noncoherent detectors in

coded DQAM systems. In Sec. 5.5 of performance results, the appropriate noncoherent detectors

are suggested for different DQAM constellations, and the advantages of the noncoherent detectors

in coded systems are discussed. First of all, the performance improvement provided by the MSDSD

over the CDD is presented in Sec. 5.5.1. It is demonstrated bythe EXIT charts of Fig. 5.4 that both

the MSDSD conceived for DAPSK and the HDD-MSDSD conceived for ADPSK effectively im-

prove the CDD’s detection capability, which is reflected both by the increased area under the EXIT

curves and by the improved beneficial iteration gain. Furthermore, the performance advantage of
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the Approx-Log-MAP over the Max-Log-MAP becomes more noticeable, when the modulation

level M and the MSDSD window lengthNw are increased. These features evaluated by the EXIT

charts of Fig. 5.4 are confirmed by the BER performance of Fig.5.5.

Among all the MSDSD arrangements listed in Table 8.7, the most appropriate choices are sug-

gested for different DQAM constellation in Sec. 5.5.2. In general, between the MSDSD arrange-

ments of MSDSD, SDD-MSDSD and HDD-MSDSD introduced in Sec. 5.3.1, the SDD-MSDSD

exhibits the best detection capability at the highest detection complexity. Therefore, the MSDSD

or even the HDD-MSDSD may be preferred only if they can perform closely to the optimum SDD-

MSDSD. The reduced-complexity MSDSD algorithm proposed inSec. 5.3.2 is suggested to be

applied to all the MSDSD arrangements of MSDSD, SDD-MSDSD and HDD-MSDSD, when the

DQAM constellations including DAPSK, ADPSK, TDAPSK and TADPSK which separately mod-

ulate the amplitude and phase are employed. Furthermore, the iterative amplitude-phase detection

algorithm proposed in Sec. 5.3.4 is suggested to be implemented for the MSDSD arrangements

of MSDSD, SDD-MSDSD or HDD-MSDSD, provided that no noticeable performance loss is im-

proved by separately detecting the amplitude and phase.

In order to suggest the most appropriate MSDSD choice, the performance results of the MS-

DSD arrangements are firstly compared by the EXIT charts of Fig. 5.6 for DAPSK and ADPSK.

Secondly, the LLR reliability test of Fig. 5.7 further examines the reliability of the LLRs produced

by the different MSDSD algorithms. Particularly, it is demonstrated by Fig. 5.7a that the LLRs

produced by the HDD-MSDSD deviates from the LLR definition, when the DAPSK constellation

is employed. This is because that the HDD-MSDSD introduces error propagation problem for the

differential-amplitude DQAM constellations. Although this problem does not prevent the HDD-

MSDSD from offering a good performance for the uncoded DAPSKdetection as seen in Fig. 4.13,

the coded DAPSK detection requires better LLR integrity, because the unreliable LLRs deteriorate

the performance of the HDD-MSDSD in turbo detection. Thirdly, the BER performance results of

Fig. 5.8 confirms the MSDSD suggestion, where the specific MSDSD arrangement that performs

closely to the optimum SDD-MSDSD at the lowest possible detection complexity may be selected.

As a result, the soft-decision-aided MSDSD-IAP associatedwith a single iteration ofIRAP = 1

between the MSDASD and the MSDPSD is suggested for the coded DAPSK detection based on

Fig. 5.6a, Fig. 5.7a and Fig. 5.8a. Moreover, the soft-decision-aided HDD-MSDSD-IAP associ-

ated withIRAP = 1 is selected for the coded ADPSK detection based on Fig. 5.6b,Fig. 5.7b and

Fig. 5.8b.

It is worthy to note that although the MSDSD-IAP and the HDD-MSDSD-IAP are proven to be

competent arrangements for coded DAPSK and ADPSK detection, respectively, Fig. 5.9 explicitly

evidences that these detectors still suffer from irreducible error floors for uncoded DAPSK and

ADPSK detection. The reason is that without the assistance of channel coding, the MSDASD

and the MSDPSD may exchange erroneous decisions. Therefore, for uncoded DQAM schemes,

the conventional hard-decision-aided HDD-MSDSD is suggested to be employed, as discussed in

Chapter 4.
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Similarly, the soft-decision-aided MSDSD is suggested forcoded TDAPSK detection based

on Fig. 5.10a, Fig. 5.11a and Fig. 5.12a. Moreover, the soft-decision-aided HDD-MSDSD is sug-

gested for coded TADPSK detection based on Fig. 5.10b, Fig. 5.11b and Fig. 5.12b. The iterative

amplitude and phase detection arrangements of MSDSD-IAP and HDD-MSDSD-IAP impose a

performance loss for TDAPSK and TADPSK, respectively, which cannot be compensated by in-

creasingIRAP. The reason of this performance gap is that the twisted modulations of TDAPSK

and TADPSK introduce a ring-amplitude-dependent phase rotation, which implies that the potential

erroneous ring amplitude detection may impose a false phaserotation to theMPPSK phase detec-

tion. Furthermore, TDAPSKJM and TADPSKJM naturally cannot invoke iterative amplitude-phase

detection, because their amplitude and phase are jointly modulated. Therefore, the soft-decision-

aided MSDSD may be suggested for coded TDAPSKJM detection, while the soft-decision-aided

HDD-MSDSD may be suggested for coded TADPSKJM detection.

After selecting the most appropriate MSDSD arrangement foreach DQAM constellation, the

performance results of the different DQAM constellations employing MSDSD are further com-

pared in Sec. 5.5.3 in order to also suggest the most appropriate DQAM constellation for each

coded system. As predicted by Fig. 4.12, the twisted modulation and its counterpart associated

with joint mapping do not offer any noticeable DCMC capacityimprovement. Nonetheless, the

improved bits dependency imposed by the increased correlation between the amplitude and phase

may result in an improved iteration gain. These features areconfirmed by the EXIT charts of

Figs. 5.13a and 5.14a. Moreover, as the different levels of iteration gain leads to the varied results

in different channel coded systems, Figs. 5.13b and 5.14b demonstrate that the original DQAM

constellations of DAPSK and ADPSK perform better in TC codedsystems, and the twisted con-

stellations of TDAPSK and TADPSK are advantageous in IRCC-URC coded systems, while the

joint mapping constellations of TDAPSKJM and TADPSKJM exhibit their performance advantage

in RSC coded systems. Moreover, as predicted by Fig. 4.11, the absolute-amplitude DQAM scheme

of ADPSK has a higher DCMC capacity than the differential-amplitude DQAM scheme of DAPSK.

Although the ADPSK’s capacity advantage does not come into effect in uncoded systems as shown

by Fig. 4.15, it is demonstrated by Fig. 5.15 that the ADPSK employing the HDD-MSDSD-IAP

outperforms the DAPSK employing the MSDSD-IAP in all of the three classic coded systems. As

a result, we may conclude that the absolute-amplitude DQAM constellations of ADPSK, TADPSK

and TADPSKJM are preferred over the differential-amplitude DQAM constellations of DAPSK,

TDAPSK and TDAPSKJM in coded systems. Furthermore, the specific choice of the absolute-

amplitude DQAM constellation depends on the employed channel coding schemes. This conclu-

sion is summarized by Tables 5.7 and 5.8.

Sec. 5.5.4 delivers the complexity comparison between the different DQAM constellations em-

ploying MSDSD. First of all, Figs. 5.18a and 5.19a demonstrates that the reduced-complexity de-

sign proposed in Sec. 5.3.2 may successfully reduce the complexity of the conventional MSDSD

of Sec. 5.3.1 to the similar level as the complexity of the MSDD-IAP of Sec. 5.3.3 associated

with IRAP = 1, where a substantial complexity reduction that is up to89.2 is achieved, when the
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64-DAPSK(4,16) is employed and its MSDSD window width is increased toNw = 5. What’s

more, Figs. 5.18b and 5.19b further evidence that by invoking SD for amplitude detection and by

applying the reduced-complexity design for phase detection, the MSDSD-IAP of Sec. 5.3.4 fur-

ther offers a substantial complexity reduction for the MSDD-IAP of Sec. 5.3.3, which is up tp

92.3% for employing the 64-DAPSK(4,16) constellation, when the MSDSD window width is in-

creased toNw = 5. As a result, it is demonstrated by Fig. 5.20 that the twistedmodulations

of TDAPSK and TADPSK employing the reduced-complexity MSDSD algorithm of Sec. 5.3.2

exhibit a lower detection complexity than their joint mapping counterparts of TDAPSKJM and

TADPSKJM, while the original DQAM schemes of DAPSK and ADPSK employing the reduced-

complexity MSDSD-IAP algorithm of Sec. 5.3.4 have a furtherlower complexity. Moreover,

Fig. 5.20 also demonstrates that the abosulute-amplitude DQAM constellations generally have

a lower detection complexity than their respective differential-amplitude DQAM counterparts,

because the abosulute-amplitude DQAM constellations may employ the low-complexity HDD-

MSDSD arrangement without encountering the error propagation problem. In summary, when the

suitable MSDSD arrangements suggested in Sec. 5.5.2 are employed, the list of the DQAM con-

stellations from the highest detection complexity to the lowest complexity is given by TDAPSKJM,

TADPSKJM, TDAPSK, TADPSK, DAPSK and ADPSK.

The performance results for the DQAM employing DFDD in codedsystems are further pre-

sented in Sec. 5.5.5. First of all, it is demonstrated by the EXIT charts of Fig. 5.21 that the ADPSK

employing DFDD also outperforms its counterpart of DAPSK employing DFDD in coded systems,

which is further confirmed by the BER performance of Fig. 5.22. Secondly, Fig. 5.22 also evidences

that our DFDD solution presented in Sec. 5.4, which is the decision-feedback version of the opti-

mum MSDD/MSDSD, outperforms the conventional DFDD solutions in literatures [136,153,154],

which ignored the problem of non-constant channel correlation matrix.

Last but the most importantly, the performance of coherent QAM employing the realistic PSAM

aided channel estimation and that of noncoherent DQAM employing MSDSD are compared in

coded systems in Sec. 5.5.6. Specifically, when the fading channels fluctuate slowly as specified

by fd = 0.001, the PSAM is capable of delivering accurate CSI estimation for the coherent QAM

detector. In this case, the soft-decision-aided coherent QAM detector may produce reliable LLRs

as seen in Fig. 5.25a, and the performance of PSAM aided coherent QAM scheme outperforms

its noncoherent counterpart of ADPSK employing HDD-Subet MSDSD-IAP in all the three of

RSC/TC/IRCC-URC coded systems, as evidenced by Fig. 5.26a.However, when the fading chan-

nels fluctuate rapidly as specified byfd = 0.03, Fig. 5.25b demonstrates that the LLRs produced

by the coherent QAM detector become unreliable because of the inaccurate CSI estimation. As

a result, it is demonstrated by Fig. 5.26b that the noncoherent ADPSK employing HDD-Subet

MSDSD-IAP becomes capable of outperforming its coherent QAM counterpart in all the three of

RSC/TC/IRCC-URC coded systems. In conclusion, similarly to the comparison between coher-

ent PSK and noncoherent DPSK employing MSDSD in Sec. 3.4, theMSDSD aided DQAM may

be deemed as the more appropriate choice for coded system operating in the presence of rapidly
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fluctuating fading channels.

8.1.6 Chapter 6: Reduced-Complexity Design Applied to MIMOSchemes – Part I:

Unoded Systems

In Chapter 6, the MIMO systems design is introduced to be centred at two classic design tradeoffs,

which are the multiplexing and diversity tradeoff as well asthe performance and complexity trade-

off. The multiplexing and diversity tradeoff, which may be analysed by the mathematical measures

of capability and error probability introduced in Sec. 6.1,motivated the MIMO development from

BLAST to STBC and LDC. Moreover, the performance and complexity tradeoff not only exists for

the BLAST detectors including ML, SD and LF, but this tradeoff has also motivated the recently

proposed SM and STSK. The rationale of MIMO system development has been reviewed from a

historical perspective in Sec. 1.3, where the tradeoffs between the MIMO techniques are portrayed

by Fig. 1.24. In this chapter, the development in the MIMO systems has further been presented

from a technical perspective, and the reduced-complexity design has further been applied to the

SM and STSK detection, so that the optimum MIMO detection capability may be retained at a

substantially reduced detection complexity.

The classic V-BLAST is introduced in Sec. 6.2, where the fullmultiplexing gain is achieved.

More explicitly, the proposal of the V-BLAST techniqe is motivated by its high CCMC capacity

characterized by Eq. 6.3, which is achieved as the result of V-BLAST simultaneously transmitting

NT data streams by theNT transmit antennas. However, the V-BLAST scheme does not benefit

from a transmit diversity gain as indicated by the PEP of Eq. (6.10c), because the V-BLAST trans-

mits each symbol by a single transmit antenna over a single time slot. Moreover, the V-BLAST

receiver design presented in Sec. 6.2 focuses on the performance and complexity tradeoff, which is

portrayed in Fig. 6.3. Owing to the fact that all the data streams arrive at theNR receive antennas

at the same time, the optimum ML detector introduced in Sec. 6.2.1 jointly detects a total num-

ber of NT MPSK/QAM symbols, which imposes an exponentially increasing complexity of order

O(MNT). As a remedy, the SD is invoked for V-BLAST employingMPSK in Sec. 6.2.2 in order

to individually visit eachMPSK constellation. The SD algorithm is summaried as pseudocode in

Table 6.3, which is similar to the MSDSD aided DPSK of Table 3.1. Moreover, the SD conceived

for V-BLAST employing SquareMQAM is presented in Sec. 6.2.3, where the received signals are

decoupled before invoking the SD in order to detect the real and imaginary parts of the Square

MQAM constellation separately. On one hand, the performanceof the SD aided V-BLAST may

retain the optimum performance of the ML aided V-BLAST, provided that the initial SD radius is

initialized to be sufficiently large. On the other hand, the complexity order lower bounds of the SD

aided V-BLAST are now given byO(2NT − 1) andO(4NT − 1) for MPSK and SquareMQAM,

respectively. However, the SD complexity lower bounds can only be achieved at very high SNR

region. In order to mitigate the SD’s variable complexity, the LFs including ZF and MMSE are

introduced in Sec. 6.2.4, where the amalgamated data streams are separated at the receiver. The

detection complexity of the LF aided V-BLAST is the lowest, because theMPSK/QAM constel-
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lations are visited completely separately. However, the LFaided V-BLAST imposes an inevitable

performance loss, owing to the fact that the interference between the data streams is aimed to be

minimized but cannot be completely eliminated.

Alternative to the multiplexing-oriented V-BLAST MIMO, the diversity-oriented STM MIMO

schemes including STBC and LDC are introduced in Sec. 6.3. Generally speaking, the orthogonal

STBC of Sec. 6.3.1 can achieve the full diversity gain, and the STBC receiver may decouple the

received data streams without encountering the V-BLAST’s interference problem. However, with-

out the multiplexing gain, the STBC capacity is smaller thanthe full MIMO capacity. By contrast,

the LDC of Sec. 6.3.2 may achieve both the full multiplexing gain and the full transmit diversity

gain. However, in the absence of the STBC’s orthogonal design, the LDC receiver has to invoke

the V-BLAST detectors in order to tackle with the interference problem, which once again arises

the performance and complexity tradeoff.

More explicitly, for the STBCs, the general orthogonal design is introduced in Sec. 6.3.1.1,

where the most stringent orthogonal requirements for any STBCs associated withNT transmit

antennas,NR receive antennas,NQ transmitted symbols andNP time slots are summarized. It is

also demonstrated in Sec. 6.3.1.1 that owing to the orthogonal design, the STBC receiver is capable

of decoupling the received signal so that the low-complexity MPSK/QAM demodulators may be

invoked for separately detecting the independent data streams, where the V-BLAST’s interference

problem is not encountered. Following this, the only full-rate STBC of Alamouti’s G2 [177] which

achieves the unity symbol rateR =
NQ

NP
= 1 for NT = 2 is presented in Sec. 6.3.1.2. For the case of

employingNT > 2, the HR-STBC [178] designed based on the Hurwitz-Radon theory [179, 180]

is introduced in Sec. 6.3.1.3. The HR-STBC can only achieve half symbol rate ofR = 1/2, and

the number of time slotsNP required by the HR-STBC is as high asNP = 8 for NT = 3, 4 and

NP = 16 for 5 ≤ NT ≤ 8 as summarized in Table 6.5. What’s more, it was proven in [178]

that the HR-STBC may require a substantialNP growing exponentially withNT, which is given

by NP = 16 × 16(NT/8−1) for NT being bigger than 8 and being a power of 2. In order to reduce

the HR-STBC’s transmission delay, the AO-STBC [181–183] based on the amicable orthogonal

design [179] is introduced in Sec. 6.3.1.4. The AO-G2ι-STBC’s transmission matrix is formed from

the AO-G2ι−1-STBC’s codeword and an extra the(ι + 1)-th transmitted symbol, as formulated by

Eq. (6.68). As a result, the AO-STBCs have a reduced delay ofNP = NT for the cases ofNT = 2ι.

However, owing to the fact that the AO-STBC’s number of transmitted symbolsNQ only grows

logarithmically with the number of antennasNT as NQ = ⌈log2 NT⌉ + 1, the symbol rate of

AO-STBC is expected to be lower thanR = 1
2 for NT > 8. In summary, the error probability

and capacity analysis for STBC are presented in Sec. 6.3.1.5. Based on the PEP of Eq. (6.10c), the

STBCs from orthogonal design may achieve the full diversitygain, and their approximate BERs are

summarized in Table 6.7. However, it is proven by Eq. (6.72) that the STBC capacity is smaller or

equal to the V-BLAST MIMO capacity, where the equality only holds for the Alamouti’s G2-STBC

equipped with a single receive antennaNR = 1.

In order to improve the STBC capacity, the stringent orthogonal requirement has to be aban-
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doned, which leads to the development of LDC presented in Sec. 6.3.2. More explicitly, the or-

thogonal requirement is firstly relaxed by the QO-STBC [186,329] introduced in Sec. 6.3.2.1,

which is formed by subgroups of orthogonal STBCs. As a result, the interference problem once

gain emerges, and hence the signals that cannot be decoupledhave to be jointly detected. Fur-

thermore, the capacity-improving LDC [189] is introduced in Sec. 6.3.2.2, where the real and

imaginary parts of a total number ofNQ modulatedMPSK/QAM symbols{sq}NQ

q=1 are dispersed

into both spatial and temporal dimensions by the dispersionmatrices{Aq}NQ

q=1 and {Bq}NQ

q=1.

The randomly generated dispersion matrices are optimized for the transmission regime ofS =

∑
NQ

q=1

[
Aqℜ(sq) + jBqℑ(sq)

]
, so that the STBC capacity may be improved. What’s more, the

capacity-achieving LDC [188] is further introduced in Sec.6.3.2.3, where the real and imaginary

parts of theNQ modulatedMPSK/QAM symbols{sq}NQ

q=1 are jointly dispersed by a group of dis-

persion matrices{Aq}NQ

q=1 asS = ∑
NQ

q=1

[
Aqsq

]
, as depicted by Fig. 6.5. It is proven in Sec. 6.3.2.3

that the full BLAST MIMO capacity may be achieved by the LDC ifthe equivalent dispersion

matrix χ has orthognal columns as specified by Eq. (6.96), while the full STBC MIMO’s diversity

gain may also be retained if the equivalent dispersion matrix is generated according to the rank and

determinant criteria derived from the PEP of Eq. (6.10c).

Although the LDC design has successfully solved the multiplexing and diversity tradeoff, the

performance and complexity tradeoff once again emerges, because the V-BLAST detectors have to

be invoked by the LDC receiver. This problem may further put astrain on the MIMO systems design

in coded scenarios, because the optimum V-BLAST detection complexity may become especially

unaffordable when the detector is invoked several times in turbo detection, while the sub-optimal

V-BLAST detectors may produce unreliable LLRs, which are difficult to correct by the channel

decoder. Against this background, the newly-developed SM [195–197] and STSK [216] are intro-

duce in Sec. 6.4. The schematics of the SM transmitter is depicted in Fig. 6.6, where a single out

of a total number ofNT transmit antenna is activated to transmit a singleMPSK/QAM symbol.

The advantages of the SM regime are twofold. Firstly, the SM transmitter has a lower handware

implementation complexity compared to other MIMO schemes,because only a single RF chain

is activated at one time. Secondly, in the absence of inter-antenna interference, the SM receiver

may implement the MIMO ML detection at a substantially reduced complexity, where the antenna

activation index and theMPSK/QAM modulation index are aimed to be separately detected. More-

over, in order to introduce a transmit diversity gain to the SM, the STSK transceiver of Fig. 6.9 opts

to activate a single out of a totalNQ LDC’s dispersion matrix to disperse a singleMPSK/QAM

symbol at the transmitter, so that the SM detector may be invoked by the STSK receiver in order to

detect the dispersion matrix activation index and the modulation index separately. As a result, the

STSK may implement the LDC detection also at a substantiallyreduced complexity.

However, the low-complexity SM receiver that was originally proposed in [197], which com-

pletely separately detects the antenna index and the modulation index from the matched filter out-

put, suffers from an error floor in fading channels. This detection method is termed as the MRC-

based suboptimal SM detection in Sec. 6.4.1. In order to mitigate this problem, the simplified SM
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detection [198] streamlines the ML MIMO detection by eliminating the unneccessary calculations,

as a benefit of having (NT − 1) zeros in the SM transmission vector. Nonetheless, this simplified

method still jointly detect the antenna index and the modulation index, which does not reduce the

ML MIMO detection complexity order. Against this background, we proposed a PFS-based opti-

mal SM detection based on our previous publications of [141,202,203,234] in Sec. 6.4.1.1, which

is portrayed by Fig. 6.7. More explicitly, in order to take into account the correlation between the

antenna index and the modulation index, the normalized matched filter output elements may be

firstly partially demodulated for the sake of assisting the optimum antenna index detection, and

then the specific matched filter element corresponding to thedetected antenna index may be fur-

ther fully demodulated in order to recover the modulation index. The PFS-based SM detection is

directly derived from the optimum MIMO ML detection, where the number of visited constellation

points is reduced thanks to the symmetry provided by Gray-labelled MPSK/QAM constellation

diagrams. Therefore, no performance loss is imposed by the PFS-based SM detection, while the

detection complexity order is substantially reduced. Moreover, an alternative low-complexity op-

timum SM detector, which was original proposed in [201] and then recently further implemented

in [204], is also introduced in Sec. 6.4.1.2 as the HL-based SM detection, which is portrayed in

Fig. 6.8. More explicitly, the HL-based optimum SM detectorfirstly fully demodulates all the

normalized matched filter output elements, so that the antenna activation index may be optimally

detected with the aid ofNT modulation index candidates, and then the optimum modulation index

is automatically obtained after knowing the antenna index.Owing to the fact that the hard-decision-

aidedMPSK/QAM demodulator may directly map a matched filter outputelement to the nearest

MPSK/QAM constellation point in uncoded systems, the HL-based SM detection may have a very

low complexity that does not grow with modulation levelM. It is worthy to note that the HL-

based SM detection does not work in coded systems, which willbe further discussed in details in

the next chapter. Furthermore, a variety of suboptimal SM detectors in literatures [141, 205–210]

are also introduced in Secs. 6.4.1.3-6.4.1.7, which aim to improve the suboptimal MRC-based SM

detection, but the optimum SM detection capability cannot be retained.

The performance results for uncoded MIMO systems are summarized in Sec. 6.5. First of all,

the conventional MIMO schemes of V-BLAST, STBC and LDC are compared in Figs. 6.11 and

6.12. It is confirmed by Fig. 6.11a that both V-BLAST and LDC may achieve the same full MIMO

CCMC capacity, which is higher than the STBC’s CCMC capacity. The DCMC capacity results

of Fig. 6.11b and the BER performance results of Fig. 6.12 further evidence that the LDC can

also retain the full diversity gain, which enables the LDC tooutperforms both of its counterparts

of V-BLAST and STBC. It is also demonstrated by Fig. 6.12 thata substantial performance loss

is induced when the low-complexity linear MMSE detection isinvoked for V-BLAST and LDC.

Against this background, the performance results of V-BLAST and STBC are further compared

to the low-complexity SM and STSK in Figs. 6.13-6.15. The capacity result of Fig. 6.13a shows

that both the SM and the STSK cannot achieve the full MIMO CCMCcapacity, where the SM

still has a higher CCMC capacity than the STBC, but the STSK’sCCMC capacity is even lower
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than its counterpart of a SIMO system. Nonetheless, the DCMCcapacity results of Fig. 6.13b

and the BER performance results of Fig. 6.14a demonstrate that in the absence of receive diversity,

Alamouti’s G2 STBC performs the best, followed by its counterparts of STSK and V-BLAST, while

the SM performs slightly worse than the V-BLAST. Moreover, owing to the fact that the HR-STBCs

have to employ a higher levelMPSK/QAM in order to compensate for their throughput loss, the

HR-G4-STBC performs worse than its counterparts of V-BLASTand LDC in Fig. 6.12b, and it

also performs worse than SM and STSK in Fig. 6.14b, unless when the SNR is extremely high.

Similarly, Figs. 6.14 and 6.15 shows that the STSK’s transmit diversity advantage also withers

away, when the improved receive diversity gain is availablefor all MIMO schemes.

The complexities of the optimal SM detectors and those of thesuboptimal SM detectors are

summarized in Table 6.10 and Table 6.11, respectively. The BER performance results of Fig. 6.16

and the complexity results of Fig. 6.17 demonstrates that the suboptimal SM detectors [141, 205–

210] summarized in Secs. 6.4.1.3-6.4.1.7 impose performance loses to the SM and STSK systems,

which contrasts with the motivation of the SM, while the suboptimal SM detectors can only offer

a slightly lower detection complexity than the low-complexity optimal PFS-based and HL-based

SM detectors. Therefore, we may conclude that the PFS-basedSM detector proposed based on

our previous publications [141, 202, 203, 234] in Sec. 6.4.1.1 as well as the HL-based SM detector

[201,204] introduced in Sec. 6.4.1.2 are better candidatesfor the uncoded SM systems, because they

offer a substantially reduced detection complexity while maintaining the optimum SM detection

capability.

In summary, it is evidenced by Fig. 6.18 that the optimal PFS-based and HL-based SM detectors

exhibit a substantially lower detection complexity than the ML aided V-BLAST detection, and the

performance loss imposed by employing SM instead of V-BLASTseen in Fig. 6.14 is significantly

smaller than the performance loss of employing the linear MMSE detector for V-BLAST as seen

in Fig. 6.12. The diversity-orient MIMO schemes of STBC and STSK also have lower detection

complexities than the ML aided V-BLAST, as demonstrated by Fig. 6.18, but the transmit diversity

gain is more advantageous in the MIMO systems which equippedwith a smaller number of receive

antennasNR, as evidenced by Figs. 6.12, 6.14 and 6.15.

Last but not the least, Table 8.8 summarizes the pros and consof the MIMO techniques intro-

duced in this chapter, where both the multiplexing and diversity tradeoff as well as the performance

and complexity tradeoff are reflected. In particular, it’s worthy to note that the current form of the

SD and LF aided V-BLAST detection introduced in Secs. 6.2.2-6.2.4 only works for full-loaded

MIMO systems associated withNT ≤ NR. For the overloaded MIMO systems associated with

NT > NR, the extra signal processing complexity for detecting the(NT − NR) symbols have to

be taken into account [303–305]. By contrast, the SM does nothave this hardware requirement,

because there is no inter-antenna interference for the SM systems, and hence simply the ML MIMO

detection is aimed to be implemented by the SM receiver at a reduced complexity. Furthermore,

as indicated in Table 8.8, the SM has the unique advantage of employing a single RF chain at

transmitter, which reduces the power consumption and eliminates the need for inter-antenna syn-
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Pros Cons

BLAST

• Full multiplexing gain ◦ No transmit diversity

◦ Exponential complexity for ML detection

◦ Variable complexity for SD

◦ Inevitable performance loss for LF detection

◦ Full-loaded requirementNT ≤ NR for SD and LF

STBC

• Full diversity gain ◦ CCMC capacity lower than BLAST

• Low detection complexity ◦ Low system throughput

◦ High transmission delay

◦ Limited selection of transmission patterns

LDC

• Full multiplexing gain ◦ High complexity for ML detection

• Full diversity gain ◦ High performance loss for LF detection

• Flexible transmission pattern ◦ Higher hardware requirements

SM

• Single RF chain at transmitter ◦ CCMC capacity lower than BLAST

• Low receiver detection complexity ◦ No transmit diversity

• No full-loaded requirement ◦ Performance slightly worse than BLAST

STSK

• Full diversity gain ◦ CCMC capacity lower than BLAST

• Low receiver detection complexity ◦ High transmission delay

• Flexible transmission pattern ◦ Higher hardware requirements

Table 8.8: The pros and cons of the MIMO techniques.

chronization. This SM’s special feature does not shared by any other MIMO technique. Moreover,

the LDC and the STSK have the advantage of flexible transmission pattern, because any combi-

nation ofNT, NR, NP andNQ may all be accommodated. However, the LDC and the STSK also

have the disadvantage of higher hardware requirements, because their transmitted symbols are no

longer drawn from the classicMPSK/QAM constellations.

8.1.7 Chapter 7: Reduced-Complexity Design Applied to MIMOSchemes – Part II:

Coded Systems

In this chapter, we have further revised the MIMO detectors in Chapter 6 to be able to accept

and produce soft-bit decisions, so that the soft-decision-aided MIMO detector may be invoked in

turbo detection. This chapter reaps the harvest of the complexity reduction design proposed in

the previous chapters in order to implement the soft-decision-aided MIMO detectors at a reduced

complexity. Interestingly, the interference that exists in the MIMO systems of V-BLAST and LDC

improves the bit-dependency, which results in an improved iteration gain that is beneficial for turbo

detection. Similarly, the correlation between the antennaactivation index and the modulation index

complicates the low-complexity SM detection design, but this correlation also imposes a beneficial

iteration gain. Owing to these special features, it is important to further examine the tradeoff

between multiplexing and diversity as well as the tradeoff between performance and complexity in

the coded MIMO systems.

The coded V-BLAST scheme is firstly introduced in Sec. 7.2. More explicitly, it is straightfor-
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ward to modify the hard-decision-aided ML V-BLAST detection of Eq. (6.13) to the soft-decision-

aided V-BLAST detection invoking the Log-MAP, the Max-Log-MAP and the Approx-Log-MAP

as presented in Sec. 7.2.1. Furthermore, similar to the MSDSD for DPSK in Sec. 3.3.2, the hard-

decision-aided SD for V-BLAST employingMPSK introduced in Sec. 6.2.2 is revised for coded

V-BLAST in Sec. 7.2.2, where thea priori probability obtained from a channel decoder is added to

the SD’s PED. The SD algorithm conceived for coded V-BLAST employing MPSK is summarized

as pseudocode in Table 7.1. Moreover, we have also proposed to apply the reduced-complexity MS-

DSD algorithm of Sec. 3.3.3 to the soft-decision-aided SD V-BLAST detection, whenMPSK con-

stellations are employed. The hard-decision-aided SD for V-BLAST employing SquareMQAM

introduced in Sec. 6.2.3 is also revised for coded V-BLAST inSec. 7.2.3, where the Schnorr-

Euchner search strategy is summarized as pseudocode in Table 7.2. Moreover, the exact MMSE

solution that incorporates thea priori probabilities is derived in Sec. 7.2.4. The coded STBC is

introduced in Sec. 7.3, where the data streams may still be decoupled without encountering the V-

BLAST’s interference problem thanks to the STBC’s orthogonal design. Furthermore, we proposed

to employ the reduced-complexity soft-decision-aided PSK/QAM detection algorithms of Sec. 2.4

for the linear receivers of both the MMSE aided V-BLAST detection and the STBC detection in

Sec. 7.2.4 and Sec. 7.3, respectively, which is proposed based on our publication of [236].

The coded SM and STSK systems are investigated in Sec. 7.4. The major differences between

the uncoded SM detection design presented in Sec. 6.4 and thecoded SM detection design of

Sec. 7.4 are twofold. First of all, the optimal HL-based SM detection of Sec. 6.4.1.2 cannot offer

the substantial complexity reduction without performanceloss in coded system. This is because that

the soft-decision-aidedMPSK/QAM demodulators cannot directly map the channel’s output signal

onto theMPSK/QAM constellation diagram, when thea priori LLRs gleaned from the channel

decoder are taken into account. Secondly, the sub-optimal SM detectors in Secs. 6.4.1.4-6.4.1.7 are

not suggested to be employed for coded SM systems. This is because that these sub-optmal SM

detectors may jeopardize the reliability of the output LLRs, which may result in disproportionately

large LLR values that are hard to be repaired by the channel decoder. Against this background, we

propose to further apply the PFS-based SM detector design ofSec. 6.4.1.1 to coded SM and STSK

systems in Sec. 7.4. More explicitly, the maximuma posteriori probability that is required by

the Max-Log-MAP algorithm may be obtained by partially invoking the reduced-complexity soft-

decision-aidedMPSK/QAM demodulators proposed in Sec. 2.4 before deciding the SM’s antenna

activation index, where the correlation between modulation index and antenna index is taken into

account, so that the detected antenna index is always the MAPsolution. In this way, only a subset

of the MPSK/QAM constellation points are visited while the optimumSM detection capability is

retained. The resultant Max-Log-MAP algorithms are summarized as Algorithm 7.1 and 7.2 for the

SM employing SquareMQAM and MPSK, respectively. Furthermore, the required modifications

for implementing the corresponding Approx-Log-MAP algorithms are also discussed in Sec. 7.4.

The performance results for coded MIMO systems are presented in Sec. 7.5. First of all, the

performance comparison between the V-BLAST detectors is offered in Figs. 7.1 and 7.2. It is
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demonstrated by the BER performance of Fig. 7.2 that the MMSEaided V-BLAST detection im-

poses a performance loss to the optimum V-BLAST detection inthe TC coded systems. How-

ever, this performance loss has already been substantiallyreduced by the exact MMSE solution

of Sec. 7.2.4, which is much smaller than the performance loss in the uncoded V-BLAST systems

seen in Fig. 6.12. Secondly, the performance results between the conventional MIMO schemes of

V-BLAST and STBC as well as the low-complexity MIMO schemes of SM and STSK are com-

pared in Figs. 7.3-7.6. It is evidenced by the EXIT charts of Fig. 7.3 that all the three detectors

of the V-BLAST, the SM and the STSK have a beneficial iterationgain, where the SM’s iteration

gain is even higher than the V-BLAST. As a result, although the V-BLAST detection capability

is still slightly higher than the SM as evidenced by the EXIT chart of Fig. 7.3, their BER perfor-

mance results depend on the channel coding arrangement employed, where the SM even slightly

outperforms the V-BLAST in both RSC coded and IRCC-URC codedsystems in Fig. 7.5b when

NT = 4 transmit antennas are used. The BER performance results of Figs. 7.4 and 7.5 demonstrate

that the transmit diversity advantage of STBC and STSK also withers away, when the improved

receive diversity gain is available for all MIMO schemes, which is similar to the uncoded MIMO

performance results of Figs. 6.14 and 6.15. Thirdly, it is further confirmed by Fig. 7.7 that our

proposed soft-decision-aided SM detection of Algorithms 7.1 and 7.2 offer a substantial complex-

ity reduction for the coded SM detection, which is even as high as95.2% for SM(4,1) employing

64QAM. Fourthly, the complexity results of V-BLAST, STBC, SM and STSK are compared in

Fig. 7.8, which demonstrates that the complexity of optimumV-BLAST detection is still much

more substantial than the STBC, the SM and the STSK in coded MIMO systems.

In summary, when we focus our attention on the comparison between V-BLAST and SM in

coded MIMO systems, we may conclude that the SM may achieve a comparable performance to

the V-BLAST at a substantially reduced detection complexity. The complexity reduction design

is beneficial especially for coded MIMO systems, as the soft-decision-aided MIMO detectors are

suggested to be invoked several times. Furthermore, the retained optimality for SM detection is also

important for coded MIMO systems, because as demonstrated by Chapter 3 that any compromise

on the detectors’ optimality may results in unreliable LLRs, which are difficult to be corrected by

channel decoder in coded MIMO systems.

8.2 Future Research Ideas

8.2.1 Reduced-Complexity Viterbi Decoding for Soft-Decision-Aided MSDD

In this report, we have highlighted the important role of theSD in the field of complexity and

performance tradeoff in communications systems design. More explicitly, the MSDSD introduced

in Chapter 3 is capable of retaining the MSDD performance at asubstantially reduced complexity.

Owing the the fact that the SD visits the individualMPSK constellations one-by-one, the MSDSD

complexity is lower bounded byO(M). However, this appealing complexity lower bound can only
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be approached by the hard-decision-aided MSDSD at high SNR values in uncoded DPSK systems,

as portrayed in Fig. 3.4, and it can only be approached by the soft-decision-aided MSDSD, when

provided with the perfecta priori information ofIA = 1, as evidenced by Fig. 3.17. Despite of the

idealistic complexity lower bound, it was demonstrated in [214] that the average SD complexity

is in fact a polynomial function, often approximately cubic, while [215] demonstrated that the SD

complexity is still exponential at low SNR values. This poses a problem for implementing the

soft-decision-aided SDs in realistic communications systems, because the detectors/decoders have

to work at relatively low SNR values which may even approach to the capacity limit in coded

systems. In order to mitigate this problem, we have proposeda reduced-complexity soft-decision-

aided MSDSD conceived for coded DPSK in Sec. 3.3.3, which aims to reduce the number of

visited SD nodes by exploring the symmetry provided by the Gray-labelled constellation diagrams,

when both the channel’s output signal and thea priori information provided by channel decoder

are taken into account. We have demonstrated in Fig. 3.18 that the resultant complexity reduction

ratio is substantial, which may be even as high as up to over80% of the conventional MSDSD

complexity. This complexity reduction is beneficial especially in turbo detected DPSK receivers,

when the soft-decision-aided MSDSD is invoked several times.

Nonetheless, the reduced-complexity soft-decision-aided MSDSD conceived for coded DPSK

in Sec. 3.3.3 and also for coded DQAM in Sec. 5.3 still rely on the SD algorithm. This implies that

the same problem of a SD complexity being variable over SNRs and IAs and also being especially

high at low SNRs and lowIAs [214,215] still puts a strain on its realistic applications. Against this

background, the Viterbi decoding aided MSDD [125, 128] may become an attractive alternative in

coded DPSK and DQAM systems. As demonstrated in Fig. 1.14, both SD and Viterbi decoding

may obtain the MSDD solution. However, except for the first time slot in the Viterbi decoding,

there are alwaysM transitions starting from a particular current state, while there are alwaysM

transitions merging to a particular next state, the averagecomplexity order for the Viterbi-decoded

MSDD is given byO(M2). The Viterbi decoding complexity is higher than the MSDSD’slower

bound ofO(M), but it also is much lower than the cubic average SD complexity [214] and the

exponential SD complexity at low SNRs [215].

A further proposal for implementing the Viterbi algorithm for the soft-decision-aided MSDD is

that our reduce-complexity design may be able to further simplify the Trellis calculations. Consid-

ering the soft-decision-aided MSDSD conceived for coded DQPSK as an example, it was demon-

strated in Eq. (3.71) that all the SD’s PED increment values corresponding to the four QPSK con-

stellation points may be represented as(±tRe
v−1 ± tIm

v−1). This feature allows us to directly obtain the

minimum metric by simply evaluating(−|tRe
v−1| − |tIm

v−1|), and the rest of the metrics are simply

given by combinations of±|tRe
v−1| and±|tIm

v−1|. Fig. 8.4a portrays an example of soft-decision-

aided MSDSD conceived for DQPSK. Specifically, in Steps1© and 2© of Fig. 8.4a, the SD di-

rectly obtains the minimum PED according to Eq. (3.63) as(−|tRe
1 | − |tIm

1 | + C1 = 0.702) and

(d1 − |tRe
2 | − |tIm

2 |+ C2 = 3.437) for indexv = 2 and indexv = 3, respectively, where only a sin-

gle constellation point is visited by each step. When the SD visits indexv = 2 for the second time in
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Figure 8.4: Example of soft-decision-aided MSDSD conceived for DQPSK, recorded at

SNR=0 dB, where we haveIA = 0.3, NR = 2 and Nw = 3, and its corresponding

Viterbi implementation. We note that all the likelihood metrics in logarithm domain that

are calculated by the Trellis are altered for sphere decoding, so that the sphere decoder

may only process non-negative values.

Step 3© of Fig. 8.4a, the second-best candidate is simply given by(−|tRe
1 |+ |tIm

1 |+ C1 = 4.273),

where all of|tRe
1 |, |tIm

1 | andC1 have already been calculated in Step1© so that no new entity is

required to be evaluated.

The Viterbi decoding alternative to the MSDSD example of Fig. 8.4a is portrayed in Fig. 8.4b,

which vitualizes how to apply the same reduced-complexity design to the Viterbi decoding. As the

reduced-complexity algorithm eliminates unnecessary SD paths in Fig. 8.4a, none of theM = 4

transitionsstarting froma state can be deleted, because the Viterbi algorithm can only eliminate

the transitionsmerging tothe same state with lower metrics. Nonetheless, the same calculation

reduction may be achieved by defining “primary calculations” and “secondary calculations”. It can

be seen in Fig. 8.4b that the primary calculations are corresponding to the SD’s evaluation of the

minimum PED, which now becomes(−dv + |tRe
v−1| + |tIm

v−1| − C1), while the secondary calcu-

lations corresponding to sub-optimum constellation candidates may be completed by altering the

polarities of|tRe
v−1| and|tIm

v−1|. In this way, it can be seen in Fig. 8.4b that for all theM = 4 transi-

tionsstarting froma state, there is one primary calculation as well as three secondary calculations,

where the major calculations are offloaded to the primary calculation. This method may be further

extended to any DPSK and DQAM constellations, and it may be expected that up to75% of the

Viterbi decoding calculations may be streamlined by employing this reduced-complexity design.

8.2.2 Exact MMSE Solution for Soft-Decision-Aided DFDD

The soft-decision-aided DFDD conceived for DPSK in Sec. 3.3.4 directly uses the decision vari-

ablezDFDD of Eq. (3.37) given by the hard-decision-aided DFDD, as suggested by [122,125,136].
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In the absence ofa priori LLRs, the hard-decision-aided DFDD in Sec. 3.2.4 always assumes that

all combinations of data-carrying symbols are equiprobable, and the decision-feedback is based

on the hard-bit output of the previous DFDD calculations. Byemploying the same decision vari-

ablezDFDD, the soft-decision-aided DFDD tends to produce unreliableLLRs, as demonstrated in

Fig. 3.25b, which deviate from the true probabilities, and these high but inaccurate LLR values are

hard to correct for the channel decoder.

The exact MMSE solution incorporating the non-constanta priori probabilities was firstly de-

rived for CDMA’s MUD in [75, 76], and it is further derived forturbo equalization [70–72] and

for turbo BLAST [13, 77, 78]. Therefore, it’s beneficial to also propose the exact MMSE solution

for the soft-decision-aided DFDD, so that the reliability of the produced LLRs may be improved in

turbo detected coded DPSK systems.

Let us elaborate a little further here in order to steer our discussion towards a promising future

research topic. The prediction-based DFDD introduced in Sec. 3.2.4 starts with the received signal

model forYNw in Eq. (3.40), where the reference fading vectorĤNw estimated by a prediction filter

is given by Eq. (3.41). Instead of utilizing the hard-bit DFDD decisions, the soft-decision-aided

DFDD may produce the decision-feedback matrixŜN̄w in Eq. (3.41) based on the previous soft-bit

decisions. Similarly to the soft symbol estimation of Eq. (7.23) for turbo BLAST, thev-th element

in ŜN̄w may now be evaluated according to:

ŝv = E(sv) = x̂v−1ŝv−1, (8.1a)

x̂v−1 = E(xv−1) =
M−1

∑
m=0

xm
exp

[
∑

(v−1)BPS
k̄=(v−2)BPS+1

b̃k̄La(bk̄)
]

∏
(v−1)BPS
k̄=(v−2)BPS+1

{1 + exp[La(bk̄)]}
. (8.1b)

In contrast to the decision-feedback matrixŜN̄w used by the hard-decision-aided DFDD in Eq. (3.41),

the soft symbols{ŝv}Nw−1
v=1 of Eq. (8.1) inŜN̄w are not regularMPSK symbols.

Similarly to the MSE of turbo BLAST in Eq. (7.24), the prediction-based DFDD’s MSE of

Eq. (3.42) may be formulated for coded DPSK systems as:

σ2
MSE = E

{∥∥YNw − sNw ĤNw

∥∥2
}

= E

{∥∥∥HNw + s∗Nw
VNw − wT(ŜN̄w)HYN̄w

∥∥∥
2
}

= 1 + N0 − 2E
[
HNw(YN̄w)H

]
ŜN̄ww + wT(ŜN̄w)HE

[
YN̄w(YN̄w)H

]
ŜN̄w w.

(8.2)

The cross-correlation matrix in Eq. (8.2) may be evaluated by:

E
[
HNw(YN̄w)H

]
= E

[
HNw(ŜN̄w HN̄w + VN̄w)H

]
= eT

Nw
(ŜN̄w)H, (8.3)

whereHN̄w andVN̄w are respectively given byH andV in the MSDD received signal model of

Eq. (3.6) eliminating theNw-th row, while eNw was defined in Eq. (3.43). Moreover, the auto-
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correlation matrix in Eq. (8.2) may be evaluated by:

E
[
YN̄w(YN̄w)H

]
= E

[
(ŜN̄wHN̄w + VN̄w)(ŜN̄w HN̄w + VN̄w)H

]

= ŜN̄wR
N̄w

hh (ŜN̄w)H − diag
{[

|ŝNw−1|2, · · · , |ŝ1|2
]}

+ INw−1 + N0INw−1,

(8.4)

whereR
N̄w

hh is given by the fading’s characteristic correlation matrixRhh of Eq. (3.16) eliminating

the Nw-th row and theNw-th column, while the first term in Eq. (8.4) may be formulatedas:

ŜN̄w R
N̄w

hh (ŜN̄w)H =




|ŝNw−1|2 ŝNw−1ŝ∗Nw−2ρ1 · · · ŝNw−1ŝ∗1ρNw−2

ŝNw−2ŝ∗Nw−1ρ1 |ŝNw−2|2 · · · ŝNw−2ŝ∗1ρNw−3

...
...

. . .
...

ŝ1 ŝ∗Nw−1ρNw−2 ŝ1 ŝ∗Nw−2ρNw−3 · · · |ŝ1|2




. (8.5)

Owing to the fact that the soft symbols{ŝv}Nw−1
v=1 of Eq. (8.1) are not drawn from any regular

MPSK constellations, the diagonal elements ofŜN̄w R
N̄w

hh (ŜN̄w)H have to be replaced by an identity

matrix INw−1 in Eq. (8.4). For the sake of convenience, let us define the following soft symbol

correlation matrix:

R
N̄w

|s| = ŜN̄w(ŜN̄w)H = (ŜN̄w)HŜN̄w = diag
{[

|ŝNw−1|2, · · · , |ŝ1|2
]}

. (8.6)

Accordingly, the MSE of Eq. (8.2) may be extended as:

σ2
MSE = 1 + N0 − 2eT

Nw
R

N̄w

|s| w + wT
[
R

N̄w

|s| R
N̄w

hh R
N̄w

|s| − (ŜN̄w)HR
N̄w

|s| ŜN̄w + (N0 + 1)R
N̄w

|s|

]
w.

(8.7)

The MMSE solution of∂σ2
MSE

∂w
= 0 leads to the classic Wiener-Hopf equation formulated as:

w =
[
R

N̄w

|s| R
N̄w

hh R
N̄w

|s| − (ŜN̄w)HR
N̄w

|s| ŜN̄w + (N0 + 1)R
N̄w

|s|

]−1
R

N̄w

|s| eNw . (8.8)

As a result, the MSE of Eq. (8.7) may be further simplified as:

σ2
MSE = 1 + N0 − eT

Nw
R

N̄w

|s| w. (8.9)

According to thea posterioriprobability of Eq. (3.46), the probability metric of the soft-decision-

aided DFDD of Eq. (3.82) may be revised for the exact MMSE solution as:

dm = −‖YNw − xmsNw−1ĤNw‖2

σ2
MSE

+
BPS

∑
k̄=1

b̃k̄La(bk̄), (8.10)

where the reference fading vectorĤNw is estimated according to Eq. (3.41) using the revised

weights vectorw of Eq. (8.8), while the MSEσ2
MSE is given by Eq. (8.9).

However, we observe that the exact MMSE solution for DFDD hasa particular problem of zero-

feedback. Fig. 8.5 portrays this problem by a Trellis for thesoft DQPSK symbol estimation based

on Eq. (8.1). It can be seen in Fig. 8.5 that owing to the relationship ofŝv = x̂v−1ŝv−1 imposed

by the differential encoding process, the probabilities for the transmitted DQPSK symbolsv tends
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Figure 8.5: Example of probabilities update and soft DQPSK symbol estimation based on

Eq. (8.1).

to be equiprobable as{p(sm) → 0.25}M−1
m=0 , which leads to the situation that the estimation onsv

tends to zeros as(ŝv → 0 + 0j). We note that this is not a problem for turbo BLAST of Sec. 7.2.4,

because the BLAST’s symbol probabilities do not accumulatelike DPSK. Moreover, a near-zero

interference symbol estimation for the MMSE BLAST detectorsimply results in no interference

cancellation, which doesn’t stop the MMSE detection. However, a near-zero symbol estimation for

the DFDD implies no decision feedback, which leads to a near-zero channel estimation for̂HNw ,

and hence the DFDD cannot produce any valid results.

In order to mitigate this problem, the symbol esitmation of Eq. (8.1) may be replaced by the

estimation on the entire decision matrixSN̄w as:

ŜN̄w = E(SN̄w) =
MNw−2−1

∑
i=0

SN̄w,i p(SN̄w = SN̄w,i)

=
MNw−2−1

∑
i=0

SN̄w,i
exp

[
∑

(Nw−2)BPS
k̄=1

b̃k̄La(bk̄)
]

∏
(Nw−2)BPS
k̄=1

{1 + exp[La(bk̄)]}
,

(8.11)

where{SN̄w,i}MNw−2−1
i=0 refers to all the combinations for the decision matrixSN̄w. As the benefit,

Eq. (8.11) doesn’t accumulate probabilities. Nonetheless, when thea priori informationIA is small,

it is still very likely that ŜN̄w of Eq. (8.11) contains near-zero feedback symbols. As a remedy, we

find that it is beneficial to define a probability thresholdpth. If the maximum decision-feedback

probability pmax = max p(SN̄w = SN̄w,i) for a DFDD window is smaller than the threshold

probability, where we havepmax < pth, it may be expected that̂SN̄w contains near-zeros feedback

symbols. In this scenario, the decision-feedback matrixŜN̄w should be estimated based on the

hard-bit decisions rather than the soft-bit decisions.

Fig. 8.6 portrays a performance comparison between the conventional DFDD using Eq. (3.82)

and the improved prediction-based DFDD using Eq. (8.10) derived according to the exact MMSE

solution. It can be seen in Fig. 8.6a that the exact MMSE solution does not directly provide any im-

provement for EXIT charts, but Fig. 8.6b evidences that the exact MMSE solution indeed improves
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Figure 8.6: EXIT charts and LLR validity test of the conventional DFDD using Eq. (3.82)

and the improved prediction-based DFDD using Eq. (8.10), which is derived according to

the exact MMSE solution.

the LLRs reliability for the soft-decision-aided DFDD. This is beneficial especially for turbo de-

tected coded DPSK systems, where the soft-decision-aided DFDD is invoked several times. In this

case, if the DFDD continues to produce unreliable LLRs that deviate from the true probabilities,

the high but inaccurate LLR values may become hard to correctfor channel decoder after a few

turbo iterations.

This exact MMSE solution may be further applied to improve the soft-decision-aided DFDD

conceived for DQAM in Sec. 5.4.

8.2.3 Noncoherent Receivers for Square DQAM

Both the DAPSK, the ADPSK and their twisted counterparts of TDAPSK and TADPSK discussed

in Chapters 4 and 5 are designed based on the Star QAM constellation. In fact, the first DQAM

scheme appeared in literatures was the absolute-amplitudeDQAM scheme designed based on the

Square QAM constellation, which was proposed by Simon et al.[135] in 1982. However, the

researchers have focused on noncoherent receivers conceived for the DAPSK [136, 142–145, 150,

152–154] and the ADPSK/TADPSK [136, 288] in recent years, whereas little progress has been

made for the noncoherent receivers conceived for the SquareDQAM scheme [135]. The reasons

may be deemed to be twofold. First of all, the Square DQAM scheme in [135] was originally

proposed to be detected noncoherently for recovering the data-carrying phase but coherently for

recovering the data-carrying amplitude, meaning that the channel amplitude has to be estimated

at the receiver. Secondly, when the absolute-amplitude differential encoding process of Eq. (4.8)
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Figure 8.7: Constellation diagrams for the Square 16-DQAM scheme.

is applied, there would be no determined constellation set for the Square DQAM’s transmitted

symbolssn, which poses a major hardware difficulty.

More explicitly, if the Square 16QAM constellation of Fig. 8.7a is employed for DQAM’s data-

carrying symbolsxn−1, the data-carrying phases for∠xn−1 are given by{arctan(1/3), π/4, arctan(3)}
in the first quadrant and their projections in the other threequadrants, which divide the2π phase

circle space unevenly. This is different from, for example,a 16PSK constellation of Fig. 2.4d or a

Star 16QAM constellation of Fig. 2.5b, which evenly divide the2π phase circle space by a constant

phase step ofπ/16 or π/8, respectively. As a result, if the absolute-amplitude differential encod-

ing process ofsn = 1
|sn−1| xn−1sn−1 defined by Eq. (4.8) is applied, then the differential encoding

on phase, which is given by(∠sn = ∠xn−1 + ∠sn−1 mod2π), will result in ∠sn having irregular

phases that can take any value from 0 to2π, which is exemplied by Fig. 8.7b.

However, it still can be expected that the Square DQAM schememay be potentially beneficial

if their implementation difficulties may be overcame. Let’srecall the comparison between coherent

Square and Star 16QAM by Fig. 8.8. It can be seen in Fig. 8.8a that the Star 16QAM achieves

a slightly higher DCMC capacity at low SNR region, but the Square 16QAM achieves a slightly

higher DCMC capacity at high SNR region. The optimum ring ratio of α = 2.0 is employed for the

two-ring Star 16QAM in Rayleigh fading channels [155,253].Furthermore, Fig. 8.8b demonstrates

that the Square 16QAM has the appealing advantage of a lower detection complexity in coded

systems. Owing to the fact that the real and imaginary parts of the Square QAM symbol may

always be detected separately, the conventional Approx-Log-MAP algorithm of Eq. (2.35) using the

Square QAM probability metric of Eq. (2.39) has a lower detection complexity that that using the

Star QAM probability metric of Eq. (2.38). For the same reason, our proposed reduced-complexity

soft-decision-aided Square QAM detection of Algorithm 2.2also has a lower detection complexity

than its Star QAM counterpart of Algorithm 2.3. Since both the ADPSK and the DAPSK are
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Figure 8.8: The DCMC capacity comparison between Square 16QAM of Fig. 2.5a and

Star 16QAM of Fig. 2.5b and the detection complexity comparison between their soft-

decision-aided detectors. The DCMC capacities are evaluated according to Eq. (2.56).

The conventional QAM detection refers to the Approx-Log-MAP algorithm of Eq. (2.35)

using the probability metrics of Eq. (2.39) and Eq. (2.38) for Square QAM and Star QAM,

respectively. The reduced-complexity QAM detection refers to Algorithm 2.2 and 2.3.

the differential schemes conceived based on the Star QAM constellation, it would be beneficial to

further explore the noncoherent receivers conceived for Square DQAM, so that the advantages of

Square QAM in coherent systems may be further applied to noncoherent systems.

Let’s elaborate a little further to demonstrate how to facilitate the implementation of the Square

DQAM scheme. First of all, the Square DQAM scheme may modulate the data-carrying symbols

according to the SquareMQAM constellation as:

xm =
MRe− 2m̌Re− 1√

β
+ j

MIm − 2m̌Im − 1√
β

, (8.12)

where the normalization factorβ is given by Eq. (2.11). Explicitly, the first BPSIm = log2 MIm

source bits are assigned to modulate the imaginary modulation indexmIm = bin2dec(b1, · · · , bBPSIm),

wheremIm is the Gray coded index̌mIm. The following BPSRe = log2 MRe source information bits

are assigned to modulate the real modulation indexmRe = bin2dec(bBPSIm+1, · · · , bBPS), where

mRe is the Gray coded index̌mRe. The relationship between the modulation indices is given by

m = bin2dec(b1, · · · , bBPS) = mRe + mImMRe, while the relationship between the modulation

levels is given byM = MReMIm. More specifically, when BPS= BPSRe + BPSIm is an even

number, we have BPSRe = BPSIm = BPS/2 andMRe = MIm =
√

M. Furthermore, when BPS

is an odd number, we have BPSRe = BPSIm + 1 = (BPS+ 1)/2 andMRe = 2MIm =
√

2M.

In order to mitigate the problem of the irregular phases thatresult from the differential encod-

ing process of Eq. (4.8), we have to quantize the Square DQAM symbolssn before transmission.
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Specifically, a 16PSK constellation is employed in Fig. 8.7bfor quantizing each amplitude ring of

the Square 16-DQAM symbolssn. It may be expected that the quantization error may be reduced,

when the quantization level is increased. As a result, instead of directly transmitting the differential

encoder’s output symbolssn, the quantized Square DQAM symbolss′n are transmitted, and hence

the received signal model of Eq. (2.1) may be revised as:

Yn = s′nHn + Vn

= snHn + V′
n,

(8.13)

where the equivalent AWGN vectorV′
n = Vn − (sn − s′n)Hn contains both the original AWGN

vectorVn and the faded quantization error(sn − s′n)Hn, which are both unknown to the receiver.

It’s worthy to note that the quantization shall only be applied before Square DQAM signal trans-

mission, so that the quantization error may not be accumulated through the differential encoding

process of Eq. (4.8).

Owing to the fact that the differential encoding process of Eq. (4.8) is adopted by the Square

DQAM scheme, the noncoherent receivers for Square DQAM are similar to those for any abosulute-

amplitude DQAM schemes including ADPSK, TADPSK and JTADPSKJM, where channel estima-

tion is not required for both channel phase and amplitude. Let’s consider the CDD conceived for

Square DQAM as an example. The received signal model of Eq. (8.13) may be further extended

as:

Yn =
xn−1

Γn−1
sn−1Hn + V′

n

=
xn−1

Γn−1
Yn−1 + Ṽn,

(8.14)

where the fading is assumed to be constant asHn−1 = Hn, while the equivalent AWGN term is

given byṼn = V′
n − xn−1

Γn−1
V′

n−1. As a result, the CDD aided Square DQAM may be formulated as

same as the CDD aided ADPSK/TADPSK/JTADPSKJM in Eqs. (4.27) and (4.28) as:

x̂n−1 = arg min
∀xm∈x

∥∥∥∥Yn −
xm

Γ̂n−1

Yn−1

∥∥∥∥
2

= arg min
∀xm∈x

∣∣∣∣z
CDD
n−1 − xm

Γ̂n−1

∣∣∣∣
2

,

(8.15)

where the decision variable is given byzn = YnYH
n−1/‖Yn−1‖2 as defined in Eq. (4.18). Fur-

thermore, the previous Square DQAM symbol’s amplitudeΓ̂n−1 = |ŝn−1| is obtained from the

previous CDD decision. Moreover, similar to the low-complexity coherent Square QAM detection

of Eq. (2.17), the CDD aided Square DQAM of Eq. (8.15) may be further simplified as:

ˆ̌mRe = max [min (⌊qRe⌉, MRe− 1) , 0] , whereqRe =
[
MRe− Γ̂n−1

√
βℜ(zCDD

n−1 ) − 1
]

/2,

ˆ̌mIm = max [min (⌊qIm⌉, MIm − 1) , 0] , whereqIm =
[
MIm − Γ̂n−1

√
βℑ(zCDD

n−1 ) − 1
]

/2.

(8.16)

In summary, all the noncoherent receivers introduced in Chapters 4 and 5 that are shared by

the abosulute-amplitude DQAM schemes including ADPSK, TADPSK and TADPSKJM may be
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Figure 8.9: The DCMC capacity comparison between Square 16-DQAM of Fig. 8.7, 16-

ADPSK(2,8) of Fig. 4.3 and 16-DAPSK(2,8) of Figs. 4.1-4.2. The DCMC capacities

of Square 16-DQAM and that of 16-ADPSK(2,8) are evaluated byEq. (4.83), while the

DCMC capacity of 16-DAPSK(2,8) is evaluated by Eq. (4.82).

invoked for Square DQAM. Fig. 8.9 portrays the DCMC capacitycomparison between the Square

16-DQAM of Fig. 8.7, the 16-ADPSK(2,8) of Fig. 4.3 and the 16-DAPSK(2,8) of Figs. 4.1-4.2.

It can be seen in Fig. 8.9 that the 16-ADPSK(2,8) and the Square 16-DQAM respectively achieve

the lowest and the highest DCMC capacities at all SNRs, although the DCMC capacity difference

between the Square 16-DQAM and the 16-ADPSK(2,8) is not significant. This is similar to the

capacity results for the coherent Square and Star 16QAM presented in Fig. 8.8a, and we may con-

clude that Square and Star QAM may achieve the similar capacity in both coherent and noncoherent

systems.

Furthermore, specific reduced-complexity detection algorithms may be further conceived for

the noncoherent receivers according to the Square DQAM constellation. It’s worthy to note that

both the CDD aided ADPSK of Eq. (4.29) and the CDD aided TADPSKof Eq. (4.30) have a low

detection complexity that is similar to the CDD aided SquareDQAM of Eq. (8.16). This is because

that in uncoded systems, the linear noncoherent receivers such as CDD and DFDD may always

directly map the channel’s output signal to the nearest constellation point. However, in coded

systems, the soft-decision-aided noncoherent detectors have to visit all the constellation points,

when both the channel’s output signal and thea priori information obtained from channel decoder

are taken into account. Nonetheless, it may be expected thatthe soft-decision-aided noncoherent

detectors conceived for Square DQAM may have a lower detection complexity than those for other

DQAM schemes, because the Square DQAM detection may always be conducted separately for

the real and imaginary parts of the constellation points in both uncoded and coded systems, which

imposes a reduced complexity order ofO(MRe+ MIm) rather thanO(M).
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8.2.4 Reduced-Complexity Design Applied to Generalized Spatial Modulation

As discussed in Sec. 6.4.3, one of the major disadvantage of the SM is its CCMC capacity loss

compared to the V-BLAST, which is explicitly demonstrated by Fig. 6.13a. As the recent develop-

ment in millimeter-wave band [227,343,344] enables the equipment of a large amount of antennas

especially at base stations [227, 340–342], the V-BLAST’s full MIMO CCMC capacity may even

grow linearly with the number of antennas, as specified by Eqs. (6.3)-(6.5). By contrast, the SM’s

CCMC capacity of Eq. (6.138) can only grow logarithmically with the number of antennas, be-

cause the maximized mutual information between the antennaactivation index and the received

signal formulated by Eqs. (6.143)-(6.144) is upper boundedby log2 NT.

Therefore, the antenna activation procedure portrayed by the SM schematics of Fig. 6.6 has to

be modified in order to convey more information bits. From a historical point of view, the fractional

bit encoded SM proposed in [336] allows the transmitter to employ any number of antennasNT

instead of requiringNT being a power of 2. Specifically, whenNT is not a power of 2, the antenna

activation index may opt to carry different numbers of information bits, where some antenna index

candidates are encoded by(⌊log2 NT⌋) bits, while other candidates are encoded by(⌊log2 NT⌋ +

1) bits. However, the variable number of bits assigned for antenna activation may lead to the error

propagation problem, when the antenna index and the modulation index are detected separately at

the SM receiver. As a remedy, the bit-padding method is introduced in [337], where an extra bit is

padded at the end of the short codewords so that all antenna activation index candidates may convey

the same number of(⌊log2 NT⌋ + 1) bits.

The earliest effort to assign more bits to the antenna activation procedure is the Generalized

Space-Shift Keying (GSSK) [199], where more than one transmitted antennas are activated. More

explicitly, when a total number ofnt out of NT transmit antennas are activated, the total number

of possible combinations is given by the binomial coefficient of UT = (NT
nt

). As a result, the

total number of bits that can be conveyed by GSSK is given by BPST = ⌊log2 UT⌋ = log2 UT,

where there are a total number ofUT = 2BPST GSSK codewords. Therefore, the SSK [200] is a

special case of GSSK, where we havent = 1 andUT = NT. Furthermore, the Generalized Spatial

Modulation (GSM) [231] may utilize the same antenna activation procedure of GSSK, while the

sameMPSK/QAM symbol that is modulated fromBPS = log2 M bits is transmitted by all the

activated antennas, so that the GSM still has the advantage of no inter-antenna interference. As a

result, the SM of Sec. 6.4.1 also becomes a special case of theGSM associated withnt = 1 and

UT = NT.

The total number of bits assigned to the antenna activation procedure is further optimized ac-

cording to Hamming code in [338]. More explicitly, for a transmitter equipped withNT anten-

nas, the maximized number of bits that can be conveyed by the GSSK is simply given byNT,

where all the2NT combinations between[0, · · · , 0] and[1, · · · , 1] are legitimate GSSK codewords.

Specifically, the GSSK codeword of[0, · · · , 0] activates no antenna, while the GSSK codeword

of [1, · · · , 1] activates all antennas. In this case, the minimum Hamming distance is given by
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dmin = 1. In order to improvedmin, the all-zero GSSK codeword of[0, · · · , 0] has to be elimi-

nated. As a result, the remaining2(NT−1) combinations can only convey(NT − 1) bits at most. In

order to optimize this GSSK transmission, it is proposed in [338] that the Hamming code may be

employed to guarantee the minimum Hamming distance ofdmin = 2, where(BPST = NT − 1)

bits are assigned for(UT = 2=NT−1) GSSK codewords. This GSSK design is further applied to

the GSM in [339]. For example, if the transmitted signals vector of the GSSK and the GSM may be

represented by the STSK’s dispersion process ofS = Aqsm in Eq. (6.130), then the GSSK/GSM

dispersion matrices optimized by Hamming code for the case of NT = 4 are given by:

A0 = [0, 0, 0, 1], A1 = [0, 0, 1, 0], A2 = [0, 1, 0, 0], A3 = [0, 1, 1, 1],

A4 = [1, 0, 0, 0], A5 = [1, 0, 1, 1], A6 = [1, 1, 0, 1], A7 = [1, 1, 1, 0].
(8.17)

For this case, a total number of(BPST = 3) bits are assigned for(UT = 8) antenna activation

arrangements.

Moreover, the GSM proposed in [226] opt to use thent out of NT activated antennas to transmit

nt different MPSK/QAM symbols, so that the total number of bits conveyed bythe GSM scheme

may be increased to BPST + ntBPS, where we have BPST = ⌊log2[(
NT
nt

)]⌋. Similarly, the GSTSK

proposed in [217, 302] also activatesnq out of NQ dispersion matrices to disperse a total number

of nq different MPSK/QAM symbols. Naturally, the GSM of [226] has a higher capacity than the

GSM of [231, 339]. However, the inter-antenna interferenceproblem arises again for the GSM of

[226] and also for the GSTSK of [217,302]. As a remedy, the sub-optimal interference-suppressed

receivers are proposed to be employed by the GSM and GSTSK receivers in [226, 229], which are

not consistent with the SM/STSK motivation of low-complexity ML receiver design. Against this

background, the preferred GSM arrangement for future research is the one conceived in [231,339].

Ideally, in the absence of inter-antenna interference, theGSM and the corresponding GSTSK may

invoke the low-complexity SM detectors summarized in Secs.6.4 and 7.4.

To elaborate a little further, the schematic of the GSM of [231, 339] is portrayed in Fig. 8.10,

wherent out of NT transmit antennas are activated to transmit a singleMPSK/QAM symbol. The
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SM transmission vector of Eq. (6.99) may be revised for GSM as:

S = [ 0 · · · 0 sm 0 · · · 0 sm · · · · · · sm 0 · · · 0].

↑ ↑ ↑
v1 v2 vnt

(8.18)

More explicitly, the GSM transmitter assigns BPST = log2 UT bits to modulate the antenna

activation indices of[v1, v2, · · · , vnt ], while BPS = log2 M bits are assigned to modulate the

MPSK/QAM modulation indexm. Therefore, a total number of BPST + BPS bits are conveyed by

the GSM.

The GSM’s signal received atNR antennas may also be modelled by Eq. (6.1). In order to

retain the ML detection capability, the decision metric of the ML MIMO detection of Eq. (6.13)

may be extended for GSM as:

‖Y − SH‖2 =

∥∥∥∥∥Y − sm

(
nt

∑
t=1

Hvt,−

)∥∥∥∥∥

2

= ‖Y‖2 + |sm|2
∥∥∥∥∥

nt

∑
t=1

Hvt,−

∥∥∥∥∥

2

− 2ℜ


(sm)∗ Y

(
nt

∑
t=1

Hvt,−

)H

 .

(8.19)

Compared with the SM detection of Eq. (6.103), the GSM detection of Eq. (8.19) also does not

encounter the interference problem, because only a singleMPSK/QAM symbol is transmitted.

Nonetheless, for GSM, there are a total number ofUT combinations for antenna activation ar-

rangements, which results in a total number ofUT combinations for
(
∑

nt
t=1 Hvt,−

)
in Eq. (8.19).

Therefore, the matched filter output of Eq. (6.100) cannot bedirectly applied for the GSM detec-

tion. Instead, a(UT × NR)-element equivalent fading matrix̃H may be constructed, where the

u-th row in H̃ is given by:

H̃u,− =
nt

∑
t=1

Hvt,−. (8.20)

The antenna activation indices of[v1, v2, · · · , vnt ] are explicitly determined by the combination

index u, and there are a total number ofUT combinations for all possible antenna activation ar-

rangements. As a result, the(1 × UT)-element equivalent matched filter output vector may be

obtained by:

Z̃ = YH̃H, (8.21)

where theu-th element iñZ is given byz̃u = YH̃H
u,−. In summary, the simplified SM detection of

Eq. (6.103) may be revised for the GSM detection as:

Ŝ = arg min
∀m∈{0,··· ,M−1},∀u∈{1,··· ,UT}

κ̃2
u|sm|2 − 2ℜ [(sm)∗z̃u] , (8.22)

where the constant of‖Y‖2 in Eq. (8.19) is omitted, while we have{κ̃u = ‖H̃u,−‖}UT
u=1. In conclu-

sion, the GSM detection of Eq. (8.22) is completely equivalent to the SM detection of Eq. (6.103),

where the SM’s antenna activation indexv that is aimed to be detected from a total number ofNT



8.2.5. Reduced-Complexity Design Applied to Soft-Decision-Aided SD Conceived for Coded
V-BLAST Employing Square QAM 400

candidates is replaced by the GSM’s antenna activation combination indexu that is aimed to be de-

tected from a total number ofUT candidates. Therefore, all the hard-decision-aided SM detectors

in Sec. 6.4 and the soft-decision-aided SM detectors in Sec.7.4 may be invoked for GSM detection.

There are also two hard-decision-aided suboptimal GSM detectors in literatures [230, 366]

which may achieve a near-optimum performance in uncoded GSMsystems. Moreover, it is demon-

strated by [230,339] that the GSM may outperfoms the SM, but the simulation results in [231] show

the contradiction results. Therefore, the capacity and performance comparison between the SM and

the GSM in both uncoded and coded system are still await for future work.

8.2.5 Reduced-Complexity Design Applied to Soft-Decision-Aided SD Conceived

for Coded V-BLAST Employing Square QAM

The soft-decision-aided SD conceived for coded V-BLAST employing Square QAM was intro-

duced in Sec. 7.2.3. However, we didn’t apply the reduced-complexity design to this scheme, be-

cause the reduced-complexity SD algorithm proposed in Sec.3.3.3 is explicitly tailored forMPSK

constellation. As a result, when SquareMQAM constellation is used, the soft-decision-aided SD

has to invoke the conventional Schnorr-Euchner searching strategy which is summarized as pseu-

docode in Table 7.2. It can be seen in Table 7.2 that all legitimate
√

MPAM constellation points

have to be visited by the SD. Moreover, a sorting algorithm (Bubble sort, Timsort, Library sort,

etc. [285,286]) also has to be invoked for increasingly order the PED increments.

Some efficient calculation methods may be found in literatures [358–360], where the SD visits

only a subset of
√

MPAM constellation points. However, these existing solutions simplifies the

Schnorr-Euchner searching strategy by utilizing only the channel-output-related PED increment

term, where the beneficiala priori information is not taken into account. Thea priori information

is beneficial especially for MIMO detectors, because the MIMO signals dependency is very high as

they act as interference to each other. Against this background, we propose a future work to tailor

the reduced complexity design for SquareMQAM constellation.

To elaborate a little further, the PED increment of Eq. (7.18) may be firstly extended as:

∆v =

(
ỹ

SD

v − h̃
SD

v sv

)2

−
BPS/2

∑
k̄v=1

[
b̃k̄v

La(bk̄v
)− C

SD
a,k̄v

]

= ∆v + Cv,

(8.23)

where the equivalent “received signal” and “fading factor”for detecting the
√

MPAM variable

sv are given bỹy
SD

v =
Ỹv−∑

2NT
t=v+1 lt,vst√

N0
and h̃

SD

v = lv,v√
N0

, respectively. Moreover, comparing the√
M candidates forsv according to their PED increment values∆v of Eq. (8.23) is equivalent to

comparing the equivalent PED increment metrics∆v as:

∆v = −2svzv + κ2
v(sv)

2 −
BPS/2

∑
k̄v=1

b̃k̄v
La(bk̄v

) +
La(b1)

2
, (8.24)
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Figure 8.11: Constellation Diagrams of Gray-labelled 4PAM.

where we havezv = ỹ
SD

v h̃
SD

v and κ2
v = (h̃

SD

v )2. As a result, the remnant constant termCv in

Eq. (8.23) that does not change over the variablesv is given by:

Cv = (ỹ
SD

v )2 +
BPS/2

∑
k̄v=1

C
SD
a,k̄v

− La(b1)

2
. (8.25)

Let us now consider the Square 16QAM constellation of Fig. 2.5a as an example, where both

the real and imaginary parts of the Square 16QAM constellation are drawn from the same 4PAM

constellation of Fig. 8.11. We note that the power normalization factor of
√

NT is imposed by the

V-BLAST transmission vector of Eq. (6.11). As a result, the four probability metrics{∆
m
v }

√
M−1=3

m=0

of Eq. (8.24) corresponding to the
√

M = 4 PAM constellation points in Fig. 8.11 may be expressed

as:

∆
0
v = − 6√

10NT
zv + 9

10NT
κ2

v + La(b1)
2 = −tG0

v + 9
10NT

κ2
v,

∆
1
v = − 2√

10NT
zv + 1

10NT
κ2

v + La(b1)
2 − La(b2) = −tG1

v + 1
10NT

κ2
v − La(b2),

∆
2
v = 6√

10NT
zv + 9

10NT
κ2

v − La(b1)
2 = tG0

v + 9
10NT

κ2
v,

∆
3
v = 2√

10NT
zv + 1

10NT
κ2

v − La(b1)
2 − La(b2) = −tG1

v + 1
10NT

κ2
v − La(b2),

(8.26)

where the testing variables are given by:

tG0
v = 6√

10NT
zv − La(b1)

2 ,

tG1
v = 2√

10NT
zv − La(b1)

2 .
(8.27)

It can be seen in Eq. (8.26) that the 4PAM constellations may be arranged into two groups of

{± 1√
10NT

} and{± 3√
10NT

} thanks to the symmetry provided by the Gray-labelling. As a result,

instead of evaluating four PED increment values, the minimum probability metrics of these two

groups are given by:

∆
G0
v = −|tG0

v |+ 9
10NT

κ2
v,

∆
G1
v = −|tG1

v |+ 1
10NT

κ2
v − La(b2).

(8.28)

Furthermore, the global minimum probability metric is simply given by:

∆v = min{∆
G0
v , ∆

G1
v }. (8.29)

As a result, when the SD visits the specific indexv for the first time, the minimum PED increment

metric may be obtained by Eq. (8.29), which evaluates and compares two probability metrics of∆
G0
v

and∆
G1
v instead of the four probability metrics of Eq. (7.18), wherein fact only two constellation

points are visited. Moreover, no sorting algorithm is required for obtaining Eq. (8.29), and the
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Figure 8.12: Example of the reduced-complexity Schnorr-Euchner searching strategy con-

ceived for 4PAM constellation.

remaining constellation points may be visited in a zig-zag fashion if the SD visits the specific index

v again.

Fig. 8.12 portrays an example of the proposed reduced-complexity Schnorr-Euchner searching

strategy conceived for 4PAM constellation. More explicitly, when the SD visits the specific index

v for the first time, the testing variablestG0
v andtG1

v of Eq. (8.27), the local minima∆
G0
v and∆

G1
v of

Eq. (8.28) as well as the constantCv of Eq. (8.25) have to be evaluated. According to Eq. (8.29),

the global minimum∆v may be obtained by simply comparing the local minima, where we have

∆
G1
v < ∆

G0
v for the example shown in Fig. 8.12, and then the optimum constellation point that is

corresponding to∆v may also be obtained by testing the polarity oftG1
v . If the SD visits the specific

indexv for the second time, the specific local minimum∆
G1
v has to be updated to its next candidate,

because the optimum∆
G1
v was the output in the first step. Following this, the second-best global

minimum and the corresponding constellation point may be obtained accordingly. This algorithm is

repeated until all the constellation points have been checked at the SD’s 4-th visit. The advantages

of this reduced-complexity Schnorr-Euchner searching strategy are three-fold. First of all, all the

calculations are off-loaded to the SD’s 1-st visit, where only combinations and comparisons are

made when the SD visits the specific indexv again. Secondly, no sorting algorithm is required

to be invoked for ranking all the constellation points according to their PED increment values.

Instead, the constellation points are visited in a zig-zag fashion, which is similar to the case of

hard-decision-aided MSDSD conceived for DPSK in [127]. Thirdly, given a higher SNR and/or a

highera priori information, the SD may terminate sonner by visiting each index v at most twice.

As a result, the reduced-complexity Schnorr-Euchner searching strategy portrayed in Fig. 8.12 may
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visit a reduced number of constellation points, which is consistent with the motivation of the SD.

We leave it to our future work to further generalize the reduced-complexity Schnorr-Euchner

searching strategy for the soft-decision-aided SD invokedby V-BLAST employing SquareMQAM.

8.2.6 Reduced-Complexity Design Applied to Differential MIMO Schemes

In this report, we aim to apply the reduced-complexity design to the communication systems,

which are are summarized from coherent to noncoherent, fromuncoded to coded, and also from

SISO/SIMO to MIMO. However, due to time and space limit, the differential MIMO schemes

have to be left for future work. Many recently developed communication systems show grow-

ing interest for employing the Differential Space-Time Modulation (DSTM), which facilitates the

signal processing in both the spatial and temporal dimensions, while the demanding requirement

of accurate channel estimation is eliminated. For example,the cooperative communication sys-

tems [6,367–369] opt to employ the single-element mobile stations to share their antennas, so that

a Virtual Antenna Array (VAA) may be formed for MIMO transmission, where the distributed an-

tennas typically experience uncorrelated fading. The schematics of a cooperative communication

system is portrayed in Fig. 8.13. As a result, it becomes unrealistic for the relays and the desti-

nations to estimate the channel of all VAA links, and hence the employment of DSTM may be

perferred.

To elaborate a little further, the DSTM design starts with the following matrix-based differential

encoding process:

Sn =

{
S1, n = 1

Xn−1Sn−1, n > 1
, (8.30)

where the(NP × NP)-element unitary matrixXn−1 carries the source information, while the(NP ×
NT)-element transmission matrixSn models the signal transmitted from theNT transmit antennas

overNP symbol periods. The first DSTM scheme was proposed by Tarokh and Jafarkhani [370] in

1999, where the Differential STBC (DSTBC) based on the G2 STBC structure employingMPSK
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signalling was conceived. More explicitly, the DSTBC in [370] proposed to employ the G2 STBC

codeword of Eq. (6.54) for both the data-carrying matrix andthe transmission matrix in Eq. (8.30),

where theMPSK signalling can only be guaranteed for all the transmitted symbols inSn−1 andSn

because of the matrix-wise differential encoding of Eq. (8.30). In order to also retain theMPSK

signalling for the data-carrying symbols inXn−1, Hughes [371] proposed the group code in 2000,

where a throughput loss was induced. In 2001, Jafarkhani andTarokh [372] further extend the

DSTBC [370] to the case of employing multiple transmit antennas based on the general STBC

structure of Sec. 6.3.1.3. Furthermore, the Differential LDC (DLDC) was proposed by Hassibi

and Hochwald [138] in 2002, where the Cayley transform was invoked in order to guarantee that

the data-carrying matrixXn−1 is always unitary. In 2003 and 2004, Hwang et al. [139] and Nam

et al. [140] further proposed to employ QAM for the DSTBCs of [370] and [372], respectively.

Moreover, Wang et al. [373] further suggested in 2005 that the high rate DLDCs may be generated

by using gradient-ascend method. Oggier and Hassibi [374] suggested in 2007 that the high rate

DLDCs may be constructed based on division algebra, so that the Cayley codes may be expressed

in closed-form. As mentioned before, the DSTSK was proposedby Sugiura et al. [216] in 2010

together with the proposal of the STSK, while the DLDC’s Cayley transformed was eliminated by

our publication of [234] in 2011.

The noncoherent receivers conceived for SISO/SIMO schemesintroduced in Chapter 3 have

also been developed for the DSTM. More explicitly, the MSDD and the DFDD were firstly devel-

oped for the DSTM by Schober and Lampe [375] in 2002. Furthermore, Pauli and Lampe [376]

proposed the MSDSD for DSTM employingMPSK in 2007. In 2011, the MSDSD for DSTBC

employingMQAM was developed by our publication of [235], and then the reduced-complexity

MSDSD conceived for DSTSK was proposed by our publication of[234]. Further research efforts

for noncoherent DSTM detection may be deemed as three-fold.First of all, these aforementioned

noncoherent receivers all rely on hard-bit decisions, and hence a thorough study on the the soft-

decision-aided noncoherent detectors conceived for codedDSTM is still awaited for future efforts.

Secondly, it was noted in [234,235] that owing to the matrix-based signal processing, the noncoher-

ent DSTM detectors generally exhibit a higher complexity than their counterparts of noncoherent

DPSK detectors. Therefore, a systematic reduced-complexity design is needed for the noncoherent

DSTM detection. Thirdly, the recent development of massiveMIMO [340, 341] demonstrated the

interesting result that the linear MMSE MIMO detector may become near-optimum as the number

of antennas employed grows substantially. As the accurate channel estimation may become difficult

in massive MIMO systems, the employment of DSTM may become preferred. Against this back-

ground, one may predict that the optimum MSDD/MSDSD may become hardly affordable when a

massive number of antennas are employed, and hence it is highly plausible that the DFDD, which

is the equivalent of MMSE in noncoherent systems as demonstrated in Sec. 3.2.4 may become the

preferred choice.
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