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Highlights 

 We use Markov chain models of payment patterns to estimate recovery rates. 

 Models allow optimisation of write off policies. 

 Models tested using large portfolio of UK retail loans during a 12 year period. 

 Results aid the management of collections particularly the write-off decision. 
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Abstract 

One approach to modelling Loss Given Default (LGD), the percentage of the defaulted 

amount of a loan that a lender will eventually lose is to model the collections process. This is 

particularly relevant for unsecured consumer loans where LGD depends both on a defaulter’s 

ability and willingness to repay and the lender’s collection strategy. When repaying such 

defaulted loans, defaulters tend to oscillate between repayment sequences where the borrower 

is repaying every period and non-repayment sequences where the borrower is not repaying in 

any period. This paper develops two models – one a Markov chain approach and the other a 

hazard rate approach to model such payment patterns of debtors. It also looks at 

simplifications of the models where one assumes that after a few repayment and non-

repayment sequences the parameters of the model are fixed for the remaining payment and 

non-payment sequences. One advantage of these approaches is that they show the impact of 

different write-off strategies. The models are applied to a real case study and the LGD for 

that portfolio is calculated under different write-off strategies and compared with the actual 

LGD results. 
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1. Introduction 

There are two major reasons to model the collections process for the recovery of defaulted 

consumer debt. Firstly the regulations, incorporated in Basel II (BCBS, 2004) and Basel III 

(BCBS, 2011), on the risk capital that banks must hold required banks to estimate Loss Given 

Default (LGD) for each segment of their loan portfolio. LGD is the percentage of the debt at 

default that is still not collected at the end of the collection process. Basel Accord II (BCBS 

2004) suggests three ways of modelling LGD: historical average, regression approaches and 

modelling the recovery process. For consumer debt, the historic average does not make much 

sense and the regression approaches lead to poor results with models in the literature having 

R-squared between 0.05 and 0.22.
 
 One reason for these poor results is the non-normal form 

of the LGD distributions but another significant reason is that LGD depends partially on the 

debtor’s capacity and willingness to repay but also on the collection strategy. The models in 

this paper allow incorporation of the lender/collector’s write-off strategy, which materially 

affects the resultant LGD. They also allow lenders to identify which among a set of write-off 

strategies will be most profitable over the whole debt portfolio. This is a second reason for 

modelling the collections process since lowering LGD affects who should get credit in the 

first place and at what price. 

 

Default is defined as borrowers being 90 days overdue or there is evidence to the lender that 

the borrowers will not repay. Default triggers the collections process as the lender seeks to 

recover the debt. Most collections processes measure their success by the Recovery Rate 

(RR) they achieve, where RR=1-LGD.  

 

The recovery rate depends not only on the debtors’ capacity and willingness to repay but also 

on the lenders’ actions and their collection policy. Previous models have ignored the lenders’ 

influence in their models. One such collection action is to write off the loan and make no 

further attempt to collect. Writing-off is determined by the collector’s expectation of future 

recoveries and the effort in collecting them. Such trade-offs can be used to determine whether 

the future expected recovery amount including recovery costs would be positive. Currently 

collectors make such write-off decisions subjectively and are often swayed by end of the 

quarter financial objectives or the pressure on the collections process. There is currently little 

modelling support for such actions. As well as estimating Recovery Rate (RR), the models 

presented here support collectors in assessing this trade-off between recoveries and the effort 

involved. This trade-off is influenced by the way debtors have already been repaying their 
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debts, the cost of the collection process, and the likely duration until the debt will be repaid. 

The models allow collectors to have some data driven indication of which write-off policies 

are most profitable. 

  

Provided the debtor is contactable, collections start with an agreement for the debtor to repay 

a fixed amount every period or to pay off the debt in one payment. What subsequently occurs 

is that there is an initial sequence of periods of non-payment while the agreement is put into 

place, followed by a sequence of periods of payment. This may stop and then a sequence of 

non-payment periods occurs until repayment restarts again. This can be repeated several 

times throughout the collection process as some of the real data examples in Figure 1 show. 

Alternatively the debt may be “cured” in that the repayments made cover the defaulted 

amount. In this paper we take “cured” to mean the debt is fully repaid, but a minor 

adjustment of the models would allow “cured” to mean a satisfactory percentage of the debt 

is repaid or a sufficient number of repayments has been made.   

 

This paper introduces two modelling approaches to describe these patterns of repayment and 

non-repayment. The first is a payment sequence approach which looks at the movements at 

sequence level between a sequence of payments and a sequence of non-payments. The second 

is a survival analysis approach, which looks at whether there is a repayment or no repayment 

in each time period (usually a month). It models how many payments are made in a sequence 

until the debtor stops paying and how many missed periods occur before they start paying 

again. Using the average repayment rate per sequence for the first approach and the average 

repayment rate per period in the second approach, one can calculate the distribution of the 

overall repayment rate. The models are appropriate for portfolio level decisions and overall 

LGD rates. To estimate LGD for an individual, one needs to extend the models so the 

parameters are functions of the individual debtor’s characteristics. 

 

These approaches allow one to calculate the repayment rate under different write-off 

strategies as well as the average duration a debtor is in the collection process. This would 

allow the lender to decide on a suitable trade-off between the future recovery rate and the 

amount of future effort expended to reach that rate under the different write-off strategies. 

The results are relevant at the portfolio level since they involve the average recovery rate and 

the average extra effort involved. The models are not intended to identify the optimal write-

off strategy but can be seen as a progress to optimising such decisions. 
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The next section gives an informal description of the data from the case study on which the 

models will be built. This is the type of data that collectors are now recording on a regular 

basis. Section 3 discusses the literature on collections processes as well as the use of Markov 

chain models in consumer lending. Section 4 describes the sequence based Markov chain 

model where the debtor moves between payment and non-payment sequences. Section 5 

applies this model to the case study data to estimate recovery rate, and hence LGD, under 

simple write-off strategies. Section 6 describes a hazard rate model of the collections process. 

This involves more estimation than the sequence based model but allows much more 

complex write-off strategies. In both cases, a full model is outlined together with 

simplifications of the model which require fewer parameters as they assume that after an 

initial period the parameters of subsequent payment (and non-payment sequences) are the 

same. The models in Section 6 are applied to the case study data in Section 7. Finally 

conclusions are drawn from the models and their results. 

 

2. Description of the Collections Data Set 

The data we use in this case study describes the repayment history of 10,000 defaulted 

personal loans from a UK bank’s loan book. These are loans that defaulted between 1988 and 

1999 where default was defined as 90 days in arrears. The performance of the loans in the 

collection process was recorded from the start of 1988 until the end of 2003. The collections 

policy of the lender was to agree where possible with the debtor an amount that should be 

repaid each month until the debt was fully paid off. The data recorded whether there was a 

payment from the debtor in a given month and how much it was for. From that it is possible 

to see the history of sequences of payment and non-payment as shown in Figure 1.  

       [Figure 1 about here] 

Figure 1 shows some examples of the actual payment patterns that occur in the data set we 

use later in the paper. The white bars are when the debtor is not repaying and the black bars 

are when the debtor is repaying. As can be seen from this graph, the debtors can go for long 

periods without paying and then start up again. In all payment patterns, the initial sequence 

must be of non-repayment since otherwise the debtor would not have been deemed to have 

defaulted. NoPayj is the j
th

 non-payment sequence and Payj is the j
th

 payment sequence. Some 

of the debtors never pay back anything after the default as for example debtor number 8. 

Others pay back part of their debt but are written off when they stop repaying, see for 
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example debtor number 2. A third group pays back all of their debt – debtor number 4 for 

example, while others are still paying back at the end of the observation period. There are 

some debtors who are still repaying more than 120 months (10 years) after the default. 

 

Recall that all debtors begin in NoPay1 (their first non-payment sequence) since all of the 

debtors in the data set have defaulted. Note that during the time of this sample the definition 

of default started to be tightened to 90 days overdue. There are only two ways to leave 

NoPay1. The debtor either has to start paying (Pay1) or gets written off (W). Once the debtor 

starts paying there are only two ways to leave Pay1. The debtor can either stop paying, in 

which case they enter NoPay2 or they pay off all of their debt and are “cured” (C). In order to 

calculate the probability of a debtor entering Payj given that they are in NoPayj, we take the 

number of those who reached NoPayj and divide that into the numbers who then enter Payj. 

This gives the probability P(Payj|NoPayj). Similarly the ratio of the number who reach 

NoPayj+1 divided by those who reached Payj, gives the conditional probability 

P(NoPayj+1|Payj ). These values together with the number N(NoPayi) and N(Payi), which give 

the number of debtors in each relevant sequence, are given in Table 1. Since these are 

estimates of the probability of a Bernoulli random variable, the standard deviations, 

(N(.)P(.)(1-P(.)))
0.5

 are also reported in Table 1.  

 

Probabilities like P(Payj+|NoPayj+) or P(NoPay(j+1)+|Payj+) correspond to the calculation 

where we have taken the weighted average (weighted by number of cases) of the probabilities 

of the relevant transition for sequence j and all higher sequences. This is equivalent to 

assuming that all sequences later than the jth one have the same parameters.  While there are 

debtors in the data set that continue on this stop/start payment process up to Pay25, the 

proportion reaching NoPay11 is less than 9%. Also, from Pay4 and NoPay4 onwards, the 

transition probabilities are getting quite close. This can be seen in Table 1 where the upper 

rows of the last column show the Chi-square test results to check if the proportion going from 

NoPayj to Payj is the same as that going from NoPay(j+1)+ to Pay(j+1)+ . The lower section of 

the last column shows the results on the same test comparing the proportion moving from 

Payj to NoPayj+1 is the same as that going from  Pay(j+1)+ to NoPay(j+2)+. These results show 

that the parameters for moving from non-payment to payment sequences after the third 

payment sequence are similar. The probabilities of moving from payment to non-payment 

sequence are also converging if more slowly. To be conservative, in the full model we 
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assume only that all payment and non-payment sequences after the tenth will have similar 

parameters to those of Pay10 and NoPay10.  

[Table 1 about here] 

 

Table 2 describes the statistics of the total recovery rate distribution for the whole portfolio of 

defaulted loans under the lender’s collection policy over the sample period.  

     [Table 2 about here] 

The average recovery rate is 31.6 % corresponding to a LGD of 68.4% and the standard 

deviation was 29.2%. The form of the RR distribution is given by Figure 2 which has the U-

shaped distribution common to almost all RR (and LGD) distributions. During the period of 

this sample, the collector had no fixed policy on writing off debts. Write off was done 

subjectively when it was felt the collections department was under pressure. It is clear from 

the examples in Figure 1 that such an approach allowed repayments to stop and start many 

times before the debts were written off. 

                    [Figure 2 about here] 

The collections data includes loans that defaulted in the period 1988-1994 and one that 

defaulted in 1995-1998. The first of these was an economic downturn and the second a period 

of recovery. Table 2 also looks at the differences in the recovery rate statistics for loans 

defaulting in these two periods. It appears that it is the economic situation in the collections 

process more than the economic situation at default which affects the collection results. 

Loans which default in the economic recession pay back a little more in the subsequent 

recovery than those which default during good economic times. This is seen in Table 2. It 

may be the case that those who default during a recession are more willing to try and repay 

when their economic situation improves than those who default in good times. 

 

3. Literature Review 

Consumer debt is a major factor in the current economic situation. As of the end of 2012, US 

consumers owed $11.83 trillion with credit card debt being $700 billion, student loan debt 

$1.16 trillion and delinquency rates of 4.3% (Federal Reserve Bank of New York, 2015). In 

the UK, consumer debt stood at £1.445 trillion with £160.7 billion of this being unsecured 

credit (Bank of England, 2014). UK banks wrote off an average of £11.38 million of the 

defaulted portion of this debt each day in 2012 (Credit Action, 2013). Thus it is not surprising 
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that there is an established literature on how consumers repay their loans (Kahlberg and 

Saunders, 1983). Perhaps what is surprising is how little attention has been paid in the 

literature on how consumers repay after they have defaulted.  

One of the first Markov chain models of consumer credit card behaviour before default was 

suggested by Cyert, Davidson and Thompson (1962) and subsequent variations are reviewed 

in Thomas (2009). In a few instances, the payment pattern approach has also been used to 

rank borrowers in terms of their likelihood to default. It was used for instalment loans by 

Schwarz (2011) as a way of introducing new variables, namely the ratio of actual instalments 

payments made to those required. Stone (1976) used payment patterns to forecast when 

accounts receivable would be paid to a retail organisation. However, in that paper the whole 

cost must be paid off in one repayment. Stanford (1995) built an analytic solution to the 

accounts receivable forecast problem based on the Cyert-Davidson-Thompson model.  

All these approaches have modelled the performance of borrowers before they have 

defaulted. Modelling payment patterns after default is different. The state space is not how 

overdue is the borrower’s payment because all have already defaulted. Instead, it is whether 

the defaulter is currently in a repayment or non-repayment sequence. These payment patterns 

are modelled using a Markov chain, where the state space is whether the defaulter is currently 

paying (Pay), not paying (NoPay), Cured (C) where the whole defaulted amount has been 

repaid, or the loan has been written-off (W). Zhou (2011) is one of the few to consider the 

sequences of payment and non-payment in the collections process as a Markov chain.  That 

thesis concentrated on only two aspects of the process. The first is the duration of the first 

non-payment sequence, i.e. the time until there is a first payment after default. The second is 

how likely the next repayment is likely to be severely late, i.e. that the non-payment 

sequences are above a certain duration. Our models concentrate on the whole collections 

process and so are able to estimate the average expected total recovery rate. Moreover, they 

allow one to look at the results under different write-off policies. The write-off decision does 

affect how much can be recovered in the collections process but has been ignored in most 

LGD models. Curnow et al. (1997) discuss the collection procedure at AT&T and Anderson 

(2007) has a more general discussion of the collections process but neither discusses the 

write-off decisions. An approach which looks at whether one should write off a loan is the 

dynamic programming model of the collections process found in de Almeida Filho et al. 

(2010). They concentrate on the optimal duration and sequence of the different collection 

actions that can be taken in the collections process. One of these is to cease collecting and so 
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write off the loan. The state space in this model is the amount recovered so far, the current 

collection action and the duration so far of that action. It does not involve whether there was 

or was not a payment in the previous period which is the state space used in the models in 

this paper. 

 

The models in this paper allow one to estimate the recovery rate (RR) and hence LGD. Basel 

II (BCBS, 2004) and Basel III (BCBS, 2011) banking regulations require that LGD be 

estimated for each segment of a bank’s loan book. For corporate loans, there is a well-

established literature on modelling LGD see the survey by Peter (2005) of the practical issues 

in LGD modelling. Most of the corporate LGD models are variants of a regression approach; 

see for example the papers in the book edited by Altman et al. (2005). More recent non-

parametric variants, such as neural nets and regression trees, are compared in Loterman et al. 

(2011). Dermine and Neto de Carvalho (2006) investigated LGD for bank loans rather than 

for corporate bonds and showed how a log-log transformation led to a better regression fit of 

the data. Recently, Han and Jang (2013) have investigated how the lenders’ actions can affect 

LGD for corporate credit. However, the literature on LGD for unsecured consumer loans is 

much more limited.  

 

There are two methods of calculating LGD for the retail loans: workout LGD and implied 

historical LGD. Lucas (2006) suggested using the collection process to model LGD for 

mortgages. The collection process was split into whether the property was repossessed and 

the loss if there was repossession. A scorecard was built to estimate the probability of 

repossession and then a model used to estimate the “haircut” which is the percentage of the 

estimated sale value of the house that is actually realised at sale time.  

 

Matuszyk et al. (2010) introduced a decision tree model for unsecured consumer loans to 

model the strategy of the collection process. This helps lenders decide whether to collect in-

house, use an agent or sell off part of the defaulted loans. Our paper looks more at the 

operations one undertakes if one is collecting either in-house or as an agent. Bellotti and 

Crook (2012) added economic variables to the regression models estimating the LGD and 

found that their inclusion in the model was important. Zhang and Thomas (2012) examined 

whether it is better to estimate Recovery Rate (RR) or Recovery Amount. They used linear 

regression and survival analysis models to model Recovery Rate and Recovery Amount, so as 
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to predict Loss Given Default (LGD) for unsecured personal loans. They found estimating 

Recovery Rate directly by using linear regression gave the best results. 

 

In all the above quoted papers the results in terms of R-square values were poor - between 

0.05 and 0.22. One reason for this is the lack of economic variables in the models. This could 

be addressed by using the dual time approach of Breeden (2007) which looks at vintage and 

maturity of the debt as well as economic conditions or by directly including economic 

variables into the regression (Bellotti and Crook, 2012) . Another reason is that the LGD 

distribution is far from normal and so regression approaches do not work without major 

modifications.  A third reason why LGD is hard to predict is its dependence on the write-off 

policy the collector uses. The two models proposed hereafter give an alternative approach to 

modelling the recovery rate using payment patterns. These models have the advantage of 

including the write-off policy in the calculation and do not require the LGD distribution to 

have a specific form. The models could also be extended to include economic conditions. 

 

The second model proposed here is a discrete time survival model. In other papers which use 

survival analysis in LGD modelling (Witzany et al, 2012; Bonini and Caivano, 2013), the 

time measured is directly the time until write-off. In this model the times measured are the 

lengths of the payment and non-payment sequences, which are then incorporated in the 

recovery rate estimate.  

 

4. Modelling Repayment Patterns Using the Payment Sequence model 

This model assumes the probability structure of payment and non-payment sequences is 

given by a Markov chain. Each sequence consists of one or more consecutive months of 

payment or non-payment. The recovery process always begins with a non-payment sequence, 

NoPay1, since a borrower will only trigger the default by missing a payment. This is 

succeeded either by a payment sequence Pay1 or a write-off, W. The payment sequence Payj 

either leads to complete repayment of all debt (C) or a further sequence of missed payments 

(NoPayj+1) The process continues until either the loan is completely recovered (C) or written-

off (W). See Figure 3. The Markov assumption means the number of payments or non-

payments in a sequence does not affect the transition probabilities. 

 

 [Figure 3 about here] 

The probabilities of the transitions are given by: 
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( | )j jP Pay NoPay and
1( | )j jP NoPay Pay

,  j=1,2… 

Note that: 

( | ) 1 ( | )j j jP W NoPay P Pay NoPay   and 
1( | ) 1 ( | )j j jP C Pay P NoPay Pay              (1) 

From this we are able to calculate the chance of being written off by: 

1

1 1 1

( ) ( | ) ( | ) ( | )i j j j j

i j i

P W P W NoPay P NoPay Pay P Pay NoPay




   

                 (2) 

If we allowed the process of recovery to continue indefinitely, the chance of paying off all the 

debt must be: 

1

1 1 2

( ) 1 ( ) ( | ) ( | ) ( | )i j j j j

i j i j i

P C P W P C Pay P Pay NoPay P NoPay Pay




    

                   (3) 

It is unrealistic that the number of payments sequences be unlimited. The write off policy 

WO(N) writes off the debt at the start of the (N+1)
th 

non-payment sequence. That would be 

the N
th 

time the debtor has stopped paying. In that case, the probability of full repayment is 

P(C|N) where: 

1

1 1 2

( | ) ( | ) ( | ) ( | )
N

i j j j j

i j i j i

P C N P C Pay P Pay NoPay P NoPay Pay 

    

                  (4) 

The probability of a write-off is then:  

P(W | N ) =1- P(C | N )

= P(W | NoPay
i
)

i=1

N

å P(NoPay
j+1

| Pay
j
)

1£ j<i

Õ P(Pay
j
| NoPay

j
)+ P(NoPay

j+1
| Pay

j
)P(Pay

j
| NoPay

j
)

j=1

j=N

Õ
(5) 

Zhang and Thomas (2012) showed that estimating recovery rates leads to more accurate 

models than estimating recovery amounts. So let RR(i) be the average recovery rate of the i
th

 

payment sequence (the amount recovered in it as a fraction of the original defaulted amount).  

Note this is the average over those who have an i
th

 payment sequence but do not pay off all 

the loan in that sequence. For those who do pay off completely and so go NPi → Pi → C, it is 

clear their recovery rate must be 1 when they reach C. So we add a recovery rate of 




i

k

kRR
1

)(1  when they reach C. With these estimates we can calculate the overall recovery 

rate (RR) if the lender does not write off any debt.  Its expectation is E(RR) while if the 

recovery process is stopped at the (N+1)
th

 non-payment sequence, the expected recovery rate 

is defined as E(RR|N). These satisfy: 
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E(RR)= RR(i)
i=1

¥

å P(Pay
i
| NoPay

i
) P(NoPay

j+1
| Pay

j
)P(

min{1,i-1}£ j£i-1

Õ Pay
j
| NoPay

j
) +

(max(0,1- RR(k))
k=1

k=i

å )P(C|Pay
i
)P(Pay

i
| NoPay

i
) P(NoPay

j+1
| Pay

j
)P(

min{1,i-1}£ j£i-1

Õ Pay
j
| NoPay

j
)

i=1

¥

å

= P(NoPay
j+1

| Pay
j
)P(

min{1,i-1}£ j£i-1

Õ Pay
j
| NoPay

j

i=1

¥

å ) P(Pay
i
| NoPay

i
)(RR(i) + (max(0,1- RR(k)))

k=1

k=i

å (1-P(NoPay
i+1

|Pay
i
)))

é

ë
ê

ù

û
ú

 (6) 

Similarly, 

E(RR| N) =

P(NoPay
j+1

| Pay
j
)P(

min{1,i-1}£ j£i-1

Õ Pay
j
| NoPay

j

i=1

N

å )

P(Pay
i
| NoPay

i
)(RR(i) + (max(0,1- RR(k)))

k=1

k=i

å (1-P(NoPay
i+1

|Pay
i
)))

é

ë
ê
ê

ù

û
ú
ú

              (7) 

This formulation assumes no interest is being charged on the defaulted debt, no discounting 

of the repayments and no collections costs. These are assumptions approved by some but not 

all regulators. One can modify the equation to deal with the first two of these and the third is 

dealt with in this paper by looking at the collection effort. E(T), the expected number of 

payment sequences, is a good indicator of the effort and hence the cost involved in the 

collection process. Similarly, let E(T|N) be the expected number of payment sequences under 

policy WO(N). Then: 

1 1 1

2 2

( ) ( | ) 1 ( | ) ( | )
i

j j j j

i j

E T P Pay NoPay P Pay NoPay P NoPay Pay




 

 
  

 
               (8)             

and     
1 1 1

2 2

( | ) ( | ) 1 ( | ) ( | )
ii N

j j j j

i j

E T N P Pay NoPay P Pay NoPay P NoPay Pay




 

 
  

 
           (9) 

The lender will be aided in deciding which write-off policy to choose by comparing E(RR|N) 

with E(T|N) for different N. Alternatively they may look at the marginal reward per extra 

effort by looking at (E(RR|N+1)-E(RR|N)) / (E(T|N+1)-E(T|N)). 

 

An advantage of this approach to estimating RR and LGD is that one gets a distribution of the 

recovery rates as well as the mean value. One measure of risk used in finance is Value at Risk 

(VaR). Estimate the α-quantile of the Recovery Rate,    , i.e. the recovery rate if there is 

only an α chance of getting a worse recovery rate. Since the worst recovery occurs if the 

debtor does not leave NoPay1 , the second worst if it does not leave NoPay2, and so on, we 

can estimate this by first defining Nα as the maximum N, so that: 
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1

1

{ | ( | ) ( | ) ( | ) }
N

i j j j j

i j i

N Max N P W NoPay P NoPay Pay P Pay NoPay 

 

           (10) 

Then the α-quartile of the recovery rate RRα will be: 

1

{1, 1}

( )
N

i Max N

RR RR i








 

                                                     (11) 

It seems reasonable to suppose the chance of a debtor paying for the first time is different 

from the chance someone who has already paid something but stopped paying will start to 

repay again. However, it would seem reasonable that for someone in this latter position it 

would not matter too much after a time how many payment sequences have already occurred 

or what their condition was when they defaulted. Similarly, the chance that a defaulter who 

has started to pay for the first time, stops paying before paying off the whole amount is likely 

to be different to the chance that someone who has already paid something and then stopped, 

but is now paying again, stops again before paying off. Again for debtors in this latter 

position, after a time it will not matter too much how many times they have previously 

stopped paying. Similarly, the recovery rate in the first sequence might be different to that in 

the second sequence. However, one might expect the recovery rates in the fifth, sixth and 

higher sequences to be very similar. (This is for those who do not cure in that sequence). 

 

Assume that the first K payment and non-payment sequences are different from one another 

but all subsequent sequences of payment have the same probabilities of stopping and the 

same recovery rate estimates. Similarly, assume all non-payment sequences from the K
th 

have 

the same probabilities of a subsequent payoff occurring. Then one only needs to estimate 2K 

probabilities and K recovery rates. This would lead to the parameters: 

1 1

( | ) ,1 1; ( | ) , ;

( | ) ,1 1; ( | ) , ;

( ) ,1 1; ( ) , ;

i i i i i K

i i i i i K

i K

P Pay NoPay p i K P Pay NoPay p i K

P NoPay Pay q i K P NoPay Pay q i K

RR i r i K RR i r i K

 

      

      

      
                (12) 

In that case, the equations (2), (5), (6), (7), (8) and (9) reduce to the following: 

1 11

1

2 1 1

1
P(W)=(1-p ) (1 )

1

j i J Ki K
K

i j j j j

i j jK K

p
p p q p q

p q

    

  


  


                              (13) 
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  

1min{ , }

1

2 1 1

1

1

P(W|N)=(1-p ) (1 ) ( 1)

1
( ) 1 ( ) ( )

1

where (Y)=1 if Y>0; (Y)=0 if Y 0

j i j Ni K N

i j j j j

i j j

K
N K N KK

j j K K K K

j K K

p p q K N p q

p
N K p q p q p q

p q





 

  

  

  



    

 
    

 



  

              (14) 

 

 

111

1 1

2 1 1

11 11 1

1 1 1 11 1

( )
1

(1 )(max{0,1 }) ( ) (1 ) max{0,1 }

j KiK
K K

i i j j j j K K

i j j K K

ij i j KK s i K

i i s j j j j K K K K s K

i s i sj j

p q
E RR r p r p p q p q r p

p q

p q r p q p q p q p q r ir

 

  

      

    

 
    

 

 
      

 

  

    

 

 (15) 

 

min{ , } min{ , }1 1

1 1 1 1 1

2 2 11 1

1 11

( | ) (1 ) (1 ) (max{0,1 })(1 )

1 ( )
( ) (max{0,1 })( ) (1 )

1

K N K Ni is i

i i j j s i i j j

i i sj j

N Kj K K N s K
iK K

j j K K s K K K K K

i sj K K

E RR N r p r p p q r p q r q p p q

p q
N K p q r p r ir p q q p

p q


 

   

  

 

       

  
      

 

   

 


  
 

  (16) 

 

11

1

2 1 1

( )
1

j KiK
K

i j j j j

i j j K K

p
E T p p p q p q

p q



  

 
    

 
                                              (17) 

 

min{ , } 1

1

2 1 1

1 ( )
( | ) ( )

1

N Kj KK N i
K K

i j j j j K

i j j K K

p q
E T N p p p q N K p q p

p q



  

 
     

 
             (18) 

These are the formulae which we will use in the case study calculations in section 5. One 

might think that if N>K one would want to make the same decision of whether to carry on or 

write off no matter what the value of N. However, this is not the case because the recovery 

rate of the final payment when a debtor cures lessens as the number of previous payment 

sequences increases. Thus there comes a time when it is worth writing the debt off even 

though that might not have been the case when N=K. 

 

5. Case Study using the payment Sequence Model on the collections data  
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The case study uses the data set described in section 2. Table 1 of that section gives the 

transition probabilities between payment and non-payment sequences needed for the 

modelling. Table 3 describes the repayment rates per sequence RR(i) from the data. 

 

  [Table 3 about here] 

 

RR(i) is calculated by taking the average of the repayment rate (the amount of repayment in 

the sequence as a ratio of the original debt) for the i
th 

 payment sequences in which the 

borrower stops paying before having completely paid off the debt. These repayment rates 

start with a rate of 13.15% in the first payment sequence and drop monotonically until the 

value is 5.91% in the tenth sequence. Although this repayment rate is always dropping, the 

values are slowly converging and so assuming a constant RR(i) after the tenth payment 

sequence is a reasonable assumption. The last five entries in Table 1 are the average 

repayment rates if we combine all the repayment sequences from the fifth, fourth, third, 

second and first onwards.  Recall the last column of Table 1 looks at the chi-square tests 

results for the hypotheses that P(Payi|NoPayi) and P(Payi(i+1)+|NoPay(i+1)+) take the same 

value and also the same thing for the hypothesis P(NoPayi+1)|Payi) equals 

P(NoPayi(i+2)+|Pay(i+1)+). Table 3 reports the results for RR(i) i=1,…10 and RR(i+), i=1,..,5. 

It suggests one can use the same parameters for all sequences from the third and probably the 

second onwards. The difference between RR(i) and RR(i+1) for such sequences is less than 

0.01 and getting smaller as RR(i) converges to 0.59.  

 

Substituting the values in Tables 1 and 3 into equations (14) to (17) gives the expected 

average total recovery rate and the average expected number of payment periods involved 

under a number of write-off policies.  

[Table 4 about here] 

 

Table 4 gives the results for E(RR|N) and E(T|N) for different write-off policies, WO(N), 

where one is writing off the debt when the borrower stops paying for the N
th 

time.. The final 

row corresponds to the values if the collector never wrote off any debtor.  In that case, the 

expected total recovery rate is 38.2%, corresponding to a LGD of 61.8%. The first ten rows 

show the results under the write-off policies of writing off any borrower when they reach the 

N+1
th 

non-payment sequence (i.e. the borrower has stopped paying N times). Note if one 

stops the process after the tenth time a borrower stops paying, the lender will expect to 
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recover 37.1% of the debt. If one wants to recover at least 30% of the debt on average, one 

should write off the debt on the fifth time the borrower stops a payment sequence.  A harsher 

policy of two failures and the borrower is written off leads to an expected recovery rate of 

18.0%. Comparing tables 2 and 4 shows that the collector’s current recovery rate of 31.6% 

could be obtained by writing off debts the 6
th

 time a debtor stops paying. 

[Figure 4 about here] 

Figure 4 gives a graphical representation of the trade-off between the total expected recovery 

rate and the total number of expected payment periods under these different write-off 

policies. The graph is concave which means the increase in recovery rate per extra payment 

period decreases as the write-off policy increases in N. To find the recovery rate per payment 

sequence, calculate the slope from the origin to the point corresponding to that policy on the 

curve. The best result in terms of recovery rate per payment sequence is to write off the debt 

after the first non-payment but this leads to a low recovery rate of 10.7%. At the other end of 

the graph, the difference between the policy of no active write-offs and writing off at the 

tenth non-payment is an increase in expected recovery rate of 1.1% but only an expected 

increase of 0.266 in the number of payment sequences. So although one gets very little 

recovery deep into the collections process, it also does not involve much more effort because 

few debtors have had such a large number of payment sequences. 

 

If one assumes the ratio of the average defaulted amount to the cost of keeping a debtor in the 

collections process for one more non-payment-payment cycle is 10, then from Figure 4 we 

can see the optimal write-off policy is when the tangent to the curve has a slope of 10, i.e. at 

(2.639, 0.331). The same result can be obtained from Table 4 by maximizing 10E(RR|N)-

E(T|N)  which happens at N=6 with 10(0.331)-2.639=0.671. 

 

To see the effect of  taking the simpler models where one assumes that all payment and non-

payment sequences after the K
th  

are given the same parameters, we undertake the calculation 

for the expected recovery rate with this assumption holding for K=5,4,3,2 and 1. Recall that 

the chi-square tests suggest K=2 or 3 are sensible choices. The previous calculation assumed 

that after the 10
th

 sequence all the remaining sequences have the same parameter. The 

difference between the recovery rate using this assumption and the simplified assumptions 

that assume similarity after the first, second, third, fourth and fifth sequence for all future 

sequences is shown in Table 5.  
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[Table 5 about here] 

In that table, a positive value says the simplifying assumption has come up with a lower 

recovery rate, while a negative value means it has resulted in a higher recovery rate. The 

maximum error using the 1+ simplification, which means all the sequences have the same 

parameters, is 2.36%. For 2+, where the first sequence is assumed different from all the rest, 

it is 1.51%.  For 3+, 4+ and 5+, the maximum errors are just below or above 1%. This 

suggests it is enough to make K=2 or K=3 (which involves estimating 6 and 9 parameters 

respectively) to get an accurate model. This table is useful in showing the differences 

between these simplified models with 6 or 9 parameters and a larger one, which in this K=10 

case has 30 parameters. It is fairly obvious though from the results in the last column of Table 

5 that one should at least use a model which differentiates between the first payment and non-

payment sequence and the rest.  

 

6. Modelling the Recovery Process Using a Hazard Rate Model 

In this section, we develop a hazard rate model which requires more parameters but can 

evaluate the impact of more sophisticated write-off policies than the payment sequence 

model. The model estimates the likelihood of transition from payment to non-payment (or 

vice versa) each month. This allows the duration of each payment sequence to be modelled. 

By adding data about the repayment rate in each month, estimates of the total repayment rate 

can be made.  

 

We extend the notation introduced earlier by defining        
 
  to be the j

th 
period of non-

payment in a non-payment sequence i and let     
 
 be the j

th 
period of payment in payment 

sequence i. The state space of the system now extends to that shown in Figure 5. 

[Figure 5 about here] 

All defaulters start with a non-payment month which is labelled       
 . The process can 

then move to one of three states: 

       
  when there is no payment and so the non-payment sequence continues 

     
                                               sequence starts 

 W where the debt is written off and the recovery action ceases. 

For a month where there is a payment, say     
 
, the process can again move to three 

different states, namely: 
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     
   

 if there is a payment in the next month so the payment sequence continues 

         
  if there is no payment and so a new non-payment sequence begins 

 C where the payment is enough to pay off all the defaulted amount and so the loan is 

“cured”. 

The conditional probabilities P(Payi
1
| NoPayi

j
) and P(NoPay

1
i+1| Payi

j
) can be thought of as 

discrete time hazard functions which determine respectively how long a non-payment and a 

payment sequence lasts.  

 

Let RT be the expected total recovery rate to date in the process and define RRM(i) to be the 

average recovery rate paid per month in payment sequence i. Whenever the system moves to 

    
 
  for any j, RRM(i) is added to RT.  If this means that RT becomes greater or equal to 1, 

then the process moves to state C.  So it is the value of the variable RT that determines when 

the process enters the cure state. The model could be extended by making the average 

monthly repayment RRM(i,j) to be a function of how long the repayment sequence has been 

as well as the number of previous sequences. This would allow the situation where there is a 

large payment made at the start of each repayment sequence.  

 

This model can deal with more write-off policies. Define WO(N,M) to be the policy that 

writes off either after the N
th 

time the debtor stops a payment sequence, or when it is M or 

more periods since the collection process started and there is a non-payment this period. The 

first condition occurs when the process reaches the state          
 , while the second 

condition requires the state of the process to include the number of periods since the start of 

the collection process. Thus the states of the system are (    
 
       or (      

 
     ) , 

where     
 
        

 
) denote the collection process is in the jth period of the ith payment 

(non-payment) sequence, respectively. RT is the recovery rate so far and m is the number of 

periods since the start of the collection process.  

 

The transition between states is given as follows: 

 1( , , ) ( , ( ), 1)j j

i iPay RT m Pay RT RRM i m    with transition probability

1( | )j j

i iP Pay Pay  provided ( ) 1RT RRM i   

 ( , , ) ( ,1, 1)j

iPay RT m C m  with transition probability 1( | )j j

i iP Pay Pay  provided 

( ) 1RT RRM i   
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 1

1( , , ) ( , , 1)j

i iPay RT m NoPay RT m  with transition probability 1

1( | )j

i iP NoPay Pay

provided Mm 1 and Ni   

 ( , , ) ( , , 1)j

iPay RT m W RT m  with transition probability )|( 1
1

j
ii PayNoPayP  provided 

Mm 1 or Ni   

 1( , , ) ( , ( ), 1)j

i iNoPay RT m Pay RT RRM i m   with transition probability 1( | )j

i iP Pay NoPay

provided 1)(  iRRPRT  

 ( , , ) ( ,1, 1)j

iNoPay RT m C m  with transition probability 1( | )j

i iP Pay NPay provided 

( ) 1RT RRM i   

 1( , , ) ( , , 1)j j

i iNoPay RT m NoPay RT m  with transition probability

1( | )j j

i iP NoPay NoPay provided Mm 1  

 ( , , ) ( , , 1)j

iNoPay RT m W RT m  with transition probability 1( | )j j

i iP NoPay NoPay

provided 1m M   

 

The expected total recovery rate under such write-off policies is calculated by an iterative 

scheme beginning with m=M and then working back through the states in decreasing order of 

m value. Eventually one can calculate the overall total expected recovery rate, E(RR), which 

is that in the first state of the sequence, namely ERR(NoPay
1

1, 0, 0). For the write-off policy 

WO(N,M), this means solving the following set of equations (20) with the boundary 

conditions as in (19): 

 

        
 
     ) =1       if        

            
                                                                                                    (19) 

   (      
 
     )                       

 

        
 
     ) 

= (    
   

|    
 
)   (    

   
              )  

  (        
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 |      
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|      
 
)   (      

   
       )                                             (20)  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 

 

 

Define       
 
     ) (or         

 
     ) ) to be the time in the collection process given 

one is in state      
 
     ) (or        

 
     )) and          

 
       and 

E(T)(      
 
     )  being their expected values.  These are calculated from an identical set 

of equations to (19) and (20) but with slightly different boundary conditions namely: 

  

    (    
 
     )    if       

              
                   (      

 
     )                                   (21) 

 

E(       
 
     ) =       

   
|    

 
)    (    

   
              )  

          
 |    

 
)           

          

           
 
     ) =       

 |      
 
)         

                 

        
   

|      
 
)    (      

   
       )         (22) 

 

These equations calculate the expected average recovery rate and the average number of 

periods that the collection process takes under different write-off policies. This allows 

management to decide on what is the appropriate policy for them. There is a trade-off 

between increasing the recovery rate and increasing the time and hence the effort and cost of 

the collection process. As before, if the average default amount is b and the cost each period a 

debtor is in the collection process is c, then the collector can find the expected profitability of 

each strategy by calculating             . In this way, one can calculate the most 

profitable write-off policy. 

 

7. Case Study: Applying Hazard Rate Model to In-house Collections Data 

The hazard rate model of the previous section is now applied using the collections data 

described in Section 2. This model involves estimating the probabilities, P(Payi
j+1

|Payi
j
) and 

P(NoPayi
j+1

|NoPayi
j
). The number of probabilities to be estimated can be limited by 

assuming all payment and non-payment sequences after the K
th 

ones have the same 

probability parameters as the K
th  

one. Even then, there are theoretically an infinite number of 

probabilities as j can take a countable number of values. So we add the assumption that in 

every sequence the hazard rates P(Payi
j+1

|Payi
j
) and P(NoPayi

j+1
|NoPayi

j
) are constant once j 

≥ L. This seems a reasonable assumption and is in most cases supported by the chi-square test 
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results in Table 6. Also, once a debtor has settled into a payment or non-payment sequence, it 

appears not to matter how long the sequence has already lasted. With these assumptions, one 

is left with 2LK different possible states, Payi
j  

and NoPayi
j 
.   In our case, we take K=L=3 

[Table 6 about here] 

An alternative approach to estimating P(Payi
j+1

| Payi
j
) for all j would be via a parametric 

hazard rate functions (.)
iPh  where hPi ( j) = P(Payi

j+1 |Payi
j ) and 

hNPi ( j) = P(NoPayi
j+1 |NoPayi

j ). This would avoid putting a limit L on the non-constant part 

of each hazard rate function but computational requirements would still require that the 

conditional probabilities be constant for j where j ≥ L. In this paper we will use the actual 

conditional probabilities rather than the hazard rate function but with K=L=3. The resultant 

18 probabilities are given in Table 6. 

 

Initially RT looks continuous as it could take any value in [0,1]. However if all sequences 

after K
th 

repayment sequence have the same repayment rates per period, RT will only take a 

discrete number of values. In this case, the only repayment rates per period that need be 

considered are RRM(1), RRM(2), …, RRM(K). Define:  

r=gcd{RRM(1), RRM(2), …, RRM(K)} and  RRM(i)= rd(i) 

We can then replace RT in any state by integers d=0,1,…,D, where RT = rd  and 

 1/ 1D r  . In this hazard model, there is no extra term to deal with the cases when a 

repayment means the whole amount is repaid and the collection is complete. Thus, unlike the 

first model, we include all the cases which involve an ith repayment sequence when 

calculating the RRM(i) values in Table 8. 

[Table 7 about here] 

There are 2LKD possible states, which in this case with K=L=3, D=541 leads to 9738 states. 

If we denote the states      
 
       as             and        

 
       as            , 

we can calculate the expected recovery rates under a         write-off policy by solving 

(19) and (20) in the equivalent form. 

 

                                                      ; 

                   
   

|  
 
)           {     }               
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)                  ; 

                    
   

|   
 
)           {     }          

    
 |   

 
)                      

 

[Table 8 about here] 

 

Table 8 shows the results of these calculations. If one compares the results of the final 

column of Table 8, E(RR) with M=48, with the E(TT|N) column in the first three rows and 

the last row of Table 4, one finds that the two models come up with quite similar results. 

Even though the last column in Table 8 corresponds to the collection process stopping after 

four years while that of Table 4 has no limit on how long the process lasts, the recovery rates 

vary by at most 2%. Apart from the N=1 case, the Table 8 results with their fixed time limits 

are less than the Table 4 results with their collection process of unlimited duration. A 

comparison with the actual expected recovery rate of 31.6% would suggest a write off policy 

around N=3, M=61 or one of N=∞, M=43. 

[Figure 6 about here] 

As Figure 6 shows, increasing N, the number of payment sequences before write-off, by 1 has 

less effect on the recovery rate than increasing M,  the duration of the collections process by 

12 (months).  The graph for each N has an initial convex part, followed by an almost linear 

section and finally a concave section. In the case of N=∞, the curve is convex until M=54 

and concave thereafter. One can think of this as an initial learning process, where defaulters 

overcome the initial reluctance to repay; then a steady state; and finally an ageing process as 

the defaulters who are left are the ones who are least likely to repay. The change from 

convexity to concavity varies depending on N.  For N=1, it occurs at M=20; for N=2 at 

M=28 and for N=3 at M=31. The graph shows though what impact the write-off policies 

have in terms of recovery rates. Even comparing two realistic policies (N=3, M=34) and 

(N=∞, M=48), the recovery rate varies from 11% to almost 37%. Moreover, comparing the 

N=∞ case with the actual recovery rate in Table 2 shows that the current policy pursued has 

the same recovery rate as one where debtors are only written off after 48 month since the 

collection process. The N=∞ leads to high recovery rates after 8 years but this is such an 

unrealistic policy (no write-off for 8 years no matter what) that there is a lack of data 

available. One can find the most profitable write-off policy of this form by repeating what 
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was done in section 4 and calculating E(T|N,M) the expected time in the collections process 

under the WO(N,M) write-off policy. This will be less than M because some of the borrowers 

will pay off before then or be written off under the N part of the rule. If the average defaulted 

amount is a and the cost of collections per period per debtor is c, then one should maximise 

aE(RR|N,M)-cE(T|N,M) as was the case in section 5.  

 

8. Conclusions 

The  paper  discusses  a  way  of  modelling  recovery rates (RR) and hence Loss Given 

Default (LGD) since LGD=1-RR  for  unsecured  consumer  loans. It models the patterns of 

how debtors pay back their debt after default. These models not only predict loss given 

default but they highlight how LGD values depend on the write off policy of the collector. By 

allowing collectors to estimate both the extra proportion recovered and the extra effort 

involved if a write-off policy is relaxed, they indicate what write-off strategies are optimal. 

 

There are two related models developed in this paper. The first uses the sequences of 

consecutive payments or consecutive non-payments as the basic units together with the 

average recovery rate in each payment sequence. Markov chain ideas lead to an overall 

recovery rate model. The second model uses a discrete hazard rate approach to estimate the 

chance a defaulter is paying or not paying in a given month. Such a model gives estimates of 

the duration of each payment or non-payment sequence. Estimating the monthly average 

recovery rate allows one to estimate the total recovery rate.  

 

The first model requires less data to implement and leads to an analytic solution. However the 

write-off policies one can consider with it are somewhat limited. The second approach 

involves more parameters and has to be solved iteratively. However it can deal with more 

complex write-off policies. The write-off policies considered in this paper depend on the 

current duration of the collections process and the number of times a borrower fails to 

continue in a payment sequence. The model could also deal with write-off policies which 

depended on what percentage of the debt had been recovered, the time since the last payment, 

as well as combinations of these four elements.  

 

These models are essentially work in progress and indicate what is possible with this 

repayment pattern approach. The models operate at the portfolio level, since they deal with 

average recovery rates and average time in the collections process. They are useful as 
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operations management tools for the collections process. They help the collector decide what 

the optimal trade-off is between recovery rate and time, effort and cost in the collections 

process. This leads to decisions on the staffing levels and skills needed for collections. 

 

One could extend the models to work at the individual defaulter level. The parameters would 

then be functions of the debtor’s characteristics and the prior performance in collections. This 

develops the idea of a collection score suggested in Anderson (2007). The models could 

easily be extended to allow for discounting of the later repayments, and introducing 

collection costs explicitly. The models in this paper calculate the expected recovery rate and 

the expected collections effort and allows the lender to determine the appropriate trade-off, 

rather than requiring explicit collection costs.  One could also introduce economic conditions 

by making the recovery rates and the transition probabilities be functions of economic 

variables. This would improve the accuracy of the models but must wait until data on 

collections performance against economic conditions is regularly collected. Thus though 

these models are some of the first to take a repayment pattern approach to LGD and RR 

modelling, there are clear indications of how to develop this approach. It has the advantage 

that it does not depend on the form of the LGD distribution, is able to deal with collector’s 

operating decisions, such as their write-off policy, and could include economic effects. These 

are three of the issues that cause difficulties in LGD modelling.   
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i seq. 

no. 
N(NoPayi ) N(Payi ) 

P (Payi| 

NoPayi) 

S.D. 

P(Payi|No

Payi) 

P 

(W|NPi) 

P 

(NoPay(i

+1)| 

Payi) 

S.D. 

P(C|Pa

yi) 

P 

(C|Payi) 

Segments 

compared 

Chi- 

square  

value 

1 9998 7180 0.718 0.004 0.282 0.980 0.002 0.020 P(Pay|NoPay) 

2 7036 5632 0.800 0.005 0.200 0.973 0.002 0.027 4v5+ 5.528 

3 5482 4524 0.825 0.005 0.175 0.967 0.003 0.033 3v4+ 5.695 

4 4374 3719 0.850 0.005 0.150 0.961 0.003 0.039 2v3+ 46.74 

5 3575 2960 0.828 0.006 0.172 0.955 0.004 0.045 1v2+ 559.47 

6 2826 2369 0.838 0.007 0.162 0.954 0.004 0.046 
  

7 2260 1917 0.848 0.008 0.152 0.957 0.005 0.043 

8 1834 1560 0.851 0.008 0.149 0.940 0.006 0.060 P(NoPay|Pay)  

9 1466 1214 0.828 0.010 0.172 0.921 0.008 0.079 4v5+ 114.15 

10 1118 903 0.808 0.012 0.192 0.924 0.009 0.076 3v4+ 229.97 

5+ 13079 10923 0.835 0.003 0.165 0.946 0.002 0.054 2v3+ 246.63 

4+ 17453 14642 0.839 0.003 0.161 0.950 0.002 0.050 1v2+ 287.08 

3+ 22935 19166 0.836 0.002 0.164 0.954 0.002 0.046 

  2+ 29971 24798 0.827 0.002 0.173 0.959 0.001 0.041 

1+ 39969 31978 0.800 0.002 0.200 0.963 0.001 0.037 

Table 1: Transition probabilities between payment sequences from case study data 

 

Year N Mean S.D. 

All 9998 31.6% 29.2% 

1988-1994 5645 32.3% 28.9% 

1995-1999 4353 30.5% 29.5% 

 

Table 2: Recovery rate statistics for full case study portfolio 

 

i: sequence 

number N(Payi) RR(i) 

 

i+: sequences 

starting from i N(Payi) RR(i) 

1 7180 0.1315 

 

1+ 31978 0.0987 

2 5632 0.1095 

 

2+ 24798 0.0892 

3 4524 0.0971 

 

3+ 19166 0.0832 

4 3719 0.0908 

 

4+ 14642 0.0789 

5 2960 0.0846 

 

5+ 10923 0.0749 

6 2369 0.0793 

    7 1917 0.0738 

    8 1560 0.0687 

    9 1214 0.0638 

    10+ 903 0.0591 

    Table 3. Repayment rates per sequence from case study data 
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N E(RR|N) E(T|N) 

1 10.7% 0.718 

2 18.0% 1.281 

3 23.4% 1.734 

4 27.6% 2.106 

5 30.7% 2.402 

6 33.1% 2.639 

7 34.8% 2.831 

8 35.8% 2.987 

9 36.6% 3.108 

10 37.1% 3.198 

∞ 

 
38.2% 3.464 

Table 4. Recovery rate and number of payment sequences under different write-off policies 

WO(N) where N is number of occasions borrower stopped repaying 

 

 

WO(N) 

 (E(RR|N) with 

5+ ) - (E(RR|N) 

with 10+) 

 (E(RR|N) with 

4+ ) - (E(RR|N) 

with 10+) 

 (E(RR|N) with 

3+ ) - (E(RR|N) 

with 10+) 

 (E(RR|N) with 

2+ ) - (E(RR|N) 

with 10+) 

 (E(RR|N) with 

1+ ) - (E(RR|N) 

with 10+) 

1 0.0000 0.0000 0.0000 0.0000 -0.0236 

2 0.0000 0.0000 0.0000 -0.0115 -0.0233 

3 0.0000 0.0000 -0.0058 -0.0141 -0.0195 

4 0.0000 -0.0044 -0.0092 -0.0151 -0.0168 

5 -0.0027 -0.0065 -0.0102 -0.0143 -0.0141 

6 -0.0038 -0.0070 -0.0097 -0.0127 -0.0116 

7 -0.0003 -0.0092 -0.0112 -0.0133 -0.0119 

8 0.0000 -0.0082 -0.0096 -0.0111 -0.0099 

9 0.0010 -0.0067 -0.0076 -0.0086 -0.0078 

10 0.0026 -0.0045 -0.0051 -0.0057 -0.0054 

∞ 0.0113 0.0069 0.0075 0.0069 0.0020 

Table 5. Difference in recovery rates between full model and ones where all sequences after 

5
th

, 4
th

, 3
rd

, 3nd and 1st are given same parameters (under the different write off policies 

WO(N) where N is number of times borrower stopped paying) 
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P(Payi
j+1

|Payi
j
) 

j ( months 

into 

sequence)=1 

j=2 j=3+ 
Chi-square 

j=1 vs j= 2 

Chi-square 

j=2 vs j=3+ 

i (sequence 

number)=1 
0.872 0.932 0.963 13.4 3.1 

i=2 0.732 0.812 0.920 19.9 25.0 

i=3+ 0.593 0.715 0.901 166.3 206.8 

P(NoPayi
j+1

|NoPayi
j
) j=1 j=2 j=3+   

i=1 0.409 0.777 0.962 761.9 71.3 

i=2 0.413 0.735 0.958 420.5 73.8 

i=3+ 0.415 0.681 0.955 965.4 365.5 

Table 6. Probabilities of transitions for hazard rate model obtained from case study data 

 

 

i 1 2 3+ R 

RRM(i) 0.0185 0.0185 0.02035 0.00185 

d(i) 10 10 11  

D 541    

Table 7. RRM(i) average recovery rate per month for the hazard rate models from case study 

data with d(i) and D which give the discretized approximation  

 

 

 

M 1 6 12 18 24 36 48 

N=1 0.237% 1.201% 2.258% 4.357% 5.902% 8.555% 11.006% 

N=2 0.237% 1.420% 3.338% 5.638% 8.136% 13.622% 17.866% 

N=3 0.237% 1.972% 4.672% 7.849% 11.326% 18.557% 25.433% 

N=∞ 0.237% 1.972% 4.777% 8.397% 12.802% 23.706% 36.867% 

Table 8. Recovery rates for different WO(M,N) policies using the hazard rate model where 

write-off occurs either after M periods into the collects process or at N
th  

 time borrower stops 

paying 
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Figure 1. State space description of the payment sequences for 9 different defaulters 

(Note: Black when payment occurs; white when no payment) 

 

 

 

Figure 2: Recovery Rate (RR) distribution using full case study portfolio 
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Figure 3. Transitions between states in repayment sequence model 

 

 

Figure 4. Trade-off between recovery rate and number of payment periods as the N in the 

write off policy WO(N) is 1,2,3,4,5,6,7,8,9,.10,∞ . 
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Figure 5.Transitions between states in hazard rate model 

 

  

 

Figure 6. Recovery rates under different (N,M) write-off policies 
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