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Abstract 

Rail dampers work by increasing the attenuation with distance of vibration transmitted 

along the rail, a quantity known as the track decay rate. Currently, there are no 

standardized procedures to measure their effectiveness in reducing rolling noise without 

the need for in-track installation and time-consuming tests. This paper describes and 

evaluates experimental procedures for assessing rail dampers. Instead of field 

measurements it is proposed to use laboratory measurements of vertical and lateral 

decay rates on a free rail equipped with dampers. These are combined with in-situ 

measurements on an undamped track. The decay rates of a damped track can be 

approximated by adding the results of the damped free rail to those of the undamped 

track. 

Three different methods are studied to measure the decay rates of damped free rails: (i) 

using a long rail, in the present work 32 m long, from frequency response functions 

measured at intervals along the rail; (ii) using a short rail, in the present work 6 m long, 

from the modal properties of the rail; and (iii) directly from the point and transfer 

frequency response functions at both ends of the short rail. The latter two are 

complementary: the modal method is more suited to low frequencies while the direct 

method is more suited to high frequencies. These methods are evaluated theoretically 

and by comparison with experimental results. 

Good agreement is found between the various methods, for vibration in both vertical and 

lateral directions, between 300 Hz and 5 kHz. In practice, the direct short-rail method is 

likely to be sufficient for most applications. The limitations of the methods are identified 

and corrections are proposed for the effect of near-field waves in the rail.  

Author Keywords: railway noise; damping; modelling; railway track; tuned absorber; 

rail damper; decay rates; rail pad 

1 Introduction 

In most situations, at least for conventional speeds, rolling noise originating from the 

interaction of the wheel and rail is the dominant source of environmental railway noise. 

It is caused by the combined surface roughness of the wheel and rail, which excites 

vibration of the wheel, rail and sleepers. In turn this vibration radiates sound. Models 

for this phenomenon have been developed and validated against field measurements [1-

4]. Generally, the sleeper is found to be the major source of noise below around 400 Hz, 

the rail is dominant between 400 and 1600 Hz and the wheel is of increasing importance 
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at higher frequencies [5]. Both the track and the wheels can contribute significantly to 

the overall noise level. Their relative contributions depend on the roughness spectrum, 

the train speed and various design parameters of the wheel and track. Particularly 

important is the track decay rate, the rate of attenuation of vibration along the rail, 

which governs the sound radiated by the rail [6, 7]. In order to separate the wheel and 

track components, either advanced experimental techniques [8] or theoretical models [1, 

2] are required. 

Theoretical models are also important to facilitate the development of appropriate noise-

mitigating solutions. Increasing the stiffness (and damping) of the rail pads, fitted 

between the rail and sleepers, can decrease the rail component of rolling noise by 

increasing the track decay rate and hence reducing the effective radiating length of rail. 

Conversely this can increase the noise radiated from the sleeper due to the increased 

coupling [9]. Among the various alternatives developed in the last decades [10] this 

paper focuses on rail dampers, which are a good and efficient candidate for reducing the 

noise at source [11]. Rail dampers are particularly effective when tracks are fitted with 

soft pads (low strain stiffness below 250 MN/m). 

Various forms of rail damper have been designed to increase the track decay rate 

without the need for higher pad stiffness [12-15]. Usually, such dampers are bolted or 

clipped onto the rail between the sleepers. They are designed to be effective primarily for 

the vertical vibration of the rail as, for a wheel rolling on a straight track, this is the 

most important direction of excitation. However, as the vertical and lateral directions 

are coupled, and the lateral decay rates are often lower than the vertical ones, the lateral 

vibration can also contribute to the noise and this has to be accounted for in a numerical 

model for noise radiation. Overall reductions in noise level ranging from 2 to 6 dB(A) 

have been obtained in comparative measurements of various types of damper installed 

on a track [15-17]. Reductions are greatest for a track with softer rail pads where the rail 

component of rolling noise is more dominant due to the low initial decay rates [17], 

whereas noise reduction on tracks equipped with stiff pads can be as low as 1 dB(A).  

Currently, there is no standardized method to assess the in-situ performance of 

dampers. Such an assessment would require field tests following their installation in a 

track, which can be expensive to carry out. An international project, STARDAMP [18], 

was therefore set up with the aim of developing standard procedures to verify wheel and 

rail damper effectiveness without the need for full installation in the field.  
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The aim of this paper is to present the theoretical basis behind the method developed to 

predict the acoustic performance of rail dampers and to evaluate it in order to establish 

its range of applicability. This method consists of a combined experimental-numerical 

procedure and can be summarised in the following steps. First, measurements are made 

of the decay rates of a length of free rail fitted with rail dampers. Second, those of the 

undamped target track are measured. To estimate the decay rates of the damped track, 

the two results are added. Finally, the track decay rates of the damped and undamped 

cases are used in a prediction model to determine the acoustic effect of the dampers. This 

is expressed in terms of the reduction in acoustic power radiated by the track or the 

overall noise reduction for a given wheel design. The advantages of this approach are 

that it avoids expensive field tests and that the results can be used for different target 

situations, including different track designs, based on the same laboratory test results.  

A requirement of the proposed method is an accurate and repeatable procedure for 

determining the decay rates of a free rail fitted with dampers. These have previously 

been obtained from measurements of a 4 m section of freely supported rail [15]. These 

were determined at low frequency from the modal properties of the rail, and at high 

frequency directly from point and transfer frequency response functions (FRFs) at either 

end of the rail. The decay rates of a damped free rail can also be derived from FRFs 

measured at intervals along a longer section of rail, similar to the track decay rate 

method described in EN15461:2008 [6]. However, this approach has not previously been 

tested for free rails. In this paper, methods based on the three experimental approaches 

outlined above are tested, compared and critically evaluated. 

The expected reduction in acoustic power from the track in each one-third octave band, 

∆L, can be calculated from the undamped track decay rate, DRu and the damped track 

decay rate, DRd, according to [5, 7]: 

d

u

DR

DR
L 10log10=∆  (1) 

However, the main assumptions behind eq. (1) are that there is only one wave 

propagating in the rail and that three-dimensional effects on the rail radiation ratio can 

be neglected (see [19]). The in-situ performance of dampers will depend not only on their 

effect on the rail noise but also on the relative contributions of the wheels and individual 

track components to the overall noise. These contributions can be predicted using models 

such as TWINS [1]. A software tool that implements TWINS-like predictions of rolling 

noise has been developed by the authors within the STARDAMP project [20, 21].  
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2 Measurements of track decay rate: in situ, test track and ‘long rail’ 

methods 

2.1 Method based on EN 15461 

Track decay rates are measured in the field using a method described in EN 15461:2008 

[6]. This relies on measurements of the driving-point frequency response function (FRF) 

at a reference point A(x0), and the transfer FRFs, A(xn), between the reference position 

and the other points on a measurement grid defined by a variable spacing ∆xn. The decay 

rate is given by 

n
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The derivation of this equation was first presented in [22] and proposed again in [7] 

where the advantages were shown of a procedure that considers the summed response of 

the rail instead of fitting a decay curve assuming the presence of one wave type only. Eq. 

(2) in fact approximates the analytical calculation of the overall decay as: 
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where β  is an overall decay constant accounting for all the waves travelling into the rail 

and is related to decay rate by 
βelog20 10=DR . This method was adopted as a standard 

for track decay rates measurements [6]. Although this standard specifies the spacing ∆xn 

this has been redefined in the present application to allow for the higher decays due to 

added dampers. The measurement grid adopted in the present work is described and 

discussed further below. 

2.2 Test track measurements 

Measurements have been carried out on a test track located at the University of 

Southampton which was designed to be broadly representative of modern circulated 

track within the UK. It has a length of 32 m and is fitted with UIC 60 rail, 51 concrete 

monobloc sleepers with a mean spacing of 0.63 m (standard deviation 0.03 m), 10 mm 

studded natural rubber pads with an effective vertical stiffness of approximately 120 
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MN/m and compacted granite ballast to a depth of 0.3 m. Measurements were conducted 

without dampers and with two dampers referred to as A and B. 

A measurement grid was marked up from a reference point located at the centre of the 

10th sleeper span, corresponding to 5.96 m from the rail end. Measurements were made 

at ¼-sleeper intervals from this point up to the 16th sleeper span, then at the following 

mid-span positions: 17th, 18th, 20th, 22nd, 26th, 30th, 34th, 38th, 42nd and 46th, resulting in a 

total of 35 points covering 23 m of the rail. This measurement grid differs from the one 

proposed in [6], containing more points close to the excitation point and being shorter. 

Dampers added to the rail cause waves to decay at a higher rate, requiring a higher 

resolution close to the excitation point. 

A miniature accelerometer was attached to the rail at the reference point. For vertical 

measurements this was on top of the rail at the centre of the rail head, while for lateral 

measurements it was on the side of the rail head. The rail was excited with an 

instrumented hammer. Mobility FRFs (i.e. velocity over force) were used throughout the 

analysis with a frequency resolution of 3 Hz. Decay rates in each one-third octave band up 

to 5 kHz were calculated using eq. (2). To obtain one-third octave band decay rates the 

modulus-squared of FRFs ( )( 0xA and )( nxA ) are averaged into one-third octave bands 

before applying eq. (2). 

As track decay rates have been found to be dependent on temperature, rail temperatures 

were measured at the start and end of each measurement set using a thermocouple 

attached to the underside of the rail; average temperatures are reported. 

The procedure adopted was originally designed to be applied on an infinitely long track 

[6]. In the standard it is recommended to measure over 66 sleeper bays so as to estimate 

correctly also the lowest values of decay. By assuming a minimum acceptable difference 

between the response level at the driving point and the last point measured of at least 10 

dB (as in [6]) it is found that, in the present application, the lowest detectable decay rate 

is at about 0.5 dB/m.  

The finiteness of the test track can be observed in the measured FRFs when shown in 

narrow band form: they show additional peaks (and dips) corresponding to the vibration 

modes of the finite length rail. If results are shown in one-third octave bands, this 

frequency averaging smoothens the measured FRFs so that the reflections from the ends 

are no longer visible. As an example of this behaviour Figure 1(a) presents the vertical 

driving point mobility as measured on the test track in the undamped configuration, 
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both in narrow band and in one-third octave band form. Up to 500 Hz the effect of 

finiteness of the test track only causes small fluctuations. Above 500 Hz the waves start 

to propagate in the rail and vibration modes are clearly visible in the narrow band 

mobility. For this test track there are 2 or 3 modes in each one-third octave band. The 

one-third octave band mobility shows the most important features found on a real track 

even above 500 Hz: a sharper peak at around 1 kHz representing the ‘pinned-pinned’ 

mode and another sharp peak at 5 kHz due to a second wave type (foot flapping [23]) 

cutting on in the rail.  

Figure 1(b) shows the driving point mobility in the lateral direction measured at the rail 

head. Fluctuations due to vibration modes in the narrow-band FRF are larger than in 

the vertical direction due to a lower decay rate. The modal density is also higher as, 

along with lateral bending, torsion is also excited [24, 25]. A one-third octave band 

representation again shows the most important features such as bouncing of the rail 

above ballast and pad lateral stiffness below 300 Hz, ‘pinned-pinned’ resonance at 500 

Hz and the correct level at higher frequencies. 

These limitations related to the relatively short length of the track are of importance 

only in the case of the undamped track; the addition of dampers greatly increases the 

minimum decay rate in the track, as will be seen in the results below. 

 
Figure 1. Vertical (a) and lateral (b) driving point mobility measured on the 32 m long test track. 

Measured track decay rates are shown in Figure 2 for this test track without dampers 

and when fitted with the two different rail dampers. Note that a logarithmic scale is 

used to plot decay rates as a consequence of the relation given in eq. (1). Measured decay 

rates of vertical rail vibration are shown in Figure 2(a). For the undamped track, there is 

high attenuation at low frequencies because of the blocking effect of the stiffness of the 
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foundation [5]. Above around 500 Hz the decay rate decreases to a minimum at 2 kHz, 

before increasing again to a peak at around 5 kHz. Decay rates measured on the damped 

track show a significant increase between 500 and 4000 Hz.  

The measurement results for the lateral direction are shown in Figure 2(b). These show 

similar trends, although the lateral decay rates of the undamped track are lower than 

the corresponding vertical ones at most frequencies, dropping at a lower frequency due to 

the lower pad stiffness for this direction. The undamped track has a peak at 3150 Hz due 

to the effect of higher order wave modes [24]. Note that in both directions the decay rate 

has a minimum value of about 0.5 dB/m which can be affected by the finite length of the 

track; this will be considered further in Section  3. 

 
Figure 2: Decay rates measured on the test track in vertical (a) and lateral (b) direction. 

(a)⋅⋅⋅⋅⋅ Undamped track (11 °C);  damper A (11 °C); − − − damper B (15 °C) 

(b) ⋅⋅⋅⋅⋅ Undamped track (6.5 °C);  damper A (10 °C); − − − damper B (14 °C) 

2.3 Long free-rail method for finding decay rates associated with dampers 

For a damped free rail that is long enough, vertical and lateral decay rates can be 

measured using a method based on that described in [6], i.e. using eq. (1). 

To illustrate this, measurements were conducted on a 32 m long free rail of the test track 

described above. One of the rails was unclipped from the track and supported on soft 

springs formed of sections of hydraulic hose, resulting in a bounce mode of the rail at 

approximately 15 Hz. The same measurement points as described in Section  2.2 have 

been adopted.  

Results from this method are shown in Figure 3. The trend is similar in both vertical and 

lateral directions and for both damper types. The decay rate is low below 500 Hz; in this 
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range the decay rate of the track is already high and dampers are not designed to be 

effective. Above 500 Hz the dampers become effective and the decay rate of the damped 

free rail is higher than the decay rate of the undamped track (Figure 2).  Results of 

Figure 3 will be shown again in Section  5 for comparison with those of the short rail 

methods which are considered in Section  4. 

  
Figure 3. Decay rate of free rail in vertical (a) and lateral (b) direction. 

(a) −◊−, damper A (15 °C); ×, damper B (11 °C). 

(b) −◊−, damper A (10 °C); ×, damper B (14.2 °C). 

3 Effect of evanescent waves and finite length track on decay rate estimates 

In this section, analytical models are introduced to explore the limitations of the 

measurement methods introduced in Section  2. The method described in Section  2.1 (and 

[6]) determines the total decay rate of the track, which includes the effect of evanescent 

waves in the vicinity of the driving point. Therefore the decay rate obtained using eq. (2) 

tends to be higher than the equivalent decay of the propagating wave (see [7]). Similarly, 

applying the same method on a test track of finite length (Section  2.2) would again 

include the effect of evanescent waves close to the forcing point and would moreover be 

affected by waves reflected at the ends. Again, decay rates measured according to the 

standard method would differ from those of the propagating wave only. The long rail 

method described in Section  2.3 would also encounter similar features, being performed 

on a finite length rail. 

In predicting rolling noise with numerical models, the measured track decay rates 

accounting for all the waves are often used as input data to represent the decay rate of 

the propagating wave only, assuming that the contribution of other waves to the overall 

response is negligible. This section aims to quantify the effect of this assumption using 
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models of a rail based on a beam. In particular, with the aim of improving the 

understanding on the measurements described in Section  2, four different cases are 

considered: (i) an infinite unsupported beam, which provides a useful introductory 

example for the following cases. (ii) A finite unsupported beam, which is representative 

of the long rail method (described in Section  2.3). (iii) An infinite beam on a double layer 

elastic foundation, which is representative of a real track. (iv) A finite length beam on a 

double elastic foundation, which represents a test track of finite length, as the one used 

in this work (see Section  2.2). The ratio between the decay rate calculated considering 

the contribution of all the waves (using eq. (2) with FRFs estimated from models) and 

the decay rate obtained directly from the model corresponding to the propagating wave 

only (imaginary part of the wavenumber) is presented for each case and represented as

ptot DRDR . 

Regardless the way the FRFs used in eq. (2) are obtained (analytical models or 

measurements), the maximum length and the spacing of the calculation grid limit the 

range of validity of measured decay rates. In the case of numerical calculations the grid 

can be arbitrarily defined to overcome this limitation. However, for those cases 

representing an arrangement of the rail/track corresponding to a real measurement 

situation, it is important to maintain the same grid. In this way the ratio ptot DRDR is 

equally affected by the grid in the measurements and in the model. For the first case 

presented (infinite unsupported beam) the measurement grid adopted is refined and 

extended in such a way that the grid itself does not affect the results in the range 

considered. Measurements on a real track have not been considered in this paper; 

therefore, to simplify the interpretation of the result, the grid for this case has also been 

refined and extended so that it does not affect the outcomes. The case of a finite length 

rail is representative of the long rail method and so the measurement grid used is the 

same as adopted in the measurements. For a finite length beam on an elastic foundation 

(representing a test track), the grid adopted in the numerical calculation is the same as 

in the measurements. 

The Timoshenko beam models are representative of the vertical bending behaviour of the 

rail up to at least 2 kHz [7]; the Euler-Bernoulli beam model is also introduced as its 

simplicity allows additional insight to be gained. For the lateral vibration of a rail more 

complex models would be more appropriate, e.g. [24, 25], but the main trends are still 

expected to be similar. All the models adopted rely on a continuous support below the 

rail, in practice the rail is supported by discrete sleepers resulting in pinned-pinned 
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resonance, in the point mobility, and in a blocked region in the decay rate. The effect 

these have on pass-by noise is believed to be small [5] and discrete support is not 

modelled in this paper, 

3.1 Decay rates of an infinite unsupported beam 

Consider an infinite beam excited by a harmonic force of amplitude F at x=0. The 

equations of motion for a Timoshenko beam are [26]: 
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The two variables u and φ represent the transverse displacement and the rotation of the 

section, respectively. The product of the shear modulus G, the area A and the shear 

coefficient κ represents the shear stiffness (GAκ), E is the Young’s modulus, I the second 

moment of area (EI the bending stiffness), ρ is the density ( Iρ  the rotational inertia). 

Damping is introduced by making the Young’s modulus (and also the shear modulus) 

complex by means of the loss factorη as )1(0 ηiEE += . 

Considering free vibration and assuming a harmonic solution at circular frequency ω, 

tiikx

n eeAu
ω−= , equations (4) and (5) can be rearranged into a single equation and the 

following characteristic equation can be found: 
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The solution of this yields four wavenumbers k at each frequency: two for the waves 

propagating or decaying in the positive direction and two for the waves propagating or 

decaying in the negative direction. In the absence of damping, one of the two pairs of 

waves has a wavenumber which is always real, representing a propagating wave, and 

this is written as ±kp. The other pair of waves has a wavenumber that is purely 

imaginary at low frequency. This will be referred to as an evanescent wave and its 

wavenumber represented as ±ke. However, there exists a frequency at which this wave 

‘cuts on’, i.e. its wavenumber becomes real. The same nomenclature is adopted when 
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damping is introduced in the beam although then both waves have complex 

wavenumbers. 

The decay rate can be expressed in dB/m and, for the propagating wave, is written as 

(see [5]) 

( )pp kDR Im686.8−=  (7) 

To find the overall decay rate it is necessary to solve for the forced response. The 

solutions in the positive and negative domain are: 
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The coefficients An are obtained by applying the appropriate boundary conditions at x=0 

and solving a system of equations for the four unknown wave amplitudes.  Similarly, for 

an Euler-Bernoulli beam the response is given by equation (8) but now the wavenumbers 

are given by 
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while the wave amplitudes are equal to 

3
4231 4 pEIkFiAiAAA −=−=−==  (10) 

In order to determine the overall decay rate, the response given by equation (8) for a unit 

force, F=1, is evaluated at several points along the beam. The relative amplitude is 

plotted in Figure 4 against distance, normalised by wavelength ( )pkRe2πλ = , for an 

Euler-Bernoulli beam. Parameters have been chosen to be representative of the vertical 

bending of a UIC60 rail (see Appendix A, Table A 1). The damping loss factor is assigned 

values ranging from 0.02 to 0.8. It can be seen that far from the excitation point the 

decay is exponential (linear in terms of decibels) but the evanescent wave increases the 

response in the vicinity of the excitation point by 3 dB. The corresponding results for the 

Timoshenko beam are similar although they depend on frequency. 
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Figure 4: Vibration level plotted against distance for unsupported Euler-Bernoulli beam with 

various damping loss factors. Thick lines: , η = 0.02; − − −, η = 0.05; ⋅⋅⋅⋅⋅⋅, η=0.1; − ⋅ − ⋅, η=0.2; 

thin lines: , η = 0.4; − − −, η = 0.8. 

Results obtained from eq. (8) are then used as the FRFs in eq. (2). The resulting decay 

rate (DRtot) can be compared with the decay of the propagating wave only (DRp) from eq. 

(7). The results are shown in Figure 5 as the ratio DRtot/DRp.  

For the Euler-Bernoulli beam, the results are found to be independent of frequency. The 

ratio DRtot/DRp is plotted against loss factor in Figure 5(a). It can be seen that the ratio 

tends to 2 for low damping and reduces as the loss factor increases. The factor of 2 

corresponds to the ratio of the squared amplitude of the total response at x=0 and the 

response of the propagating wave component (see eq. (10)). 

For a Timoshenko beam the corresponding results are dependent on frequency as shown 

in Figure 5(b). At low frequency the results tend to those of the corresponding Euler-

Bernoulli beam, while above 1 kHz they tend to unity as the amplitude of the evanescent 

wave reduces. 
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Figure 5: Ratio of total decay rate to decay rate of propagating wave for various loss factors. (a) 

Unsupported Euler-Bernoulli beam. (b) Thin lines: unsupported Euler-Bernoulli beam. Thick 

lines: unsupported Timoshenko beam. ,η = 0.02; , η = 0.1; − − −, η = 0.2; ⋅⋅⋅⋅⋅⋅, η = 0.4; − ⋅ − ⋅, 

η = 0.8. 

3.2 Decay rates of an unsupported finite length beam 

In the case of a finite length beam, forced at distance L1 from one end and L2 from the 

other, the forced response can be found from the four waves in equation (8) and four 

more introduced by reflections from the ends. This model can be considered as a 

representation of the long rail method of Section  2.3. 

Eq. (6) is still valid for calculating the wavenumbers in this situation while the solutions 

in the positive and negative x domain can now be written as: 
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The wave amplitudes are found by applying continuity at the forcing point as before as 

well as free boundary conditions at the ends. The ratio between the total decay rate, 

obtained by applying eq. (2), and the decay of the propagating wave only is shown in 

Figure 6 for four different loss factor values. Both narrow band and one-third octave 

band results are presented where the latter are determined from one-third octave band 

FRFs. The lowest loss factor (0.02), normally used for the undamped rail [5], is excluded 

from the analysis as this case is meant to represent a damped rail only. The total length 

of the beam and the location of the forcing point have been set according to the 

measurements made for the long rail method (Section  2), with L1=6 m and L1+L2=32 m. 
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The overall trend is similar to the results of the infinite beam but the reflections at the 

end generate a series of sharp peaks, the amplitude of which depends on the damping. 

 
Figure 6: Ratio of total decay rate to decay rate of propagating wave of a finite length (32 m) 

unsupported Timoshenko beam for various damping loss factors.  , η = 0.1; − − −, η = 0.2; ⋅⋅⋅⋅⋅⋅, 

η = 0.4; − ⋅ − ⋅, η = 0.8. (a) Narrow-band; (b) one-third octave band. 

3.3 Decay rates of an infinite beam on two-layer foundation 

The case of an infinite beam supported by a double elastic foundation, as shown in 

Figure 7, is often used to study wave propagation in a railway track where the two layers 

of damped springs represent pad and ballast stiffness while the intermediate masses 

represent the sleepers. 

 

Figure 7: Schematic representation of waves propagating in an infinite beam on a two-layer 

support forced at x=0. 

Equation (4) can be modified to account for the elastic foundation as [5]: 
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where s is a frequency dependent support stiffness per unit length given by: 
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sp and sb are the pad and ballast dynamic stiffnesses per unit length for one rail, 

respectively. They are assumed to be constant and are made complex with loss factors ηp 

and ηb respectively. ms is the sleeper mass per unit length. Eq. (5) is not modified by the 

presence of the support. Instead, the support stiffness modifies the characteristic 

equation (eq. (6)) which is now: 
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The solution is found as in eq. (8), having updated the wavenumber from eq. (14). 

Figure 8 shows the decay rate as calculated from this model including propagating and 

evanescent waves (Figure 8(a)) and in terms of the propagating wave only (Figure 8(b)). 

For this case the rail loss factor typical of the undamped track (0.02) is also included to 

represent the measurement on the undamped test track described in Section  2. In 

addition, a comparison between this figure and the measurements of Figure 2 suggests 

that a rail loss factor between 0.2 and 0.8 would be necessary in this model to simulate 

the effect of dampers. The other track parameters adopted are listed in Appendix B. 
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Figure 8: Decay rate of an infinite Timoshenko beam on a two layer foundation for various 

damping loss factors of the rail.  ,η = 0.02; , η = 0.1; − − −, η = 0.2; ⋅⋅⋅⋅⋅⋅, η = 0.4; − ⋅ − ⋅, η = 0.8. 

(a) Total decay rate; (b) decay rate of propagating wave only. 

Figure 9 shows the ratio of the total decay rate to that of the propagating wave. 

Compared with Figure 6, the effect of the support stiffness modifies this result below 500 

Hz, where it oscillates between 0.75 and 1.4. Above this frequency the waves tend to 

propagate freely along the rail and the ratio tends to the free rail result. There is little 

difference between narrow-band and one-third octave results. 

 
Figure 9: Ratio of total decay rate to decay rate of propagating wave of an infinite Timoshenko 

beam on a two layer foundation for various damping loss factors of the rail.  ,η = 0.02; , η = 

0.1; − − −, η = 0.2; ⋅⋅⋅⋅⋅⋅, η = 0.4; − ⋅ − ⋅, η = 0.8. (a) Narrow-band; (b) one-third octave band. 

3.4 Decay rates of a finite length beam on two layer foundation 

Finally the same analysis is presented for a finite length Timoshenko beam on a double 

elastic foundation. This model is representative of a test track with the same properties 
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as a real track but of finite length, as adopted to perform the measurements described in 

Section  2.2. The solution is found as in eq. (11) while the wavenumbers are those 

calculated from eq. (14). 

The decay rate ratio is presented in Figure 10. This result is similar to that from the 

infinite beam on elastic foundation (Figure 9). Below 500 Hz in particular, the finiteness 

of the beam does not change the assessment of decay rates. Above this frequency, peaks 

occur in Figure 10(a) due to the existence of vibration modes; these are clearly visible for 

the loss factor equivalent to the undamped rail (η = 0.02) and are also present for higher 

loss factors up to 0.2. However, the effect of the modes disappears in a one-third octave 

band representation of the results as seen in Figure 10(b). At high frequency and for 

high loss factors the results drop below unity due to the grid spacing used close to the 

excitation point. A narrower spacing would give the same trend as in Figure 9 (for which 

a finer spacing is used) but the grid spacing adopted here is chosen to be consistent with 

the measurements of Section  2.2. 

 
Figure 10: Ratio of total decay rate to decay rate of propagating wave of a finite length 

Timoshenko beam on a two layer foundation for various loss factors.  ,η = 0.02;  , η = 0.1; − − 

−, η = 0.2; ⋅⋅⋅⋅⋅⋅, η = 0.4; − ⋅ − ⋅, η = 0.8. (a) Narrow-band; (b) one-third octave band. 

3.5 Discussion 

Figure 11 summarises the results obtained in this section. The case of the infinite beam 

on double elastic foundation is omitted as its one-third octave band results are 

indistinguishable from those of the finite beam (32 m long) on elastic foundation. The 

case of the unsupported infinite beam (continuous line) gives the average trend of the 

unsupported finite beam (dash-dot line). This latter result can be used to comment on 

the applicability of the long rail method of Section  2.3. The highest ratio in one-third 
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octave bands is found in this case to be 3.5 at 63 Hz for η = 0.1. Between 125 and 2000 

Hz it decreases from 1.5 to 1. From eq. (1) it can be shown that this corresponds 

approximately to a change in noise radiated from the track of up to 1.7 dB. The result for 

the beam supported on double elastic foundation (dashed line) shows that the measured 

decay rate accounting for all waves is within a factor of 0.7-1.4 of the decay rate of the 

propagating wave. In terms of track radiated noise this can be approximated with an 

interval of ±1.5 dB. 

 
Figure 11: Decay rate estimated in one-third octave bands. , Infinite unsupported Timoshenko 

beam; − ⋅ − ⋅, finite length (32 m) unsupported Timoshenko beam; − − −, finite length (32 m) 

Timoshenko beam on a two-layer support. (a) η = 0.1; (b) η = 0.2, (c) η = 0.4, (d) η = 0.8. 

As mentioned in the beginning of this section, when measuring decay rates on a real 

track according to the standard EN15461 [6], both propagating and evanescent waves 

are considered together. This also occurs on a test track, or on any finite length rail 

arrangement adopted to test rail dampers, where near field waves are captured; 
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reflected waves also occur. The results presented so far show that the decay rates of the 

propagating wave differ from the total and a simple model can be adopted to quantify the 

difference. The applicability of these outcomes depends on the context. When the focus is 

on a generic assessment of a track prior to performing pass-by tests (see [27]), then decay 

rates measured according to [6] are a good indicator of the overall acoustic properties of 

the site. If the goal is instead to use measured decay rates as input into rolling noise 

models to improve their reliability, then the calculations shown in this section could be 

adopted to correct the measurement: the decay rates of the propagating wave can be 

extracted and used to update the imaginary part of this type of wave. Finally, if as in 

this paper, decay rates measured in different ways are to be compared with each other, it 

is important that the comparison is done in terms of the same quantity, which is chosen 

to be the decay rate of the propagating wave. These results will be shown in Section  5 

after methods to measure decay rates of a damped short rail are introduced in the next 

section. 

4 Short free-rail methods for finding decay rates associated with dampers 

4.1 Short rail measurements 

For a short section of damped rail, at low frequencies the FRF is dominated by clearly 

separated modes of vibration and distinct peaks can be observed. At higher frequencies, 

the damping values are generally higher and greater overlap between modes occurs, 

tending to make the response flatter and single modes less distinguishable. Because of 

this dynamic behaviour, two different procedures have been proposed for determining 

the decay rate of a damped free rail [15]. The first, considered in Section  4.2, is based on 

modal information (‘modal method’), while the second, considered in Section  4.3, relies on 

the ratio between FRFs at the two ends of the rail (‘direct method’).  

The length of the short rail used in the present work was chosen as 6 m as this gives a 

good compromise between practicality for tests in a laboratory and having sufficient 

measurable effect of the dampers with distance. In [15] measurements performed on a 4 

m rail were also shown to provide a good estimation of the effect of dampers.  

In the present tests ten dampers were installed at 0.6 m intervals symmetrically over a 

6 m length of UIC 60 rail. The rail was supported at either end on stacks of rubber rail 

pads, resulting in a bounce mode of approximately 20 Hz. Miniature accelerometers were 

mounted as close as possible to the ends of the rail (about 5 mm). For both vertical and 

lateral measurements, the point FRF at one end and the transfer FRF to the other end 
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were measured. Measurements were conducted in a laboratory with an ambient 

temperature of 20 ± 2 °C.  

Figure 12 shows the mobility measured at either end of the 6 m free rail in the vertical 

and lateral directions with damper A fitted to the rail. For the vertical direction, in 

Figure 12(a), it is clearly possible to observe, at around 350 Hz, the transition between 

the region dominated by individual modes and the region where the response is flatter 

due to the effect of the dampers. Below this frequency the point and transfer FRFs are 

similar in magnitude, whereas at higher frequencies there is a significant decay along 

the rail seen from the difference between point and transfer FRFs. The modal method 

will be applied only below 350 Hz, while above this frequency the decay rates can be 

estimated by means of the direct method. For the lateral direction, in Figure 12(b), a 

similar distinction between the two frequency ranges can be drawn. However, in this 

direction, and with this particular type of dampers, another set of clearly distinguishable 

modes of the rail appears between around 800 and 2500 Hz. Experimental modal 

analysis can be performed in this range and the modal method applied but, as the 

difference between the direct and transfer mobility is small, the direct method is not 

applicable. 

 
Figure 12: Example of driving point mobility () measured at one end and transfer mobility (⋅⋅⋅⋅⋅⋅) 

measured at the other end of a damped 6 m long free rail. (a) vertical direction; (b) lateral 

direction 

4.2 Modal method  

According to the modal method the decay rates can be derived at the resonances from the 

natural frequencies and modal loss factors [15]. These can be identified through 
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experimental modal analysis (e.g. see [28]). In addition, the velocity at which energy 

travels along the rail is required.  

For a propagating wave of type j (vertical, lateral, torsional, etc), the decay rate is given 

by [15]: 

g

j

c

j
c

eDR
g
j

ωηωη
343.4log10

/

10 =−=
−  (15) 

where ω is the circular frequency, η is the damping loss factor and g

jc  is the group 

velocity. In the modal method, the damping loss factor is evaluated at the natural 

frequencies of the short rail. It remains, therefore, to determine the group velocity.  

In an undamped structure, the group velocity of a wave j can be found as: 
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which represents the inverse slope of the dispersion curve (wavenumber k versus 

circular frequency ω). For a damped beam the wavenumber k becomes complex and eq. 

(16) is no longer applicable [29]. Nevertheless, with the condition of low damping ( 1<<η ) 

eq. (16) can still be used to estimate the energy velocity by adopting the wavenumber of 

the undamped structure or the real part of the complex wavenumber. In this application 

the modal method could be applied for loss factor values smaller than about 0.05, which 

makes eq. (15) still applicable with a negligible error.  

The real part of the wavenumber can be estimated from the order of the mode, n, and the 

rail length, L. For vertical and lateral bending modes in a free-free beam it can be 

assumed that [30]: 
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where λn is the wavelength of the n-th mode, while for torsional modes: 
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From this the dispersion curves can be obtained at the natural frequencies and the group 

velocity can be estimated from eq. (16). To assist in identifying the modal order n, the 

relative phase of the response at the two ends of the beam can be investigated. Further 

information could be obtained from additional response points. 
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Following eqs. (17) and (18) the dispersion curves for vertical, lateral and torsional 

waves were obtained and are shown in Figure 13 for the rail fitted with the two different 

damper types (A and B). To verify the procedure a finite element (FE) model of the free 

undamped rail was established as in [23]. Figure 13 also shows that the effect of the 

dampers at low frequency is mainly to add mass, which results in a reduction in the 

natural frequencies.  

The gradient of the dispersion curve at each natural frequency was calculated as the 

first derivative of a 4th order polynomial used to interpolate the dispersion curves. 

Results are given in Section  5. 

 
Figure 13: Dispersion curves estimated for a damped rail; (a) damper A; (b) damper B. : 

estimated from experiments; ⋅⋅⋅⋅⋅: from FE model. 

4.3 Direct method 

At higher frequencies where the modal overlap increases, the modal method can no 

longer be used and instead a direct method can be used for the short rail [15]. This is 

based on the measurement of FRFs at the two ends of the rail: the driving-point FRF at 

one end and transfer FRF at the other. In this case decay rates can be estimated as the 

decibel difference of the transfer FRF, A(x1), to the driving-point FRF A(x0), divided by 

the rail length L, in each one-third octave band i: 
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With low decay rates, the two FRFs are similar in magnitude, see Figure 12, and the 

relative error in DR becomes large. By measuring the FRF at the ends of the rail 

evanescent waves and reflected waves are captured by the accelerometers as well as the 
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directly propagating waves. This effect is quantified in the next section based on the 

Timoshenko beam model. 

4.4 Model of short rail methods – range of validity 

For a finite beam excited at one end, the displacement at any point along the beam is: 

xikxikxikxik ppee eAeAeAeAxu
−− +++= 4321)(  (20) 

where the wavenumbers kp and ke are defined in Section  3. 

Wave amplitudes can be found by applying appropriate boundary conditions and eq. (20) 

can be used to calculate the decay rate as in eq. (19). 

The result expected from the short rail direct method can be compared with the decay 

rate of a single propagating wave in an infinite beam (see eq. (7)) and the limitations of 

the proposed method analysed. Figure 14 shows the ratio between the decay rate 

estimated from the short rail direct method (DRSR) for a 6 m long free rail and the decay 

of the single propagating wave (DRp). Results for different loss factors of the rail are 

plotted against DRp. This figure highlights first that the method is not applicable for low 

decay rate values; below 1 dB/m the ratio fluctuates in an unacceptably wide range, even 

becoming negative. This is not surprising, as this corresponds to the modal range where 

the frequency response is dominated by a series of resonances and anti-resonances, as 

seen in Figure 12; above this range the direct short rail method can be successfully 

applied. For loss factors of at least 0.1 and decay rates between 1-2 and 20 dB/m all the 

lines tend to superimpose indicating a systematic small difference between the 

calculations with and without evanescent/reflected waves (see Figure 14(a)). At a decay 

rate of 2 dB/m the ratio DRSR/DRp is about 0.75 while at 5 dB/m it is 0.9; it approaches 

unity for increasing decay rate. If converted into noise radiated from the track this would 

correspond to a difference of 1.2 dB at 2 dB/m, i.e. the short rail method would under-

predict the benefit of a damper by this amount. 

The direct short rail method should not be applied at relatively low values of the decay 

rate. In a 6 m long rail this limit is set at around 2 dB/m but would decrease for longer 

rails. The range of applicability of the method can also be formulated in terms of the loss 

factor. Within the frequency range of interest of this application (up to 5 kHz) the 

minimum loss factor resulting in decay rates above 2 dB/m is 0.05. Again with a longer 

rail the lowest acceptable loss factor would be smaller.  
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Figure 14: Effect of evanescent and reflected waves on the decay rate calculated as the ratio 

between vibration levels at the two ends of a free beam (short rail direct method). (a) results for 

high damping values  , η = 0.1; − − −, η = 0.2; ⋅⋅⋅⋅⋅⋅, η = 0.4; − ⋅ − ⋅, η = 0.8; (b) results for low 

damping values: − − −, η = 0.02; ⋅⋅⋅⋅⋅⋅, η = 0.05; − ⋅ − ⋅, η = 0.1. 

5 Comparison of results 

5.1 Damped free-rail results 

This section compares decay rates measured on free rails according to the ‘long rail 

method’, ‘short rail direct method’ and ‘modal method’. To allow a direct comparison 

among the three, the analytical calculations of Sections  3.2 and  4.4 can be adopted to 

remove the effect of evanescent and reflected waves from the ‘long rail’ and ‘short rail 

direct’ methods. As an example, Figure 15 shows the effect of applying these corrections 

to the vertical measurements of damper B. These corrections are derived from the 

analyses shown in Section  3.2 for the long rail method and in Section  4.4 for the short 

rail method. In both cases the ratio DRtot/DRp is used to correct the measurements in 

order to obtain the decay rate of the propagating wave. Figure 15(a) shows the decay 

rate measured on the long rail before (dotted line) and after (solid line) corrections; a loss 

factor of η=0.4 is assumed to calculate these corrections (see Figure 8) although the 

corrections are fairly insensitive to the loss factor. As a result the decay rates are slightly 

lowered for frequencies below 1 kHz. For the short rail method the corrections have been 

shown to depend on the measured decay value itself, see Figure 14, and result in an 

increase in the decay rate at all frequencies. 
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Figure 15. Effect of correcting measured vertical decay rate of damper B to remove the 

reflected/evanescent waves. (a) Long rail method, (b) Short rail direct method. ----, Non-corrected 

measurements; , propagating wave only. 

The vertical decay rates for dampers A and B determined according to the various 

methods and corrected to account for near field and end effects are given in Figure 16. As 

discussed in Section  4, the ranges of applicability of the two short rail methods are 

complementary so that they give results in different parts of the frequency range. 

Moreover, the results appear consistent where the two ranges meet. 

It can be observed from the results in Figure 16 that the level of agreement between the 

long rail method and the short rail direct method is on average quite good although there 

are discrepancies of up to a factor of 4 for damper A and up to factor of 3 for damper B 

(considering frequencies above 200 Hz). However there are several potential sources of 

discrepancy between the long rail and short rail results. First, the way the dampers are 

attached to the rail may not be entirely repeatable. Second, there were differences in 

temperature as the measurements on the long rail were performed outdoors whereas the 

short rail ones were performed in a laboratory. This can affect the damper performance 

due to the sensitivity of the elastomeric materials to temperature [31]. The temperature 

of each test is reported in the corresponding figures and differences of up to 10°C can be 

noted. The extent of this effect will vary according to the damper design. 
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Figure 16: Decay rate of free rail in vertical direction, comparison among the three methods 

proposed: ‘short rail modal method’ (SR modal), ‘short rail direct method’ (SR direct) and ‘long rail 

method’. (a) damper A, (b) damper B. 

Decay rates for the lateral direction are shown in Figure 17. Again, a good continuity is 

found between the two short rail methods. The comparison between the long rail method 

and the short rail direct method shows differences of up to a factor of 2-3. The agreement 

is better for damper B than for damper A. Again the temperature difference can be in 

part responsible for the differences found. Overall the results from the short rail direct 

method are lower than those from the long rail method even after applying corrections.  

 
Figure 17: Decay rates of free rail in lateral direction, comparison among the three methods 

proposed: ‘short rail modal method’ (SR modal), ‘short rail direct method’ (SR direct) and ‘long rail 

method’. (a) damper A; (b) damper B. 

The modal method is only applicable in the frequency range characterised by the 

responses of individual modes. For 4 or 6 m long rails this corresponds to the low 
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frequency range where the dampers are not intended to be effective. Moreover, the 

method requires some additional work in terms of modal identification which becomes 

harder as the effect of the dampers increases. Although the modal method is practicable 

in principle, it only works in those frequency ranges where the estimated decay rates 

would be small and their impact on those of the track would be negligible. In practice, 

the short rail direct method is easier to apply and it works in the frequency range where 

the dampers are effective. 

5.2 Track decay rate validation measurements 

To verify further the reliability of the free rail methods the decay rates of the damped 

track estimated from the combination of either the short or long rail measurements with 

those measured on the undamped track are compared in Figure 18 and Figure 19 with 

the results directly measured on the same test track fitted with dampers, see Section  2.2. 

Considering the conclusions drawn above about the modal method, this is not considered 

further in this section. As the effect of applying corrections to the free rail methods has 

been shown to introduce some improvement in the agreement between different methods 

these are also included in this section. The effect of including or disregarding these 

corrections on the predicted noise is discussed below in Section  6. 

Figure 18 shows results for damper A for vertical and lateral directions; Figure 19 is 

devoted to damper B. In both cases and for both directions, the effect of adding dampers 

has been estimated reasonably well by means of the free rail methods. The short rail 

method tends to underestimate the decay rate while the ‘long rail’ result is either above 

or nearly coincident with the measurements on the damped track. Changes in 

temperature are also in this case responsible for some of the differences among the 

results. 

Including the corrections to account for evanescent and reflected waves results in some 

benefit as the decay rates measured with different methods are in better agreement after 

applying corrections. The short rail method applied without any additional correction 

would by itself provide a lower bound for track decay rate estimation, which corresponds 

to an upper bound for the track radiated noise. This can potentially become a reliable 

method to be used in assessing damper effectiveness without the need of installation on 

the track. If more accurate analysis is required and the corrections are to be included, it 

should be noted that the effect of reflected waves depends also on the length of the rail 

and the results shown in this paper are valid only for a 6 m long rail. In general, 

however, if a longer rail is used the corrections will be smaller. 
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Figure 18: Decay rate measured on a track (damped track) for damper A compared with total 

decay rate estimated according to the ‘short rail direct method’ and the ‘long rail method’. (a) 

vertical; (b) lateral. 

   
Figure 19: Decay rate measured on a track (damped track) for damper B compared with total 

decay rate estimated according to the ‘short rail direct method’ and the ‘long rail method’. (a) 

vertical; (b) lateral. 

6 Predictions of damper effectiveness 

Decay rates measured using the short rail direct method have been used to predict [20, 

21] the potential effect of dampers on pass-by noise and to quantify the final effect of 

correcting decay rates as in Section  4.4. Decay rates below 250 Hz were left unmodified 

due to measurement uncertainty and the general ineffectiveness of the dampers at these 

low frequencies. The most important parameters used in the model are summarised in 

Appendix A. A wheel modal model corresponding to a typical regional train has been 

used (diameter equal to 900 mm), with roughness representative for disc braked wheels 
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[32]. Track parameters are selected to be representative of the test track (see Section  2.2) 

and the rail roughness is assumed to follow the limit curve defined in [27]. The relatively 

low pad stiffness (120 MN/m) makes this track a good candidate for the application of 

rail dampers, with the contribution from rail noise expected to be predominant in the 

region where the dampers are effective, i.e. 400-2000 Hz. 

Figure 20(a) shows the sound power predicted for an undamped track, using measured 

decay rates from Figure 2, and with a train speed of 120 km/h. The noise contribution of 

the rail is dominant in the mid-frequency region and, in particular, the noise due to 

vertical vibration is greater than that due to lateral vibration in the whole frequency 

range. Wheel noise is the main source at high frequency, while the contribution of the 

sleeper is at a much lower level since the low stiffness pads tend to isolate the sleeper. 

Figure 20(b) presents corresponding sound power levels after introducing decay rates 

from the short rail direct method to represent a damped track (damper B). In Figure 

20(b) the rail contribution has been reduced significantly due to the effect of the 

dampers. Both vertical and lateral rail components have been affected, with a respective 

decrease in sound power level of 6.1 and 10 dB. For this example the overall acoustic 

power has been reduced by 3.7 dB. 

 
Figure 20: Sound power levels predicted (a) on undamped track and (b) on damped track, 

equipped with soft pads (120 MN/m) for train speed of 120 km/h. : sleeper; : rail lateral 

direction; : rail vertical direction; : wheel; : total. 

The effect of dampers on the overall noise level depends on the relative importance of 

each component prior to installation of the dampers. On a different track with different 

pad stiffness and possibly a different wheel type, the same type of dampers will have a 

different effect. As an example calculations have been made by changing pad stiffness to 
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800 MN/m. The predicted total reduction in overall sound power is only 1.6 dB; the 

reduction in all the track components considered together (rail vertical, rail lateral and 

sleeper) is 4.2 dB. 

To verify how much the corrections described in Section  4.4 affect the noise predictions, 

the case for soft pads has been also calculated with non-corrected decay rates. In this 

case the presence of dampers is predicted to reduce the track component (rail and 

sleeper) by 5.8 dB, against 6.5 dB calculated with corrections; the corresponding total 

reductions are 3.4 dB and 3.7 dB. 

 

Figure 21. Sound power level for track components only. Comparison between results based on 

track decay rates measured in field and using short rail method. Pad stiffness 120 MN/m, speed 

120 km/h. 

Finally the noise is also predicted with the track decay rate measured directly on the test 

track fitted with dampers (Figure 2). This will verify the sensitivity of noise predictions 

to the differences shown in Figure 18 and Figure 19. In this case the track components of 

noise are reduced by 7.3 dB and the total power is reduced by 4.0 dB. Compared with the 

results from the short rail method including the corrections on decay rates, the change in 

overall noise differs by 0.3 dB and the track components by 0.8 dB. Figure 21 shows 

sound power spectra radiated by each track component. The most important gap is found 

in the vertical direction at 800 Hz where the two predictions differ by 2 dB (see also 

Figure 19(a)). Overall the difference is equal to 0.9 dB(A) in the vertical direction and 1.2 

dB(A) in the lateral. The differences are larger compared with the short rail method 

without any correction; however as such an approach would underestimate the effect of 

dampers it can still be used to give an upper limit for noise.  
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7 Conclusions 

Experimental methods have been proposed for determining the effectiveness of rail 

dampers without the need to mount them on an operational track. Three methods for 

measuring decay rates of damped freely supported rails have been tested with two 

different types of damper and they are found to be in reasonable agreement between 300 

Hz and 5 kHz. The modal method for determining decay rates was generally restricted in 

practice to low frequencies (< 300 Hz). As the dampers are found to have little influence 

on the overall track decay rates below 400 Hz, the direct short-rail method, yielding good 

results down to 300 Hz, is considered to be sufficient for most applications.  

In the vertical direction, between 800 Hz and 2 kHz, the short rail direct method and the 

long rail method show acceptable agreement. In comparing results from the short and 

long rails several possible causes of discrepancies have been considered. The most 

important are likely to be the repeatability of damper installation, which depends on the 

way each damper type is designed, the effect of temperature, and end effects due to the 

finite rail lengths. Measuring the free rail in a controlled environment would remove the 

effects of temperature. The short rail test method is therefore preferred for reasons of 

practicality. 

Models of the transmission of vibration in the rail have been used to quantify the 

influence of end effects and of evanescent waves at the forcing point. It is shown however 

that, in the presence of dampers, the end effects and evanescent waves have a marginal 

contribution on the overall estimation of damper effectiveness; their effect on the overall 

predicted noise is estimated to be less than 0.5 dB in the examples considered. 

Vertical and lateral decay rates of a damped track predicted from the results of the 

undamped track and from the free rail methods agree quite well with direct 

measurements of the damped track carried out for validation of the method, although 

there are some differences. However, in this case, the effect of changes in temperature on 

the pad stiffness is another source of variability that contributes to the dispersion of the 

results. Nevertheless the proposed laboratory test method appears to be suitable to form 

a standardized method for assessing different rail dampers. 
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Appendix A. Numerical parameters 

Table A 1. Parameters used for analytical calculation. 

Wheel parameters  

Wheel load (kN) 50 

Vehicle length (m) 26 

Wheel type LK900 

Wheel radius (m) 0.45 

Rail parameters  

Vertical bending stiffness (Nm2) 6.42×106 

Lateral bending stiffness (Nm2) 1.07×106 

Density (kg/m3) 7850 

Rail mass per length (kg/m) 60 

Vertical and lateral shear coefficient 0.4 

Rail vertical and lateral loss factor 0.02 

Pad parameters  

Pad vertical stiffness (MN/m) 120 

Pad lateral stiffness (MN/m) 13 

Pad vertical and lateral loss factor 0.2 

Sleeper parameters  

Sleeper mass (kg) 280 

Sleeper Young’s modulus (GPa) 41.3 

Sleeper Poisson's ratio 0.15 

Sleeper shear coefficient 0.83 

Sleeper density (kg/m3) 2750 

Sleeper loss factor 0.02 

Sleeper length (m) 2.6 

Sleeper width (m) 0.15 

Sleeper spacing (m) 0.6 
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