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SUMMARY 14 
The paper describes the development of a technique to 15 
simulate triaxial tests on specimens of railway ballast 16 
numerically at the particle scale; and its validation with 17 
reference to physical test data. The ballast particles were 18 
modelled using potential particles and the well-known 19 
discrete element method. The shapes of these elemental 20 
particles, the particle size distribution and the number of 21 
particles in each numerical triaxial specimen all matched 22 
closely the real ballast material being modelled. Confining 23 
pressures were applied to the specimen via a dynamic 24 
triangulation of the outer particle centroids. A parametric 25 
study was carried out to investigate the effects on the 26 
simulation of timestep, strain rate, damping, contact 27 
stiffness and inter-particle friction. Finally, a set of 28 
parameters was selected which provided the best fit to 29 
experimental triaxial data, with very close agreement of 30 
mobilized friction and volumetric strain behaviour. 31 
 32 

1. INTRODUCTION AND BACKGROUND  33 
Ballast is traditionally used to support railway tracks as 34 
it is relatively inexpensive and easy to maintain. However, 35 
the increasing demands being placed on ballasted track in 36 
terms of faster, heavier, tilting and more frequent trains 37 
mean that a better understanding of its mechanics, and the 38 
way in which it resists lateral and vertical loads, is 39 
required.  40 
 41 
It can be difficult to carry out mechanical testing on 42 
specimens of railway ballast in traditional laboratory 43 
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apparatus owing to the large particle size. Thus there is 44 
interest and merit in developing simulation techniques that 45 
enable the mechanical behaviour of ballast to be 46 
investigated numerically at the particle scale. Numerical 47 
simulations are also advantageous in enabling the 48 
visualisation of structures and force chains, and a more 49 
complete understanding of the distribution of local 50 
stresses and strains within the specimen as a whole, 51 
without reliance on average or boundary measurements as is 52 
often the case in laboratory tests. The insights that can 53 
be gained from such numerical simulations therefore 54 
complement and enhance those from conventional laboratory 55 
element testing. 56 
 57 
Railway ballast is an ideal subject for discrete element 58 
modelling (DEM). The relatively large size of the grains in 59 
comparison with the depth of the ballast layer means that 60 
there are relatively few grains to model. Furthermore, the 61 
inherent heterogeneity of the ballast mechanical behaviour 62 
is best studied at the grain scale, at which the effects of 63 
grain shape, roughness and size distribution can be 64 
investigated. However, representation of the irregular 65 
shape of ballast stones presents a modelling challenge. 66 
Spheres are widely used in DEM [1 - 3]; however, there are 67 
several different approaches to the modelling of non-68 
spherical particles. Perhaps the most straightforward of 69 
these is to attach two or more spheres rigidly together to 70 
form each particle [e.g., 4 and 5]. The drawback of this 71 
method is that more angular shapes are not efficiently 72 
modelled by overlapping spheres so that large numbers of 73 
spheres may be needed to model each particle accurately. 74 
While real shapes are too computationally intensive for 75 
meaningful simulations, several options are available for 76 
simplified angular particles to be implemented into DEM 77 
[e.g. 6]. This paper uses the potential particle method 78 
[7,8], which is efficient for modelling slightly rounded 79 
polyhedral particles of moderate complexity. 80 
 81 
The question remains, given the ability to model simplified 82 
irregular shapes, how much of the real geometry of 83 
particles must be captured for an assembly of such 84 
particles to model realistic behaviour. 85 
 86 
This paper: 87 

• Describes the development of a library of particles 88 
that can be used to simulate a crushed rock railway 89 
ballast. 90 
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• Describes the simulation of a triaxial test, including 91 
sample preparation and the application of a confining 92 
pressure. 93 

• Presents an investigation into the effects of 94 
variations in physical and modelling parameters on the 95 
test results and identifies values that match the 96 
laboratory behaviour. 97 

• Presents insights into the structure of ballast gained 98 
from a DEM simulation of a triaxial test that matches 99 
volumetric and strength behaviour to that observed in 100 
a physical test. 101 

  102 
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2. DEVELOPMENT OF NUMERICAL SPECIMEN 103 
 104 

2.1. Potential particles 105 
 106 
Potential particle shapes take the form of adjustably-107 
rounded convex polyhedra. A numerical solver is used to 108 
determine the overlap between any two shapes. For there to 109 
be just a single overlap, it is necessary that the shapes 110 
are strictly convex, but the degree of roundness can be 111 
very small. Mathematically, the shapes are expressed as the 112 
level set of a function of a position vector, 𝑥,  (in other 113 
words, the particle surface is formed from the set of 114 
points for which the function 𝑓(𝑥) has a given constant 115 
value). The function can include planes, which correspond 116 
to the polyhedral flats, and (optionally) an ellipsoid or 117 
sphere, which can be used as the basis of the particle 118 
shape. Strict convexity is guaranteed through the addition 119 
of a positive spherical or ellipsoidal component to the 120 
function value. The potential function 𝑓(𝑥) is designed to 121 
be a smooth function that obeys 122 
 123 

 𝑓(𝑥) 𝑖𝑠 �
< 0, 𝑥 inside the particle
= 0, 𝑥 on the surface of the particle
> 0, 𝑥 outside the particle

 (1) 

 124 
The surface defined by 𝑓(𝑥) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 must be strictly 125 
convex. Given two such particles 𝑝1 and 𝑝2, defined by 𝑓1(𝑥) 126 
and 𝑓2(𝑥), it can be established whether 𝑝2 overlaps 𝑝1 by 127 
finding the point on the surface of 𝑝1 at which the 128 
gradients of the two functions are parallel, denoted by A 129 
in Figure 1. This is equivalent to minimizing the function, 130 
 131 
 𝑓1(𝑥) + Λ𝑓2(𝑥) (2) 
 132 
subject to 𝑓1(𝑥) = 0, where Λ is a Lagrange multiplier, a 133 
scalar. It follows that:  134 
 135 
 ∇𝑓1(𝑥) = −Λ∇𝑓2(𝑥) (3) 
 136 
The Lagrange multiplier, Λ, required to allow for different 137 
magnitudes in the two gradient vectors, may be eliminated 138 
from the set of simultaneous equations given by Equation 139 
(3) together with the requirement that 𝑓1(𝑥) = 0. A non-linear 140 
solver, such as Newton–Raphson, may be used to solve for x. 141 
Then, if 𝑓2(𝑥) < 0, the two particles are overlapping.  142 
 143 
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The form of the function used for the potential particles 144 
is: 145 

 146 

𝑓(𝑥,𝑦, 𝑧) = (1− 𝑘)

⎩
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 (4) 

 147 
where:  148 

𝑟𝑥 = 𝑘𝑟𝑟𝑥𝑑𝑒𝑠𝑖𝑟𝑒𝑑 

(5) 
𝑟𝑦 = 𝑘𝑟𝑟𝑦𝑑𝑒𝑠𝑖𝑟𝑒𝑑 
 𝑟𝑧 = 𝑘𝑟𝑟𝑧𝑑𝑒𝑠𝑖𝑟𝑒𝑑 

𝑟𝑐 = 𝑚𝑎𝑥 (𝑟𝑥, 𝑟𝑦, 𝑟𝑧) 
 149 
and where 𝑘𝑟 is a user-specified factor (0 <  𝑘𝑟 < 1) that 150 
relates the desired radii to the scaled radii 151 
(𝑟𝑥, 𝑟𝑦, and 𝑟𝑧) used in the function. Finally, 𝑠 and 𝑘 are 152 
positive constants; 𝑠 affects the roundness of the particle 153 
corners and 𝑘 determines the convexity of any flat surfaces. 154 
 155 

2.2. DEM simulation cycle 156 
 157 
Discrete (or distinct) element modelling (DEM), as proposed 158 
by Cundall and Strack [1], is the dynamic simulation of the 159 
mechanical interaction of inertial particles with surface 160 
stiffness and frictional properties. In general, DEM code 161 
can be split into four main functional areas or modules: 162 

1. Broad phase contact detection. This attempts to 163 
optimize the problem of detecting contacting particles 164 
without examining every possible pair of particles in 165 
a system. The module determines whether object 166 
bounding boxes are overlapping. A subsequent test is 167 
carried out to determine the true extent of overlap. 168 

2. Contact overlap calculation. For spheres, this step is 169 
straightforward. For potential particles, an iterative 170 
process is used. 171 

3. Contact model. Having determined the overlap, the 172 
contact model is used (together with the relative 173 
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velocities of the two particles and the material 174 
properties) to calculate the inter-particle force. 175 

4. Numerical integration of the equations of motion. The 176 
resultant forces and moments on each particle give 177 
rise to particle accelerations, which are integrated 178 
to determine the updated particle positions and 179 
velocities at the next time step. An explicit 180 
integration scheme is used in this code. 181 

 182 
The evolution of particle positions takes place over a 183 
large number of cycles in which new (or obsolete) contacts 184 
are created (or deleted), contact forces updated and the 185 
new particle positions and velocities calculated for the 186 
current timestep. The process is then repeated, as 187 
illustrated in Figure 2. The value of the timestep is 188 
generally very small for explicit solvers, and is related 189 
to the speed of sound in the material through its stiffness 190 
and mass density. 191 
 192 

2.3. DEM particle generation  193 
A library of numerical particles was required for the DEM 194 
simulation, with sizes and shapes representative of real 195 
ballast. The first step in this process was to gather the 196 
required ballast shape information, in terms of form and 197 
roundness, together with the particle size distribution. 198 
The numerical particle shapes were then created to provide 199 
a statistical match to this data. 200 
 201 

2.3.1. Physical characterization of material shape 202 
It is generally accepted that there are three independent 203 
measures of particle shape. These are independent because 204 
they manifest at different scales and each can vary 205 
significantly without influencing the others. These 206 
measures are form, roundness and surface roughness, and are 207 
defined in Barrett [9]. 208 
 209 
Form is the largest scale measure and is commonly 210 
quantified by considering aspect ratios of the major 211 
dimensions of the particles in orthogonal planes [10]. 212 
Roundness, or inverse angularity can be measured by 213 
quantifying variations in the particle surface with respect 214 
to an idealised shape. Surface roughness may be considered 215 
a geometric property; however it is arguably also a 216 
material property and both its geometric and material 217 
effects can be represented by an inter-particle friction 218 
coefficient. A more detailed discussion of shape can be 219 
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found in Blott and Pye [11], while Le Pen et al. [12] 220 
discuss methods for measuring form and roundness of ballast 221 
particles including the relative merits of two and three-222 
dimensional approaches. 223 
 224 
The railway ballast used in this study was sourced from the 225 
Cliffe Hill quarry in Leicestershire operated by Midland 226 
Quarry Products. This ballast is of the granodiorite type 227 
in the igneous group and was crushed to comply with BS EN 228 
13450:2002 grading category A [13]. Shape characterization 229 
of this material was carried out as follows. One hundred 230 
ballast particles were individually photographed using 231 
three orthogonally orientated, digital cameras (Figure 3). 232 
The longest (L), intermediate (I) and shortest (S) 233 
dimensions of the particles were determined from these 234 
images by fitting ellipses using a geometric least squares 235 
algorithm [14]. Form can then be quantified using three 236 
ratios: 237 
 238 

Elongation = I/L 
Flatness = S/I 
Equancy = S/L 

 

(6) 

 239 
Roundness was measured using a modified version of the 240 
Ellipseness, as suggested by Le Pen et al. [12] defined as: 241 
 242 

𝐸𝑙𝑙𝑖𝑝𝑠𝑒𝑛𝑒𝑠𝑠 =
Perimeter of geometric fit ellipse

Perimeter of particle
 (7) 

 243 
DEM ballast construction 244 
The DEM ballast particles were created using interactive 245 
graphical software developed in house. Starting from a 246 
sphere, planes were introduced to create ‘flat-spots’ on 247 
the surface of the sphere. The orientation and location of 248 
these planes can be manipulated with the computer mouse 249 
until the desired shape has been obtained. An example of 250 
this process is shown in Figure 4. A library of particles 251 
was constructed using this method. Some DEM particles are 252 
shown alongside their real ballast counterparts in Figure 253 
5. The Form characteristics are compared quantitatively in 254 
the modified Zingg plot in Figure 6, and show a reasonably 255 
good match between the numerical particle forms and the 256 
real ballast. Figure 7(a) shows a visual key to the 257 
elongation and flatness measures used in the Zingg plot. 258 
Finally, the ellipsesness of the real and DEM ballast is 259 
compared in Figure 7(b). The slightly higher values of 260 
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ellipseness for the DEM particles are as a result of the 261 
smooth edges between the major corners as compared to real 262 
ballast (where the surface undulates between the major 263 
corners). Matching the minor surface undulations for DEM 264 
particles would be computationally prohibitive and, as this 265 
paper demonstrates, not really necessary. 266 
 267 

2.4. Modelling the membrane 268 
Instead of modelling an elastic membrane directly, the 269 
essential function of the membrane (to apply a confining 270 
pressure to the exterior of the specimen) was simulated by 271 
constructing a triangular mesh joining the centroids of 272 
particles on the surface of the specimen. The confining 273 
force on each triangle was calculated as the product of the 274 
confining pressure and the area of the triangle. This force 275 
was then distributed to the particles in proportion to the 276 
relative cross-sectional areas of the spheres 277 
circumscribing them. 278 
 279 
Consideration must be given to the interface between the 280 
specimen and the edge of the platen. In a real triaxial 281 
cell, the edges of the cylindrical membrane extend onto the 282 
sides of the platens and are usually held in place with O 283 
rings, but also by friction once the confining pressure has 284 
been applied. This platen/membrane interface is represented 285 
by introducing two circular rings of nodes, fixed to the 286 
top and bottom platens, which become part of the mesh. The 287 
radii of these rings are set equal to the average effective 288 
radii of the specimen adjacent to the top and bottom 289 
platens respectively. 290 
 291 

2.4.1. Surface mesh construction 292 
If the centroids of the particles in a specimen are 293 
considered as a cloud of points, an outer surface can be 294 
defined consisting of a triangular mesh (with nodes at the 295 
centroids of the particles) which wraps around the outside 296 
of the cloud. One method of identifying a surface mesh is 297 
to examine the network formed by the contacts between 298 
particles and then determine a contiguous mesh of triangles 299 
on the outer surface of the point cloud (see for example 300 
[3]). In this case, a different approach was adopted, which 301 
makes use of the computational geometry library CGAL 302 
(www.cgal.org). First, a Delaunay triangulation was carried 303 
out over all the particle centroids. The surface mesh was 304 
then found as a subset of the Delaunay triangulation, an 305 
‘alpha shape’ as described below. 306 
 307 
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For a set 𝑷 of points in 3-dimensional Euclidean space, the 308 
Delaunay triangulation is a triangulation 𝐷𝑇(𝑷) such that no 309 
point in 𝑷 is inside the circumscribing sphere 𝑆𝑖 of any 310 
tetrahedron in 𝐷𝑇(𝑷). In 3 dimensions, the triangulation 311 
refers to the subdivision of the space into tetrahedra, 312 
whose vertices are the points 𝑷. For a 3-dimensional point 313 
cloud the outer surface of this Delaunay triangulation will 314 
be a mesh of triangles formed from the tetrahedral faces 315 
that have no adjacent tetrahedron. This triangle mesh will 316 
always form a convex polyhedron that encloses the point 317 
cloud as if a thin elastic sheet were stretched over the 318 
cloud of points. For the purpose of transferring a 319 
confining pressure to the outer particles, this mesh is not 320 
useable as it does not (generally) hug the shape of the 321 
cloud.  322 
 323 
In two dimensions, no point can be inside the 324 
circumscribing circle of any triangle. Figure 8(a) shows 325 
the Delaunay triangulation of a small cloud of points in  326 
ℝ2. It can be seen that the perimeter of the triangulation 327 
does not include the points A and B. In the context of a 328 
virtual membrane, this would mean that the particles 329 
corresponding to points A and B would not be subjected to a 330 
confining force. To include A and B in the perimeter, it is 331 
necessary to remove some of the outer Delaunay triangles – 332 
in this case, triangles A and B in Figure 8(b). The 333 
mechanism for achieving this is to limit the maximum radius 334 
of the circle circumscribing a triangle. For the outer 335 
triangles of a triangulation, the circumscribing circles 336 
can be very large as there are no points to interfere, as 337 
illustrated by the circumscribing circles for triangles A 338 
and B. By limiting the maximum permissible circle radius, 339 
these surface triangles can be removed from the 340 
triangulation, leaving a surface which conforms more 341 
closely to the shape of the point cloud as shown in Figure 342 
8(c). 343 
 344 
The extension of this principle to 3 dimensions involves 345 
limiting the maximum radius of the circumscribing sphere of 346 
a tetrahedron, 𝑆𝑖. This is included in the CGAL library via 347 
the parameter 𝛼 = (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑝ℎ𝑒𝑟𝑒 𝑟𝑎𝑑𝑖𝑢𝑠)2. The effect of 348 
varying alpha on the triangulation of a triaxial specimen 349 
can be seen in Figure 9. As the shape of a point cloud is 350 
somewhat vague, obtaining a suitable fit requires some 351 
human input in the selection of 𝛼. If 𝛼 is too large, some 352 
of the surface particles will be missed out. On the other 353 
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hand if 𝛼 is too small, the triangulation can penetrate 354 
into the body of the point cloud (or even form isolated 355 
internal pockets). This would lead to undesirable 356 
behaviour, but in practice it is relatively easy to choose 357 
a suitable (and safe) value for 𝛼. The method for tuning 𝛼, 358 
which was done only once and the resulting value used in 359 
all of the subsequent simulations, is to start with a large 360 
value and reduce it until all of the clearly visible 361 
surface particles are included in the membrane. The chosen 362 
value was 𝛼 = (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 ∗ 1.5)2. Because the model 363 
consisted of a relatively dense assembly of particles, the 364 
problem of virtual membrane penetration did not occur. 365 
 366 

2.4.2. Volume measurement 367 
Two approaches were used to calculate the void ratio; a 368 
computationally fast method involving a small 369 
approximation, performed during the simulation, and a very 370 
accurate but slower method that could be used during post-371 
processing for selected states. For very accurate 372 
measurements, a three-dimensional scan of a region within 373 
the specimen was made. The region was subdivided into a 374 
rectangular array of voxels and each point tested for 375 
inclusion within a particle. The void ratio could then be 376 
determined from these data. The fast method involved 377 
calculating the volume of the polyhedron formed by the 378 
virtual membrane and platens, calculated as the sum of the 379 
signed (positive or negative) volumes of tetrahedra formed 380 
from a common reference point and each triangle of the 381 
polyhedron. The solid volume contained within this 382 
polyhedron was approximated as the sum of the volumes of 383 
the internal particles plus half (wherein lies the 384 
approximation) of the volume of the surface particles. The 385 
volumetric strain shown in the graphs in this paper were 386 
calculated using this method. 387 
 388 

2.4.3. General remarks on modelling the triaxial cell 389 
A real triaxial cell is not a perfect instrument and must 390 
operate within the limitations set by real materials and 391 
equipment. One such limitation is the latex membrane, 392 
placed around the specimen, which serves as a boundary 393 
between the specimen and the confining fluid. Confining 394 
pressure is applied via the membrane and changes in the 395 
volume enclosed by the membrane are used to determine 396 
volumetric strain. The use of a latex membrane is a 397 
practical engineering solution to this problem, but is less 398 
than ideal. A particular problem with specimens comprising 399 
large particles is that, as the confining pressure is 400 
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increased, the membrane distorts inwards into the voids 401 
between the particles (membrane penetration). This 402 
introduces a potentially significant error into the 403 
determination of void ratio and volumetric strain. A 404 
further undesirable effect is that, as the membrane is 405 
stretched and the specimen distorts, it is likely to impose 406 
local shear forces on the surface of the specimen together 407 
with an additional hoop stress. 408 
 409 
A numerical model is not subject to these physical 410 
limitations and a balance needs to be struck between 411 
producing an accurate model of a real triaxial cell and a 412 
model of an idealized triaxial cell. While it is necessary 413 
to produce a model that is reasonably faithful to the real 414 
cell, as comparison with the results from real tests is 415 
essential for the validation of the numerical model, it 416 
would be undesirable to expend excessive effort in 417 
simulating the shortcomings of the real system. In general 418 
this latter approach to modelling - i.e. an idealised 419 
triaxial cell - has been adopted. No attempt was made to 420 
model the true behaviour of a latex sheet, concentrating 421 
instead on the function of a membrane; the application of 422 
confining pressure and the measurement of specimen volume. 423 
It is therefore necessary to maintain an awareness of the 424 
difference between the real and numerical models when 425 
comparing the results. 426 
  427 
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 428 
3. NUMERICAL TRIAXIAL TESTS  429 

 430 
3.1 Overview of materials modelled and modelling parameters 431 

studied 432 
 433 
Numerical ballast was generated using the validated library 434 
of particle shapes, scaled to match the particle size 435 
distribution of the real material. The preparation of a 436 
numerical specimen for triaxial testing is described in 437 
section 3.2. For a given specimen, there are five principal 438 
numerically variable modelling parameters that can 439 
influence the results: 440 
 441 

1. Time step 442 
2. Shearing speed 443 
3. Damping 444 
4. Contact stiffness 445 
5. Inter-particle friction 446 

 447 
Time step and shearing speed are considered as purely 448 
numerical parameters whose value needs to be selected to 449 
have no significant influence on results. The contact 450 
stiffness and inter-particle friction have a physical 451 
significance. Their values need to be calibrated to match 452 
physical test data for the behaviour of the whole triaxial 453 
sample. Although these parameters could perhaps be measured 454 
directly (e.g. [15]), there are significant difficulties in 455 
achieving this and no values for ballast are available in 456 
the literature. Damping can be considered as both a 457 
numerical and physical quantity; however as, in the 458 
numerical model, the value is selected so as to have no 459 
significant influence on the results, it is not necessary 460 
to consider the physical significance of the value used. 461 
 462 
Selection/calibration of these five parameters was 463 
considered in turn through a series of numerical 464 
simulations (Table 1). Results for each simulation were 465 
generated as graphs of mobilized angle of shearing 466 
resistance and volumetric strain against axial strain as a 467 
means to evaluate the influence of varying the parameter. 468 
Interpretation of the shearing speed was additionally based 469 
on a consideration of a measure of inertia. 470 
 471 
A more detailed discussion of the numerical and physical 472 
significance of each of these parameters is given in 473 
subsections 4.3.1 to 4.3.5. 474 
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 475 
Results from real triaxial tests on a specimen of 1/3 476 
scale, parallel graded ballast were used for comparison and 477 
to calibrate some of the numerical parameters studied. This 478 
material can reasonably be tested in a standard 150 mm 479 
diameter × 300 mm height triaxial specimen since the 480 
largest particle will be less than 1/6 of the specimen 481 
diameter [16]. 482 
 483 
A detailed study of ballast particle shapes [12] 484 
demonstrated that the differences in shape (form, 485 
roundness) between the physical 1/3 scale and full size 486 
ballast were relatively minor. The DEM shapes used fell 487 
within the range of real particle forms for both the scaled 488 
and full size ballast. A comparison between triaxial test 489 
data from scaled ballast and full size ballast available in 490 
the literature also showed that the results were in the 491 
range [17]. 492 
 493 
Particle fracture strength is also sometimes modelled in 494 
DEM. A potential difficulty with scaled tests is that 495 
fracture strength is known not to scale with particle size, 496 
with smaller particles being statistically more fracture 497 
resistant [18]. Sieving of the scaled ballast after the 498 
physical tests did not show any measurable breakage at the 499 
relatively low confining pressures used (< 200 kPa), but 500 
breakage could become more significant with increasing 501 
particle size and confining stress. 502 
 503 
The particle contact stiffness in the numerical samples was 504 
modelled as Hertzian [19,20]. With Hertzian contact models 505 
it can be shown that, for similar shapes in an assembly of 506 
particles, the interparticle stresses are independent of 507 
particle size provided the boundary stresses remain the 508 
same. Hertzian contact is therefore a more robust approach 509 
to adopt than a linear stiffness, which would not take 510 
account of variations in particle size. 511 
 512 
The numerical triaxial test specimens were given particle 513 
and sample dimensions equivalent to the physical tests on 514 
1/3 scaled ballast. However as the numerical tests were 515 
implemented without gravity these dimensions are only 516 
significant in relative terms and the numerical results 517 
could equally apply to specimens of full size ballast 518 
450 mm in diameter. 519 
 520 
 521 
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3.2. Triaxial test specimen preparation 522 
The procedure used to prepare a DEM specimen is analogous 523 
to the preparation of a triaxial test specimen in the 524 
laboratory. At the start of the process, the differently 525 
shaped DEM ballast particles are combined and scaled to 526 
obtain a given mass of particles with a desired particle 527 
size distribution (PSD). The PSD is given, in terms of 528 
sieve sizes and retained masses, in Table 2. A smooth 529 
distribution of DEM particle sizes was obtained by 530 
interpolation of these data. 531 
 532 
Bagi [21] and Jiang [22] provide concise reviews of the 533 
several methods that can be used to create the initial 534 
arrangement of particles in a DEM specimen. The dynamic 535 
method was adopted in this work. The particles were 536 
randomly positioned within a domain space described by a 537 
cylinder 1 m high and 0.15 m in diameter, with a very loose 538 
initial packing. For reasons of computational efficiency, 539 
the particles were initially represented by spheres 540 
circumscribing the potential particle shapes (Figure 10a). 541 
The particle material stiffness of the particles was set to 542 
the value used during the shear test simulation and the 543 
inter-particle friction angle 𝜙𝜇 was set to zero.  544 
 545 
The model was cycled with high damping to remove any large 546 
overlaps between particles. Once the system had settled, 547 
the spheres were replaced by the potential particles as 548 
shown in Figure 10b. At this point, the frictionless 549 
particles were allowed to fall under the influence of 550 
gravity, together with the top platen which was assigned a 551 
mass of 1 kg. The initial volume of particles was 552 
calculated such that the desired void ratio was obtained 553 
when the cylinder reached a height of 0.3 m. The system 554 
state was saved at regular intervals during this settling 555 
phase and when the cylinder height was approaching the 556 
desired height, the inter-particle friction angle and 557 
damping were set to their final values and the model cycled 558 
to equilibrium. The desired void ratio was achieved by a 559 
process of trial and error. A typical finished specimen is 560 
shown in Figure 11(a). 561 
 562 
The virtual membrane was then created around the particles 563 
as shown in Figure 11(b). Virtual particles, which do not 564 
interact with the ballast particles, were created for the 565 
purpose of the triangulation over the platens (Figure 11c). 566 
The specimen was then isotropically compressed to the 567 
desired confining pressure. The top and bottom platens were 568 
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represented by horizontal planes, with friction angle and 569 
stiffness equal to that of the particles in the specimen. 570 
  571 
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3.3. Monotonic test results 572 
 573 

3.3.1 Effect of time step 574 
For stability of the explicit time integration method used 575 
to update the particle positions, the time step must not 576 
exceed a critical value 𝑡𝑐𝑟𝑖𝑡. The critical timestep is 577 
calculated by considering each particle and the system of 578 
contacts around it. This sub-system has a mass (of the 579 
particle) and a stiffness provided by the contacts with the 580 
surrounding particles, and an approximate natural frequency 581 
can be calculated for the translational and rotational 582 
movements associated with each axis. The critical timestep 583 
is then related to this natural frequency such that 584 
 585 

𝑡𝑐𝑟𝑖𝑡 = �
�𝑚/𝑘𝑡𝑟𝑎𝑛     (translational motion)

�𝐼/𝑘𝑟𝑜𝑡   (rotational motion)
 (8) 

 586 
Where 𝑘𝑡𝑟𝑎𝑛 and 𝑘𝑟𝑜𝑡 are the translational and rotational 587 
stiffnesses, 𝐼 is the moment of inertia and 𝑚 is the mass 588 
[23]. This calculation is carried out for all the particles 589 
in the system and the smallest critical value is taken as 590 
the timestep for the whole. 591 
 592 
Owing to the approximate nature of the mechanically 593 
determined critical timestep, it is common practice to use 594 
a fraction of the calculated critical timestep as the 595 
actual time increment such that 596 
 597 

∆𝑡 = 𝛼𝑠𝑓𝑡𝑐𝑟𝑖𝑡 (9) 
 598 
where 𝛼𝑠𝑓  is termed the safety factor. Itasca [23] recommend 599 
𝛼𝑠𝑓=0.80 for simulations using the linear contact law and 600 
0.25 for simulations using a Hertz-Mindlin contact law.  601 
 602 

While the use of a safety factor helps to improve the 603 
robustness and accuracy of the automatic timestep 604 
determination, it will increase simulation time and cost. 605 
For 𝛼𝑠𝑓 = 0.25, the simulation time will in theory take four 606 
times as long to run as with the critical timestep, 𝛼𝑠𝑓 = 1.0. 607 
It is therefore important to choose a value for 𝛼𝑠𝑓 that 608 
balances simulation accuracy and computational cost. To 609 
determine the effects of timestep size, three simulations 610 
were carried out using safety factors (𝛼𝑠𝑓) of 0.20, 0.50 and 611 
1.00 (Table 3). 𝛼𝑠𝑓 = 1.0 was used as the benchmark value. The 612 
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specimen was prepared using the method already described 613 
and only the value of 𝛼𝑠𝑓 was varied between simulations. 614 
 615 

Figure 12 shows the mobilized strength and volumetric 616 
strain plotted against axial strain for this series of 617 
simulations. The initial responses of the three simulations 618 
are nearly identical. The maximum compressive volumetric 619 
strain is reached at approximately 4% axial strain, with 620 
variations of -1% and 1.4% in T1 and T2 respectively. 621 
Beyond this point, all three simulations dilate 622 
monotonically with T1 and T2 having similar rates of 623 
dilation of 0.175 and 0.161 respectively. T1 on the other 624 
hand has a lower rate of dilation of 0.120. The peak 625 
effective friction angle, the effective friction angle at 626 
the end of the simulation and the maximum volumetric strain 627 
are summarised in Table 3. There are generally only small 628 
variations between the three simulations, with T1 and T2 629 
being very closely matched.  630 

 631 
The data in Figure 12 and Table 3 show that the timestep 632 
affects the results of a DEM simulation. Larger timesteps 633 
result in higher kinetic energies, causing vibration of the 634 
specimen and leading to a small suppression of dilation due 635 
to dynamic rearrangement. The mechanically determined 636 
critical timestep may be used as an initial estimate, and 637 
in this case a safety factor αsf = 0.5 provides a balance 638 
between stability and computational cost. 639 
  640 
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3.3.2. Effect of shearing speed 641 
The shearing speed of a laboratory triaxial cell experiment 642 
on a non-clay soil is typically between 0.5 and 0.001 643 
mm/minute (0.0023 to 0.000006% of the specimen height per 644 
second) [24]. To match this rate in the simulation would 645 
take too long (months), owing to the small timestep and the 646 
computational work required at each step. Thus faster shear 647 
speeds were used in the simulations to reduce the run time 648 
to an acceptable level. If the rate of deformation were too 649 
fast, the model response would be dynamic representing 650 
rapid granular flow rather than the quasi-static behaviour 651 
seen in a triaxial test. The chosen shear velocity must 652 
therefore be slow enough to induce a quasi-static soil 653 
response yet fast enough to give realistic run times. 654 
Triaxial shear test simulations were carried out at three 655 
strain rates (Table 4). 656 
 657 

The nature of the response (plastic/static or visco-658 
plastic/dynamic) can be determined with reference to the 659 
inertia number 𝐼𝑛, 660 

 661 

𝐼𝑛 = 𝜀𝑞̇�
𝑚
𝑝𝑑
 (10) 

 662 
where 𝜀𝑞̇ is the shear strain rate, 𝑚 is the mass of the 663 
particle, 𝑝 is the confining cell pressure and 𝑑 is the 664 
particle diameter [3,25,26]. Previous authors have shown 665 
that small inertia numbers are associated with a network of 666 
enduring contacts in quasi-static conditions [27], while 667 
larger inertia numbers correspond to the dynamic inertial 668 
regimes seen in rapid flow or binary collision [28]. It is 669 
generally recommended that 𝐼𝑛 ≪ 1 to ensure quasi-static 670 
plastic behaviour. 671 
 672 
The maximum inertia numbers for the simulations V4, V5 and 673 
V6 were 4.19×10-3, 4.19×10-4 and 4.19×10-5, respectively 674 
Given a limiting inertia number of 10-2 [25], the response 675 
in all three simulations should be quasi-static.  676 

Figure 13 shows the mobilized friction angle and volumetric 677 
strain against axial strain for simulations V4 – V6. The 678 
effect of strain rate on peak effective friction angle is 679 
minimal. The peak effective friction angle in V4, (133%/s) 680 
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is 2.77° higher than that in V5, while in V6 𝜙′𝑝𝑒𝑎𝑘 varies by 681 
0.66° (Table 4).  682 

 683 
3.3.3. Effect of Damping 684 

When real granular material is strained, kinetic energy is 685 
dissipated at the contacts through a combination of 686 
microscopic processes such as friction and yielding of 687 
surface asperities. The contact model used in the DEM 688 
simulations reported in this paper was elastic for movement 689 
parallel to the contact normal and elastic/perfectly 690 
plastic for relative tangential movement. Under certain 691 
conditions, this idealized model can result in less energy 692 
dissipation than in a real system. Thus damping is commonly 693 
used to control any non-physical vibration that may arise 694 
as a result of excess kinetic energy in the model. 695 
  696 
The damping formulation used in the simulations reported in 697 
this paper was based on the local damping proposed by 698 
Cundall [29], in which ‘the damping force is proportional 699 
to the magnitude of the out-of-balance-force at each node, 700 
acting so as to damp rather than encourage vibration’. The 701 
damping force is given by 702 
 703 

𝐹𝑑𝑖 = −𝛼𝑑�𝑭𝑜𝑖 �𝑠𝑖𝑔𝑛(𝑉𝑖) (11) 
 704 
 705 
where 𝛼𝑑 is the damping constant, �𝑭𝑜𝑖 � is the magnitude of 706 
the out-of-balance force for the 𝑖th degree of freedom 707 
(𝑖 = 0,1,2), 𝑉𝑖 is the velocity of the particle and  𝑠𝑖𝑔𝑛( ) 708 
indicates the sign (positive or negative) of the particle 709 
velocity [23,30].  710 
 711 
Three values of damping coefficient (𝛼𝑑 = 0.05, 0.1 and 0.7) 712 
were investigated in addition to a simulation in which 713 
damping was switched off (i.e. 𝛼𝑑 = 0), as summarized in 714 
Table 5. An equivalent value of the fraction of critical 715 
damping ratio, 𝜁, is also given, based on the approximation 716 
𝜁 ≅ 𝛼𝑑 𝜋� , valid for low values of damping [23]. The same 717 
initial specimen was used in all four tests. After the 718 
desired confining (cell) pressure had been applied, the 719 
damping constant was changed and the model was cycled to 720 
equilibrium, bringing the specimen into a steady state 721 
under the new damping conditions. 722 
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Figure 14 shows the mobilized strength and volumetric 723 
strain as a function of shear strain for simulations D7-724 
D10. Increasing the damping increases both the peak 725 
effective friction angle and the rate of dilation 726 
(Table 5). Similar findings were also reported by Ng [31].  727 
A damping constant of 0.7 is clearly too high and has a 728 
dramatic impact on the model response. On the other hand, 729 
zero damping is inadvisable when idealized 730 
elastic/perfectly plastic contact models are used that have 731 
a tendency to vibrate prior to contact sliding. A range of 732 
𝛼𝑑  of between 0.05 and 0.1 is suitable in this case, as it 733 
gives specimen stability but has only a small influence on 734 
the soil response. 735 
 736 

3.3.4. Effect of contact stiffness 737 
For Hertzian contacts, the inter-particle stiffness K is a 738 
function of the particle material shear modulus, G, and the 739 
effective radius of curvature local to the contact. For 740 
rough surfaces, this radius of curvature may be much 741 
smaller than the idealized, smooth, particle shapes and 742 
there is therefore some uncertainty in the choice of the 743 
stiffness value. To assess the influence of shear modulus 744 
on the response of the model, simulations were carried out 745 
with G=1 GPa and G=10 GPa. 746 
 747 
The contact stiffness at which a specimen is brought to 748 
equilibrium can affect the configuration of the particle 749 
matrix. To minimize any variation in fabric between the two 750 
specimens, the contact stiffness of CS11 was changed and 751 
cycled to equilibrium with all boundary motion inhibited 752 
(e.g. [31 and 32]). A small change in the void ratio was 753 
apparent (see Table 6) along with minor movements in the 754 
particle matrix. The average displacement of particles was 755 
0.0002% of the average particle diameter. 756 
 757 
Figure 15 shows that changes in the contact stiffness have 758 
an effect on the rate at which strength is mobilized with 759 
shear strain. While the peak strengths are similar (with a 760 
difference of less than 1°), the initial responses are 761 
distinctly different. This can be explained by the 762 
volumetric strain behaviour of the two tests seen in Figure 763 
15. Increasing the contact stiffness reduces the potential 764 
for a specimen to compress, inhibiting rearrangement of the 765 
particles to a denser state. Consequently, stiffer 766 
behaviour is seen in the initial response of mobilized 767 
effective friction angle against shear strain. The 768 
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simulation run time is also affected by the contact 769 
stiffness, with the higher stiffness found to increase 770 
simulation run time by at least 100%. 771 
 772 

3.3.5. Effect of inter-particle friction angle 773 
Three different values of inter-particle friction angle 𝜙𝜇 774 
were used to assess the effect on the mechanical response 775 
of the model (Table 7). The settled specimen for IF15 was 776 
used as the initial specimen for the other tests. The 777 
inter-particle friction angle was reduced to the required 778 
value and the model was allowed to come to equilibrium, to 779 
avoid pre-stressing. 780 
 781 
While there was no change in the initial void ratio, 782 
specimens prepared in this way will be prone to changes in 783 
contact state and force chain configuration during shear. 784 
Contacts that were initially stable (at the higher 𝜙𝜇) will 785 
inevitably become closer to sliding as 𝜙𝜇 is decreased. 786 
However, even by the end of the shear test simulation with 787 
the largest change (i.e. IF15), only 0.003% of contacts had 788 
changed state. 789 
          790 
Figure 16 shows the behaviour expected of a granular 791 
material as the inter-particle friction angle is increased, 792 
with generally higher peak strengths being mobilized at a 793 
lower axial strain. The initial rate of compression is 794 
reduced, dilation starts at a smaller strain and the rate 795 
of dilation is increased. The number of sliding contacts 796 
reduces with increasing inter-particle friction angle, with 797 
IF15 (𝜙𝜇 = 40°) having 63% fewer at 16% axial strain, and IF 798 
14 (𝜙𝜇 = 35°) having 38% fewer than IF13 (𝜙𝜇 = 30°). 799 
Reducing 𝜙𝜇 promotes an apparently less stiff and less 800 
dilatant response and could be used as a proxy for particle 801 
abrasion and breakage, which is argued by McDowell and Bono 802 
[33] to be responsible for the reduction in peak strength, 803 
stiffness and dilation of soils with increasing confining 804 
(cell) pressure. 805 
  806 
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4. COMPARISON WITH PHYSICAL TEST DATA  807 
 808 

4.1. Model calibration 809 
It is generally accepted that DEM models are able to 810 
replicate the basic characteristics (e.g. dilatancy, shear 811 
localization, stress dependence,) of the stress-strain 812 
behaviour of granular media. The input parameters that 813 
govern this behaviour can be broadly classified into 814 
geometrical properties (particle shape and size 815 
distribution) and mechanical properties (type of contact 816 
model, contact stiffness and inter-particle friction).  817 
 818 
Recent advances in modelling particle geometry have meant 819 
that researchers are no longer restricted to using simple 820 
spheres (or clumps of spheres). As already discussed, 821 
concepts such as potential particles [7], can be used to 822 
create DEM particles which are characteristic of real 823 
materials. Similarly, the implementation of realistic PSD’s 824 
in simulations is commonplace.  825 
 826 
However, this not the case when considering the mechanical 827 
properties. It is possible in principle, but in practice 828 
difficult, to measure the contact stiffness and inter-829 
particle friction angle; and there are few data on these 830 
properties for real materials. Furthermore, the 831 
simplification of the complex contact mechanics of a real 832 
granular system in a discrete element model means there is 833 
no guarantee of accurately capturing the response, even if 834 
measured parameter values are used. It is therefore usually 835 
necessary to calibrate a DEM model with reference to data 836 
obtained in a real laboratory test. 837 
 838 

4.1.1. Calibration method  839 
The calibration process was carried out to match, as 840 
closely as practically possible, the macroscopic behaviour 841 
of the DEM model to that of laboratory triaxial cell 842 
experiments with similar boundary conditions. The 843 
calibrated parameters were the inter-particle contact 844 
stiffness 𝐾 and the inter-particle friction angle 𝜙𝜇  . 845 
 846 
The method used was a simple two-step process, similar to 847 
that described by [34]. First, adjustments were made to the 848 
inter-particle friction angle until the volumetric strain 849 
behaviour of the real material was captured. At the same 850 
time, the peak effective friction angle (angle of shearing 851 
resistance) 𝜙′𝑝𝑒𝑎𝑘 was monitored as a means of measuring the 852 
suitability of the adjustment. Secondly, the contact 853 
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stiffness 𝐾 was varied until the deformation 854 
characteristics seen in the laboratory results were 855 
reproduced.  856 
 857 
The benchmark laboratory triaxial test was carried out by 858 
Aingaran [35] on 1/3 scale ballast (BS EN 13450:2002 859 
grading category A reduced by a factor of 1/3) from Cliffe 860 
Hill quarry, Nottinghamshire, UK, sheared monotonically 861 
under an effective confining (cell) pressure of 15 kPa. The 862 
initial specimen dimensions were 300 mm high × 150 mm 863 
diameter. CT image analysis showed that unloaded laboratory 864 
specimens had a void ratio of 0.65 and approximately 2800 865 
particles [36]. The specimen for the DEM simulation was 866 
prepared as already described, with the specimen 867 
dimensions, particle size distribution, number of particles 868 
and initial void ratio matched as closely as possible to 869 
those of the real specimen. 870 
 871 

4.1.2. Calibrated model parameters. 872 
The parameter values obtained by calibration are summarized 873 
in Table 8. The results of triaxial test simulations 874 
carried out using these parameters are compared with 875 
laboratory test data from two tests at 15 kPa confining 876 
pressure in Figure 17. Agreement is very close, with the 877 
calibrated model capturing both the strength and dilatancy 878 
characteristics of the real material. There is a small 879 
variation in the laboratory data and the simulation lies, 880 
on the whole, in the same range.  881 
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5. CONCLUSIONS AND COMMENTS 882 
A new method has been proposed for simulating the behaviour 883 
of railway ballast in monotonic triaxial tests, using the 884 
innovative 3D potential particle approach and the well-885 
known discrete element method. The elemental particles, PSD 886 
and number of particles in each numerical specimen all 887 
matched closely the ballast material being modelled. 888 
 889 
A parametric study was carried out to investigate the 890 
effect on the results of the simulation of five parameters: 891 
timestep, shearing velocity (or strain rate), damping, 892 
contact stiffness and inter-particle friction. The first 893 
three of these are devices associated with the numerical 894 
modelling approach, and the criterion for selecting a 895 
particular value is that the value chosen should neither 896 
influence the results of the simulations unduly nor make 897 
the simulation inefficient or overly expensive in terms of 898 
time or computational power. 899 
 900 
The parametric studies indicated that a minimum timestep of 901 
half the theoretical value is needed; a smaller timestep 902 
did not significantly alter the response. 903 
 904 
Time constraints will almost always preclude the use of 905 
real-time strain rates in DEM triaxial test simulations, 906 
and those presented in this paper were no exception to 907 
this. It was found that the strain rate did not adversely 908 
affect the overall response as long as it was less than 909 
13.3% per second. 910 
 911 
The results showed that damping should ideally be kept as 912 
low as possible as it not only affects the response of the 913 
material but also adversely influences the duration of the 914 
simulation. A range of 0.05 to 0.1 was shown to have 915 
minimal effect in both respects. 916 
 917 
The contact stiffness and the inter-particle friction angle 918 
are both in theory measurable, but obtaining realistic and 919 
relevant values is practically difficult. The simulations 920 
have shown that reducing the inter-particle friction will 921 
reduce the peak strength, the initial global specimen 922 
stiffness and dilation, suggesting that it could be used as 923 
a proxy for particle abrasion/breakage at higher at higher 924 
confining stresses. 925 
 926 
Following calibration for the inter-particle friction angle 927 
and contact stiffness parameters, the model was able to 928 
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reproduce satisfactorily the overall response of a scaled 929 
ballast in a monotonic triaxial shear test. Very close 930 
agreement was achieved in the mobilized strength/shear 931 
strain, volumetric strain/shear strain and mobilized 932 
strength/rate of dilation behaviour. 933 
 934 
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LIST OF SYMBOLS 941 
 942 

𝛼𝑑 damping constant 

𝛼𝑠𝑓 Timestep safety factor 

𝜀𝑞̇ is the shear strain rate 

𝜁 Damping ratio 

𝜙𝜇 inter-particle friction angle 

𝜙′𝑝𝑒𝑎𝑘 peak effective friction angle 

Λ Lagrange multiplier required to allow for 
different magnitudes in the two gradient 
vectors 

d particle diameter 

k positive constants affecting the convexity 
of any flat surfaces 

𝑘𝑟 a user-specified factor (0 <  kr < 1) which 
relates the desired radii to the scaled 
radii (𝑟𝑥, 𝑟𝑦, and 𝑟𝑧) 

𝑘𝑟𝑜𝑡 rotational stiffness 

𝑘𝑡𝑟𝑎𝑛 translational stiffness 

m  mass 

p confining cell pressure 

𝑟𝑥,𝑦 𝑎𝑛𝑑 𝑧 scaled radii 

𝑡𝑐𝑟𝑖𝑡 critical timestep 
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𝐹𝑑𝑖 Damping force 

G Shear modulus 

I Intermediate dimension/diameter of a 

particle 

I moment of inertia 

Ino. inertia number  - determines nature of the 
response (plastic/static or visco-
plastic/dynamic) 

K Contact stiffness 

L Longest dimension/diameter of a particle  

P Set of points in 3-dimensional Euclidean 
space 

S Shortest dimension/diameter of a particle 

S positive constants affecting the roundness 
of the particle corners 

𝑆𝑖 circumscribing sphere 

𝑉𝑖 Particle velocity  

 943 
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Tables 
 

Table 1 Details of parametric study for numerical tests 
 

Simulatio
n Set 

Variables Notes 

 Numerical Mechanical  
 Time 

step 
Shearin
g speed 

Dampin
g 

Contact 
stiffnes
s 

Inter-
particl
e 
frictio
n angle 

 

T1,2 & 3 Varie
d 

0.2m/s 0.5 1GPa 30º 3 
Tests 
@ 
200kPa 
e=0.68 

V4, 5 & 6 0.5 Varied 0.5 1GPa 40º 3 
Tests 
@ 
15kPa 
e=0.61 

D7, 8, 9 
& 10 

0.5 0.2m/s Varied 1GPa 35 º 4 
Tests 
@ 
15kPa 
e=0.61 

CS11 &12 0.5 0.2m/s 0.5 Varied 30º 2 
Tests 
@ 
200kPa 
e=0.61
, 0.62 

IF13. 14 
&15 

0.5 0.2m/s 0.5 1GPa Varied 3 
Tests 
@ 
15kPa 
e=0.61 
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Table 2 Particle size distribution of real and DEM ballast 
 

% passing by weight 
(Network Rail Specification) 

Sieve size 
(mm) 

1/3 scale 
sieve size (mm) 

100 62.5 20.83 
85 50 16.67 

17.5 40 13.33 
12.5 31.5 10.5 
1.5 22.4 7.47 

 
 
 
 
 

Table 3. Differences in strength response for varying 
timestep. Confining pressure = 200 kPa, inter. friction = 

30º, initial void ratio = 0.68 and contact stiffness = 1 GPa 
 

Simulation 
no. 

𝛼𝑠𝑓 Peak 
effective 
friction 
angle, 
degrees 

Max. 
volumetric 
strain, % 

Volumetric 
strain at end 
of simulation, 

% 

T1 0.25 42.18 1.287 -0.554 

T2 0.5 42.24 1.318 -0.504 

T3 1.0 41.61 1.300 -0.181 
 
Table 4. Variation in response induced by different strain 
rates. Confining pressure = 15 kPa, inter. friction = 40º, 
initial void ratio = 0.61 and contact stiffness = 1 GPa 

 

Test 
no. 

𝜀𝑞 %/s 
𝜙𝑝𝑒𝑎𝑘 (°) 

Max. 
𝜖𝑣𝑜𝑙 
(%) 

Rate of 
dilation 
at 𝜙𝑝𝑒𝑎𝑘 

V4 133 52.44 0.136 0.833 
V5 13.3 49.67 0.145 0.717 
V6 1.33 49.01  0.153 0.655 
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Table 5 Variation in response caused by different damping 
constants. Confining pressure=15kPa, inter-particle 
friction=35º, initial void ratio = 0.61 and contact 

stiffness = 1 GPa 
 

Test 
no. 

𝛼𝑑 approximate 
equivalent damping 

ratio, 𝜁 ≅ 𝛼𝑑
𝜋
 

𝜙𝑝𝑒𝑎𝑘 
(°) 

Max. 
𝜖𝑣𝑜𝑙 (%) 

Rate of 
dilation at 

𝜙𝑝𝑒𝑎𝑘 
D7 0.00 0.000 47.72 0.143 0.578 
D8 0.05 0.016 47.86 0.145 0.595 
D9 0.10 0.031 49.54 0.195 0.826 
D10 0.70 0.223 54.21 0.189 0.714 

 
 
 
 
Table 6. Variation in response caused by different contact 
stiffnesses. Confining pressure=200 kPa and inter-particle 

friction angle=30º 
 

Test 
no. 

𝑒 Contact 
stiffness (GPa) 𝜙𝑝𝑒𝑎𝑘 

(°) 
Max. 

𝜖𝑣𝑜𝑙 (%) 

Rate of 
dilation at 

𝜙𝑝𝑒𝑎𝑘 
CS11 0.67 1 41.61 1.30 0.132 

CS12 0.68 
10 42.21 0.71 0.667 

 
 
 
 
 

Table 7 Variation in response induced by different 𝜙𝜇. 
Confining pressure = 15 kPa, initial void ratio = 0.61 and 

contact stiffness = 1 GPa 
 

Test 
no. 𝜙𝜇(°) 

𝜙𝑝𝑒𝑎𝑘 
(°) 

Max. 𝜖𝑣𝑜𝑙 
(%) 

Rate of dilation at 
𝜙𝑝𝑒𝑎𝑘 

IF13 30 46.69 0.30 0.387 
IF14 35 48.03 0.17 0.554 
IF15 40 49.77 0.14 0.730 
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Table 8 Calibration model parameters 

 
Inter-particle friction angle  𝜙𝜇 40° 
Contact stiffness  𝐾 1GPa 

Particle Density 𝜌 2650kg/m3 

No. of particles 2780 

Void ratio 𝑒 0.61 

Shear velocity 0.02m/s 

Damping constant 𝛼𝑑 0.05 

Timestep safety factor 𝛼𝑠𝑓 0.5 

Specimen dimensions 294mm×150mm 
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Figures 
 

 
Figure 1 Two elliptical potential particles 

 
 

 
Figure 2. Simulation cycle 
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Figure 3 a green background allows easy segmentation 
 
 

 
 

Figure 4. The creation of a DEM ballast particle. From left 
to right more flats are added to the initial sphere until 
the desired shape has been achieved. The smaller dots are 

control nodes used to manipulate the flat positions 
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Figure 5. Example numerical ballast particle with its real 

counterpart 
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(a) 
 

 
(b) 

Figure 6: Zingg plots of I/L against S/I for (a) real 
ballast and (b) potential particles 
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   (a)      (b)    
 
Figure 7 (a)Visual key for Zingg plot (b) Ellipseness ratio 

for real and DEM ballast 
 
 
 

 
Figure 8. Example of alpha shape formation for 2-

dimensional point cloud 
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Figure 9. Sequence of alpha shapes with parameter 𝛼 

reducing from left (𝛼 = ∞) to right 𝛼 = (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑟𝑎𝑑𝑖𝑢𝑠 ∗
1.5)2 

 
 
 
 
 
 
 
 

 
Figure 10. Specimen preparation. a)spheres are randomly 
distributed in a cylinder b) spheres are replaced by 

potential particles 
 

39 
 



 
Figure 11. Numerical triaxial specimens. a) Particles in a 
typical specimen b) the virtual membrane and c) specimen 

showing virtual particles on the top/bottom platen 
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(a) 

 
(b) 

Figure 12 Effects of different timesteps on (a) Mobilized 
friction angle and (b) volumetric strain versus axial 

strain  
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(a) 

 
(b) 

Figure 13 Effects of different shear rates on (a) Mobilized 
friction angle and (b) volumetric strain versus axial 

strain.  
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(a) 
 

 
(b) 

Figure 14 Effects of damping on (a) mobilized shear 
strength. (b) the volumetric strain versus axial strain  
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(a) 

 
(b) 

Figure 15 Effect of contact stiffness variation on (a) 
Mobilized shear strength and (b) Volumetric strain versus 

axial strain  
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(a) 

 
(b) 

Figure 16 The effects of variation in inter-particle 
friction on (a) Mobilized shear strength and (b) Volumetric 

strain versus axial strain  
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(a) 

 
(b) 
 

Figure 17 Comparison of DEM and two laboratory experiments 
(at 15kPa) results 
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