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Highlights

• We evaluate default prediction performance of machine learning/regression models.

• Including boosted trees, random forests, penalised linear/semi-parametric logistic regression.

• Using data on over 300,000 residential mortgage loans.

• The results indicate varying degrees of predictive power.

• Statistical tests suggest boosted regression trees outperform penalised logistic regression.
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Abstract

This paper evaluates the performance of a number of modelling approaches for future mortgage de-

fault status. Boosted regression trees, random forests, penalised linear and semi-parametric logistic

regression models are applied to four portfolios of over 300,000 Irish owner-occupier mortgages. The

main findings are that the selected approaches have varying degrees of predictive power and that

boosted regression trees significantly outperform logistic regression. This suggests that boosted

regression trees can be a useful addition to the current toolkit for mortgage credit risk assessment

by banks and regulators.

Keywords: boosting, random forests, semi-parametric models, mortgages, credit scoring

1. Introduction

1.1. Background: mortgage default prediction and its applications

Credit default (i.e., failure to keep up with loan repayments) has cost implications for creditors

in terms of losses or profits forgone and to other debtors in terms of higher prices (i.e., interest

rates) and possible rationing of credit. Residential mortgages are one of the main types of lending5

and therefore a major potential source of credit risk for banks. Credit risk and credit scoring models
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to predict mortgage default are used by financial institutions and regulators to measure, assess, and

inform decisions to mitigate various aspects of mortgage credit risk. A widely established technique

for this type of modelling is Logistic Regression (LR).

In recent years, there has been an increased research interest in a number of alternatives to LR10

and whether those could produce more accurate credit risk models. Particularly, with the devel-

opment of new predictive modelling techniques in machine learning and the statistical literature,

various studies have assessed how these newer approaches perform compared to more established

methods with regards to scoring unsecured consumer loans such as personal loans and credit cards

(Baesens et al., 2003; Kennedy et al., 2013b; Lessmann et al., 2015). However, when it comes to15

secured lending, research findings regarding credit risk assessment of mortgage loans are much more

scarce, despite the fact that they are among the largest class of assets on European banks’ balance

sheets. This paper attempts to assess, using real-world mortgage loan-level data, whether a selec-

tion of these newer methods can provide improved predictive performance over more established

methods such as Logistic Regression (LR).20

Evaluating and comparing how various techniques perform with regards to mortgage default

prediction serves a number of goals. First, for profitability and credit risk management purposes,

financial institutions are interested in determining borrower creditworthiness through separation

into good and bad categories. This is the central objective of credit scoring (Thomas, 2009). The

outputs of these credit scoring methods can also contribute to the implementation of risk-adjusted25

loan pricing systems. Even a small improvement in the predictive power of such models could thus

have a substantial impact on the quality of a bank’s loan book and pricing strategy.

Second, adequate regulatory capital buffers are required so that banks would be able to cope

with unforeseen losses in excess of expected loss. Accurate assessment of the risk or probability of

mortgage loan default is critical for determining regulatory capital requirements. For retail credit30

risk classes such as mortgages, the Probability of Default (PD) models developed for this purpose are

usually fixed in horizon (one year) and have so far been typically modelled using logistic regression;

being able to build more accurate models would enable more appropriate capital levels being set.

Third, the systemic banking crisis in Ireland and elsewhere in Europe has, in several of these

countries, intensified the use of predictive models for operational management of credit arrears35

(Matthews, 2011). In this context, predictive models estimating the probability of a loan experienc-

ing arrears in the near future are used to drive various decision-making strategies. This probability
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may depend on borrower attributes at application, borrower repayment behaviour such as past ar-

rears or loan modifications, the presence of negative equity (i.e., the value of the property dropping

below that of the loan), as well as regional economic conditions. Given that financial and opera-40

tional resources are limited for financial institutions and regulators, improvements to these models

and their estimates could assist in better segmenting borrowers and targeting scarce resources to

where they are needed most in early-prevention initiatives and active arrears management.

1.2. Research question; choice of techniques

Developments in statistical and machine learning approaches to classification (i.e., prediction45

problems where the target variable of interest is discrete, e.g. default or no default) have led

to a variety of applications in credit risk. Previous reviews of various modelling approaches and

empirical evaluations have been carried out by Baesens et al. (2003), Crook et al. (2007), Crook and

Bellotti (2009), Brown and Mues (2012), Kennedy et al. (2013b), and Lessmann et al. (2015). Some

of their results suggest that newer approaches such as ensemble classifiers offer some improvement50

in predictive ability over logistic regression which could prove valuable for managing credit risk.

However, the suggested performance boost is not guaranteed; on some datasets, newer techniques

may not substantially improve predictive performance (Hand, 2006). This implies that empirical

work is needed to determine if and where this is the case.

The main research question in this paper therefore is whether these alternative modelling ap-55

proaches from the statistical/machine learning literature indeed offer improved predictive perfor-

mance for mortgage credit risk compared to Logistic Regression (LR). LR is chosen as the baseline

as it performs relatively well as a classifier in other credit scoring settings, and because of its relative

ease of interpretation and widespread use in the financial services sector. To answer this question, a

number of alternative approaches were selected. The modelling approaches included in the empirical60

comparison are: semi-parametric Generalised Additive Models (GAMs), Boosted Regression Trees

(BRT), and Random Forests (RF). These approaches each enable a flexible approach to modelling

data with a complex structure (Hastie et al., 2009).

There are several reasons to choose these types of models among alternatives. First, there may

be non-linear effects of predictors on the response variable. For example, using option pricing65

theory, Deng et al. (2000) and Das and Meadows (2013) argue that mortgage borrowers may hold

an option to default if their home is in negative equity, i.e., the current loan to value is greater
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than 100 percent. Empirical work for various mortgage markets confirms that negative equity is an

important predictor for default and that loan to value does not have a simple linear relationship

with the log odds of defaulting (Foote et al., 2008; Haughwout et al., 2008; Kelly, 2011).2 Similarly,70

other variables such as loan vintage or borrower age are sometimes found to be non-linearly related

to default risk. In contrast, one of the assumptions underpinning LR is that predictors are assumed

to have a linear and monotonic effect. This may thus not hold in practice. Moreover, categorising

or binning continuous variables, in an attempt to approximate this non-linearity, may result in

mis-specification and loss of information. GAMs, BRT and RF on the other hand can all, to some75

extent, approximate non-linear functions of continuous predictors. This may allow identification of

these effects and, if needed, the introduction of additional terms in a logistic regression model to

approximate them.

Second, although arguably harder to interpret than LR, all three alternative approaches are

not simply black-box models as they provide some degree of model explanation and insight into80

risk drivers. For example, GAMs can be assessed through statistical significance tests and spline

plots. Variable importance measures and important interactions can be identified in BRT and

RF (Caruana et al., 2012; Elith et al., 2008; Hastie et al., 2009; Liu et al., 2009). This may

reduce the risk of model mis-specification and help make these models acceptable to practitioners.

In addition, their use can potentially lead to improved predictive performance – i.e., the default85

predictions produced by these more recent techniques may be more accurate.

In the present application, a third justification for choosing LR, GAMs, BRT and RF is that their

training algorithms tend to scale relatively well with the size of the data. All four techniques can

cope with the large datasets analysed in the study within a reasonable amount of computation time.

Although we experimented with Support Vector Machines (Vapnik, 1998), which have previously90

been found to be competitive for credit scoring (Bellotti and Crook, 2009) and bankruptcy prediction

(Van Gestel et al., 2010), we did not include them in the final study due to the weaker scalability

of available implementations.3 The algorithmic complexity involved in solving the general SVM

2Negative equity is of course not the sole reason for default. As noted by Foote et al. (2008) and Van Order (2008),
borrowers may default for a multitude of reasons which also include trigger events such as illness, unemployment,
divorce, or a lack of financial resources to overcome the trigger event.

3Sometimes, it is challenging to directly interpret the resulting model, which is considered a drawback in a highly
regulated practical setting. However, in the case of SVMs, Martens et al. (2007) demonstrate that it is possible to
extract understandable rules that approximate an SVM classifier.
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quadratic programming problem is between O(N2) and O(N3), where N is the number of training

observations (Bordes et al., 2005). The complexity of Radial Basis Function SVMs may even be95

higher, i.e. between O(dN2) or O(dN3) (where d is the data dimensionality) (Sreekanth et al.,

2010), which proved prohibitive for several of the training samples used in this study.

1.3. Related literature and main contributions

This paper extends the existing credit scoring literature in four main ways. First, it specifically

focuses on mortgages. Detailed accounts of the various modelling approaches to credit scoring100

are included in Crook et al. (2007), Crook and Bellotti (2009), Thomas (2009), Hand (2009b),and

Martin (2013). However, with the exceptions of Galindo and Tamayo (2000), or Feldman and

Gross (2005), Kennedy et al. (2013a), most of the literature concentrates on credit card or personal

lending only. This is somewhat surprising given the importance of mortgage lending as a business

line to banks in advanced economies, but may be due to a lack of publicly available information105

from credit registers or third-party data providers in Europe, as well as commercial considerations

by financial institutions.

Second, this paper adds to the findings on classifier comparison by making a focused comparison

of four techniques on four portfolios of recently collected real-world data. Specifically, BRT, with the

exceptions of Lo et al. (2010), Brown and Mues (2012), and Lessmann et al. (2015), have received110

relatively little attention to date in the credit scoring literature. Although Lo et al. (2010) used

BRT to score credit card borrowers, they did not compare their performance to other classifiers.

A comparison by Bastos (2008) found that BRT performed well compared to Neural Networks

(multilayer perceptrons) and Support Vector Machines on two credit scoring tasks. GAMs were

used by Berg (2007) to assess corporate credit risk, but they do not appear to be applied widely115

in mortgage credit risk modelling. In addition, several of the comparative studies of classifiers

use datasets that may no longer be representative of the much larger scale of data available for

predictive modelling within today’s retail banks.

Third, the imbalanced nature of the portfolios considered in this paper, i.e., the large difference

in the relative proportion of non-defaulters and defaulters, forms another topic of interest within120

the credit scoring literature. The impact that such imbalanced datasets have on the quality of the

resulting models was studied by Burez and Van den Poel (2009), Brown and Mues (2012), and

Kennedy et al. (2013b). Both Kennedy et al. (2013b) and Brown and Mues (2012) found that
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LR nonetheless holds up relatively well, along with other classifiers. However, the experiments set

up in Brown and Mues (2012) indicated that BRT and RF started to outperform other classifiers125

when the level of class imbalance was further increased in their datasets – none of which were

mortgage data. This paper thus contributes to these findings by applying the selected classifiers

to four imbalanced real-world mortgage datasets so as to test whether BRT and RF offer a similar

performance advantage in this setting.

Fourth and finally, the context for our study is a distressed European mortgage market within a130

recessionary economic environment, which sets it apart from other studies, as most of the published

research is not informed by the current crisis or is based on the US mortgage market (Haughwout

et al., 2008). Also, our findings may be relevant to financial institutions in other parts of the world

that have not recently experienced severe downturns or housing market crises and thus have limited

data available to fit robust models under such scenarios.135

The remainder of this paper is structured in the following manner. The next section describes

the specific modelling techniques or classification algorithms used in the paper. This is followed

with a description of the parameter tuning and data. After that, the main results are presented

and discussed; the final section concludes.

2. Statistical and classification models140

The aim of each model is to produce a loan-level prediction for a binary variable; Y = 1 signifies

default and Y=0 indicates no default. This prediction is made using n observations of training data

with p predictor variables. Each observation (xi, yi), i = 1, . . . , n, consists of a predictor vector

(xi) and an associated response (yi = 0 or 1). The predictor variables are a mix of continuous and

categorical variables. We define default as greater than 90 days arrears.145

2.1. Logistic regression

Logistic Regression (LR) is known as a classifier that performs reasonably well across many

application settings and data types, including credit scoring (Brown and Mues, 2012; Kennedy

et al., 2013b; Lessmann et al., 2015). To avoid the problems associated with stepwise regression,

and to make the model comparison as fair as possible, Regularised Logistic Regression (RLR) is150

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

used in this paper, with the final model chosen on the basis of the H-measure (see section 4.1).4

This type of logistic regression uses penalisation to improve the model fit. These penalties can

include `1 (the lasso), `2 (ridge regression) or mixtures of the two (elastic-net) (Friedman et al.,

2010). The best-fitting penalisation method is chosen by cross-validation.

The penalised negative binomial log-likelihood is given by equation 1. The β coefficients are155

chosen to minimise this objective function. The term on the left of the equation is the negative

binomial log-likelihood. The additional term on the right (λ onwards) penalises the coefficients

using two types of penalty terms, with ||β||1 and ||β||22 denoting the `1 and the squared `2 norms

of the β coefficients.5

min
(β0,β)

−
[

1

n

n∑

i=1

yi · (β0 + xTi β)− log(1 + e(β0+x
T
i β))

]
+ λ
[
(1− α)

1

2
||β||22 + α||β||1

]
(1)

The effect of the ||β||1 term (also known as a lasso penalty) is to perform variable selection when160

λ is sufficiently large by setting their coefficients exactly equal to zero. The role of the ||β||22 term

(also known as a ridge penalty) is to shrink coefficients towards zero as λ becomes larger. There

are some drawbacks with the individual penalties. First, a model trained with a ridge penalty

only will include all predictors, even if they are irrelevant, with the degree of coefficient shrinkage

increasing with λ. Second, a lasso-based model may only select one predictor from a group of165

correlated variables and ignore the others. As it is usually difficult to determine before a model

is estimated which predictors are truly important, a mixture of both penalties can be useful. The

α parameter in equation 1 controls the degree of mixing between the lasso penalty (α=1) and

ridge regression (α=0). Both λ and α are determined by cross-validation based on the training

data. The advantages of this approach are that coefficient shrinkage and variable selection can be170

carried out simultaneously in a numerically stable manner through this penalty structure. This may

improve predictive performance and avoid some of the problems with stepwise regression (Derksen

and Keselmanl, 1992).

4We are grateful to one of the reviewers for the suggested use of alternatives to stepwise regression. Note that
stepwise regression was also tried, which produced similar performance ranks for LR.

5The coefficient β0 is a scalar and is not typically penalised; β is a vector. This formulation is based on the
implementation in the R package glmnet.
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2.2. Generalised Additive Models (GAMs)

Generalised Additive Models (GAMs) retain many of the features of LR and are statistically175

interpretable. They are a useful alternative when the log-odds of default may be a non-linear

function of some of the predictors, as their output can be based on a sum of smoothed functions of

predictor variables (Hastie et al., 2009). As the response data in this paper are binary, the logistic

link function is used in the GAM. When linear terms and/or categorical variables are included

alongside variables that are smooth terms, like in this application, the resulting model is termed as180

a semi-parametric GAM. Equation 2 shows the model that is estimated. The terms, xj , j = 1, . . . , q,

represent variables from the training dataset that are smoothed, while xj , j = q + 1, . . . , p, are

variables assumed to have a linear effect on the log-odds of defaulting and are fit parametrically.

logit(P (y = 1|x)) = β0 +

q∑

j=1

sj(xj) +

p∑

j=q+1

βjxj (2)

The smooth functions in the GAM, sj(xj), are estimated using penalised regression splines. An

individual smooth term can use cubic splines as a building block.6 This involves individual cubic185

polynomial regressions being run for different intervals of a given input variable, the results of which

are combined at certain points (knots) to create a continuous curve or smooth function for that

predictor. A penalty term for each smooth function of the covariates is included in the model. This

is to ensure the smooth functions do not overfit the data. A parameter for each smoothed variable

(λ) controls the trade-off between goodness of fit and smoothness.190

Tuning of this smoothing parameter is critical: if the λ values are too high, the data will

be over-smoothed; if they are too low, then the data will be under-smoothed (Wood, 2006). In

both cases, the spline estimate will not closely approximate the true function, which will affect

predictive performance. A technique called Generalised Cross Validation (GCV) is used to select

the optimal smoothing parameter value given the data (Wood, 2006). This technique is similar to195

estimating prediction error based on a leave-one-out cross-validation estimation but using a more

computationally efficient procedure (Wood, 2006).7

6A cubic spline is a piecewise cubic function with continuous first and second derivatives.
7An alternative approach is to use a backfitting algorithm based on a scatterplot smoother or by other variants

of penalised splines. The back-fitting algorithm is described in detail in Hastie et al. (2009).
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2.3. Decision tree-based methods

The tree-based models in this paper draw on Classification and Regression Trees (CART) (Brie-

man et al., 1984). This is a classification technique based on two central ideas: recursive partitioning200

and pruning. Recursive partitioning involves repeatedly splitting or dividing and then sub-dividing

the predictor space into a series of smaller segments that are more homogeneous; i.e., each segment

is ideally composed of observations belonging to a single class. The resulting model assumes the

structure of a tree. In CART, pruning is used to reduce the size of trees based on various measures

of predictive error such as misclassification rate, Gini index, or deviance. This is necessary to avoid205

fitting every minor variation in the input data. The overall goal is to have a tree that explains

relevant patterns and generalises well to unseen data. However, because CART is recursive, current

splits depend on previous splits, making the resulting model outputs sensitive to small changes in

the input data, such as when unseen data is applied to the model. Two subsequent algorithms –

boosted regression trees and random forests – sought to improve upon CART.210

2.3.1. Boosted Regression Trees (BRT)

Boosted regression trees combine tree-based recursive partitioning with the concept of boosting

developed by Freund and Schaipre (1997) and extended with a statistical interpretation by Friedman

et al. (2000), Friedman (2001), and Friedman (2002).8

Because the present application (mortgage default prediction) is a binary classification problem,215

the loss function used is binomial deviance. The algorithm used is called stochastic gradient boosting

and is based on Friedman (2001) and Friedman (2002).9 After initialisation, the algorithm minimises

this loss function in each step by the stage-wise addition of a new tree that leads to the best reduction

in the loss function, given the chosen tree size.

The procedure starts by choosing initial values such as the log odds of default based on the220

training data. A random sample of observations is drawn without replacement, and the difference

between the response and the starting value is calculated. These are known as the vector of negative

8These papers interpreted the algorithm in a likelihood framework and developed boosted logistic and other
regression-based approaches. The papers also led to additions of shrinkage and bagging to the algorithm. Shrinkage
refers to limiting the contribution of each sub-component of the model, through taking small increments in each
forward stage-wise iteration. Bagging refers to only a random subset of data being used in each iteration. This
random sampling is thought to reduce the variance, and thus improve predictive performance of the final model. A
comprehensive overview of boosting is given in Hastie et al. (2009) and Bühlmann and Hothorn (2007).

9This section draws on the descriptions given in Elith et al. (2008), Berk (2008), Hastie et al. (2009), and Ridgeway
(2013).

10



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

gradients.10 Based on this data, a tree is constructed by choosing the variables and split points

giving the maximum reduction in the loss function at this step. The algorithm updates by first

calculating the predicted probability of defaulting based on the current tree and the random subset225

of data. These are then added to the existing fitted values up to that step and subtracted from the

response to obtain a new set of negative gradients. A new random sample of observations is drawn

from these and a new tree fit. This proceeds until the material improvement in the overall model

fit is less than some small tolerance. Each time a tree is added to the model, its contribution is

multiplied by a parameter termed the learning rate. The effect is to limit or shrink the contribution230

of any one tree to the overall model prediction. A final BRT model is the sum of several hundreds

or thousands of trees multiplied by the learning rate.

Boosting has not been without its critics. In particular, Mease and Wyner (2008) have been

critical regarding the reasons for the algorithm’s resistance to overfitting and the way it has been

interpreted in the statistical literature.235

2.3.2. Random Forests (RF)

Random Forests (RF) are another tree-ensemble classifier developed by Brieman (2001). There

are three important differences between RF and the tree-based approaches outlined earlier. The first

difference between RF and CART is that in a RF many trees are grown based on bootstrapped sub-

samples of the training data. The second difference is that each time a split variable is chosen within240

an individual tree in a RF, the algorithm only chooses from a small random subset of predictors of

size mtry. This is in contrast to CART or BRT where all of the predictors are evaluated to produce

the best split. This process is repeated over many trees to create a ‘forest’ or ensemble of trees the

predictions of which are averaged to produce an output. Randomly selecting a subset of predictors

rather than trying all has the effect of reducing correlation among the trees in the random forest.245

Averaging predictions over all trees in the forest reduces variance, resulting in improved predictive

ability compared to CART. A third difference is that random forests can be grown in parallel, as each

tree can be grown independently, whereas the BRT algorithm proceeds sequentially depending on

the output from the previous iteration. Random forests have been applied to a variety of domains

10The components of the negative gradient vector are sometimes referred to as pseudo-residuals, see Hastie et al.
(2009), page 360-61, or Berk (2008), page 270. The use of a random subset of the data, known as the bag fraction,
to construct a tree at each iteration in the algorithm has been found to improve predictive ability (Friedman, 2002).
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such as bioinformatics, image recognition, as well as in financial applications such as customer250

attrition and credit scoring (Kruppa et al., 2012; Lessmann et al., 2015; Malley et al., 2012).

3. Model building and data sets

This section specifies how the various models were estimated and tuned, as well as describing

the datasets.

3.1. Parameter settings and tuning255

The penalised LR models include the main effects and pairwise interactions between predictors.

The models are estimated using the R packages glmnet and caret (Friedman et al., 2010; Kuhn,

2008). The performance criterion for selecting the final model is the H-measure (to be further

discussed in section 4.1). The grid search considered a value range for the parameter α from 0 to

1, in 0.1 increments, and for λ, a sequence of 20 values from 0.005 to 1. The best combination was260

chosen using 10-fold cross-validation.

The semi-parametric GAM models are estimated using the R package mgcv (Wood, 2013). The

degree of smoothing of the spline functions is chosen by Generalised Cross Validation (GCV).

Two parameters are key for BRT tuning. The learning rate (lr) or shrinkage parameter deter-

mines the contribution of each tree. A lower learning rate means that each tree has a lower weight265

in the final model. Tree complexity (tc) determines the degree of interaction between predictor

variables. For example, a tc of 1 fits an additive model (each tree having a root and two leaves);

a tc of 2 fits a model with up to two-way interactions. This paper uses the R package gbm and

a modified version of the code from Elith et al. (2008). A grid search over these two parameters,

i.e. learning rate [0.01, 0.005, 0.0025, 0.001], tree complexity [2-6], and a third parameter, bag270

fraction [0.5, 0.625, 0.75], was conducted to find the combination with the highest H-measure on

the validation data. The number of trees (nt) is determined automatically by the function gbm.step

using 10-fold cross-validation, for a given learning rate and tree complexity.

Finally, when tuning the RF, the number of predictors from which to select at each split (the

mtry parameter) was varied over the range [1-4, 6, 8]. The number of trees in the forest was fixed at275

1000. The version of the algorithm used here is based on Brieman (2001) and implemented in the R

package randomforest (Liaw and Wiener, 2002). Initial results suggested that the class imbalance

was affecting RF performance for some of the portfolios. Therefore, undersampling of non-arrears
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cases was carried out by taking balanced bootstrap samples from the original data. For example, if

there were 1000 default cases in the training data, each time a tree is induced, this would be done280

on a different bootstrap sample containing all 1000 default cases and a random selection of 1000

non-default cases. This methodology is outlined in Breiman et al. (2004) and Kuhn and Johnson

(2013). Compared to conventional undersampling, it has the advantage of making better use of all

available training data, by not eliminating some majority class observations altogether but drawing

a different sample at each step of the algorithm. The best parameter values are determined through285

10-fold cross-validation using the R package caret ; the optimal model is again selected based on the

H-measure.

3.2. Data sets

This section describes the data collected by the Central Bank of Ireland on which our analysis

was conducted. The data are composed of four separate portfolios of owner-occupier mortgage290

loans of Irish lenders. The sample represented 55 percent of the Republic of Ireland’s mortgage

market as of December 2010. For predictive modelling purposes, only those loans that were not yet

in default at the observation point of December 2010 were retained; the target variable of interest

is whether those loans moved to default status by December 2011. The predictor variables (i.e. the

potential inputs to each model) are all measured either at December 2010 or prior to that.295

When added together, the training, validation and test samples used in this paper amount to

322,915 cases across the four portfolios.11 The minimum training set size is over 31,000 and the

maximum is just under 50,000 observations. The minimum test set size is approximately 18,000,

the maximum just over 28,000. The proportion of default outcomes in the training data ranged

from 3 to 9 percent.12300

3.2.1. Split-sample setup

The data for each portfolio was divided randomly into training, validation, and test set, with

a 50/20/30 split. The class distribution in the training, validation and test data was preserved

to match the imbalance observed in each portfolio. The models are estimated or trained on the

training data, where necessary tuned on the validation data, and performance is assessed using the305

11Because of confidentiality restrictions, details for individual portfolios cannot be given.
12The training and test set sizes and class distribution is given for all portfolios and not for individual portfolios

to preserve data confidentiality.
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test data. LR and GAMs are trained on a combined training plus validation sample as they do not

require a separate validation sample for tuning. In the case of BRT and RF, only the training data

are used for model fitting whilst the validation set is used to tune further the parameters and select

the best performing model.

3.2.2. Data description310

The dataset variables are described in Table 1.13 The selected observations each relate to the

main loan associated with a given property serving as collateral. The dependent variable is a binary

variable defined as the equivalent of a borrower being more than 90 days past due (e.g. by missing

three consecutive monthly payments) on their mortgage at some point over the outcome window.

This is a standard measure of default used in capital requirement regulations in Ireland.315

The predictor variables are a mix of continuous and categorical data and include a range of

application and behavioural information. The updated loan-to-value ratio for December 2010 (vari-

able Current LTV) is calculated by dividing the loan balance at that time by the indexed market

value of the property (i.e., applying the December 2010 index to the original property value).14

Early arrears is a binary variable indicating whether the borrower had a non-zero arrears balance320

that was greater than 10 percent of but less than one month’s full mortgage instalment in December

2010.15 Due to data limitations, this variable is not available for Portfolio 3. Past arrears status

(variable Recent Default) may indicate that some borrowers could be at higher risk of defaulting

in future. Finally, borrowers may have previously received a loan modification from their bank.

This can occur while remaining current or after entering arrears and may be part of short-term325

forbearance.

There are some limitations to the data used in this study. First, some borrower-specific features

are observed at origination (marital status, income) but not subsequently updated. Individual

borrowers’ personal and economic circumstances in December 2010 are likely to be important for

prediction but remain unobserved after origination. Economic conditions such as the unemployment330

rate of the geographical region in which the borrower is located can only approximate the individual

13For a more detailed description of a larger dataset from which these data were drawn, we refer the reader to
Kennedy and McIndoe-Calder (2012).

14The house price index used to estimate market values in December 2010 is composed of Dublin and Non-Dublin
property prices as well as house or apartment property types.

15The rationale for a floor of 10 percent of a one-month payment is to exclude borrowers that have a very small
arrears amount, as this may be due to the loan nearly curing or technical reasons such as an incorrect standing order.
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Table 1: Description of variables

Variable Description Type

Default Dependent variable: 1 if borrower greater than 90 days past
due on monthly instalments over the period Jan 2011 - Dec
2011; 0 otherwise

Categorical

Repayment to income Monthly instalment amount in Dec 2010 over annual borrower
income at origination in percent

Continuous

Loan to income Ratio of origination loan balance over annual borrower income
at origination

Continuous

Loan age Time since origination in years (Dec 2010) Continuous
Current LTV Indexed loan-to-value (Dec 2010) in percent Continuous
Number of loans Number of loans (including current loan) registered against pri-

mary residence collateral
Continuous

Unemployment change 12-month change in NUTS 3 regional unemployment rates from
Dec 2009 to Dec 2010

Continuous

Current interest rate Mortgage interest rate in Dec 2010 in percent Continuous
Interest rate type Interest rate type: fixed, standard variable, or tracker Categorical
Loan purpose Mover, first-time buyer, or equity release switcher Categorical
Property type House type: detached, semi-detached, terraced, apartment/flat Categorical
Borrower location Borrower location at origination (8 NUTS 3 levels) Categorical
Borrower gender Borrower gender at origination Categorical
Borrower marital status Borrower marital status at origination: single, married, di-

vorced/separated/widowed
Categorical

Number of borrowers Number of borrowers servicing the mortgage: single or joint Categorical
Modification status Borrower received loan modification over Dec 2009 - Dec 2010:

yes or no
Categorical

Recent default Borrower was greater than 90 days in arrears in Dec 2009 (i.e.,
one year prior to the observation point): yes or no

Categorical

Early arrears Borrower has a material positive arrears balance of less than
30 days in Dec 2010: yes or no

Categorical

Bubble origination Loan originated during 2004-2009: yes or no Categorical

borrower’s economic circumstances.

Second, additional unobserved features of borrower behaviour may also be relevant for default

prediction. For example, borrowers could use the information advantage concerning their own

economic and life circumstances that they have compared to their bank. They may be able to335

conceal their true ability to repay and default strategically (Das, 2012). These features are never

observed and cannot be approximated using the data available for this study. Therefore, while the

literature suggests several types of potential predictors of default, the predictors in this empirical

study cannot be expected to explain all the idiosyncratic causes of default.

Third, after being checked for outliers and other errors, the data included missing values. Four340

categorical variables had missing values: property type, borrower’s marital status and gender, and
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loan interest rate type. The percentage of cases with missing values for these variables ranged

from 0-24% across the four portfolios. These were recoded as unknown rather than excluding the

observation. The reason for this is that the alternative of imputation is a difficult problem which

imposes a structure on the data, and if mis-specified, may itself lead to bias (Horton and Kleinman,345

2007). Apart from these categorical variables, income at origination also contained some missing

values with the percentage of cases with missing values for these variables ranged from 0-27% across

the four portfolios. This is because of two reasons. A first cause were general data quality problems

relating to banks inconsistently recording application information including income. Second, in

some cases where a mortgage was topped up, extended, or refinanced, the institutions reported350

only the latest value for these income-related variables, as collected at the point of origination of

those subsequent loans; the relevant values at the point of origination of the main mortgage were

thus lost. Rather than proceeding by case-wise deletion or mean/median imputation, and thus

potentially biasing the sample by excluding these cases, we imputed missing values using the k-

Nearest Neighbour (kNN) algorithm.16 A value of 50 for the number of nearest neighbours (k) was355

chosen for the imputation.17

4. Performance measures and statistical comparison

4.1. Model performance metrics

A commonly used measure for assessing the performance of a score-based classifier is the Area

Under the Curve (AUC). This refers to the area under the Receiver Operating Characteristic360

(ROC) curve, which is a pairwise plot of the true positive rate against the false positive rate, as the

classification threshold is varied over its entire range.18 An AUC value closer to 1 suggests better

discrimination ability between defaults and non-defaults; a value of 0.5 implies that the classifier

16Replicating the same analysis on a smaller dataset following case-wise deletion gave results similar to those
discussed in the remainder of this paper. The statistical performance tests showed BRT outperforming LR at a
5-percent significance level. The results for this robustness check are shown in Appendix 2.

17This was derived through empirical testing on two of the portfolios that either had no missing income or a very
low number of missing income observations. After random deletion of a proportion of non-missing values in those
datasets, using 50 nearest neighbours (k=50) in the imputation procedure led to the lowest estimation error for the
income variable. Inclusion of a binary missing value indicator for income did not turn out to be a significant predictor
of future default status.

18In this application, the true positive rate, also known as the sensitivity, is the fraction of defaulters that are
correctly classified using a given threshold value (i.e. having a score greater than the threshold). The false positive
rate (1-specificity) is the fraction of non-defaulters classified incorrectly as defaulters, using the same threshold value.
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performs no better than chance. Using the AUC as a performance measure is standard practice

in credit scoring but not without its problems. Hand (2009a) argued that, when interpreted in365

terms of costs, the AUC measure treats the relative severities of misclassifications differently when

multiple classifiers with different respective score distributions are compared, implying that the

AUC is intrinsically incoherent.19

As a coherent alternative to the AUC, Hand (2009a) therefore proposed the H-measure. The

advantage of using the H-measure as a classification performance measure is that it allows one370

to specify a distribution of likely misclassification costs (c) that is independent of the classifier;

this choice is discussed in detail by Adams et al. (2012). Because of the class imbalance between

defaulters and non-defaulters, this paper uses the default setting suggested there (corresponding to

a Beta distribution with its mode set at c = π1, i.e. the proportion of defaults in the dataset). This

means that the reported H-measures put relatively greater weight on correctly classifying default375

cases than on incorrectly classifying non-default cases. As with the AUC, a higher H-measure is

associated with better performance.

In this paper, unless otherwise stated, model comparisons are carried out using the H-measure.

The AUC is nonetheless included as it is still widely used in practice. Where classifiers are compared

based on the AUC, model selection/tuning for LR, BRT and RF has been done on the AUC instead.380

4.2. Statistical comparison of performance differences

Statistical tests can indicate whether there is a significant difference between how well different

classifiers perform over a set of available datasets. Friedman’s test (Friedman, 1940) can be used to

compare the various models based on their performance rankings for a chosen performance metric

such as the H-measure (Demsar, 2006). The test statistic is χ2 distributed with k − 1 degrees385

of freedom, where k is the number of classifiers. Its null hypothesis is that there is no difference

between the classifiers’ performance ranks. A less conservative variant of the Friedman statistic,

also reported in this paper, is the Iman-Davenport test (Iman and Davenport, 1980).

In the event that there are significant differences according to either of these tests, various

post-hoc tests can be used to compare pairs of individual classifiers. These tests adjust p-values390

to control for error propagation in multiple pairwise comparisons. Comparing the best-performing

19This point is debated by Flach et al. (2011).
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classifier with every other classifier requires the use of a particular approach which accounts for

this family-wise error using what is known as Holm’s procedure (Garcia and Herrera, 2008; Holm,

1979).

Holm’s procedure starts by evaluating the performance rank differences between the best per-395

former and each other model and, for each such pair, calculates the test statistic outlined in Garcia

and Herrera (2008); each of these values is then compared against a normal distribution table to

produce a significance value (p-value). Next, the procedure sorts these p-values in ascending order,

comparing each pi in the resulting sequence, p1, ..., pk−1, with an adjusted p-value, α
k−i , where α is

the required significance level. If pi is less than the adjusted p-value, the relevant null hypothesis400

is rejected, in which case the corresponding model is considered significantly worse than the best

performer. This proceeds until a null hypothesis cannot be rejected; any remaining performance

differences can thus be ignored. The Java code by Garcia and Herrera (2008) is used to calculate

the Friedman, Iman-Davenport statistics, and Holm’s post-hoc tests.

5. Results and discussion405

5.1. Results

The model performance results for the H-measure and AUC (both of which measured on an

independent test set) are shown in Table 2. The results vary across portfolios and by classifier.

In the upper-half of the table, the four classifiers can be ranked from 1 (best) to 4 (worst) on

each portfolio, based on their H-measures; the resulting average ranks over the four portfolios are410

put in the rightmost column. BRT thus receive the highest average performance ranking of 1.25

(underlined in Table 2), followed by GAMs (2.25), RF (2.75), and, ranked lowest, LR (3.75). The

null hypothesis that there are no differences in average rank between classifiers is rejected by both

the Friedman (at the 10 % level) and Iman-Davenport tests (5% level) reported in Table 3.

Next, the best-performing technique, BRT, is compared with the three other classifiers. As415

shown in Table 4, the results from the post-hoc procedure indicate that, only BRT and LR differ

significantly (at the 5% level), whereas the other null hypotheses cannot be rejected, at either the

5% or 10% level. On the basis of these results, it can be concluded that BRT perform significantly

better than LR, but that no statistically significant difference in performance is evident between

BRT and the other two classifiers, GAMs and RF.420
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Table 2: Performance summary of classifiers

Technique Port 1 Port 2 Port 3 Port 4 Avg. Rank

H-measure

LR 0.2302 0.2344 0.2825 0.2776 3.75

GAM 0.2579 0.2591 0.2928 0.2824 2.25

BRT 0.2776 0.2626 0.2909 0.2948 1.25

RF 0.2719 0.2411 0.2800 0.2854 2.75

AUC

LR 0.7448 0.7466 0.7700 0.7737 4.0

GAM 0.7653 0.7617 0.7768 0.7816 2.0

BRT 0.7806 0.7630 0.7759 0.7878 1.25

RF 0.7781 0.7527 0.7701 0.7814 2.75

Table 3: Statistical comparison of classifiers using H-measures

Test statistic Value p-value
Friedman 7.8 0.0503

Iman-Davenport 5.6 0.0194

Table 4: Holm’s step down procedure for H-measure ranks; α = 0.05 and α = 0.1 (BRT is control classifier)

Classifier z = (R0 −Ri)/SE pi Holm’s adjusted p-value
5 % significance

LR 2.7386 0.0062 0.0166
RF 1.6432 0.1003 0.025

GAM 1.0954 0.2733 0.05
10 % significance

LR 2.7386 0.0062 0.0333
RF 1.6432 0.1003 0.05

GAM 1.0954 0.2733 0.1

The results are generally unchanged if the models/algorithms are tuned and compared using

the AUC. The performance ranks according to the AUC (displayed in the lower-half of Table 2) are

very similar to those observed for the H-measure. The results of the corresponding statistical tests425

show that BRT are again significantly better than LR, whereas no significant difference between
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BRT and GAMs or RF is found (see Tables 5 and 6 in Appendix 1).

In addition to comparing the previous performance metrics, it is of interest to see how well

the estimated class probabilities match the empirical default rates in the test sets. One intuitive

method to do so is through a calibration plot. These plots have been used in bioinformatics and430

in credit risk (Malley et al., 2012; Medema et al., 2009). They plot the class probability produced

by the model (x-axis) against a non-parametric regression of the empirical proportion of defaulters

with the same predicted probability (y-axis). The intuition is that if the smoothed curve runs along

the 45-degree axis, a model is perfectly calibrated; either side of this and it is either under- or

over-predicting default rates.435

To construct the plots, a non-parametric loess regression of actual outcomes against predicted

values was used.20 Two sets of representative plots are shown for portfolios 1 and 4, in Figure 1 and

Figure 2, respectively. For each of these portfolios, the figures show that the models are, for the

most part, reasonably well calibrated, except at the less densely populated highest-risk segments

on the right-hand side of each figure. Elsewhere the fitted loess curve (solid line) generally does not440

depart much from the 45-degree reference line (dashed line), for most of the models. The plots for

the RF models however suggest that they are not as well calibrated as some of the other models,

despite the class probabilities having been rescaled to reflect the original class priors.21 In both

portfolios 1 and 4, RF appear to underestimate default outcomes over a wider prediction range than

the other models. The other three models also exhibit some minor divergences from the reference445

diagonal at lower levels, but the larger divergences are for predicted probabilities of default from

0.4 upwards: for those, in contrast to RF, predictions over-estimate rather than under-estimate the

actual default risk.

In summary, this visual inspection suggests that, for the most part, the majority of the ap-

proaches produce reasonable class probability estimates, but that further work on calibration for450

high predicted class probabilities would be beneficial before these models could be used in practice.

20The optimal bandwidth for the smoothing window was chosen using the AIC and the polynomial is of degree 1.
This is based on the AIC method outlined in Hurvich et al. (1998).

21Note that the probabilities are rescaled using a method outlined in Elkan (2001) as they were produced using
an undersampled RF.
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5.2. Discussion

Overall, the results indicate that BRT significantly outperformed the conventional method, LR.

That said, there was no uniform winner amongst the newer approaches, BRT, GAMs, and RF.

While there appears to be particular promise in the BRT and GAM approaches based on our455

results, the extent of the performance improvement varies across portfolios.

When trying to relate these findings to the existing credit scoring literature, a direct comparison

is less straightforward as that literature has tended to concentrate more on unsecured consumer

credit (credit cards, personal loans) than on secured lending products such as residential mortgage

loans. However, we can make several observations. First, the reasonably good predictive perfor-460

mance of the BRT algorithm, even with a very pronounced class imbalance, is in line with the

findings of Brown and Mues (2012), Burez and Van den Poel (2009), and Bastos (2008). Second,

unlike in Brown and Mues (2012), Lessmann et al. (2015), and Burez and Van den Poel (2009),

RF have a lower average ranking compared to BRT over the four loan portfolios (although the

difference is not statistically significant).465

We suggest that BRT performed very well in this context thanks to their ability to select

important predictors and model higher-order interactions through the tree complexity parameter.

BRT identified a small group of important predictors alongside a larger group of relatively less

importance. This can be seen in Figures 3 and 4, where 4-5 features (early arrears, repayment to

income, loan to income, current LTV, and, in portfolio 2, recent default) account for a substantial470

portion of the variable importance in the BRT for portfolios 1 and 2.22 In portfolios 3 and 4, a single

predictor (early arrears) provides most of the predictive power. Second, higher tree complexity can

be thought of as modelling higher-order interaction effects than the two-way terms included in

our penalised logistic regression models (Hastie et al., 2009); this may also partially explain the

observed predictive performance difference between BRT and LR.475

The observation that much of the predictive power of the models is down to a relatively small

subset of dominant predictors could partially explain why RF did not perform better. They have

been shown to perform especially well on high-dimensional data (Brieman, 2001), in which there

may be a large number of variables that each can contribute to the model predictions. With a

22For BRT, this measure is based on the number of times a variable is selected for splitting, weighted by the
squared reduction in deviance resulting from the splits, averaged over all the trees in the model.
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small number of strong predictors, there is the risk that those may often end up being overlooked480

by the random selection of mtry variables considered at each tree split, particularly if mtry is set

to a small value. Furthermore, because of the imbalanced nature of the data, RF also required the

introduction of undersampling into the algorithm (Breiman et al., 2004), which may have been a

further factor.

As past/recent delinquency is usually a powerful predictor in any behavioural scoring system,485

the fact that this variable has a strong but varying influence in all of the portfolios is not surprising.

It is also interesting to see that, while current LTV ratios, repayment ratios, and loan to income

multiples at origination are important in BRT, their relative importance ranking differs across the

portfolios. This suggests that, even with a relatively homogenous mortgage product in the same

geographical market, each of the portfolios still benefits from a custom-built default prediction490

model that makes different use of available characteristics.

Semi-parametric GAMs performed almost as well as BRT in terms of H-measure performance.

Unlike BRT, they required minimal tuning. Another attractive feature of GAMs, which has likely

contributed to their performance, is their ability to handle situations where some of the continuous

predictors may have a non-linear effect on the response. For example, a series of plots showing how495

smooth terms vary with a selection of predictors are included in Figure 5, for portfolio 4. They

indicate that, keeping all other predictors fixed, higher current LTV or loan to income, and lower

loan age, tend to increase the log odds of default, but not linearly. Also, near the lower end of its

value range, a smaller repayment-to-income ratio could actually be associated with higher log odds

of default; this may be due to modification/forbearance policies which reduce monthly repayments500

for borrowers in difficulty. Clearly, with a linear classifier, one would struggle correctly specifying

such non-linearities.

Note that in the results presented here, no interactions have been included in the GAM specifi-

cation. Extending the GAM-based approaches to include interactions identified by BRT could help

reduce the search space for important interactions. It is also possible to go one step further and505

use GAMs as the base classifier in ensembles, combined with various ways of augmenting the input

data such as bagging (DeBock et al., 2010) and boosting (Caruana et al., 2012).
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6. Conclusions and future research

This paper compared four techniques for the purpose of predicting mortgage defaults. Two of

these techniques have their roots in the machine learning: Boosted Regression Trees (BRT) and510

Random Forests (RF). The other two are statistical models: penalised Logistic Regression (LR)

and semi-parametric Generalised Additive Models (GAMs). The predictive performance of these

approaches was assessed using the H-measure and performance differences on four large real-life

datasets were evaluated using an appropriate statistical testing procedure.

The results of the empirical study showed that BRT performed significantly better than LR.515

Although BRT and GAMs were first and second in the overall ranking, there were no statistically

significant differences between BRT and GAMs or RF. The ability of BRT and RF to capture

variable interactions and the handling of non-linear effects in a GAM may have contributed to

their performance in this setting. The study thus suggests that the tree-based methods and semi-

parametric GAMs could be more widely used in credit risk applications, particularly in exploratory520

modelling where it is not known ex-ante which predictors are important. Even if the end product

is not a BRT model or GAM, these models may help to identify suitable interaction or non-linear

terms to add to more conventional logistic regression models. This may be particularly relevant

if linear classifiers such as logistic regression are still preferred for business or regulatory reasons.

While the overall differences in performance between some of the methods may appear small, even525

small improvements may mean significant revenue savings depending on the application context

(Baesens et al. (2003)).

Care should be taken when generalising these findings to other jurisdictions or other types of

(unsecured) lending, as the context and drivers of arrears and default are likely to be different.

Furthermore, the models in this paper are based on data observed during a time of severe economic530

distress, during which the distribution of good and bad borrowers may have shifted (Hand, 2006).

It is also unclear, due to data limitations, whether changes in borrower behaviour and financial

sector policies such as forbearance have had an impact on arrears incidence. Therefore, it is up to

practitioners to test empirically whether these techniques produce similar results for their particular

portfolios.535

Several directions for future research could be considered. First, boosting could be carried

out on the semi-parametric GAM to see if this produces further performance gains (Bühlmann and

Hothorn, 2007; Tutz and Binder, 2008). Second, using a different type of GAM may offer alternative
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ways to handle class imbalance (Calabrese and Osmetti, 2013).

A third extension could be to consider the use of misclassification costs for ensemble-based540

approaches. This may be important in applications where the costs of misclassifying arrears cases

vary between the two types of errors, i.e., false positives and false negatives. For example, arrears

management teams or regulatory authorities may view the costs of incorrectly classifying an arrears

case as a non-arrears case as higher than the converse. Incorporating this cost information, if

available, into a boosting algorithm in a manner similar to Berk and Kriegler (2010) may lead to545

improved performance.

Finally, exploring how population drift may affect model performance would also be an inter-

esting area of research (Krempl and Hofer, 2011). More practically, testing over various prediction

horizons (18, 24 months) and perhaps fitting models to a longer time span than the one used in this

study would be beneficial before deployment either within financial institutions or by regulatory550

authorities.
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Figure 1: Calibration plots: portfolio 1
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Figure 2: Calibration plots: portfolio 4
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Figure 3: BRT variable importance plot: portfolios 1 and 2
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Figure 4: BRT variable importance plot: portfolios 3 and 4

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

0 50 100 150 200 250 300

−
3

−
2

−
1

0
1

2

Current LTV

f̂(C
ur

re
nt

 L
T

V
)

0 2 4 6 8

−
3

−
2

−
1

0
1

2

Repayment to income

f̂(R
ep

ay
m

en
t t

o 
in

co
m

e)

0 5 10 15

−
3

−
2

−
1

0
1

2

Loan to income

f̂(L
oa

n 
to

 in
co

m
e)

5 10 15 20

−
3

−
2

−
1

0
1

2

Loan age

f̂(L
oa

n 
ag

e)

1 2 3 4 5 6 7

−
3

−
2

−
1

0
1

2

Interest rate

f̂(I
nt

er
es

t r
at

e)

Figure 5: GAM estimated smooth functions for portfolio 4
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Appendix 1: Classifier performance tests using AUC measure

This section contains results of testing for differences in performance across classifiers trained

using the AUC and referred to in section 5.1 of the main text.

Table 5: Statistical comparison of classifiers using AUC measure

Test statistic Value p-value
Friedman 9.9 0.0194

Iman-Davenport 14.14 0.0000

Table 6: Holm’s step down procedure for AUC; α = 0.05 and α = 0.1 (BRT is control classifier)

Classifier z = (R0 −Ri)/SE pi Holm’s adjusted p-value
5 % significance

LR 3.0125 0.0026 0.0166
RF 1.6432 0.1003 0.025

GAM 0.8216 0.4113 0.05
10 % significance

LR 3.0125 0.0026 0.0333
RF 1.6432 0.1003 0.05

GAM 0.8216 0.4113 0.1

Appendix 2: Classifier performance using only complete observations for income-based

variables705

These results are based on a smaller sample than those used in the main part of the paper.

After excluding cases with missing income, a sample size of approximately 280,000 observations

remained. The model training, validation and testing was carried out as in the main part of the

paper. For portfolio 3, the values are the same as in Table 2 as this portfolio was not missing any

income data. Overall, the results indicate that the performance ranking remains similar regardless710

of our treatment of missing income variable values.
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Table 7: Summary performance of classifiers: complete cases income variables

Technique Port 1 Port 2 Port 3 Port 4 Avg. Rank
H-measure

LR 0.2256 0.2354 0.2900 0.2578 3.75
GAM 0.2467 0.2619 0.2928 0.2607 1.875
BRT 0.2599 0.2647 0.2909 0.2711 1.5

RF 0.2586 0.2475 0.2814 0.2607 2.875

Table 8: Complete cases income: statistical comparison of classifiers using H-measures

Test Statistic Calculated Calculated p value
Friedman 7.425 0.0595

Iman-Davenport 4.869 0.028

Table 9: Complete case income: Holm’s step down procedure for H-measure ranks; α = 0.05 and α = 0.1,(BRT is
control classifier)

Classifier z = (R0 −Ri)/SE pi Holm’s adjusted p-value
LR 2.4648 0.0137 0.0166
RF 1.5062 0.1320 0.025

GAM 0.4108 0.6812 0.05
LR 2.4648 0.0137 0.0333
RF 1.5062 0.1320 0.05

GAM 0.4108 0.6812 0.1
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