
STRONG HYPERBOLICITY

BOGDAN NICA AND JÁN ŠPAKULA

Abstract. We propose the metric notion of strong hyperbolicity as a way of obtaining

hyperbolicity with sharp additional properties. Specifically, strongly hyperbolic spaces are

Gromov hyperbolic spaces that are metrically well-behaved at infinity, and, under weak
geodesic assumptions, they are strongly bolic as well. We show that CAT(−1) spaces are

strongly hyperbolic. On the way, we determine the best constant of hyperbolicity for the

standard hyperbolic plane H2. We also show that the Green metric defined by a random
walk on a hyperbolic group is strongly hyperbolic. A measure-theoretic consequence at

the boundary is that the harmonic measure defined by a random walk is a visual Hausdorff

measure.

1. Introduction

Hyperbolicity for metric spaces, as introduced by Gromov [9], is a coarse notion of negative
curvature which yields a very satisfactory theory. For certain analytic purposes, however,
hyperbolicity by itself is not enough, and one needs certain enhancements.

After the groundbreaking work of Lafforgue [14], the resolution of the Baum - Connes
conjecture for hyperbolic groups hinged on showing the following: every hyperbolic group Γ
admits a geometric action on a roughly geodesic, strongly bolic hyperbolic space. Here the
enhancement is strong bolicity (see Section 4), for which one is willing to pay the small price
of weakening the usual geodesic assumption. This is achieved by Mineyev and Yu in [17], and
the desired space is Γ itself endowed with a new metric.

The enhancement needed in [18] is a boundary metric structure with sharp properties. Let
us say that a hyperbolic space X is a good hyperbolic space if the following hold: the Gromov
product (·, ·)o extends continuously to the bordification X ∪ ∂X for each basepoint o ∈ X,
and there is some ε > 0 such that exp(−ε (·, ·)o) is a metric on the boundary ∂X, again for
each basepoint o ∈ X. For example, CAT(−1) spaces are good hyperbolic spaces, and one can
take ε = 1 (Bourdon [6]). Now the construction of [18] can be summarized as follows: from
a geometric action of a hyperbolic group Γ on a roughly geodesic, good hyperbolic space X,
one obtains a proper isometric action of Γ on an Lp-space associated to the double boundary
∂X × ∂X. The concrete X used in [18] is Γ itself, equipped with a metric constructed by
Mineyev [15, 16] and which is a slightly improved version of the metric used in [17].

In this paper we introduce a certain metric condition that we call strong hyperbolicity. The
definition is given in Section 4 and we will not repeat here. The main point about strong
hyperbolicity is that there are useful consequences flowing out and important examples flowing
in.

As far as consequences are concerned, the following is a fairly easy outcome of the definition.

Theorem 1.1. A strongly hyperbolic space is a good hyperbolic space. A roughly geodesic,
strongly hyperbolic space is strongly bolic.
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As for examples, we show the following.

Theorem 1.2. CAT(−1) spaces are strongly hyperbolic.

Theorem 1.3. The Green metric arising from a random walk on a hyperbolic group is strongly
hyperbolic.

Theorem 1.2 implies Bourdon’s result mentioned above, but also one of the main results
of Foertsch and Schroeder from [7]. From Theorem 1.2 and its proof, we also deduce that the
hyperbolic plane H2 is log 2-hyperbolic, in the sense of Gromov’s original definition, and this
is optimal (Corollary 5.4). Quite surprisingly, this was not known before.

Good hyperbolicity for the Green metric on a hyperbolic group answers positively a ques-
tion raised in [18, Remark 19]. As a consequence, we find that, on the boundary, the harmonic
measure defined by a random walk coincides with the normalized Hausdorff measure defined
by a Green visual metric (Corollary 6.4). Strong bolicity of the Green metric was recently
proved by Häıssinsky and Mathieu in [12] by a different argument. The upshot is that the
Green metric provides a more natural, and much simpler alternative to the hat metric con-
structed by Mineyev and Yu in [17]. Strong hyperbolicity for the Green metric, established
herein, makes a similar point relative to Mineyev’s improved hat metric from [15, 16].

2. Hyperbolic spaces - An elliptical reminder

2.1. Hyperbolic spaces and their boundaries. We begin by recalling some basic notions
and facts.

Definition 2.1 (Gromov). A metric space X is δ-hyperbolic, where δ ≥ 0, if

(x, y)o ≥ min{(x, z)o, (y, z)o} − δ
for all x, y, z, o ∈ X; equivalently, the four-point condition

|x, y|+ |z, t| ≤ max
{
|x, z|+ |y, t|, |z, y|+ |x, t|

}
+ 2δ

holds for x, y, z, t ∈ X.

We write |x, y| for the distance between two points x, y ∈ X. Recall that the Gromov
product is defined by the formula

(x, y)o = 1
2

(
|x, o|+ |y, o| − |x, y|

)
.

Let X be a hyperbolic space, and fix a basepoint o ∈ X. A sequence (xi) in X converges
to infinity if (xi, xj)o → ∞ as i, j → ∞. Two sequences (xi), (yi) converging to infinity are
declared to be equivalent if (xi, yi)o →∞ as i→∞. The (Gromov) boundary of X, denoted
∂X, is the set of equivalence classes of sequences converging to infinity. We also say that
a sequence (xi) converging to infinity converges to its equivalence class representing a point
in ∂X. Since a change of basepoint modifies the Gromov product by a uniformly bounded
amount, all these notions are actually independent of the chosen o ∈ X.

When X is a CAT(−1) space, that is, a metric space of actual negative curvature, the
Gromov product can be extended from X to the bordification X ∪ ∂X by setting (ξ, ξ′)o :=
lim (xi, x

′
i)o for xi → ξ and x′i → ξ′, respectively (x, ξ)o := lim (x, xi)o for xi → ξ. But for

a general hyperbolic space X, such a process is not well-defined in general: the limit may
not exist, and even if it does, it might depend on the choice of a representing sequence. The
traditional procedure of getting around this problem runs as follows. The Gromov product
on ∂X×∂X is defined by setting (ξ, ξ′)o := inf{lim inf (xi, x

′
i)o : xi → ξ, x′i → ξ′}. This is a

finite quantity, except for (ξ, ξ)o =∞. Similarly, the Gromov product on X × ∂X is defined
by (x, ξ)o := inf{lim inf (x, xi)o : xi → ξ}. It turns out that the other reasonable choices,
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namely taking sup instead of inf, or lim sup instead of lim inf, are all uniformly close to each
other. Although rather ad-hoc, such an extension of the Gromov product has at least the
benefit of being canonical at the topological level: it defines a topology on the bordification
X ∪ ∂X, for which convergence at infinity takes on an actual meaning. If X is proper then
both X ∪ ∂X and ∂X are compact.

It turns out that the topology on ∂X can be metrized. Namely, for small enough ε > 0 there
exists a metric dε on ∂X, such that dε is within constant positive multiples of exp(−ε (·, ·)o).
When X is a CAT(−1) space, exp(− (·, ·)o) is already a metric on ∂X, but this is not true in
general [16, Lemma 7]. To summarize, the fuzziness of the Gromov product at the boundary
is resolved by a non-canonical choice, which in turn leads to a quasified metric structure on
the boundary.

2.2. Roughly geodesic spaces. The classical theory of hyperbolic spaces works under the
assumption that the spaces are geodesic. But the theory is just as solid for roughly geodesic
spaces. These are defined as follows.

Definition 2.2. A metric space X is roughly geodesic if there is a constant C ≥ 0 such
that the following holds: for every x, y ∈ X, there is a (not necessarily continuous) map
γ : [a, b]→ X such that γ(a) = x, γ(b) = y, and |s− s′| − C ≤ |γ(s), γ(s′)| ≤ |s− s′|+ C for
all s, s′ ∈ [a, b].

The viewpoint that roughly geodesic spaces provide a natural relaxation of the geodesic
assumption for hyperbolic spaces was first advocated by Bonk and Schramm in [5]. We
remark that the notion of weakly geodesic space used by Lafforgue [14] and Mineyev - Yu
[17], although weaker in general, is equivalent to the notion of roughly geodesic space within
the hyperbolic world.

Hyperbolicity is a quasi-isometry invariant for roughly geodesic spaces, and the Schwarz
- Milnor lemma holds in the roughly geodesic context. So we may say that a group is
hyperbolic if it admits a geometric action (that is, isometric, proper, and cocompact) on a
roughly geodesic, proper hyperbolic space.

Throughout this paper, hyperbolic groups are assumed to be non-elementary.

3. Good hyperbolic spaces

Let us recall the definition we made in the Introduction, this time in a quantified form.

Definition 3.1. We say that a hyperbolic space X is ε-good, where ε > 0, if the following
two properties hold for each basepoint o ∈ X:

• the Gromov product (·, ·)o on X extends continuously to the bordification X ∪ ∂X,
and

• exp(−ε (·, ·)o) is a metric on the boundary ∂X.

Let X be a good hyperbolic space. The continuity of the Gromov product implies that we
have a well-defined notion of Busemann function

β(y, z; ξ) = 2(ξ, z)y − |y, z| = lim
x→ξ

(
|x, y| − |x, z|

)
(y, z ∈ X, ξ ∈ ∂X).

Incidentally, it can be checked that the Busemann boundary of X coincides with the
Gromov boundary ∂X when X is proper. (We owe this remark to Peter Häıssinsky.) This
topological consequence can be very useful - see, for instance, [2] and [12] - but we will not
need it here.

For the purposes of this paper, the main feature of a good hyperbolic space is its conformal
structure on the boundary - as opposed to mere quasi-conformality for general hyperbolic
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spaces. This is discussed in distinct but related ways in [16, Sections 7 and 8], [10, Section
5.1], [18, Section 4]. See also [6, Sections 2.6 and 2.7] for the CAT(−1) case. Let g be an
isometry of X. For all x, x′ ∈ X we have that

−2(gx, gx′)o = |x, o| − |x, g−1o|+ |x′, o| − |x′, g−1o| − 2(x, x′)o.

Letting x → ξ ∈ ∂X respectively x′ → ξ′ ∈ ∂X, and using the notation dε,o for the visual
metric exp(−ε (·, ·)o) on ∂X, we obtain the relation

d 2
ε,o(gξ, gξ

′) = exp
(
ε β(o, g−1o; ξ)

)
exp

(
ε β(o, g−1o; ξ′)

)
d 2
ε,o(ξ, ξ

′)

for all ξ, ξ′ ∈ ∂X. This is a strong form of metric conformality for the action of Isom(X)
on ∂X. Minor additional assumptions on ∂X [18, Lemma 8] then guarantee the following
measure-theoretic conformality :

dg∗µo
dµo

(ξ) = exp
(
εDε β(o, g−1o; ξ)

)
where Dε is the Hausdorff dimension of dε,o (independent of the basepoint o), and µo is the
Hausdorff measure defined by dε,o (independent of the visual parameter ε).

For applications, the most interesting case is when X is a proper, roughly geodesic, good
hyperbolic space endowed with a geometric action of a (hyperbolic) group Γ. By the above
discussion, Γ acts conformally on ∂X.

4. Strongly hyperbolic spaces

Definition 4.1. We say that a metric space X is strongly hyperbolic with parameter ε > 0 if

exp(−ε (x, y)o) ≤ exp(−ε (x, z)o) + exp(−ε (z, y)o).

for all x, y, z, o ∈ X; equivalently, the four-point condition

exp
(

1
2ε (|x, y|+ |z, t|)

)
≤ exp

(
1
2ε (|x, z|+ |y, t|)

)
+ exp

(
1
2ε (|z, y|+ |x, t|)

)
holds for all x, y, z, t ∈ X.

One motivation for considering this notion is that it grants the enhancements of hyperbol-
icity that we have mentioned. Here is the quantified version of Theorem 1.1.

Theorem 4.2. Let X be a strongly hyperbolic space, with parameter ε. Then X is an ε-good,
(log 2)/ε-hyperbolic space. Furthermore, X is strongly bolic provided X is roughly geodesic.

The proof is straightforward. We include the details.

Proof. From

exp(−ε (x, y)o) ≤ 2 max
{

exp(−ε (x, z)o), exp(−ε (z, y)o)
}

= 2 exp
(
− ε min{(x, z)o, (z, y)o}

)
we see that X is (log 2)/ε-hyperbolic.

Next we check that the Gromov product (·, ·)o extends continuously to the bordification
X = X∪∂X; it will then follow that exp(−ε(·, ·)o) is a metric on ∂X. Let z ∈ X and ξ ∈ ∂X.
If (xi) is a sequence in X converging to ξ, then∣∣ exp(−ε (z, xi)o)− exp(−ε (z, xj)o)

∣∣ ≤ exp(−ε (xi, xj)o)→ 0 as i, j →∞

so we may put (z, ξ)o := lim (z, xi)o. To see that this is well-defined, let (yi) be another
sequence in X converging to ξ; then∣∣ exp(−ε (z, xi)o)− exp(−ε (z, yi)o)

∣∣ ≤ exp(−ε (xi, yi)o)→ 0 as i→∞.



STRONG HYPERBOLICITY 5

Thus, we have a continuous extension of (·, ·)o to X × X. Similar arguments lead to a
continuous extension of (·, ·)o to X ×X.

For hyperbolic spaces which are roughly geodesic, strong bolicity in the sense of Lafforgue
[14] amounts to the following: for every η, r > 0 there exists R > 0 such that |x, y|+ |z, t| ≤ r
and |x, z|+ |y, t| ≥ R imply |x, t|+ |y, z| ≤ |x, z|+ |y, t|+ η. Since

exp
(

1
2ε (|x, t|+ |y, z| − |x, z| − |y, t|)

)
≤ 1 + exp

(
1
2ε (|x, y|+ |z, t| − |x, z| − |y, t|)

)
it suffices to choose R > 0 such that 1 + exp 1

2ε(r −R) ≤ exp 1
2εη. �

The next two sections are devoted to interesting examples of strongly hyperbolic spaces.

5. Strong hyperbolicity for CAT(−1) spaces

It is known that CAT(−1) spaces are strongly bolic and good hyperbolic spaces. The next
result strengthens and unifies these facts.

Theorem 5.1. CAT(−1) spaces are strongly hyperbolic with parameter 1.

Let us recall the four-point characterization of the CAT(−1) property for a geodesic space
X. Informally, every quadrilateral in X has a comparison quadrilateral in the hyperbolic
plane H2 whose diagonals are at least as long as the diagonals of the original quadrilateral in
X. Formally, for every choice of points x1, x2, x3, x4 ∈ X, there are points x̃1, x̃2, x̃3, x̃4 ∈ H2

such that

|x1, x2| = |x̃1, x̃2|, |x2, x3| = |x̃2, x̃3|, |x3, x4| = |x̃3, x̃4|, |x4, x1| = |x̃4, x̃1|
while |x1, x3| ≤ |x̃1, x̃3| and |x2, x4| ≤ |x̃2, x̃4|.

It therefore suffices to prove Theorem 5.1 for H2, the model for metric spaces of curvature
at most −1.

Proposition 5.2. The hyperbolic plane H2 is strongly hyperbolic with parameter 1.

Proof. We use the upper half-space model {w ∈ C : Im w > 0}, with distance given by

cosh |w1, w2| = 1 +
|w1 − w2|2

2(Im w1)(Im w2)
,

that is,

|w1, w2| = 2 log
|w1 − w2|+ |w1 − w2|

2
√

Im w1

√
Im w2

.

Using the notation ‖w1, w2‖ = |w1 − w2| + |w1 − w2|, the four-point formulation of strong
hyperbolicity with parameter 1 becomes simply

‖w1, w3‖‖w2, w4‖ ≤ ‖w1, w2‖‖w3, w4‖+ ‖w1, w4‖‖w2, w3‖.
This brings to mind Ptolemy’s inequality in the plane:

|w1 − w3| |w2 − w4| ≤ |w1 − w2| |w3 − w4|+ |w1 − w4| |w2 − w3|.
And indeed, several applications of Ptolemy’s inequality yield the desired inequality. Here is a
more conceptual formulation. LetX be a metric space which is ptolemaic, i.e., |x1, x3||x2, x4| ≤
|x1, x2| |x3, x4|+ |x1, x4| |x2, x3| for all x1, x2, x3, x4 ∈ X, and let G be a finite group of isome-
tries of X. (In our case, X is the Euclidean plane and G is the cyclic group of order 2
generated by the reflection in the x-axis.) Then, on the quotient X/G, the formula∥∥[x], [y]

∥∥ =
1

|G|
∑
g∈G
|x, gy| for [x] 6= [y]
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defines a ptolemaic metric. Both the triangle inequality and Ptolemy’s inequality are estab-
lished by averaging over the G-orbits of all but one of the variables. �

Remark 5.3. Let X be strongly hyperbolic with parameter ε, and fix a basepoint o ∈ X.
On X, let us write dε(x, y) for exp(−ε (x, y)o). The strong hyperbolicity assumption means
that dε satisfies the triangle inequality; however, dε fails to be an actual metric on X because
dε(x, x) > 0 for each x ∈ X. Now observe that dε fulfills Ptolemy’s inequality

dε(x1, x3) dε(x2, x4) ≤ dε(x1, x2) dε(x3, x4) + dε(x1, x4) dε(x2, x3),

for this is simply another way of writing the four-point formulation of strong hyperbolicity
with parameter 1. Consequently, at infinity, the visual metric dε = exp(−ε (·, ·)o) on ∂X is
ptolemaic.

Foertsch and Schroeder have shown [7, Theorems 1 and 16] that, for a CAT(−1) space X,
the visual metric dε = exp(−(·, ·)o) on the boundary ∂X is ptolemaic. In light of Theorem 5.1,
the Foertsch - Schroeder result is a particular case of the fact pointed out above.

As another consequence of Proposition 5.2, we find the best constant of hyperbolicity (in
the sense of Definition 2.1) for H2. This answers a folklore question.

Corollary 5.4. H2 is log 2-hyperbolic, and this is optimal.

Proof. That H2 is log 2-hyperbolic follows from Theorem 4.2. To see that this is best possible,
let H2 be δ-hyperbolic for some δ ≥ 0. Sticking to the upper half-space model, the hyperbolic
inequality at infinity says that (a, b)i ≥ min{(a, c)i, (c, b)i}−δ whenever a, b, c ∈ R are distinct.
At infinity, the Gromov product with respect to i is given by

(a, b)i = log
|a− i| |b− i|
|a− b|

for distinct a, b ∈ R. For a > 0, b = −a, c = 0, we are quickly led to |a − i| ≥ 2 exp(−δ).
Hence exp δ ≥ 2, by letting a tend to 0. �

For comparison, we recall the well-known fact that H2 is log(1 +
√

2)-hyperbolic for the
Rips definition, in terms of thin triangles, and this is optimal.

6. Strong hyperbolicity of the Green metric on a hyperbolic group

Another example of a strongly hyperbolic metric is Mineyev’s ‘hat’ metric from [15, 16].
In fact, our notion of strong hyperbolicity is inspired by the proof of [16, Theorem 5]. Let us
recall that Mineyev’s hat metric is a (type of) metric defined on any hyperbolic group Γ, with
the following properties: it is Γ-invariant, quasi-isometric to any word-metric on Γ, roughly
geodesic, and - in our terminology - strongly hyperbolic. Of course, the latter property is the
crucial one.

Mineyev’s hat metric is a very useful tool, but it has the conceptual downside of being
custom-made. One would like a ‘natural’ type of metric doing the same job - that of making
hyperbolic groups strongly hyperbolic. We show that this is the case for the Green metric
coming from a random walk.

Theorem 6.1. Let Γ be a hyperbolic group. Then the Green metric defined by a symmetric
and finitely supported random walk on Γ is strongly hyperbolic.

We recall the essential facts on the Green metric, and we refer to [4] and [11] for more
details. A probability measure µ on Γ defines a random walk on Γ with transition probabil-
ities p(x, y) = µ(x−1y). The probability measure µ, or the corresponding random walk, is
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symmetric if µ(x) = µ(x−1) for every x ∈ Γ, and finitely supported if the support of µ is a
finite generating set for Γ.

Let F (x, y) be the probability that the random walk started at x ever hits y. The Green
metric on Γ, first introduced by Blachére and Brofferio [3], is given by

|x, y|G = − logF (x, y).

The name has to do with the Green function G(x, y) =
∑
n≥0 µ

n(x−1y), where µn denotes
the n-th convolution power of µ, counting the expected number of visits of y starting from x.
It turns out that F and G are proportional: G(e, e)F (x, y) = G(x, y).

The Green metric is Γ-invariant, quasi-isometric to any word-metric on Γ, and roughly
geodesic. The first two properties are generic, in the sense that they only use the non-
amenability of Γ. The latter property follows from a result of Ancona [1] saying that geodesics
for the word-metric are rough geodesics for the Green metric, and it relies on the hyperbolicity
Γ. It follows that the Green metric is a hyperbolic metric, but our aim is to show more.

We remark that strong bolicity for the Green metric was first shown by Häıssinsky and
Mathieu in [12]. For their short proof it suffices to know Ancona’s result that the Martin
boundary of the random walk coincides with the Gromov boundary. The fact that the Green
metric on a hyperbolic group is a good hyperbolic metric answers a question raised in [18],
and for the purposes of [18] it means that the Green metric can be used in place of Mineyev’s
hat metric from [15, 16].

6.1. Proof of Theorem 6.1. The next lemma spells out what else is needed, on top of
hyperbolicity, in order to have strong hyperbolicity.

Lemma 6.2. A hyperbolic space X is strongly hyperbolic if and only if the following holds:

(EB) there exist L, λ > 0 and R0 > 0 such that
∣∣|x, y|+ |z, t| − |x, t| − |z, y|∣∣ ≤ L exp(−λR)

whenever x, y, z, t ∈ X satisfy |x, y|+ |z, t| − |x, z| − |y, t| ≥ R ≥ R0.

The (EB) condition may be interpreted as an exponentially strong bolicity, since merely
knowing that |x, y| + |z, t| − |x, t| − |z, y| → 0 as |x, y| + |z, t| − |x, z| − |y, t| → ∞ already
implies strong bolicity (for hyperbolic spaces which are roughly geodesic).

Proof. For the sake of notational simplicity, let us write

A := 1
2

(
|x, y|+ |z, t| − |x, z| − |y, t|

)
, B := 1

2

(
|x, y|+ |z, t| − |x, t| − |z, y|

)
.

(⇐) The four-point condition for strong hyperbolicity with parameter ε amounts to showing
that, for some ε > 0, we have 1 ≤ exp(−εA)+exp(−εB) . We may assume that A,B ≥ 0, and
A ≥ B. We rewrite the desired inequality as εB ≤ − log(1− exp(−εA)). As a ≤ − log(1− a)
for a ∈ [0, 1), it suffices to obtain εB ≤ exp(−εA). When A ≥ R0/2, this can be achieved
for ε ≤ min{2λ, 2/L} by using (EB). When A < R0/2, we use the assumption that X
is hyperbolic: B = min{A,B} ≤ δ, a hyperbolicity constant of X. So it suffices to have
εδ ≤ exp(−εR0/2), and this can be achieved for, say, ε ≤ min{1/(2δ), (2 log 2)/R0}.

(⇒) Strong hyperbolicity with parameter ε yields 1 + exp(−εA) ≥ exp(−εB) ≥ 1 −
exp(−εA). When A ≥ 0, this means that − log(1 + exp(−εA)) ≤ εB ≤ − log(1− exp(−εA)).
Now log(1 + a) ≤ 2a and − log(1− a) ≤ 2a for small enough a ∈ [0, 1). Thus, there is A0 > 0
such that |εB| ≤ 2 exp(−εA) whenever A ≥ A0. We deduce (EB) with L = 4/ε, λ = ε/2,
R0 = 2A0. �

The following is the key estimate for the proof of Theorem 6.1. It is a particular instance of
Gouëzel’s strong uniform Ancona inequalities [8, Definition 2.8, Theorem 2.9]. It can also be
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deduced from an adaptation of [13, Lemma 3.2], and that was, in fact, our original approach
before becoming aware of the very recent [8].

Lemma 6.3. There exist L, λ > 0 and R0 > 0 such that∣∣∣∣G(x, y)G(z, t)

G(x, t)G(z, y)
− 1

∣∣∣∣ ≤ L exp(−λR)

whenever the distance between geodesics [x, z] and [y, t] is at least R ≥ R0.

We emphasize that, in the above lemma, geodesics are taken with respect to the word-
metric on Γ. Let us derive condition (EB) for the Green metric on Γ. On the one hand, as
| log a| is asymptotic to |a− 1| for a→ 1, the conclusion of Lemma 6.3 can be stated as

∣∣|x, y|G + |z, t|G − |x, t|G − |z, y|G
∣∣ =

∣∣∣∣ log
G(x, y)G(z, t)

G(x, t)G(z, y)

∣∣∣∣ ≤ L exp(−λR),

up to increasing R0 if necessary. (Compare, at this point, with [15, Theorem 32d].)
On the other hand, we claim that there is some spatial constant C > 0 such that

C dist
(
[x, z], [y, t]

)
+ C ≥ |x, y|G + |z, t|G − |x, z|G − |y, t|G

where, once again, the left hand side is in terms of the word metric. Let p and q be points
on [x, z], respectively [y, t], with |p, q| = dist

(
[x, z], [y, t]

)
. (See the figure below.) We have

|p, q|G ≤ C1|p, q| + C1 for some spatial constant C1 > 0, by the quasi-isometry of the word
and the Green metrics. Also, there is a spatial constant C2 > 0 such that

|x, p|G + |p, z|G ≤ |x, z|G + C2, |y, q|G + |q, t|G ≤ |y, t|G + C2

since geodesics for the word metric are rough geodesics for the Green metric. It follows that

|x, y|G + |z, t|G ≤
(
|x, p|G + |p, q|G + |q, y|G

)
+
(
|z, p|G + |p, q|G + |q, t|G

)
≤ |x, z|G + |y, t|G + 2|p, q|G + 2C2

≤ |x, z|G + |y, t|G + 2C1|p, q|+ (2C1 + 2C2)

and the claim is proved. This completes the verification of condition (EB) for the Green
metric.

x

z

t

y

p q
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6.2. Harmonic measure. We will now explain a consequence of Theorem 6.1 which concerns
the harmonic measure on the boundary. In what follows, we write (·, ·)G for the Gromov
product with respect to the Green metric, and having the identity element e ∈ Γ as the
basepoint.

The random walk (Zn) started at e ∈ Γ converges almost surely to a boundary point Z∞.
The harmonic measure ν is the probability measure on ∂Γ defined by the condition that ν(A)
is the probability that Z∞ is in A ⊆ ∂Γ. By [4, Section 3.4], see also the proof of Proposition
3.6 in [11], one knows that ν is a Γ-conformal measure:

dg∗ν

dν
(ξ) = expβG(e, g−1; ξ)(1)

where βG is the Busemann function with respect to the Green metric. Recall that

βG(e, g; ξ) = 2(g, ξ)G − |g|G = lim
x→ξ

(
|x, e|G − |x, g|G

)
.

In [4] and [11], the existence of the above limit follows from the identification of the Gromov
boundary with the Martin boundary of the random walk. Herein, we see it as a manifestation
of the good hyperbolicity of the Green metric.

On the other hand, good hyperbolicity of the Green metric means that the boundary visual
structure induced by the Green metric is conformal, as explained in Section 3. We endow
∂Γ with a visual metric dε = exp(−ε (·, ·)G) for small enough ε > 0, and we let µ denote the
normalized Hausdorff measure (independently of ε). Then µ is Γ-conformal, with

dg∗µ

dµ
(ξ) = expβG(e, g−1; ξ)(2)

since the Hausdorff dimension of dε is 1/ε by [4, Theorem 1.1].
Now [4, Theorem 2.7] says that any two Γ-quasi-conformal measures on ∂Γ are equivalent

ergodic measures, with Radon - Nikodym derivative bounded above and below by positive
constants. Equations (1) and (2) imply that the Radon - Nikodym derivative dν/dµ is Γ-
invariant, hence constant a.e. by ergodicity. We conclude:

Corollary 6.4. Let Γ be a hyperbolic group. Then the harmonic measure on ∂Γ defined by a
symmetric and finitely supported random walk on Γ equals the Hausdorff probability measure
defined by any Green visual metric dε = exp(−ε (·, ·)G).
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bolic groups, Ann. Sci. Éc. Norm. Supér. (4) 44 (2011), 683–721
[5] M. Bonk, O. Schramm: Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), no. 2,

266–306
[6] M. Bourdon: Structure conforme au bord et flot géodésique d’un CAT(−1)-espace, Enseign. Math. (2)
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[8] S. Gouëzel: Local limit theorem for symmetric random walks in Gromov-hyperbolic groups, J. Amer.

Math. Soc. 27 (2014), no. 3, 893–928

[9] M. Gromov: Hyperbolic groups, in Essays in group theory, Publ. MSRI 8, Springer 1987, 75–263
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