
University of Southampton Research Repository

ePrints Soton

Copyright © and Moral Rights for this thesis are retained by the author and/or other
copyright owners. A copy can be downloaded for personal non-commercial
research or study, without prior permission or charge. This thesis cannot be
reproduced or quoted extensively from without first obtaining permission in writing
from the copyright holder/s. The content must not be changed in any way or sold
commercially in any format or medium without the formal permission of the
copyright holders.

 When referring to this work, full bibliographic details including the author, title,
awarding institution and date of the thesis must be given e.g.

AUTHOR (year of submission) "Full thesis title", University of Southampton, name
of the University School or Department, PhD Thesis, pagination

http://eprints.soton.ac.uk

http://eprints.soton.ac.uk/

UNIVERSITY OF SOUTHAMPTON

Synthesizing Imperative

Distributed-Memory Implementations

from Functional Data-Parallel Programs

by

Tristan Aubrey-Jones

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy

in the

Faculty of Physical Sciences and Engineering

Department of Electronics and Computer Science

May 2015

http://www.soton.ac.uk
mailto:taj105@ecs.soton.ac.uk
http://www.fpse.soton.ac.uk/
http://www.ecs.soton.ac.uk

UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Tristan Aubrey-Jones

Distributed memory architectures such as Linux clusters have become increasingly com-

mon but remain difficult to program. We target this problem and present a novel

technique to automatically generate data distribution plans, and subsequently MPI im-

plementations in C++, from programs written in a functional core language. This

framework encodes distributed data layouts as types, which are then used both to search

(via type inference) for optimal data distribution plans and to generate the MPI imple-

mentations. The main novelty of our approach is that it supports multiple collections,

distributed arrays, maps, and lists, rather than just arrays.

We introduce the core language and explain our formalization of distributed data layouts.

We describe how to search for data distribution plans using a type inference algorithm,

and how we generate MPI implementations in C++ from such plans. We then show how

our types can be extended to support local data layouts and improved array distribu-

tions. We also show how a theorem prover and suitable equational theories can be used

to yield a better (i.e., more complete) type inference algorithm. We then describe the

design of our implementation, and explain how we use a runtime performance-feedback

directed search algorithm to find the best data distribution plans for different input

programs. Finally, we present some conceptual and experimental evaluation which an-

alyzes the capabilities of our approach, and shows that our implementation can find

distributed memory implementations of several example programs, and that the perfor-

mance of generated programs is similar to that of hand-coded versions.

http://www.soton.ac.uk
http://www.fpse.soton.ac.uk/
http://www.ecs.soton.ac.uk
mailto:taj105@ecs.soton.ac.uk

Contents

Acknowledgements xxi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Objectives . 5

1.3 Overview of the approach . 6

1.4 Original contributions . 8

1.5 Outline . 11

2 Background and Literature survey 13

2.1 Parallel Programming . 13

2.1.1 SIMD models . 14

2.1.2 MIMD models . 14

2.2 Data-parallel programming on clusters . 17

2.2.1 Manually programming communication 17

2.2.2 High-level shared memory . 18

2.2.3 Manual data distribution . 19

2.2.4 Restricted programming models 23

2.3 Basics of type systems . 26

2.3.1 Simple function types . 27

2.3.2 Polymorphic types . 28

2.3.3 Type inference . 29

2.3.4 Dependent types . 29

2.3.5 Unification . 30

2.4 Auto-tuning by code generation . 30

2.4.1 Search space representations . 31

2.4.2 Search algorithms . 32

2.5 Conclusions . 34

3 A Functional DSL for Data Parallelism 37

3.1 Introduction . 37

3.2 Syntax . 38

3.3 Semantics . 39

3.4 Types . 41

3.5 Library functions . 44

3.6 Example programs . 47

4 Distributed Data Layout Types 51

v

vi CONTENTS

4.1 Introduction . 51

4.2 Distributing Collections on Clusters . 53

4.3 Distributed Data Layout (DDL) Types . 55

4.3.1 Distributed Function Types . 57

4.3.2 Dependent Type Schemes . 59

4.3.3 Function Generators . 60

4.4 Combinator implementations . 60

4.5 Example Derivations . 63

4.6 Concluding remarks . 71

5 Inferring Distributed Data Layout Types 73

5.1 Type Inference . 73

5.1.1 Inference rules . 74

5.1.2 Testing for function equality . 82

5.1.3 Unifying functions . 85

5.1.4 Variables bound in outer scopes . 90

5.1.5 Default parameter values . 91

5.2 Redistribution insertion . 92

5.3 Concluding remarks . 97

6 Extended Distributed Data Layout Types 99

6.1 Local data layouts . 100

6.1.1 Local array layouts . 101

6.1.2 Local map layouts . 103

6.1.3 Local list layouts . 103

6.2 More flexible functions . 105

6.2.1 Extended partition functions . 106

6.2.2 Extended local layout functions . 109

6.3 Extended distributed array types . 109

6.4 Extended unification of functions . 114

6.4.1 Projection function theory . 115

6.4.2 Permutation function theory . 116

6.4.3 Indexing function theory . 117

6.4.4 Implementing unification with equational theories 117

6.5 Concluding remarks . 119

7 Implementation 121

7.1 Overview . 121

7.2 Front end . 122

7.3 Plan synthesis . 123

7.3.1 Type declarations . 123

7.3.2 Combinator implementation rules 123

7.3.3 Representing solutions . 124

7.4 Back End . 125

7.4.1 Expression evaluation . 125

7.4.2 Function handling . 126

7.4.3 Copy avoidance . 126

CONTENTS vii

7.4.4 Collection storage . 127

7.4.5 Tuple storage . 127

7.4.6 Code templates . 128

7.4.7 Example output . 129

7.5 Feedback-Based Implementation Search 131

7.5.1 Dimensions of the search heuristics 132

7.5.2 Implemented search heuristics . 132

7.5.3 Performing the search . 133

7.6 Concluding remarks . 134

8 Evaluation 135

8.1 Flocc Programs . 136

8.2 Automatic code generation . 136

8.2.1 Comparison with PLINQ . 137

8.2.2 Comparison with MPI . 138

8.3 Automatic plan generation . 143

8.3.1 Experimental setup . 144

8.3.2 Results . 146

8.3.3 Search algorithms . 149

8.4 Capabilities . 153

8.4.1 Language comparison . 153

8.4.2 Data distributions supported . 154

8.4.3 Conceptual benefits of approach 157

8.5 Concluding remarks . 161

9 Conclusion and Future work 163

9.1 Main contributions . 163

9.2 Future work directions . 166

9.3 Concluding remarks . 169

A Matrix multiply implementations 171

B Flocc library functions 175

C Flocc DDL types 181

D Equational theory proofs 189

E Flocc language feature evaluation 195

Bibliography 201

List of Figures

1.1 Feedback-directed code generation for Flocc 9

2.1 Parallel architectures . 14

2.2 Distributed memory architectures . 15

2.3 Syntax of lambda-calculus . 27

2.4 Simply typed λ-calculus . 27

2.5 Simple types . 27

2.6 Typing rules for simply typed lambda-calculus 28

3.1 Flocc expression and type syntax . 39

3.2 Flocc interpreter reduction rules . 40

3.3 Definition of ftv (Free type variables) . 42

3.4 Flocc typing rules . 43

3.5 Scalar library function types. 44

3.6 Predefined data-parallel combinators for arrays, maps, and lists. 45

3.7 Matrix-matrix multiplication program . 47

3.8 Jacobi 1D stencil . 48

3.9 N-bucket histogram . 48

3.10 Dot product . 49

4.1 Array distributions (left, center). Map distribution (right). 54

4.2 Distributed data layout (DDL) type syntax 55

4.3 Flocc syntactic sugars . 56

4.4 DDL types for the main combinator implementations. 58

4.5 Matrix-multiply—partition for eqJoinArr communication illustration. . . 64

4.6 Matrix-multiply—partition for eqJoinArr algebraic illustration. 65

4.7 Matrix-multiply—mirror one matrix illustration. 66

4.8 Floyd’s all pairs shortest path algorithm 66

4.9 Mandelbrot set. 68

4.10 Un-equal load of the Mandelbrot set showing the need for non-blocked
partitioning. 68

4.11 R-MAT random graph generation . 69

4.12 K-means clustering kernel . 70

5.1 Definition of gdc (Generate dependent constraints) 74

5.2 Definition of fresh (Fresh type variables) 74

5.3 Definition of bind (Bind types to tuple of variables) 74

5.4 DDL type rules Tinfer . 75

5.5 Normalizes embedded functions. 83

ix

x LIST OF FIGURES

5.6 Syntax of projection functions . 84

5.7 DDL type unification algorithm U . 86

5.8 Example program where a variable escapes during type inference 91

5.9 Example DDL types where a variable escapes during type inference 91

5.10 Lget returns all labels attached to a type and its sub-terms; L adds labels
to a type and its sub-terms; and applying substitutions combines labels
from the variables, and target terms. 94

5.11 Example cost values for redistribution and local re-layout functions. . . . 94

5.12 Automatic redistribution function insertion algorithm 1. 95

5.13 Automatic redistribution insertion algorithm 2. 97

6.1 Local data layout type parameters . 100

6.2 Local layout type parameters for array combinator implementations. . . . 102

6.3 Local layout type parameters for map combinator implementations. . . . 104

6.4 Local layout type parameters for map re-layout functions. 105

6.5 Local layout type parameters for list combinator implementations. 105

6.6 Extended DDL types for combinator implementations. 106

6.7 Triangle enumeration (MinBucket algorithm) 107

6.8 Extended local layout type parameters for combinator implementations. . 108

6.9 DArr extended syntax . 109

6.10 Extended DDL type parameters for DArr combinator implementations. . . 111

6.11 Extended DDL type parameters for DArr combinator implementations. . . 113

6.12 Jacobi 2D stencil . 114

6.13 Projection (f), indexing (g), and permutation (h) function syntax. 114

6.14 Pointed definitions of point free functions. 115

6.15 Equational theory of projection functions. 116

6.16 Additional axioms for equational theory of permutation functions. 116

6.17 Additional axioms for equational theory of indexing functions. 117

6.18 Modified DDL type unification algorithm 118

6.19 Definition of bargs (Bind projection functions to argument variables.) . . 118

6.20 Definition of pf (Convert to point free form.) 119

7.1 Feedback-directed code generation for Flocc 122

7.2 mapList template . 128

7.3 Dot product generated C++ snippet (tidied) 130

8.1 Comparative code sizes (code lines without comments and IO code) . . . 136

8.2 Performance comparison of Flocc generated code vs. PLINQ implemen-
tations using 4-cores . 137

8.3 Performance of matrix multiplications . 140

8.4 Performance of histogram implementations 141

8.5 Performance of standard deviation implementations 142

8.6 Performance of simple linear regression implementations 142

8.7 Performance of dot product implementations 142

8.8 Average performance of Flocc generated code compared with manual MPI
implementations on 1 to 32 nodes . 143

8.9 K-means kernel . 145

8.10 Random adjacency matrix generation . 145

LIST OF FIGURES xi

8.11 Mandelbrot set . 146

8.12 Relative performance of 44 Histogram implementations 146

8.13 Relative performance of 30 Kmeans implementations 147

8.14 Relative performance of 48 Mandelbrot set implementations 147

8.15 Relative performance of 48 R-mat implementations 148

8.16 Comparison of DDL types to the data distribution features of other lan-
guages. 156

8.17 Comparison between Flocc and related approaches. 160

A.1 Applicative matrix multiply implementations 171

C.1 DDL types for array combinator implementations. 182

C.2 DDL types for map combinator implementations. 184

C.3 DDL types for map combinator implementations. 185

C.4 DDL types for list combinator implementations. 186

C.5 Distributed data layout (DDL) types for some redistribution functions. . . 186

D.1 Projection function identities. 189

D.2 Equations showing soundness of equational theory of projection functions. 190

D.3 Equations 2 showing soundness of equational theory of projection functions.191

D.4 Equations showing soundness of equational theory of permutation functions.192

D.5 Equations showing soundness of equational theory of indexing functions. . 193

List of Tables

8.1 Characteristics of test programs . 146

8.2 Comparison between different redisribution insertion solutions 149

8.3 Fastest search heuristics to find a good solution, sorted by percentage of
total runtime elapsed before finding the ultimate solution. 150

8.4 Fastest search heuristics to terminate after finding a good solution. 151

xiii

Listings

7.1 Data type definition . 123

7.2 DDL type definititon . 123

7.3 Replacement rule file snippet . 124

A.1 Dense matrix-matrix multiply in C . 171

A.2 Matrix multiplication in C and MPI . 172

B.1 Map library functions . 175

B.2 List library functions . 176

B.3 Array library functions . 178

B.4 Conversion functions . 179

xv

List of Publications

[13] T. Aubrey-Jones and B. Fischer. Synthesizing MPI Implementations from Func-

tional Data-Parallel Programs. In Proc. 7th International Symposium on High-level

Parallel Programming and Applications (HLPP’14), 2014.

[14] T. Aubrey-Jones and B. Fischer. Synthesizing MPI Implementations from Func-

tional Data-Parallel Programs. International Journal of Parallel Programming, to

be published., 2015.

xvii

http://www.flocc.net/hlpp14/
http://www.flocc.net/hlpp14/

Nomenclature

AI Artificial Intelligence

API Application Programming Interface

ARMCI Aggregate Remote Memory Copy Interface

ATLAS Automatically Tuned Linear Algebra Software

BLAS Basic Linear Algebra Subprograms

CAF Co-Array Fortran

CUDA Compute Unified Device Architecture

DAG Directed Acyclic Graph

DDL Distributed Data Layout

DFG Data-Flow Graph

DFT Discrete-Fourier Transform

DPH Data-Parallel Haskell

DryadLINQ Dryad Language-Integrated Query

FFT Fast-Fourier Transform

FFTW Fastest Fourier Transform in the West

FLOCC Functional Language on Compute Clusters

FPU Floating-Point Unit

GPGPU General Processing on Graphics Processing Unit

GPU Graphics Processing Unit

GUI Graphical User Interface

HPC High-Performance Computing

HPF High-Performance Fortran

IO Input/Output

JDBC Java Database Connectivity

JIT Just-in-time

JRMI Java Remote-Method Invocation

JVM Java Virtual Machine

LINQ Language-Integrated Query

MIMD Multiple Instruction Multiple Data

MPI Message Passing Interface

xix

xx LIST OF PUBLICATIONS

MPMD Multiple Program Multiple Data

NUMA Non-Uniform Memory Access

PLINQ Parallel Language Integrated Query

PVM Parallel Virtual Machine

RDBMS Relational Database Management System

SAC Single Assignment C

SALSA Simple Actor Language System and Architecture

SETL Sets Language

SHMEM Symmetric Hierarchical Memory access

SIMD Single Instruction Multiple Data

SISAL Streams and Iteration in a Single Assignment Language

SPMD Single Program Multiple Data

SQL Structured Query Language

TAG Threshold Ascend on Graph

UPC Unified Parallel C

Acknowledgements

Firstly, I thank my whole family, and particularly my parents, siblings, and grandparents,

for their love, support, and friendship, especially in hard times, and throughout far too

many years of education!

Secondly, I thank my supervisor, Bernd Fischer, for mentoring me and for going far

beyond the call of duty. This has included continuing to supervise me even after moving

9000 miles away. I could not have asked for a better supervisor. I also thank my

supervisor and his partner, Sylvia Diekmann, for their amazing hospitality when visiting

them in South Africa, and Michael Butler for his support, and for facilitating this remote

supervision.

Thank you to all my University friends and colleagues for your friendship and the fun

we have had together. In particular, Nawfal F Fadhel and Shre Chatterjee for great

food and great films, Adisak Intana and Boonyarat Phadermrod for countless lunchtime

chats, and Neville Grech, Meng Tian, Teresa Binks, and Raied Al-Lashi as well. Thanks

also go to Jeremy Morse for helping me deciper many a segmentation fault, and Owen

Stephens for his patient explanations of all things Haskell.

From my Southampton friends, a special mention goes to Alex Bailey, James Pritchard,

Ann Hutchinson, and Jon Paul Jude, whose friendships I treasure, as well as all those

at Highfield church.

Finally, I thank and acknowledge the help of God: the Father, his Son Jesus Christ, and

the Holy Spirit. Everything good in this thesis comes from Him. To Him be the glory.

“About five thousand men were there. But he said to his disciples, ’Have

them sit down in groups of about fifty each.’ The disciples did so, and

everyone sat down. Taking the five loaves and the two fish and looking

up to heaven, he gave thanks and broke them. Then he gave them to the

disciples to distribute to the people. They all ate and were satisfied, and

the disciples picked up twelve basketfuls of broken pieces that were left

over.” Luke 9:14-17

Chapter 1

Introduction

Distributed memory computer architectures have become increasingly common [138,

149, 172]. Linux clusters are now used both for high-performance computing (HPC)

and web-scale “Big Data” analysis. Graphics processors (GPUs) with non-uniform mem-

ory architectures (NUMA) are now used for general purpose data-parallel computation.

However, despite their prevalence, distributed memory architectures remain difficult to

program manually. For example, for clusters using the message passing interface (MPI)

[189], the implementation of a simple matrix multiplication already requires about 100

lines of C++ code—compared to the five lines of its sequential counterpart (see Listings

A.1 and A.2). This is due to the fact that MPI requires developers to explicitly handle:

partitioning, marshaling and communication of the data, as well as synchronization,

which all also introduce a much greater potential for bugs.

The usual way to address this sort of problem in computer science is to raise the level of

abstraction, typically by providing a higher-level language and an associated compiler.

However, the automatic translation of high-level languages to efficient low-level code for

distributed memory architectures remains a difficult problem, due to the many possible

data distributions for any given program. Many techniques only support a fixed model,

such as map-reduce [66], that is not necessarily suitable for all problems [74], or do

not support distributed memory at all [159]. For example, map-reduce only supports

a single collective operation applied to disk-backed key-value maps (associative arrays),

and high-performance Fortran (HPF) only supports numerical computations involving

memory-resident multidimensional arrays.

In this thesis we present a flexible type-based technique to search through the space

of possible data distributions, and synthesize MPI implementations in C++, from a

high-level language called Flocc (Functional language on compute clusters). Flocc is a

simple functional language which relies on data-parallel combinators (i.e., higher-order

functions) to abstract away from global state, iteration, recursion, and individual element

accesses. Our key insight is that we can use rich types to formalize knowledge about

1

2 Chapter 1 Introduction

the data distribution characteristics of these combinators and type inference to derive

valid data distribution plans for Flocc programs. The key advantages of our approach

are that it is fully automatic, and that it supports operations involving maps, sets, lists

and arrays, in the same programming model, and is therefore more flexible than existing

approaches.

1.1 Problem Statement

The key problem that this thesis addresses is that programming distributed-memory

architectures is hard, since most approaches force the user to manually choose data dis-

tributions and only work for very restricted programming models. We are lacking general

purpose approaches that work for multiple collection types, whilst abstracting away from

the concrete data layouts, and delivering good performance. This section elaborates on

these difficulties and the limitations we have observed with existing approaches.

Distributed Memory Architectures Distributed memory architectures are parallel

computer architectures whose memory is decentralized. This means that different pro-

cessing units may experience different latencies and speeds accessing the same area of

memory, since it may be local to one and remote from another. In fact, some processing

units may not be able to access some areas of memory at all, or perhaps only indirectly

i.e., via messages sent over a network.

Computational clusters In this thesis we restrict our attention to (Linux) clusters

[172], and leave architectures like GPUs to future work. Clusters consist of hundreds

(often thousands) of standalone PCs called nodes, each with its own processors and local

memory, connected via some high-speed network like Gigabit-Ethernet or Infiniband.

They are used for nearly all modern HPC tasks like numerical analysis and weather

forecasting, as well as web-scale “Big Data” analyses like log processing and search-

engine indexing. They are also a very good example of distributed memory architectures,

since the difference in latency between accessing a node’s local memory, and another

node’s memory (via message passing), can be 10,000-times for cache hits and 100-times

for misses, even for a supercomputer with a state of the art Infiniband network.1 It

is therefore essential for performance that programs running on clusters minimize the

amount of network traffic they generate, by identifying what data needs to be accessed

frequently, and storing it as locally as possible. Getting this right can lead to huge

performance gains, getting it wrong to huge penalties.

1Measurements taken on Iridis 4, a fourth generation cluster with 770-nodes, each with 16-cores at
2.6GHz, 4GB of memory per core, and an Infiniband network for interprocess communication. For more
information see http://cmg.soton.ac.uk/iridis.

http://cmg.soton.ac.uk/iridis

Chapter 1 Introduction 3

Manually programmed communication The most flexible way to program a clus-

ter is to manually program all communication code using a general-purpose programming

language like C or C++, and a library like MPI [189] or SHMEM [16]. MPI (Message

Passing Interface) [189] is a library specification for passing messages between processes

on a cluster. It relies on the “single program multiple data” (SPMD) model, where the

same program is spawned multiple times (usually once per processor) with each process

given a different process identifier (or rank). There is always one distinguished root

process, and programs branch depending on the rank of their process.

For example, Figure A.2 shows an MPI implementation of a simple dense matrix multi-

plication. The root node generates the random input matrices, and then partitions them

and broadcasts them to other processes. Each process computes a subset of the result

matrix, and sends these result partitions back to the root. As even this simple example

demonstrates, although MPI is very versatile, it requires manual implementation of all

data layout and distribution, and very verbose, hard-to-debug implementations. For this

reason a number of high-level data parallel languages have been developed. However,

these approaches have a number of problems.

Distributed memory not supported A number of data-parallel languages exist

that only target shared-memory architectures. NESL [23] specializes in nested data-

parallel vector operations on vector machines. Data Parallel Haskell (DPH) [159] is an

extension to Haskell based on NESL, but for modern multi-cores. Single Assignment C

(SAC) [98] supports n-dimensional array computations, with an impressive implemen-

tation that has outperformed Fortran in some cases. However, none of these currently

support distributed memory data-parallelism, or suggest how such support could be

implemented.

No automated data distribution Other languages support clusters, but program-

mers must still manually specify the data layout. Co-Array Fortran [151] and Unified

Parallel C (UPC) [37] are SPMD-oriented languages that abstract away from explicit

message passing, but still force the programmer to specify how to distribute arrays and

when to read/write remote data. Chapel is higher-level than these, and has a more

flexible programming model than other languages, but requires explicit data distribu-

tion selection. High-performance Fortran (HPF) [135] is traditionally the most popular

language for numerical HPC, but it also requires arrays to be annotated with data dis-

tribution directives, although an experimental tool has been developed to automatically

optimize them [115].

Restricted programming models Finally, some approaches free the programmer

from the burden of manual data layout and distribution, but usually only for a re-

stricted programming model. MapReduce [66] and Hadoop [210] are frameworks for

4 Chapter 1 Introduction

performing aggregations on huge datasets, hosted on large-scale clusters. They han-

dle all communication, scheduling, and failure recovery, and so greatly simplify data-

parallel programming. However, they have a single restricted programming model and

distributed implementation, involving a map function that projects key-value pairs from

a dataset, and a reduce function that aggregates a sorted list of values for each key.

Some approaches automatically optimize data distributions for imperative code involving

affine loop nests [9, 21, 27] and for languages based on array section operations [49],

but these only support array-based computations and so are unsuitable for applications

which require other collections like sets, maps, lists, and disk-backed collections. Parallel

databases can also be used for some distributed data-parallel tasks. Like Flocc programs,

parallel SQL query plans [45] are synthesized by enumerating different combinations of

plan operators to minimize the overall cost [185]. Like Flocc’s map combinators, SQL

queries are also based on relational algebra, although they have a weak type system,

no support for array-based computation, and cannot be extended with new operators.

Furthermore, parallel databases typically do not generate standalone code, and the

distributed schemas must be designed manually, though a tool to assist with this has

been proposed [157]. All of these approaches primarily support a single collection type

and associated operations.

Lacking extensibility Finally, none of the approaches that automate data distribu-

tion have shown that they can be extended to work with more collection types, operators,

and their associated data layouts and distributions.

In summary, the existing approaches for data-parallel programming clusters are either

too low-level and therefore laborious and error prone (MPI), or are high-level and involve

some automation but have other deficiencies. Some of the most high-level approaches do

not support distributed memory architectures (NESL, DPH, SAC), and those that do

often still require the programmer to manually select or implement the distributed data

layout, which is hard to optimize, restricts portability, and is inaccessible for non-experts

(Co-Array Fortran, UPC, HPF, Chapel). Those that do provide some automatic data

distribution typically have restrictive programming models that only support one collec-

tion type, and have not yet been shown to extendable to support others (MapReduce,

SQL, DryadLINQ, Loop parallelization).

This thesis targets these problems, by proposing a new approach to fully automatically

synthesize correct MPI implementations from a data parallel programming language.

This approach will address the deficiencies identified above; in particular, it will

• abstract away from manual communication and data distribution;

• target distributed memory architectures, in particular clusters;

Chapter 1 Introduction 5

• automatically select appropriate data layouts or distributions;

• support multiple collection types and operators; and

• show potential for extensibility.

The key point is to automate the distributed data layout selection and implementation,

for a more expressive language (i.e., one that supports more collections and operators

than just arrays, or just key-value maps) while maintaining good runtime performance.

1.2 Research Objectives

The goal of this work is to develop a technique to automatically synthesize cluster

implementations of data-parallel programs that support multiple collection types and

their associated operators. This must include some suitable input language, a mechanism

to define and automatically identify suitable data distributions, and some output code

synthesis technique, which support multiple collection types and operators. To achieve

this overall goal we have a number of specific objectives:

1. We define Flocc, a core functional language which supports arrays, maps, and

lists, and data-parallel combinators (i.e., higher order functions) to manipulate

them (cf. Chapter 3).

2. We define a type system that extends core types with information about the dis-

tributed data layouts of collections. We use these types to characterize the data

distribution behavior of different functionally equivalent implementations of com-

binators (cf. Chapter 4 and Chapter 6).

3. We develop a type inference algorithm to automatically recover distributed data

layout information for collections, given a program with combinators replaced by

specific combinator implementations, if a valid typing exists (cf. Chapter 5).

4. We present an algorithm to automatically insert type casts (i.e., data redistribu-

tions) in appropriate locations in invalid programs to make them type-check (cf.

Chapter 5).

5. We develop a code generation mechanism to translate programs involving concrete

combinator implementations and their inferred types, which together we call plans,

into MPI implementations in C++ (cf. Chapter 7).

6. We implement a search-based compiler which uses performance-feedback to search

through different data distribution plans, by generating, compiling, and executing

candidate solutions on some suitable test data (cf. Chapter 7 and Chapter 8).

6 Chapter 1 Introduction

1.3 Overview of the approach

Data-parallel language Before developing our automatic data layout technique, we

define a suitable source language for our approach. Instead of using an existing pro-

gramming language, we define a simple functional language called Flocc (cf. Chapter 3)

to minimize the accidental complexity that a full language would bring. Flocc is based

on the polyadic lambda calculus (i.e., lambda-calculus with tuples) and is therefore not

a contribution per se, but an apt and necessary substrate for the rest of the work.

Despite its syntactic simplicity Flocc is very expressive, supporting multiple collection

types (arrays, maps, and lists), and associated data-parallel operations. These opera-

tions are related via combinators (i.e., higher-order functions) which abstract away from

data layout and individual element access. This makes Flocc extensible, allowing it to

support multiple collection types in a single framework. Flocc is also strongly typed and

supports type inference, a key prerequisite for our approach. We present the syntax,

semantics, and type system for Flocc in Chapter 3, and implement a front-end for it

(cf. Figure 1.1).

Data layouts as types The first step towards automatically implementing distributed

data layouts for Flocc programs is to provide different functionally equivalent implemen-

tations of the high-level combinators that distribute their input and output collections

in different ways. These combinator implementations are internal to the compiler (i.e.,

hidden from the user), and are used to explore possible data layouts by trying different

implementations for the combinator applications in the input program. This is similar

to how logical operators in SQL queries can be implemented by different concrete plan

operators.

To characterize the data distribution behaviors of these combinator implementations, we

extend our collection types with extra parameters to characterize how they distribute

their inputs and outputs (see Chapter 4). For example, the type DMap k v pmd pf

pdim mdim lm lf extends Map k v with six extra parameters, four of which (pmd, pf,

pdim, and mdim) define which partitions elements should reside in, and two of which (lm

and lf) define how the partitions should be stored locally. The primary extensions are

the addition of embedded functions pf and lf— actual functions (full lambda-terms,

not function types) that define the keys along which maps should be partitioned, and

indexed or ordered by locally. These embedded functions can be defined in terms of type

variables, concrete lambda terms, and function composition, and can also be lifted into

the types from function parameters using dependent type schemes (cf. Section 4.3.2).

Thus types like,

foo : DMap Int Int Hash (sqr · f) d1 d2 HashMap id

-> DMap Int Int f d1 d2 List id

Chapter 1 Introduction 7

can be used to characterize how inputs and outputs of combinator implementations are

distributed in terms of each other (e.g., partition function f).

We present this extended type system and prove it sound (i.e., guaranteeing that well

typed programs can progress, and that evaluation does not break the types). Again, the

key benefit of this approach is that it is extensible (i.e., we can add more collection types

and type parameters) and works for multiple collection types, rather than just arrays

(like HPF [135]) or just maps (like MapReduce [66]).

Data layout inference We call a Flocc program with combinator function applica-

tions replaced with specific combinator implementations a “plan”. Characterizing data

distributions as polymorphic types allows us to use type inference to automatically find

data layouts for plans that satisfy the data distributions of the combinator implementa-

tions used. This is necessary to automatically handle data distributions, since otherwise

the user would have to specify them by hand. In Chapter 5 we present this type infer-

ence algorithm and prove it sound (although it is not complete since we use a decidable

under-approximation to unify functions).

The best plans are often those that redistribute collections, changing their data distribu-

tions and layouts so that more efficient combinator implementations can be used. These

redistribution operations correspond to type-casts in our system. To find plans that in-

volve redistributions, we develop an algorithm that automatically inserts redistribution

function applications, at appropriate places in plans to mend broken type constraints,

and make them type-check. We present this algorithm in Chapter 5, and implement it

(cf. Figure 1.1).

Extended data layout types Chapter 6 demonstrates the extensibility of our ap-

proach, by presenting several extensions to our data layout types, to encode local layout

information, implement more complex array distributions, and make the types more

flexible. These types require a more nuanced type inference algorithm, that can solve

equations between functions. We present an extension to our core type inference al-

gorithm that does just this, by using an automatic theorem prover, and equational

theories of projection functions, permutation functions, and integer index functions. We

prove these theories sound, and explain how they could be integrated into our core type

inference algorithm.

Code generation We have developed a code generator for Flocc plans that takes a

plan annotated with DDL types, and generates an imperative MPI program in C++

that implements the program on a cluster (cf. Chapter 7). This generator converts the

plan into a data flow graph, and then traverses the DFG to generate code, instantiating

code templates for combinator implementations as it goes. We decided to generate

8 Chapter 1 Introduction

C++ rather than code in a functional language so that we can use MPI and so yield the

high-performance necessary for many data-parallel applications.

Data layout optimization Finally, to optimize the parallel performance of Flocc

programs, we have implemented a prototype compiler that uses the code generator in a

feedback loop, generating, compiling, and running implementations of candidate plans,

to yield performance-feedback to guide the plan search (see Chapter 7). The architecture

of this compiler is shown in Figure 1.1. After parsing and type-checking a Flocc pro-

gram, the performance-feedback-based implementation search starts. This search uses

rule sets, which list the different possible implementations of each data-parallel combi-

nator, and distributed data layout (DDL) type definitions for each of these definitions.

These DDL types extend the high-level functional types with extra parameters, which

declare how each combinator implementation distributes its input and output collections.

The search explores different plans, which use different combinator implementations for

the combinator function applications in the high-level program. Each plan’s abstract

syntax tree (AST) is converted into a data flow graph (DFG), from which C++ code

is generated using templates for the different combinator implementations. These C++

implementations are compiled, executed, and the performance (i.e., total runtime) of

each is measured. This performance data is then fed back into the search, to help guide

which plans to consider next. Finally, in Chapter 8 we present some conceptual and

experimental evaluation of our technique, that demonstrates that the performance of

generated programs can come close to hand-coded equivalents, investigates the suitabil-

ity of different search heuristics, and compares the core capabilities of our approach to

other programming languages for data-parallelism.

Overall then, this approach takes programs written in a high-level data-parallel language,

which supports multiple collection types, and yields MPI implementations in C++ from

data distribution plans that have been optimized empirically through a performance-

feedback-based plan search.

1.4 Original contributions

Our main contribution is a technique for automatic synthesis of distributed memory

implementations of high-level data-parallel programs that supports multiple collection

types, arrays, maps, and lists. Our key insight is that distributed data layout information

can be embedded in types, and recovered using a type inference algorithm, in a way

that works for multiple collection types, and is thus much more general than existing

approaches. This overall contribution involves several subsidiary contributions.

Chapter 1 Introduction 9

Figure 1.1: Feedback-directed code generation for Flocc

Data distributions as types We believe that this is the first work to specify distributed-

memory data layouts as types, and specifically a form of restricted dependent types we

call dependent type schemes (cf. Section 4.3.2). In fact, ours is one of the first approaches

to formalize any data layout information using a type system— another recent one being

a type-based technique for local auto-vectorization [188]. Furthermore, ours is the first

work to recover (distributed-memory) data distribution information for programs auto-

matically and statically via type inference (cf. Chapter 5). The approach works by char-

acterizing the distributed and local data layout behaviors of operators and collections

through polymorphic types, extended with additional parameters to carry embedded

functions, which define how collections should be partitioned and stored locally. We are

unaware of any existing work that characterizes data layouts using functions in this way

(rather than sets of columns for example).

Data layout inference for non-arrays To our knowledge, ours is the first system to

automatically reason about data distributions for multiple collection types (i.e., arrays,

maps, and lists) using a single language in a unified framework. We define the dis-

tributed data layout characteristics of data-parallel operations (for all these collection

types, cf. Chapter 4), and then automatically infer suitable data layouts for different

combinations of them (cf. Chapter 5). Our approach is also extensible, in that more col-

lection types and operations can be added, and data layout types extended (by adding

additional parameters), without modifying the input language or core implementation

10 Chapter 1 Introduction

(cf. Chapter 6).

Extended type inference and automatic type cast insertion In Chapter 6 we

show how our original DDL types can be extended to carry local data layout information

and support more nuanced array distributions involving offsets and ghosting (i.e., over-

lapping fringes around array partitions). To support this our type inference algorithm

needs to perform some equational reasoning (e.g., to know that addition is associative).

We therefore also present an extension to our type inference algorithm, which uses

equational theories of projection functions, permutation functions, and integer index

functions, and a theorem prover [183] to unify constraints between functions embedded

in the types (cf. Section 6.4). This extension is sufficient to support our extended DDL

types, and also improves the algorithm’s completeness, such that it finds solutions that

the original algorithm cannot. It can also solve more complex constraints, and in partic-

ular those that involve multiple unknown functions via type variables (cf. Section 6.2),

and addition and multiplication of array indices (cf. Section 6.3).

We also present a technique to automatically inserts type casts to make programs type-

check (cf. Section 5.2). We use this technique to automatically insert redistribution and

re-layout functions into possible distributed-memory implementations of programs, to

make them type-check (i.e., to make the distributed data layouts unify). This includes an

algorithm that has better computational complexity than our initial approach, which is

important due to the large number of combinations of redistribution functions possible.

Innotative implementation There are several innovations in our implementation.

First, to our knowledge we are one of the first to use meta-data inferred by type inference

to parameterize code generation templates (cf. Section 7.4.6). Secondly, although we do

not consider Flocc to be a constribution per se, it is novel, and we believe that the com-

bination of features that allow us to generate efficient standalone imperative code from a

(semi)-functional language is unique (cf. Chapter 3 and Section 7.4). For example, Flocc

supports the definition of higher-order functions with polymorphic types, but requires

that function parameters to such functions are statically resolvable. This constraint

allows function parameters to be lifted into the types during type inference, and allows

much faster implementations to be generated, since it means that implementations can

use basic data types and inlined operations rather than pointers and reduction engines.

Our implementation also uses a performance-feedback-based code synthesis search in

a new context (cf. Section 7.5). Although the benefits of performance-feedback-based

auto-tuning for certain classes of algorithms are well known [20, 87, 166, 209], we are the

first to apply such techniques to programs designed for clusters. Furthermore, we apply

it to a much more expressive input language than most current work. We also include

a limited comparison of different search algorithms and their comparative convergence

speeds for some example programs (Section 8.3).

Chapter 1 Introduction 11

1.5 Outline

We present background on data-parallel programming, and a survey of existing pro-

gramming languages for data-parallelism in Chapter 2. Chapter 3 defines Flocc, our

data-parallel language as per Objective 1, with its type system, and some basic library

functions.

In Chapter 4 we define the concept of distributed data layout (DDL) types for distributing

collections. We use these types to specify the distributed behaviors of some distributed

implementations of the library combinator functions as per Objective 2. We then present

worked examples that demonstrate how we can use our DDL types to infer the standard

distributed-memory implementations of several common data-parallel algorithms. The

majority of Chapter 3, Chapter 4, and Section 8.2, were presented at HLPP 2014 [13],

and are to appear in the International Journal of Parallel Programming 2015 [14].

In Chapter 5 we define our DDL type inference algorithm for Objective 3. We also

present an algorithm to automatically insert redistribution and re-layout functions (which

act as DDL type casts) into programs, to make the DDL types unify. This corresponds

to Objective 4.

In Chapter 6 we present some extensions to our DDL type system that support more

flexible expressions for partition and local layout functions, and extended distributed-

array types with ghosting (which are also known as fringes), that also contribute to

Objective 2. Along with these extensions we present a more sophisticated inference

mechanism to derive DDL types using equational theories of projection, permutation,

and index transformer functions, which also contributes to Objective 3. These extensions

allow us to derive solutions that could not be found using the system in Chapter 4 (e.g.,

one for the MinBucket triangle enumeration algorithm).

In Chapter 7 we explain the implementation of our code generator. It starts by de-

scribing how the front-end and DDL types are implemented, and then explains how we

generate MPI programs in C++ from Flocc programs and data distribution plans. This

corresponds to Objective 5. It then shows how we use a performance-feedback-based

search to find optimal implementations of input programs, and describes the different

search algorithms available. This corresponds to Objective 6.

Then, in Chapter 8 we present some conceptual and experimental evaluation, which

demonstrates that we have fulfilled Objective 6 (i.e., that our implementation works

in practice). This includes an analysis of our approach’s capabilities, and compares

the performance of automatically generated implementations of some data-parallel pro-

grams with manually implemented PLINQ and text-book C++/MPI versions. It then

compares how well different performance-feedback-based search heuristics find optimal

implementations of some larger programs.

12 Chapter 1 Introduction

Finally, in Chapter 9 we conclude this thesis, summarize our contributions, and suggest

some directions for further work.

Chapter 2

Background and Literature

survey

This chapter surveys programming paradigms and languages for programming data-

parallel algorithms on shared-nothing clusters, and presents other relevant background

for this thesis. We first introduce different parallel programming models and paradigms.

We then review different languages for data-parallelism and distributed memory archi-

tectures. Finally, we present some background on type inference and auto-tuning.

2.1 Parallel Programming

Parallel architectures and programming models can be categorized using Flynn’s Taxon-

omy [83] into single instruction multiple data (SIMD) and Multiple Instruction Multiple

Data (MIMD) systems. SIMD architectures like the Cray 1 vector machine [174] per-

form single instructions on arrays of values simultaneously. Processing units execute in

lockstep applying the same instruction to different parts of the data. SIMD architec-

tures are no longer common for supercomputers but are still used in floating point units

(FPUs), for general purpose computing on graphics processing units (GPGPU) [152],

and other special-purpose hardware [154]. MIMD architectures like the Connection Ma-

chine [107] and modern supercomputers apply multiple instructions to multiple pieces

of data simultaneously. They can be further divided into those with shared memory,

and those with distributed memory. Figure 2.1 illustrates the topologies of these three

models.

Current multicore PCs are shared memory MIMD. The majority of large MIMD sys-

tems have distributed memory with non-uniform memory access (NUMA). These are

often clusters [172]: thousands of nodes each with their own CPU and local memory

communicating by some interconnect, as illustrated in Figure 2.2a. They are termed

13

14 Chapter 2 Background and Literature survey

shared-nothing, since non-local memory is accessed indirectly by message passing. They

are commonly used for scientific and commercial applications, performing massive sim-

ulations, processing petabytes of data, and providing cloud computing services. MIMD

architectures can also be subdivided into those that use a single program multiple data

(SPMD) model and those which use a multiple program multiple data (MPMD) model.

In SPMD the same program is executed on all nodes, although not in lockstep, whereas

in MPMD different programs execute on different nodes. Both multicores and clusters

support MPMD, although they may also be programmed in an SPMD style.

(a) SIMD (b) MIMD Shared Memory (c) MIMD Distributed Memory

Figure 2.1: Parallel architectures

These different architectures have led to different programming models.

2.1.1 SIMD models

SIMD architectures have special instruction sets that work on vectors, and can be pro-

grammed in a variety of ways. Vectorizing compilers parallelize sequential programs, by

analyzing loops to identify those that can become vector operations (e.g., map, fold, or

scan) [125, 181, 199]. High-level languages like NESL directly support vector operations

in their syntax [23]. GPUs have hierarchical memory architectures (see Figure 2.2b),

and an SPMD/SIMD hybrid execution model. NVIDIAs compute unified device archi-

tecture (CUDA) programs them using kernel functions which work on individual data

points, applied to arrays [152].

2.1.2 MIMD models

MIMD programming models fall into three categories: those that split computation into

processes which communicate via message passing, those which split it into processes

that synchronize via shared variables, and those which give a high-level abstraction of

the entire algorithm. The first two most closely reflect the architectural models, but

are less convenient since they fragment the algorithm into processes, and so high-level

approaches can be more attractive.

Chapter 2 Background and Literature survey 15

Shared memory Multi-cores are MIMD with shared memory, and are often pro-

grammed using threads [122], with a shared address space, and synchronization con-

structs to police access to shared resources. Threads can manage separate concerns

like GUI (graphical user interface) events and file IO (input output), perform different

stages of a pipeline, serve different users, or process different parts of some data. They

are available in C [11] via the Pthreads library [148], and in Object Oriented languages

like Java [95] and C# [105] with built-in libraries. However, threads can be hard to

reason about, due to the arbitrary possible interleavings between them, which can cause

race conditions and deadlocks [122]

Shared memory MIMD architectures can also be programmed via assisted parallelization

of sequential programs. OpenMP (Open Multi-Processing) provides directives to control

parallelism and data sharing in C, C++, and Fortran [61]. Sieve is a compiler and par-

allel runtime which runs C++ programs that contain additional sieve constructs which

mark sections to be parallelized [68]. Intel’s Array Building Blocks provides an API

(application programming interface), JIT (Just in time) compiler, and multithreaded

runtime which allows C++ programs to incorporate various data-parallel array opera-

tions [93].

Finally, shared memory can be simulated on distributed memory architectures. Parti-

tioned global address space (PGAS) languages do this on clusters. For example, Co-

array Fortran [151], Unified Parallel C (UPC) [37], and Titanium [216, 106], provide

distributed arrays that abstract away from explicit communication primitives.

(a) Shared-nothing cluster (b) GPU

Figure 2.2: Distributed memory architectures

Message passing Clusters are MIMD with distributed memory, and so require some

sort of non-local memory access. This is often via message passing. MPI (Message Pass-

ing Interface) [189] is a message passing library specification that is commonly used for

HPC (high-performance computing) on clusters. It includes bindings for C [11], C++

[77], and Fortran [3] (among other languages [189]) and has been implemented for many

different architectures. It relies on the SPMD model, where processes branch on the

rank (ID) of their current node, and provides two-sided (i.e., send and receive) message

16 Chapter 2 Background and Literature survey

passing primitives, and some collective ones like broadcast and scatter. SHMEM (Sym-

metric Hierarchical Memory access) [16] is a similar one-sided interface, that directly

puts data into remote memory.

There are also language-integrated message passing approaches, often based on the actor

programming model [4]. Scala [153] and Erlang [12] both support actors with call-

by-value message passing. This can be inefficient due to uneccesary message copying

on shared memory. Kilim [191, 190] is similar but implements isolation types (where

references cannot leak) so that messages can be passed by reference on shared memory.

These approaches are not normally used for data-parallelism on clusters. SALSA (Simple

Actor Language System and Architecture), however, is a Java-based actor language

targeting clusters and Internet wide distributed systems [204].

High-level approaches Finally, some languages abstract away for explicit shared

memory access and message passing. We call these high-level. Many of these are based

on functional programming. For example, MapReduce [66] is a framework for large-scale

data aggregations based on a map function that projects key-value pairs from a dataset,

and a reduce function that aggregates a sorted list of values for each key. It abstracts

away from explicit communication and load balancing, etc., albeit for a restricted pro-

gramming model. Languages like SISAL (Streams and Iteration in a Single Assignment

Language) [82], NESL [23], Data Parallel Haskell (DPH) [39], and Single Assignment

C (SAC) [182] are actually functional programming languages with data-parallel con-

structs and expressions. Other high-level models are based on query languages. PQL

[170] embeds first-order logic queries in Java, and DryadLINQ performs SQL (Structured

Query Language) queries on large distributed data sets. Pig Latin [156] translates SQL

queries into MapReduce jobs. Parallel databases [117] can also be used to perform large

data-parallel tasks. Finally, some imperative languages like Fortran [91] include some

imperative data-parallel operations. Fortran and ZPL [132] for example include paral-

lel array operations, and Chapel [40] includes parallel forall loops that can manipulate

distributed arrays and other collections.

This research focuses on programming clusters. Modern cluster nodes are typically

multicores and many include a GPU [202]. Thus programs for clusters may need to

combine threads, message passing, and GPGPU programming models. The complexity

caused by three nested programming models is a motivation for high-level programming

models for such systems. However, current models like MapReduce can be ill suited

to many applications. For example, one MapReduce K-means clustering benchmark

was 20× slower than an MPI implementation [74]. The former may have been simpler,

particularly to support huge (disk-backed) datasets, but its programming model was too

restrictive to allow the algorithm to be expressed in its optimal form. It is situations like

this, that our work seeks to address— to automatically generate good implementations

for a high-level language that can express a wider class of applications than is currently

Chapter 2 Background and Literature survey 17

possible.

2.2 Data-parallel programming on clusters

This section reviews the existing approaches to data-parallel programming clusters,

grouped by their main characteristics, limitations, and constraints.

2.2.1 Manually programming communication

The most flexible way to program a cluster is to manually program all communication

code using a general-purpose programming language like C or Fortran, and a message

passing library like MPI [189] or SHMEM [16].

Message passing interface (MPI) [189] is a library specification for passing messages be-

tween processes on a cluster, and is one of the most common ways to program distributed-

memory clusters (along with High Performance Fortran [135]). It relies on the “single

program, multiple data” (SPMD) model. There are MPI implementations for many dif-

ferent architectures, and bindings for C [11], C++ [77], and Fortran [3] (amongst other

languages [189]). There are two main versions of MPI: MPI-1 [189] which is a two-sided

interface with send calls that must be matched by corresponding receive calls; and MPI-

2 [92] which extends MPI-1 with some single sided operations like put which directly

access foreign nodes’ memory without corresponding receives. (MPI-2 also adds support

for dynamic process groups, so that additional processes can be spawned at runtime.)

We use MPI-1 and C++ as the target language in our work. PVM (Parallel Virtual

Machine) [193] is a similar two-sided interface but is much less popular than MPI.

SHMEM [16] is a single-sided message passing library where data is directly got from

and put into, a remote process’ memory. This can lead to more efficient implementa-

tions, but needs great care to read and write the correct regions of memory and more

synchronization to ensure that data is only read and written when ready. It is not used

directly, but has been generalized in ARMCI [150] and GASNet [26], which have been

used to implement Co-Array Fortran [151], Titanium [216], and Unified Parallel C [37].

Although these approaches are very versatile, they require manual implementation of

all data layout, partitioning, and distribution, and lead to very verbose, hard-to-debug

implementations (especially with MPI) [137]. For example, Figure A.1 and Figure A.2

in Appendix A compare a single-threaded C implementation of a simple dense matrix

multiplication with an MPI implementation. The MPI implementation is 148 lines

compared to 8 lines (i.e., 18× longer than the original). The fragmentation of the data

space makes dealing with edge cases messy, and choosing the right message passing

primitives to maximize performance and avoid deadlock is non-trivial. For example,

18 Chapter 2 Background and Literature survey

subtle issues like the size of MPI’s internal buffer can cause deadlock or sequentialization

of the computation [99].

Some programming languages directly support remote message passing and spawning

remote processes e.g., Erlang [12], Scala [153], SALSA [204], and Java [95] via Java RMI

(Remote Method Invocation) [71]. These languages may be slightly simpler and more

concise than MPI and SHMEM, but they still force the programmer to manually design

all data partitioning, distribution, synchronization, and edge-case handling and so are

not a great improvement.

2.2.2 High-level shared memory

To simplify the task of data-parallel programming a number of high-level languages have

been developed. Many of these abstract away from explicit parallelism by providing

implicitly parallel operations on data structures. However, they all require shared-

memory, and are therefore limited to the size and speed of a single multi-core node.

NESL [23, 24, 25] is an applicative language developed in the 90’s that specialized in

nested data-parallel operations on vector machines. Its main novelty was its support for

nested vectors on SIMD architectures, by flattening nested parallelism into segmented

vector operations. Data parallelism was expressed using a set-comprehension like syntax

similar to set-formers in SETL (Set Language) [184], and list-comprehensions in Miranda

[201] and Haskell [158]. For example, {a*b : a in [3,-4,5]; b in [1,2,3] | a <

4} reads “in parallel, for each pair (a, b) drawn from sequence [3,-4,5] zipped with

[1,2,3], where a is less than 4, return the product of the pair”.

Data Parallel Haskell (DPH) [39, 160] is an extension to Haskell [158] based on NESL, but

for modern multi-cores. Haskell improves on NESL in several ways. Its implementation is

compiled rather than interpreted, it is a higher-order language (i.e., it supports functions

as first-class objects), and has an extremely rich type system. DPH is implemented using

an extension to the Haskell language, a non-parametric array representation to efficiently

store algebraic data-types, and various code transformations including vectorization to

flatten nested arrays, fusion to eliminate intermediates, and static scheduling. Both

NESL and DPH have the disadvantage that nested data structures are arguably less

intuitive for some applications (e.g., 2D stencil convolutions), but have the advantage of

good support for variable length data structures (i.e., vectors/lists) and therefore sparse

matrices.

Single assignment C (SAC) [182, 98, 97] is a functional language for array-based data-

parallelism on multi-cores. The language is a single-assignment subset of C, without

pointers or global variables, and supports n-dimensional array operations that are “shape

invariant” i.e., polymorphic in the number of dimensions, via a novel type system. Its

Chapter 2 Background and Literature survey 19

implementation features powerful optimizations, including with-loop folding— a gener-

alization of the classic map f · map g = map (f · g) equation to n-dimensional arrays,

which eliminates intermediate arrays in many cases. It therefore generates very high-

performance code. For example, one benchmark showed that a SAC implementation

of the PDE1 algorithm executed between 2.5 and 4 times faster, with half the memory

requirements, of an HPF implementation on a Sun Ultra2 Enterprise 450 architecture

[182]. This makes it suitable for high-performance numerical applications, but it is

unclear how it could be extended to support other collection types and applications.

Parallel Query Language (PQL) [170] is an extension of Java that supports data-parallel

operations based on first-order logic, on shared memory modern multi-cores. Here data-

parallel operations are queries on Java collections, which may be optimized and par-

allelized by the runtime system. It has a lot in common with SQL [143], since SQL

was first developed as a language for expressing a subset of first-order logic queries [45],

and also depends on a runtime query optimization and planning system, provided by an

RDBMS (relational database management system). The current prototype implemen-

tation is a front-end compiler integrated with Oracle’s javac. Initial experiments show

parallel performance that scales well with the number of threads, and competes with

hand-coded parallel versions, for a number of example programs. PQL’s advantages

include runtime integration and a more expressive language than SQL, but it not yet

clear how intuitive this language is, or whether it supports multi-dimensional arrays in

addition to collections like lists and sets.

The key shortfall of these languages, from our perspective, is that none of them support

distributed-memory architectures, or (to the best of our knowledge) suggest how such

support could be implemented. NESL was designed for SIMD vector machines, and

DPH, SAC, and PQL support modern multi-cores, not distributed memory-clusters.

They are therefore interesting as high-level languages for data-parallelism, with inter-

esting language constructs, but cannot directly help with automatic (compilation) tech-

niques to target distributed-memory architectures. Furthermore, even as languages, they

are all quite restricted in their programming models; a theme that we will elaborate in

Section 2.2.4.

2.2.3 Manual data distribution

In this section we review some data-parallel languages that do support distributed-

memory architectures, and clusters in particular. Some of these languages are termed

“partitioned global address space” or PGAS languages. In these languages the data space

of a program is partitioned into different areas that are owned by different processes.

Some (early) languages are SPMD-based, specifying what individual processes should

do, while others are implicitly data-parallel, specifying the global behavior of all the

processes in the system.

20 Chapter 2 Background and Literature survey

Early PGAS Languages Co-Array Fortran [151], Unified Parallel C (UPC) [37],

and Titanium [216] are all PGAS languages (or rather language extensions) that were

developed in the 90’s. They extend Fortran, C, and Java respectively. They are all

SPMD-based, meaning that the behaviors of different parallel processes are all specified

in a single program. This is normally achieved by branching on the current node’s ID

to perform actions peculiar to the current process, but this fragments and obfuscates

the overall control flow, and can therefore make programs hard to understand. All these

languages support some kind of distributed or shared array data structures that are

accessed to replace explicit message passing.

Co-Array Fortran extends Fortran 95 [91] with Co-arrays, i.e., distributed arrays where

each node holds a partition that is referenced via a trailing index to specify the node

rank of the partition. These arrays may be regular sized—stored at each node, or

irregular sized—allocated dynamically at each node. This relieves the programmer from

explicit message passing, but still forces them to handle all data layout and partitioning

explicitly, making it non-trivial to implement anything other than a simple 1D blocked

partitioning.

Unified Parallel C (UPC) is more nuanced. Scalars and arrays may be declared shared,

and thus replicated or distributed according to some fixed distribution, respectively.

The default distribution is cyclic (i.e., successive elements on successive nodes), but

blocked, and blocked-cyclic distributions can also be defined (i.e., blocks of elements

stored on successive nodes). This is a great improvement, since it better encapsulates the

distribution information such that the programmer does not need to explicitly reference

elements by their partition’s rank (i.e., node ID). There is also a upc forall loop

construct which resembles a parallel for loop with a fourth expression which defines

where to execute each iteration of the loop. It provides a more global way to program,

which avoids branching on node ranks, and is therefore much neater when handling

edge cases. However, despite this, UPC still only supports 1D distributions (although an

extension to multidimensional blocks has been proposed [17]), and forces the programmer

to manually choose what data distributions to use, which requires careful thought to

gain good performance, by, for example, ensuring that array distributions are aligned

properly.

Titanium is quite different [216]. It does not directly support distributed arrays. Refer-

ences are either local or global, and so (1D blocked partitioned) distributed arrays (like

Co-arrays) can be implemented as global arrays, of global references to locally allocated

arrays, one per process [106]. However, it does support some collective communication

methods— exchange and broadcast, which perform all-to-all and one-to-many commu-

nication, respectively. It also benefits from Java’s object orientation, but omits thread

support, and is translated into C rather than executing on the JVM, for performance

reasons.

Chapter 2 Background and Literature survey 21

DARPA-funded PGAS languages During the 2000’s DARPA funded three projects

to develop new PGAS languages [206]. These projects produced three implicitly parallel

(i.e., non-SPMD) languages: Chapel [40], X10 [47], and Fortress [6], developed by Cray,

IBM, and SUN/Oracle respectively. Instead of SPMD, here programs take a global view

of the computation—specifying how the whole computation should proceed, instead of

explicitly splitting it up into separate tasks.

Chapel [40, 44, 41, 176, 42] evolved from ZPL (Z-level Programming Language) [132, 43],

an imperative data-parallel array sublanguage for the Orca MIMD language [15]. ZPL’s

main novelty was the concept of named multidimensional index sets called regions, where

parallel array operations are restricted to a given region, and arrays that share a region

are automatically aligned, and therefore distributed, in the same way. This improved

readability and reliability, where duplicating indices would be error prone. Benchmarks

have shown that some programs show competitive performance with MPI equivalents

[43].

Chapel improves on ZPL by supporting data-parallel operations on maps and graphs

as well as arrays. It does this by extending regions (which it calls domains) to include

indefinite domains with indices of arbitrary type for sets and maps, and opaque domains

with anonymous indices to support graphs. This makes Chapel the most flexible data-

parallel language of those we survey, in that it supports all these different collection

types. However, to our knowledge these collections must still all be memory-resident

(not disk-backed), distributed lists are not supported, and although Chapel includes

some built-in and programmable distributions for these collections, they must still be

chosen manually by the programmer; no automatic technique to infer good distributions

for a given program seems to exist. Furthermore, since Chapel’s parallel loop construct

(i.e., the forall loop) can cause data races, programmers must also manually reason

about and choose appropriate synchronizations and lock constructs.

X10 [47, 177] is similar to Chapel, although it only supports distributed arrays and

runs on the Java Virtual Machine (JVM) [133]. Its main novelty is a PGAS task-

parallel programming model via activities, which can be spawned at places using async

statements. It also supports quite a powerful algebra for its regions (integer index sets)

which includes union, intersection, set-difference, translation, and restriction operations.

However, like Chapel, the distributions of regions must still be manually specified.

It is unclear exactly what data-parallel features Fortress [6] had. It appeared to focus on

a very concise mathematical syntax, support for different character sets, and combination

of features from different languages. However, it was never fully implemented and is now

dormant.

MapReduce In 2004 Google published a paper on their propriety large-scale data

processing framework called MapReduce [66]. MapReduce and Hadoop [210] (the open-

22 Chapter 2 Background and Literature survey

source Java implementation of MapReduce), are frameworks for performing aggregations

on huge datasets, hosted on large-scale clusters. They primarily rely on a map function

that projects key-value pairs from a dataset, and a reduce function that aggregates a

sorted list of values for each key. They handle all communication, scheduling, and failure

recovery, and so greatly simplify data-parallel programming.

However, their programming model (implementing these two functions) and single dis-

tributed implementation thereof, is restrictive and not suitable for all applications. In

particular vanilla MapReduce’s distributed implementation involves reading input data

from unstructured files, storing all inputs, outputs and intermediates on disk, and ex-

changing all intermediate data over the network. There is no way to omit redundant

steps, storing intermediates on disks can stifle the performance of iterative algorithms,

and join algorithms must be programmed manually for computations that take multi-

ple inputs [22]. For example, one investigation showed a Hadoop K-means clustering

program performed 20× slower than an MPI version [76]. For this reason numerous alter-

nates have been suggested to allow, e.g., iteration [33, 75], different file types [69, 34, 79],

accepting multiple inputs [215], removal of intermediate files [76], and supporting dif-

ferent architectures [113, 168, 53]. However, each of these also has a (different) single

programming model, and implementation, specialized for one particular task, and so still

suffer from the same inflexibility as the original MapReduce. Furthermore, customizing

the data distributions must be done manually in all of these, by specifying a non-default

partition function for the exchange, and the framework has no knowledge about data

layouts and so cannot co-locate map and reduce jobs to reduce network traffic where

possible.

Pig Latin [156, 90] is an SQL-like scripting language for large-scale data processing on

clusters that code generates Hadoop jobs. It is widely used by Yahoo!, where users have

commented that they find it easier to use than Hadoop [90]. It is a single-assignment

language with no loops, recursion, or conditionals, but can be embedded into Java pro-

grams in a similar way to JDBC (Java Database Connectivity) external data providers.

It does extend SQL’s data model slightly, to support nested relations created via the

COGROUP operation, and could theoretically represent arrays as relations, but it is still in

practice unsuitable for array-based and in-memory applications. Its similarity to SQL

allows a suite of logical optimizations from relational databases to be applied. However,

it does not seem to do any data-layout optimization, and in this way suffers from the

same limitations as MapReduce.

Skeletons Algorithmic skeletons [59, 63] are generic and reusable algorithmic patterns

for different kinds of parallel computation. They are similar to higher-order functions

(HOFs) or combinators in functional programming. In fact, a parallel compiler for

Standard ML has been developed that extracts parallelism automatically by converting

recursive functions into instances of map and fold combinators, which are then imple-

Chapter 2 Background and Literature survey 23

mented via processor farms and processor trees respectively [180]. Skeletons have been

implemented in different ways, and for different architectures, including using C++ tem-

plates for clusters [80, 118], GPUs [78] and the CELL processor [175], and functional

programming languages for clusters [2, 134], multicores [126], and various archaic par-

allel architectures [192]. However, although the choice of skeleton partially determines

the data distributions, the programmer must still manually design the distributed data

layouts for the program, and try to choose appropriate layouts for the data-parallel task

and architecture.

Overall, these languages all abstract away from explicit message passing, and support

clusters, but they all still force the programmer to explicitly manage the distributed

data layouts. Co-Array Fortran and Titanium still require explicit assignments to and

from remote arrays, and the others all require the distribution of data structures to

be explicitly selected by the programmer—a difficult task for non-experts. What is

needed is some automatic technique to help design and optimize the data distributions

of different data-parallel programs for the architectures that they will execute on.

Note that High-performance Fortran (HPF) [135] is similar in some ways to Chapel and

X10, but we have chosen to discuss it in Section 2.2.4 since, unlike these languages,

a tool to optimize the data distribution directives for a particular program has been

developed [115].

2.2.4 Restricted programming models

Finally, some approaches do free the programmer from the burden of manual data layout

and distribution, but only for restricted programming models.1

High-performance Fortran Traditionally, most high-performance computing appli-

cations were programmed with High-performance Fortran (HPF) [135, 114] (or MPI).

In 1990 the Fortran 90 [3] specification extended Fortran 77 [32] with element-wise op-

erations on flat multi-dimensional arrays, including array-sections, masked assignment,

permutation, and some reductions and scans like SUM and SUM PREFIX. These opera-

tions are concise, parallelizable, and paved the way for similar syntax in languages like

Chapel and ZPL. For example, the statement a(1:n) = (a(0:n-1) + a(2:n+1)) / 2

assigns the sum of each element’s left-hand and right-hand neighbors over 2, for every

element in the array a between 1 and n inclusive.

1Note that all of the high-level languages above have restricted programming models as well e.g.,
nested 1D vectors for NESL and DPH, and multi-dimensional arrays for SAC, UPC, and ZPL etc,
but only those in this section are high-level, support clusters, and provide some automatic help with
distributed data layouts.

24 Chapter 2 Background and Literature survey

HPF extended Fortran 95 [91] with more data-parallel operations, and directives to

specify how to distribute arrays on MIMD supercomputers [135]. These directives were

designed for computers with rectilinear processor arrangements, and so the processors

and view directives have limited applicability to modern clusters, although those pertain-

ing to array-alignment are still relevant. Distribution directives were mostly specified

manually, but research was done to automatically optimize them for different programs

[89, 115, 116]. In particular, two approaches to optimize data distributions based on

linear 0-1 integer programming, have been proposed [89, 115], but do not seem to have

been widely adopted.

HPF’s major limitation is its programming model. It is only really suitable for numerical

applications involving arrays, its data-parallel array operations cannot be extended or

customized, and scans, reductions, and scatters can only be performed for a few basic

numerical and boolean operations like sum, and or. Applications requiring lists, sets, and

maps, disk-backed collections, or permutations based on non-integer keys, like computing

an inverted index on a corpus of web pages, are not supported, and it is unclear how

such support could be added.

Automatic loop parallelization Much research has been done on auto-parallelizing

sequential C/Fortran (or other imperative) programs that consist of nested loops of array

accesses, where the array references must often be affine functions of the loop indices

[123, 29]. This is generally based on the polyhedral model where the loop nests are

modeled as polytopes (i.e., polygons generalized to n-dimensions) which can be dissected

and thus parallelized. It was originally developed for systolic arrays [169] and shared-

memory multiprocessors [9, 8] (i.e., the Stanford DASH multiprocessor [124]), but has

since been applied to distributed-memory clusters [96, 57, 27], and modern multi-cores

[29]. We are concerned here with its application to clusters, i.e., synthesizing distributed

memory implementations from these imperative input programs.

Many of the early papers only addressed one aspect of this problem, like finding a good

data-decomposition [128, 167, 100, 9, 49, 48, 121], transforming the computation to mini-

mize synchronization and maximize locality of reference [131, 130, 81], or generating effi-

cient communication code that omits redundant communication [7, 195]. However, since

then a number of fully functional end-to-end auto-parallelizing compilers that target

distribution-memory clusters have been developed [28, 29, 27]. Automatic data decom-

position was usually done either by trying to choose array alignments and partitionings

to minimize some execution time/communication cost estimates [127, 128, 49, 100, 9],

or by applying affine transformations to the loop nests to produce tilings that mini-

mizes communication between tiles [131, 130, 28, 29]. The former is also how the HPF

automatic data layout approaches worked [89, 115]. Both demonstrate very good perfor-

mance in the benchmarks mentioned, but both techniques rely on the polyhedral model

and integer programming, which are only applicable to arrays and loop nests, and often

Chapter 2 Background and Literature survey 25

only a restricted class of these. We are not aware of any work that suggests how this

could be generalized to other collection types and data-parallel operations, and so like

HPF this work is only applicable to a restricted programming model.

Parallel databases Parallel databases can also be used for some distributed data-

parallel tasks [211, 117, 146]. Like Flocc programs, parallel SQL query plans [45] are

synthesized by enumerating different combinations of plan operators to minimize the

overall cost [185]. This means that they can consider different ways to co-locate a query’s

input relations, and different data distributions for temporary/intermediate relations.

Like Flocc’s map combinators, SQL queries are also based on relational algebra, though

they have a weak type system, no support for array-based computation, and cannot be

extended with new operators. Furthermore, parallel databases typically do not generate

standalone code, and the distributed schemas must be designed manually, though a tool

to assist with this has been proposed [157].

DryadLINQ DryadLINQ (Language Integrated Query) [112, 74, 217] is a framework

similar to PigLatin for cluster computation in .NET languages that also takes SQL-like

LINQ queries [142], and optimizes them at runtime to query large distributed datasets. It

too has been used to implement scientific analyses like DNA sequencing and high-energy

physics simulations, giving significantly better performance than Hadoop equivalents in

some situations [74].

Instead of targeting Hadoop jobs, DryadLINQ queries are transformed into a directed-

acyclic operator graph, which is then directly optimized and executed on the cluster.

This means that DryadLINQ queries can avoid redundant steps, directly implement

joins, etc., and optimize queries to improve data co-location of intermediates, e.g., per-

forming rack-level partial aggregation. However, these optimizations are only for a single

query; no means is provided to specify or automatically optimize data distributions for

query results to take into account later queries and future processing. Furthermore,

like parallel databases, DryadLINQ is restricted to the SQL query model, and does not

support array-based computations.

SISAL The only functional language reviewed that targets distributed memory ar-

chitectures is SISAL (Streams and Iterations in a Single Assignment Language) [82].

SISAL is strongly typed, has Pascal-like [212] syntax, and pure semantics (i.e., no side

effects) which is ideal for parallelization as it renders data-races impossible. It was im-

plemented via transformation into a dataflow graph (DFG) form (called IF1), which

was then optimized to remove intermediates, pre-allocate arrays, and then used to gen-

erate code. One implementation synthesized distributed memory implementations and

optimized them to minimize non-local data access [179, 178]. It did this by computing

26 Chapter 2 Background and Literature survey

execution-time estimates for IF1 nodes, iteratively expanding them until enough paral-

lelism was revealed, partitioning this expanded graph into tasks, and finally scheduling

these to try and minimize non-local data access. This technique successfully targeted

distributed-memory architectures, but was very limited since minimizing network traffic

was only considered when scheduling tasks, rather than when choosing how to partition

the DFG into tasks to start with. Furthermore, SISAL did not support structured data

partitionings, alignments, or data replication etc., and so was very limited in its ability

to optimize data layout. Finally, its programming model was particularly limited, in

that it only supported 1D arrays, and a single data-parallel for -expression to range over

index spaces access array elements, generate intermediate values, and aggregate them.

These languages and frameworks follow three main approaches to automatic data distri-

bution. For numerical array-based applications, HPF and polyhedral auto-parallelization,

techniques either search explicitly for array alignments and partitionings for variables

in the program [128, 9, 49, 116, 100], or transform the computation to find a loop-tiling

[130, 28, 29], that minimizes the estimated runtime/communication cost. Then parallel

databases [211, 117] and DryadLINQ [112, 74, 217] both optimize data layouts and access

patterns by trying different combinations of plan operators to implement the high-level

operators in the query graphs. This approach not only enumerates different data layouts,

but also different local and distributed algorithms to answer the overall query. Finally,

SISAL [179, 178] also generates a data flow operator graph, but instead of enumerating

different implementations and distributions for each operator, partitions the graph into

tasks to try and balance the estimated computational costs, without considering data

distribution, and the static scheduler then tries to co-locate tasks to minimize non-local

data access. This is the most simplistic of the three approaches.

While all of these approaches perform some automatic distributed data layout selection,

all of them are only for restricted data and programming models. For example, none

of them work for both array-based (HPF), map-based (SQL), and list-based (SISAL)

data-parallel tasks, let alone for other data structures and applications. Furthermore,

none of the approaches surveyed show they can be extended with more collection types

and data distributions, and are therefore lacking in extensibility. We seek a common

approach that works for all of these models, including the collections, operations, and

data distributions they require, and that can be extended to support more in the future.

2.3 Basics of type systems

A type system is a means of classifying terms in computer programs, to permit valid

behaviors, and exclude some invalid ones. Many type systems exist, for functional and

imperative languages, where types are checked statically or at runtime, and where users

Chapter 2 Background and Literature survey 27

manually specify types, or where they may be inferred automatically. This section pro-

vides some background on polymorphic functional types, and automatic type inference.

The language we define in Chapter 3 uses a polymorphic type system, and a type in-

ference algorithm to reconstruct its types. Furthermore, we use types to encode the

distributed data layouts of expressions in this thesis, and variants of standard Hindley-

Milner type inference [62] in our technique for automatic data distribution generation.

2.3.1 Simple function types

The core calculus of a functional programming language is the lambda-calculus [56, 119].

Figure 2.3 shows the syntax of the lambda-calculus.

t ::= x | λx · t | t t

Figure 2.3: Syntax of lambda-calculus

A term in the lambda-calculus may either be a variable x, a function abstraction λx · t
where t is some term that may reference variable x, or a function application t t. A

function application of the form (λx · t1) t2 evaluates to a term where all instances of x

in t1 have been replaced with t2, which we denote as [x 7→ t2]t1.

A simple type system for the lambda-calculus can be constructed by extending the

syntax of function abstractions to include the expected type of their bound variables, as

per Figure 2.4, and where the set of types are generated by the grammar in Figure 2.5.

t ::= True | x | λx : T · t | t t

Figure 2.4: Simply typed λ-calculus

T ::= Bool | T → T

Figure 2.5: Simple types

Here a term can either have the type Bool (for a boolean constant True), or a function

type of the form T1 → T2, where T1 is the type of the function’s bound variable x, and

T2 is the type of the terms that the function evaluates to when it is applied, i.e., its

result. In order to check whether a term in our simply typed lambda calculus is well

typed we need to check that for every function application the type of the function’s

input variable x, is the same as the type of the term t2 the function is being applied to.

To do this we first construct typing rules that define the typing relation Γ ` t : T , giving

terms t types T under the typing environment Γ, so that we can determine the types of

terms in our language. Note that Γ is a mapping from variables to types that records

the types assigned to the bound variables in the current context. Figure 2.6 shows the

typing rules for the typing relation.

28 Chapter 2 Background and Literature survey

Γ ` True : Bool
T-True

x : T ∈ Γ

Γ ` x : T
T-Var

Γ, x : T1 ` t2 : T2

Γ ` λx : T1 · t2 : T1 → T2
T-Abs

Γ ` t1 : T1 → T2 Γ ` t2 : T1

Γ ` t1 t2 : T2
T-App

Figure 2.6: Typing rules for simply typed lambda-calculus

The axiom T-True, simply says that the term True is always of type Bool. T-Var

says that if a binding for the variable x with type T exists in Γ, then x has type T

when referenced. T-Abs says if, assuming Γ and additionally that x is of type T1,

we can deduce that t2 if of type T2, then the abstraction with x marked as type T1

and expression t2, has type T1 → T2. Finally, T-App says that given term t1 of type

T1 → T2, and term t2 of type T1, then the term t1 applied to t2 has type T2.

This system allows us so type-check functional programs by building the types of terms,

using the types of their sub-terms. Then at any function application, if the type of t1

is not an arrow type, or if the type of t2 is not T1, the function’s parameter type, that

term is not well typed.

2.3.2 Polymorphic types

A useful extension to the type system presented in the previous subsection, is the intro-

duction of type variables. Damas and Milner [144, 62] presented just such an extension

for parametric polymorphism and implemented it for Standard ML [104]. In this system

types are held abstract during type-checking, and all possible substitutions of concrete

types for type variables are held to be well typed.

A näıve implementation of this system would be of little use. For example, say we

had a function with type α → α. That function could be used with different concrete

types substituted for α, however all uses of the function within a given program would

have to use the same substitution for α. To avoid this problem we use type schemes.

Type schemes extend types with a top level universal quantifier and list of bound vari-

ables. Schemes are written ∀v1, v2, . . . · T with bound variables v1, . . . , vn which may be

instantiated to different concrete types at different places in a program.

Java generics [31] and C++ templates [203] express similar polymorphism in object-

oriented programming languages. Both generics and templates allow classes to be

defined that are parameterized by type-variables, which can be instantiated with dif-

ferent classes. In C++ different implementations can be defined for different (par-

tial) specializations of a template-class, so for example a special implementation of the

Chapter 2 Background and Literature survey 29

std::vector<T> class could be defined, based on bit-vectors, when we know that T =

bool. This ability, to partially specialize template classes, and pattern-match on them

at compile time, actually forms a Turing-complete language [205], which is the basis of

template libraries like Boost [1]. We exploit a similar idea in this thesis, where high-level

combinators are replaced with different distributed-memory implementations, that are

specialized for particular distributed data layout types. However, in our our approach

these DDL types are inferred automatically, rather than being specified manually by

the programmer, and so many different specializations can be tried and evaluated, with-

out user intervention. This automatic specialization technique forms the basis of our

distributed-memory implementation synthesis approach.

2.3.3 Type inference

In addition to type-checking programs with type annotations, it is also possible to au-

tomatically reconstruct the types for a particular program by analyzing how values are

used in the program. This makes programs more concise whilst retaining the benefits

of automatic type-checking. One such type inference system was developed by Damas

and Milner for Standard ML called Algorithm W [62]. They implemented a kind of

parametric polymorphism called let-polymorphism, where type schemes are created at

let-bindings, and are instantiated when variables are referenced, by generating a fresh

type variable for every bound variable. Type inference proceeds by building up a set

of typing constraints for an input program, and then solving these constraints using a

unification algorithm. Their system automatically finds the principle types of terms,

that is types with the most general instantiations of type variables, provided that the

program is well typed.

We use this approach to infer data types for programs in our language in Chapter 3,

and extend it to check the validity of different data distributions in Chapter 4.

2.3.4 Dependent types

Dependent types are types where terms or values in the language can enter the types

[162]. One such type is written by generalizing the function type T1 → T2, to Πx : T1 ·T2,
where T1 → T2 can be thought of as an abbreviation of this latter form, where x does

not appear in T2. This construction is called the dependent product type or “Pi” type,

and it allows the function parameter of type T1 to be referenced using the identifier x

in the type T2. For example, given the type of n-element byte vectors BVector n, the

value empty has type BVector 0, and the function cons has type Πn : Nat · Byte →
BVector n → BVector(n + 1). That is, cons takes a natural number, a byte, and a

BVector of length n and returns a BVector of length n+ 1.

30 Chapter 2 Background and Literature survey

Type-checking for dependent types is undecidable in general, since deciding whether two

types are equal may require deciding whether two programs produce the same result,

which is undecidable in general [200]. We use a restricted form of dependent types in

Chapter 4, to create distribution types that are parameterized by functions that appear

in the input programs.

2.3.5 Unification

A key part of Damas and Milner’s Algorithm W [62] is syntactic unification. Unification

seeks a set of substitutions that replace (type) variables with other type terms, to unify

a set of syntactic constraints, i.e., make the terms on both sides of the constraints

syntactically equal. One suitable unification algorithm for Algorithm W is Robinsons’

[173]. It proceeds one constraint at a time, discarding the constraint if both sides are

equal, creating a substitution replacing a type variable with a value, if one side of

the constraint is a type variable, and breaking down composite constraints into new

constraints between corresponding parameters, when the number of parameters on both

sides matches. This algorithm is sufficient for ML and Algorithm W, but more powerful

unification algorithms are required for more expressive type systems.

For example, if types can involve functions (not just function types), a higher-order uni-

fication algorithm is required. In Chapter 5 we use a simple approximation for higher-

order unification that tries to syntactically unify functions, and if this fails normalizes

and then re-compares them. However, in Chapter 6 we present a better approximation

of second-order unification that works for projection functions. It uses a first-order equa-

tional theorem prover (i.e., the E-prover [183]) with an equational theory for projection

functions to find solutions for equations between projection functions. This allows us to

solve non-trivial constraints between functions embedded in the type system, and find

function implementations for type variables to make terms semantically equivalent.

2.4 Auto-tuning by code generation

Auto-tuning is an area of search-based software engineering [103, 101] that uses runtime

performance-feedback and code generation to search for and synthesize optimized im-

plementations of different applications. It has been developed as a method to specialize

high-performance computations to different target environments. We use it to search

for good MPI implementations of data-parallel programs, in Chapter 7 and Chapter 8

of this thesis.

There are currently three classes of auto-tuners. First, self-tuning library generators like

ATLAS [208], PhiPAC [20], FFTW [86, 87], and SPIRAL [166, 165] are domain-specific

auto-tuners for generating high-performance kernels for BLAS (Basic Linear Algebra

Chapter 2 Background and Literature survey 31

Subprograms), DFTs, and signal processing. Second, compiler-based auto-tuners like

CHiLL [51] and PoCC [164] generate and search through alternative implementations

of a computation, e.g., different loop tilings and unrollings etc. Third, application-level

tuners like Active Harmony [60] and PetaBricks [46, 10] automatically search through

different parameter values and code variants proposed by the application programmer.

In AI, auto-tuning is also known as algorithm portfolio optimization. It has been ap-

plied to many computationally hard problems (e.g., satisfiability solving [214]), but the

different optimization methods treat the algorithms as black boxes and only learn op-

timal schedules and parameter settings for a given set of implementation alternatives.

To the best of our knowledge ours is the first work to apply these techniques to data

distribution on clusters.

In this section we review the some of the ways that auto-tuners represent their search

spaces, and the search algorithms they use to find solutions.

2.4.1 Search space representations

Operator graphs/trees Spiral [166, 165] generates optimized implementations of sig-

nal processing algorithms. These were originally just FFT (Fast Fourier transform) and

trigonmetric transforms [5], but now include other linear transforms and non-transform

kernels, like matrix multiply, circular convolution, and Virterbi decoding [84]. All of

these algorithms can be implemented by recursively composing other transforms, often

for smaller vectors. Spiral’s search space therefore consists of the possible operator trees

that can be derived from a formal grammar, defined by concrete transform implemen-

tations as terminals, and rewrite rules which replace a transform with an expression

composing other transforms, as non-terminals. This work has also been extended to

generate simple MPI implementations of discrete Fourier transforms (DFTs) by includ-

ing parallelized transforms [30], and SIMD/multi-core implementations of transforms for

the Cell BE processor [50]. However, these only supports 1D blocked distributions, and

all permutations perform expensive all-to-all communication.

FFTW generates optimized Fast Fourier Transform (FFT) implementations [86, 87]. It

produces plans by composing codelets, which are highly optimized composable blocks of

C that compute part of the transform. Like Spiral, solutions are found by recursively

decomposing the FFT into combinations of codelets that perform DFTs of fixed size,

and codelets that combine the results of other codelets. The planner uses dynamic

programming and actual performance-feedback to search for the fastest plans.

Code transformations Some auto-tuners directly transform code. ATLAS [209, 207]

generates optimized implementations of the BLAS linear algebra library. It initially

probes for information like FPU pipeline depth, number of registers, and cache size, and

32 Chapter 2 Background and Literature survey

then optimizes loops to try and find the best blocking factor and loop unrolling etc.

PhiPAC applies similar techniques to general ANSI C programs [20].

Tunable parameters Active Harmony [60] and Gunther [129] tune numerical and dis-

crete parameters respectively. Gunther optimizes configuration parameters for MapRe-

duce installations. Active Harmony tunes parameters in input programs that have been

specified by the programmer. It has also been combined with the CHiLL compiler

transformation framework [52], to select and optimize loop transformations (e.g., per-

mutations, tilings, unrollings) like the code transformation approaches above [197].

2.4.2 Search algorithms

Exhaustive search Exhaustive search is the simplest search algorithm. It uses a

traversal, like depth-first or breadth-first to enumerate all candidate solutions in the

search space. It is only feasible where the search space is small enough to be completely

enumerated in reasonable time. Shin et al. [186] use an exhaustive search with the

CHiLL loop transformation framework [54] to optimize the Nek5000 spectral element

code, although they use heuristics to prune the search space for operations involving

larger matrices.

Dynamic programming Dynamic programming [18, 19] optimizes sub-problems lo-

cally, independent of the larger context. It can only be used when problems can be

broken down into sub-problems (e.g., trees), and it is not guaranteed to find the fastest

plan, since it is based of the assumption that “the best solution is found by composing

the best solutions of its sub-problems”, which does not always hold. FFTW uses dy-

namic programming as its search algorithm [87], and Spiral implements it, finding that it

gives “reasonably fast” solutions, though not as fast as those returned by STEER—their

genetic search algorithm. Since this algorithm tends to evaluate the same sub-problem

multiple times, implementations tend to cache feedback, so that performance evaluations

are not repeated [166, 87].

Random search Random search algorithms evaluate candidate solutions at random

from the search space. This often gives poor results. It can also be non-trivial to draw

candidates uniformly from the search space. For example, Spiral just selects a random

rule at each expansion step, which does not lead to a uniform distribution [166].

Evolutionary / Genetic algorithm Genetic algorithms [85, 64, 109] are very good at

searching for solutions to unstructured problems. They iteratively improve a population

of candidates, starting with a random population, from which the best n solutions are

Chapter 2 Background and Literature survey 33

used to generate a new population of solutions, from which a new population is created,

and so on. Each candidate solution is stored as a list of integers, where each integer

models a gene. A new population is created by applying a crossover operation to random

pairs of parents, which creates a child by randomly taking each gene from either the first

or second parent, respectively. A mutation operation is then often applied to children,

which randomly replaces part of the child with a random value, with a given probability.

Spiral [166] and GUNTHER [129] use genetic searches to auto-tune linear transforms and

optimize MapReduce configurations respectively. Spiral uses STEER [187], an unusual

tree-based genetic search. STEER’s crossover operation swaps different implementations

of the same node to crossover, and its mutation either replaces a subtree with a random

one, or swaps, or copies, two different implementations of the same node within the tree.

Apart from exhaustive search, this algorithm finds Spiral’s fastest solutions.

Genetic searches have also been used to synthesize code, by generating different programs

from a grammar, and evaluating how well they solve the target problem [102], i.e.,

evolving a CUDA kernel implementing part of gzip [120].

Integer parameter tuning A class of search algorithms called direct search algo-

rithms [110] can be used where tunable parameters are numerical values. Active Har-

mony [60] originally used a direct search algorithm called the Nelder-Mead simplex

method [155]. This method represents a solution as a simplex—an n-dimensional poly-

tope with n+ 1 points. The first n+ 1 iterations use performance-feedback to get values

for the points in the initial simplex. Then each subsequent iteration discards the worst

point, and replaces it with a new one that has a lower value. This algorithm is designed

for a continuous space, and so had been modified in Active Harmony, to take the nearest

integer to each point.

More recently, Active Harmony has been updated to use another kind of direct search

algorithms, called rank ordering algorithms [194, 198, 197]. This is because the simplex

method became unpredictable when the number of variables increased, and because it

cannot be parallelized [198]. Rank ordering algorithms also start with an initial simplex,

but after this, the simplex is either reflected, expanded, or shrunk around its best point.

These algorithms have better convergence properties than Nelder-Mead, and can be

parallelized.

Bandit-based graph optimization De Mesmay et al [65] find fast implementations

of recursive algorithms (e.g., Fourier transforms like in Spiral) represented by directed-

acyclic graphs (DAGs) drawn from a formal grammar, using an online search algorithm

called Threshold Ascend on Graph (TAG). This algorithm grows subgraphs (derivations

of the grammar) by considering local bandit problems and evaluating nodes using Monte-

Carlo simulations when real performance feedback is not available (i.e., when the node

34 Chapter 2 Background and Literature survey

is not a vertex). When a node is evaluated via performance-feedback, a corresponding

reward is back-propagated to all its ancestors. This has been shown to find good solutions

much faster, and sometimes find a better solution, than dynamic programming in some

cases [65].

Application specific search algorithms Some auto-tuners use application specific

searches that progressively try to optimize different features. For example, ATLAS tries

all options for a given parameter, choosing the best, whilst keeping all other parameters

fixed [209]. PhiPAC [20] uses a similar approach.

2.5 Conclusions

In this chapter we have surveyed the major technologies for data-parallel programming

and provided some background on type systems and auto-tuning.

Data-parallel programming languages The data-parallel programming languages

surveyed all balance three criteria: abstraction, flexibility, and performance. Raising the

level of abstraction can be hugely beneficial, making code much more concise, intuitive,

portable, and accessible for non-expert programmers. Abstracting away from concerns

like data layout, synchronization, and communication make languages much easier to use

and port to different architectures, but can limit their applicability and make generating

efficient code difficult. The main languages surveyed all raise the level of abstraction,

but do so in different ways which usually reduce flexibility and performance.

MPI needs a high level of skill, but is flexible and can yield high performance programs.

However, it requires long complicated code and is not suitable as a general purpose

paradigm as it is too tied to flat, shared-nothing parallelism.

The SPMD PGAS model (Co-Array Fortran, UPC, Titanium) still requires a high level

of skill, manual data decomposition, and synchronization, but abstracts away from ex-

plicit message passing. It is less flexible than MPI and languages like Chapel, due to

its restricted data structures, but can give high performance. It is a more portable

model than MPI, supporting shared and distributed memory, but still cannot exploit

architectures with nested parallelism (i.e., clusters of multicores with GPUs).

The imperative data-parallel model (HPF, ZPL, Chapel, X10) is more concise and intu-

itive as it takes a global view, but requires specialist architectural knowledge to design

data layouts. It is mainly limited to numerical HPC, but can yield high performance.

It could target diverse architectures, in some cases with nested parallelism. However,

in its current form it is too inflexible to be suitable as a general purpose paradigm and

designing data layouts makes it inaccessible and hard to optimize and port.

Chapter 2 Background and Literature survey 35

The applicative data-parallel languages (SISAL, NESL, DPH, SAC) are concise and in-

tuitive, taking a similar global perspective, though the functional paradigm may be un-

familiar to some. There are no distributed memory implementations apart from SISAL,

but the paradigm is very convenient for data dependency analysis and SISAL demon-

strates that it can be automatically partitioned to target different architectures without

modification. In some ways it is more flexible than flat models, supporting nested data

structures and parallelism, but still cannot easily express operations like grouped aggre-

gations. It is also harder to achieve good performance (except perhaps with SAC).

Query-based models (MapReduce, SQL, DryadLINQ) are very concise and accessible

to non-experts. Programs can be very portable, targeting shared nothing clusters and

multi-core PCs, and yielding good performance. Operations are generally limited to

grouped aggregations and other data flow operations, but theoretically computations

involving multidimensional arrays could also be expressed. These models arguably

have had the most success in making distributed memory parallelism accessible to non-

experts, but cannot currently be used to efficiently implement numerical high perfor-

mance computations.

The only examples of automating data layout decisions found, are with HPF [115],

polyhedral loop parallelization [27], query languages [117, 112], and SISAL [179]. They

all yielded promising results, but HPF and SISAL used archaic architectures, and all

four are restricted by their base languages. The best attempt to unify the different data

models is Chapel [40], but its imperative semantics may make powerful data dependency

analyses of the kind needed for automatic data distribution optimization difficult. Fur-

thermore, it is still unsuitable for large data processing tasks, since unlike MapReduce,

it does not support processing huge disk-backed collections.

In general portable distributed memory programming is a hard task, and is becoming

increasingly necessary. There is a need for tools to assist with this process, for a wider

class of data-parallel algorithms, and for heterogeneous architectures. In particular

the task of assisting the programmer with the data partitioning and layout decisions

required for modern distributed memory architectures, for a wider variety of data-parallel

operations and collection types, seems to have been somewhat neglected, and is thus the

focus of this thesis.

Basics of type systems Our brief introduction to type systems has shown that types

are a convenient way to annotate programs with meta-data, that can characterize some

properties about program terms, to exclude “bad” behaviors. Such systems can be

proved correct, or at least consistent, formally, and then implemented such that the

types of program terms can be checked mechanically by a compiler. The types for

some languages are polymorphic (i.e., involve variables), involve program terms (i.e.,

dependent types), and can be automatically recovered using type inference. These three

36 Chapter 2 Background and Literature survey

features are especially useful in our context, and allow us to express generic distributed

data layouts, parameterized by program terms, that can be automatically inferred for

candidate implementations of data-parallel programs, in Chapters 4 to 6 of this thesis.

Auto-tuning by code generation The auto-tuning work reviewed in this chap-

ter, demonstrates how performance-feedback-based search algorithms can be used to

automatically synthesize efficient implementations of various programs. The tools men-

tioned all yield implementations in reasonable time, that give impressive performance,

and which are portable, since they can be tuned to accurately reflect a new architecture’s

performance characteristics. The tools are able to yield better performing implementa-

tions than traditional compilers, since they empirically measure how the architectures

perform, rather than relying on simplified models of their performance characteristics.

Most of the tools work for a fixed set of applications, typically numerical transforms

[86, 209, 166], though some are more versatile [20]. However, to our knowledge, no

work currently exists that auto-tunes the data layouts and communication patterns of

distributed-memory MPI programs, or supports a full functional programming language,

and so our implementation in Chapter 7 (which is evaluated in Chapter 8), is the first

to apply auto-tuning in this context.

Chapter 3

A Functional DSL for Data

Parallelism

This chapter presents Flocc (Functional language on compute clusters), a functional

domain specific language (DSL) for data-parallelism. Flocc is a simple core functional

language with data-parallel combinator functions (i.e., higher-order functions) for array,

map, and list collections. We use Flocc as an input language and substrate for our

automatic distributed memory implementation synthesis technique.

3.1 Introduction

The Flocc language is not a contribution per se, but a small core language that we use as

the input for our distributed memory implementation synthesis approach. We decided

to use a functional core language with data-parallelism expressed via combinators for a

number of reasons.

Firstly, using a small core language that omits unnecessary features, is much more

manageable for a research project, than using a fully fledged existing language. It

makes it more feasible to implement a toolset, and makes the type system(s) small

enough to verify formally. On the other hand, this did not limit the usefulness of the

language, since we have been able to express many common data-parallel algorithms in

Flocc without difficulty.

Using combinators for data-parallel operations allows us to support operations for mul-

tiple collection types within a small language, without needing multiple application-

specific data-parallel constructs. This keeps the language clean and simple, since it

allows us to support these different operations in a unified way. In addition to sup-

porting combinators, using a functional language supports polymorphic types, and type

inference to infer them automatically, so we can omit type declarations. Not only does

37

38 Chapter 3 A Functional DSL for Data Parallelism

this make programs more concise, it also allows us to automatically infer distributed

data layouts by treating them as types as shown in Chapter 4. Furthermore, using a

functional language allows us to convert programs into a data flow form, that makes it

easier to analyze them, and code generate from them, as shown in Chapter 7. In fact,

using a functional language is quite natural for any kind of data distribution synthesis

technique, since they are particularly suitable for the kind of data flow analyses that are

needed.

One possible limitation of our implementation of Flocc is that we require that lambda

abstractions are statically resolvable at combinator function applications, so functions

are not fully first-class. This allows us to inline the implementations of these abstrac-

tions, so that we can generate fast imperative code to run on the cluster. In practice this

does not seem to be a limitation, as we have written many common algorithms with-

out the need for functions to be fully first-class. It makes sense that HPC applications

would not use this feature, due to the performance overhead it causes. Another possible

difficulty is performing copy-elimination during code generation, such that updates that

can be, are performed in-place. We have been able to avoid this issue for the most

part by supporting value-streams and iterators as local storage modes for collections.

Furthermore, SISAL uses a technique to address this for data-flow graphs, which could

be applied in our situation [82].

3.2 Syntax

Flocc is essentially a polyadic lambda calculus [145], i.e., a lambda calculus with tuples.

However, unlike in the lambda calculus, in Flocc functions are not fully first class.

Instead, at every function application the compiler must be able to statically determine

what function abstraction is being applied. This allows such lambda abstractions to

be inlined, and lifted into the data distribution type language during data distribution

planning (see Section 4.3.2). It also simplifies the compiler’s implementation.

Flocc’s expression and type syntax are shown in Figure 3.1. Throughout this thesis we

use Tα to denote the syntactic domain produced by the non-terminal α. Expressions

e can be identifiers, scalar literals l, tuples, collection literals, function abstractions,

function applications, let bindings, or if-then-else expressions. Function abstraction

arguments and let expressions bind values to tuples of identifiers x. Values v are ex-

pressions in weak head normal form. That is, they can be scalar literals l, tuples of

values, lists of values, and lambda-abstractions with bodies which may be redexs (i.e.,

reducible expressions) or values. We only support list-literals in the syntax, since arrays

and maps can be generated from lists using listToArr and listToMap (cf. Appendix

B).

Chapter 3 A Functional DSL for Data Parallelism 39

e ::= Id | l | (e1, . . . , en) | [e1, . . . , en]

| \x [:: t] -> e | e1 e2

| let x [:: t] = e1 in e2

| if e1 then e2 else e3

v ::= l | (v1, . . . , vn) | [v1, . . . , vn]

| \x [:: t] -> e

x ::= Id | _ | (x1, . . . , xn)

l ::= Int | Float | String | True | False | ()

s ::= ∀Id·s | t

t ::= Id | Int | Float | String | Bool | Null
| (t1, . . . , tn) | t1 → t2
| Map t1 t2 | Arr i t | List t

i ::= Int | (i1, . . . , in)

Figure 3.1: Flocc expression and type syntax

3.3 Semantics

At the high-level (i.e., executed on a single processor with a single address space), we

have given Flocc a call-by-value reduction semantics, since this corresponds to the eager

evaluation strategy of our generated imperative code. The reduction rules for this are

shown in Figure 3.2. These rules reduce expressions e ∈ Te into values v ∈ Tv, which

are in weak head normal form.

The first six rules reduce expressions applied to values. They take values rather than

expressions, in order to implement the call-by-value evaluation order, by forcing argu-

ments to be fully evaluated before their parent expressions. E-App performs standard

beta-reduction [55], reducing lambda abstraction applications by substituting every oc-

currence of their bound variable x with the argument value v1. E-Let does the same

for let-expressions. E-IfTrue and E-IfFalse reduce if-expressions with constant

predicate values True and False to just their then-clause or else-clause respectively.

E-LetTup and E-AppTup reduce let-expressions and lambda applications that bind

tuples of variables, to nested lets and abstraction applications respectively, which bind

one variable at a time. These allow expressions that bind tuples of variables to be broken

down so that they can be reduced by E-Let and E-App respectively.

The other six rules allow subexpressions within expressions to be reduced, to transform

them into values, which in turn allows the other rules to be applied. E-App1 and E-

App2 allow functions and argument expressions respectively, to be reduced in function

application expressions. E-Let1 allows let-bound expressions to be reduced, E-If

40 Chapter 3 A Functional DSL for Data Parallelism

(\x -> e0)v1 [x 7→ v1]e0
E-App

let x = v0 in e1 [x 7→ v0]e1
E-Let

if True then e0 else e1 e0
E-IfTrue

if False then e0 else e1 e1
E-IfFalse

let (x0, . . . , xn) = (v0, . . . , vn)in e let x0 = v0 in . . . (let xn = vn in e)
E-LetTup

(\(x0, . . . , xn) -> e)(v0, . . . , vn) (\x0 -> . . . (\xn -> e)vn . . .)v0
E-AppTup

E-App1
e e′

e e0 e′ e0

e e′

e0 e e0 e
′ E-App2

e e′

let x = e in e1 let x = e′ in e1
E-Let1

e e′

if e then e0 else e1 if e′ then e0 else e1
E-If

e e′

(e0, . . . , e, . . . , en) (e0, . . . , e
′, . . . , en)

E-Tup

e e′

[e0, . . . , e, . . . , en] [e0, . . . , e
′, . . . , en]

E-List

Figure 3.2: Flocc interpreter reduction rules

allows if predicates to be reduced, and E-Tup and E-List allow subexpressions of

tuples and list literals to be reduced respectively.

All parallelism in Flocc is expressed via data-parallel operations applied to the col-

lections. These operations include predefined combinators for arrays, maps, and lists

shown in Figure 3.6; there are many further combinators not shown here for brevity

(cf. Appendix B for a full list). Flocc therefore effectively has two language levels or

sublanguages: a lambda calculus, and a set of primitive combinators. The semantics

for the former is defined in via the reduction rules in Figure 3.2, but we do not define

any semantics for the latter, although this difference is not reflected in the syntax (both

rely on function applications). This distinction is deliberate, since we want to explicitly

abstract away from sequential execution and individual element accesses, or some sort

of super-combinator, so that there is some flexibility in the way that these data-parallel

combinators are defined, so that we can choose different concrete implementations of

Chapter 3 A Functional DSL for Data Parallelism 41

them at compile time. Another reason is, that although we could define the high-level

semantics for these combinators, we want them to be extensible, eventually allowing

power-users to define their own combinators perhaps by means of a scripting language,

and so any semantics given would not be exhaustive.

We have deliberately omitted letrec recursive let expressions from the current version

of Flocc, and instead provide built-in combinators for iteration (i.e., while and loop).

This is for a number of reasons. Firstly, these iteration combinators are sufficient for all

the example programs in this thesis, and so primitive recursion is not currently needed.

Secondly, it simplifies the implementation of the code generator, so that we can focus

on the core data distribution synthesis problem, for example, by allowing us to ignore

detection of tail-recursion, since all loops are explicit in the code. It also encourages

users to use iteration rather than recursion, and means that we can explore different

implementations of the iteration combinators, for example, with different loop unrollings,

in the same way that we explore different implementations of the other combinators.

Thirdly, it aids analysis, since if we ignore evaluation of the built-in combinators, all

expressions can be reduced to a normal form in finite time, since without primitive

recursion, evaluation always terminates. We use this feature when testing for function

equality in our DDL type inference system in Chapter 5.

Having said this it would be quite straightforward to add letrec to Flocc, if desired.

The standard letrec typing rule used in ML-like languages [104] could easily be added

to the type systems in Section 3.4 and Chapter 5, and the standard evaluation rule

could be added to the semantics in Figure 3.2. The only slightly harder task would be

to extend the code generator to support it, since it is currently based on traversing an

acyclic data flow graph. However, this could be done by either allowing cycles in the

graphs, or by using a special node for recursive calls. The generated code could then

reside in a C++ function, which could be invoked recursively as required.

Finally, primitive recursion is technically possible syntactically in Flocc, by means of

a fixed-point combinator like the Y-combinator [36]. However, such combinators are

ruled out by the type system (cf. Section 3.4), since either recursive types [161] or a

polymorphic calculus like System F [161] are required to infer types for such expressions.

3.4 Types

Flocc’s type system is based on standard Hindley-Milner let-polymorphic types [108,

144]. Scalar types are integers, floating point numbers, Boolean values, strings, the null

type, and compositions of these as n-ary tuples (cf. Figure 3.1). Function types (denoted

by t1 → t2) have domain t1 and codomain t2 type parameters, and the Map tk tv, Arr

ti tv, and List tv collection types, have type parameters tk for map keys, ti for array

indices, and tv for values. As per standard let-polymorphic types, type schemes are types

42 Chapter 3 A Functional DSL for Data Parallelism

ftv(X) = {X}
ftv(∀X·T) = ftv(T) \ {X}
ftv(T1 → T2) = ftv(T1) ∪ ftv(T2)

ftv((T1, . . . , Tn)) =
⋃k=1
k=n ftv(Tk)

ftv(Map T1 T2) = ftv(T1) ∪ ftv(T2)

ftv(Arr T1 T2) = ftv(T1) ∪ ftv(T2)

ftv(List T) = ftv(T)

Figure 3.3: Definition of ftv (Free type variables)

with a top level for-all quantified list of type variables. Type schemes allow polymorphic

functions, i.e., functions that can be instantiated with many different concrete types.

The types that follow frequently omit the variable lists for brevity, in which case all

lower case identifiers are taken to be implicitly for-all quantified type variables. Note

that for reasons of performance and simplicity, we restrict type variables to range over

non-function types only. This leads to a clear separation in the types between functions

and values, where parameters of type α → β (and similar) must be passed functions,

and parameters of type α must be passed scalars, tuples, or collections. This does not

prevent users defining functions that take other functions as parameters, but means

that the code generation templates for our built in combinators do not need to support

storing functions in collections, or transmitting functions as objects over the network.

The only limitation this places on the flexibility of Flocc, is that separate combinators

would be required to store and transmit functions in this way, with explicit arrow types

for their arguments.

Flocc uses Damas-Milner’s type inference algorithm W [62] to infer types for all expres-

sions, though function abstractions and let-bindings support optional type declarations

for the compiler to check. Figure 3.4 shows the inference rules for this system. Here Γ is

a mapping between variables and types, that stands for the current typing environment,

where Γ ⊕ x : t (which we abbreviate to Γ;x : t) overwrites the mapping for x in Γ (if

one exists) with a new mapping to type t. T ranges over types, X over type variables,

e over expressions, f over functions, and x over identifier patterns. n, b, d, and s also

range over integer, boolean, floating point, and string values respectively. X̄ stands for

a possibly empty set of type variables, and ftv returns the set of all free type variables

in a type (or typing context), as shown in Figure 3.3.

As in standard let-polymorphism, type schemes are created at let-bindings, by quan-

tifying over all free type variables in the type that do not appear free in the context.

Ty-Let implements this by getting all free type variables X̄ in T (that do not appear

free in Γ), and using these to create a type scheme for variable x. Type schemes are then

instantiated at variables by creating fresh type variables for each variable bound by the

forall-quantifier of the scheme. Ty-Var implements this by replacing each occurrence of

Chapter 3 A Functional DSL for Data Parallelism 43

Γ ` () : Null
Ty-Null

Γ ` n : Int
Ty-Int

Γ ` b : Bool
Ty-Bool

Γ ` d : Float
Ty-Float

Γ ` s : String
Ty-String

Γ ` e0 : T0 . . . Γ ` en : Tn

Γ ` (e0, . . . , en) : (T0, . . . , Tn)
Ty-Tup

Γ ` e0 : T . . . Γ ` en : T

Γ ` [e0, . . . , en] : List T
Ty-List

Γ;x : T0 ` e : T1

Γ ` \x → e : T0 → T1
Ty-Abs

Γ ` f : T0 → T1 Γ ` e : T0

Γ ` f e : T1
Ty-App

Γ ` e0 : Bool Γ ` e1 : T Γ ` e2 : T

Γ ` if e0 then e1 else e2 : T
Ty-If

Y1, . . . , Yn are fresh vars
Γ(x) = ∀X1, . . . , Xn · T

Γ ` x : [X1 7→ Y1 . . . , Xn 7→ Yn]T
Ty-Var

Γ ` e0 : T
X̄ = ftv(T) \ dom(Γ) Γ;x : ∀X̄ · T ` e1 : T ′

Γ ` let x = e0 in e1 : T ′
Ty-Let

Figure 3.4: Flocc typing rules

44 Chapter 3 A Functional DSL for Data Parallelism

eq :: (a, a) -> Bool

not :: Bool -> Bool

and :: (Bool , Bool) -> Bool

or :: (Bool , Bool) -> Bool

addi :: (Int , Int) -> Int

subi :: (Int , Int) -> Int

muli :: (Int , Int) -> Int

divi :: (Int , Int) -> Int

modi :: (Int , Int) -> Int

mini :: (Int , Int) -> Int

maxi :: (Int , Int) -> Int

negi :: Int -> Int

eqi :: (Int , Int) -> Bool

gti :: (Int , Int) -> Bool

gtei :: (Int , Int) -> Bool

lti :: (Int , Int) -> Bool

ltei :: (Int , Int) -> Bool

divf :: (Float , Float) -> Float

mulf :: (Float , Float) -> Float

addf :: (Float , Float) -> Float

subf :: (Float , Float) -> Float

minf :: (Float , Float) -> Float

maxf :: (Float , Float) -> Float

negf :: Float -> Float

randf :: Null -> Float

sqrt :: Float -> Float

eqf :: (Float , Float) -> Bool

gtf :: (Float , Float) -> Bool

gtef :: (Float , Float) -> Bool

ltf :: (Float , Float) -> Bool

ltef :: (Float , Float) -> Bool

toFloat :: Int -> Float

toInt :: Float -> Int

Figure 3.5: Scalar library function types.

a quantified type variable Xk with a unique fresh variable Yk. Here [X 7→ Y]T replaces

all occurrences of X in T with Y .

These rules are a straightforward application of the ML/Hindley-Milner system. We

therefore inherit the type safety results of progress (i.e., well-typed programs can progress)

and preservation (i.e., evaluations of well-typed programs are well-typed) from [161].

Similarly, since our type inference algorithm is a straightforward application of algorithm

W, extended to deal with new constructs (i.e., tuples, let-expressions, if-expressions

and list expressions), we inherit the soundness and completeness properties from [62]

(and of a constraint-based variant from [161]).

3.5 Library functions

This section introduces some of Flocc’s built-in library functions. This list is not ex-

haustive, and more functions can be added to the language by declaring their types and

implementing code generation templates for them (cf. Chapter 7). Figure 3.5 shows

Chapter 3 A Functional DSL for Data Parallelism 45

subArr :: (i, i, i, Arr i v) -> Arr i v

shiftArrR :: (i, Arr i v) -> Arr i v

shiftArrL :: (i, Arr i v) -> Arr i v

scaleArr :: (i, Arr i v) -> Arr i v

mapArrInv :: (i->j, j->i, (i,v)->w, Arr i v) -> Arr j w

eqJoinArr :: (i->k, j->k, Arr i v, Arr j w) -> Arr (i,j) (v,w)

groupReduceArr :: (i->j, (i,v)->w, (w,w)->w, w, Arr i v) -> Arr j w

unionArrWith :: ((v,v)->v, i->v, Arr i v, Arr i v) -> Arr i v

map :: ((i,v)->(j,w), Map i v) -> Map j w

mapInv :: ((i,v)->(j,w), (j,w)->(i,v), Map i v) -> Map j w

eqJoin :: ((i,v)->k, (j,w)->k, Map i v, Map j w) -> Map (i,j) (v,w)

allPairs :: ((i,v)->k, Map i v) -> Map (i,i) (v,v)

reduce :: ((i,v)->s, (s,s)->s, s, Map i v) -> s

groupReduce :: ((i,v)->j, (i,v)->w, (w,w)->w, Map i v) -> Map j w

filter :: ((i,v)->Bool , Map i v) -> Map i v

union :: (Map i v, Map i v) -> Map i v

intersect :: (Map i v, Map i w) -> Map i v

diff :: (Map i v, Map i w) -> Map i v

countMap :: Map i v -> Int

intRangeMap :: (Int ,Int ,Int) -> Map Int ()

zip :: (List v, List w) -> List (v,w)

take :: (Int , List v) -> List v

mapList :: (v->w, List v) -> List w

filterList :: (v->Bool , List v) -> List v

reduceList :: ((v,v)->v, v, List v) -> v

listToMap :: List (i,v) -> Map i v

length :: List v -> Int

while :: (s -> (s, Bool), s) -> s

loop :: (s -> s, s -> Bool , s) -> s

Figure 3.6: Predefined data-parallel combinators for arrays, maps, and lists.

46 Chapter 3 A Functional DSL for Data Parallelism

the types for some of Flocc’s scalar functions and Figure 3.6 list the types of some of

the data-parallel combinators. We also use the standard symbolic numeric and Boolean

operators as sugars for their respective scalar functions.

The first block of combinators are for combining and transforming arrays.

subArr(i1, i2, i3, a) returns the array section of a between indices i1 and i2 (stride i3),

and shiftArrR(i, a) and shiftArrL(i, a) transpose the indices of array a by the offsets

in i , in the positive and negative directions respectively. scaleArr(s, a) scales/multi-

plies the indices of array a by the integer factors in s. mapArrInv(f, finv, g, a) applies

f and g to the indices and values of a, and eqJoinArr(f, g, a, b) returns the Carte-

sian product of a and b restricted to where the indices returned by functions f and g

respectively are equal. groupReduceArr(f, g, h, v0, a) returns a new array formed by

projecting new indices and values from a using f and g respectively, and aggregating

values using the binary operator function h (which must be associative), where v0 is the

starting value. unionArrWith(f, f0, a, b) returns a new array with indices that range

from the minimum index of a and b to the maximum, where overlapping values are

combined using f and undefined values are initialized using f0 .

The next block lists the types of some map combinators. The map, mapInv, eqJoin

and groupReduce combinators are similar to their array equivalents. allPairs(f,m)

groups values of m using the keys returned by f , returning all 2-combinations of values

for each group. reduce(f, g, v0,m) aggregates values returned by applying f to the

values in m using the function g , and filter(f,m) returns a map that contains all

key-values from m for which f returns true. Then union, intersect, and diff perform

standard left-biased set union, intersection, and set-difference, and countMap m returns

the number of elements in m.

The final types are list combinators. zip(a, b) combines lists a and b elementwise

until the end of the shorter list, and take(n, l) returns the first n elements of the list

l . mapList, filterList, and reduceList work like their map and array equivalents.

Finally, listToMap l returns a map of the elements in l where duplicates replace former

values, and length l returns the length of l .

Finally, the while and loop combinators perform iteration. while(f, v) is like a

do-while loop, since it always applies f to v once and then recursively applies f until

it returns False. loop(f, p, v) is like a standard while loop, as it only applies f to

the first v if the corresponding call to p returned true True, returning the original v

otherwise.

For a complete list of combinators with their types and descriptions please see Appendix

B.

Chapter 3 A Functional DSL for Data Parallelism 47

let mmul =(\(A,B) :: (Arr (Int ,Int) Float , Arr (Int ,Int) Float) ->

-- zip all combinations of rows from A and cols from B

let R1 = eqJoinArr (snd , fst A, B) in

-- multiply values from A and B

let R2 = mapArrInv (id , id , Float.*, R1) in

-- group by destination & sum -reduce

let C = groupReduceArr (

\((ai ,aj),(bi ,bj)) -> (ai ,bj),

snd , Float.+, 0.0, R2) in C)

in ...

Figure 3.7: Matrix-matrix multiplication program

3.6 Example programs

This section presents some example programs to illustrate how to use arrays, maps, and

lists in Flocc.

Matrix Multiplication In Flocc, the matrix multiplication (cf. Figure 3.7) closely

follows a relational algebra version (cf. Figure A.1b). Here, A and B are arrays with pairs

of integers as indices, and floating point values. The array join eqJoinArr computes

the Cartesian product of both arrays, restricted to entries where the snd index from

A is equal to the fst index from B. It thus returns an array with four indices that

contains all pairs of Floats that contribute to the result. This is equivalent to zipping

together all combinations of rows from matrix A and columns from matrix B. mapArrInv

multiplies each of these pairs (like the renaming), and the aggregation groupReduceArr

then groups these values using new keys (ai,bj) (i.e., the row from A and column from

B), and sums up all the values in each group using Float.+.

Jacobi 1D The function jac (cf. Figure 3.8) is a cut down version of the Jacobi

method, which is a numerical method for solving diagonally dominant systems of linear

equations. For example, given a square system of n linear equations Ax = b where A

can be decomposed into a diagonal component D and remainder R such that A = D+R,

the solution can be obtained by iteratively computing xk+1 = D−1(b−Rxk) until some

convergence condition is met. The equivalent element-based formula is xk+1
i = 1

aii
(bi −

Σ
j 6=i
aijx

k
j), i = 1, . . . , n which we cut down to xk+1

i = 1
2(aij−1x

k
j + aij+1x

k
j), i = 1, . . . , n.

The function jac applies the Jacobi stencil to a 1D array X, N times. It iterates using

the while combinator to repeatedly apply next to the array. Every application of

next applies the function shiftArrR to shift array A 2-elements to the right and then

48 Chapter 3 A Functional DSL for Data Parallelism

let N = 100 :: Int in

let jac = \X :: DArr Int Float ->

-- next applies the 1D jacobi stencil once

let next = \A ->

-- coalesce with element 2-indices to right

let A’ = eqJoinArr (id , id , A, shiftArrR (A, 2)) in

-- sum pairs

let A’’ = mapArrInv (fst , dup , \(i,v) -> addf v, A’) in

-- divide by 2.0

mapArrInv (id, id, \(_,x) -> divf (x, 2.0), A’’) in

-- loop performs the stencil N times

while (\(V,k) -> ((next V, addi (k,1)), lti (k,N)),

(X, 0))

in ...

Figure 3.8: Jacobi 1D stencil

let hist = (\(N,D) :: (Int , Map k Float) ->

-- use min/max vals as x-axis bounds

let (minV , maxV) = reduce (\(_,v) -> (v,v),

\((x1 ,y1),(x2 ,y2)) -> (Float.min (x1 ,x2),

Float.max (y1,y2)),

(Float.MAX_VAL , Float.MIN_VAL), D) in

-- scaling coefficient to get bucket ids

let i = Float./ (toFloat (Int.- (N,1)),

Float.- (maxV , minV)) in

let D’ = map (\(k,v) -> (k, toInt (Float.* (v,i))), D) in

-- group by bucket & count group sizes

groupReduce (snd , _ -> 1, Int.+, D’))

in ...

Figure 3.9: N-bucket histogram

combines it element-wise with the original A using eqJoinArr, and sums together the

corresponding values using mapArrInv and addf. next therefore sums together each

element’s left-hand (-1) and right-hand (+1) neighbors and then uses mapArrInv and

divf to divide each value by 2.0.

Histograms The function hist (cf. Figure 3.9) shows a use of maps in Flocc. It

takes a pair of arguments N and D, where D is a map from keys of arbitrary type k to

floating point values, and computes a histogram of these values. This histogram has N

equally spaced buckets such that bucket 0 contains the minimum value in D and bucket

N-1 contains the maximum. The reduce combinator projects the values from the map

Chapter 3 A Functional DSL for Data Parallelism 49

let dotp = (\(A,B) :: (List Float , List Float) ->

-- zip together lists and multiply pairs

let AB = mapList (Float.*, zip (A,B)) in

-- sum reduce multipied pairs

reduceList (Float.+, 0.0, AB))

in ...

Figure 3.10: Dot product

D into pairs and finds the minimum and maximum values. These values are used to

calculate the scaling coefficient i, which in turn is used to calculate each value’s bucket

index with the map combinator. groupReduce then uses these bucket indices as the keys

for the result map, where snd projects them out of the original key-value pairs. For

each key-value pair a 1 is projected out (using \ -> 1), and then each group of ones is

aggregated using Float.+, thus counting the entries in each bucket.

Dot product The function dotp (cf. Figure 3.10) shows a use of lists in Flocc. It takes

a pair of lists of floats, and returns their dot product, computed by zipping together the

lists, multiplying the pairs, and then sum reducing them.

Chapter 4

Distributed Data Layout Types

In the previous chapter we presented Flocc, a functional language for data-parallel pro-

gramming. Flocc is a high-level language. It does not depend on any particular archi-

tecture or memory model. Given implementations for the core library functions, Flocc

programs could be evaluated using a simple interpreter implementing the reduction rules

in Figure 3.2. However, to execute programs on a cluster we want to synthesize efficient

low level implementations of Flocc programs that can be compiled and executed directly

without an interpreter. To run efficiently on clusters, these implementations must dis-

tribute their data, and process it in parallel. We are therefore faced with the challenge

of automatically synthesizing distributed algorithms, and associated distributed data

layouts, for these high-level Flocc programs.

In this chapter we present the first step of our type-based approach to automatically syn-

thesize distributed data-parallel implementations of Flocc programs. In Section 4.1 we

give some of the advantages to encoding distributed data layouts (DDLs) as types, and

in Section 4.2 we introduce some of the data distributions that are possible on clusters.

Then we present our treatment of distributed data layouts (DDLs) as types (cf. Section

4.3), and in particular, a restricted form of dependent types (cf. Section 4.3.2). This for-

mulation allows distributed data layouts for maps, lists, and arrays to all be represented

in a common form. Then, we show how these types can be used to characterize the data

distribution behaviors of the distributed implementations of our high-level combinators

(cf. Section 4.3.1). In Chapter 5 we present a type inference algorithm that can infer

DDLs for different distributed algorithms involving these implementations, and these

DDLs can then be passed to the code generator (cf. Chapter 7).

4.1 Introduction

The idea of specifying distributed data layouts by program annotations is not new– HPF

uses them for its distributed arrays. However, to the best of our knowledge, ours is the

51

52 Chapter 4 Distributed Data Layout Types

first work to formalize data distributions as types.1 This is surprising since there are

many features of type systems that are very desirable for data layouts. These include:

Type safety Milner characterized type safety as “Well-typed programs can’t go wrong”

[144]. This generally means that expressions with a given type really do return values

of that type, and operations that expect members of a certain type, only ever receive

values of that type. This can often be proved for a language, in which case we say that

the type system is sound, and then checked for individual programs using a type-checker.

For data layouts we also want to ensure that expressions with a given data layout really

do return values with that layout, and that operations that require collections with a

given layout only receive values with that layout. Representing DDLs as types therefore

allows us to prove that our DDL type system is sound (cf. Section 5.1.1; i.e., evaluation

preserves types, and well-typed programs can progress), and automatically check that

the DDLs for a program are valid. These two features allow us to guarantee that values

with incorrect data layouts never occur (assuming that the code generator is correct).

Polymorphism There are different kinds of type polymorphism. Ad hoc polymor-

phism allows us to define multiple implementations of the same operation with different

types (e.g., function overloading). Parametric polymorphism allows the same code to

be used with different concrete types (e.g., generics in object oriented languages). Sub-

typing allows different types to be used as long as they are descendants of some common

super-type (e.g., inheritance or record types), and coercion polymorphism allows explicit

and implicit type conversions to be used in programs. We use ad hoc, parametric, and

coercion polymorphism for our DDLs in this thesis. We use ad hoc polymorphism to

define multiple implementations of the same combinator, with different data layouts.

Parametric polymorphism is particularly powerful, allowing us to define complex rela-

tionships and constraints between DDLs. It lets us range over all instances of a given

DDL parameter using type variables, for example to describe that an operation’s DDL

permits layouts with any partition function, or permits layouts mirrored over any di-

mension of the node topology. Finally, coercion corresponds neatly to redistributing

data and thus changing from one data layout to another.

Type inference Some type systems allow type annotations to be omitted, and pro-

vide an inference algorithm to automatically assign valid types to the expressions in a

program, if a valid typing exists. One such system is ML’s type system [104], which sup-

ports a kind of parametric polymorphism called let-polymorphism that allows types with

universally quantified type variables called type schemes to be created at let-expressions

1Data Parallel Haskell [39] uses types to tag “distributed lists”, but these are not actually “dis-
tributed” since they are for multicores, and do not contain any information about how to partition and
distribute the lists.

Chapter 4 Distributed Data Layout Types 53

[35]. Damas-Milner’s Algorithm W is a type inference algorithm for this system [62].

Representing DDLs as such type schemes (generated at let-expressions) allows us to

mechanically infer valid data layouts involving type variables using a similar algorithm,

so that the user does not have to manually specify them.

Optimization Type information can be used by compilers to perform type-specific

optimizations. Similarly, data layout information allows the compiler to generate opti-

mized data-layout specific code. Both kinds of information are even more useful when

they have been automatically inferred without user intervention.

Extensibility In most languages new types can be defined in programs, making types

a very extensible way to represent program meta-data. Our compiler does not allow

new DDL types to be declared in programs, but does support adding more combina-

tors and DDL types via a configuration file and additional code generation templates.

For example, currently new data-parallel combinators can be added by declaring their

functional types, and the DDL types of their distributed-memory implementations, in

a type declaration file, implementing code generation templates for these implementa-

tions as Haskell functions, and adding replacement rules to a configuration file, that

declare which implementations implement which high-level combinators. So currently

the only additional code required are the code generation templates, and these could

be implemented via a scripting language in future versions. Alternatively, in future ver-

sions Flocc’s main syntax could be extended to support defining new combinators, DDL

types, and templates in programs, rather than in separate configuration files.

These features make types well suited for representing distributed data layouts, though

there are some difficulties that need to be overcome. Firstly, not all type systems allow

arbitrary program terms to be embedded in the types, which is a requirement for our

DDL type system. Then, not all type systems support type inference, which restricts

which type system can be used, and how DDL types can be encoded. Furthermore,

Damas-Milner type inference returns the most general typing for each expression, and

such a type may not exist for distributed data layouts. Finally, in some cases there

maybe multiple valid data layouts for a given expression, in which case parametric

polymorphism may not be sufficient to represent the complete range of possible data

layouts for program terms. We address these challenges in the chapters that follow.

4.2 Distributing Collections on Clusters

To run a data-parallel algorithm on a distributed memory computer, the data structures

must be distributed across the computer’s nodes. The simplest way to do this is to repli-

54 Chapter 4 Distributed Data Layout Types

Figure 4.1: Array distributions (left, center). Map distribution (right).

cate (or “mirror”) them such that they exist on every node. However, this is usually

inefficient as it requires communicating updates to all nodes, and may be impossible

due to lack of available memory. Instead data-parallel algorithms rely on partitioning

their data such that different nodes work on different parts of the data set. It is there-

fore common for at least one data structure to be partitioned, so that different nodes

possess different parts of it. This section briefly introduces various ways of distributing

collections on a cluster.

Arbitrary partitions The simplest way to partition a collection is to number the

nodes in the system with indices 0 to N, and to allocate approximately equal numbers of

arbitrary elements to each index. Structure preserving functions like map can be applied

to these partitions in parallel, without any need for communication between nodes.

Co-location by key Another useful way to partition a collection is to define a key

emitter function kf : α → κ, taking an element of type α and returning some key

of type κ, and to group elements that have the same key value together on the same

node. This can be achieved via a hash or partition function pf : κ → Int to map keys

to node indices (which we assume to be integers). The groupReduce function defined

in Figure 3.6 benefits from this sort of partitioning. Given the function application

groupReduce(f1, f2, f3, x), if the input collection x is partitioned using f1 as its key

emitter function (i.e., the function that projects the new keys from the input elements),

then all the elements in each group will be co-located on the same node, and the reduc-

tions can proceed without inter-node communication.

If collections are partitioned with key emitter functions which share the same key type

κ then they can be aligned by using the same partition function pf for both collections,

so that all values for a given key are co-located. eqJoin can utilize this alignment

(cf. Figure 3.6). For example, eqJoin(f1, f2, x1, x2), can partition x1 and x2 using their

key emitter functions f1 and f2, such that pairs of elements which satisfy the equality

predicate (f1(x) = f2(y)) are co-located, and no inter-process communication is needed.

Cartesian topologies MPI allows the definition of virtual node topologies for clus-

ters, where nodes are addressable via Cartesian coordinates. The MPI implementation

Chapter 4 Distributed Data Layout Types 55

dts ::= ∀Id · dts | Πx : dt → dt | dt

dt ::= Id | Int | Float | Bool | Null | (dt1, . . . , dtn) | dt1 → dt2
| DArr i t f d1 d2
| DMap t1 t2 [Hash | DynDiscrete | DynRange] f d1 d2
| DList t [Blk | Cyc] d1 d2 | . . .

f ::= \x [:: t] -> e | g | f1 · f2 | f1 ⊗ f2

g ::= fstFun f | sndFun f | lftFun f | rhtFun f

i ::= Int | (i1, . . . , in)

d ::= Id | (d1, d2)

x ::= Id | _ | (x1, . . . , xn)

Figure 4.2: Distributed data layout (DDL) type syntax

then decides how best to map these onto physical nodes. This abstraction is useful,

since it allows us to describe where collections are stored and replicated relative to each

other, without considering the physical interconnect. We therefore identify nodes using

n-dimensional grids with dimensions D1 to Dn.

Collections can be split into partitions and distributed over the nodes in some of the

dimensions, replicated across any other dimensions, and are stored at the nodes on the

axis of any remaining dimensions. Figure 4.1 illustrates on the left an input distribution

for a matrix multiply on an 8-node cluster organized as a 3D grid. Matrix A is split into

two partitions A1 and A2 partitioned along D1, and mirrored across D2, but only at the

axis of D3. B is partitioned along D2, and mirrored across D1, also only at the axis of

D3. Hence, the node (0, 1, 0) contains the partitions A2 and B2 while (1, 1, 1) remains

empty. Figure 4.1 (center) illustrates a 2D partitioning of an array X, and shows (on

the right) a map M partitioned along D1 and only at the axis of D2. This system allows

suitable node topologies to be expressed for all the combinators in Figure 3.6. We use

such node arrangements to describe data distributions in the sections that follow.

4.3 Distributed Data Layout (DDL) Types

In our system, every high-level collection has a corresponding distributed collection type

which, in addition to describing the data type, has extra parameters which specify how

it should be distributed on the cluster. It is important to note that the user does not

(need to) see these types, but the compiler uses them to plan the data distribution. The

syntax for these distributed data layout (DDL) types is given in Figure 4.2. In addition

to standard type schemes these include a polyadic version of dependent Π-types that

56 Chapter 4 Distributed Data Layout Types

β · α def
= \x -> β (α x)

α⊗β def
= \(x, y) -> (α x, β y)

id
def
= \x -> x

∆
def
= \x -> (x, x)

dup
def
= \x -> (x, x)

swap
def
= \(x, y) -> (y, x)

nullF
def
= \ -> ()

fst
def
= \(x, y) -> x

snd
def
= \(x, y) -> y

lft
def
= fst · fst⊗ fst · snd

rht
def
= snd · fst⊗ snd · snd

one
def
= \ -> 1

Figure 4.3: Flocc syntactic sugars

we call dependent type schemes and explain in Section 4.3.2. The DDL types dt extend

types t with distributed arrays, maps, and lists (DArr, DMap, and DList). Additional

type parameters include distribution modes (e.g., Hash, Blk, etc.), partition functions f,

and dimension identifiers d, which are described below. Partition functions can contain

function generators g which are described in detail in Section 4.3.3.

Distributed arrays The DArr type describes how to store an array on a cluster.

DArr takes a partition function f and two tuples of dimension identifiers d1 and d2. f is

an actual (projection) function that is made from lambda-abstractions from the input

program, the operators listed under f in Figure 4.2, and the sugars defined in Figure

4.3. It identifies the dimensions of the array along which it should be partitioned. The

array is partitioned along these dimensions using a block-cyclic distribution. Dimension

identifiers d1 and d2 are just type variables, and pairs of dimension identifiers. d1 has

the same arity as f ’s co-domain, and specifies over which dimensions of the cluster the

partition dimensions should be distributed. d2 specifies a set of dimensions over which

to mirror. Partitions are only stored at the zero-nodes of any dimensions that remain.

For example, the matrices in Figure 4.1 (left) have DDL types,

A :: DArr (Int,Int) Float fst d1 d2

B :: DArr (Int,Int) Float snd d2 d1

which means that A is partitioned by row, since fst projects out the left-hand (i.e., row)

array index, and B is partitioned by column (i.e., the right-hand array index). The d1

and d2 parameters are type variables that identify two distinct node topology dimensions

at runtime. Therefore, A’s partitions are partitioned along dimension d1 at runtime, and

mirrored along d2, whilst B’s partitions are partitioned along d2 and mirrored along d1.

Chapter 4 Distributed Data Layout Types 57

Distributed maps Similarly, DMaps describe how to store Maps on clusters. d1 and d2

work in the same way as DArr, but f takes key-value pairs rather than indices, mapping

them onto keys that are translated into specific node indices in d1. This translation is

either via a hash function (i.e., Hash), or a dynamic lookup table which is populated

at runtime (i.e., DynDiscrete and DynRange). These tables can either record mappings

between discrete values and node indices (i.e., DynDiscrete), or map ranges of values

onto node indices (i.e., DynRange).

For example, the value M in Figure 4.1 (right) is partitioned by z and so has type,

DMap (Int,Int) Float Hash snd d1 dnull

meaning that M is partitioned by its value, since snd projects the value out of the key-

value pairs, along topology dimension d1. The dnull means that M’s partitions are not

mirrored over any dimensions. Allowing f to be any function is much more flexible

than approaches that only allow partitioning to be defined via the map’s key or lists of

column names like in Chapel or SQL.

Distributed lists DList’s parameters d1 and d2 work in the same way, but instead of

a partition function, DLists just have a partition mode which is either Blk for a block

partitioned list, or Cyc for a list that uses a cyclic distribution. The former splits the list

into n equally sized blocks, where n is the number of nodes in d1, and the latter stores

every i-th element mod n on node i.

Top-level scalars and lambda terms are always mirrored on all nodes in the cluster. For

DArrs and DMaps, if the partition function is nullF the collection is not partitioned.

The usual ·-operator sequentially composes two functions, and the ⊗-operator composes

pairwise, as defined in Figure 4.3. We use Tα to refer to the set of all terms defined

under syntactic domain α, e.g., Tf denotes all embedded functions.

4.3.1 Distributed Function Types

For each high-level combinator (cf. Figure 3.6), the compiler internally provides different

functionally equivalent implementations that work for different (often polymorphic) data

distributions. We use the DDL types to characterize how these different implementations

store their inputs and outputs. These implementations and their types are hidden from

the user; they only see the high-level combinators.

The DDL type schemes for the combinator implementations used in this section are

shown in Figure 4.4. For example, groupReduce1 locally groups and reduces the values

stored at each node, exchanges intermediates between nodes to co-locate by key, and

then group-reduces again at each node. This implementation works no matter how

58 Chapter 4 Distributed Data Layout Types

mapArrInv1 :: Π(f,_,_,_) : (i->j, j->i, (i,v)->w,

DArr i v (g · f) d m) -> DArr j w g d m

mapArrInv2 :: Π(_,finv,_,_) : (i->j, j->i, (i,v)->w,

DArr i v g d m) -> DArr j w (g · finv) d m

eqJoin1A :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap i v p f d m,

DMap j w p g d m) -> DMap (i,j) (v,w) p (f · lft) d m

eqJoin1B :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap i v p f d m,

DMap j w p g d m) -> DMap (i,j) (v,w) p (g · rht) d m

eqJoinArr1A :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (f · fst) d m

eqJoinArr1B :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (g · snd) d m

eqJoinArr2 :: (i->k, j->k, DArr i v fstFun(f) d1 m,

DArr j w nullF d2 (d1 ,m)) -> DArr (i,j) (v,w) f d1 m

eqJoinArr3 :: (i->k, j->k, DArr i v fstFun(f) d1 (d2, m),

DArr j w sndFun(f) d2 (d1 , m)) -> DArr (i,j) (v,w) f (d1 ,d2) m

groupReduce1 :: ((i,v)->j, (i,v)->w, (w,w)->w,

DMap i v p f d1 m1) -> DMap j w p fst d2 m2

groupReduce2 :: Π(f,_,_,_) : ((i,v)->j, (i,v)->w, (w,w)->w,

DMap i v p f d m) -> DMap j w p fst d m

groupReduceArr1 :: (i->j, (i,v)->w, (w,w)->w, w,

DArr i v f d1 m1) -> DArr j w id d2 m2

groupReduceArr2 :: Π(pf ,_,_,_,_) : (i->j, (i,v)->w, (w,w)->w, w,

DArr i v pf d m) -> DArr j w id d m

Figure 4.4: DDL types for the main combinator implementations.

Chapter 4 Distributed Data Layout Types 59

the input is partitioned. In the DDL type we therefore use the universally quantified

type variable f to specify that the input can be partitioned by any partition function.

The output is always partitioned by key, which we specify by using fst as the partition

function in the return type.

4.3.2 Dependent Type Schemes

In addition to classic type schemes, we also have a polyadic version of dependent Π types

dts, similar to those used in dependent ML [213]. They are similar to type schemes but

the type variables are now rigidly bound to the members of the argument tuples at

function applications. Hence, rather than representing any value, such type variables

are bound to the actual values of parameters at runtime, or more precisely, the AST

objects that represent them. These variables can then be used in the input and output

types. Here we require that functions that are referenced by Π-types must be statically

resolvable to specific lambda-abstractions, to increase the likelihood that we will be able

to decide their equality at compile time, and so that we can inline them during code

generation. This allows us to place context-dependent constraints on data distributions,

to specify when different combinator implementations can be used.

For example, in contrast to groupReduce1, groupReduce2 group-reduces just once, lo-

cally at each node. To yield a valid result all the input values for a given group must be

co-located on the same node. We specify this constraint using a Π-type. groupReduce2’s

type

groupReduce2 :: Π(f,_,_,_) :

((k1,v1) -> k2, (k1,v1) -> v2, (v2,v2) -> v2, DMap k1 v1 Hash f d m)

-> DMap k2 v2 Hash fst d m

thus binds the value of its first parameter, the function that generates the result keys,

to f. This specific value of f is then used to define the input map’s partition function.

All values for a given key produce the same hash, and will therefore be stored on the

same node. groupReduceArr2 uses the same technique.

eqJoin1A and eqJoin1B, and eqJoinArr1A and eqJoinArr1B (cf. Figure 4.4), work in

a similar way. Here, if we know that the values that yield a given key are co-located

on the same node, then no inter-node communication is necessary and local joins will

suffice. To specify this we partition both inputs by their respective join-key projection

functions f and g. The output is therefore partitioned by both f·fst and g·snd in the

types with the suffixes A and B respectively. This is a situation where there are two

valid types for the same combinator implementation, which allow different distributions

to be inferred. In our approach, to simplify type inference, we treat each typing as a

different combinator implementation, and let the data distribution search (cf. Section

7.5 and Section 8.3) explore different combinations of these typings.

60 Chapter 4 Distributed Data Layout Types

We also use Π-types to specify partitioning information for structure-preserving trans-

formations, like mapArrInv1. Here, to ensure the output is partitioned by g, the input

must be partitioned by g applied after the index transformer function f. In the other

direction, if the inverse transformer function finv is known, and the input is partitioned

by g, then the output of mapArrInv2 will be partitioned by g applied after finv. Both

these implementations work the same way (via local maps), but they enable distribution

information to be inferred in different directions, from the output type to the input, and

from the input type to the output, respectively.

4.3.3 Function Generators

By expressing output partition functions as compositions of input ones, our type schemes

allow us to infer DDL information forwards (from inputs to outputs) through the pro-

grams. However, the inference also needs needs to work backwards in some cases, in

order to automatically find input partition functions which combine to yield a given

output partitioning. For unary combinators like mapArrInv1 we can use the existing

DDL information, but for binary combinators like eqJoinArr we need to decompose

output partition functions. For this we use function generators (cf. Figure 4.2, fstFun

to rhtFun).

Function generators analyze at compile-time the abstract syntax trees (ASTs) of their

arguments (which are partition functions), and derive new partition functions that de-

pend only on a subset of the inputs. If no such AST terms exist then the nullF function

_->() is generated. For instance, fstFun takes a function f with a domain (x,y),

and generates a function g with domain x by trying to split f ’s body into a pair and

retaining all the parts of the AST that depend only on x, and throwing away those terms

that also depend on y. sndFun works accordingly on the y domain. Recomposing the

two using the ⊗-operator yields a partition function that equals the original. Hence,

given a partition function f = \(a,(b,c)) -> (a,c), fstFun(f) equals \a -> a and

sndFun(f) equals \(b,c) -> c and their combination fstFun(f)⊗sndFun(f) equals the

original f . However, if the function cannot be deconstructed in a way that allows it to be

re-composed, the function generator returns \ ->(). For example, \(x, y) -> (y, x)

cannot be split into two functions whose pairwise composition will equal the original.

eqJoinArr3 uses function generators so that it can partition its output by any f. To

ensure that the output is partitioned by f, the inputs must be partitioned by fstFun(f)

and sndFun(f) along dimensions d1 and d2.

4.4 Combinator implementations

In this section we briefly explain how the combinator implementations used in the ex-

ample derivations in Section 4.5 work, and how their DDL types reflect their data

Chapter 4 Distributed Data Layout Types 61

distribution behaviors. For a more complete list of combinator implementations, along

with their DDL types and explanations, please refer to Appendix C.

intRangeMap1 :: (Int,Int,Int) -> DMap Int () Hash fst d m

intRangeMap3 :: (Int,Int,Int) -> DMap Int () DynRange fst d m

intRangeMapMirr :: (Int,Int,Int) -> DMap Int () p nullF () m

intRangeMap creates a map with integer keys in the range (and with the stride) specified.

intRangeMap1 and intRangeMap3, both generate these keys for each partition in parallel,

and use hash, and dynamic-range partitioning modes, respectively. intRangeMapMirr

returns a mirrored map, where the whole map is replicated across the dimensions in m.

countMap :: DMap k v p f d m -> Int

countMapMirr :: DMap k v p nullF () m -> Int

countMap returns the cardinality of a partitioned map, by summing the cardinalities of

each partition, and countMapMirr calculates the cardinality of a mirrored map, in-place.

mapArrInv1 :: Π(f,_,_,_) : (i->j, j->i, (i,v)->w,

DArr i v (g · f) d m) -> DArr j w g d m

mapArrInv2 :: Π(_,finv,_,_) : (i->j, j->i, (i,v)->w,

DArr i v g d m) -> DArr j w (g · finv) d m

mapInv1 :: Π(f,finv,_) : ((i,v)->(j,w), (j,w)->(i,v),

DMap i v p (g · f) d m) -> DMap j w p g d m

mapInv2 :: Π(f,finv,_) : ((i,v)->(j,w), (j,w)->(i,v),

DMap i v p g d m) -> DMap j w p (g · finv) d m

mapArrInv1 and mapArrInv2 are structure preserving combinators that apply their first

two parameter functions to the indices and values, respectively, of a distributed array.

The index transformer function f is constrained to be a permutation function, since

its inverse finv must be provided. Both mapArrInv1 and mapArrInv2 have the same

implementation, which acts in-place (i.e., without communication), but they infer DDL

information in different directions. In mapArrInv1 the output partition function g is

known, so we construct an input partition function that will provide this output par-

titioning by applying g after the index transformer function f . mapArrInv2 does the

opposite. If the input is partitioned by g then the output is partitioned by g applied

after the inverse index transformer function finv, since finv returns the indices from the

output elements, that were returned for the same elements in the input array. mapInv1

and mapInv2 are map-based combinators similar to mapArrInv1 and mapArrInv2.

eqJoinArr1A :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (f · fst) d m

eqJoinArr1B :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (g · snd) d m

eqJoin1A :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap i v p f d m,

62 Chapter 4 Distributed Data Layout Types

DMap j w p g d m) -> DMap (i,j) (v,w) p (f · lft) d m

eqJoin1B :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap i v p f d m,

DMap j w p g d m) -> DMap (i,j) (v,w) p (g · rht) d m

eqJoinArr1A to eqJoinArr3 perform equi-joins on pairs of distributed arrays (i.e.,

Cartesian products restricted to where the join-keys are equal), where the two func-

tion parameters emit join-key indices from the elements in the first and second arrays

respectively. eqJoinArr1A and eqJoinArr1B can do this in-place without communica-

tion because their input arrays are partitioned by their join-key emitters f and g along

the same nodes in the topology d, and are therefore aligned by join-key index, such that

all elements for a given key in both arrays is on the same node. The output combines

the indices and elements from the inputs pairwise, and so the outputs are partitioned

by the join-keys from the first array f · fst in eqJoinArr1A, and those from the sec-

ond array g · snd in eqJoinArr1B. eqJoin1A to eqJoin4 are map equivalents of the

eqJoinArr functions, with equivalent distributions. The difference here is the join-key

emitter functions apply to the map key and value, and so the types use lft and rht

instead of fst and snd to project from the pairs of key-pair and value-pairs.

eqJoinArr2 :: (i->k, j->k, DArr i v fstFun(f) d1 m,

DArr j w nullF d2 (d1,m)) -> DArr (i,j) (v,w) f d1 m

eqJoinArr3 :: (i->k, j->k, DArr i v fstFun(f) d1 (d2, m),

DArr j w sndFun(f) d2 (d1, m)) -> DArr (i,j) (v,w) f (d1,d2) m

eqJoinArr2 accepts any output partition function f , and therefore requires all combi-

nations of elements (the Cartesian product) to be enumerable. Thus we partition the

first array by fstFun f along d1, and mirror the second (hence the nullF) along d1.

fstFun f ensures that the output is partitioned by f , and all combinations are enu-

merable without communication. eqJoinArr3 is similar, but it partitions and mirrors

both input arrays— the first by fstFun f along d1 mirrored along d2 and m, and the

second by sndFun f along d2 mirrored along d1 and m. Here d1 and d2 are orthogonal

dimensions of a Cartesian node toplology, and so the Cartesian product of partitions

will be enumerated across d1× d2.

crossMaps1 :: (DMap i v p f d1 m, DMap j w p nullF d2 (d1,m)) ->

DMap (i,j) (v,w) p f·lft d1 m

crossMaps returns the Cartesian-product of its two input maps. crossMaps1 does this

by requiring its second input to be mirrored along the dimension that its first input is

partitioned along, such that it can compute the Cartesian-product of each partition in-

place. The output is therefore partitioned by the first argument’s partition function f ,

applied to the keys and values from the first argument (which are obtained by applying

lft).

groupReduceArr1 :: (i->j, (i,v)->w, (w,w)->w, w,

Chapter 4 Distributed Data Layout Types 63

DArr i v f d1 m1) -> DArr j w id d2 m2

groupReduceArr2 :: Π(pf,_,_,_,_) : (i->j, (i,v)->w, (w,w)->w, w,

DArr i v pf d m) -> DArr j w id d m

groupReduce1 :: ((i,v)->j, (i,v)->w, (w,w)->w,

DMap i v p f d1 m1) -> DMap j w p fst d2 m2

groupReduce2 :: Π(f,_,_,_) : ((i,v)->j, (i,v)->w, (w,w)->w,

DMap i v p f d m) -> DMap j w p fst d m

groupReduceArr1 and groupRedueArr2 group array elements by the index returned by

the first function parameter— an index projection function that returns a subset of

the array’s indices, applies the second function parameter to their indices and values,

and then aggregates them using the third function parameter. groupReduceArr2 can do

this in-place since its input is partitioned by the index projection function parameter pf ,

where as groupReduceArr1 has to exchange intermediate values between nodes to co-

locate groups before aggregation. groupReduce1 and groupReduce2 are map equivalents

of groupReduceArr1 and groupReduceArr2.

union :: (DMap k v p fst d m, DMap k v p fst d m) ->

DMap k v p fst d m

union performs a left-biased set union. It acts in-place since its inputs and output are

partitioned by the map key via fst, and so equivalent keys are co-located.

mirrMap :: DMap k v p f d m -> DMap k v p f d (m,m’)

repartMap :: DMap k v p1 f1 d1 m -> DMap k v p2 f2 d2 m

redistList :: DList v p1 d1 m1 -> DList v p2 d2 m2

mirrMap to distListLit are redistribution functions. These functions do not modify

the data in their argument collections, but change how they are distributed. They are

therefore implementations of id (i.e., the identity function) on the high level. They can

also be thought of as type-casts. mirrMap takes any distributed map and mirrors its

partitions along another dimension of the global topology. redistList does the same

for lists, and optionally mirrors over different dimensions too.

4.5 Example Derivations

In this section we show that our DDL type system can infer the standard distributed-

memory data layouts for some common data-parallel algorithms, including some of those

in Chapter 3. For each program, we show which combinator implementations it uses

for each combinator application, and the DDLs that result. Note that to find these

layouts automatically we need a type inference algorithm and a redistribution insertion

algorithm, which we present in Chapter 5, and we need a search algorithm that considers

64 Chapter 4 Distributed Data Layout Types

Figure 4.5: Matrix-multiply—partition for eqJoinArr communication illustration.

different choices of combinator implementations for combinator applications in programs,

which we present in Section 7.5. We use IP as shorthand for (Int,Int).

Matrix multiplication—partition for groupReduceArr The first matrix multiply

solution is driven by an optimized partition for the group-reduce operation, which yields

the usual implementation of dense matrix multiplication. It uses groupReduceArr2

to avoid inter-node communication by requiring R2 to be partitioned using its index

projection function, which projects A’s row and B’s column from the array’s indices.

R1, mapArrInv2’s input, must thus be partitioned using this function too. eqJoinArr3

satisfies this constraint, by partitioning A by row (using fst) along one dimension, and

B by column (using snd) along an orthogonal one, and then mirroring both along their

respective orthogonal dimensions. This yields a 2D grid, enumerating all combinations

of partitions, i.e., the Cartesian product.

C :: DArr IP Float id (d1,d2) m

R2 :: DArr (IP,IP) Float \((ai,aj),(bi,bj))->(ai,bj) (d1,d2) m

R1 :: DArr (IP,IP) (Float,Float) (\((ai,aj),(bi,bj))->(ai,bj))·id (d1,d2) m

A :: DArr IP Float (fstFun (\((ai,aj),(bi,bj))->(ai,bj))·id) d1 (d2,m)

= DArr IP Float fst d1 (d2,m)

B :: DArr IP Float (sndFun (\((ai,aj),(bi,bj))->(ai,bj))·id) d2 (d1,m)

= DArr IP Float snd d2 (d1,m)

Matrix multiplication—partition for eqJoinArr The next solution, which is il-

lustrated in Figure 4.5 and Figure 4.6, is more unusual. It uses eqJoinArr1A to avoid

mirroring A and B, by aligning them to co-locate partitions with common key values.

A and B are partitioned by column (snd) and row (fst) respectively, and thus the join

Chapter 4 Distributed Data Layout Types 65

Figure 4.6: Matrix-multiply—partition for eqJoinArr algebraic illustration.

result R1 is partitioned by the column of A (snd · fst), or if eqJoinArr1B were used, the

row of B (fst · snd). mapArrInv2 then constrains R2 to have this partitioning as well,

and so groupReduceArr2 cannot be used without inserting a redistribution. Instead

groupReduceArr1 is used, as it accepts any input partitioning, at the expense of having

to exchange intermediates between nodes. With dense matrices R1 will be much larger

than A and B, and so this solution will perform poorly, but if A and B are large and

sufficiently sparse, exchanging the intermediates could outperform mirroring. Here, Ra,

Rb, and Rc are not actually materialized as arrays, but are streams of values.

A :: DArr IP Float snd d m

B :: DArr IP Float fst d m

R1 :: DArr (IP,IP) (Float, Float) (snd · fst) d m

R2 :: DArr (IP,IP) Float (snd · fst) · id d m

C :: DArr IP Float id d m

Matrix multiplication—mirror one matrix This implementation is illustrated in

Figure 4.7. This implementation also uses groupReduceArr2, but unlike the first solu-

tion, it uses eqJoinArr2 to give the required data distribution. This partitions A across

all the nodes in d, and mirrors B on all of them. This solution is better than the first

solution if B is much smaller than A so that it is less expensive to replicate all of B than

partitions of A.

A :: DArr IP Float (fstFun (\((ai,aj),(bi,bj))->(ai,bj))·id) d m = fst d m

B :: DArr IP Float nullF dnull (d,m)

R1 :: DArr (IP,IP) (Float, Float) (\((ai,aj),(bi,bj))->(ai,bj))·id d m

R2 :: DArr (IP,IP) Float \((ai,aj),(bi,bj))->(ai,bj) d m

C :: DArr IP Float id d m

66 Chapter 4 Distributed Data Layout Types

Figure 4.7: Matrix-multiply—mirror one matrix illustration.

let floyd = \(N,I0) :: (Int , Arr (Int ,Int) Float) ->

-- for each pair of vertices , see if going via

-- current vertex k, is shorter than current path.

let next = (\(I,k) ->

let Iik = subArr ((0, k), (Int.- (N,1), k), (1,1), I) in

let Ikj = subArr ((k, 0), (k, Int -.(N, 1)), (1,1), I) in

let I1 = eqJoinArr (fst , fst , I, Iik) in

let I2 = eqJoinArr (snd . fst , snd , I1 , Ikj) in

let I’ = mapArrInv (fst . fst ,

\(i,j) -> (((i,j),(i,k)),(k,j)),

\(_,((ij ,ik),kj)) -> (Float.min (ij , Float.+ (ik ,kj))),

I2) in

-- return new I, incremented k, and predicate (k < N-1)

((I’, Int.+ (k,1)), lti (k, Int.- (N ,1)))) in

-- iteratively apply for all vertices: k in [0..(N-1)]

while (next , (I0 , 0)) in ...

Figure 4.8: Floyd’s all pairs shortest path algorithm

Floyd All-Pairs Shortest Path—partition edges, mirror current vertex Floyd’s

all pairs shortest path algorithm (cf. Figure 4.8) finds the shortest paths between all pairs

of vertices in a graph. It works by maintaining a 2D array of distances between vertices,

which are initialized to the distance between the vertices if there exists an edge between

them, and infinity (or a very large constant) otherwise. It then iterates for each vertex k,

and checks for all vertex pairs (edges) whether going via the current vertex is a shorter

distance than the current best distance between those vertices. If it is, then the best

distance is updated to go via the current vertex k.

This implementation keeps the edges (i.e., the adjacency matrix) partitioned, and uses

mirrArr·subArr to mirror the current row of distances from every other vertex to vertex

k, and column of distances from vertex k to every other vertex. So, for each iteration, this

Chapter 4 Distributed Data Layout Types 67

row and column are all-gathered to mirror them on every node (i.e., collected together

and broadcast to all nodes), and each node then computes new distances for its array

partition using eqJoinArr2 and mapArrInv2, locally in parallel.

I :: DArr IP Float f d dnull

Iik :: DArr IP Float nullF dnull d

Ikj :: DArr IP Float nullF dnull d

I1 :: DArr (IP,IP) (Float,Float) f·fst d dnull

I2 :: DArr ((IP,IP),IP) ((Float,Float),Float) f·fst·fst d dnull

I’ :: DArr IP Float f d dnull

Here next is called inside a loop, and so must have type s -> (s, Bool). Therefore,

its output DDL type (for I’) must be the same as its input one (for I), which it is in

this example.

A better data layout for this application would partition either Iik or Ikj in the same

way as I, and mirror the other one, rather than mirroring both. This layout cannot

be derived using the DDL types in this chapter, but can be derived using the extended

types and inference algorithm presented in Chapter 6.

Histogram—group locally before exchange The first Histogram (cf. Figure 3.9)

solution uses groupReduce1 so that the input D does not have to be partitioned by its

Float value. The output R is partitioned by bucket id (fst), and a concrete function

must still be chosen for f. Since in this example the type k is still abstract, the two

possibilities for f are fst and snd. In a concrete program, k is a concrete type and

so f could have more possible values. For f=fst, D is partitioned by Hash applied to

fst, which is a valid solution. However, for f=snd, D is partitioned by Hash applied

to \v->toInt(Float.* (v,i)), which is not valid, as it references i before it has been

declared, and so this solution is discarded by the Flocc compiler.

D :: DMap k Float Hash (f·(id · fst⊗ \(_,v)->toInt(Float.* (v,i))) ·∆) d m

D’:: DMap k Int Hash f d m

R :: DMap Int Int Hash fst d m

Histogram—exchange before group The second DDL plan uses groupReduce2 by

repartitioning D’ by Hash applied to snd. However, this plan will be sub-optimal unless

the number of buckets is close to the number of data points, since the partitions of D’

that redistMap communicates will be larger than the results of the local group-reduces

that groupReduce1 communicates.

D :: DMap k Float Hash (f·(id · fst⊗ \(_,v)->toInt(Float.* (v,i))) ·∆) d m

D’:: DMap k Int Hash snd d m

R :: DMap Int Int Hash fst d m

68 Chapter 4 Distributed Data Layout Types

let mandel = (\(xs , ys) ->

let x = intRangeMap (toInt (-2.5*xs),toInt (1*xs),1) in

let y = intRangeMap (toInt(-1*ys),toInt (1*ys),1) in

let axes = crossMaps (x,y) in -- make axes

-- evaluate at each point

mapInv (\((x,y),_) -> ((x,y),

escape_time ((toFloat x) / (toFloat xs),

(toFloat y) / (toFloat ys))),

\(xy ,_)->(xy ,(() ,())) , axes)) in ...

Figure 4.9: Mandelbrot set.

Figure 4.10: Un-equal load of the Mandelbrot set showing the need for non-blocked
partitioning.

Mandelbrot set—block partition x, mirror y The Mandelbrot set [139] (cf. Figure

4.9) is a well known recursive fractal that can be visualized by plotting a different color

depending on whether a given point on the complex plane is a member of the set.

Formally the set is defined as the set of values c in the complex plane for which the

iteration of zn+1 = z2n + c starting with z0 = 0 remains bounded. That is, the complex

number c is in the set if zn remains bounded, and is not in the set if zn tends to

infinity. We compute this information in parallel by applying the sequential escape-time

algorithm (which tests whether a point is in the set) to multiple points on the complex

plane, in parallel.

This implementation uses intRangeMap3 to generate the x coordinates partitioned into

integer ranges, and intRangeMapMirr to mirror the y values on all nodes. We then

use crossMaps1 to compute the Cartesian product of the x and y sets, to get all the

coordinates, and mapInv2 to apply the escape time algorithm at each point. This im-

plementation could be improved since the escape time algorithm takes a lot longer for

points outside the set (see Figure 4.102), and so partitioning x into integer ranges may

mean some partitions (where most points are outside the set) take a lot longer to com-

2http://commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg.

http://commons.wikimedia.org/wiki/File:Mandel_zoom_00_mandelbrot_set.jpg

Chapter 4 Distributed Data Layout Types 69

let rmat = (\N ->

loop (\E-> (

-- calc more edges

let size = countMap E in

let ints = intRangeMap (1,N-size ,1) in

let E’ = mapInv (\(k,_) ->

(k, genE (a0 ,b0,c0,d0,delta0)), \(k,_)->(k,()), ints) in

-- remove duplicates

let E’’ = groupReduceMap

(snd , _->(), fst , (), E’) in

-- combine with existing

let E’’’ = union (E’’, E) in

E’’’),

(\E -> (Int.< (countMap E, N), emptyMap ())) in ...

Figure 4.11: R-MAT random graph generation

pute then others. The next implementation (i.e., hash partition x, mirror y) addresses

this.

x :: DMap Int () DynRange fst d dnull

y :: DMap Int () p nullF dnull d

axes :: DMap IP () DynRange (fst·lft) d dnull

result :: DMap IP Bool DynRange (fst·lft) d dnull

Mandelbrot set—hash partition x, mirror y The previous implementation could

perform poorly due to the distribution’s bad load balancing. This implementation uses

intRangeMap1 instead of intRangeMap3 to hash partition x, such that each partition

contains a better balance of points that are in the set (which compute quickly) and those

outside the set (which compute slowly).

x :: DMap Int () Hash fst d dnull

y :: DMap Int () p nullF dnull d

axes :: DMap IP () Hash (fst·lft) d dnull

result :: DMap IP Bool Hash (fst·lft) d dnull

Other distributions are possible here include: partitioning the y and mirroring the x,

and hash partitioning and mirroring both x and y along orthogonal node dimensions.

These can all be derived using the DDL types presented in this chapter.

R-MAT-generation—partition edges The R-MAT algorithm (cf. Figure 4.11) gen-

erates large random realistic graphs [38] (stored as sparse matrices), according to some

probability distribution and other parameters. It is used to generate graphs to simu-

late social networks and other similar phenomena. The algorithm works by generating

edges according to some probability distribution, using an iterative algorithm, removing

duplicates, and then generating more, until some target number of edges is reached.

70 Chapter 4 Distributed Data Layout Types

let kmkernel = (\(points , clusters) ->

-- distances between points and clusters &

-- new points with their closest clusters

let pxc = crossMaps (points , clusters) in

let points ’ = groupReduceMap (

\((pid ,_),_) -> pid ,

\((pid ,cid),((ncid ,ocid ,ppos ,d),cpos)) ->

(cid , ocid , ppos , distPoints (cpos , ppos)),

\((nc1 ,oc1 ,p1 ,d1),(nc2 ,oc2 ,p2 ,d2)) ->

(if (d1 < d2)

then (nc1 ,oc1 ,p1 ,d1)

else (nc2 ,oc2 ,p2 ,d2)),

(-1 ,-1 ,(-1.0 ,-1.0) ,9000000.0) , pxc) in

-- new cluster centres (avg member pos)

let clusters ’ = groupReduceMap (

\(pid ,(ncid ,ocid ,ppos ,d)) -> ncid ,

\(pid ,(ncid ,ocid ,ppos ,d)) -> (ppos , 1),

\((sum1 ,tot1),(sum2 ,tot2)) ->

(addPoints(sum1 ,sum2), (tot1 + tot2)),

((0.0 ,0.0) ,0) , points ’) in

let clusters ’’ = map (

\(cid ,(psum , ptot)) ->

(cid , divPoint (psum , toFloat ptot)),

clusters ’) in

-- count how many memberships changed

let nChanged = reduce (

\(pid ,(ncid ,ocid ,ppos ,d)) ->

(if (ncid == ocid) then 0 else 1),

+, 0, points ’) in

(points ’, clusters ’, totalChanged)) in ...

Figure 4.12: K-means clustering kernel

This implementation uses countMap to count how many edges there are in the current

graph/matrix, and intRangeMap1 and mapInv2 to generate the N-size edges still re-

quired. union requires both inputs to be partitioned by map-key, which in this case

is the generated edge (pair of integers). groupReduce1 is used to remove duplicates,

which returns the edges partitioned by map-key, as required by union. Edges are ran-

domly generated using genE, so E’ cannot be partitioned by edge (so that we could use

groupReduce2 without inserting a repartMap call, so we use groupReduce1 instead.

E :: DMap IP () Hash fst d dnull

ints :: DMap Int () Hash fst d dnull

E’ :: DMap Int IP Hash fst d dnull

E’’ :: DMap IP () Hash fst d dnull

E’’’ :: DMap IP () Hash fst d dnull

This data distribution is the same as the one used in the implementation in [163].

Chapter 4 Distributed Data Layout Types 71

K-means clustering— partition points, mirror cluster centers The k-means

clustering algorithm (cf. Figure 4.12) takes a set of data points points and tries to par-

tition them into k clusters in which each point belongs to the cluster with the nearest

mean. It does this by starting with some k initial cluster positions clusters and iter-

ating, recomputing the mean center of each cluster, and then repartitioning the points

to belong to the cluster with the nearest mean.

This implementation is the standard distributed implementation. There are usually

many more points than clusters, so points is partitioned and clusters mirrored on the

compute cluster. crossMaps1 computes the Cartesian product of these, partitioned by

point, and groupReduce2 calculates the distances between every point and every cluster

center, in-place (since pxc is already partitioned by point). groupReduce1 and mapInv2

then computes the new mean for each cluster, by exchanging intermediates over the

network to group by cluster, and then calculate the average position.

points :: DMap Int (Int,Int,(Float,Float),Float) Hash fst d dnull

clusters :: DMap Int (Float,Float) p nullF d dnull

pxc :: DMap Int (Float,Float) Hash (fst·lft) d dnull

= DMap Int (Float,Float) Hash \((pid,_),_)->pid d dnull

points’ :: DMap Int (Int,Int,(Float,Float),Float) Hash fst d dnull

clusters’ :: DMap Int ((Float,Float),Float) Hash fst d dnull

clusters’’ :: DMap Int (Float,Float) p nullF d dnull

Here, like floyd, kmkernel is called inside a loop, and so its output DDL type (for

(points’,clusters’’)) must match its input one (for (points, clusters)). There-

fore, clusters’’ must be mirrored by applying mirrMap to it, as it is here.

Dot product—cyclic distribution In this dot product (cf. Figure 3.10) plan A and

B are aligned since they both have cyclic distributions over the same dimension d, so

zip can be used without any communication. However, if dotp was used in a context

where A or B had a different distribution, redistList would be automatically inserted

to convert it into the required distribution.

A :: DList Float Cyc d dnull

B :: DList Float Cyc d dnull

AB :: DList Float Cyc d dnull

4.6 Concluding remarks

In this chapter we have shown how DDLs for maps, arrays, and lists, can be specified

as types, and how the DDLs of distributed-memory combinator implementations can

be written in such types. These DDL types are a restricted form of dependent Π-types

72 Chapter 4 Distributed Data Layout Types

that can carry program terms, and specifically lambda-abstractions, in certain type

parameters. We then explained the data distribution behaviors of some key combinator

implementations, and have demonstrated how valid DDL typings can be used to specify

the standard distributed-memory implementations of some example programs.

The next chapter (cf. Chapter 5) presents a DDL type inference algorithm that can

automatically find valid typings for such programs, and an automatic type-cast (i.e.

redistribution function) insertion algorithm that can make programs type-check by in-

serting casts to mend broken typing constraints. In Chapter 6 we then demonstrate the

extensibility of our approach by showing how DDL types can be extended to encode

local data layouts, more sophisticated array distributions, and more flexible variants of

our current DDL types.

Chapter 5

Inferring Distributed Data

Layout Types

In this chapter we present a type inference algorithm for DDL types. We define this

algorithm, and prove that it is sound, and that it terminates for all inputs. We then also

present an algorithm that automatically inserts type casts (i.e., redistribution function

applications) into programs to make them well typed. Together, these two algorithms

enable us to synthesize suitable distributed data layout information for any program

and choice of combinator implementations.

5.1 Type Inference

In the previous chapter we characterized the DDLs of several combinator implementa-

tions as types. We would like to be able to automatically find a set of valid DDL types

for a given program. This would be desirable if we were intending to make the user

manually choose suitable combinator implementations, to save them having to design

and declare correct data distributions themselves, but since we want to automatically

select these, automatic inference is essential.

For a given input program we search for distributed implementations by exploring dif-

ferent choices of combinator implementations. Here each application of a combinator

function in a program can use a different implementation. We then use the type inference

system presented in this section, to find a valid assignment of distributed data layouts

for a given choice of combinator implementations, if one exists. In other words, we

are automatically inferring suitable distributed (and local) data layouts for distributed

implementations of input programs.

Our type inference algorithm Tinfer extends a constraint-based version of Damas and

Milner’s Algorithm W [62] from [161]. This version traverses the AST implementing

73

74 Chapter 5 Inferring Distributed Data Layout Types

gdc(ΠX : T1 → T2, e) = gdc(X, e)

gdc((X1, . . . , Xn), (e1, . . . , en)) =
⋃k=1
k=n gdc(Xk, ek)

gdc(x, e) = {x = e}
gdc(, e) = {}
otherwise = fail

Figure 5.1: Definition of gdc (Generate dependent constraints)

fresh((X1, . . . , Xn)) =
⋃k=1
k=n fresh(Xk)

fresh(x) = fresh var

fresh() = fresh var

Figure 5.2: Definition of fresh (Fresh type variables)

bind((X1, . . . , Xn), (T1, . . . , Tn)) =
⋃k=1
k=n bind(Xk, Tk)

bind(x, T) = {x : T}
bind(, T) = {}
otherwise = fail

Figure 5.3: Definition of bind (Bind types to tuple of variables)

the constraint-based typing rules to construct initial types and constraints, and then

uses a unification algorithm [173] to find substitutions that unify the constraints. Our

version extends Damas-Milner’s (from [161]) to support tuples, deal with dependent

type schemes, and unify functions embedded in the types. To handle dependent type

schemes, we extend the function application case of the initial AST pass to instantiate

any Π-bound variables using the function gdc (generate dependent contraints). To unify

functions in the types, we use the algorithm in Figure 5.7, which extends standard

syntactic unification to deal with constraints involving functions. This allows us to lift

concrete functions into the types and solve equations involving them via unification.

5.1.1 Inference rules

Figure 5.4 shows the typing rules for our DDL type system. Here Γ is a mapping

between variables and types, that stands for the current typing environment, where

Γ ⊕ x : t (which we abbreviate to Γ, x : t) overwrites the mapping for x in Γ (if one

exists) with a new mapping to type t. The rules derive typing judgments for programs;

the judgments also include a set of constraints (denoted by “↪→ C”) which must be

satisfiable for the derived judgment to be valid. The rules closely mirror the inference

rules for the standard polymorphic lambda calculus with conditionals [161], apart from

D-Let and D-Abs which deal with identifier patterns, and D-App which deals with

dependent type schemes.

Chapter 5 Inferring Distributed Data Layout Types 75

Γ ` () : Null ↪→ {}
(D-Null)

Γ ` b : Bool ↪→ {}
(D-Bool)

Γ ` f : Float ↪→ {}
(D-Float)

Γ ` s : String ↪→ {}
(D-String)

Γ ` n : Int ↪→ {}
(D-Int)

Γ ` e1 : T1 ↪→ C1 . . . Γ ` en : Tn ↪→ Cn
C ′ = C1 ∪ . . . ∪ Cn ∪ {T2 = T1, . . . , Tn = T1}

Γ ` [e1, . . . , en] : List T1 ↪→ C ′
(D-List)

Y1, . . . , Yn are fresh vars
Γ(x) = ∀X1, . . . , Xn · T

Γ ` x : [X1 7→ Y1 . . . , Xn 7→ Yn]T
(D-Var)

Γ ` e1 : T1 ↪→ C1

Γ ` e2 : T2 ↪→ C2 Γ ` e3 : T3 ↪→ C3

C ′ = C1,2,3 ∪ {T1 = Bool, T2 = T3}
Γ ` if e1 then e2 else e3 : T2 ↪→ C ′

(D-If)

Γ ` e1 : T1 ↪→ C1 . . . Γ ` en : Tn ↪→ Cn
C ′ = C1 ∪ . . . ∪ Cn

Γ ` (e1, . . . , en) : (T1, . . . , Tn) ↪→ C ′
(D-Tup)

Γ ` e1 : T1 ↪→ C1 T2 = fresh(x)
x1 : t1, . . . , xn : tn = bind(x, T2)

Γ, x1 : t1, . . . , xn : tn ` e2 : T3 ↪→ C2

C ′ = C1 ∪ C2 ∪ {T1 = T2}
Γ ` let x = e1 in e2 : T3 ↪→ C ′

(D-Let)

T1 = fresh(x)
x1 : t1, . . . , xn : tn = bind(x, T1)

Γ, x1 : t1, . . . , xn : tn ` e1 : T2 ↪→ C

Γ ` \x -> e1 : T1 → T2 ↪→ C
(D-Abs)

X fresh var
Γ ` e1 : T1 ↪→ C1 Γ ` e2 : T2 ↪→ C2

C ′ = C1,2 ∪ {T1 = T2 → X} ∪ gdc(T1, e2)

Γ ` e1 e2 : X ↪→ C ′
(D-App)

Figure 5.4: DDL type rules Tinfer

76 Chapter 5 Inferring Distributed Data Layout Types

Instead of just binding to a single variable x, lambda abstractions and let-expressions

in Flocc can bind expressions to identifier patterns, which are tuples of variables. For

example, the expression let (x,y) = (1,2) in e is equivalent to let x = 1 in (let

y = 2 in e). To infer types for these expressions we use two functions: fresh (cf. Figure

5.2) and bind (cf. Figure 5.3). fresh creates a tuple of fresh type variables that matches

the shape of an identifier pattern x, and bind binds the leaf types of a compatible (tuple)

type T to the variables in the identifier pattern x. The D-Let and D-Abs rules use

these functions to create a tuple of fresh type variables, and extend the type environment

Γ with a binding between each variable and its corresponding fresh type variable.

D-App applies the gdc (generate dependent constraints) function to return additional

constraints which bind any Π-bound type variables (in T1) to their respective AST terms

at function applications (e2), so that uses of these variables must match the AST terms

specified. gdc is able to inspect T1 before the constraints in C1 have been solved because

only library functions have Π-types, and the constant propagation phase ensures that

library function variables will be directly accessible at their applications. This means

that functions with Π-types will always be handled by D-Var, which returns T ′ with

an empty set of constraints. Therefore, C1 will always be {} whenever T1 is a Π-type.

There are no typing rules required for maps and arrays, because both of these can be

defined in terms of list literals which are handled by D-List, and then converted into

maps and arrays using the listToMap and listToArr conversion functions respectively

(cf. Figure B.4). Furthermore, maps with sequences of integers as keys can be generated

by calling the intRangeMap function. Map and Arr types therefore enter the type system

via these functions.

We now show that our DDL type system is sound. That is, that well typed programs

can always progress (cf. Theorem 3), and evaluations of well typed programs are still

well typed (cf. Theorem 6). These proofs are based closely on those found in [161]. The

inversion lemma (cf. Lemma 1) that follows shows for a term of each syntactic form,

how to calculate its type (if it has one) from the types of its sub-terms.

Lemma 1 (Inversion of the typing relation).

1) If True : R, then R = Bool.

2) If False : R, then R = Bool.

3) If () : R, then R = Null.

4) If i : R, where i is an integer literal, then R = Int.

5) If f : R, where f is a floating point literal, then R = Float.

6) If s : R, where s is a string literal, then R = String.

7) If (e0, . . . , en) : R, then R = (T0, . . . , Tn) and e0 : T0, . . . , en : Tn.

8) If [e1, . . . , en] : R, then R = List T and e1 : T , . . . , en : T .

9) If \x -> e : R, then R = T1 → T2 and x : T1 ` e : T2.

10) If e1 e2 : R, then R = T2, e1 : T1 → T2 and e2 : T1.

Chapter 5 Inferring Distributed Data Layout Types 77

11) If let x = e1 in e2 : R, then R = T2, e1 : T1 and x : T1 ` e2 : T2.

12) If if e0 then e1 else e2 : R, then e0 : Bool, e1 : R and e2 : R.

Proof. Immediate from the definition of the typing relation.

The canonical forms lemma (cf. Lemma 2) defines the canonical expressions of each type.

These expressions are program terms in the syntactic domain Tv (cf. Figure 3.1), i.e.,

expressions in weak head normal form.

Lemma 2 (Canonical forms). For all v ∈ Tv we have

1. If v : Bool, then v is either True or False.

2. If v : Int, then v is an integer numeric literal.

3. If v : Float, then v is a floating point numeric literal.

4. If v : String, then v is a string literal.

5. If v : Null, then v is ().

6. If v : (T0, . . . , Tn) then v is an expression of the form (v0, . . . , vn) where v0 :

T0, . . . , and vn : Tn.

7. If v : List T then v is an expression of the form [v0, . . . , vn] where for all vk in

{v0, . . . , vn}, vk : T .

8. If v : T1 → T2 then v = \x -> e.

Proof. Proceeds by case analysis on the syntax of DDL types defined by dt ∈ Tdt (cf. Fig-

ure 4.2). For each alternative, we take the syntax of values defined by v ∈ Tv (cf. Figure

3.1) and exclude those terms whose type cannot be of the current form, according to

the inversion lemma. For example, for t = Bool none of the values v ∈ Tv can have type

Bool, except for True and False.

Now we have defined the canonical forms (i.e., values) of each type, we can prove that all

well-typed expressions that are not values can take an evaluation step, i.e., all well typed

programs can progress (c.f Theorem 3). This is the first requirement for soundness. Here,

a closed expression is one that does not contain any unbound variables. All complete

programs are closed.

Theorem 3 (Progress). Suppose e is a closed, well-typed expression (i.e., ` e : T for

some T). Then either e is a value or else there is some e′ with e e′.

Proof. Proof by induction on a derivation of e : T , proceeding by case analysis on the

last rule applied. The D-Int, D-Bool, D-Float, D-String, D-Null and D-Abs

cases are immediate, since in these cases e is a value. For the other cases we have:

78 Chapter 5 Inferring Distributed Data Layout Types

Case D-If: By induction hypothesis, either e1 is a value, or else there is some e′1 s.t.

e1 e′1. If e1 is a value then the canonical forms lemma tells us that it must be

either True or False, in which case either E-IfThen or E-IfElse applies to e.

Otherwise e1 e′1, and then e if e′1 then e2 else e3 by E-If.

Case D-Tup: By induction hypothesis, for all ek in (e1, . . . , en) we have that ek is

a value or else there is some e′k s.t. ek e′k. If for all k ek is a value then

so is e by the canonical forms lemma. Otherwise if ek e′k then by E-Tup

e (e1, . . . , e
′
k, . . . , en).

Case D-List: Similar to D-Tup.

Case D-App: By induction hypothesis, the function e1 is either a value or e1 e′1,

and the expression e2 to which it is applied, is either a value or e2 e′2. If e1 is

not a value then e e′1 e2 by E-App1. If e2 is not a value then e e1 e
′
2 by

E-App2. Otherwise, if e1 is a value then e1 must be a lambda abstraction by the

canonical forms lemma. e1 may therefore either be of the form \(x0, . . . , xn) -> e3,

in which case e2 must be a tuple value of the form (e21 , . . . , e2n) by induction

hypothesis, and E-AppTup applies, or of the form \x -> e3 in which case we get

e [x 7→ e2]e3 by E-App.

Case D-Var: This case cannot apply since e is closed, and so does not contain any free

variables.

Case D-Let: Similar to D-App. By induction hypothesis either e1 is a value, or e1 e′1.

If e1 is not a value then e let i = e′1 in e2 by E-Let1. Otherwise if e1

is a value then it may either be of the form (v1, . . . , vn) or not. If it is of

this form then x may either be of the form (x1, . . . xn) in which case we have

e let x1 = v1 in . . . (let xn = vn in e2) by E-LetTup, or just of the form

x, in which case we have e [x 7→ e1]e2 by E-AppLet. If e1 is not of this form,

but is rather of the form v, then x must also be of the form x (or else it would not

be well typed by D-Let), and we have e [x 7→ v]e2 by E-AppLet.

The second requirement for soundness is that evaluating an expression yields an ex-

pression with the same type (cf. Theorem 6). To prove this we must first show that

weakening (i.e., adding a variable binding, cf. Lemma 4) typing environments does not

affect the typing judgments that can be made under them, and that substituting a vari-

able with an expression of the same type preserves the type of the original expression

(cf. Lemma 5). Lemma 4 says that adding a new variable to an environment does not

affect a typing judgment made under it.

Lemma 4 (Weakening). If Γ ` e : T and x /∈ dom(Γ), then Γ, x : S ` e : T . Moreover,

the latter derivation has the same depth as the former.

Chapter 5 Inferring Distributed Data Layout Types 79

Proof. Straightforward induction on typing derivations.

In Lemma 5 we show that substituting a variable x in an expression e for an expression

of the same type S does not change the type of e. In fact, that type can now be derived

without the need for x in the typing environment.

Lemma 5 (Preservation of types under substitution). If Γ, x : S ` e : T , and Γ ` s : S,

then Γ ` [x 7→ s]e : T .

Proof. By induction on a derivation of the statement Γ, x : S ` e : T . For a given

derivation, we proceed by cases on the final typing rule used in the derivation. Cases

D-Bool, D-Null, D-Int, D-Float, and D-Str are only applicable if e is a literal.

Hence the substitution [x 7→ s]e will not change the value for these cases.

Case D-Var: Let e = z with z : T in (Γ, x : S). z must either be x or another variable.

If z = x then T = S and [x 7→ s]x = s, and since Γ ` s : S, Γ ` [x 7→ s]x : S.

Otherwise [x 7→ s]z = z, i.e., z is unchanged, and so its type is still T .

Case D-Abs: Let e = \y -> e1, T = T2 → T1, and Γ, x : S, y : T2 ` e1 : T1. We know

x 6= y and y not in ftv(s) (since all abstraction variables have unique names).

Since Γ is a map we can permute the bindings to give Γ, y : T2, x : S ` e1 : T1.

Using weakening on Γ ` s : S we get Γ, y : T2 ` s : S. This allows us to

apply the induction hypothesis to yield Γ, y : T2 ` [x 7→ s]e1 : T1. Then by D-

Abs, we get Γ ` \y -> [x 7→ s]e1 : T2 → T1 which is what is required because

[x 7→ s]e = \y -> [x 7→ s]e1.

Case D-App: Let e = e1 e2, Γ, x : S ` e1 : T2 → T1, Γ, x : S ` e2 : T2, and T = T1. By

induction hypothesis, Γ ` [x 7→ s]e1 : T2 → T1 and Γ ` [x 7→ s]e2 : T2. By D-App,

Γ ` [x 7→ s]e1 [x 7→ s]e2 : T which is equivalent to Γ ` [x 7→ s](e1 e2) : T .

Case D-Tup: Let e = (e0, . . . , en), T = (T0, . . . , Tn), and Γ, x : S ` ek : Tk for

all k ∈ {0, . . . , n}. Applying the induction hypothesis for all k gives Γ ` [x 7→
s]ek : Tk, from which we get Γ ` ([x 7→ s]e0, . . . , [x 7→ s]en) : T by D-Tup, and

therefore Γ ` [x 7→ s](e0, . . . , en) : T by definition of substitution.

Case D-List: Let e = [e0, . . . , en], T = List T1, and Γ, x : S ` ek : T1 for all

k ∈ {0, . . . n}. Applying the induction hypothesis for all k gives Γ ` [x 7→ s]ek : T1,

which gives Γ ` [[x 7→ s]e0, . . . , [x 7→ s]e1] : T by D-List, and therefore

Γ ` [x 7→ s][e0, . . . , en] : T .

Case D-If: Let e = if e0 then e1 else e2, Γ, x : S ` e0 : Bool, Γ, x : S ` e1 : T , and

Γ, x : S ` e2 : T . Applying the induction hypothesis to each subexpression yields

Γ ` [x 7→ s]e0 : Bool, Γ ` [x 7→ s]e1 : T , and Γ ` [x 7→ s]e2 : T . This gives

Γ ` [x 7→ s]e : T by D-If and the definition of substitution.

80 Chapter 5 Inferring Distributed Data Layout Types

Case D-Let: Let e = let y = e0 in e1, Γ, x : S ` e0 : T0, Γ, x : S, y : T1 ` e1 : T1, and

T = T1. We proceed as in case D-Abs. We know x 6= y and y not in ftv(s) because

all let-bound variables have unique names. We can apply the induction hypothesis

directly to e0 to give Γ ` [x 7→ s]e0 : T0. Then for e1 permuting the sub-derivation

gives Γ, y : T0, x : S ` e1 : T1, and weakening of Γ ` s : S gives Γ, y : T0 ` s : S.

We can now apply the induction hypothesis to give Γ, y : T0 ` [x 7→ s]e1 : T1, and

so Γ ` (let y = [x 7→ s]e0 in [x 7→ s]e1) : T by D-Let i.e., Γ ` [x 7→ s]e : T .

Now we can show that typing judgments are preserved under evaluation, i.e., if e has

type T then all evaluations of e will also have type T .

Theorem 6 (Preservation). If Γ ` e : T and e e′, then Γ ` e′ : T .

Proof. Proof by induction on a derivation of e : T , proceeding by case analysis on the

final rule applied. Cases D-Bool, D-Null, D-Int, D-Float, D-String and D-Abs:

We know for these rules that e is always a value, so no e′ exists s.t. e e′, and the

requirements of the theorem are satisfied vacuously.

Case D-If: Let e = if e0 then e1 else e2, e0 : Bool, e1 : T, e2 : T . There are three

evaluation rules by which e e′ could be derived: E-IfThen, E-IfElse and

E-If.

Subcase E-IfTrue: e0 = True and e′ = e1. We know e1 : T from the assumptions

of D-If, and so e′ : T .

Subcase E-IfFalse: Similar.

Subcase E-If: e0 e′0 and e′ = if e′0 then e1 else e2. From the assump-

tions of D-If we know e0 : Bool. Applying the inductive hypothesis gives

e′0 : Bool and we know e1 : T and e2 : T by the assumptions of D-If. So

if e′0 then e1 else e2 : T by D-If, i.e., e′ : T .

Case D-Tup: Let e = (e0, . . . , en), T = (T1, . . . , Tn), and for all k ek : Tk.

The only evaluation rule that can be applied is E-Tup with ek e′k and e′ =

(e0, . . . , e
′
k, . . . , en). For any k, we know ek : Tk, and so by the inductive

hypothesis e′k : Tk. This gives (e0, . . . , e
′
k, . . . , en) : (T0, . . . , Tk, . . . , Tn) by

D-Tup and thus e′ : T .

Case D-List: Let e = [e0, . . . , en], T = List T1, and for all k ek : T1. The only evalua-

tion rule that can be applied is E-List with ek e′k and e′ = [e0, . . . , e
′
k, . . . , en].

For all k, we know ek : T1, and so by the inductive hypothesis e′k : T1. Thus

[e0, . . . , e
′
k, . . . , en] : List T1 by D-List, which is equivalent to e′ : T .

Chapter 5 Inferring Distributed Data Layout Types 81

Case D-Var: Let e = x and x : T . This case can never occur i.e., there is no e′

s.t. e e′ since full programs are always closed (i.e., contain no free variables),

and so variables will always be substituted for other expressions before they need

evaluation.

Case D-App: Let e = e0 e1, e0 : T1 → T2, e1 : T1, and T = T2. There are four evaluation

rules that could be applied: E-App, E-AppTup, E-App1, and E-App2.

Subcase E-App: Let e0 = \x -> e2 and e′ = [x 7→ e1]e2. We know Γ ` e1 : T1

through the assumptions of D-App, and Γ, x : T1 ` e2 : T2 through the

assumptions of D-Abs (the final rule applied in the subderivation of e0).

Therefore, Γ ` [x 7→ e1]e2 : T by the substitution lemma, which is e′ : T , and

we are done.

Subcase E-AppTup: Let e0 = \(x0, . . . , xn) -> e2, e1 = (a0, . . . , an), e′ =

(\x0 -> . . . (\xn -> e2)an . . .)a0, T1 = (t0, . . . , tn), and for all k ak : tk.

By the assumptions of D-Abs (the rule needed to derive e0) we know that

Γ, x0 : t0, . . . , xn : tn ` e2 : T2. Then to derive e′ : T , for all k = n . . . 0

we apply D-Abs to get Γ, x0 : t0, . . . , xk : tk ` (\xk -> . . .) : tk → T2 and

then D-App to get Γ ` (\xk -> . . .)ak : T2. Here the final D-App gives

Γ ` (\x0 -> . . .)a0 : T2 which is equivalent to e′ : T .

Subcase E-App1: Let e0 e′0 and e′ = e′0 e1. From the assumptions of D-App

we know e0 : T1 → T2 and e1 : T1. Applying the inductive hypothesis gives

e′0 : T1 → T2 which gives e′0 e1 : T by D-App.

Subcase E-App2: Let e1 e′1 and e′ = e0 e
′
1. From the assumptions of D-App

we know e0 : T1 → T2 and e1 : T1. Applying the inductive hypothesis gives

e′1 : T1, which gives e0 e
′
1 : T by D-App.

Case D-Let: Let e = let x = e0 in e1, e0 : T1, Γ, x : T1 ` e1 : T2, T = T2. There are

three evaluation rules that could be applied: E-Let, E-LetTup, and E-Let1.

Subcase E-Let: Let e′ = [x 7→ e0]e1. We know Γ, x : T1 ` e1 : T2 and Γ ` x : T1

by the assumptions of D-Let, and so by the substitution lemma we have

Γ ` [x 7→ e0]e1 : T2 i.e., e′ : T and we are done.

Subcase E-LetTup: Let e0 = (a0, . . . , an), x = (x0, . . . , xn), e′ = let x0 =

a0 in . . . let xn = an in en, T1 = (t0, . . . , tn), and for all k ak : tk.

We know from the assumptions of D-Let that Γ, x0 : t0, . . . , xn : tn `
e1 : T2. This means for all k = n . . . 0 we can apply D-Let to get Γ, x0 :

t0, . . . , xk−1 : tk−1 ` (let xk = ak in . . .) : T2, which finally gives

Γ ` (let x0 = a0 in . . .) : T2 and thus Γ ` e′ : T .

Subcase E-Let1: Let e0 e′0 and e′ = let x = e′0 in e1. From the assumptions

of D-Let we know e0 : T1, which gives e′0 : T1 by the inductive hypothesis.

Combining this with e1 : T2 (assumption of D-Let) gives let x = e′0 in e1 :

T2 by D-Let i.e., e′ : T .

82 Chapter 5 Inferring Distributed Data Layout Types

Since well-typed programs can always progress, and evaluation preserves well-typedness,

we say that our DDL type system is sound.

5.1.2 Testing for function equality

Type checking (and type inference) require testing whether type terms are equal. This

is just a straightforward syntactic test for normal types, but our DDL types contain

functions. This poses a problem, since testing whether two functions f and g are exten-

sionally equal (i.e., f ≡ g) is undecidable in general [200, 171], and as such no algorithm

exists that can perform this test for all cases. We are therefore forced to adopt a sound

but incomplete under-approximation, which means that our type-checker (or inference

algorithm) will be incomplete (i.e., some valid typings will be rejected by the checker/will

not be found by the inference algorithm).

The first possible approximation is just to check for syntactic equality up to variable

renaming. This is valid since syntactic equality implies semantic equality, i.e., f =

g =⇒ f ≡ g. Here, f ≡ g means that the type of f equals the type of g, and

for all x, (f x) = (g x). This will work in some cases, but cases where semantically

equivalent functions are syntactically different frequently occur, especially since we build

up functions using function compositions in our DDL types.

The second possibility is to convert functions to some common form and then compare

them syntactically (up to renaming). This is the approach that we adopt in the current

chapter. We use a normalization function ↓ (cf. Figure 5.5) to convert functions to a

common simplified form (i.e., head normal form) and then compare these syntactically.

This is valid as long as the ↓ is sound, i.e., ↓ f ≡ f (which we prove in Lemma 7). This

approach is complete for valid projection/permutation functions (i.e., functions that

accept tuples of variables, and return some tuples of those same input variables and

perhaps some constants, cf. Lemma 10). DArr partition functions can always be reduced

to such projection functions, since they are composed from index projection functions,

which just map indices to new tuples of indices. For example, (id ·\(x, y) -> fst x)
.
=

(fst·fst) can be simplified by desugaring fst, id, and the ·-operator, and then reducing

the bodies of the lambda-abstractions using beta-reduction, to give (\((a, b), c) -> a)
.
=

(\((j, k), h) -> j), which are syntactically equal up to renaming. Here, α
.
= β denotes

a constraint equating α and β, which may or may not hold. Furthermore, DList types

do not use functions, and so syntactic equality up to variable renaming of normalized

function terms is sufficient for DArrs and DLists.

However, DMap partition and local layout functions can be more complex, and may

include arbitrary function applications and let-expressions etc. That said, the examples

Chapter 5 Inferring Distributed Data Layout Types 83

1 ↓ f =

2 let f0 = desugar f in

3 let normalize f1 =

4 let f2 = applyFunGens f1 in

5 let f3 = eval f2 in

6 if f3=f2 then return f3
7 else return (normalize f3)
8 in recur f0

Figure 5.5: Normalizes embedded functions.

used in Section 4.5 show that these functions are quite simple in many practical cases.

For example, none of the partition functions in the examples are recursive or iterative,

and most are projection functions, in which case the current approximation suffices.

Furthermore, types are not compared in all the typing rules (cf. Figure 5.4, only in

D-List, D-If, D-Let, and D-App) and so situations where semantically equivalent

functions are treated as non-equal are less common than one might imagine.

Function normalization The ↓-operator tries to reduce functions to a common syn-

tactical form. As shown in Figure 5.5, the ↓-operator’s implementation starts by replac-

ing all functions and function compositions with the concrete lambda terms defined in

Figure 4.3 (via desugar). It then iteratively applies applyFunGens and eval, until eval

does not modify f2 and so f2 = f3. applyFunGens f1 applies any function generators

(cf. Section 4.3.3) in f1, replacing them with concrete lambda-abstractions, and eval f2

applies the language’s evaluation rules (cf. Figure 3.2) to all terms and sub-terms in f2,

until no more can be applied. This normalization function works in many situations,

including the examples in this chapter (cf. Section 4.5). However, Chapter 6 presents a

more nuanced approach that can find solutions to equations that this algorithm cannot.

We now prove that ↓ is sound (i.e., that ↓ f is semantically equivalent to f), and that

it terminates.

Lemma 7 (Soundness of ↓). ↓ f ≡ f .

Proof. f0 ≡ f by definition of desugar (since it replaces library function variables with

their semantically equivalent definitions). f2 ≡ f1 by soundness of applyFunGens. f3 ≡
f2 by definition of eval, since it applies the reduction rules defined in the operational

semantics shown in Figure 3.2. Finally, line 6 is sound trivially, and the recursive call

normalize f3 is sound inductively (i.e., by soundness of ↓).

Lemma 8 (Termination of ↓). For any input ↓ will always terminate.

Proof. desugar is only applied once and always terminates. Now consider the pair (m,n)

where m is the number of inapplicable function generators in f , and n is the number of

84 Chapter 5 Inferring Distributed Data Layout Types

reducible expressions in f . eval always terminates since primitive recursion is not cur-

rently possible in Flocc (cf. Section 3.3), and eval does not apply built-in combinators

or library functions. eval therefore makes n = 0 and reduces m, since it reduces all

reducible expressions, including those that are making function generators (cf. Section

4.3.3) inapplicable. applyFunGens may increase n, but cannot increase m since apply-

ing function generators never creates more. Therefore, every application of normalize

decreases (m,n) with respect to the lexicographical order, such that eventually m = 0

and n = 0, at which point f3 = f2 on line 6, and ↓ terminates.

Projection functions are those expressions that can be built from the non-terminal f

in Figure 5.6. That is, expressions where all functions are (desugared to be) lambda

abstractions, and expressions can only be applications of such functions, tuple expres-

sions, variables, and scalar literals. Fully simplified projection functions are those that

can be built from f ′ in Figure 5.6, i.e. projection functions which contain no function

applications. We now show that every projection function can be reduced to a fully

simplified projection function, and that such a simplified projection function is a unique

canonical form of all the projection functions that can be reduced to it.

f ::= \x -> e

e ::= Id | f e | (e1, . . . , ek)

x ::= Id | | (x1, . . . , xk)

f ′ ::= \x -> e′

e ′ ::= Id | (e′1, . . . , e′k)

Figure 5.6: Syntax of projection functions

Lemma 9 (Simplification of projection functions). Every projection function f can be

converted into a fully simplified projection function f ′, and ↓ f performs this simplifi-

cation.

Proof. We proceed by induction over expressions built from f in Figure 5.6.

Base case: the most deeply nested expressions in f must be either variables, or tuples

of variables, and are thus already in fully simplified form.

Inductive case: every expression ek in f must be either a variable, tuples of expressions,

or a function application. If ek is a variable or tuple of variables, then it is already in

fully simplified form. If ek is a function application fk e1, then e1 can always be reduced

to a variable or tuple of variables e′1, by the inductive hypothesis and E-App2. If fk is of

the form \(x0, . . . , xn) -> (e0, . . . , en) then E-AppTup can be applied to decompose

it into successive applications of the form \x -> e. Once fk is of the form \x -> e

beta-reduction (i.e. E-App) can be applied to ek to yield an expression e′k which is a

variable, or tuple of variables. Therefore, all function applications can be eliminated

from projection functions, by recursively applying E-AppTup, E-App, and E-App2,

which converts them into fully simplified projection functions. eval in ↓ applies these

Chapter 5 Inferring Distributed Data Layout Types 85

rules until no more apply, and so ↓ converts projection functions into fully simplified

ones.

Now we show that every pair of projection functions are semantically equal, exactly

when their fully simplified forms are syntactically equal, up to variable renaming. That

is, fully simplified forms of projection functions are canonical.

Lemma 10 (Completeness of ↓ for projection functions). ∀f, g : (f ≡ g)⇔ ((↓ f) = (↓
g)), where f and g are projection functions.

Proof. We show by contradiction that full simplification of projection functions is canon-

ical. Assume there exist f and g s.t. f ≡ g, but (↓ f) 6= (↓ g). Since (↓ f) 6= (↓ g), ↓ f
and ↓ g must differ syntactically in some way. They must both be of the form \x -> e′,

so either xf 6= xg or e′f 6= e′g, up to variable renaming. xf and xg can either be vari-

ables, or (possibly nested) tuples of variables. If xf 6= xg up to variable renaming, e.g.,

xf = (a, b) and xg = c, then f and g’s input types would differ, which would contradict

f ≡ g, and so xf = xg. If e′f was a variable and e′g a tuple, or visa versa, then their

types would differ since the most-general type for a variable is a single type variable α,

and the most general-type for a tuple is a tuple of type variables (α0, . . . , αn), and so

either they are both variables, or both tuples. If they are both variables then they must

be equal up to variable renaming, because if they were not they would return different

arguments and contradict f ≡ g (since f ≡ g =⇒ ∀x (f x) = (g x)). If they are tuples

(ef1 , . . . , efm) and (eg1 , . . . , egn), then m must equal n or else their types would

differ. If they are tuples of the same arity, then ∀k ∈ {1, . . . , m} efk must equal egk
by induction. Therefore, ∀f, g : f ≡ g =⇒ (↓ f) = (↓ g), i.e., ∀f : ↓ f is canonical.

Furthermore, ∀f, g : (↓ f) = (↓ g) =⇒ f ≡ g, since (↓ f) = f and (↓ g) = g by

soundness of ↓, and ∀f, g : f = g =⇒ f ≡ g, because all syntactically equal functions

are also semantically equal. Therefore, ∀f, g : (f ≡ g)⇔ ((↓ f) = (↓ g)).

5.1.3 Unifying functions

The other problem is that type inference algorithms need to unify equations between

type terms. Since function equality is undecidable in general, it follows that unification of

functions, known as higher-order unification, is also undecidable in general [94, 111, 136].

We must therefore adopt a sound but incomplete solution here as well.

Just as syntactic equality is an under-approximation of semantic equality, so syntactic

unification is of semantic unification. For example, the equation f · id .
= fst · g unifies

syntactically with substitutions [f 7→ fst, g 7→ id]. However, syntactic unification will

not solve f · id .
= fst to yield [f 7→ fst] since the sides are not the same shape, and it

cannot make them the same shape, because it does not “know” that f · id ≡ f .

86 Chapter 5 Inferring Distributed Data Layout Types

G ∪ {t .= t} G
DeleteSyn

t1 ∈ Tf t2 ∈ Tf (↓ t1) = (↓ t2)
G ∪ {t1

.
= t2} G

DeleteFun

t1 ∈ Td t2 ∈ Td vars(t1) = vars(t2)

G ∪ {t1
.
= t2} G

DeleteDimSet

f 6= g f /∈ Tf f /∈ Td
G ∪ {f(s0, . . . , sk)

.
= g(t0, . . . , tm)} ⊥

Conflict

G ∪ {f(s0, . . . , sk)
.
= f(t0, . . . , tk)} G ∪ {s0

.
= t0, . . . , sk

.
= tk}

Decompose

G ∪ {f(. . .)
.
= x} G ∪ {x .

= f(. . .)}
Swap

x /∈ Tf x ∈ vars(t0, . . . , tk)
G ∪ {x .

= f(t0, . . . , tk)} ⊥
Check

x /∈ vars(t) x ∈ vars(G)

G ∪ {x .
= t} [x 7→ t]G ∪ {x .

= t}
Eliminate

Figure 5.7: DDL type unification algorithm U

Any attempt to solve such equations means exploring a search space of different possi-

ble substitutions, and will therefore require backtracking since some choices may lead to

dead ends. This will involve some search over the possible values for the abstract func-

tions/function variables. Multiple possible values for type variables also implies that

most general unifiers (MGUs) will no longer exist, although the meaning/relevance of

MGUs for distributed data layouts is unclear anyway.

For this chapter we adopt an approximation called U (cf. Figure 5.7), that works for

many example programs, including those in Section 4.5. U extends the non-deterministic

unification algorithm of Martelli and Montanari [141], which transforms a set of equa-

tions G by applying the rules defined in Figure 5.7 until no more rules apply or it returns

⊥ (i.e., fail). Our implementation of this algorithm iterates over the equations in G. For

each equation, U transforms it using the first rule from Figure 5.7 that applies, or if

none apply, leaves it unchanged. Once all equations have been visited, it starts again,

iterating over all the equations in the transformed set G′. U stops when the last pass

over G, did not transform any equations (i.e., no rules apply to any of the equations). If

the remaining set of equations G = {t1
.
= t′1, . . . , tn

.
= t′n} contains any equations that

are not of the form x
.
= f(. . .) (i.e., not substitutions) then unification fails. Otherwise,

if the remaining equations in G are all of the form x
.
= f(. . .) where every variable x

only appears on the left-hand side of one equation, we say that G is in (fully) solved

Chapter 5 Inferring Distributed Data Layout Types 87

form and unification succeeds with substitutions σ = {(t1, t′1), . . . , (tn, t
′
n)}.

In addition to the normal constraint deletion rule DeleteSyn, we have DeleteFun

which discharges a constraint if two normalized functions (members of Tf , the syntactic

domain of embedded functions), are syntactically equal. DeleteDimSet also deletes

a constraint between dimension identifier sets (e.g., sets of topology dimensions) if the

sets of type variables they contain are equal. Here, most general unifiers still exist, and

no-backtracking is required, since the extra rules only delete constraints, i.e., do not

generate any substitutions.

The DDL types for the combinator implementations in this chapter typically either use

constant functions (e.g., union uses fst), Π-bound functions (e.g., eqJoin1, groupReduce2),

and/or a single type variable on one side (e.g., the input) and compositions involving that

variable and constant/Π-bound functions on the other (e.g., the output). This means

that if a valid set of combinator implementations are used, non-trivial function expres-

sions will be inferred from more basic ones, and can then just be compared where they

meet, and deleted if semantically equivalent by DeleteFun. For example, mapArrInv2

has the DDL type:

mapArrInv2 :: Π(_,_,finv,_) : (i->j, (i,v)->w, j->i,

DArr i v g d m) -> DArr j w (g · finv) d m

Here the input g will unify with any term, so at some point g will be replaced with some

term t1 by Eliminate. Then when g ·finv is unified with the input type of its consuming

function application t2, it will be t · finv and can be compared and deleted if equal to

t2 by DeleteFun. So whenever the consumer’s input type t2 is a simple variable x

or an expression inferred from the other direction, our equality check approximation

DeleteFun will suffice.

This solution works whenever function compositions unify syntactically, or are equal

by the approximation above. This cannot solve equations like f · id = fst unless f

becomes fst by some other constraint/substitution. That is, we do not search the space

of possible values for function variables, but rely on them becoming matching terms

via constraints created for other parts of the program. For example, iteration might

require a state transformer function to have type s→ s. That is, the input data layout

has to be the same as the output. In this case the input may have partition function

f and the output some composition of constant functions, Π-bound functions, function

generators, and f (e.g., f
.
= (id⊗id)·f ·id), that when normalized becomes f

.
= f . This

will unify correctly. The floyd all-pairs shortest path algorithm example in Section 4.5

does this. We introduce more complex DDL types in Chapter 6 where inference cannot

simply build terms from inputs to outputs, or visa versa, and therefore also present an

extended unification algorithm in Section 6.4, that can deal with such types.

88 Chapter 5 Inferring Distributed Data Layout Types

We now prove that U terminates for all inputs, whatever non-deterministic choices are

made.

Theorem 11 (Termination of U). U terminates for any input.

Proof. Consider the triple (l,m, n) where l is the number of variables that occur more

than once in G, m is the number of non-variables on the left hand side of constraints,

and n is the cardinality of G. Applying the delete rules (DeleteSyn, DeleteFun

and DeleteDimSet) reduce n and cannot increase m or l. Applying Decompose,

Conflict, and Swap decrease m, and cannot increase l, and Eliminate and Check

decrease l. Thus every rule decreases (l,m, n) according to a lexicographical ordering,

which can only occur finitely many times. Therefore, U always terminates.

We now prove that U is sound. That is, if U succeeds, i.e., returns a set of constraints

that are all substitutions, then those substitutions make all constraints equivalent (i.e,

semantically equal for embedded functions, and dimension sets, and syntactically equal

for all other terms).

Theorem 12 (Soundness of U). If G has no unifier, then U terminates with ⊥ or a set

of equations that are not in solved form. Otherwise, if U terminates with success, then

G has been transformed into an equivalent set G′, which is in solved form.

Proof. In syntactic unification there are two kinds of equations that have no unifiers.

First, an equation of the form f ′(t′1, . . . , t
′
n)

.
= f ′′(t′′1, . . . , t

′′
m) has no unifier if f ′ 6= f ′′

(Thm 2.1 in [141]) or if n 6= m. Second, an equation of the form x
.
= t where x occurs

in t and x 6= t (Thm 2.2 in [141]). Decompose excludes the former and Eliminate

the latter, whilst Conflict and Check return ⊥ for the former and latter respectively.

Then for functions f, g ∈ Tf , (f = g) =⇒ (f ≡ g) means that (f 6≡ g) =⇒ (f 6= g),

(and similarly for dimension sets), and so equations with no semantic unifiers, also have

no syntactic unifiers, and therefore terminate with (f
.
= g) ∈ G′, which is not in solved

form. So if G has no syntactic unifiers, U returns ⊥. Otherwise, if it has no semantic

unifiers then G′ is not in solved form.

Two sets of equations G and G′ are equivalent if they have the same sets of unifiers.

They are in solved form if they are xj
.
= tj , j = 1, . . . , k and for every variable xj and

term tj with xj /∈ vars(tj), xj occurs only there (pp. 260-1 of [141]). All the rules apart

from DeleteFun and DeleteDimSet in Figure 5.7 are shown to preserve the sets

of all unifiers in [141]. This is obvious for Swap and DeleteSyn. For Decompose

any substituion that satisfies s0
.
= t0, . . . , sk

.
= tk, also satisifies f(s0, . . . , sk)

.
=

f(t0, . . . , tk), and conversely for the recursive definition of a term. For Eliminate any

equation x = t belongs to both G and G′ and thus any unifier σ (if it exists) of G or G′

must unify x and t; that is σx = σt. Now let t1
.
= t2 be any other equation of G, and

let t′1
.
= t′2 be the transformed form of t1

.
= t2 in G′. Since t′1 and t′2 have been obtained

Chapter 5 Inferring Distributed Data Layout Types 89

by substituting every occurrence of x in t1 and t2 respectively we have σt1 = σt′1 and

σt2 = σt′2. Thus, any unifier of G is also a unifier of G′, and vice versa. Conflict

and Check only apply if G has no unifiers. The additional rules DeleteSyn and

DeleteDimSet also preserve the sets of unifiers. For any t1, t2 ∈ Tf , if (t1
.
= t2) ∈ G

has syntactic unifiers, then these are preserved by all the rules, and DeleteFun acts

like DeleteSyn. If (t1
.
= t2) ∈ G has no syntactic unifiers, then removing (t1

.
= t2)

will not introduce any, and so G′ will have the same unifiers as G. A similar argument

follows for DeleteDimSet. Finally, if Swap, Delete, and Decompose cannot be

applied, then G′ is in solved form.

U is not complete. This is because unification can fail for constraints that are semanti-

cally equivalent, but not equal by ↓, or where substitutions exist that make constraints

equal by ↓, but where these substitutions can not be inferred syntactically. However, U

is complete with respect to syntactic equality, such that if a sequence of rule applications

exist that convert the equations into solved form, then this sequence will be found. Here,

a sequence of rule applications
ri,ej
 ,

ri+1,ej+1
 , . . . applies rule i to equation j, and then

rule i+ 1 to equation j + 1 etc.

Theorem 13 (Completeness of U w.r.t sequence of rule applications). If a sequence of

rule applications
ri,ej
 ,

ri+1,ej+1
 , . . . exists transforming G into solved form G′, then U

will transform G into this form.

Proof. U consists of an inner loop that iterates over all the equations in G, applying

the first rule in Figure 5.7 that applies to each, and an outer loop which keeps iterating

over G, until no more rules apply to any of the equations. If a single sequence of rule

applications exists that transforms G into solved form, then U will clearly find this,

by performing the only rule application
ri,ej
 possible for every iteration of the outer

loop. To show that this holds when multiple rule applications can be performed, we

show that deferring a valid rule application
ri,ej
 after some intermediate sequence of

applications
rk,el , . . . ,

rk+n,el+m
 , leads to the same final solution as applying

ri,ej
 and then

rk,el , . . . ,
rk+n,el+m
 . This means that where multiple rule applications are possible, any

choice will lead to the same eventual solution set.

The only rule that can alter other equations in the set is Eliminate. This rule applies

a substitution [x 7→ f(. . .)] (which is a unifier of G) to all the other equations in G.

Therefore, any intermediate sequence of applications
rk,el , . . . ,

rk+n,el+m
 , can be treated

as a set of substitutions σ, that contains the substitutions caused by the Eliminate

rule applications. It therefore suffices to show, that deferring any rule application after

some intermediate substitutions σ, leads to the same result as applying it immediately

and then applying σ. We now show that this holds for every rule in Figure 5.7:

Case Delete-Syn:: This rule removes {t .= t} from G. Deferring this transformation

yields {σt .= σt}, which will still be removed.

90 Chapter 5 Inferring Distributed Data Layout Types

Case Delete-Fun:: This rule removes {t1
.
= t2} from G where (↓ t1) = (↓ t2). Any

type variables in t1 and t2 stand for abstract functions. Thus if (↓ t1) = (↓ t2)
then (↓ σt1) = (↓ σt2) since any substitutions in t1 and t2 will be simplified in the

same way by ↓. Therefore, {σt .= σt} will still be removed.

Case DeleteDimSet:: Similar to DeleteFun.

Case Conflict:: Applying σ will not change the functions f and g, their arities k and

m, or their syntactic domains, and so if this rule applies to G and returns ⊥, it

will also apply to σG and return ⊥.

Case Decompose:: Applying σ will not change the function f or its arity k, so if this

rule applies to G it will also apply to σG. Furthermore, applying σ before the rule

application yields σ{f(s0, . . . , sk)
.
= f(t0, . . . , tk)} {σs0

.
= σt0, . . . , σsk

.
= σtk}

and applying it after the application yields the same σ{s0
.
= t0, . . . , sk

.
= tk} =

{σs0
.
= σt0, . . . , σsk

.
= σtk}.

Case Swap:: If σ does not contain x, or maps x to another variable y then applying σ

before the rule yields σ{f(. . .)
.
= x} = {σf(. . .)

.
= y} and applying it after yields

the same {σf(. . .)
.
= y} {y .

= σf(. . .)}. If σ contains x 7→ g(. . .) then σ{f(. . .)
.
=

x} = {σf(. . .)
.
= g(. . .)}, in which case Swap no longer applies. However, in that

case σ{x .
= f(. . .)} = {g(. . .)

.
= σf(. . .)} which is equivalent to {σf(. . .)

.
= g(. . .)},

since Decompose and Conflict will apply in the same way, and the ordering of

the final equations is determined by latter applications of Swap.

Case Check:: If σ does not contain x or maps x to another variable y, then if x ∈
vars(t0, . . . , tk) then y ∈ vars(σt0, . . . , σtk) and Check will still return ⊥. Oth-

erwise if σ contains x 7→ g(. . .), then Check will no longer apply, but if x ∈
vars(t0, . . . , tk) then {g(. . .)

.
= σf(t0, . . . , tk)} will be an unsolvable constraint

(i.e., cannot be transformed to solved form) and so unification will still fail.

Case Eliminate:: If σ does not contain x, or maps x to another variable y, then Elim-

inate will still apply after applying σ, and will yield σG∪{y .
= σt}. If σ contains

x 7→ g(. . .) then Eliminate will no longer apply, however in this case applying

σ after the Eliminate application will lead to the same equation {g(. . .)
.
= σt},

and will transform all the other equations in G in the same way as applying σ

before.Thus U is complete w.r.t. sequences of rule applications.

5.1.4 Variables bound in outer scopes

A difficulty caused by dependent type schemes is that lambda abstractions bound to

type variables can reference variables bound outside them. If such a lambda term is

Chapter 5 Inferring Distributed Data Layout Types 91

lifted into a type, and then by substitution ends up in a DDL type for an expression

which is above the variable binding, the function cannot be used since it cannot access

the variable it references. For example, Figure 5.8 shows a program that could cause

such an error, and Figure 5.9 a possible, and erroneous, typing for it.

1 let x = readMap (...) in

2 let y = reduce (snd , addi , x) in

3 let z = groupReduce (\(k,v)->muli(k,y), snd , addi , x) in z

Figure 5.8: Example program where a variable escapes during type inference

x : DMap Int Int q (\(k, v) -> muli (k, y)) d m

reduce : ((Int, Int)→ Int, (Int, Int)→ Int, DMap Int Int q α d m))→ Int

groupReduce : (. . . , DMap Int Int q (\(k, v) -> muli (k, y)) d m)→ DMap Int Int q fst d m

Figure 5.9: Example DDL types where a variable escapes during type inference

Here, the inference process propagates the function \(k,v) -> muli (k,y) back up

to x, but the function references y, which is defined after x. So the compiler would

be unable to generate code to distribute x since its distribution is defined in terms of

a value that is computed after it. To prevent this, the compiler checks that partition

functions do not reference variables defined after the expressions the pertain to.

5.1.5 Default parameter values

After unification has taken place, some type variables may still remain abstract, where

the data layout would be valid for any value of them. Before code generation, we replace

these variables with concrete values. Different values can be used to explore different

concrete DDLs, but we define default values in the table below:

Parameter type Default value

Partition function id

DMap distribution mode Hash

DList distribution mode Blk

DArr local layout function id

DMap local layout function nullF

Dimension ID that is only mirrored ()

92 Chapter 5 Inferring Distributed Data Layout Types

5.2 Redistribution insertion

We can now enumerate different choices of combinator implementations and infer DDL

types for them, if valid types exist. However, the best/fastest distributed-memory pro-

grams often involve redistributing some of their collections (i.e., broadcasting an in-

put matrix, to mirror it on all nodes) and changing their local layouts (cf. Section

6.1). We therefore need to consider solutions that redistribute their collections using

redistribution/re-layout functions (cf. Figure 6.2, Figure 6.3, Figure 6.5). These can be

viewed as implementations of the high-level identity function, or type coercions/casts

in our DDL type system. They have different DDL types, converting one data layout

to another, by mapping DDL type parameters from one value to another value, while

leaving others constant. For example, repartMap : DMap k v q1 f1 d1 m -> DMap

k v q2 f2 d2 m can change a map partitioned by any function f1 and mode q1 along

any dimension d1, to be partitioned by any other function f2 and mode q2 along any

other dimension d2, whilst it remains mirrored along m. Type inference infers values for

these parameters, that are then fed to the code generator, which uses them to generate

code specialized for the specific input and output data layouts.

The search space of combinator implementation choices for a program is already ex-

ponential in the number of combinator applications O(Nm)1, and considering possible

redistributions makes it even bigger O(NmmPP−1). However, redistribution functions

are only useful when they allow more efficient combinator implementations to be used

in a program (e.g., using eqJoin1 rather than eqJoin2). This means we can restrict our

attention to uses of redistribution functions that make valid, otherwise invalid choices

of combinator implementations. To do this we need an algorithm that takes a program

with DDL types that do not type-check, and inserts redistribution function applications

at suitable locations to make it type-check.

Redistribution functions Although our type inference algorithm is not complete

we can provide a set of redistribution functions, that can be inserted to make any

combination of combinator implementations type-check. To do this we need to provide

a set of redistribution functions for each distributed collection type, that can be combined

to map any of the DDL type parameters from one value to another. This can either be

by enumerating concrete values, like Stm to Tree and Tree to Iter, or by using type

variables like f1 to f2. Then we can search for chains of these functions, to map one

DDL type to another. We provide such complete sets of redistribution functions for

DMaps, DArrs and DLists in our compiler.

1Here N is the number of combinator implementations per combinator, m is the number of combinator
applications, and P is the number of redistribution functions.

Chapter 5 Inferring Distributed Data Layout Types 93

Identifying locations/expression to redistribute To automatically insert redis-

tributions to make programs type-check, we need to be able to identify where the DDL

types in a program are broken. We automatically identify these locations by extending

our constraint-based type inference algorithm Tinfer to carry provenance about which

program expressions generated which types, so that when a constraint fails to unify, we

can identify which expressions caused the problem.

We maintain this information by extending our types, which are implemented as expres-

sions of the form T(t1, . . . , tn), to carry labels to record what expression IDs the type

came from. We denote this Tl, where T is the type, and l is a set of expression IDs. We

then modify the type rules to initialize types with the expression IDs that they came

from. Here we use the function L defined in Figure 5.10 to add a set of expression IDs

to a type’s terms and subterms. Then we redefine substitution application to combine

the expression IDs from the variable being replaced, and its replacement (cf. Figure

5.10). This means that during unification, whenever we eliminate a type variable Xl1 by

substitution, all of its labels l1 (the expression IDs of the expressions that contributed to

it) are added to the type tl2 replacing it, so that for a given type term or subterm (e.g.,

a single type parameter like a partition function) we know which expressions created it.

This approach finds at least two broken expressions for each broken constraint— one

for the LHS, and one for the RHS of the constraint. These may relate to the expression

that produced the value, and one of the expressions that is trying to consume it.

This approach does not record all the expressions that share a given type, but just some

of the expressions that created it (e.g., including function applications that produce

values of a given type, and other applications that consume these values). For example,

D-If constrains e2’s type T2 to equal e3’s type T3, but only returns T2, and so only e2,

and e2’s creator(s) will appear in the expression ID list of any broken constraint. This

is not a big problem for two reasons. Firstly, in a situation like the one above, where

both branches of the if disagree with some consumer of the if, it would be better to

redistribute the whole if, rather than both the then and else branches. Furthermore,

our redistribution insertion algorithms are iterative, so it can insert a redistribution for

e2 in one iteration, and then insert another to make e3 match e2’s DDL during the next.

Function choice heuristic There may be multiple redistribution functions, or chains

of redistribution functions, that convert one DDL type to another. In this case we want

some kind of metric to let us choose the best (fastest) ones to use. A simple metric that

counts the number of redistribution functions is helpful, so that for example repartMap is

preferred over repartMap·repartMap. However, some individual redistribution functions

may be more expensive than others, and so some chains of functions may be faster

than individual functions. To address this we adopt a very simple integer constant

cost for each redistribution/re-layout function, to encode the fact that, for example,

performing a local re-layout like changing a matrix from column-major to row-major

94 Chapter 5 Inferring Distributed Data Layout Types

Lget : Term→ P (Label)

Lget (T(l1)(t1 . . . tn)) = l1 ∪ (Lget t1) ∪ . . . ∪ (Lget tn)

Lget x(l1) = l1

Lget f(l1) = l1

L : P (Label)× Term→ Term

L l1 (T(l2)(t1 . . . tn)) = (T(l1 ∪ l2)((L l1 t1) . . . (L l1 tn)))

L l1 x(l2) = x(l1 ∪ l2)

L l1 f(l2) = f(l1 ∪ l2)

Subst× Term→ Term

[X(l1) 7→ t(l2)] (T(l3)(t1 . . . tn)) = (T(l3)(([X(l1) 7→ t(l2)] t1) . . . ([X(l1) 7→ t(l2)] tn)))

[X(l1) 7→ t(l2)] X(l3) = L (l1 ∪ l3) t(l2)

[X(l1) 7→ t(l2)] Y(l3) = Y(l3)

[X(l1) 7→ t(l2)] f(l3) = f(l3)

Figure 5.10: Lget returns all labels attached to a type and its sub-terms; L adds
labels to a type and its sub-terms; and applying substitutions combines labels from the

variables, and target terms.

is faster than re-distributing the matrix across the network to achieve the same effect.

We therefore give redistribution functions that communicate over the network a cost at

least an order of magnitude greater than local re-layout functions (cf. Section 6.1). More

complex cost heuristics are possible, but these are sufficient to choose between different

redistribution/re-layout functions that achieve the same effect. Table Figure 5.11 gives

costs for some of the DMap redistribution functions in our implementation.

Function Cost Behavior

readVMap 1 Iterates over sorted vector.

readHMap 1 Iterates over hashmap.

saveVMap 5 Saves a stream of values in a sorted vector.

sortVMap 100 Re-sorts a sorted vector using a new sort key.

sieveSMap 10 Filters values that do not belong on this node from a stream.

mirrVMap 200 Mirrors vector partitions over a new topology dimension.

repartVMap 500 Re-partitions sorted vector using a new partition function.

Figure 5.11: Example cost values for redistribution and local re-layout functions.

Chapter 5 Inferring Distributed Data Layout Types 95

1 R1 : P (Fun)× Program→ P (Program× TypeEnv)
2 R1 funs P =

3 (Γ, C) = Tinfer P

4 return (R′1 funs P C)

5
6 R′1 : P (Fun)× Program× Constraint→ P (Program× TypeEnv)
7 R′1 funs P (a

.
= b) =

8 locations = (Lget a) ∪ (Lget b)
9 redistFuns = (Rfuns funs ∀c . a→ c) ∪ (Rfuns funs ∀c . b→ c)

10 ∪ (Rfuns funs ∀c . c→ a) ∪ (Rfuns funs ∀c . c→ b)
11 options = ∅
12 for each l ∈ locations

13 for each f ∈ redistFuns

14 P’ = insertFunAt P f l

15 (Γ′, C’) = Tinfer P′

16 if C’ = () then solutions = solutions ∪ {(Γ′, C′)}
17 else if C’ 6= C then options = options ∪ {(P′, C′)}
18 for each (P’,C’) ∈ options

19 solutions = solutions ∪ (R′1 funs P′ C′)
20 return solutions

Figure 5.12: Automatic redistribution function insertion algorithm 1.

Algorithm 1 Our first algorithm for automatic redistribution insertion is function

R1 in Figure 5.12. Here we fix one broken constraint C at a time, trying progressively

longer chains of redistribution functions (redistFuns), inserting them at all the possible

locations (locations) returned by the labels of the types in the broken constraint. For

each possible P’, we infer the types, and if inference succeeds we add it to solutions,

otherwise if inference fails on a new constraint we add it to options. We then call

R′1 recursively for each option, adding all solutions to the solutions set. Here Rfuns

returns chains of redistribution/re-layout functions from funs that unify with the type

scheme given, and insertFunAt returns a new program where the redistribution/re-

layout functions f are applied to the expression with ID l.

This approach is sound, since it only returns solutions that type-check, and is complete,

as it tries all valid combinations of redistribution functions inserted at all locations that

could have caused the broken constraint. However, it is not efficient. One reason for

this is that we cannot tell which of the types in the broken constraint should be the

source and target DDL types for the redistribution, and so we are forced to try all

chains of redistribution functions whose source or target type unify with one side of

the constraint (see lines 9 and 10 in Figure 5.12). This means redistFuns is often

very large. Another reason is that R′1 is called recursively for each combination of

location and redistribution function that fixes the current constraints. This means that

the algorithm has very poor computational complexity, in the number of times it calls

Tinfer to re-infer the types . Say we have m broken constraints, which could each be

fixed by inserting a redistribution in one of L possible locations. Then for each location

there are a maximum R redistribution functions (or chains thereof) to try. Of those that

96 Chapter 5 Inferring Distributed Data Layout Types

fix the constraint but aren’t yet solutions (i.e., where there is a further constraint C’ to

fix) we recursively call R′1 for the all of them. This gives a computational complexity of

O(LRm), i.e., exponential in the number of broken constraints where R is typically very

large. We can improve this by changing line 18, to only iterate over the best N options

found by computing the redistribution cost metric for each. This makes the complexity

O(LRNm−1), and therefore faster when N < LR.

Algorithm 2 Although R1 is sound, it is slow, especially for programs with several

broken constraints, and when calling it repeatedly for each possible combination of

combinator implementations in the search space. Our second approach R2 shown in

Figure 5.13, is much faster than R1 because it fixes multiple constraints at a time,

avoids repeatedly re-inferring all the types for the program, and prunes the solutions

early using the redistribution cost heuristic.

First on line 3, R2 uses R1 to fix all the broken constraints in a program by using the

function cast :: a -> b (i.e., a dummy cast function) to fix the constraints. This

is fast since, there is only one redistribution function to choose for each break (so in

R1 we have R = 1). This may return multiple programs as solutions in Ps, formed by

inserting cast at different locations to fix the constraints. If a single program which is

the same as the original is returned (i.e., with no casts inserted), then R2 terminates,

and this program is returned on line 4. Otherwise, for each of these solutions, we use the

type environment inferred Γ to find the type a → b for each cast function application

(cf. Line 9). Then for each of these, we find chains of redistribution functions that

unify with a → b (line 10), choose the best (line 11), and replace the cast with the

redistribution function application chosen (line 12). This fixes multiple constraints at a

time, and knows the exact type a→ b to look for when considering possible redistribution

functions. Here findApps returns the set of expression IDs in the program that apply

the function given, getExpType returns the type in the typing environment for the

expression provided, and replaceExp returns a new program where one expression has

been replaced with another.

However, cast’s type ∀a, b : a→ b is more general than specific redistribution function

chains (i.e., it maps any DDL to any other DDL). This means that inserting a cast

application may stop some DDL type information propagating during type inference,

such that other broken constraints might not manifest, and the types inferred for some

cast applications may be too general, so that further redistributions may be required

to fully fix the constraint(s). For example, in a program with two broken constraints,

the second one’s a → b type may have one conflicting type parameter, when there are

actually two. To fix this problem, we iterate (line 15), by calling R2 until all constraints

are fully fixed. This works because most redistribution functions change one DDL type

parameter whilst leaving the others unchanged, so additional conflicting type parame-

ters can be fixed by inserting additional redistributions. This solution should be much

Chapter 5 Inferring Distributed Data Layout Types 97

1 R2 : P (Fun)× Program→ Program× TypeEnv
2 R2 funs P =

3 Ps = R1 {cast : ∀a, b . a→ b} P

4 if Ps = {P} then return (P′,Γ)
5 Ps′ = {}
6 for each (P′,Γ) ∈ Ps

7 castApps = findApps P’ cast

8 for each (f e) ∈ castApps

9 (a→ b) = getExpType Γ f

10 redistFuns = Rfuns funs (a→ b)
11 f’ = arg minx∈redistFuns cost(x)
12 P’ = replaceExp P’ f f’

13 Ps′ = Ps′ ∪ P’

14 P’ = arg minx∈Ps′ cost(x)
15 return (R2 funs P’)

Figure 5.13: Automatic redistribution insertion algorithm 2.

faster than R1 because it calls Tinfer much less. This is because it fixes several broken

constraints in one iteration, and because it knows the exact type required for the redis-

tribution’s domain and co-domain, by looking at the type inferred for the cast function

instance, so that redistFuns is much smaller.

If we have a redistribution function that transforms each type parameter, and there

are a maximum n parameters then we will need a maximum n iterations to fix all

the constraints (if we ignore the fact that sometimes broken constraints may not be

revealed until others are fixed). n is always a small constant (i.e., 4 for DArr, DMap,

and DList), and so can be ignored when considering complexity. Then, if there are m

broken constraints, R1 infers the types LNm−1 times (since when using cast R = 1).

So the the total number of calls to Tinfer required is O(LNm−1). This is faster than R1

because L is typically small (e.g., 2), whereas R is typically very large (e.g., 100). These

small constants make R2 faster than R1, but it will still be slow for larger programs,

since it is still exponential in the number of broken constraints. The only way to avoid

this is to make N = 1, or to modify R′1 in some other way to regularly pick the best few

partial solutions, and continue to grow those towards full solutions. This means that

not all possible locations will be considered, but in practice whether a redistribution is

inserted just after a producer or just before a consumer, will often have no effect on the

performance (i.e., if there is only one consumer).

5.3 Concluding remarks

In this chapter we have presented an automatic type inference algorithm for our DDL

type system. This includes a system of typing rules that allow types and typing con-

straints to be derived from a program, a way of normalizing functions so the they can

be compared, and a unification algorithm for solving the typing constraints. We have

98 Chapter 5 Inferring Distributed Data Layout Types

proved that these algorithms terminate for any inputs, and that they are sound. We

have also proved that our normalization operation is complete for projection functions,

and that our unification algorithm is complete with respect to possible sequences of rule

applications. We have also introduced the concept of automatic redistribution insertion,

that is, automatically inserting DDL type-casts into Flocc plans to make them type-

check, and presented two algorithms that implement it. We have implemented the type

inference algorithm, and redistribution Algorithm 1 in our prototype compiler (cf. Chap-

ter 7), and used them to automatically derive DDL types for some example programs in

Chapter 8. One limitation of our current implementation is the time complexity of this

redistribution insertion Algorithm 1. We have therefore presented an improved redis-

tribution insertion algorithm, Algorithm 2 in Figure 5.13, with better time complexity,

and future work would implement this algorithm in our compiler.

Chapter 6

Extended Distributed Data

Layout Types

So far we have seen how to use types to characterize the distributed data layouts (DDLs)

of distributed maps, arrays, and lists, and different distributed memory implementations

of high-level combinators involving these (cf. Chapter 4). We have also seen how data

distribution information can be statically derived for different choices of combinator

implementations in programs, via type inference and automatic redistribution insertion

(cf. Chapter 5).

A major strength of our approach is its extensibility. New combinators can be added

simply by declaring their functional types, and the DDL types and back-end templates

of their implementations. Furthermore, the system can be extended with new types

without altering the underlying framework. For example, collections like spatially in-

dexed maps (Spatial), or trees (Tree), and their distributed equivalents (DSpatial and

DTree), could be added by simply adding them to a configuration file (since all types

are implemented as s-expressions). This extensibility is a clear benefit of this approach

over collection-specific techniques.

This chapter demonstrates the extensibility of our approach even further. In Section

6.1 we show how to extend our DDL types to encode local layout information about

collections. In Section 6.2 we show how we can add more flexibility to our partition

and layout functions, and in Section 6.3 we show how to extend our distributed array

DDL types to support more complicated DDLs (i.e., involving different block sizes,

ghosted regions, virtual offsets, and axis-reflection). Finally, in Section 6.4 we give

another approximation of higher-order function unification that can be used to find

solutions (i.e., valid typings) for Flocc plans involving these extended types. This is not

a complete list of possible extensions, but rather a collection of useful example extensions

to demonstrate the extensibility of our approach.

99

100 Chapter 6 Extended Distributed Data Layout Types

dt ::= DArr . . . marr f | DMap . . . mmap f | DList . . . mlist

marr ::= Mem | Iter | Stm

mmap ::= Hash | Tree | Vec | Iter | Stm

mlist ::= Link | Vec | Iter | Stm

g ::= . . . | rem f

Figure 6.1: Local data layout type parameters

6.1 Local data layouts

In addition to distribution information, we also use DDL types to specify how to store

collections locally in memory. For example, multidimensional arrays can be stored in

different ways in memory, e.g., in row-major or in column-major order. We specify the

layout of an n-dimensional DArr by adding a layout function to the type. This is a

permutation function which maps the array’s indices to an n-tuple, whose order dictates

how to order the indices in memory. Hence, \(x,y) -> (x,y) means row-major order,

and \(x,y) -> (y,x) means column-major. This can express very similar constraints

to partition functions. For example, groupReduceArr2 has the full type1

Π(f,_,_,_) :

(i1->i2, (i1,v1)->v2, (v2,v2)->v2, DArr i1 v1 pf d m Stm ((f⊗ (rem f)) ·∆))

-> DArr i2 v2 id d m Stm id

where rem f projects all the parts of the input tuple that f does not already project,

such that (f⊗(rem f)) defines a complete permutation of all the array’s indices. Here,

we force the first indices to be the group’s key indices (projected by f), followed by

the rest rem(f). This improves cache-line usage by ensuring that elements in the same

group are adjacent in memory. We use the same technique to specify the indexing

schemas of DMaps. We also use flags in the types to specify the local storage modes (e.g.,

hash table/binary tree/sorted vector/iterable collection/stream of values) for DMap and

DList.

The following subsections briefly explain the local layouts for some of the combinator

implementations. The syntax for the additional local layout DDL type parameters is

shown in Figure 6.1.

rem function generator rem is an additional function generator that takes a function

f and returns another function that is the complement of f , i.e., projects all the parts

1Note that although these types are complex, the end-user does not need to see, write, or understand
them. They are internal to the compiler, and allow the user to ignore all the complex layout information
that they contain.

Chapter 6 Extended Distributed Data Layout Types 101

of the input tuple that f does not already project. We use it in DArr local layout

functions to ensure that they project all of their argument values, and therefore define

a permutation of all the array’s dimensions.

6.1.1 Local array layouts

The two additional DArr type parameters are a local storage mode marr and a local

layout function which defines which order the array’s indices should be stored in (i.e.,

id would be row-major, and swap column major). The modes are Mem which stores the

whole array contiguously in memory, Iter which provides an iterable interface to the

array, and Stm which represents a stream of elements in some order (defined by f), which

can be consumed in this sequence. Figure 6.2 shows the extra type parameters for some

of the implementations of the combinators in Figure 3.6. Here we use numerical suffixes

to denote different distributed algorithms, upper case letters to denote different types

for the same distributed algorithm, and roman numerals to denote different local layout

types for the same distributed algorithm.

The mapArrInv combinators work on value streams in any order. For eqJoinArr1A and

eqJoinArr2i both input arrays are ordered using their respective key emitter functions

f and g, pairwise composed with rem f and rem g so that they return a permutation of all

the array’s indices. This allows the implementation to perform a sort of merge-join which

consumes the elements in key order, and therefore avoids having to repeatedly rescan

the whole right-hand array. Consuming elements in this order means that the result

elements are ordered primarily by the left-hand element indices, and then secondarily by

the right-hand, which is reflected in the result type by pairwise composing the left-hand

and right-hand layout functions. eqJoinArr2ii and eqJoinArr2iii accept element

streams in any order, and so are forced to use a nested-loop O(n2) join, which rescans

the whole right-hand array for every element consumed from the left-hand. This is same

behavior is reflected in eqJoinArr2ii and eqJoinArr2iii by pairwise composition and

function generators respectively. The mirror images of all these join types are available

via replacement rules in Chapter 7, which define which high-level combinators can be

replaced by what expressions involving combinator implementations.

groupReduceArr1i and groupReduceArr1ii accept element streams in any order, and

therefore must store there results contiguously via Mem, so that multiple values for the

same result index can be aggregated correctly. groupReduceArr2 requires its input

elements to be ordered using the index projection function f , which means that multiple

values for the same index are consumed in contiguous blocks, and so the result is an

element stream Stm ordered by the new indices (via id). The various re-layout functions

readArr to saveArr act like type-casts to convert between storage modes.

102 Chapter 6 Extended Distributed Data Layout Types

mapArrInvA :: Π(f,_,_,_) : (i->j, j->i, (i,v)->w,

DArr 〈. . .〉 Stm (g · f) -> DArr 〈. . .〉 Stm g

mapArrInvB :: Π(_,f−1,_,_) : (i->j, j->i, (i,v)->w,

DArr 〈. . .〉 Stm g) -> DArr 〈. . .〉 Stm (g · f−1)

eqJoinArr1A :: Π(f,g,_,_) : (i->k, j->k, DArr 〈. . .〉 Stm (f⊗(rem f))·∆,

DArr 〈. . .〉 Iter (g⊗(rem g))·∆)

-> DArr 〈. . .〉 Stm ((f⊗(rem f))·∆ ⊗ (g⊗(rem g))·∆)

eqJoinArr2i :: Π(f,g,_,_) : (i->k, j->k, DArr 〈. . .〉 Stm (f⊗(rem f))·∆,

DArr 〈. . .〉 Iter (g⊗(rem g))·∆)

-> DArr 〈. . .〉 Stm ((f⊗(rem f))·∆ ⊗ (g⊗(rem g))·∆)

eqJoinArr2ii :: (i->k, j->k, DArr 〈. . .〉 Stm f,

DArr 〈. . .〉 Iter g) -> DArr 〈. . .〉 Stm (f ⊗ g)

eqJoinArr2iii :: (i->k, j->k, DArr 〈. . .〉 Stm (fstFun f),

DArr 〈. . .〉 Iter (sndFun f)) -> DArr 〈. . .〉 Stm f

groupReduceArr1i :: (i->j, (i,v)->w, (w,w)->w, w,

DArr 〈. . .〉 Stm f) -> DArr 〈. . .〉 Mem id

groupReduceArr1ii :: (i->j, (i,v)->w, (w,w)->w, w,

DArr 〈. . .〉 Stm f) -> DArr 〈. . .〉 Mem g

groupReduceArr2 :: Π(f,_,_,_,_) : (i->j, (i,v)->w, (w,w)->w, w,

DArr 〈. . .〉 Stm ((f⊗(rem f))·∆)) -> DArr 〈. . .〉 Stm id

subArr :: (i, i, DArr 〈. . .〉 Mem f) -> DArr 〈. . .〉 Mem f

readArri :: DArr 〈. . .〉 Mem f -> DArr 〈. . .〉 Iter f

readArrii :: DArr 〈. . .〉 Mem f -> DArr 〈. . .〉 Iter g

iterArr :: DArr 〈. . .〉 Iter f -> DArr 〈. . .〉 Stm f

saveArri :: DArr 〈. . .〉 Stm f -> DArr 〈. . .〉 Mem f

saveArrii :: DArr 〈. . .〉 Stm f -> DArr 〈. . .〉 Mem g

Figure 6.2: Local layout type parameters for array combinator implementations.

Chapter 6 Extended Distributed Data Layout Types 103

6.1.2 Local map layouts

DMap’s additional type parameters are a local storage mode mmap and a layout function

f . The storage mode can be a hashmap Hash, a binary tree Tree, a sorted vector Vec,

an iterable collection Iter, or a key-value stream Stm. The layout function defines the

key that hashmaps and treemaps are indexed by, and the order that sorted vectors,

iterable interfaces, and key-value streams are sorted by. (These could be supplemented

with disk-backed storage modes, and implemented via STLXXL [67]). Figure 6.3 shows

the extra DDL type parameters for some of the combinator implementations.

The map and reduce combinators (cf. Figure 6.3) work on streams in any order. eqJoin1A

and 2i perform merge joins similar to eqJoinArr1A and eqJoinArr2i. eqJoin2ii and

2iii perform (less efficient) nested loop joins like eqJoinArr2ii and eqJoinArr2iii,

and work on any input layouts f and g, and any output layout f respectively. allPairsAii

performs a merge self-join, and allPairsAii performs a nested-loops self-join. groupReduce1i

and 1ii accept input streams in any order, storing the result map in a hashmap or bi-

nary tree respectively. groupReduce2 works like groupReduceArr2 requiring its input

values to be ordered using the key-emitter function, and can therefore return a stream

of values in the same order.

union requires its inputs to both be ordered by key (via fst) so that it can perform a

sorted merge, where the inputs are visited in step returning either the value from the left-

hand input, if its key is lexicographically before or equal to the right-hand, or otherwise

the value from the right-hand input. intersect1i performs a similar kind of merge,

but intersect1ii to intersect1iv allow the left-hand input to be sorted in any way,

as long as the right-hand is stored as a hashmap, binary tree, or sorted vector, which is

indexed by key (hence the fst), so that it can be probed to check if it contains a key that

corresponds with the key-value from the left-hand input. intersect1v performs the less

efficient nested-loops algorithm. diff1i performs a merge, diff1ii to diff1iv probe

hashmaps, binary trees, and sorted vectors, and diff1v uses nested-loops. The re-layout

functions in Figure 6.4 convert between the different storage modes and orderings.

6.1.3 Local list layouts

The only additional parameter for DLists is mlist which can be a linked list Link, array-

list Vec, iterable collection Iter or stream Stm. Figure 6.5 shows the extra DDL type

parameters for some of the combinator implementations. Most of these combinators

work on element streams, but appendList1i takes advantage of lists stored as linked

lists, by appending them using pointers, rather than having to duplicate them.

104 Chapter 6 Extended Distributed Data Layout Types

map :: Π(f,_) : ((i,v)->(j,w),

DMap Stm 〈. . .〉 (g · f)) -> DMap 〈. . .〉 Stm g

eqJoin1A :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap 〈. . .〉 Stm f,

DMap 〈. . .〉 Iter g) -> DMap 〈. . .〉 Stm (((f · lft) ⊗ (g · rht))·∆)

eqJoin2i :: Π(f,g,_,_) :((i,v)->k, (j,w)->k, DMap 〈. . .〉 Stm f,

DMap 〈. . .〉 Iter g) -> DMap 〈. . .〉 Stm (((f · lft) ⊗ (g · rht))·∆)

eqJoin2ii :: ((i,v)->k, (j,w)->k, DMap 〈. . .〉 Stm f,

DMap 〈. . .〉 Iter g) -> DMap 〈. . .〉 Stm (((f · lft) ⊗ (g · rht))·∆)

eqJoin2iii :: ((i,v)->k, (j,w)->k, DMap 〈. . .〉 Stm (lftFun f),

DMap 〈. . .〉 Iter (rhtFun f)) -> DMap 〈. . .〉 Stm f

allPairsAi :: Π(f,_) : ((i,v)->k, DMap 〈. . .〉 Iter f) ->

DMap 〈. . .〉 Stm (((f · lft) ⊗ (f · rht))·∆)

allPairsAii :: ((i,v)->k, DMap 〈. . .〉 Iter f) ->

DMap 〈. . .〉 Stm (((f · lft) ⊗ (f · rht))·∆)

groupReduce1i :: ((i,v)->j, (i,v)->w, (w,w)->w,

DMap 〈. . .〉 Stm f) -> DMap 〈. . .〉 Hash fst

groupReduce1ii :: ((i,v)->j, (i,v)->w, (w,w)->w,

DMap 〈. . .〉 Stm f) -> DMap 〈. . .〉 Tree fst

groupReduce2 :: Π(f,_,_,_) : ((i,v)->j, (i,v)->w, (w,w)->w,

DMap 〈. . .〉 Stm f) -> DMap 〈. . .〉 Stm fst

reduce :: ((k,v)->s, (s,s)->s, s, DMap 〈. . .〉 Stm f) -> s

union :: (DMap 〈. . .〉 Stm fst , DMap 〈. . .〉 Iter fst) -> DMap 〈. . .〉 Stm fst

intersect1i :: (DMap 〈. . .〉 Stm fst , DMap 〈. . .〉 Iter fst) -> DMap 〈. . .〉 Stm fst

intersect1ii :: (DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Hash fst) -> DMap 〈. . .〉 Stm f

intersect1iii :: (DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Tree fst) -> DMap 〈. . .〉 Stm f

intersect1iv :: (DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Vec fst) -> DMap 〈. . .〉 Stm f

intersect1v :: (DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Iter g) -> DMap 〈. . .〉 Stm f

diff1i :: (DMap 〈. . .〉 Stm fst , DMap 〈. . .〉 Iter fst) -> DMap 〈. . .〉 Stm fst

diff1ii :: (DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Hash fst) -> DMap 〈. . .〉 Stm f

diff1iii :: (DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Tree fst) -> DMap 〈. . .〉 Stm f

diff1iv :: (DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Vec fst) -> DMap 〈. . .〉 Stm f

diff1v :: (DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Iter g) -> DMap 〈. . .〉 Stm f

Figure 6.3: Local layout type parameters for map combinator implementations.

Chapter 6 Extended Distributed Data Layout Types 105

readTreeMap :: DMap 〈. . .〉 Tree f -> DMap 〈. . .〉 Iter f

readHashMap :: DMap 〈. . .〉 Hash f -> DMap 〈. . .〉 Iter nullF

readVecMap :: DMap 〈. . .〉 Vec f -> DMap 〈. . .〉 Iter f

readIterMap :: DMap 〈. . .〉 Iter f -> DMap 〈. . .〉 Stm f

saveTreeMap :: DMap 〈. . .〉 Stm f -> DMap 〈. . .〉 Tree g

saveHashMap :: DMap 〈. . .〉 Stm f -> DMap 〈. . .〉 Hash g

saveVecMap :: DMap 〈. . .〉 Stm f -> DMap 〈. . .〉 Vec f

sortVecMap :: DMap 〈. . .〉 Vec f -> DMap 〈. . .〉 Vec g

Figure 6.4: Local layout type parameters for map re-layout functions.

zip :: (DList 〈. . .〉 Stm, DList 〈. . .〉 Iter) -> DList 〈. . .〉 Stm

mapList :: (v->w, DList 〈. . .〉 Stm) -> DList 〈. . .〉 Stm

reduceList :: ((v,v)->v, v, DList 〈. . .〉 m) -> v

filterList :: (v->Bool , DList 〈. . .〉 Stm) -> DList 〈. . .〉 Stm

crossList1 :: (DList 〈. . .〉 Stm, DList 〈. . .〉 Iter) -> DList 〈. . .〉 Stm

concatList1i :: (DList 〈. . .〉 Link, DList 〈. . .〉 Link) -> DList 〈. . .〉 Link

concatList1ii :: (DList 〈. . .〉 Stm, DList 〈. . .〉 Stm) -> DList 〈. . .〉 Stm

findInList :: (v -> w, w, (v,w), DList 〈. . .〉 Stm) -> (Int ,(v,w))

readVecList :: DList 〈. . .〉 Vec -> DList 〈. . .〉 Iter

readLinkList :: DList 〈. . .〉 Link -> DList 〈. . .〉 Iter

iterList :: DList 〈. . .〉 Iter -> DList 〈. . .〉 Stm

saveVecList :: DList 〈. . .〉 Stm -> DList 〈. . .〉 Vec

saveLinkList :: DList 〈. . .〉 Stm -> DList 〈. . .〉 Link

Figure 6.5: Local layout type parameters for list combinator implementations.

6.2 More flexible functions

Some of the combinator implementation DDL types in Chapter 4 (cf. Section 4.3.1) are

more specific than they have to be. For example, for

eqJoinArr1A :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (f·fst) d m

with f = \((x, y), z) -> (x, y), the left-hand map could actually be partitioned by

f1 = \((x, y), z) -> x or f2 = \((x, y), z) -> y instead of f . Either of these partition

106 Chapter 6 Extended Distributed Data Layout Types

eqJoinArr1A :: Π(f,g,_,_) : (i->k, j->k,

DArr i v (α·f) d m, DArr j w (α·g) d m)

-> DArr (i,j) (v,w) (α·f·fst) d m

groupReduceArr2 :: Π(f,_,_,_,_) : (i->j, (i,v)->w, (w,w)->w, w,

DArr i v (α·f) d m)

-> DArr j w α d m

eqJoin1A :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k,

DMap i v p (α·f) d m, DMap j w p (α·g) d m)

-> DMap (i,j) (v,w) p (α·f·lft) d m

allPairsA :: Π(f,_) : ((i,v)->k,

DMap i v p (α·f) d m)

-> DMap (i,i) (v,v) p (α·f·lft) d m

union :: (DMap k v p (α·fst) d m, DMap k v p (α·fst) d m)

-> DMap k v p (α·fst) d m

intersect1 :: (DMap k v p (α·fst) d m, DMap k w p (α·fst) d m)

-> DMap k v p (α·fst) d m

diff1 :: (DMap k v p (α·fst) d m, DMap k w p (α·fst) d m)

-> DMap k v p (α·fst) d m

Figure 6.6: Extended DDL types for combinator implementations.

functions would ensure that all elements for a given value of (x, y) would be co-located

on the same node. This intuitively seems like a kind of sub-typing, where f1 and f2 are

subtypes of (and are therefore subsumed by) f . However, although classical sub-typing

might work for arrays, it would not for maps, because applying a Hash function to f1’s

output x may lead to a different distribution to applying one to f ’s output (x, y), i.e.,

hash functions may not respect a lexicographical ordering of input tuples. We therefore

show how we can encode this flexibility into the DDL types without sub-typing, as

follows.

6.2.1 Extended partition functions

For both map and array partition functions, functions that return fewer arguments

than strictly required can be used, as long as they are used consistently. For example,

with eqJoinArr1A, f1 can be used instead of f , as long as it is used for the left-hand

argument map, the output map, and a consistent version of g is used for the right-

Chapter 6 Extended Distributed Data Layout Types 107

let triEnum = (\E :: Map (Int ,Int) () ->

-- find degree of all vertices

let D1 = groupReduce (fst.fst , _->1, addi , E) in

let D2 = groupReduce (snd.fst , _->1, addi , E) in

let D = map (\(k,v)->(k,addi v), eqJoin (fst ,fst ,D1 ,D2)) in

-- identify edges by vertex with lower degree

let E1 = eqJoin (fst , fst , E, D) in

let E2 = eqJoin (snd.fst , fst , E1 , D) in

let E3 = map (\(((_,v1),v2),((_,d1),d2)) ->

(if lti (d1,d2) then (v1,v2) else (v2,v1), ()), E2) in

-- for each edge , find all angles

let A = allPairs (fst , E3) in

-- for each angle , see if it is closed

let T1 = eqJoin (\(((a,_),(_,b)),_)->(a,b), fst , A, E3) in

let T2 = eqJoin (\(((a,_),(_,b)),_)->(b,a), fst , A, E3) in

map (\((((v1 ,_),_),(v2 ,v3)),_)->((v1 ,v2 ,v3),()), union(T1 ,T2)))

Figure 6.7: Triangle enumeration (MinBucket algorithm)

hand argument map. We can encode this in the DDL types by sequentially composing

an unknown/abstract function variable α with the original partition function. This

abstract function α can be instantiated with any projection function, and thus return a

subset of f ’s original result. For example

eqJoinArr1A :: Π(f,g,_,_) : (i->k, j->k, DArr i v (α·f) d m,

DArr j w (α·g) d m) -> DArr (i,j) (v,w) (α · f·fst) d m

would also be a valid DDL type for eqJoinArr1A. Here, α = fst yields

f1 = \((x, y), z)→ x and α = snd yields f2 = \((x, y), z)→ y. This technique can

be used for a number of the map and array DDL types, some of which are shown in

Figure 6.6. For example, the extended eqJoin1A type allows an implementation of

the MinBucket triangle enumeration algorithm (cf. Figure 6.7) to be derived, that

cannot be with the original DDL types. The constraints caused by the eqJoins and

union at the end of this example preclude the use of local eqJoin1s in the original DDL

types, but the flexibility added by the variable α in the extended types permits this.

Here, the parametric polymorphism in our DDL types allows us to encode even more

precise constraints between input and output data layouts, than those in Chapter 4.

The unification algorithm given in Chapter 5 is unlikely to find a suitable value for α in

most cases, since it is no longer a simple case of binding a function to a type variable on

one side, and composing it with some other variable on the other. However, we present

an extended unification technique based on an equational theory of projection functions

in Section 6.4 that can find suitable values for these abstract function variables.

108 Chapter 6 Extended Distributed Data Layout Types

eqJoinArr1A :: Π(f,g,_,_) : (i->k, j->k,

DArr 〈. . .〉 Stm f�α, DArr 〈. . .〉 Iter g�β)

-> DArr 〈. . .〉 Stm ((f�α)·fst)�((g�β)·snd))

eqJoinArr2ii :: Π(f,g,_,_) : (i->k, j->k,

DArr 〈. . .〉 Stm h, DArr 〈. . .〉 Mem g�α)

-> DArr 〈. . .〉 Stm (h·fst)�((g�α)·snd)

eqJoinArr2iii :: (i->k, j->k,

DArr 〈. . .〉 Stm f, DArr 〈. . .〉 Iter g)

-> DArr 〈. . .〉 Stm (f·fst)�(g·snd)

groupReduceArr2 :: Π(f,_,_,_,_) : (i->j, (i,v)->w, (w,w)->w, w,

DArr 〈. . .〉 Stm f�α)

-> DArr 〈. . .〉 Stm id

eqJoin1A :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k,

DMap 〈. . .〉 Stm f�α, DMap 〈. . .〉 Iter g�β)

-> DMap 〈. . .〉 Stm ((f�α)·lft)�((g�β)·rht)

eqJoin2ii :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k,

DMap 〈. . .〉 Stm h, DMap 〈. . .〉 Vec g�α)

-> DMap 〈. . .〉 Stm (h·lft)�((g�α)·rht)

eqJoin2iii :: ((i,v)->k, (j,w)->k,

DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Iter g)

-> DMap 〈. . .〉 Stm (f·lft)�(g·rht)

allPairsAi :: Π(f,_) : ((i,v)->k,

DMap 〈. . .〉 Iter f�α)

-> DMap 〈. . .〉 Stm ((f�α)·lft)�((f�α)·rht)

intersect1i :: (

DMap 〈. . .〉 Stm fst�α, DMap 〈. . .〉 Iter fst�α)

-> DMap 〈. . .〉 Stm fst�α

intersect1iv :: (

DMap 〈. . .〉 Stm f, DMap 〈. . .〉 Vec fst�α)

-> DMap 〈. . .〉 Stm f

Figure 6.8: Extended local layout type parameters for combinator implementations.

Chapter 6 Extended Distributed Data Layout Types 109

6.2.2 Extended local layout functions

Local data layout functions can also be made more flexible in a similar fashion. The

sequence of arguments returned by the local layout function gives the value that the

collection is ordered or indexed by. So for f = \((x, y), z)→ (x, y) the collection would

be sorted first by x and then by y using a lexicographical ordering. So if a collection

needs to be ordered by f1 = \((x, y), z)→ x, it would be valid to sort it using f , since

a collection sorted by (x, y) values is also sorted by x. We can therefore extend local

layout functions to return additional arguments on the right-hand side of the result tuple,

without breaking the ordering. Note that we flatten result tuples such that ordering by

((x, y), z) is equivalent to ordering by (x, (y, z)). We use a new associative pairwise

composition operator � to capture this flattening, where α � β is a syntactic sugar for

\x -> (α x, β x).

To encode this in the DDL types we use the �-operator to pairwise compose an ab-

stract function variable on the right-hand side of our original local layout function. For

example,

groupReduce2 :: Π(f,_,_,_) : (i->j, (i,v)->w, (w,w)->w,

DMap . . . Stm (f�α))

-> DMap . . . Stm (fst�α)

gives a valid local layout for groupReduceArr2. Similar types for the other combinators

is shown are Figure 6.8. These more flexible types are also unlikely to unify using

the algorithm given in Chapter 4. However, unification using an equational theory of

permutation functions shown in Section 6.4.2, does unify them.

6.3 Extended distributed array types

The DArr type given in Chapter 4 can be extended to allow more efficient implementa-

tions of some of the array combinators. The syntax of these extended types is shown

below in Figure 6.9. This type extends DArr with 5 extra function parameters, all of

dt ::= DArr . . . fbs fdir foff fghl fghr

Figure 6.9: DArr extended syntax

which take array indices and increment, decrement, or scale them by some amount (i.e.,

have type i -> i, where i is a tuple of integers). Here +(i) and ×(i) are sugars for

\x→ addiv (x, i) and \x→ muliv (x, i) respectively, as shown in Figure 6.14, where

addiv and muliv lift integer addition and multiplication to index vectors (i.e., tuples of

integers).

110 Chapter 6 Extended Distributed Data Layout Types

The original DArr type in Chapter 4 uses a block-cyclic distribution with a fixed block

size. Here we use an additional parameter fbs , which returns an integer value for each

array index, to make these block sizes configurable for each dimension of the array.

In order to reverse the direction of array indices in Chapter 4, reflectArr has to swap

array partitions over the network, and reverse the order of each one locally. Here, we

introduce a new function parameter fdir which returns a positive value if the direction

of a given array dimension is as stored, and a negative value if it should be treated as

reversed. This allows us to implement reflectArr in-place without actually having to

swap or reverse any of the array partitions.

Finally, the DArr type in Chapter 4 does not support ghosting, i.e. replicating fringes

of elements from adjacent partitions. This means that the shiftArrR and shiftArrL

combinators that increment and decrement the indices of arrays always require com-

munication between neighboring nodes. Successive applications also require successive

communications. We avoid this here by extending DArr with the foff function to specify

the size of any offset/displacement of the array indices, and fghl and fghr to specify the

sizes of any ghost fringes for all the dimensions of the array. Here, fghl specifies fringes to

left (i.e., overlap with a previous partition, in the negative direction), and fghr specifies

fringes to the right (i.e., positive direction).

Figure 6.10 and Figure 6.11 show extended DDL types for the key DArr combinators. The

first four intRangeArr implementations generate arrays with block-cyclic distributions

and block sizes 1 (i.e., cyclic), 10, 100, and 1000 respectively. intRangeArr5 has block

size y − x (i.e., the size of the array) and therefore stores all elements on node 0.

intRangeArr6 uses block size (y − x)/dimSizes(d1) which corresponds to a blocked

distribution, with any remaining elements on node 0.

The shiftArrL1 and shiftArrR1 types translate an array’s indices in the negative/-

positive direction by performing communication and so do not affect the virtual offset

or fringes. shiftArrL2 and shiftArrR2 however, consume part of their right-hand and

left-hand fringes respectively, and so do not perform any communication. Their types

therefore force their input arrays to have sufficient ghost fringes available by compos-

ing +(o) with the fringes for the output. Then shiftArrL3 and shiftArrR3 also act

without communication by decreasing or increasing the virtual offset so that the array’s

indices are displaced by different amounts. These virtual offsets can then be made con-

crete by applying the shRedistArr redistribution function to actually shift the array

by the amount specified. Similarly, ghRedistArr changes an arrays fringes, adding or

removing them.

The subArr type does not affect the parameters, as it just discards any parts of the

array partitions that are not in the sub-array. scaleArr scales the array indices by the

factors in the first argument, and therefore just scales the block size, virtual offset, and

ghost sizes by this amount, and performs no communication. reflectArr changes the

Chapter 6 Extended Distributed Data Layout Types 111

intRangeArr1 :: (Int ,Int ,Int)->DArr Int () 〈. . .〉 +(1) dir of ghl ghr

intRangeArr2 :: (Int ,Int ,Int)->DArr Int () 〈. . .〉 +(10) dir of ghl ghr

intRangeArr3 :: (Int ,Int ,Int)->DArr Int () 〈. . .〉 +(100) dir of ghl ghr

intRangeArr4 :: (Int ,Int ,Int)->DArr Int () 〈. . .〉 +(1000) dir of ghl ghr

intRangeArr5 :: Π(x, y,_) : (Int ,Int ,Int)

-> DArr Int () 〈. . .〉 +(y − x) dir of ghl ghr

intRangeArr6 :: Π(x, y,_) : (Int ,Int ,Int)

-> DArr Int () f d1 d2 +((y − x)/dimSizes(d1)) dir of ghl ghr

shiftArrL1 :: (i, DArr 〈. . .〉 bs dir of ghl ghr)

-> DArr 〈. . .〉 bs dir of ghl ghr

shiftArrR1 :: (i, DArr 〈. . .〉 bs dir of ghl ghr)

-> DArr 〈. . .〉 bs dir of ghl ghr

shiftArrL2 :: Π(o,_) : (i, DArr 〈. . .〉 bs dir of ghl (ghr·+ (o)))

-> DArr 〈. . .〉 bs dir of ghl ghr

shiftArrR2 :: Π(o,_) : (i, DArr 〈. . .〉 bs dir of (ghl·+ (o)) ghr)

-> DArr 〈. . .〉 bs dir of ghl ghr

shiftArrL3 :: Π(o,_) : (i, DArr 〈. . .〉 bs dir of ghl ghr)

-> DArr 〈. . .〉 bs dir (of· − (o)) ghl ghr

shiftArrR3 :: Π(o,_) : (i, DArr 〈. . .〉 bs dir of ghl ghr)

-> DArr 〈. . .〉 bs dir (of·+ (o)) ghl ghr

subArr :: (i, i, DArr 〈. . .〉 bs dir of ghl ghr)

-> DArr 〈. . .〉 bs dir of ghl ghr

scaleArr :: Π(o,_) : (i, DArr 〈. . .〉 bs dir of ghl ghr)

-> DArr 〈. . .〉 (bs· × (o)) dir (of· × (o)) (ghl· × (o)) (ghr· × (o))

reflectArr :: Π(o,_) : (i, DArr 〈. . .〉 bs dir of ghl ghr)

-> DArr 〈. . .〉 bs (dir· × (o)) dir of ghl ghr

mapArrInv1 :: Π(f,_,_,_) : (i->j, j->i, (i,v)->w,

DArr 〈. . .〉 (bs·f) (dir·f) (of·f) (ghl·f) (ghr·f) ->

DArr 〈. . .〉 bs dir of ghl ghr

mapArrInv2 :: Π(_,f−1,_,_) : (i->j, j->i, (i,v)->w,

DArr 〈. . .〉 bs dir of ghl ghr) ->

DArr 〈. . .〉 (bs·f−1) (dir·f−1) (of·f−1) (ghl·f−1) (ghr·f−1)

Figure 6.10: Extended DDL type parameters for DArr combinator implementations.

112 Chapter 6 Extended Distributed Data Layout Types

direction of any array indices for which the corresponding part of the parameter tuple

is negative, and therefore just multiplies the array direction by this tuple, to change the

directions of the corresponding array indices.

The mapArrInv types apply their index transformer (i.e., projection/permutation) func-

tions to the results of the DArr parameters, and therefore return the parts of these

parameters that correspond to the indices in the new array.

For eqJoin1A we modify the basic type, to take four parameter functions: a function

that returns a pair with key indices on the left and any other indices on the right, and

the inverse of this function, for both array arguments. This could be avoided using the

rem function generator, and by introducing an inv function generator that returns the

inverse of a permutation function, but we make the parameters explicit here for clarity.

We then use these functions in the types to separate the key indices from the others, so

that we can use bsK and dirK, etc., for the key indices from both array arguments, and

bs1, bs2, dir1 dir2, etc., for the others. This forces the block sizes, array directions,

and array offsets to be the same for the key indices from both argument arrays, but

permits any values for the other indices. We use the same technique for the fringe sizes

ghl and ghr, apart from the fact that we permit the fringes of the argument arrays to

be bigger than needed for the output by using +(l1), +(r1), +(l2), +(r2) for the left

and right fringes of the first and second argument arrays respectively.

groupReduceArr2a accepts any offset and fringes, keeping the offsets and throwing any

fringes away, where as groupReduce2b keep both offsets and any fringes for the group

indices.

Finally, the dirRedistArr, shRedistArr, bsRedistArr, and ghRedistArr redistribu-

tion functions change the array’s direction, offset, block size, and ghost fringes respec-

tively, and all require communication. ghRedistArr2 on the other hand, reduces the

sizes of an array’s ghost regions inplace by discarding the parts that are no longer needed.

Only fairly simple uses of these types will unify using the algorithm in Chapter 5,

since the algorithm does not know about the associativity and commutativity of integer

addition, and about how addition and multiplication can be inverted. However, the

equational theory in Section 6.4.3 can be used to unify such functions. The Jacobi 2D

example program (cf. Figure 6.12) is a good motivation for these extended DArr types.

Using the shiftArrL2/R2 variants (and the equational theory) we get a DDL type for

next of

DArr (Int,Int) Float id d1 d2 bs dir id id (+((0, 1)) ·+((1, 0))) (+((1, 0)) ·+((0, 1)))

-> DArr (Int,Int) Float id d1 d2 bs dir id id id

which is the same as having a 1-element fringe on both sides of both array dimensions.

Then inserting a single ghRedistArr can exchange all these fringes at once, making

Chapter 6 Extended Distributed Data Layout Types 113

eqJoinArr1A :: Π(f,finv,g,ginv,_,_) :

(i->(k,i’), (k,i’)->i, j->k, (k,j’)->j,

DArr i 〈. . .〉 (finv · (bsK⊗bs1) · f) (finv · (dirK⊗dir1) · f) (finv · (ofK⊗of1) · f)

(finv · ((ghlK ·+ (l1))⊗ ghl1) · f) (finv · ((ghrK ·+ (r1))⊗ ghr1) · f),

DArr j 〈. . .〉 (ginv · (bsK⊗bs2) · g) (ginv · (dirK⊗dir2) · g) (ginv · (ofK⊗of2) · g)

(ginv · ((ghlK ·+ (l2))⊗ ghl2) · g) (ginv · ((ghrK ·+ (r2))⊗ ghr2) · g))->

DArr (k,(i,j)) 〈. . .〉 (bsK⊗(bs1⊗bs2)) (dirK⊗(dir1⊗dir2)) (ofK⊗(of1⊗of2))

(ghlK⊗(ghl1⊗ghl2)) (ghrK⊗(ghr1⊗ghr2))

groupReduceArr2a :: Π(f,_,_,_,_) : (i->j, (i,v)->w, (w,w)->w, w,

DArr 〈. . .〉 bs dir of ghl ghr) ->

DArr 〈. . .〉 (bs·of) (dir·of) (f·of) id id

groupReduceArr2b :: Π(f,_,_,_,_) : (i->j, (i,v)->w, (w,w)->w, w,

DArr 〈. . .〉 bs dir of ghl ghr) ->

DArr 〈. . .〉 (bs·of) (dir·of) (f·of) (f·ghl) (f·ghr)

dirRedist :: DArr 〈. . .〉 bs dir of ghl ghr ->

DArr 〈. . .〉 bs id of ghl ghr

shRedistArr :: DArr 〈. . .〉 bs dir of1 ghl ghr ->

DArr 〈. . .〉 bs dir id ghl ghr

bsRedistArr :: DArr 〈. . .〉 bs1 dir of ghl ghr ->

DArr 〈. . .〉 bs2 dir of ghl ghr

ghRedistArr :: DArr 〈. . .〉 bs dir of ghl1 ghr1 ->

DArr 〈. . .〉 bs dir of ghl2 ghr2

ghRedistArr2 :: DArr 〈. . .〉 bs dir of (ghl·+ (l)) (ghr·+ (r)) ->

DArr 〈. . .〉 bs dir of ghl ghr

Figure 6.11: Extended DDL type parameters for DArr combinator implementations.

114 Chapter 6 Extended Distributed Data Layout Types

let N = 100 :: Int in

let jac = (\X :: DArr (Int ,Int) Float ->

let shj = \(f,d,A) -> mapArrInv (fst , dup , addf.snd ,

eqJoinArr (id, id, A, f (A, d))) in

let next = \A ->

let A’ = shj (shiftArrR , (0,1), shj (shiftArrR , (1,0),

shj (shiftArrL , (1,0), shj (shiftArrL , (0,1), A)))) in

mapArrInv (id, id, \(_,x) -> divf (x, 4), A’) in

while (\(V,k) -> ((next V, addi (k,1)), lti (k,N)), (X, 0))) in ...

Figure 6.12: Jacobi 2D stencil

f ::= f1 · f2 | f2 ⊗ f2 | id | ∆ | Π1 | Π2 | (f) | x

g ::= g1 · g2 | g1 ⊗ g2 | id | (g) | x
| +(i) (index vector addition)
| −(i) (index vector subtraction)
| ×(i) (index vector multiplication)

i ::= 0 | 1 | i−1 | x

h ::= h1 · h2 | h1 � h2 | null | f

Figure 6.13: Projection (f), indexing (g), and permutation (h) function syntax.

next input’s fringe parameters id (i.e., no fringe), such that it unifies with s -> s and

can be used as the while loop’s parameter function.

6.4 Extended unification of functions

As already mentioned, the approximation of function unification that is used in the

unification algorithm in Chapter 5, is not sufficient for the extended types discussed

in this chapter. For these types we need a better approximation to full higher-order

unification. To do this we encode the subset of functions we are interested in in first-

order logic. We then use E-prover [183], which is a fully automatic equational theorem

prover for first-order logic, which also returns values for any existentially quantified

variables in conjectures, thus providing the substitutions for function variables that we

need. This approach is automatic, solves equations between embedded functions quickly,

and allows us to extend our unification algorithm to include other equational theories

as needed.

In this section we give an equational theory for projection functions, and additional

axioms for permutation functions and indexing functions. These can be used for partition

functions, local layout functions, and the additional DArr type parameters, respectively.

These could also be used to support further similar extensions, and more equational

Chapter 6 Extended Distributed Data Layout Types 115

β · α def
= \x→ (β(α x))

α⊗β def
= \(x, y)→ (α x, β y)

id
def
= \x→ x

∆
def
= \x→ (x, x)

Π1
def
= \(x, y)→ x

Π2
def
= \(x, y)→ y

0
def
= (0, . . . , 0)

1
def
= (1, . . . , 1)

i−1
def
= diviv (1, i)

+(i)
def
= \x→ addiv (x, i)

−(i)
def
= \x→ subiv (x, i)

×(i)
def
= \x→ muliv (x, i)

α�β def
= \x→ (α x, β x)

null
def
= \ → ()

Figure 6.14: Pointed definitions of point free functions.

theories could be added to deal with other possible extensions, as required. These

theories all use a point-free formulation of functions and function comprehension that

we prove sound by translating into pointed form (cf. Appendix D). The syntactic domains

for these functions are f , h, and g respectively in Figure 6.13. Here, x is an identifier

or expression in the base language, which is considered to be a constant in the theories,

i.e., some function we do not know about. The semantics of the constant functions and

composition operators are given in Figure 6.14 by translating them into pointed form.

The rest of this section explains these theories and gives their axiomatizations.

6.4.1 Projection function theory

The equational theory of projection functions given in Figure 6.15 involves pairs and

function composition. Supporting pairs, rather than n-ary tuples is not a limitation in

this context, since any Flocc program can be converted into an equivalent program with

only pairs, by converting tuples to nested pairs. Here · is sequential composition, ⊗
is pairwise composition, ∆ is pairwise duplication, id is the identity function, and Π1

projects out the left part of a pair, and Π2 the right. · is associative.

116 Chapter 6 Extended Distributed Data Layout Types

f · id = f (6.1)

id · f = f (6.2)

Π1 ·∆ = id (6.3)

Π2 ·∆ = id (6.4)

(Π1 ⊗Π2) ·∆ = id⊗ id (6.5)

(Π2 ⊗Π1) ·∆ · (Π2 ⊗Π1) ·∆ = id⊗ id (6.6)

(f1 ⊗ f2) · (Π2 ⊗Π1) ·∆ = (Π2 ⊗Π1) ·∆ · (f2 ⊗ f1) (6.7)

Π1 · (f1 ⊗ f2) = f1 ·Π1 (6.8)

Π2 · (f1 ⊗ f2) = f2 ·Π2 (6.9)

Π1 · (f1 ⊗ f2) ·∆ = f1 (6.10)

Π2 · (f1 ⊗ f2) ·∆ = f2 (6.11)

∆ · f = (f ⊗ f) ·∆ (6.12)

(f1 · f2) · f3 = f1 · (f2 · f3) (6.13)

(f1 ⊗ f2) · (f3 ⊗ f4) = (f1 · f3)⊗ (f2 · f4) (6.14)

Figure 6.15: Equational theory of projection functions.

h · id = h (6.15)

id · h = h (6.16)

h� null = h (6.17)

null� h = h (6.18)

(h1 · h2) · h3 = h1 · (h2 · h3) (6.19)

(h1 � h2)� h3 = h1 � (h2 � h3) (6.20)

(h1 � h2) · h3 = ((h1 · h3)� (h2 · h3)) (6.21)

Figure 6.16: Additional axioms for equational theory of permutation functions.

6.4.2 Permutation function theory

Figure 6.16 contains additional axioms to supplement those in Figure 6.15, yielding an

equational theory of permutation functions. Here all that matters is the flattened order

of arguments returned, not the specific bracketing of pairs. For this reason, we introduce

a new pairwise function composition � which is associative. Here, α � β duplicates its

argument and then returns α applied to it on the left, and β applied to it on the right.

Again, since we are only interested in the flattened order of arguments returned (as this

defines the lexicographical order of the collection) the null function that returns the unit

value can always be ignored.

Chapter 6 Extended Distributed Data Layout Types 117

i−1
−1

= i (6.22)

1−1 = 1 (6.23)

+(i) · −(i) = id (6.24)

−(i) ·+(i) = id (6.25)

×(i) · ×(i−1) = id (6.26)

×(i−1) · ×(i) = id (6.27)

g · id = g (6.28)

id · g = g (6.29)

(g1 · g2) · g3 = g1 · (g2 · g3) (6.30)

(g1 ⊗ g2) · (g3 ⊗ g4) = (g1 · g3)⊗ (g2 · g4) (6.31)

Figure 6.17: Additional axioms for equational theory of indexing functions.

6.4.3 Indexing function theory

Figure 6.17 gives the additional axioms for our equational theory of projection and

indexing functions. These functions add, subtract, and multiply array indices by con-

stants, runtime values, and the reciprocals of these. It is therefore able to invert any

sequential composition of such functions, and solve any equation involving them. We

encode both permutations of these inversion axioms (Equations (6.24), (6.25), (6.26),

and (6.27)) since this makes the proof search quicker than using explicit commutativity

axioms. The only condition that must be checked, is that indices are never multiplied

or divided by zero.

6.4.4 Implementing unification with equational theories

To use these theories in our unification algorithm we first replace the DeleteFun,

Conflict, Eliminate rules in Figure 5.7 with those in Figure 6.18 (and add H, I, and J

to the others). Note the syntactic domains Tf , Tg, and Th refer here to the nonterminals

in Figure 6.13, rather than those in earlier chapters. Here G are the original constraints,

H are constraints between projection functions, I between permutation functions, and

J between index functions. These rules “siphon off” these three kinds of constraints

between embedded functions into separate sets while unifying the other constraints. If

unification succeeds (i.e., G only contains substitutions, and does not infer ⊥), then we

can try to solve the constraints in H, I, and J using the E-prover and our equational

theories of projection functions, permutation functions, and index functions respectively.

We encode each of these three sets of constraints as a conjecture, where each conjecture

is a conjunct between all the equations in the relevant set, which existentially quantifies

over all free variables in the equations. We then run the theorem prover three times,

118 Chapter 6 Extended Distributed Data Layout Types

t1 ∈ Tf t2 ∈ Tf
〈G ∪ {t1

.
= t2}, H, I, J〉 〈G, H ∪ {t1

.
= t2}, I, J〉

DeleteProjFun

t1 ∈ Tg t2 ∈ Tg
〈G ∪ {t1

.
= t2}, H, I, J〉 〈G, H, I ∪ {t1

.
= t2}, J〉

DeletePermFun

t1 ∈ Th t2 ∈ Th
〈G ∪ {t1

.
= t2}, H, I, J〉 〈G, H, I, J ∪ {t1

.
= t2}〉

DeleteIndexFun

f 6= g f /∈ Tf f /∈ Tg f /∈ Th f /∈ Td
〈G ∪ {f(s0, . . . , sk)

.
= g(t0, . . . , tm)}, H, I, J〉 ⊥

Conflict

x /∈ vars(t)
x ∈ vars(G) ∨ x ∈ vars(H) ∨ x ∈ vars(I) ∨ x ∈ vars(J)

〈G ∪ {x .
= t}, H, I, J〉

〈[x 7→ t]G ∪ {x .
= t}, [x 7→ t]H, I{x 7→ t}, [x 7→ t]J〉

Eliminate

Figure 6.18: Modified DDL type unification algorithm

bargs(x, f) = {x : f}
bargs((x1, x2), f) = bargs(x1,Π1 · f) ∪ bargs(x2,Π2 · f)

bargs(, f) = {}

Figure 6.19: Definition of bargs (Bind projection functions to argument variables.)

once for each theory, with the constraints that pertain to them.2

Finally, to convert our constraints into equations for our theories, we have to convert all

lambda-abstractions into point-free form. This is quite straightforward. The only place

that pointed functions can enter our types is at dependent type schemes. All other

functions are already point-free. To convert these abstractions into point free form

we first remove all let-expressions by replacing any let-bound variables by their bound

expressions, and converting all if-expressions to ifF combinator function applications.

All tuples must also be converted to nested pairs. Note that functions containing list

literals cannot be converted to point-free form unless the literal is first converted into

cons function applications. Then we apply the function pf as shown in Figure 6.20 and

Figure 6.19. For example, to convert \(x, (y, z)) -> (f y, g (z, x)) into point-free

form we get Γ(x) = Π1 ·id, Γ(y) = Π1 ·Π2 ·id, and Γ(z) = Π2 ·Π2 ·id. Then, pf returns

((f ·Π1 ·Π2 · id)⊗ (g · ((Π2 ·Π2 · id)⊗ (Π1 · id)) ·∆)) ·∆.

2Note that in E-prover we actually use the keyword question rather than conjecture since this gives
us values for all existentially quantified variables, if the conjecture is proved true.

Chapter 6 Extended Distributed Data Layout Types 119

pf (Γ, x) = Γ(x) if x ∈ Γ

= x if x is a function

= ⊥ otherwise

pf (Γ, l) = constfun(l)

pf (Γ, (e1, e2)) = (pf (Γ, e1)⊗ pf (Γ, e2)) ·∆
pf (Γ, e1 e2) = pf (Γ, e1) · pf (Γ, e2)

pf (Γ, \x→ e) = pf (Γ ∪ bargs(x, id), e)

Figure 6.20: Definition of pf (Convert to point free form.)

6.5 Concluding remarks

In this chapter we have shown how our DDL types can be extended to encode local

data layouts, more flexible functions, and more expressive array distributions. These

demonstrate the extensibility of our approach, and how expressive dependent DDL types

can be. Of these extensions, our implementation (described in the next chapter) only

currently implements local data layouts. However, we have also shown how we can

extend our type inference (unification) algorithm to better approximate higher-order

unification via equational theories. These theories are proved sound in Appendix D.

Chapter 7

Implementation

We have implemented a prototype code generator for Flocc that produces MPI im-

plementations in C++, in about 25,000 lines of Haskell code. This supports, at the

high-level, three different distributed data types (i.e., DList, DArr, and DMap) with in

total 40 combinators, which are implemented in 58 low-level (i.e., C++) variants. Both

the language and the generator can easily be extended by defining new types, com-

binators (cf. Section 7.3.1), and replacement rules (cf. Section 7.3.2), and giving the

corresponding combinator implementations in the form of templates (cf. Section 7.4.6).

The architecture of our prototype code generator is shown in Figure 7.1. Flocc programs

are first parsed and type checked as per the grammar and type system described in

Chapter 3. Chapters 4, 5, and 6 describe how we synthesize concrete plans by inferring

DDL types and automatically insert redistribution type casts, for different sets of specific

combinator implementations, to use for these programs. In this chapter we explain

how the front-end, plan synthesis, and back-end of our code generator are practically

implemented, and how we use performance-feedback to search for good distributed-

memory implementations of high-level Flocc programs.

7.1 Overview

Our code generator’s high-level process is illustrated in Figure 7.1. After 1) AST parsing,

2) type-checking, and pre-processing, the generator loads 11) the combinator implemen-

tation rules and 10) their DDL types, and then 3) uses the type inference described

in Chapter 5 to find possible distribution plans, together with the corresponding DDL

types. For each plan, it 4) converts the AST into a data flow graph (DFG), replacing the

high-level combinators with the implementations from the plan. The generator then 5)

traverses this DFG, applying expression templates for each combinator. The templates

generate blocks of C++ code to perform the corresponding operation, specialized to

121

122 Chapter 7 Implementation

Figure 7.1: Feedback-directed code generation for Flocc

the DDL type from the plan. These plan synthesis and code generation phases form

the inner loop of 3) the solution search. The search applies these phases to enumerate

different C++ implementations from different choices of combinator implementations

for function applications in the input program. Each generated program is then 6) com-

plied, 7) executed, and performance statistics (i.e., execution time) are fed back into the

search. Thus, the code generator searches for the fastest concrete distributed memory

implementation of a given input program, according to some performance metric; in our

case the overall execution time.

7.2 Front end

We have used Alex [70] and Happy [140] as lexer, and parser generators for our input

language and the different definition languages (i.e., functional and DDL types and

replacement rules). After parsing a Flocc program, a straightforward implementation

of Algorithm W [62] infers the functional types for all the expressions in the program’s

AST.

After parsing and inference of the functional data types, the preprocessor expands all

tuple-typed variables to tuples of variables, and replaces all function-typed variables

with the lambda-abstractions they are bound to. This ensures that all Π-bound lamb-

das are directly available at function application expressions. It also expands lambda-

Chapter 7 Implementation 123

abstractions applications, so that different applications can have different DDLs.

7.3 Plan synthesis

The plan synthesis phase implements the DDL type inference algorithm, and redistribu-

tion insertion Algorithm 1 presented in Chapters 4 and 5. The current prototype does

not use the extended inference algorithm presented in Chapter 6.

7.3.1 Type declarations

Chapter 4 does not specify how to marshal DDL type declarations. Our implementation

uses a common file type for all functional and DDL type definitions, and common code

to parse and lex them. It uses a single extendable data type to represent all types as

S-expressions with variables, i.e., (f t1 . . . tn), where f is a label, and t1 to tn are nested

expressions, or variables. Arrows for function abstractions and tuples are also included

to improve readability. For example, Figure 7.1 and Figure 7.2 show the marshalled

functional and DDL types, for eqJoin1 respectively.

1 eqJoin :: forall k1,k2,v1,v2,x =>

2 ((k1 ,v1) -> x, (k2,v2) -> x,

3 (Map k1 v1), (Map k2 v2)) -> (Map (k1 ,k2) (v1 ,v2))

Listing 7.1: Data type definition

1 eqJoin1A (f1,f2,_,_) ::

2 ((k1 ,v1) -> k, (k2,v2) -> k,

3 DMap Stm k1 v1 sf1 f1 dim0 mdim ,

4 DMap Vec k2 v2 f2 f2 dim0 mdim2) ->

5 DMap Stm (k1,k2) (v1,v2) (FAssocPair (FSeq sf1 FLft) (FSeq f2 FRht))

6 (FSeq f1 FLft) dim0 ()

Listing 7.2: DDL type definititon

Internally these type terms are extended with labels which carry the expression IDs of the

expressions that generated them as shown in Figure 5.10, to support the redistribution

insertion technique described in Section 5.2.

7.3.2 Combinator implementation rules

Each of Flocc’s high-level combinators can be implemented in multiple versions. Our

automatic distributed-memory implementation search algorithm hinges on being able

to enumerate different choices of these combinator implementations for the function

124 Chapter 7 Implementation

applications in a Flocc program. We therefore need to declare which combinator imple-

mentations relate to which high-level combinators.

For our code generator, the sets of possible implementations are explicitly defined in

easily extendable rule sets. Each rule has on the left-hand side a combinator’s name and

formal argument(s). The right-hand side then lists one or more low-level expressions

that implement the high-level combinator. For example, the rule

countMap mp =>

countVMap mp

| countVMapMirr mp

| reduceSMap(_ -> 1, +, 0, mp);

specifies three implementation alternatives for the countMap combinator. The first two

work on vector-based map implementations, where countVMapMirr is only applicable if

the map is replicated, as its type fixes the partition function to be nullF. The third one

actually iterates over the stream representation of the map, counting and summing the

counts using MPI::AllReduce.

This approach also minimizes the number of combinator implementations required,

since rules can encode left and right variants using the same function with its inputs

and outputs swapped around. For example, Figure 7.3 shows some of the replace-

ment rule for eqJoin, where eqJoin1A and eqJoin1B both perform the join in-place

to maps aligned on their join key, and eqJoin2 partitions the left-hand map and mir-

rors the right-hand map. The last alternative switches the two input maps by applying

eqJoin2 to (x’,x) instead of (x,x’), and then uses mapStm to switch the output pairs

back, such that the left-hand map is mirrored and the right-hand map partitioned.

1 eqJoin (f1,f2,x,x’) =>

2 eqJoin1A (f1, f2, x, x’)

3 | eqJoin1B (f1, f2 , x, x’)

4 | eqJoin2 (f1, f2 , x, x’)

5 | mapStm (\((k,k’),(v,v’)) -> ((k’,k),(v’,v)),

6 eqJoin2 (f2 ,f1 ,x’,x,))

7 ...

Listing 7.3: Replacement rule file snippet

7.3.3 Representing solutions

The solution search described in Section 7.5 needs some means of representing possible

solutions that supports different search algorithms, including genetic searches. We use

lists of integers for this purpose, with an element for each combinator function applica-

tion in the input program, in the order they appear in the input program. Each element

Chapter 7 Implementation 125

records which rule alternative should be used for each high-level combinator. Then we

include a final element to specify which of the possibly multiple ways to insert redistri-

butions found by the insertion algorithm, should be chosen. This representation allows

us to search depth first by incrementing the elements in lexicographical order, and to

apply genetic searches by treating these list elements as individual genes.

To translate these lists into concrete plans, first each combinator application in the source

program is replaced with the rule alternative specified (with all variables replaced with

fresh names). We then perform redistribution insertion to infer the DDL types and insert

any necessary redistributions. This may return multiple solutions which use different

redistribution functions inserted at different points in the program. If this happens we

sort the solutions by their redistribution costs, and select the i-th alternative, where i

is the value of the last integer (i.e., gene) in the list. We then generate C++ code from

these plans as described in the section that follows (cf. Section 7.4).

7.4 Back End

Making Flocc a functional programming language has an number of benefits including

supporting type inference, polymorphic functions, passing functions as arguments, and

the data distribution planning technique in Chapters 4 to 6. However, generating ef-

ficient imperative code from a functional programming language involves a number of

challenges. In this section we explain how we have addressed these to implement our

current code generator prototype.

7.4.1 Expression evaluation

The first challenge in generating C++ code from Flocc programs is how to convert an

applicative language into an imperative one; i.e., a language with expressions that return

values into operations that effect variables. We convert the AST into a data flow graph

(DFG), replacing all literals, tuple expressions, function applications etc. with nodes.

At let-expressions, we generate nodes for the bound expressions, and then add them

to a context that binds variable names to nodes; when a variable is visited, an edge is

created from the bound expression’s node to the consuming expression’s node.

Each DFG node is an object that can contain literals, types, C++ variable names, state-

ments, and expressions; in particular, each node stores the C++ variable name(s) of its

output value(s). Before the code is generated, the DFG is visited to create fresh C++

variable names for all intermediate values, and perform any other node initialization.

Library function and combinator application nodes are initialized using templates which

define how to generate code for that operation. The template instances are initialized

with the node identifiers of their inputs, and their concrete DDL types, which may

126 Chapter 7 Implementation

include (nested) DFGs for parameter and partition functions. The code generator tra-

verses the DFG depth first, adding the C++ declarations for intermediate and output

variables, and statements to compute the correct values. This produces a C++ program

with statements which compute the value(s) for the original functional Flocc program

by assigning the expressions to intermediate variables.

In order to generate an efficient program, we must choose an efficient evaluation order,

which in our case means choosing a good DFG traversal order. We could search for

an optimal traversal order similar to the way we search for optimal distribution plans,

but this would substantially increase the search space. We instead use a deepest depth

first traversal, i.e., we evaluate the deepest subtrees first. This heuristic produces good

results, as values are computed just before they are used, and can be freed again quickly.

7.4.2 Function handling

In fully functional languages (i.e., that treat functions as first-class objects which can be

created and composed at runtime), there is no general way to determine statically what

function a function application will actually apply. Functions are therefore implemented

as thunks, i.e., pointers to a code block with an environment to store any captured

variables. This has a considerable negative impact on performance. We have instead

made Flocc a “semi-functional” language. That is, we allow polymorphic and higher-

order functions, as long as the code generator can statically determine which function

abstraction (i.e., lambda-term) is being used at applications. It therefore performs a

semantic check after parsing, to make sure that this is the case. This allows us to

inline functions, and, in particular, to lift them into the type language during DDL type

inference.

When an application node is visited during DFG traversal, the code for any lambda-

abstractions stored as nested DFGs is generated by setting the variable names for the

DFGs input and output variable(s), and then traversing it in the same way as the top-

level DFG.

7.4.3 Copy avoidance

The expression evaluation described in Section 7.4.1 in effect produces code in static

single assignment form. For scalar variables, the C++ compiler will eliminate these

repeated copies and replace them by in-place updates, but for the collection types the

code generator has to produce code that avoids unnecessary copying.

We therefore introduce local stream storage types for all high-level collections (cf. Chap-

ter 6), and use re-distribution functions to type-cast between memory-resident collec-

tions and local streams. The combinator implementations then consume and produce

Chapter 7 Implementation 127

such streams instead of explicit collections. The templates for these combinator imple-

mentations declare a public stream variable, which always stores the current collection

element like an iterator, and is accessible to all consumer nodes. The consumer nodes

use this variable to generate a consumer code block, which is then passed back to the

stream producer, and spliced into the producer’s loop nest. So, although collections are

not transformed in place, new collections are only created when needed. This system

also performs a kind of loop fusion, since multiple stream consumer nodes are spliced

into the same loop nest. Note that stream consumers can also generate initialization and

finalization statements which are spliced in before and after producer loops, respectively.

7.4.4 Collection storage

The local storage of collections can have a large impact on the performance of the

generated MPI implementations. For example, maps can be stored as streams, hash

tables, binary trees, sorted vectors, or unsorted vectors. The DDL types therefore also

include information on how to store the collections in local memory (cf. Section 6.1).

They can be stored with different key indices using DDL functions like the partition

function. Local streams (cf. Section 7.4.3) also include a DDL function to define in

which order the values are produced.

This local layout aspect ensures that efficient data structures are used for storing col-

lections for different operations, and that (unless re-distribution functions are inserted

that act as explicit conversions) only combinator implementations with DDL types with

matching local layout information are used together. Therefore, we do not have to ad-

dress local storage for collections during code generation. In fact, we can even frequently

avoid using resizable containers by preallocating collections to be the right size. This is

achieved by adding expressions to compute the size of a collection, to a producer node’s

public environment so that it is available to any consumer nodes.

Another issue that must be addressed, however, is how and when to free collections. We

currently use Boost smart pointers [88] to either deallocate when a collection goes out

of scope (using scoped ptr), or when all references to it have gone out of scope (using

shared ptr). Analyses do exist [82] to eliminate some instances of reference counting

for DFGs, but we do not implement these in our current prototype.

7.4.5 Tuple storage

We store tuples in two ways. Whenever possible we store them using a separate variable

for each element of the tuple, by passing around trees of C++ variable names, rather

than simple strings. However, when tuples need to be stored in a collection, we pack

the values into a struct. We declare a struct with comparison functions and hash code

generation for every tuple type used in a program.

128 Chapter 7 Implementation

1 -- |mapList template

2 t23 :: Monad m => Template m

3 t23 (Tup [(vt1 :-> wt1),

4 (Lf (LfTy "DList" [vt2 , lm1 , pm1 , pd1 , md1]))] :->

5 (Lf (LfTy "DList" [wt2 , lm2 , pm2 , pd2 , md2])))

6 (LFun _ (LTup _ [funN , inN]) outN)

7 | vt1 == vt2 && wt1 == wt2 &&

8 lm1 == nameTy "Stm" && lm2 == nameTy "Stm" = do

9 -- check in and out dims are the same

10 assertM (return $ pd1 == pd2) $ "par dims don ’t match"

11 assertM (return $ md1 == md2) $ "mirror dims don ’t match"

12 -- get input stream vars

13 getVar (Lf "v1") inN "streamVar"

14 -- declare and set output stream vars

15 newVar (Lf "v2") wt1

16 runGenV "declareVar" "decStmVar" [Lf "v2"]

17 setVar outN "streamVar" (Lf "v2")

18 -- if we know the list ’s length , pass it on

19 ifVarExists "listCount" inN "listCount"

20 (setVar outN "listCount" $ Lf "listCount") -- then

21 (return ()) -- else

22 -- when gen is called , generate loop

23 setFun outN "genConsumers" nt (_ -> do

24 -- generate map fun implementation

25 genFunV "funCode" funN (Lf "v1") (Lf "v2")

26 -- gen consumers

27 callAll outN "genConsumers" nt

28 getCode "init" outN "initStream"

29 getCode "fin" outN "finStream"

30 getCode "consume" outN "consumers"

31 -- add these consumers to producer

32 addCode inN "consumers" $ "<decStmVar ><funCode >\n<consume >"

33 addCode inN "initStream" "<init >"

34 addCode inN "finStream" "<fin >"

35 return ())

36 t23 t n = terr ’ t n

Figure 7.2: mapList template

7.4.6 Code templates

We implemented our code generation templates as functions which create and initialize

objects using monadic side-effects, similar to the way object-orientation is simulated in

JavaScript. The “objects” include private and public variables, which may store types,

functions, C++ variables, expressions, and statements. Some of the key monadic actions

are newVar, runGenV, setVar, getCode and addCode. newVar varName varType creates

a new local C++ variable called varName of type varType,

runGenV ”declareVar” varName argVars binds the result of running the declareVar

expression generator with arguments argVars to the local variable varName, and

setVar node destVarName srcVarName binds the value of srcVarName to the public

member of node called destVarName. getCode destVarName node srcVarName assigns

Chapter 7 Implementation 129

any code bound to the public member of node called srcVarName to the local variable

destVarName, and addCode node destVar template replaces all the meta-variables be-

tween angle brackets in template with the values of any local variables of the same name,

and then appends the resulting code to the public variable destVar of node.

Figure 7.2 shows as an example the mapList template for distributed lists. It generates

code to apply a function of type vt1 -> wt1 to a stream of vt1 values, producing a new

stream of wt1 values. Lines 3 to 8 pattern match on the template instance’s concrete

DDL type, and neighboring nodes, and line 10 and 11 check that the type parameters are

as expected. Line 13 calls getVar which gets the C++ stream variable(s) from the inN

node, and binds it to v1 in the local environment. Lines 15 to 17 then create a new C++

stream variable v2 of type wt1, creates a statement to declare it (bound to decStmVar),

and assigns it to the public variable streamVar in node outN so that all consumer nodes

can access it. Lines 19 to 21 try to get a C++ expression called listCount, which holds

the global size of the distributed list, from inN, and assigns it to outN if it exists. Then

lines 23 to 35 create a Haskell function genConsumers which the input node inN calls

to generate the init, fin, and consume code blocks to splice before, after, and into

its producer’s loop. Line 25 uses getFunV to generate the code for the map function

stored at the funN node, applied to v1 and storing its result in v2. The genConsumers

function then generates these three blocks of C++ code (i.e., init, fin, and consume),

by calling genConsumers on all its output nodes using callAll (lines 27 to 30), and

then prepending the decStmVar and map function’s implementation funCode before its

consumers consume blocks. Finally, line 34 reports an error if the concrete type does

not match the pattern expected.

7.4.7 Example output

Figure 7.3 shows the main code for a distributed implementation of dot product (cf. Fig-

ure 3.10), generated by our implementation. The whole snippet is the implementation

of a readList stream-producing combinator implementation. Lines 4 to 7 initialize the

accumulator (i.e., v17) for locally sum reducing the product pairs, and lines 9 to 12

prepare to read the local partition of the two lists. Lines 14 to 31 read the first list

(i.e. v11) and lines 15 to 30 implement the zip’s consume block which reads an element

of the second list (i.e. v6) for every element of the first. Lines 17 to 26 show the mapList

combinator template’s consume block, which here computes the product of the current

pair of elements (line 19), and adds them to the current accumulator (lines 21 to 24).

The reduceList template’s fin block then aggregates all the local accumulates using

the Allreduce MPI function, returning the resultant dot product in v17.

130 Chapter 7 Implementation

1 // BEGIN readList

2 int v14 = 0;

3
4 // BEGIN reduceList init

5 double v17(v1);

6 double v18;

7 // END reduceList init

8
9 std::vector <double >::iterator v15(v6 ->begin ());

10 v14 ++;

11 std::vector <double >::iterator v12(v11 ->begin ());

12 std::vector <double >::iterator v13(v11 ->end ());

13
14 for (; v12 != v13 && v14 > 0; v12++) {

15 // BEGIN zip consume:

16 if (v15 < v6 ->end ()) {

17 // BEGIN mapList consume:

18 double v16;

19 v16 = (*v12) * (*v15);

20
21 // BEGIN reduceList consume

22 v18 = v17 + v16;

23 v17 = v18;

24 // END reduceList consume

25
26 // END mapList consume

27 }

28 else if (v15 == v6 ->end ()) v14 --;

29 v15 ++;

30 // END zip consume

31 }

32
33 // BEGIN reduceList fin

34 v18 = v17;

35 cartComm.Allreduce (&v18 , &v17 , sizeof(double), MPI_PACKED , v103);

36 if (cartComm != cartComm) {

37 cartComm.Bcast (&v17 , sizeof(double), MPI_PACKED , rootRank);

38 }

39 // END reduceList fin

40 // END readList

Figure 7.3: Dot product generated C++ snippet (tidied)

Chapter 7 Implementation 131

7.5 Feedback-Based Implementation Search

Sections 7.2 to 7.4 describe how to generate one solution for a Flocc program. However,

since each combinator can have different implementations, with different communication

patterns and performance characteristics, we need to explore different combinations to

find good overall solutions.

Typically, each combinator has one or two efficient implementations that use some pre-

ferred data distributions for their arguments (e.g., groupReduce2 and eqJoin1A), and

several others that are less efficient, but that have less stringent constraints on the input

and output distributions (e.g., groupReduce1 and eqJoin2). Re-distribution functions

can be used to resolve incompatible constraints, and allow further implementations, but

with a performance penalty (e.g., groupReduceSMap·readVMap·sortVMap). Good dis-

tributed implementations are therefore often a trade-off between giving some combina-

tor applications their best implementations (and thus their preferred data distributions)

and others worse ones, such that the type constraints are satisfied.

Initially, we ordered the combinator implementations in our replacement rules from

fastest to slowest, and then to sought good DDL plans by starting with the fastest

implementation for each combinator application, and then using progressively slower

implementations until the plan type-checked. The problem with this approach was that

it did not consider plans that involved data redistributions, and scaled exponentially

with the number combinator applications. We therefore developed our automatic re-

distribution insertion technique (cf. Section 5.2) which allows us to make any DDL

plan type-check. This involves using a simple cost metric to estimate the comparative

performance costs of different redistributions. We have considered using this metric to

compare whole plans, but experiments showed (cf. Section 8.3) that although this metric

is sufficient for comparing different chains of redistributions with equivalent types, it is

not a good predictor of an overall plan’s performance. More sophisticated performance

cost estimates would require estimates of the sizes and characteristics of runtime data,

which could be very difficult to infer statically. Therefore, rather than try to develop

more sophisticated cost estimates, we have used performance-feedback-based searches

to find good overall solutions. This approach has the advantage of being very accurate

and portable, since it uses real empirical performance data rather than relying on some

model of a system’s performance characteristics. Furthermore, such searches have been

shown to work very well for other code generation problems [5, 87, 197].

This section describes different performance-feedback-based search algorithms that we

have implemented for this purpose. Our experiments in Section 8.3 investigate the

performance of these different search algorithms, by comparing the performances of the

solutions they return, and how fast they converge to find these solutions.

132 Chapter 7 Implementation

7.5.1 Dimensions of the search heuristics

We have implemented different performance-feedback-based search heuristics, which can

be distinguished along four dimensions. These dimensions are as follows.

Search algorithm The search algorithm controls, amongst other things, the order in

which candidate solutions are visited. We can use simple depth first searches, where the

combinator applications can be considered either from input to output, or vice versa. We

could also use a greedy strategy where combinators like groupReduceMap that are often

computationally intensive are explored first, and “cheaper” combinators like mapMap

later. In addition, we can use random or genetic searches.

Termination The termination condition controls when to stop the search, ideally with

an optimal or a near-optimal solution. The simplest conditions consider all candidates

(i.e., exhaustive search) or terminate when some pre-determined budget has been ex-

hausted, returning the best implementation found so far. We can also terminate when

the current candidate is “substantially better” than the previous solutions (e.g., when

it is twice as fast as the current mean, or faster than the current mean minus twice the

standard deviation), or when the gradient of the search levels off.

Pruning Pruning tries to determine statically whether candidates can be ignored com-

pletely, without executing them. This can be seen as an approximation of static cost

estimates. Our current pruning techniques are based on the data re-distributions that a

solution performs, measured either by simply counting the number of its re-distribution

operations, or, more effectively, by weighting the different operations differently. We

maintain some threshold score from the solutions explored so far (e.g., average) and

prune any solutions whose score exceeds this threshold.

Runtime pruning We can also set a runtime bound that decides how long a candidate

solution is executed before terminating it. This can be seen as a dynamic version of

pruning, and similar approaches as described above can be used.

7.5.2 Implemented search heuristics

For each dimension we have implemented several alternatives. In Chapter 8 we eval-

uate different combinations of these alternatives to find which combination finds the

best overall plans, in the best overall search time. The main differentiating factor is the

overall search algorithm, which we describe in detail here. All search algorithms are com-

bined with different termination conditions, pruning, and runtime pruning techniques

as outlined in Section 7.5.1.

Chapter 7 Implementation 133

Depth first The depth first heuristics exhaustively search all solutions by enumerat-

ing all combinations of combinator implementations for each combinator in the Flocc

program, in the order in which the implementations are given in the rule sets. We use

two variants that explore the combinators in data flow order from input to output, and

vice versa.

Random The random search heuristics maintains a fixed-size population of candidate

solutions, and iteratively chooses the n best to produce a new generation. It creates new

children by applying up to two random mutations to each of the chosen solutions.

Genetic Genetic searches also iteratively improve a fixed-size population of candidate

solutions. They start with some random candidates, evaluate their runtimes, and use

the fastest n% of the population (but at least 2) as parents. The next generation is

then created by nondeterministically choosing two parents, and combining them using

a crossover operation. In the crossover, each combinator’s implementation is randomly

chosen from one of the parents. Finally, each child’s combinator implementations may

be randomly mutated with a given probability. The search algorithm thus has three

parameters, the size of the population, the fraction of candidates used as parents, and

the probability of mutating a given gene.

Genetic (without crossover) A second version of the genetic search only chooses

a single parent to create each child and only performs mutations but no crossovers.

Furthermore, instead of mutating a combinator application by choosing a completely

random implementation, this works by randomly choosing either the previous or the next

implementation. This exploits the fact that the combinator replacements are ordered

from best to worst, and so neighboring combinator implementations are likely to be

better than completely random ones.

7.5.3 Performing the search

During a search, the current search state is regularly serialized and saved to disk so that

searches can be resumed after interruptions or machine failures. This includes the current

search population, and a cache of the runtimes of all currently visited solutions. This

cache speeds up the search by allowing us to avoid repeating performance measurements

of already visited solutions.

As explained in Section 7.3.3 solutions in the search space are represented as lists of

integers. The chosen search algorithm determines the order in which solutions in the

search are visited, however for each visit a number of steps occur. First, if the solution

does not appear in the cache, the plan is obtained by running the redistribution insertion

134 Chapter 7 Implementation

and DDL type inference algorithms. Then C++ code is generated from this plan, and

this code is compiled using the chosen compiler (which is a configurable parameter) and

with the highest optimization level available (i.e., -O3). Our experiments in Chapter

8 use Intel’s icc and GNU’s gcc. At this point the compiled executable is run, and

performance measurements (i.e., total runtime) made. For the experiments in Section 8.3

we use random input data generated using a uniform distribution, although in practice

more realistic test data could be supplied by the programmer. If execution exceeds some

fixed budget (i.e., maximum execution time) the process is terminated. The current

implementation runs executables locally, using as many cores as are available. However,

any production implementation would need to support submitting jobs through SSH

and PBS (or similar), to evaluate performance on a real cluster.

We have used this implementation to generate distributed-memory implementations for

several example programs (cf. Chapter 8). However, finding these example programs

revealed a limitation with the current implementation. That is, that especially when

searching both the space of distributed and local data layouts, different implementa-

tions can have performances that differ by 2 orders of magnitude or more. This means

that either the search becomes very slow, waiting for some very poor implementations

to finish executing, or it must terminate them early, and lose important performance

information. A piece of future work would therefore be to change the implementation

to allow implementations to be generated that run on different sizes (or complexities)

of test data. Searches could then start by evaluating implementations on small (or less

complex) data sets, and then increase the size (or complexity) once very poor imple-

mentations have been discarded. This approach could also be used, to start evaluating

implementations on local cores, and then once the whole population runs well locally,

could be evaluated on a real cluster.

7.6 Concluding remarks

In this chapter we have given an overview of how our prototype Flocc compiler works,

and described some of the practicalities involved in implementing the DDL plan synthesis

technique described in Chapters 4 to 6. We have particularly focused on how our imple-

mentation generates C++ code from Flocc plans, and how our performance-feedback-

based plan search is implemented. The following chapter (cf. Chapter 8) presents some

experimental and conceptual evaluation of our approach that uses our proof of con-

cept compiler to synthesize distributed-memory implementations for several example

programs.

Chapter 8

Evaluation

In Chapters 3 to 7 of this thesis, we have presented a new technique for automati-

cally synthesizing implementations of data-parallel programs that targets clusters, and

explained its implementation. This fulfills our research objectives (i.e., 1 to 6). In ad-

dition to this we have performed some experimental and conceptual evaluation, that we

present in this chapter, which demonstrates that we have fulfilled research objective 6

(i.e., that our implementation works in practice). A complete and comprehensive eval-

uation of our approach is outside the scope of this PhD thesis, but the content of this

chapter demonstrates that our approach works in practice.

Our initial experiments focused on implementing our DDL type inference algorithm, and

inferring DDL types for candidate programs. We then started to implement the back-end

of our compiler, to investigate whether we could generate code from these programs that

would give performance close to classic textbook MPI implementations. This involved

extending our implementation’s DDL types to include local data layout information and

storage mode information. We then used this back-end to generate implementations

from the DDL (and local layout) plans, and compared their performance to textbook

versions, by running them on a Linux cluster. The results of these experiments are

presented in Section 8.2.

After this we continued to investigate how we could find the best DDL plans for input

programs, and generate code from them. This included developing our automatic redis-

tribution insertion technique. After implementing redistribution insertion Algorithm 1

(cf. Figure 5.12) we implemented a performance feedback-based search, and investigated

how long different search heuristics took to find the optimal solutions of four map-based

example programs. The results of these experiments are presented in Section 8.3.

Finally, we have evaluated the conceptual merits of our approach, which we present

in Section 8.4. This includes comparing the expressiveness our input language and

programming model to other data-parallel programming languages, and how the expres-

siveness of our DDL types compare to the data distributions possible in other languages.

135

136 Chapter 8 Evaluation

Problem Flocc Comparison Types

Matrix multiply (cf. Fig 3.7) 5 C/MPI 89 Arr

Floyd’s all pairs shortest path 15 C/MPI 88 Arr

Jacobi 2D (cf. Figure 6.12) 8 C++/MPI 120 Arr

Successive over-relaxation (red/black) 18 C/MPI 289 Arr

N-body (gravitational) 38 C/MPI 153 Arr

K-means clustering (cf. Figure 8.9) 36 C/MPI 114 Map

Triangle enum (cf. Fig 6.7) 12 C++/MR-MPI 263 Map

R-MAT graph generation (cf. Figure 8.10) 35 C++/MR-MPI 148 Map

PageRank 11 Java/Hadoop 157 Map

Histogram (cf. Fig 3.9) 6 C++/MPI 204 Map

Apriori association mining 14 Java/Hadoop 371 Map

Dot product (cf. Fig 3.10) 3 C++/MPI 35 List

Standard deviation 6 C/MPI 38 List

Simple linear regression 10 C++/MPI 47 List

Word count 3 Java/Hadoop 48 List & Map

Grep 2 Java/Hadoop 59 List

Figure 8.1: Comparative code sizes (code lines without comments and IO code)

8.1 Flocc Programs

Figure 8.1 lists some example problems that we have programmed in Flocc, and com-

pares the code sizes of these programs with programs written in other languages.1 These

include numerical/array-based problems usually written in HPF, map-based problems

usually written using MapReduce, and list-based ones usually written in MPI/MapRe-

duce. All these problems were written in Flocc, demonstrating the versatility this high-

level language approach. Furthermore, the Flocc implementations are between 3% (His-

togram) and 32% (K-means) of the size of the comparisons (12% on average). This

illustrates the potential productivity gains of this high-level language approach.

8.2 Automatic code generation

In this section we investigate whether generating cluster implementations from Flocc

programs is viable, and in particular whether the performance of these implementations

is reasonable (i.e., close to hand-coded equivalents). To do this we have used the back-

end of our implementation (cf. Chapter 7) to generate MPI implementations in C++,

for five Flocc programs, and then compared their performances to independently hand-

1See http://www.flocc.net/hlpp14/codesizes.html for details.

http://www.flocc.net/hlpp14/codesizes.html

Chapter 8 Evaluation 137

Program Speedup Compiler Data

Dot product 4.96× gcc -Ofast 2.2GB

Simple linear regression 137× gcc -Ofast 3GB

Standard deviation 98.6× gcc -Ofast 3GB

Histogram 31.5× gcc -Ofast 32MB

Matrix multiply 342× gcc -Ofast 1.4MB

Figure 8.2: Performance comparison of Flocc generated code vs. PLINQ implemen-
tations using 4-cores

coded versions of the same programs. All of the generated implementations compiled and

executed successfully, and returned the correct answers, showing that we can generate

working cluster implementations from Flocc plans/programs. In addition, for Section

8.3 we have used our Flocc compiler to automatically generate 170 different working MPI

implementations from our histogram example program and three other Flocc programs.

So we can clearly generate distributed-memory implementations from Flocc programs.

To evaluate whether generated implementations can give acceptable performance, we

have compared the runtimes of these five programs to that of hand-coded versions. In

Section 8.2.1 we compare the implementations to PLINQ versions, and in Section 8.2.2

we compare them to MPI versions written in C++.

8.2.1 Comparison with PLINQ

We first compare with PLINQ, because it also auto-parallelizes programs written in a

functional language, and so is the most closely related approach. It is also one of the

most modern and accessible of the high-level auto-parallelizing approaches.

We have generated implementations of five example Flocc programs using our prototype

tool and compared them to PLINQ [72] using all cores on a 64-bit quad-core 2.67GHz

workstation with 12GB memory. Figure 8.2 shows the average speedups of the Flocc

versions compared to the PLINQ implementations. All Flocc programs drastically out-

performed the PLINQ implementations. This is most likely because PLINQ is choosing

poor job partitionings. However, it is also limited by the fact that unlike Flocc, it cannot

inline lambda-abstractions, and does not distinguish between, and so cannot optimize

for, arrays, lists, and maps. The Flocc implementation of matrix multiplication outper-

formed PLINQ by over 340×. This is most probably because PLINQ cannot directly

query multidimensional arrays.

138 Chapter 8 Evaluation

8.2.2 Comparison with MPI

Although PLINQ is the most closely related approach in some ways, most HPC appli-

cations are written using MPI, and so it is important that our approach yields similar

performance to MPI implementations. Note that we were unable to compare our ap-

proach against Hadoop or DryadLINQ, since we do not have access to clusters that

support these technologies.

We compare the performance of our five Flocc programs with that of näive hand-coded

MPI implementations solving the same tasks (cf. Figure 8.8). These hand-coded ver-

sions are straightforward textbook implementations of the same tasks, rather than highly

tuned BLAS implementations, since we are not aiming to compete with such implemen-

tations. This is for a number of reasons.

Firstly, we are currently only trying to show the overall viability of our approach. Our

main aim is to develop a fully automated distributed-memory synthesis technique that

works for multiple collection types, i.e., to do automatically what a non-expert user can

do manually. Our major research effort has therefore been focused on automatically syn-

thesizing suitable data distributions in a way that works for multiple collection types.

Since this type-based DDL synthesis technique is our main novelty, we chose to prioritize

developing an end-to-end prototype that shows the efficacy of the whole approach, and

demonstrates all aspects (and especially the most novel ones, i.e., DDL type inference,

redistribution insertion, and plan search), rather than fine-tuning back-end template

implementations. The problem of generating high-performance code from a functional

language (and particularly array-based programs) has already been addressed in lan-

guages like SAC [182] and SISAL [82]. Furthermore, auto-tuners like PHiPAC [20] and

Spiral [166] are already able to generate high-performance code that can rival hand

optimized BLAS implementations. For these reasons, and because writing good back

end templates for array combinators is harder than maps and lists, we have focused on

implementing templates for maps and lists, and mainly restrict our evaluation to map

and list-based programs.

Experimental Set-Up

For each of the Flocc-examples we generated the implementation of the most efficient

DDL plan that the type inference produces (i.e., the first of each of the solutions discussed

in Section 4.5). We then either found näive textbook implementations of the same

problems on the web (the kind a non-expert user could write), and modified them slightly

so that they are comparable with the generated versions, or hand-coded implementations

ourselves; see below for details.

Chapter 8 Evaluation 139

For the evaluation we used a large third-generation cluster2 with approximately 1000

Westmere compute nodes, each with two 6-core 2.67Ghz processors, 4GB of RAM per

node, and an InfiniBand network for interprocess communication. The generated imple-

mentations of the matrix multiplication generate random input data on the root node

and then distribute this using the derived strategy. For the histogram implementations,

the data is generated locally at each node because the runtimes would otherwise be

dominated by the initial data distribution. We use double-precision floating point num-

bers as payload data in all cases, and compile with icc using the -O3 optimization flag.

Note that we also compile using gcc in cases where this gives a performance that is

notably different to icc (e.g., for the matrix multiply). We compare their performances

for varying numbers of nodes; the reported runtimes are the average of at least three

runs.

Matrix multiplication For the comparison, we used three different näive matrix

multiplication implementations.3 4 5 We compiled all four programs with gcc (v4.1.2)

and Intel’s icc (v11.1) to see the effects of different compilers and evaluated them over

the multiplication of two 3000x3000 dense matrices.

Histogram Here, we modified a version6 for comparison, to use doubles rather than

ints, and to generate partitions locally, rather than scattering all the data from the root

node. Both programs were compiled with icc (v11.1) and used to compute 100-bucket

histograms of in total 1.07 billion values (i.e., 8GB of data).

Standard deviation For comparison we wrote a C++ MPI implementation that

computes the standard deviation of an array of arbitrary doubles. Both programs were

compiled with icc (v13.1.2), and the manual version was also compiled with gcc (v4.1.2),

and applied to 400 million (2.98GB of) values.

Simple linear regression We wrote a C++ MPI implementation to perform simple

linear regression on two arrays of doubles. Both programs were compiled with icc

(v13.1.2) and applied to 200 million (1.49GB of) values.

Dot product We implemented a C++ MPI comparison to compute the dot product

of two randomly generated aligned arrays of doubles, such that they did not have to

be repartitioned before the dot product could be computed. The generated version also

2http://cmg.soton.ac.uk/iridis
3www.cs.hofstra.edu/~cscccl/csc145/imul.c
4www.eecg.toronto.edu/~amza/ece1747h/homeworks/examples/ MPI/other-examples/mmult.c
5www.cs.arizona.edu/classes/cs522/fall12/examples/mpi-mm.c
6http://penguin.ewu.edu/~trolfe/CCSC2002/MPI/MPI Hist.C

http://cmg.soton.ac.uk/iridis

140 Chapter 8 Evaluation

Figure 8.3: Performance of matrix multiplications

used an aligned distribution, where the two input arrays are distributed using a cyclic

distribution on the same cluster dimension. The programs were both compiled with icc

(v13.1.2) and applied to a pair of arrays with 200 million (1.49GB of) and 400 million

(2.98GB of) values respectively.

Results

The results of the performance comparisons follow. The graphs here show the relative

speedups of the manual MPI and generated Flocc versions by calculating all the speedups

relative to the fastest single node execution time. In all the examples below this is the

execution time of the manual MPI implementation compiled with icc.

Matrix multiplication For the matrix multiplication the results vary greatly with the

applied compiler. For gcc, the generated code outperforms the manual implementation

by a factor of about six, independent of the number of nodes (see Figure 8.3). For icc,

the situation is reversed, and the manual implementation outperforms the generated

code, albeit only by a factor of about two. The reason the generated version works so

well with gcc is that it uses the local memory layout optimization described in Section 6.1

and so stores the second matrix in transposed form, for which gcc generates optimized

code. The reason the generated icc version performs worse than the manual version, is

that the manual version loops over a global static array, and icc seems to optimize for

this special case.

Histogram Figure 8.4 shows that the generated version is approximately 30-40%

slower than the hand-coded version. This is because our implementation of groupReduce1

uses a hash map, so it can work with any key type, whereas the hand-coded version uses

Chapter 8 Evaluation 141

Figure 8.4: Performance of histogram implementations

an array. This could be addressed by providing a special version of groupReduce that

outputs arrays, by implementing an array local layout mode for maps that can be stored

as arrays, or by using the integer domain analysis mentioned in Section 9.2 to detect

when we can store maps as arrays.

Standard deviation Figure 8.5 shows that the speedup of the Flocc version is a max-

imum of 32% less (on 8 nodes) than the manual version’s, and 15% less on average. This

is a minor difference, and is likely because the generated version uses MPI::Allreduce,

which mirrors its result on all nodes, rather than MPI::Reduce, which stores its result

only on the root node, and as the speedups tail off this extra overhead begins to domi-

nate. This effect only occurs as the speedups tail off, and so in practice would only be

experienced when using too many nodes for the size of dataset.

Simple linear regression Figure 8.6 shows that the generated version’s speedup is

very close to (within 17% of) the manual implementation’s on 1 to 16 nodes, exceeding

the icc manual version by 14% on 9 nodes. As the number of nodes increases, the

performance of the generated version drops off to 61% slower on 32 nodes. This may

partly be because the manual version iterates over a struct of arrays, rather than an

array of structs, and also because the generated version uses MPI::Allreduce, rather

than MPI::Reduce.

Dot product Figure 8.7 shows that the performance of the manual and generated

implementations of dot product are identical for all but the last data point (on 32

nodes).

142 Chapter 8 Evaluation

Figure 8.5: Performance of standard deviation implementations

Figure 8.6: Performance of simple linear regression implementations

Figure 8.7: Performance of dot product implementations

Chapter 8 Evaluation 143

Program Average speedup Compiler Data

Dot product 0.99× icc -O3 4.5GB

Simple linear regression 0.89× icc -O3 3GB

0.61× gcc -O3 3GB

Standard deviation 0.88× icc -O3 3GB

1.00× gcc -O3 3GB

Histogram 0.73× icc -O3 8GB

Matrix multiply 6.14× gcc -O3 140MB

0.49× icc -O3 140MB

Figure 8.8: Average performance of Flocc generated code compared with manual
MPI implementations on 1 to 32 nodes

Discussion

The generated versions compete well with (i.e., came within 51% of the speed of) hand-

coded MPI versions (cf. Figure 8.8), demonstrating the viability of our approach for these

sort of data-parallel programs. The dot product and simple linear regression compiled

with ICC, and the standard deviation, were nearly identical to the hand-coded versions.

The linear regression when compiled with ICC was 39% slower because it used an array

of structs, rather than a struct of arrays. The histogram was 27% slower, because it

used a hash table, and the comparison used an array. The matrix multiply was 6×
faster than the hand written code when compiled with GCC, since our tool optimized

the layout of B to be column-major, but was 51% slower when compiled with ICC. This

is because the manual version iterates over global arrays, and ICC seems to optimize for

this case. An additional Global array storage mode (see Section 6.1) and corresponding

templates, would cater for this situation. Similarly, it may be worthwhile adding DDL

types for scalars that should be stored on a single node, so implementations can use

MPI::Reduce instead of MPI::Allreduce.

These results could be improved further by optimizing the existing, and adding addi-

tional, back-end templates, however, they are sufficient to indicate that the approach is

viable in practice.

8.3 Automatic plan generation

In this section we use our compiler implementation’s performance-feedback-based plan

generation search to find MPI implementations of four example programs, and to com-

pare the average search times of different search heuristics. To do this we have chosen

four map-based Flocc programs, and used our system to search for good distributed-

memory implementations for them. These examples are larger than those used in the

144 Chapter 8 Evaluation

previous section, and exercise all phases of our implementation, including parsing, type

inference, DDL type inference, redistribution insertion, plan search, and code genera-

tion. Our implementation synthesizes 170 viable implementations in total— between 30

and 48 per example.

8.3.1 Experimental setup

We took four Flocc programs (see below) that represent map-based versions of different

algorithms. Two of these programs (i.e., rmat and mandel) take a problem-size as input,

and for the other programs (i.e., kmkernel and hist) we randomly generated a uniformly

distributed appropriate input data set, see Table 8.1 for details. Our current evaluation

only uses a single input data set for each program. Future work, could investigate

to what extent this effects the choice of best solution. We used our code generator

to exhaustively generate all possible variants. This included trying two different ways

of inserting redistribution functions per solution. We then compiled each generated

MPI/C++ implementation using the GCC compiler (v4.6.3) with the -O3 optimization

flag. We finally ran the compiled binaries on the corresponding input data, and measured

and cached their run times, so that we could use them to compare the efficiency of

different search heuristics.

Test programs For the experiments we used the histogram computation shown in

Chapter 3 (cf. Figure 3.9), a k-means clustering kernel (cf. Figure 8.9, kmkernel), a

random matrix generation (cf. Figure 8.10, rmat), and a Mandelbrot set computation

(cf. Figure 8.11, mandel); note that the listings omit all scalar functions for brevity. Most

of these programs are well-known. rmat generates a sparse random adjacency matrix

representing a graph; the choice of its parameters controls the degree distribution of the

resulting graph [38].

These Flocc programs use between four and eight high-level combinators; in total, they

use 12 of the 15 Map combinators. The programs yield between 30 and 96 different

MPI/C++ implementations, with sizes ranging from 700 to 3500 lines of C++ code.

Table 8.1 contains more details; here, |C| and |S| denote the numbers of combinators

in the program and the number of generated solutions. Table 8.1 also shows, for each

Flocc program, the ratio of the best runtime to the worst runtime, as well as the average

runtimes and standard deviation of the runtimes, presented as fractions of the best

runtime for each program.

Experimental environment We have run the generated programs on a standard

quad-core (Intel Xeon W3520/2.67GHz) x64 desktop with 12GB of memory, running

Chapter 8 Evaluation 145

let kmkernel = (\(points , clusters) ->

-- distances between points and clusters &

-- new points with their closest clusters

let points ’ = groupReduceMap (

\((pid ,_),_) -> pid ,

\((pid ,cid),((ncid ,ocid ,ppos ,d),cpos)) ->

(cid , ocid , ppos , distPoints (cpos , ppos)),

\((nc1 ,oc1 ,p1 ,d1),(nc2 ,oc2 ,p2 ,d2)) ->

(if (d1 < d2)

then (nc1 ,oc1 ,p1 ,d1)

else (nc2 ,oc2 ,p2 ,d2)),

(-1 ,-1 ,(-1.0 ,-1.0) ,9000000.0) ,

crossMaps (points , clusters)) in

-- new cluster centres (avg member pos)

let clusters ’ = groupReduceMap (

\(pid ,(ncid ,ocid ,ppos ,d)) -> ncid ,

\(pid ,(ncid ,ocid ,ppos ,d)) -> (ppos , 1),

\((sum1 ,tot1),(sum2 ,tot2)) ->

(addPoints(sum1 ,sum2), (tot1 + tot2)),

((0.0 ,0.0) ,0) , points ’) in

let clusters ’’ = mapMap (

\(cid ,(psum , ptot)) ->

(cid , divPoint (psum , toFloat ptot)),

clusters ’) in

-- count how many memberships changed

let totalChanged = reduceMap (

\(pid ,(ncid ,ocid ,ppos ,d)) ->

(if (ncid == ocid) then 0 else 1),

+, 0, points ’) in

(points ’, clusters ’, totalChanged)) in ...

Figure 8.9: K-means kernel

let rmat = (\N ->

loop (\E-> (

-- calc more egdes

let size = countMap E in

let ints = intRangeMap (1,N-size ,1) in

let E’ = mapMap (\k ->

(k, genE (a0 ,b0,c0,d0,delta0)), ints) in

-- remove duplicates

let E’’ = groupReduceMap

(snd , _->(), fst , (), E’) in

-- combine with existing

union (E’’, E)),

(\E -> (countMap E)<N), emptyMap ())) in ...

Figure 8.10: Random adjacency matrix generation

Ubuntu 12.04 LTS as operating system. We used the OpenMPI 1.6.5 implementation.

1The number of plans was actually higher than this (i.e., 48 for hist and 102 for mandel), but some
of their generated implementations could not be used because interactions between certain combinations
of templates led to errors.

146 Chapter 8 Evaluation

let mandel = (\(xs , ys) ->

let axes = crossMaps (-- make axes

intRangeMap (-2.5*xs ,1*xs ,1),

intRangeMap (-1*ys ,1*ys ,1)) in

-- evaluate at each point

mapMap (\((x,y),_) -> ((x,y), escape_time (

(toFloat x) / (toFloat xs),

(toFloat y) / (toFloat ys))), axes)) in ...

Figure 8.11: Mandelbrot set

Program |C| |S| ∅ size training data tbest : tworst mean variance

hist 4 441 886 8,000,000 entries 1 : 38.5 19.6 11.6

kmkernel 5 30 1235 100 points, 5 clusters 1 : 11.0 2.79 2.05

mandel 4 481 752 140x20 pixel 1 : 2.56 1.67 0.548

rmat 8 96 3482 1000 edges 1 : 57.3 4.90 11.62

Table 8.1: Characteristics of test programs

8.3.2 Results

Solutions The graphs in figures 8.12, 8.13, 8.14 and 8.15 show in blue the speedups

(actually slowdowns), of the different solutions, relative to the fastest solution for each

example program. They also show in red redistribution cost estimates, which were

discussed on page 93. The individual solutions are shown from left to right in order of

a depth first traversal. Here the amount of global computation remains the same; the

difference in performance comes from different data re-distribution times and local access

Figure 8.12: Relative performance of 44 Histogram implementations

Chapter 8 Evaluation 147

Figure 8.13: Relative performance of 30 Kmeans implementations

Figure 8.14: Relative performance of 48 Mandelbrot set implementations

overheads. The difference between the runtimes of the best and worst solutions is more

than an order of magnitude (11×) for kmkernel, and almost two orders of magnitude

for hist (39×) and rmat (57×), which is due to the fact that radically different data

distributions and layouts are being explored. What is surprising is that this difference

is still large (2.6×) for mandel, which only varies the way it distributes the (x, y) plane,

showing that this kind of search can improve solutions even for seemingly straightforward

examples.

For kmkernel and hist, the best solution is closely aligned with the minimum redistribu-

tion cost. Here using sub-optimal combinator implementations which have more general

DDL types gives better performance than inserting redistributions to allow more efficient

combinator implementations to be used. For hist, the best solution does an exaustive

148 Chapter 8 Evaluation

Figure 8.15: Relative performance of 48 R-mat implementations

search (less efficient) to find minV and maxV, and the worst, re-partitions and sorts D by

value to make minV and maxV the first and last elements. The best also group-reduces

D’ using a hash-map and inter-node communication, whilst the worst re-partitions it

by value and then group-reduces in-place. Similarly, the best kmkernel solution parti-

tions points, mirrors clusters, and then performs the group-reduces using hash-maps

and inter-node communication, rather than re-distributing so that this communication

can be avoided. This shows us that the fastest solutions can be those that use less

efficient DDLs and distributed algorithms to avoid expensive redistributions. Therefore

any search heuristic that gives unequal preference to the fastest and most specialized

combinator implementations, may miss optimal solutions, or take a long time to find

them.

For mandel the best solutions (having speedups between 0.9 and 1), all distribute the x-

axis of axes using hash partitioning, rather than range partitioning. Here, the escape -

time algorithm takes much longer for points inside the set than those outside, and

partitioning into contiguous blocks concentrates these more computationally intensive

points in certain partitions. Hash partitioning on the other hand balances the load

better. This is an effect that could not easily be predicted by a static cost-estimate,

making this a good example for the need for using performance-feedback in the search.

rmat also shows the opposite effect to hist and kmkernel. Here, the best solution

repartitions and sorts E’ by its edge value, allowing the group-reduce to proceed in-

place reducing one group at a time, and the union to proceed in-place as well. For

both mandel and rmat the minimum redistribution cost does not correlate with the best

performance, and the maximum cost does not correlate with the worst performance. In

fact, the minimum redistribution cost (tallest red bar) for rmat corresponds to one of

the two worst solutions in practice. This lack of correlation between redistribution cost

Chapter 8 Evaluation 149

Program Average speedups % of solutions that are faster

1st 2nd Increase for 1st 1st 2nd

hist 0.1338 0.1245 6.93% 50% 50%

kmkernel 0.52906 0.3954 25.3% 83.3% 16.6%

mandel 0.6741 0.6673 1.01% 58.8% 41.6 %

rmat 0.4809 0.6689 -28.1% 33.3% 66.6%

Overall - - 1.29% 56.3% 43.7%

Table 8.2: Comparison between different redisribution insertion solutions

and real performance, shows that in some cases the fastest solutions redistribute their

data, and that different distributions that both use redistribution functions can have

drastically different performance characteristics.

Redistribution variants For the four example programs, we used the redistribution

insertion technique described in Section 5.2 to synthesize two plans for every combination

of combinator implementations. For each combination, these two plans were chosen by

prioritizing plans with lower redistribution cost estimates, such that the first plan’s cost

is less than or equal to the second’s. To discover whether or not only using the plan with

the lowest redistribution cost is sufficent, or conversely whether more variants should be

considered, we have calculated the average speedups for the first and second variants,

and how often the first variant’s performance exceeded the second’s. These values are

shown in Table 8.2.

For kmkernel the first variants are considerabley faster than the second, but this is not

true in general. The first variants for hist and mandel only have slightly better speedups

on average, and are better only slightly more often than they are worse. Furthermore,

for rmat the first variants are 28% slower on average, and are slower 66% of the time.

Overall, second variants give better performance nearly half (43.7%) of the time. This

means that we certainly cannot only consider the variant with the lowest redistribution

cost estimate, and suggests that it may be worthwhile considering more than two variants

per combination in future implementations.

8.3.3 Search algorithms

In this section we use the cached runtimes for the implementations of our four example

programs, to compare the efficacy of different search algorithms. We ran the search loop

for different search heuristics, trying different combinations and values of the search

parameters discussed in Section 7.5, giving us 946 different heuristics. We ran the

150 Chapter 8 Evaluation

Table 8.3: Fastest search heuristics to find a good solution, sorted by percentage of
total runtime elapsed before finding the ultimate solution.

Search algorithm To solution

% solutions explored % runtime

randomChanges2(1par,4chi,1mut) 26.2% 17.8%

geneticVisitor1(5) 24.6% 18.5%

randomChanges4(1par,3chi,1mut) 27.8% 19.0%

.

randomChanges2(1par,4chi,1mut) 26.2% 17.8%

geneticVisitor1(5) 24.6% 18.5%

geneticVisitor1(4) 24.6% 18.7%

randomChanges4(1par,3chi,1mut) 27.8% 19.0%

geneticVisitor1(6) 25.2% 19.0%

non-deterministic heuristics 500 times each to produce the results and compared the

effectiveness (e.g., convergence speed) of the different heuristics on these examples.

Convergence speed The first measure we use to compare the different search heuris-

tics is how long it takes for them to find the best solution. We measured this by calculat-

ing the percentage of the total runtime (i.e., the sum of the runtimes for all the candidate

implementations), which we know from the exhaustive search, elapsed before the best

solution was found, and taking the average over all runs of each search heuristic for all

four example programs. The percentages of the total runtimes are listed in the third

column (% runtime) of Table 8.3. The second column (% solutions explored) lists the

percentage of the overall search space explored before finding the search’s final solution.

Table 8.3 lists the fastest algorithms to converge to a solution, i.e., the algorithms with

the lowest percentage runtime elapsed before finding a solution, on average. The table is

sorted by percentage of total runtime expended before finding the best solution, where

the first three lines (before the . . .) show algorithms which found the global optimum at

least 90% of the time, and lines 4–8 show algorithms that found a solution whose perfor-

mance was within 10% of the fastest runtime on average. Here, randomChanges(x par,

y chi, z mut) is an genetic search without crossover that generates y offspring from the

x best parents, by applying z random mutations to each. geneticVisitor(k) is a genetic

search with crossover, that generates a population of k children from randomly chosen

pairs of parents drawn from the best third of the current population, and mutates a

given gene (i.e., combinator choice) with probability of 0.2.

The best algorithms here were genetic searches, with a constant runtime pruning time-

out. The genetic search without crossover with a single parent generating 4 children,

and a single mutation applied to each, was fastest to converge to a good solution, finding

Chapter 8 Evaluation 151

Table 8.4: Fastest search heuristics to terminate after finding a good solution.

Search algorithm Termination condition To termination

% sols % runtime

geneticVisitor1(5) searchTilHalfTried 51.5% 36.7%

randomChanges2(1par,4chi,1mut) tilNoneNew 56.9% 38.6%

randomChanges2(1par,4chi,1mut) searchTilSameCosts(n=4,th=0.2) 56.6% 38.9%

randomChanges2(1par,4chi,1mut) searchTilSameCosts(n=3,th=0.1) 57.4% 39.0%

randomChanges2(1par,4chi,1mut) searchTilSameCosts(n=2,th=0.2) 57.5% 39.1%

randomChanges2(1par,4chi,1mut) searchTilSameCosts(n=4,th=0.1) 57.3% 39.1%

randomChanges2(1par,4chi,1mut) searchTilSameCosts(n=2,th=0.1) 57.4% 39.1%

randomChanges2(1par,4chi,1mut) searchTilSameCosts(n=3,th=0.2) 57.4% 39.3%

geneticVisitor1(7) searchTilSameCosts(n=4,th=0.2) 67.2% 53.0%

.

geneticVisitor1(4) searchTilHalfTried 51.4% 36.7%

geneticVisitor1(5) searchTilHalfTried 51.5% 36.7%

geneticVisitor1(6) searchTilHalfTried 51.5% 37.0%

geneticVisitor1(8) searchTilHalfTried 51.5% 37.7%

geneticVisitor1(7) searchTilHalfTried 51.5% 37.8%

geneticVisitor1(9) searchTilHalfTried 51.5% 37.9%

randomChanges2(1par,4chi,1mut) searchTilSameCosts(n=2,th=0.2) 57.5% 39.1%

reverseDepthFirstBwd searchTilHalfTried 51.5% 48.6%

randomChanges6(1par,3chi,2mut) searchTilSameCosts(n=4,th=0.1) 49.9% 49.2%

its best solution after 17.8% of the total runtime. The second fastest to converge was

the genetic search with crossover and population sizes of 4, 5 or 6, finding their solution

after 18.5% to 19.0% of the total runtime. These differences in convergence speed are

too small to be conclusive, but certainly indicate the genetic searches are good can-

didates for our performance-feedback-based search. Reverse depth first searches also

performed well in our experiments, but this is an anomaly caused by the fact that hist

and kmkernel’s best solutions happened to be within the last two points in the search

space. Such searches are not expected to perform well in general. Note that greedy

searches almost never found the optimum, returning solutions which were on average

three times the cost of the optimum.

Termination Table 8.4 shows the search heuristics that were the fastest to termi-

nate after finding their best solution. As in Table 8.3, the lines 1–9 (before the . . .)

list heuristics that found the global optimum at least 90% of the time, and lines 10–18

list heuristics that found solutions within 10% of the optimal performance on aver-

152 Chapter 8 Evaluation

age. searchTilHalfTried searches half the search space, tilNoneNew searches until the

population stops changing (the same solutions keep being visited, i.e., the number of

visits exceeds 5× the search space size), and searchTilSameCosts(n=n, th=t) terminates

when the last n solutions visited are within ±t of the last solution (i.e., when the search

gradient levels off).

The most successful termination conditions for the good genetic searches either waited

for the search gradient to reduce until the k most recent (k = 2, 3, 4) candidates had

runtimes within 20% of each other (for searches without crossover), or searched half

the state space (for searches with crossover). These successfully detected that they had

found the global optimum over 90% of the time (resp. found solutions within 10% of

the optimum performance) after 36.7-39.3% of the total runtime. This is 2.5× faster

than an exhaustive search, but is still twice the time required for the search algorithm

to actually find the best solution. This illustrates the difficulty in accurately recognizing

when a search has found the global optimum, and suggests that terminating the search

after a fixed budget (e.g., elapsed time) has been expended, may be the best approach.

Pruning Search heuristics that used the re-distribution cost estimates to prune can-

didate solutions performed poorly and failed to find good solutions in general. This

is not surprising as Figure 8.14 and Figure 8.15 show that for mandel and rmat these

costs are poor predictors of true performance, since for some of the implementations of

these programs data redistribution time is amortized by later data access. Furthermore,

the fact that a given set of weights works precisely for some examples (i.e., hist and

kmkernel), and is actually counterproductive for another, means we are unlikely to find

a good general setting.

Runtime pruning Runtime pruning is where we force an executing candidate imple-

mentation to terminate, after some maximum duration, before it has finished running.

We tried different ways of choosing this maximum duration, and varying it during the

search. These were timing out runs after the current best runtime, twice the best current

runtime, or after some fixed maximum runtime.

In general the searches that just used a constant cutoff timeout worked best. The best

of these found the global optimum almost always. Timing out runs after the current, or

twice the current, best runtime, threw away too much information to find good solutions,

finding the global optimum only very rarely.

Summary In this section we have demonstrated that our compiler implementation’s

performance-feedback-based searches can automatically generate DDL plans and cor-

responding implementations for Flocc input programs. We have also seen that such

Chapter 8 Evaluation 153

searches should consider plan variants that use redistributions in different ways, and

that the best search heuristics are genetic searches, with a fixed termination budget,

and constant runtime pruning.

8.4 Capabilities

In this section we evaluate some of the conceptual merits of our approach. In Section

8.4.1 we evaluate the conceptual flexibility of our framework on the language level, by

showing how the data-parallel features of programming languages from three program-

ming models, can all be mapped onto Flocc combinators. In Section 8.4.2 we present

a similar comparison, that shows the flexibility of our framework with regard to the

data distribution it supports. Finally, in Section 8.4.3 we discuss some of the conceptual

benefits and limitations of our approach.

8.4.1 Language comparison

In this section we compare Flocc’s data-parallel features to those of other programming

languages. Details of this comparison are listed in Appendix E, which shows for each

comparison language, how its data-parallel features can be mapped onto Flocc combi-

nators (which are listed in Appendix B) in a straightforward way.

The first languages we compare with are Fortran 90 [3] and HPF [135]. Fortran 90 and

HPF both support array-based data-parallelism. Fortran 90 extends Fortran 77 [32]

with array-sections, reductions, parallel-prefixes, and other array manipulation func-

tions, that can all execute in parallel. HPF extends Fortran 90 with additional array

manipulation functions, including parallel suffix functions, with a data-parallel FORALL

loop construct, and with data distribution directives. We compare HPF’s data distri-

bution directives to our DDL types in the next section. The remaining features can

all be mapped onto Flocc combinators, apart from FORALL loops whose array references

are not all index translations, scalings, or reflections. More combinators would be re-

quired to implement other array index transformations. ZPL [132] is another language

for array-based data-parallelism. Its features closely resemble those of Fortran 90, and

can all be mapped onto Flocc combinators.

Next we compare Flocc to two map-based programming models, MapReduce [66] and

relational algebra [58]. MapReduce jobs consist of two parallel operations, a map which

maps disk-backed input data into key-value pairs, and a reduce which aggregates sorted

lists of these values grouped by key. These operations can be mapped onto map and

groupReduce, where the group’s reduction function uses concatList and sortList.

Relational algebra consists of standard set operations (e.g., union and intersection),

projection (π), selection (σ), column renaming (ρ), and various joins (e.g., natural joins

154 Chapter 8 Evaluation

and equi-joins). These can be supplemented with grouped aggregations and sorting. All

of these operations can be mapped onto Flocc combinators, and since these operations

are the basis of SQL [45], most SQL queries should be expressible in Flocc as well.

Finally, we compare Flocc to two programming languages which support list-based data-

parallelism, Data-Parallel Haskell (DPH) [159] and SISAL [82]. DPH supports parallel

versions of a large number of the standard combinators for lists. SISAL supports 1D

vectors (which can be considered lists or arrays), and various operations on them in-

cluding reductions and concatenations, etc. It also features a data-parallel for loop that

iterates over integer ranges, accessing and aggregating vectors. The features can also all

be mapped onto Flocc’s list combinators.

Flocc’s combinators are therefore as expressive as Fortran 90, MapReduce, relational

algebra, DPH, SISAL, and the majority of HPF. The only limitation is that some of

the arbitrary combinations of integer array references possible in HPF’s FORALL loop

are not currently possible in Flocc. This demonstrates the flexibility of our approach,

in that three usually disjoint data-parallel programming models can all be expressed in

our language, and handled by our approach.

8.4.2 Data distributions supported

In this section we compare the data distributions supported by MySQL 5 [147], HPF

[135], SISAL [82], and DPH [159], to those supported by DDL types in Flocc. The

details of this comparison are listed in Table 8.16.

MySQL 5 features an SQL query planner that supports distributed schemas. Possible

schema distributions include hash, key, range, and list partitioning, replication, and sub-

partitioning. These must be specified manually by the database designer. DDL types

support replication, and hash, key, list, and range partitioning, although the ranges

and values for Flocc’s range and list partitionings are chosen automatically at runtime,

rather than manually. LINEAR HASH partitioning is not currently supported, although

could easily be added as an additional partition mode, and sub-partitioning using a

different scheme is not yet supported, although could be added by changing DMap’s

partition modes, to a tuple of modes.

HPF’s data distribution directives allow array distributions to be specified by the pro-

grammer. The Align directive specifies how array indices should be aligned, and the

Distribute directive specifies how to map array indices onto node topologies (i.e., cyclic,

block, block(n), and *). The DArr types in Chapter 4 are sufficient to implement Align

directives for simple alignment, axis-collapse, axis-transpose, and replication. The ex-

tended DArr DDL type in Chapter 6 also supports Align offsets and axis-reversal, via the

offset and direction DDL type parameters respectively, and in addition support ghosted

fringes, which is not supported explicitly by HPF, though can be implemented internally

Chapter 8 Evaluation 155

by HPF compilers. This extended type also supports all the possible Distribute direc-

tive modes (i.e., cyclic, block, block(n), and *), and redistributions can all be performed

via Flocc redistribution functions. These extended DArr types can therefore express all

of the array distributions possible in HPF.

Finally, SISAL is the only functional language we are aware of with a compiler that

targets distributed memory architectures [178]. This compiler partitions Forall loops

into blocks, and is therefore equivalent to a DArr or DList type with blocked parti-

tioning. DPH only supports multicores but we include it to provide another list-based

comparison. DPH supports blocked list partitioning, which is also supported by our

DList types, however it can also flatten nested lists for auto-vectorization— a feature

we do not currently support. In addition to blocked list distributions, the DList type

also supports cyclic list distributions, which is an efficient distribution mode for zipping

distributed lists etc.

Flocc’s DDL types can therefore express the majority of data distributions possible in

MySQL, HPF, and SISAL, as well as some additional ones. This again illustrates the

flexibility of our approach, since our automatic distributed data layout mechanism is

able to find data layouts for three diverse application domains, in a single framework.

156 Chapter 8 Evaluation

L
a
n

gu
ag

e
C

ol
le

ct
io

n
D

is
tr

ib
u

ti
on

fe
at

u
re

S
u

b
-f

ea
tu

re
S

u
p

p
or

te
d

U
si

n
g

M
y
S

Q
L

M
ap

P
ar

ti
ti

on
in

g
H

A
S

H
Y

es
H

as
h

m
o
d

e

L
IN

E
A

R
H

A
S

H
F

u
tu

re
L

in
ea

rH
as

h
m

o
d

e

K
E

Y
Y

es
H

as
h

m
o
d

e

R
A

N
G

E
Y

es
D

y
n

R
an

ge
m

o
d

e

L
IS

T
Y

es
D

y
n

D
is

cr
et

e

S
u

b
-p

ar
ti

ti
on

in
g

F
u

tu
re

T
u
p

le
s

of
m

o
d

es

R
ep

li
ca

s
Y

es
M

ir
ro

r
d

im
en

si
on

se
t

H
P

F
A

rr
ay

A
li

gn
d

ir
ec

ti
ve

S
im

p
le

Y
es

P
ar

ti
ti

on
fu

n
ct

io
n

O
ff

se
t

Y
es

E
x
te

n
d

ed
:

off
se

t
p

ar
am

A
x
is

-c
ol

la
p

se
Y

es
P

ar
ti

ti
on

fu
n

ct
io

n
(s

u
b

se
t)

A
x
is

-t
ra

n
sp

os
e

Y
es

P
ar

ti
ti

on
fu

n
ct

io
n

(p
er

m
u

te
)

A
x
is

-r
ev

er
sa

l
Y

es
E

x
te

n
d

ed
:

d
ir

ec
ti

on
p

ar
am

R
ep

li
ca

ti
on

Y
es

M
ir

ro
r

d
im

en
si

on
se

t

D
is

tr
ib

u
te

d
ir

ec
ti

ve
C

y
cl

ic
Y

es
E

x
te

n
d

ed
:

b
lo

ck
si

ze
=

1

B
lo

ck
Y

es
E

x
te

n
d

ed
:

b
lo

ck
si

ze
=

0

B
lo

ck
(n

)
Y

es
E

x
te

n
d

ed
:

b
lo

ck
si

ze
=

n

*
Y

es
E

x
te

n
d

ed
:

b
lo

ck
si

ze
=

M
A

X
IN

T

R
e-

al
ig

n
Y

es
R

ed
is

tr
ib

u
ti

on
fu

n
ct

io
n

s

R
e-

d
is

tr
ib

u
te

Y
es

R
ed

is
tr

ib
u

ti
on

fu
n

ct
io

n
s

S
IS

A
L

L
is

t
F

or
al

l
p

ar
ti

ti
on

in
g

Y
es

P
ar

ti
to

n
ed

cr
os

sL
is

t
m

ap
L

is
t

in
tR

a
n

g
eL

is
t

eq
J
o
in

L
is

t

D
P

H
L

is
t

S
h

ar
ed

m
em

p
ar

ti
ti

on
s

sp
li

tD
Y

es
B

lk
m

o
d

e

jo
in

D
Y

es
B

lk
m

o
d
e

m
ap

D
Y

es
B

lk
m

o
d

e

V
ec

to
ri

za
ti

on
N

o
D

o
es

n
’t

fl
at

te
n

n
es

te
d

li
st

s

F
ig
u
r
e
8
.1
6
:

C
om

p
ar

is
on

o
f

D
D

L
ty

p
es

to
th

e
d

a
ta

d
is

tr
ib

u
ti

o
n

fe
a
tu

re
s

o
f

o
th

er
la

n
g
u

a
g
es

.

Chapter 8 Evaluation 157

8.4.3 Conceptual benefits of approach

In this section we discuss the key conceptual benefits and limitations of our approach.

Table 8.17 supplements this discussion, by showing how the main data-parallel program-

ming paradigms mentioned in Chapter 2, compare to Flocc along several key criteria.

These criteria are, whether distributed-memory architectures are supported, whether

the model allows data distributions to be customized, whether this customization can

be automated, what collections and application areas are supported, and whether the

language can be extended with more data-parallel operations, data layouts, and collec-

tions. These criteria correspond to the key benefits of our approach. In the rest of this

section we elaborate on these benefits, and on the primary limitations.

Distributed-memory support Not all of the languages in Table 8.17 target distributed-

memory architectures, and such support is particularly lacking for some of the most

high-level and functional programming languages (e.g., SAC, NESL, DPH). Flocc does

target such architectures due to its DDL type-inference technique and corresponding

back-end.

Customizable data distributions Of those programming languages that do target

distributed-memory architectures, two, ZPL and MapReduce, only support a fixed data

distribution. In contrast, high-level Flocc programs can be implemented using many

different data distributions and communication patterns.

Automatic data distribution optimization Half (i.e., six) of those frameworks

that support customizable distributed data layouts for distributed-memory architec-

tures, only support this customization manually. The other six (excluding Flocc) sup-

port some sort of automatic distributed data layout optimization, although this varies

in quality. The combination of DDL type inference, automatic redistribution insertion,

and performance-feedback-based search, used in this thesis can automatically synthesize

and optimize DDLs for data-parallel programs without intervention. Furthermore, the

use of a performance-feedback-based search gives our approach the potential to find fast

DDL solutions, that may seem obscure and unexpected, since it is guided by a true em-

pirical reflection of the system’s performance and the program’s behavior, rather than

simplified models of these.

Collections and application areas supported Apart from the technical and the-

oretic novelty of our DDL-type-based code synthesis technique, the main criteria that

distinguishes it from other similar approaches, is the range of collections and application

areas it supports. The majority of data-parallel programming languages only support

a single collection type and related operations. The only exceptions are LINQ-based

158 Chapter 8 Evaluation

languages (i.e., PLINQ and DryadLINQ), SISAL, and Chapel, and LINQ only supports

inefficient map-based operations on lists, and SISAL only supports vectors, which could

be viewed as arrays or lists. Chapel is therefore the only other language that really sup-

ports multiple collections, and these do not include lists or disk-backed collections. Fur-

thermore, Chapel requires manual data distribution selection and optimization. Flocc

and the distributed-memory implementation synthesis technique described in this the-

sis, is therefore unique in its support for maps, lists, and arrays. This support is both

conceptually interesting, and practically beneficial.

Extensibility The final key conceptual benefit of our framework, is its extensibil-

ity. None of the languages in Table 8.17 can be extended with additional data-parallel

constructs or combinators apart from DPH. In contrast, Flocc can be extended with

additional combinators by just adding code-generation templates. Furthermore, unlike

any of the other approaches, we can add additional collection types and DDL types to

our framework, without modifying the underlying implementation. Finally, by using a

performance-feedback-based optimization strategy, we free ourselves from the need to

implement or extend internal cost-models to reflect new architectures or collection types

(apart from the simple redistribution cost estimates). Overall, our approach therefore

shows much greater potential for extensibility than existing languages.

Synthesis speed Although using a performance-feedback-based search aids porta-

bility and allows unusual global optimums to be found, it is significantly slower than

traditional compilers. This is unavoidable, since by definition a performance-feedback-

based search must invoke a traditional compiler multiple times, to compile candidate

implementations. However, we do not see this as a serious flaw, since similar approaches

have experienced success in other areas, and since though slower than simple compila-

tion, search times will still be significantly less than the time required to implement even

one solution manually, let-alone find the fastest. Furthermore, unlike traditional compil-

ers, the performance-feedback-based search requires that the programmer provides some

suitable input data, so that the search can be performed.

Simplicity of back-end Another difficulty with our approach is the need to generate

imperative C++ code from a functional programming language. This problem is not

critical, since we have managed to generate code that rivals the performance of manually

coded C++ equivalents, and since other functional languages like SISAL and SAC have

shown very impressive performances. However, it is less straightforward than a sim-

ple syntactic translation, and issues like copy-avoidance, collection-preallocation, and

memory de-allocation, must all be addressed.

Chapter 8 Evaluation 159

In this section we have briefly outlined the key conceptual benefits and limitations of

our distributed-memory implementation synthesis technique. Overall, our approach is

one of very few systems that target distributed-memory architectures and synthesizes

appropriate DDLs automatically, and is unique in its flexibility and unified support for

three different distributed collection types and associated operators.

160 Chapter 8 Evaluation

A
p

p
ro

ac
h

D
is

t
m

em
D

is
ts

D
is

t
se

le
ct

io
n

M
ap

s
L

is
ts

A
rr

ay
s

M
em

D
is

k
E

x
te

n
si

b
le

F
lo

cc
X

M
an

y
A

u
to

m
at

ic
(c

om
p

il
e

ti
m

e)
X

X
X

X
F

u
tu

re
X

L
o
op

-p
ar

X
M

an
y

A
u

to
m

at
ic

X
X

D
ry

ad
L

IN
Q

X
M

an
y

A
u

to
m

at
ic

In
effi

ci
en

t
X

X
X

A
rr

ay
-s

ec
ti

on
s

X
M

an
y

A
u

to
m

at
ic

X
X

P
ig

L
at

in
X

M
an

y
A

u
to

m
at

ic
X

X

S
Q

L
X

M
an

y
A

u
to

m
at

ic
(s

ch
em

a
m

an
u

al
)
X

X
X

S
IS

A
L

X
D

y
n

am
ic

A
u

to
m

at
ic

X
1D

X

Z
P

L
X

F
ix

ed
F

ix
ed

X
X

M
ap

R
ed

u
ce

X
F

ix
ed

F
ix

ed
X

*
X

C
h

ap
el

X
M

an
y

M
an

u
al

X
X

X

X
1
0

X
M

an
y

M
an

u
al

X
X

U
P

C
X

S
om

e
M

an
u

al
X

X

H
P

F
X

M
an

y
M

an
u

al
(a

u
to

m
at

ic
to

ol
)

X
X

C
o
-A

rr
ay

F
or

tr
an

X
M

an
u

al
M

an
u

al
(h

ar
d

co
d

ed
)

X
X

T
it

an
iu

m
X

M
an

u
al

M
an

u
al

(h
ar

d
co

d
ed

)
M

an
u

al
M

an
u

al
M

an
u

al
X

?

S
A

C
N

/A
N

/A
X

X

P
L

IN
Q

N
/A

N
/A

In
effi

ci
en

t
X

X

P
Q

L
N

/A
N

/A
X

?
?

X

N
E

S
L

N
/A

N
/A

X
1D

X

D
P

H
N

/A
N

/A
X

1D
X

X

F
ig
u
r
e
8
.1
7
:

C
o
m

p
a
ri

so
n

b
et

w
ee

n
F

lo
cc

a
n

d
re

la
te

d
a
p

p
ro

a
ch

es
.

Chapter 8 Evaluation 161

8.5 Concluding remarks

In this chapter we have presented some experimental and conceptual evaluation of our

new approach to automatically synthesize distributed-memory (cluster) implementations

of data-parallel programs. We have used our Flocc compiler proof-of-concept to gen-

erate MPI implementations of several example programs in C++, and seen that they

perform better than PLINQ equivalents, and close to (i.e., within a factor of two of) the

performance of hand-coded MPI versions. We have also successfully used our compiler

to search for and generate, implementations of four larger map-based programs, out

of 170 automatically generated candidate programs. This has demonstrated that our

performance-feedback-based search works in practice for some useful example programs.

It has also shown that genetic search heuristics are very promising at reducing the overall

duration of the performance-feedback-based searches, reducing the total runtime spent

to just below 18% of the total runtime required to search the whole state-space, on aver-

age. The main limitations of this experimental evaluation are that these larger examples

are all map-based, and we do not investigate how the specific input data used effects

which solution is returned.

In Section 8.4, we have evaluated the capabilities of our approach. This includes showing

that almost all the data-parallel features of six programming languages, from three

traditionally disjoint programming models, can be mapped straightforwardly onto Flocc

combinators, and that almost all their respective data-distributions can be mapped

onto Flocc DDL types. Finally, in Section 8.4.3 we have analyzed the key conceptual

benefits, which are most notably the automation of DDL choices and code generation,

and doing this for a programming model that spans three usually disjoint data-parallel

programming models, and shows significant potential for extensibility.

In the next chapter (cf. Chapter 9) we conclude this thesis, and suggest some directions

for future work.

Chapter 9

Conclusion and Future work

In this thesis we have presented a new technique to automatically synthesize distributed-

memory implementations of data-parallel programs. This technique takes a data-parallel

program, automatically generates possible distribution plans for it, and generates im-

plementations from these plans to run on a cluster. This technique works on programs

written in a core functional language called Flocc that supports multiple collection types,

in particular maps, arrays, and lists. It encodes information about the data distribu-

tions of various data-parallel combinators in dependent types, and uses type inference

to automatically infer data distribution information for different concrete plans of these

programs from these types. It then uses a performance-feedback-based search, to search

for optimal plans, and generates code in C++ using MPI to implement them on the

cluster. This chapter summaries our achievements and directions for further work.

9.1 Main contributions

Our main contribution is a technique for automatic synthesis of distributed memory

implementations of high-level data-parallel programs that uses dependent types and

supports multiple collection types, arrays, maps, and lists. Our key insight is that dis-

tributed data layout information can be embedded in types, and recovered using a type

inference algorithm, in a way that works for multiple collection types, and is thus much

more general than existing approaches. This overall contribution involves several sub-

sidiary contributions, which collectively fulfill the research objectives in Section 1.2.

Data distributions and layout inference, as types and type inference We be-

lieve that our work is the first to formalize distributed-memory data layouts as types.

In Chapter 4 and Chapter 6 we have demonstrated that both local and distributed data

layouts of maps, arrays, and lists can be encoded as dependent types. We have also

163

164 Chapter 9 Conclusion and Future work

demonstrated in Chapter 4 and Chapter 6 that these types, which use embedded func-

tions and parametric polymorphism, can capture quite nuanced relationships between

data layouts, that are sufficient to express the data distribution behaviors of many

distributed-memory combinator implementations. In fact, in Section 8.4.2 we show that

our extended DDL types express all of the data distributions that are possible in HPF,

and most of those possible in MySQL. Chapter 6 and our implementation also demon-

strate that this approach works for concrete data structure selection and local data

layouts as well. This work fulfills research objective 2.

Then in Chapter 5 we present a novel type inference algorithm (extending standard

Damas-Milner) that uses these types to automatically infer data layout information

about candidate programs. We believe that we are the first to show that distributed-

memory data layouts can be inferred for functional programs using such an algorithm.

Chapter 6 also shows how our type inference algorithm can be extended to support more

complex constraints between functions, by leveraging a theorem prover and using it to

embed various equational theories within our unification algorithm. This fulfills research

objective 3.

Improved expressiveness and collection support To our knowledge, ours is cur-

rently the only high-level approach to program clusters that supports multiple collection

types, specifically maps, arrays, and lists. We have demonstrated this via the types and

example derivations in Chapter 4 and Chapter 6, and using our implementation. We sup-

port these collections by encoding the data layout information about them using types,

and then automatically inferring layout information for programs using these types. We

have also found in Section 8.4.1 that Flocc is as expressive as ZPL, relational algebra

(and therefore SQL queries), MapReduce, and DPH. Furthermore, it can express all the

data-parallel features of Fortran 90 and HPF, apart from Forall loops with array ref-

erences other than translations, reflections, and scalings. This fulfills research objective

1. The approach is also extensible, and we have shown in Chapter 6 that extra type

parameters can be added to encode more distribution and layout information, in various

useful ways.

Automatic redistribution insertion In addition to finding combinations of com-

binator implementations that yield valid DDL types (and therefore data layouts), we

have devised an algorithm to automatically insert redistribution functions at suitable

points in candidate programs. The algorithm is presented in Section 5.2 and used in

the experiments discussed in Section 8.3. This allows our approach to synthesize imple-

mentations that transform the data distributions, data structures, and local layouts of

collections during execution, such that more efficient algorithms can be used, without

having to consider all possible redistribution insertions. This works by augmenting our

type inference algorithm to identify locations in programs that break the types, and

Chapter 9 Conclusion and Future work 165

then synthesizing appropriate chains of re-distribution and re-layout functions to fix

these types. This means that we only consider data redistributions when they could be

beneficial by allowing us to use faster combinator implementations with more restrictive

types. This fulfills research objective 4.

Implementation The final contribution is the implementation and evaluation of our

proof-of-concept compiler. This corresponds to research objective 6.

Firstly, to generate MPI implementations from Flocc plans, we have developed a code

generation mechanism which we describe in Chapter 7. We have implemented this tech-

nique in the back-end of our compiler, and use it in the experiments listed in Chapter 8.

To our knowledge this is the first code generation technique to use meta-data inferred by

type inference (other than basic data types) to parameterize code generation templates

(cf. Section 7.4.6). This fulfills research objective 5, and contributes to objective 6.

Secondly, although we do not consider Flocc to be a contribution per se, it is novel,

and we believe that the combination of features that allow us to generate efficient stan-

dalone imperative code from a (semi-)functional language is unique (cf. Chapter 3 and

Section 7.4). For example, Flocc supports the definition of higher-order functions with

polymorphic types, but requires that function parameters to such functions are stati-

cally resolvable. This constraint allows function parameters to be lifted into the types

during type inference, and allows much faster implementations to be generated, since it

means that implementations can use basic data types and inlined operations rather than

pointers and reduction engines. The definition of Flocc (cf Chapter 3) and its combi-

nators for maps, arrays, and lists (cf Appendix B), fulfills research objective 1, and the

implementation of the corresponding compiler front-end, contributes to objective 6.

Thirdly we have implemented a performance-feedback search within the compiler, which

generates, compiles, and executes multiple candidate solutions, to find the one with the

best performance. It includes implementations of our DDL type inference algorithm,

redistribution insertion algorithm, and various search algorithms. This implementa-

tion uses a performance-feedback-based code synthesis search in a new context (cf. Sec-

tion 7.5). Although the benefits of performance-feedback-based auto-tuning for certain

classes of algorithms are well known [20, 87, 166, 209], we are the first to apply such

techniques to the data distributions and layouts of programs designed for clusters. Fur-

thermore, we apply it to a much more expressive input language than most current work.

The implementation of this search-based compiler, fulfills the implementation part of re-

search objective 6. This shows that it is possible to build a tool that uses the techniques

described in this thesis to automatically generate distributed-memory implementations

of data-parallel programs written in a functional language.

Finally, in Chapter 8 we present some experimental and conceptual evaluation which

shows that we have fulfilled research objective 6 (i.e., that our prototype compiler works

166 Chapter 9 Conclusion and Future work

in practice). In Section 8.2 we show that it is possible to generate code that gives simi-

lar performance to straightforward MPI equivalents, of several example programs. Then

in Section 8.3 we use the full implementation to synthesize cluster implementations of

four map-based example programs. This demonstrates that our performance-feedback-

based search technique works for some useful example programs. The mandel program in

particular yielded an implementation with better load balancing than a näıve implemen-

tation, that would not have been found using static cost estimates. We also evaluated

different search heuristics using these four example programs, and found that genetic

searches worked well, converging to the optimal (or near-optimal) solutions in just under

18% of the total runtime, on average. Additional experimental evaluation could be per-

formed to synthesize implementations for non map-based programs, and investigate how

the specific input data effects the solution chosen, but these experiments are sufficient

to show that our overall code synthesis approach works in practice. In Section 8.4 we

evaluate the conceptual capabilities of our approach, by comparing the input language

and DDL types to other data-parallel languages and their data distributions, and list

the key benefits and limitations of our approach.

These contributions achieve all of the research objectives listed in Section 1.2. Fur-

thermore, we have done this in a way that successfully fulfills the criteria listed in our

problem statement (cf. Section 1.1). That is, our approach abstracts away from manual

communication, targets distributed-memory architectures (i.e., clusters), automatically

selects data layouts, supports multiple collections, and shows potential for extensibility,

whilst maintaining reasonable runtime performance. The main caveat is that although

our overall approach works for multiple collection types (objective 1), our current proto-

type back-end’s has limited support for array-based combinator implementations. This

still fulfills objective 6, but slightly reduces its scope. The future work directions in

the next section show how we could improve our implementation, and strengthen these

claims.

9.2 Future work directions

There are several interesting directions for further work. This section describes some of

these, and their possible outcomes.

Full implementation of array support In order to get an full end-to-end compiler

prototype working, we have restricted our back-end to only implement map and list

combinator templates, apart from the array-based ones needed for our dense matrix

multiply. Implementing more array templates would allow us to extend our evaluation

to include array-based input programs as well as those based on maps and lists.

Chapter 9 Conclusion and Future work 167

Faster redistribution insertion One limitation of our current implementation is

the time complexity of its redistribution insertion algorithm. Our prototype currently

uses Algorithm 1 in Figure 5.12, with time complexity exponential in the number of

combinator applications. We have presented an improved redistribution insertion algo-

rithm, Algorithm 2 in Figure 5.13, and future work would implement this algorithm in

our compiler. This should allow our technique to scale to handle programs with more

combinator applications.

Further implementation improvements After improving our prototype’s redistri-

bution insertion algorithm and array support, there are a number of other extensions

that would improve its search speed, and the quality of the implementations it syn-

thesizes. Firstly, the implementations synthesized for our experiments in Section 8.3

differed in performance by up to 56× so that in order to get 1 second of performance

data for the best solution, we need to run the worst solutions for almost 1 minute each.

One way to accelerate the search and improve accuracy would therefore be to start the

search using a small test data set (or problem size), until the candidates reach a certain

mean performance, at which point a larger data set (or problem size) could be used.

Then, to improve the quality of synthesized implementations, and especially array-based

ones, we could extend our prototype to support the extended DDL types in Chapter 6.

The compiler already supports local data layouts, but does not yet support extended

array distributions (cf. Section 6.3) or more flexible DDL types (cf. Section 6.2). To

support these we would also have to change our type inference algorithm to use the

equational theories in Section 6.4 by calling the E-theorem prover to unify equations

involving functions.

To improve the compilers flexibility and extensibility, we could change how our back-end

templates are declared, to use a scripting language rather than native Haskell, so that

adding templates does not require a fresh build of the compiler. This should be relatively

straightforward since the current templates just call monadic actions which could still

be called by the interpreter of such a scripting language. Furthermore, we could extend

Flocc’s syntax, so that new DDL types, combinators, and replacement rules could all be

defined in Flocc programs, rather than separate configuration files.

A final way to improve the quality of the generated implementations, would be to im-

plement various back-end optimizations. This would include using a better data deallo-

cation technique instead of our current reference counting policy, and performing copy-

avoidance (like SISAL uses [82]) to remove unnecessary allocations and ideally make

some changes in-place rather than by duplication.

Other architectures Our work so far has focused on supporting clusters, but we

believe that the technique presented in this thesis could be extended to work with

168 Chapter 9 Conclusion and Future work

other parallel architectures. In particular, it would be interesting to see whether we

could implement support for multi-cores and GPUs, and especially whether we could

implement them together (like our local layouts and distribution layouts) so that clusters

with GPU equipped multi-core nodes could be supported. This would involve extending

our DDL types and back-end templates to support these architectures, but should not

require any change to our DDL type inference algorithm or search algorithm.

Static cost estimates Our current prototype relies on performance-feedback to search

for good (i.e., fast) distributed-memory implementations of Flocc programs. Another

possible approach would be to use static cost estimates to evaluate possible solutions

without generating, compiling, and running them. This would be likely to yield poorer

solutions, because the performance characteristics of modern architectures are very dif-

ficult to predict [87, 5] (e.g., the mandel example in Section 8.3), but could make the

search much faster, and therefore be useful for fast prototyping of data-parallel programs.

Language extensions and optimizations There are many language extensions that

could be implemented to improve usability and expressiveness. Firstly, in addition to

tuples we could support records and even classes to make Flocc more accessible to

object oriented programmers. Support for records could be implemented as a syntactic

sugar, which translates records to tuples without changing the core synthesis technique.

Otherwise, we would have to investigate extending our front-end and DDL type systems

to support records, perhaps via sub-typing.

An alternative research direction would be to see whether we can implement our tech-

nique within an existing language and compiler, like Haskell and GHC [196], or C#

and Mono [73] (since these already support some kind of type inference). This would

make our technique much more accessible and enable it to leverage the features of such

existing languages.

Finally, there are various high-level optimizations that could be implemented within

Flocc’s pre-processor. For example, logical SQL optimizations like pushing down selec-

tions (i.e., filter applications) could be implemented for array and map combinators.

Furthermore, we have considered the possibility of using another type inference phase

to perform a data-flow analysis of map combinators, to identify maps with dense integer

domains, that could be transformed to use array combinators. This would let program-

mers program map and array-based programs using a single set of operators, by enabling

the compiler to spot where these can be optimized by storing them as arrays.

Chapter 9 Conclusion and Future work 169

9.3 Concluding remarks

Distributed memory architectures seem set to become more and more common, and yet

the current techniques to programming them often leave many complex decisions to the

programmer, that many will be ill-equipped to make. Considerations include how to

partition and distribute programs and their data structures to scale efficiently, what

concrete communication mechanisms to use, and how to avoid problems like distributed

deadlock.

Existing languages for data-parallel programming rarely target distributed-memory ar-

chitectures, and those that do are restricted to a fixed distribution model (MapRe-

duce), and only support a limited set of operators (SQL/LINQ/HPF). In this thesis we

have presented a more general approach, where distributed-memory implementations

are automatically synthesized from data-parallel programs written in Flocc, a high-level

functional core language. To our knowledge this is the first approach that captures

distributed-memory data layout as a typing problem. In particular, we formalized dis-

tributed data layouts by polymorphic dependent type schemes and used a type inference

algorithm and performance-feedback-based search to search for optimal DDL plans and

implementations.

Unlike similar work, our approach supports multiple collection types (i.e., arrays, maps,

and lists) and thus works for a wide variety of programs (cf. Section 8.4), and can be

extended with more data types, data distributions, and data-parallel operators. Our

approach can boost programmer productivity and program reliability through the con-

ciseness of input programs (cf. Figure 8.1), fully automatic generation of distribution

plans and code, and the reduced number of possible bugs compared to low level lan-

guages (i.e., no pointers/explicit message passing). Finally, initial performance results

(cf. Chapter 8) are substantially better than PLINQ, a similar tool for multi-cores, and

are close to manual MPI implementations, indicating that the approach is viable in

practice.

Appendix A

Matrix multiply implementations

This appendix compares different implementations of a simple dense matrix multiplica-

tion. The conventional algebraic form is:

C = AB (A.1)

C(r,c) =
i=1∑
i=n

A(r,i)B(i,c) (A.2)

SELECT A.i as i, B.j as j,

sum (A.v * B.v) as v

FROM A JOIN B ON A.j = B.i

GROUP BY A.i, B.j;

(a) SQL

R1 = A ./A.j=B.i B

R2 = ρA.v∗B.v/v(R1)

C = G〈A.i,B.j〉,sum(v)(R2)

(b) Relational algebra

Figure A.1: Applicative matrix multiply implementations

1 // A row -major , B col -major

2 double A[M][N], B[P][N], C[M][P];

3 for (int i = 0; i < M; i++) {

4 for (int j = 0; j < P; j++) {

5 C[i][j] = 0.0;

6 for (int k = 0; k < N; k++) {

7 C[i][j] += A[i][k] * B[j][k];

8 }}}

Listing A.1: Dense matrix-matrix multiply in C

171

172 Appendix A Matrix multiply implementations

1
#
i
n
c
l
u
d
e

<
s
t
d
l
i
b
.
h
>

2
#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

3
#
i
n
c
l
u
d
e

<
m
p
i
.
h
>

4
#
i
n
c
l
u
d
e

<
m
a
t
h
.
h
>

5 6
/
/

g
l
o
b
a
l

s
i
z
e
s

(
A
:

N
x
M
,

B
:

M
x
P
,

C
:

N
x
P
)

7
c
o
n
s
t

i
n
t

N
=

5
0
0
0
,

M
=

5
0
0
0
,

P
=

5
0
0
0
;

8 9
i
n
t

m
a
i
n
(
i
n
t

a
r
g
c
,

c
h
a
r

*
*
a
r
g
v
)

1
0

{

1
1

/
/

v
a
r
s

1
2

i
n
t

r
a
n
k
,

s
i
z
e
;

1
3

f
l
o
a
t

*
A
,

*
B
,

*
C
;

1
4

i
n
t

r
,

c
,

k
,

r
p
,

c
p
;

1
5

d
o
u
b
l
e

p
t
,

j
t
;

1
6

1
7

/
/

i
n
i
t

m
p
i

1
8

M
P
I
_
I
n
i
t
(
&
a
r
g
c
,
&
a
r
g
v
)
;

1
9

M
P
I
_
C
o
m
m
_
r
a
n
k
(
M
P
I
_
C
O
M
M
_
W
O
R
L
D
,
&
r
a
n
k
)
;

2
0

M
P
I
_
C
o
m
m
_
s
i
z
e
(
M
P
I
_
C
O
M
M
_
W
O
R
L
D
,
&
s
i
z
e
)
;

2
1

2
2

/
/

w
o
r
k

o
u
t

w
h
i
c
h

p
a
r
t
i
t
i
o
n

w
e
’
r
e

i
n

2
3

i
n
t

n
p
a
r
t
s

=
s
q
r
t
(
s
i
z
e
)
;

2
4

i
f

(
n
p
a
r
t
s
*
n
p
a
r
t
s

<
s
i
z
e
)

{

2
5

/
/

o
n
l
y

u
s
e
s

a
s
q
u
a
r
e

n
u
m
b
e
r

o
f

n
o
d
e
s
.

o
t
h
e
r
s

u
n
u
s
e
d
.

2
6

s
i
z
e

=
n
p
a
r
t
s
*
n
p
a
r
t
s
;

2
7

i
f

(
r
a
n
k

>
=

n
p
a
r
t
s
*
n
p
a
r
t
s
)

{

2
8

M
P
I
_
F
i
n
a
l
i
z
e
(
)
;

2
9

e
x
i
t
(
0
)
;

3
0

}

3
1

}

3
2

3
3

/
/

a
p

c
o
r
r
e
s
p
o
n
d
s

t
o

t
h
e

r
o
w
,

b
p

t
o

t
h
e

c
o
l
,

i
n

r
e
s
u
l
t

C

3
4

i
n
t

a
n
p

=
n
p
a
r
t
s
,

b
n
p

=
n
p
a
r
t
s
;

3
5

i
n
t

a
p

=
r
a
n
k

/
a
n
p
,

b
p

=
r
a
n
k

%
b
n
p
;

3
6

3
7

/
/

s
i
z
e
s

&
o
f
f
s
e
t
s

o
f

l
o
c
a
l

p
a
r
t
i
t
i
o
n
s

3
8

i
n
t

a
h
,

a
w
,

b
h
,

b
w
,

c
h
,

c
w
;

3
9

i
n
t

a
r
,

a
c
,

b
r
,

b
c
,

c
r
,

c
c
;

4
0

a
h

=
N
/
a
n
p
;

a
w

=
M
;

4
1

b
h

=
M
;

b
w

=
P
/
b
n
p
;

4
2

c
h

=
a
h
;

c
w

=
b
w
;

4
3

a
r

=
a
p
*
a
h
;

a
c

=
0
;

4
4

b
r

=
0
;

b
c

=
b
p
*
b
w
;

4
5

c
r

=
a
r
;

c
c

=
b
c
;

4
6

4
7

/
/

i
n
i
t

m
a
t
r
i
c
e
s

4
8

i
f

(
r
a
n
k

=
=

0
)

{

4
9

i
n
i
t
M
a
t
r
i
c
e
s
(
&
A
,

&
B
,

&
C
)
;

5
0

}
e
l
s
e

{

5
1

i
n
i
t
M
a
t
r
i
x
P
a
r
t
i
t
i
o
n
s
(
&
A
,

a
h
,

a
w
,

&
B
,

b
h
,

b
w
,

&
C
,

c
h
,

c
w
)
;

5
2

}

5
3

5
4

/
/

c
r
e
a
t
e

c
o
m
m
u
n
i
c
a
t
o
r
s

f
o
r

p
a
r
t
i
t
i
o
n
s

5
5

M
P
I
_
C
o
m
m

n
u
l
l
c
o
m
m
,

r
o
w
c
o
m
m
s
[
a
n
p
]
,

c
o
l
c
o
m
m
s
[
b
n
p
]
;

5
6

i
f

(
r
a
n
k

=
=

0
)

{

5
7

/
/

i
n
c
l
u
d
e

r
a
n
k

0
i
n

a
l
l

c
o
m
m
u
n
i
c
a
t
o
r
s

5
8

f
o
r

(
r

=
0
;

r
<

a
n
p
;

r
+
+
)

5
9

M
P
I
_
C
o
m
m
_
s
p
l
i
t
(
M
P
I
_
C
O
M
M
_
W
O
R
L
D
,

r
,

0
,

&
r
o
w
c
o
m
m
s
[
r
]
)
;

6
0

f
o
r

(
c

=
0
;

c
<

b
n
p
;

c
+
+
)

6
1

M
P
I
_
C
o
m
m
_
s
p
l
i
t
(
M
P
I
_
C
O
M
M
_
W
O
R
L
D
,

c
,

0
,

&
c
o
l
c
o
m
m
s
[
c
]
)
;

6
2

}
e
l
s
e

{

6
3

/
/

i
n
c
l
u
d
e

t
h
i
s

n
o
d
e

i
n

t
h
e

t
w
o

c
o
m
m
u
n
i
c
a
t
o
r
s

t
h
a
t

6
4

/
/

f
o
r

t
h
e

t
w
o

p
a
r
t
i
t
i
o
n
s

i
t

c
o
r
r
e
s
p
o
n
d
s

t
o

6
5

f
o
r

(
r

=
0
;

r
<

a
n
p
;

r
+
+
)

{

6
6

i
f

(
r

=
=

a
p
)

6
7

M
P
I
_
C
o
m
m
_
s
p
l
i
t
(
M
P
I
_
C
O
M
M
_
W
O
R
L
D
,

a
p
,

6
8

r
a
n
k
,

&
r
o
w
c
o
m
m
s
[
a
p
]
)
;

6
9

e
l
s
e

7
0

M
P
I
_
C
o
m
m
_
s
p
l
i
t
(
M
P
I
_
C
O
M
M
_
W
O
R
L
D
,

M
P
I
_
U
N
D
E
F
I
N
E
D
,

7
1

r
a
n
k
,

&
n
u
l
l
c
o
m
m
)
;

7
2

}

7
3

f
o
r

(
c

=
0
;

c
<

b
n
p
;

c
+
+
)

{

7
4

i
f

(
c

=
=

b
p
)

7
5

M
P
I
_
C
o
m
m
_
s
p
l
i
t
(
M
P
I
_
C
O
M
M
_
W
O
R
L
D
,

b
p
,

7
6

r
a
n
k
,

&
c
o
l
c
o
m
m
s
[
b
p
]
)
;

7
7

e
l
s
e

7
8

M
P
I
_
C
o
m
m
_
s
p
l
i
t
(
M
P
I
_
C
O
M
M
_
W
O
R
L
D
,

M
P
I
_
U
N
D
E
F
I
N
E
D
,

7
9

r
a
n
k
,

&
n
u
l
l
c
o
m
m
)
;

8
0

}

8
1

}

8
2

8
3

/
/

s
e
n
d

&
r
e
c
v

p
a
r
t
i
t
i
o
n
s

8
4

i
f

(
r
a
n
k

=
=

0
)

{

8
5

/
/

b
r
o
a
d
c
a
s
t

f
r
o
m

0
t
o

v
a
r
i
o
u
s

c
o
n
s
u
m
e
r
s

8
6

f
o
r

(
r

=
0
;

r
<

a
n
p
;

r
+
+
)

8
7

M
P
I
_
B
c
a
s
t
(
&
A
[
a
w
*
a
h
*
r
]
,

a
h
*
a
w
,

M
P
I
_
F
L
O
A
T
,

8
8

0
,

r
o
w
c
o
m
m
s
[
r
]
)
;

8
9

L
O
G
(
"
s
e
n
t

b
r
o
a
d
c
a
s
t
s

o
f

A
"
)
;

9
0

f
o
r

(
c

=
0
;

c
<

b
n
p
;

c
+
+
)

9
1

M
P
I
_
B
c
a
s
t
(
&
B
[
b
h
*
b
w
*
c
]
,

b
h
*
b
w
,

M
P
I
_
F
L
O
A
T
,

9
2

0
,

c
o
l
c
o
m
m
s
[
c
]
)
;

9
3

L
O
G
(
"
s
e
n
t

b
r
o
a
d
c
a
s
t
s

o
f

B
"
)
;

9
4

}
e
l
s
e

{

9
5

/
/

r
e
c
e
i
v
e

c
h
u
n
k

n
e
e
d
e
d

9
6

M
P
I
_
B
c
a
s
t
(
A
,

a
h
*
a
w
,

M
P
I
_
F
L
O
A
T
,

0
,

r
o
w
c
o
m
m
s
[
a
p
]
)
;

Appendix A Matrix multiply implementations 173

9
7

L
O
G
(
"
r
e
c
e
i
v
e
d

b
r
o
a
d
c
a
s
t

o
f

A
"
)
;

9
8

M
P
I
_
B
c
a
s
t
(
B
,

b
h
*
b
w
,

M
P
I
_
F
L
O
A
T
,

0
,

c
o
l
c
o
m
m
s
[
b
p
]
)
;

9
9

L
O
G
(
"
r
e
c
e
i
v
e
d

b
r
o
a
d
c
a
s
t

o
f

B
"
)
;

1
0
0

}

1
0
1

1
0
2

/
/

m
u
l
t
i
p
l
y

p
a
r
t
i
t
i
o
n
s

1
0
3

L
O
G
(
"
m
u
l
t
i
p
l
y
i
n
g

p
a
r
t
i
t
i
o
n
s
.
.
.
"
)
;

1
0
4

T
B
E
G
I
N
(
p
t
)
;

1
0
5

f
o
r

(
p
c

=
C
,

r
=

0
;

r
<

c
h
;

r
+
+
)

f
o
r

(
c

=
0
;

c
<

c
w
;

c
+
+
)

{

1
0
6

f
l
o
a
t

v
=

0
.
0
f
;

1
0
7

p
a

=
A
+
(
r
*
M
)
;

p
b

=
B
+
(
c
*
M
)
;

1
0
8

f
o
r

(
k

=
0
;

k
<

M
;

k
+
+
)

{

1
0
9

v
+
=

(
*
p
a
)

*
(
*
p
b
)
;

1
1
0

p
a
+
+
;

p
b
+
+
;

1
1
1

}

1
1
2

*
p
c

=
v
;

1
1
3

p
c
+
+
;

1
1
4

}

1
1
5

T
E
N
D
(
p
t
,

"
m
u
l
"
)
;

1
1
6

L
O
G
(
"
m
u
l
t
i
p
l
i
e
d

p
a
r
t
i
t
i
o
n
s
"
)
;

1
1
7

1
1
8

/
/

s
e
n
d

&
r
e
c
v

p
a
r
t
i
t
i
o
n
s

1
1
9

i
n
t

n
w
r
k
e
r
s

=
a
n
p
*
b
n
p
-
1
;

1
2
0

M
P
I
_
R
e
q
u
e
s
t

i
r
e
q
[
n
w
r
k
e
r
s
]
;

1
2
1

M
P
I
_
S
t
a
t
u
s

i
s
t
a
t
[
n
w
r
k
e
r
s
]
;

1
2
2

i
f

(
r
a
n
k

=
=

0
)

{

1
2
3

/
/

s
t
a
r
t

r
e
c
e
i
v
e
s

f
r
o
m

w
o
r
k
e
r
s

1
2
4

f
o
r

(
k

=
1
;

k
<

a
n
p
*
b
n
p
;

k
+
+
)

{

1
2
5

r
p

=
k

/
a
n
p
;

c
p

=
k

%
b
n
p
;

1
2
6

p
c

=
&
C
[
(
c
w
*
c
h
)
*
(
(
r
p
*
b
n
p
)
+
c
p
)
]
;

1
2
7

M
P
I
_
I
r
e
c
v
(
p
c
,

c
w
*
c
h
,

M
P
I
_
F
L
O
A
T
,

k
,

k
,

M
P
I
_
C
O
M
M
_
W
O
R
L
D
,

&
i
r
e
q
[
k
-
1
]
)
;

1
2
8

}

1
2
9

/
/

w
a
i
t

o
n

e
n
d

o
f

r
e
c
e
i
v
e
s

1
3
0

M
P
I
_
W
a
i
t
a
l
l
(
n
w
r
k
e
r
s
,

i
r
e
q
,

i
s
t
a
t
)
;

1
3
1

L
O
G
(
"
r
e
c
e
i
v
e
d

a
l
l

p
a
r
t
i
t
i
o
n
s

o
f

C
"
)
;

1
3
2

}
e
l
s
e

{

1
3
3

/
/

s
e
n
d

l
o
c
a
l

p
a
r
t

o
f

C
t
o

0

1
3
4

M
P
I
_
S
e
n
d
(
C
,

c
w
*
c
h
,

M
P
I
_
F
L
O
A
T
,

0
,

r
a
n
k
,

M
P
I
_
C
O
M
M
_
W
O
R
L
D
)
;

1
3
5

L
O
G
(
"
s
e
n
t

p
a
r
t
i
t
i
o
n

o
f

C
"
)
;

1
3
6

}

1
3
7

1
3
8

/
/

f
r
e
e

m
a
t
r
i
c
e
s

1
3
9

f
r
e
e
(
A
)
;

1
4
0

f
r
e
e
(
B
)
;

1
4
1

f
r
e
e
(
C
)
;

1
4
2

L
O
G
(
"
f
r
e
e
d

a
r
r
a
y
s
"
)
;

1
4
3

1
4
4

/
/

f
i
n
a
l
i
z
e

m
p
i

1
4
5

M
P
I
_
F
i
n
a
l
i
z
e
(
)
;

1
4
6

T
E
N
D
(
j
t
,

"
j
o
b
"
)
;

1
4
7

r
e
t
u
r
n

0
;

1
4
8

}

L
is
t
in
g

A
.2
:

M
a
tr

ix
m

u
lt

ip
li

ca
ti

o
n

in
C

a
n

d
M

P
I

Appendix B

Flocc library functions

This appendix contains brief descriptions of all the Flocc map, list, and array combina-

tors with their types.

-- |map (f,f1,m). Applies f to every entry in m. f must be

-- |a bijection with respect to the map keys , since otherwise -

-- |keys might be duplicated.

map :: ((i,v)->(j,w), Map i v) -> Map j w

-- |mapInv (f,f1,m). Applies f to every entry in m. f must be

-- |a bijection with respect to the map keys , and f1 must be

-- |the inverse of f. f1 is used in data layout planning.

mapInv :: ((i,v)->(j,w), (j,w)->(i,v), Map i v) -> Map j w

-- |cross (m1,m2). Returns the Cartesian product of m1 and m2.

cross :: (Map i v, Map j w) -> Map (i,j) (v,w)

-- |eqJoin (f1,f2,m1,m2). Returns the Cartesian product of m1 and m2

-- |restricted to where the result of f1 applied to m1 equals

-- |the result of f2 applied to m2.

eqJoin :: ((i,v)->k, (j,w)->k, Map i v, Map j w) -> Map (i,j) (v,w)

-- |ltJoin (f1,f2,m1,m2). Returns the Cartesian product of m1 and m2

-- |restricted to where f1 applied to the m1 is lexicographically

-- |before (less than) f2 applied to m2.

ltJoin :: ((i,v)->k, (j,w)->k, Map i v, Map j w) -> Map (i,j) (v,w)

-- |allPairs (f,m). Groups the elements of m into groups using the

-- |keys returned by f, and then returns all pair combinations of

-- |values from each group.

allPairs :: ((i,v)->k, Map i v) -> Map (i,i) (v,v)

-- |reduce (f,g,v0,m). Applies f to each element in m, and then

-- |aggregates these values using g and the null element v0.

reduce :: ((i,v)->s, (s,s)->s, s, Map i v) -> s

175

176 Appendix B Flocc library functions

-- |groupReduce (kf,vf,ff,v0,m). Applies kf and vf to every entry

-- |in m, grouping the values returned by vf using the keys returned by kf.

-- |Each group is aggregated using the associative binary operator ff,

-- |and the 0-element v0.

groupReduce :: ((i,v)->j, (i,v)->w, (w,w)->w, Map i v) -> Map j w

-- |filter (pred ,m). Returns the entries in m restricted to those

-- |that satisfy the predicate function pred.

filter :: ((i,v)->Bool , Map i v) -> Map i v

-- |union (m1,m2). Returns the left -biased union of m1 and m2.

union :: (Map i v, Map i v) -> Map i v

-- |intersect (m1,m2). Returns the left -biased union of m1 and m2.

-- |i.e. returns the values from m1.

intersect :: (Map i v, Map i w) -> Map i v

-- |diff (m1,m2). Set difference. Returns the entries in m1

-- |whose keys don ’t occur in m2.

diff :: (Map i v, Map i w) -> Map i v

-- |countMap m. Returns the number of entries in m.

countMap :: Map i v -> Int

-- |intRangeMap (begin ,end ,stride). Returns a map with keys between

-- |begin and end in steps of stride.

intRangeMap :: (Int ,Int ,Int) -> Map Int ()

-- |emptyMap (). Returns an empty map of any type.

emptyMap :: () -> Map i v

Listing B.1: Map library functions

-- |filterList (f,l). Returns list of all elements in

-- |l where f returns True.

filterList :: (v -> Bool , List v) -> List v

-- |expandList (l,v0,mask). Returns a new list with the

-- |same length as mask , where each element is either v0

-- |if that element in mask is False , or is the next

-- |element in l if True.

expandList :: (List v, v, List Bool) -> List v

-- |concatList (l1,l2). Returns a new list with

-- |l2 concatenated after l1.

concatList :: (List v, List v) -> List v

-- |concatLists l. Returns a new list where all the

-- |lists in l have been concatenated one after the other.

concatLists :: List (List v) -> List v

-- |unconcatList (lens ,l). Returns a new list where

Appendix B Flocc library functions 177

-- |the l is decomposed into sublists. The length

-- |of each sublist is in len.

unconcatList :: (List Int , List v) -> List (List v)

-- |transposeList l. Transposes l.

transposeList :: List (List v) -> List (List v)

-- |zip (l1,l2). Returns a new list where

-- |l1 is aligned elementwise with l2. The length

-- |of the result is min(length l1, length l2).

zip :: (List v, List w) -> List (v,w)

-- |unzipList l. Returns (l1,l2) where l1 = mapList fst l

-- |and l2 = mapList snd l.

unzipList :: List (v,w) -> (List v, List w)

-- |mapList (f,l). Returns a new list formed by applying

-- |f to every element of l.

mapList :: (v -> w, List v) -> List w

-- |findInList (f,f0,notFound ,l). Applied f to every element

-- |in l, returning the first element that equals f0. If

-- |no element matches then returns notFound.

findInList :: (v -> w, w, (v,w), List v) -> (Int ,(v,w))

-- |reduceList (f,v0,l). Aggregates the elements in l

-- |using f, where v0 is the null element. f must be associative.

reduceList :: ((v,v) -> v, v, List v) -> v

-- |prefixList (f,l). Parallel prefix of v using

-- |the binary (associative) operator f.

prefixList :: ((v,v) -> v, List v) -> List v

-- |foldListL (f,v0,l). Performs a fold left to right using

-- |f as the binary operator , and v0 the null element.

foldListL :: ((v,w)->v, w, List w) -> v

-- |subList (begin ,end ,l). Returns the elements of

-- |l between index begin and end inclusive.

subList :: (Int , Int , List v) -> List v

-- |head l. Returns the first element of l, or fails if l is [].

head :: List v -> v

-- |tail l. Returns all elements of l apart from the first.

tail :: List v -> List v

-- |take (count ,l). Returns the first count element of l.

take :: (Int , List v) -> List v

-- |sortList (f,l). Sorts l using the values projected by f.

178 Appendix B Flocc library functions

sortList :: (v -> w, List v) -> List v

-- |reverseList l. Returns all the elements of l in the opposite order.

reverseList :: List v -> List v

-- |listLength l. Returns the number of elements in l.

length :: List v -> Int

-- |intRangeList (begin ,end ,stride). Returns a list of the

-- |integers between begin and end inclusive in steps of stride.

intRangeList :: (Int , Int , Int) -> List Int

Listing B.2: List library functions

-- |mapArrInv (f,f1,g,a). Maps f and g over a. f must be a projection function ,

-- |and f1 its inverse.

mapArrInv :: (i->j, j->i, (i,v)->w, Arr i v) -> Arr j w

-- |reduceArr (f,g,v0,a). Maps f over a and then aggregates values using g.

-- |v0 is the null element.

reduceArr :: ((i,v)->s, (s,s)->s, s, Arr i v) -> s

-- |groupReduceArr (kf,vf,g,v0,a). Maps kf and vf over a, grouping by

-- |kf’s result , and aggregating vf’s results using g with v0 the null element.

groupReduceArr :: ((i,v)->j, (i,v)->w, (w,w)->w, w, Arr i v) -> Arr j w

-- |groupPrefixArr (kf,vf,g,v0,a). Performs parallel prefix of groups.

-- |kf projects out group indices , vf values , and g is the fold function.

-- |kf must be a projection function.

groupPrefixArr :: ((i,v)->j, (i,v)->w, (w,w)->w, w, Arr i v) -> Arr j w

-- |findInArr (vf,v,notFound ,a). Maps vf over a, returning the first

-- |element that matches v, or notFound if it’s not found.

findInArr :: ((i,v) -> s, s, (i,v,s), Arr i v) -> (i,v,s)

-- |crossArr (a,b). Returns the Cartesian product of a and b.

crossArr :: (Arr i v, Arr j w) -> Arr (i,j) (v,w)

-- |eqJoinArr (f1,f2,a1,a2). Returns the Cartesian product of

-- |a1 and a2 restricted to where the dimensions returned by

-- |f1 from a1 equal those returned by f2 from a2.

eqJoinArr :: (i->k, j->k, Arr i v, Arr j w) -> Arr (i,j) (v,w)

-- |unionArrWith (f,f0,a,b). Returns a unioned with b, where

-- |elements that occur in a and b and combined using f. The

-- |bounds of the result are min(a,b) to max(a,b), where the

-- |values of any undefined elements are computed using f0.

unionArrWith :: ((v,v)->v, i->v, Arr i v, Arr i v) -> Arr i v

-- |reshapeArr (begin ,end ,stride ,a). Returns a new array containing

-- |the elements of a, with bound begin -end:stride. The new bounds

-- |must contain the same number of elements as a.

Appendix B Flocc library functions 179

reshapeArr :: (j, j, j, Arr i v) -> Arr j v

-- |arrBound a. Returns bounds (begin ,end ,stride) of a.

arrBounds :: Arr i v -> (i,i,i)

-- |subArr (begin ,end ,stride ,a). Returns subset of array

-- |in bounds begin -end:stride.

subArr :: (i, i, i, Arr i v) -> Arr i v

-- |shiftArrL (deltaL , a). Returns array a, with indices

-- |moved left (decremented) by i. All values in i must be

-- |0 or positive.

shiftArrL :: (i, Arr i v) -> Arr i v

-- |shiftArrR (deltaR , a). Returns a with indices moved

-- |right (incremented) by i. All values in i must be 0

-- |or positive.

shiftArrR :: (i, Arr i v) -> Arr i v

-- |scaleArr (delta , a). Returns a with all indices multiplied

-- |by delta. All values in delta must be positive.

scaleArr :: (i, Arr i v) -> Arr i v

-- |descaleArr (delta , a). Returns a with all indices divided

-- |by delta. All values in delta must be positive.

descaleArr :: (i, Arr i v) -> Arr i v

-- |reflectArr (i,a). Reflects a along all dimensions for

-- |which i is -1. All values in i must be 1 or -1.

reflectArr :: (i, Arr i v) -> Arr i v

-- |intRangeArr (begin ,end ,stride). Returns an array with

-- |bounds begin -end:stride.

intRangeArr :: (Int , Int , Int) -> Arr Int ()

Listing B.3: Array library functions

-- |arrToMap a. Returns a map of all the elements in

-- |a with their indices.

arrToMap :: Arr i v -> Map i v

-- |arrToList a. Returns a list of all the elements

-- |in a with their indices.

arrToList :: Arr i v -> List (i,v)

-- |listToArr (begin ,end ,stride ,v0,l). Returns a new

-- |array with indices between begin and end in steps

-- |of stride. Elements are taken from l, or are

-- |initialized using v0 otherwise.

listToArr :: (i, i, i, i->v, List (i,v)) -> Arr i v

-- |mapToList m. Returns all the (key ,value) pairs in m.

180 Appendix B Flocc library functions

-- |The ordering is arbitrary.

mapToList :: Map i v -> List (i,v)

-- |listToMap l. Returns a new map formed from the

-- |(key ,value) pairs in l. If there are multiple

-- |occurances of a key , the last value is the one

-- |used in the m a p

listToMap :: List (i,v) -> Map i v

Listing B.4: Conversion functions

Appendix C

Flocc DDL types

This appendix lists DDL types for array, map, and list combinator implementations.

This list of DDL types supplements those in Chapter 4, but is not exhaustive.

DArr combinators Figure C.1 lists the DDL types of various array-combinator im-

plementations. mapArrInv1 and mapArrInv2 are structure preserving combinators that

apply their first two parameter functions to the indices and values, respectively, of a

distributed array. The index transformer function f is constrained to be a permutation

function, though this is not required in the types. Both mapArrInv1 and mapArrInv2

have the same implementation, which acts in-place (i.e., without communication), but

they infer DDL information in different directions. In mapArrInv1 the output partition

function g is known, so we construct an input partition function that will provide this

output partitioning by applying g after the index transformer function f . mapArrInv2

does the opposite. If the input is partitioned by g then the output is partitioned by g

applied after the inverse index transformer function finv, since finv returns the indices

from the output elements, that were returned for the same elements in the input array.

eqJoin1A to eqJoin3 perform equi-joins on pairs of distributed arrays (i.e., Cartesian

products restricted to where the join-keys are equal), where the two function parame-

ters emit join-key indices from the elements in the first and second arrays respectively.

eqJoin1A and eqJoin1B can do this in-place without communication because their in-

put arrays are partitioned by their join-key emitters f and g along the same nodes in

the topology d, and are therefore aligned by join-key index, such that all elements for

a given key in both arrays is on the same node. The output combines the indices and

elements from the inputs pairwise, and so the outputs are partitioned by the join-keys

from the first array f · fst in eqJoin1A, and those from the second array g · snd in 1B.

eqJoinArr2 accepts any output partition function f , and therefore requires all combi-

nations of elements (the Cartesian product) to be enumerable. Thus we partition the

first array by fstFun f along d1, and mirror the second (hence the nullF) along d1.

181

182 Appendix C Flocc DDL types

mapArrInv1 :: Π(f,_,_,_) : (i->j, j->i, (i,v)->w,

DArr i v (g · f) d m) -> DArr j w g d m

mapArrInv2 :: Π(_,finv,_,_) : (i->j, j->i, (i,v)->w,

DArr i v g d m) -> DArr j w (g · finv) d m

eqJoinArr1A :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (f · fst) d m

eqJoinArr1B :: Π(f,g,_,_) : (i->k, j->k, DArr i v f d m,

DArr j w g d m) -> DArr (i,j) (v,w) (g · snd) d m

eqJoinArr2 :: (i->k, j->k, DArr i v fstFun(f) d1 m,

DArr j w nullF d2 (d1 ,m)) -> DArr (i,j) (v,w) f d1 m

eqJoinArr3 :: (i->k, j->k, DArr i v fstFun(f) d1 (d2, m),

DArr j w sndFun(f) d2 (d1 , m)) -> DArr (i,j) (v,w) f (d1 ,d2) m

groupReduceArr1 :: (i->j, (i,v)->w, (w,w)->w, w,

DArr i v f d1 m1) -> DArr j w id d2 m2

groupReduceArr2 :: Π(pf ,_,_,_,_) : (i->j, (i,v)->w, (w,w)->w, w,

DArr i v pf d m) -> DArr j w id d m

subArr :: (i, i, DArr i v pf d m) -> DArr i v pf d m

shiftArrL :: (i, DArr i v pf d m) -> DArr i v pf d m

shiftArrR :: (i, DArr i v pf d m) -> DArr i v pf d m

scaleArr :: (i, DArr i v pf d m) -> DArr i v pf d m

reflectArr :: (i, DArr i v pf d m) -> DArr i v pf d m

Figure C.1: DDL types for array combinator implementations.

fstFun f ensures that the output is partitioned by f , and all combinations are enu-

merable without communication. Finally, eqJoinArr3 is similar, but it partitions and

mirrors both input arrays— the first by fstFun f along d1 mirrored along d2 and m,

and the second by sndFun f along d2 mirrored along d1 and m. Here d1 and d2 are

orthogonal dimensions of a Cartesian node toplology, and so the Cartesian product of

partitions will be enumerated across d1× d2.

groupReduceArr1 and groupRedueArr2 group array elements by the index returned by

the first function parameter— an index projection function that returns a subset of the

array’s indices, applies the second function parameter to their indices and values, and

Appendix C Flocc DDL types 183

then aggregates them using the third function parameter. groupReduceArr2 can do

this in place since its input is partitioned by the index projection function parameter

pf , where as groupReduceArr1 has to exchange intermediate values between nodes to

co-locate groups before aggregation.

subArr returns the sub-array between the indices in the first and second parameters.

This performs no communication. shiftArrL and shiftArrR increase and decrease the

indices of an array by the offsets in the first parameter, respectively. These send the

appropriate number of elements from the array edges to neighboring nodes. scaleArr

multiplies the indices in an array by the coefficients in the first parameter, and per-

forms the necessary communication to do this on the cluster. reflectArr returns an

array with any of the indices for which the first parameter contains a negative num-

ber flipped/reversed, and the rest left the same. This works by exchanging partitions

on opposite sides of the center lines over the network, for those indices that are to be

reflected, and reversing the order of the elements locally.

DMap combinators Figure C.2 and Figure C.3 list the DDL types of various map-

combinator implementations. intRangeMap creates a map with integer keys in the range

(and with the stride) specified. intRangeMap1, intRangeMap2, intRangeMap3, all gen-

erate these keys for each partition in parallel, and use hash, dynamic-discrete, and

dynamic-range partitioning modes, respectively. intRangeMapMirr returns a mirrored

map, where the whole map is replicated across the dimensions in m.

countMap returns the cardinality of a partitioned map, by summing the cardinalities of

each partition, and countMapMirr calculates the cardinality of a mirrored map, in-place.

map is a natural transformation for maps, similar to mapArrInv1. mapInv1 and mapInv2

are the same, except they also require an inverse map function like with mapArrInv.

eqJoin1A to eqJoin4 are map equivalents of the eqJoinArr functions, with equivalent

distributions. The difference here is the join-key emitter functions apply to the map key

and value, and so the types use lft and rht instead of fst and snd to project from

the pairs of key-pair and value-pairs. (eqJoin4 is just the dual of eqJoin2.) allPairsA

and allPairsB perform self-joins using their join-key emitter function parameters. Like

eqJoin1A and eqJoin1B these occur in place, since their input maps are partitioned

by their join-key emitter function f . Again groupReduce1 and groupReduce2 are map

equivalents of groupReduceArr1 and groupReduceArr2. reduce accepts maps parti-

tioned in any way, projects values from their key-value pairs, and aggregates them using

a binary function. This performs a small amount of communication to gather the inter-

mediate reductions, and broadcast the result to all nodes.

union, intersect, and diff are left-biased set operations. union acts in place since its

inputs and output are partitioned by the map key via fst, and so equivalent keys are

co-located. intersect1 and diff1 work in the same way. intersect2 and diff2 can

184 Appendix C Flocc DDL types

intRangeMap1 :: (Int ,Int ,Int) -> DMap Int () Hash fst d m

intRangeMap2 :: (Int ,Int ,Int) -> DMap Int () DynDiscrete fst d m

intRangeMap3 :: (Int ,Int ,Int) -> DMap Int () DynRange fst d m

intRangeMapMirr :: (Int ,Int ,Int) -> DMap Int () p nullF () m

countMap :: DMap k v p f d m -> Int

countMapMirr :: DMap k v p nullF () m -> Int

map :: Π(f,_) : ((i,v)->(j,w),

DMap i v p (g · f) d m) -> DMap j w p g d m

mapInv1 :: Π(f,finv,_) : ((i,v)->(j,w), (j,w)->(i,v),

DMap i v p (g · f) d m) -> DMap j w p g d m

mapInv2 :: Π(f,finv,_) : ((i,v)->(j,w), (j,w)->(i,v),

DMap i v p g d m) -> DMap j w p (g · finv) d m

eqJoin1A :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap i v p f d m,

DMap j w p g d m) -> DMap (i,j) (v,w) p (f · lft) d m

eqJoin1B :: Π(f,g,_,_) : ((i,v)->k, (j,w)->k, DMap i v p f d m,

DMap j w p g d m) -> DMap (i,j) (v,w) p (g · rht) d m

eqJoin2 :: ((i,v)->k, (j,w)->k, DMap i v p (lftFun f) d1 m,

DMap j w p nullF d2 (d1 ,m)) -> DMap (i,j) (v,w) p f d1 m

eqJoin3 :: ((i,v)->k, (j,v)->k, DMap i v p (lftFun f) d1 (d2 , m),

DMap j w p (rhtFun f) d2 (d1 ,m)) -> DMap (i,j) (v,w) p f (d1 ,d2) m

eqJoin4 :: ((i,v)->k, (j,w)->k, DMap i v p nullF d1 m,

DMap j w p (rhtFun f) d2 (d1 ,m)) -> DMap (i,j) (v,w) p f d2 m

crossMaps1 :: (DMap i v p f d1 m, DMap j w p nullF d2 (d1,m)) ->

DMap (i,j) (v,w) p f·lft d1 m

crossMaps2 :: (DMap i v p (lftFun f) d1 m, DMap j w p nullF d2 (d1,m)) ->

DMap (i,j) (v,w) p f d1 m

crossMaps3 :: (DMap i v p f d1 (d2,m), DMap j w p g d2 (d1,m)) ->

DMap (i,j) (v,w) p ((f·lft)⊗(g·rht))·∆ (d1 ,d2) m

crossMaps4 :: (DMap i v p (lftFun f) d1 (d2,m),

DMap j w p (rhtFun f) d2 (d1 ,m)) ->

DMap (i,j) (v,w) p f (d1 ,d2) m

Figure C.2: DDL types for map combinator implementations.

Appendix C Flocc DDL types 185

allPairsA :: Π(f,_) : ((i,v)->k, DMap i v p f d m) ->

DMap (i,i) (v,v) p (f · lft) d m

allPairsB :: Π(f,_) : ((i,v)->k, DMap i v p f d m) ->

DMap (i,i) (v,v) p (f · rht) d m

groupReduce1 :: ((i,v)->j, (i,v)->w, (w,w)->w,

DMap i v p f d1 m1) -> DMap j w p fst d2 m2

groupReduce2 :: Π(f,_,_,_) : ((i,v)->j, (i,v)->w, (w,w)->w,

DMap i v p f d m) -> DMap j w p fst d m

reduce :: ((k,v)->s, (s,s)->s, s, DMap k v p f d m) -> s

union :: (DMap k v p fst d m, DMap k v p fst d m) ->

DMap k v p fst d m

intersect1 :: (DMap k v p fst d m, DMap k w p fst d m) ->

DMap k v p fst d m

intersect2 :: (DMap k v p (lftFun f) d1 m,

DMap k w p nullF d2 (d1 ,m)) -> DMap k v p f d1 m

intersect3 :: (DMap k v p nullF d1 m,

DMap k w p (rhtFun f) d2 (d1 ,m)) -> DMap k v p f d1 m

intersect4 :: (DMap k v p (lftFun f) d1 (d2, m),

DMap k w p (rhtFun f) d2 (d1 ,m)) -> DMap k v p f (d1 ,d2) m

diff1 :: (DMap k v p fst d m, DMap k w p fst d m) -> DMap k v p fst d m

diff2 :: (DMap k v p (lftFun f) d1 m, DMap k w p nullF d2 (d1,m)) ->

DMap k v p f d1 m

Figure C.3: DDL types for map combinator implementations.

partition their outputs by any function f , by partitioning their first inputs by lftFun f ,

and mirroring their second inputs. This sort of distribution would not work for union

because it must test on the same node whether there is a given key value in either

map. intersect4 is the dual of intersect3, i.e., it mirrors its first map, and partitions

its second. diff cannot be distributed in this way, since it needs to test locally for

every element in the first map’s partition, whether the respective key exists in the whole

second map. The second map must therefore be mirrored, if the first map is arbitrarily

partitioned.

186 Appendix C Flocc DDL types

zip :: (DList v cyc d m, DList w cyc d m) -> DList (v,w) cyc d m

mapList :: (v->w, DList v p d m) -> DList w p v m

reduceList :: ((v,v)->v, v, DList v p d m) -> v

filterList :: (v->Bool , DList v blk d m) -> DList v blk d m

crossList :: (DList v blk d1 m, DList w p d2 (m,d1)) ->

DList (v,w) blk d1 m

Figure C.4: DDL types for list combinator implementations.

mirrMap :: DMap k v p f d m -> DMap k v p f d (m,m’)

sieveMap :: DMap k v p f d (m,m’) -> DMap k v p f d m

repartMap :: DMap k v p1 f1 d1 m -> DMap k v p2 f2 d2 m

redistList :: DList v p1 d1 m1 -> DList v p2 d2 m2

distListLit :: List v -> DList v p d m

Figure C.5: Distributed data layout (DDL) types for some redistribution functions.

DList combinators Figure C.4 lists the DDL types of various list-combinator imple-

mentations. The zip combinator joins together two lists pairwise, up to the length of

the shorter list. Its lists must use a cyclic distribution Cyc along the same dimensions

of the node topology d. mapList is the list natural transformation combinator, and

operates in-place for any input distribution. reduceList acts like reduce and works on

any input distribution. filterList takes a list and returns a list of all the elements

for which the predicate function parameter returns true. It works in place and so its

input and output lists are block distributed, because cyclic distributions require the

same number of elements on each node, and removing elements would very likely lead

to different numbers of elements per node, and in the wrong order. crossList performs

the Cartesian product of two distributed lists in-place, where the first list must be block

distributed, the second must be mirrored along the same dimension, and the output is

block distributed. The first list cannot be cyclic because crossing a cyclic distributed

list with a mirrored one, does not give a cyclic (or block) distributed output, unless the

number of elements in the second list is the same as the number of nodes in d1.

Redistribution functions mirrMap to distListLit are example redistribution func-

tions. These functions do not modify the data in their argument collections, but change

how they are distributed. They are therefore implementations of id (i.e., the identity

function) on the high level. They can also be thought of as type-casts. mirrMap takes

any distributed map and mirrors its partitions along another dimension of the global

Appendix C Flocc DDL types 187

topology. sieveMap acts the opposite way— removing replicated partitions from di-

mension m’. repartMap re-partitions a DMap using a different partition function over

different dimension(s). redistList does the same for lists, and optionally mirrors over

different dimensions too, and distListLit distributes a globally mirrored list in any

way on the cluster.

Appendix D

Equational theory proofs

This appendix proves that each equation in the equational theories of projection func-

tions, permutation functions, and index functions in Chapter 6 is sound. It does that

by converting them from point-free into pointed form, and then applying the reduction

rules in Flocc’s operational semantics in Chapter 3.

(Π2 ⊗Π1) ·∆ = \(x, y)→ (\((a, b), (c, d))→ (Π2 (a, b),Π1 (c, d))) ((\u→ (u, u)) (x, y))

= \(x, y)→ (\((a, b), (c, d))→ (Π2 (a, b),Π1 (c, d))) ((x, y), (x, y))

= \(x, y)→ (Π2 (x, y),Π1 (x, y))

= \(x, y)→ ((\(u, v)→ v) (x, y), (\(u, v)→ u) (x, y))

= \(x, y)→ (y, x)

Figure D.1: Projection function identities.

189

190 Appendix D Equational theory proofs

f · id = \x→ f ((\u→ u) x) = \x→ f x = f (6.1)

id · f = \x→ (\u→ u) (f x) = \x→ f x = f (6.2)

Π1 ·∆ = \x→ (\(u, v)→ u) ((\u→ (u, u)) x) (6.3)

= \x→ (\(u, v)→ u) (x, x) = \x→ x = id

Π2 ·∆ = \x→ (\(u, v)→ v) ((\u→ (u, u)) x) (6.4)

= \x→ (\(u, v)→ v) (x, x) = \x→ x = id

(Π1 ⊗Π2) ·∆ = \(x, y)→ (Π1 ⊗Π2)((\u→ (u, u)) (x, y)) (6.5)

= \(x, y)→ (Π1 ⊗Π2) ((x, y), (x, y))

= \(x, y)→ (Π1 (x, y),Π2 (x, y))

= \(x, y)→ ((\(u, v)→ u) (x, y), (\(u, v)→ v) (x, y))

= \(x, y)→ (x, y) = id⊗ id

(Π2 ⊗Π1) ·∆ · (Π2 ⊗Π1) ·∆ = \(x, y)→ (\(x, y)→ (y, x)) ((\(x, y)→ (y, x)) (x, y)) (6.6)

= \(x, y)→ (\(x, y)→ (y, x)) (y, x)

= \(x, y)→ (x, y) = id⊗ id

(f1 ⊗ f2) · (Π2 ⊗Π1) ·∆ = \(x, y)→ (\(v, w)→ (f1 v, f2 w)) ((\(t, u)→ (u, t)) (x, y)) (6.7)

= \(x, y)→ (\(v, w)→ (f1 v, f2 w)) (y, x)

= \(x, y)→ (f1 y, f2 x)

(Π2 ⊗Π1) ·∆ · (f2 ⊗ f1) = \(x, y)→ (\(t, u)→ (u, t)) ((\(v, w)→ (f2 v, f1 w)) (x, y))

= \(x, y)→ (\(t, u)→ (u, t)) (f2 x, f1 y)

= \(x, y)→ (f1 y, f2 x)

Π1 · (f1 ⊗ f2) = \(x, y)→ (\(u, v)→ u) ((\(t, w)→ (f1 t, f2 w)) (x, y)) (6.8)

= \(x, y)→ (\(u, v)→ u) (f1 x, f2 y)

= \(x, y)→ f1 x

f1 ·Π1 = \(x, y)→ f1 ((\(u, v)→ u) (x, y))

= \(x, y)→ f1 x

Π2 · (f1 ⊗ f2) = \(x, y)→ (\(u, v)→ v) ((\(t, w)→ (f1 t, f2 w)) (x, y)) (6.9)

= \(x, y)→ (\(u, v)→ v) (f1 x, f2 y)

= \(x, y)→ f2 y

f2 ·Π2 = \(x, y)→ f2 ((\(u, v)→ v) (x, y))

= \(x, y)→ f2 y

Figure D.2: Equations showing soundness of equational theory of projection func-
tions.

Appendix D Equational theory proofs 191

Π1 · (f1 ⊗ f2) ·∆ = \x→ (\(u, v)→ u) ((\(t, w)→ (f1 t, f2 w)) ((\u→ (u, u)) x)) (6.10)

= \x→ (\(u, v)→ u) ((\(t, w)→ (f1 t, f2 w)) (x, x))

= \x→ (\(u, v)→ u) (f1 x, f2 x)

= \x→ f1 x = f1

Π2 · (f1 ⊗ f2) ·∆ = \x→ (\(u, v)→ v) ((\(t, w)→ (f1 t, f2 w)) ((\u→ (u, u)) x)) (6.11)

= \x→ (\(u, v)→ v) ((\(t, w)→ (f1 t, f2 w)) (x, x))

= \x→ (\(u, v)→ v) (f1 x, f2 x)

= \x→ f2 x = f2

∆ · f = \x→ (\u→ (u, u)) (f x) (6.12)

= \x→ (f x, f x)

(f ⊗ f) ·∆ = \x→ \(w, t)→ (f w, f t) ((\u→ (u, u)) x)

= \x→ \(w, t)→ (f w, f t) (x, x)

= \x→ (f x, f x)

(f1 · f2) · f3 = \x→ (\y → f1 (f2 y)) (f3 x) (6.13)

= \x→ f1 (f2 (f3 x))

f1 · (f2 · f3) = \x→ f1 ((\y → f2 (f3 y)) x)

= \x→ f1 (f2 (f3 x))

(f1 ⊗ f2) · (f3 ⊗ f4) = \(x, y)→ (\(a, b)→ (f1 a, f2 b)) ((\(c, d)→ (f3 c, f4 d)) (x, y)) (6.14)

= \(x, y)→ (\(a, b)→ (f1 a, f2 b)) (f3 x, f4 y)

= \(x, y)→ (f1 (f3 x), f2 (f4 y))

(f1 · f3)⊗ (f2 · f4) = \(x, y)→ ((\z → f1 (f3 z)) x, (\w → f2 (f4 w)) y)

= \(x, y)→ (f1 (f3 x), f2 (f4 y))

Figure D.3: Equations 2 showing soundness of equational theory of projection func-
tions.

192 Appendix D Equational theory proofs

h · id = \x→ h ((\u→ u) x) = \x→ h x = h (6.15)

id · h = \x→ (\u→ u) (h x) = \x→ h x = h (6.16)

h� null = \x→ (\y → (h y, \→() y)) (6.17)

= \x→ (h x, ())

= \x→ h x = h

null� h = \x→ (\y → (\→() y, h y)) (6.18)

= \x→ ((), h x)

= \x→ h x = h

(h1 · h2) · h3 = \x→ (\y → f1 (f2 y)) (f3 x) (6.19)

= \x→ f1 (f2 (f3 x))

h1 · (h2 · h3) = \x→ f1 ((\y → f2 (f3 y)) x)

= \x→ f1 (f2 (f3 x))

(h1 � h2)� h3 = \x→ ((\y → (f1 y, f2 y)) x, f3 x) (6.20)

= \x→ ((f1 x, f2 x), f3 x))

= \x→ (f1 x, f2 x, f3 x)

h1 � (h2 � h3) = \x→ (f1 x, (\y → (f2 y, f3 y)) x)

= \x→ (f1 x, (f2 x, f3 x))

= \x→ (f1 x, f2 x, f3 x)

(h1 � h2) · h3 = \x→ (\y → (h1 y, h2 y)) (h3 x) (6.21)

= \x→ (h1 (h3 x), h2 (h3 x))

((h1 · h3)� (h2 · h3)) = \x→ ((\y → h1 (h3 y)) x, (\z → h2 (h3 z)) x)

= \x→ (h1 (h3 x), h2 (h3 x))

Figure D.4: Equations showing soundness of equational theory of permutation func-
tions.

Appendix D Equational theory proofs 193

i−1
−1

= 1/(1/i) = i (6.22)

1−1 = 1/1 = 1 (6.23)

+(i) · −(i) = \x→ (\x→ (x+ i)) ((\x→ (x+−i)) x) (6.24)

= \x→ (\x→ (x+ i)) (x+−i)
= \x→ ((x+−i) + i)

= \x→ x = id

−(i) ·+(i) = \x→ (\x→ (x+−i)) ((\x→ (x+ i)) x) (6.25)

= \x→ (\x→ (x+−i)) (x+ i)

= \x→ ((x+ i) +−i)
= \x→ x = id

×(i) · ×(i−1) = \x→ (\x→ (x× i)) ((\x→ (x× 1/i)) x) (6.26)

= \x→ (\x→ (x× i)) (x× 1/i)

= \x→ ((x× 1/i)× i)
= \x→ x = id

×(i−1) · ×(i) = \x→ (\x→ (x× 1/i)) ((\x→ (x× i)) x) (6.27)

= \x→ (\x→ (x× 1/i)) (x× i)
= \x→ ((x× i)× 1/i)

= \x→ x = id

g · id = \x→ g ((\u→ u) x) = \x→ g x = g (6.28)

id · g = \x→ (\u→ u) (g x) = \x→ g x = g (6.29)

(g1 · g2) · g3 = \x→ (\y → f1 (f2 y)) (f3 x) (6.30)

= \x→ f1 (f2 (f3 x))

g1 · (g2 · g3) = \x→ f1 ((\y → f2 (f3 y)) x)

= \x→ f1 (f2 (f3 x))

(g1 ⊗ g2) · (g3 ⊗ g4) = \(x, y)→ (\(a, b)→ (f1 a, f2 b)) ((\(c, d)→ (f3 c, f4 d)) (x, y)) (6.31)

= \(x, y)→ (\(a, b)→ (f1 a, f2 b)) (f3 x, f4 y)

= \(x, y)→ (f1 (f3 x), f2 (f4 y))

(g1 · g3)⊗ (g2 · g4) = \(x, y)→ ((\z → f1 (f3 z)) x, (\w → f2 (f4 w)) y)

= \(x, y)→ (f1 (f3 x), f2 (f4 y))

Figure D.5: Equations showing soundness of equational theory of indexing functions.

Appendix E

Flocc language feature evaluation

This appendix compares the language features of Fortran 90, HPF, ZPL, Relational

algebra, MapReduce, DPH, and SISAL to Flocc. It demonstrates that Flocc’s data

parallel combinators (listed in Appendix B) are equivalent to the data-parallel features

all of these, apart from HPF Forall-loops with array references that are not translations,

scalings, and reflections.

Language Feature Sub-feature Flocc combinators

Fortran 90 Constructors Scalars list expression; listToArr

(Arrays) Arrays concatList; listToArr

Implied do intRangeArr; mapArrInv

Get shape arrBounds

Reshape reshapeArr

Sections subArr; shiftArrL; shiftArrR

Assignment Whole mapArrInv; cross; intRange; eqJoinArr;

unionArrWith

Mask mapArrInv(if)

Reductions Whole reduceArr; findInArr

Partial groupReduceArr

Parallel prefix Whole prefixArr

Partial groupPrefixArr

Construction Merge eqJoinArr; mapArrInv(if)

Pack arrToList; filterList

Spread crossArr; intRangeArr; mapArrInv

195

196 Appendix E Flocc language feature evaluation

Language Feature Sub-feature Flocc combinators

Unpack expandList; listToArr; reshapeArr

Manipulation Cshift shiftArrL; shiftArrR; subArr;

unionArrWith

EoShift shiftArrL; shiftArrR; subArr;

unionArrWith

Transpose mapArrInv(swap)

Location Maxloc reduceArr

Minloc reduceArr

HPF Forall Index translation shiftArrL; shiftArrR

(Arrays) Index scaling scaleArr

Index reflection reflectArr

Masked mapArrInv(if)

Other arr refs Not supported

Scatters mapArrInv(if); eqJoinArr; arrToMap;

groupReduce; mapToArr

Reductions reduceArr/findInArr

Prefixes prefixArr

Suffixes prefixArr; reflectArr

Sorting Grade up arrToList; sortList

Grade down arrToList; sortList; reverseList

ZPL Assignment mapArrInv; eqJoinArr

(Arrays) Regions shiftArrL; shiftArrR; subArr;

unionArrWith

Creation crossArr; intRangeArr

Directions; @ shiftArrL; shiftArrR

Reductions Whole reduceArr; findInArr

Partial groupReduceArr

Parallel prefix Whole prefixArr

Partial groupPrefixArr

WHERE mapArrInv(if)

Appendix E Flocc language feature evaluation 197

Language Feature Sub-feature Flocc combinators

Wrap op shiftArrL; shiftArrR; subArr;

unionArrWith

Reflect op reflectArr; shiftArrL; shiftArrR;

subArr; unionArrWith

Relational Set operators union union

algebra intersection intersect

(Maps) difference diff

Cartesian product cross

Projection mapInv; map; groupReduce

Selection filterMap

Rename mapInv; map

Joins Eq-join eqJoin

InEq-Join ltJoin

Natural join mapInv; cross; groupReduce

Theta join cross; filterMap

Semijoin mapInv; cross; groupReduce

Antijoin diff; mapInv; cross; groupReduce

Division groupReduce; diff; cross

Outer join mapInv; cross; groupReduce;

union; diff; listToMap

Aggregation reduce; groupReduce

Sorting mapToList; sortList

MR map; mapInv; groupReduce;

(Maps) sortList; concatList

DPH GHC.PArr emptyP list expression

(List) singletonP list expression

replicateP intRangeList; mapList

appendP concatList

concatP reduce; concatList; concatLists

lengthP listLength

198 Appendix E Flocc language feature evaluation

Language Feature Sub-feature Flocc combinators

indexP subList; head

sliceP subList

mapP mapList

zipWithP zip; mapList

crossP crossList

crossMapP crossList; mapList

filterP filterList

zipP zip; mapList

unzipP unzip

foldP reduceList

permuteP listToMap; eqJoin; mapToList

unconcatP unconcatList

transposeP transposeList

expandP listToMap; eqJoin; mapInv; mapToList

combineP zip; mapList; expandList

splitP findInList; subList

scanlP foldListL; concatList

foldlP foldListL

scanrP foldListR; concatList

foldrP foldListR

takeP findInList; subList

dropP findInList; subList

splitAtP findInList; subList

takeWhileP findInList; subList

dropWhileP findInList; subList

spanP findInList; subList

breakP findInList; subList

andP reduceList

orP findInList

anyP findInList

Appendix E Flocc language feature evaluation 199

Language Feature Sub-feature Flocc combinators

allP reduceList

elemP findInList

notElemP findInList

lookupP findInList

sumP reduceList

productP reduceList

maximumP reduceList

minimumP reduceList

SISAL Ranges for x in A mapList

(Lists) for I in l n intRangeList

for x in A dot y in B zipList; mapList

for I in l n cross j in ? crossList; mapList; intRangeList

Array creation literal list expression

array fill(1; N; 0) mapList

A —— B concatList

A[1: v] mapList/filterList;expandList/zip

mapList

Reductions array of reduceList(concatList)

stream of N/A

catenate reduceList(concatList)

sum reduceList(add)

product reduceList(mul)

least reduceList(min)

greatest reduceList(max)

Bibliography

[1] D. Abrahams and A. Gurtovoy. C++ Template Metaprogramming: Concepts,

Tools, and Techniques from Boost and Beyond. Pearson Education, 2004.

[2] S. Adachi, H. Iwasaki, and Zh. Hu. Diff: A Powerful Parallel Skeleton. In Inter-

national Conference on Parallel and Distributed Processing Techniques and Appli-

cation (PDPTA’00). Las Vegas, CSREA, volume 4, pages 525–527, 2000.

[3] J. C. Adams, International Standard Organisation, and American National Stan-

dard Institute. Fortran 90 handbook: complete ANSI/ISO reference. Intertext

Publications, 1992.

[4] G. Agha. Actors: A model of Concurrent Computation in Distributed Systems.

Technical Report 844, June 1986.

[5] A. Ali, L. Johnsson, and D. Mirkovic. Empirical auto-tuning code generator for

FFT and trigonometric transforms. In 5th Workshop on Optimizations for DSP

and Embedded Systems (ODES’07), in conjunction with International Symposium

on Code Generation and Optimization (CGO), 2007.

[6] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. W. Maessen, S. Ryu, G. L.

Steele Jr, S. Tobin-Hochstadt, J. Dias, C. Eastlund, and Others. The Fortress

language specification. Sun Microsystems, 139:140, 2005.

[7] S. P. Amarasinghe and M. S. Lam. Communication Optimization and Code Gen-

eration for Distributed Memory Machines. In Proc. ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI’93), pages 126–138.

ACM, 1993.

[8] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and computation

transformations for multiprocessors. In Proc. 5th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPoPP’95), pages 166–178.

ACM, 1995.

[9] J. M. Anderson and M. S. Lam. Global Optimizations for Parallelism and Lo-

cality on Scalable Parallel Machines. In Proc. ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI’93), pages 112–125.

ACM, 1993.

201

http://hdl.handle.net/1721.1/6952
http://doi.acm.org/10.1145/155090.155102
http://doi.acm.org/10.1145/155090.155102
http://doi.acm.org/10.1145/209936.209954
http://doi.acm.org/10.1145/209936.209954
http://doi.acm.org/10.1145/155090.155101
http://doi.acm.org/10.1145/155090.155101

202 BIBLIOGRAPHY

[10] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Ama-

rasinghe. PetaBricks: A Language and Compiler for Algorithmic Choice. In Proc.

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion (PLDI’09), pages 38–49. ACM, 2009.

[11] ANSI. ISO/IEC 9899:1999 Programming languages C, 1999.

[12] J. L. Armstrong and S. R. Virding. Erlang-an experimental telephony program-

ming language. In Proc. XIII International Switching Symposium (ISS’90), 1990.

[13] T. Aubrey-Jones and B. Fischer. Synthesizing MPI Implementations from Func-

tional Data-Parallel Programs. In Proc. 7th International Symposium on High-level

Parallel Programming and Applications (HLPP’14), 2014.

[14] T. Aubrey-Jones and B. Fischer. Synthesizing MPI Implementations from Func-

tional Data-Parallel Programs. International Journal of Parallel Programming, to

be published. Springer, 2015.

[15] H. E. Bal, M. F. Kaashoek, and A. Tanenbaum. Orca: a language for parallel

programming of distributed systems. IEEE Trans. Software Engineering, 18(3):

190–205, Mar 1992.

[16] R. Barriuso and A. Knies. SHMEM users guide for C. Technical report, June

1994.

[17] C. Barton, C. Caşcaval, G. Almasi, R. Garg, J. Amaral, and M. Farreras. Multi-

dimensional blocking in UPC. Languages and Compilers for Parallel Computing

(LCPC’08), LNCS 5335, pages 47–62, Springer, 2008.

[18] R Bellman. On the Theory of Dynamic Programming. Proc. National Academy

of Sciences of the United States of America, 38(8):716–719, August 1952.

[19] R. E. Bellman and S. E. Dreyfus. Applied dynamic programming. Princeton Univ.

Press, 1962.

[20] J. Bilmes, K. Asanovic, Ch.-Wh. Chin, and J. Demmel. Optimizing Matrix Multi-

ply Using PHiPAC: A Portable, High-performance, ANSI C Coding Methodology.

In Proc. 11th International Conference on Supercomputing, pages 340–347. ACM,

1997.

[21] R. E. Bixby, K. Kennedy, and U. Kremer. Automatic data layout using 0-1 integer

programming. IFIP Transactions, 50:111–122, 1994.

[22] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A

comparison of join algorithms for log processing in MapReduce. In Proc. ACM

SIGMOD International Conference on Management of Data (ICMD’10), pages

975–986. ACM, 2010.

http://doi.acm.org/10.1145/1542476.1542481
http://www.flocc.net/hlpp14/
http://www.flocc.net/hlpp14/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/cmcl/link.iwarp/ccom/afs/OldFiles/archive/fx-papers/cri-shmem-users-guide.ps
http://europepmc.org/articles/PMC1063639
http://doi.acm.org/10.1145/263580.263662
http://doi.acm.org/10.1145/263580.263662
http://doi.acm.org/10.1145/1807167.1807273
http://doi.acm.org/10.1145/1807167.1807273

BIBLIOGRAPHY 203

[23] G. E. Blelloch, J. C. Hardwick, S. Chatterjee, J. Sipelstein, and M. Za-

gha. Implementation of a portable nested data-parallel language. In Proc. 4th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’93), pages 102–111. ACM, 1993.

[24] G. E. Blelloch. NESL: A nested data-parallel language. (Version 2.6). Technical

Report CMU-CS-93-129, 1993.

[25] G. E. Blelloch. NESL: A Nested Data-Parallel Language. (Version 3.1). Technical

Report CMU-CS-95-170, 1995.

[26] D. Bonachea. GASNet Specification, v1. Technical report, 2002.

[27] U. Bondhugula. Compiling Affine Loop Nests for Distributed-memory Parallel Ar-

chitectures. In Proc. International Conference for High Performance Computing,

Networking, Storage and Analysis (SC’13), pages 33:1–33:12. ACM, 2013.

[28] U. Bondhugula, M. Baskaran, S. Krishnamoorthy, J. Ramanujam, A. Rountev,

and P. Sadayappan. Automatic Transformations for Communication-Minimized

Parallelization and Locality Optimization in the Polyhedral Model. In Compiler

Construction (CC’08), LNCS 4959, pages 132–146. Springer, 2008.

[29] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. A Practical Au-

tomatic Polyhedral Parallelizer and Locality Optimizer. In Proc. ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’08),

pages 101–113. ACM, 2008.

[30] A. Bonelli, F. Franchetti, J. Lorenz, M. Püschel, and Ch. Ueberhuber. Auto-

matic Performance Optimization of the Discrete Fourier Transform on Distributed

Memory Computers. In Parallel and Distributed Processing and Applications

(PDPA’06), LNCS 4330, pages 818–832. Springer, 2006.

[31] G. Bracha. Generics in the Java programming language. Sun Microsystems, pages

1–23, 2004.

[32] W. Brainerd. Fortran 77. Commun. ACM, 21(10):806–820, 1978.

[33] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst. HaLoop: efficient iterative data

processing on large clusters. Proc. VLDB Endow., 3(1-2):285–296, 2010.

[34] J. B. Buck, N. Watkins, J. LeFevre, K. Ioannidou, C. Maltzahn, N. Polyzotis,

and S. Brandt. SciHadoop: array-based query processing in Hadoop. In Proc.

International Conference for High Performance Computing, Networking, Storage

and Analysis (SC’11), pages 66:1–66:11. ACM, 2011.

[35] L. Cardelli and P. Wegner. On Understanding Types, Data Abstraction, and

Polymorphism. ACM Comput. Surv., 17(4):471–523, 1985.

http://doi.acm.org/10.1145/155332.155343
http://www.cs.cmu.edu/~blelloch/papers/Nesl2.6.pdf
http://gasnet.lbl.gov/CSD-02-1207.pdf
http://doi.acm.org/10.1145/2503210.2503289
http://doi.acm.org/10.1145/2503210.2503289
http://dx.doi.org/10.1007/978-3-540-78791-4_9
http://dx.doi.org/10.1007/978-3-540-78791-4_9
http://doi.acm.org/10.1145/1375581.1375595
http://doi.acm.org/10.1145/1375581.1375595
http://dx.doi.org/10.1007/11946441_74
http://dx.doi.org/10.1007/11946441_74
http://dx.doi.org/10.1007/11946441_74
http://www.cs.rice.edu/~cork/312/Readings/GenericsTutorial.pdf
http://doi.acm.org/10.1145/359619.359621
http://dl.acm.org/citation.cfm?id=1920841.1920881
http://dl.acm.org/citation.cfm?id=1920841.1920881
http://doi.acm.org/10.1145/2063384.2063473
http://doi.acm.org/10.1145/6041.6042
http://doi.acm.org/10.1145/6041.6042

204 BIBLIOGRAPHY

[36] Felice Cardone and J Roger Hindley. History of lambda-calculus and combinatory

logic. Handbook of the History of Logic, 5:723–817, 2006.

[37] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick, E. Brooks, and K. Warren.

Introduction to UPC and language specification. Center for Computing Sciences,

Institute for Defense Analyses, Technical report, 1999.

[38] D. Chakrabarti, Y. Zhan, and Ch. Faloutsos. R-MAT: A Recursive Model for

Graph Mining. In SIAM Data Mining (SDM’04), volume 4, pages 442–446. SIAM,

2004.

[39] M. M. T. Chakravarty, R. Leshchinskiy, S. P. Jones, G. Keller, and S. Marlow.

Data parallel Haskell: a status report. In Proc. Workshop on Declarative Aspects

of Multicore Programming (DAMP’07), pages 10–18. ACM, 2007.

[40] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel Programmability and

the Chapel language. International Journal of High Performance Computing Ap-

plications, 21(3):291, 2007.

[41] B. L. Chamberlain, S.-E. Choi, S. J. Deitz, D. Iten, and V. Litvinov. Authoring

user-defined domain maps in Chapel. Cray user group, 2011.

[42] B. L. Chamberlain, S.-E. Choi, M. Dumler, Th. Hildebrandt, D. Iten, V. Litvinov,

and G. Titus. The State of the Chapel Union. Proc. Cray User Group conference

(CUG’13), 2013.

[43] B. L. Chamberlain, S. E. Choi, E. C. Lewis, L. Snyder, W. D. Weathersby, and

C. Lin. The case for high-level parallel programming in ZPL. Computational

Science Engineering, IEEE, 5(3):76 –86, July 1998.

[44] B. L. Chamberlain, S. J. Deitz, D. Iten, and S.-E. Choi. User-defined distribu-

tions and layouts in chapel: philosophy and framework. In Proc. 2nd USENIX

conference on Hot topics in parallelism, pages 12–12. USENIX Association, 2010.

[45] D. D. Chamberlin and R. F. Boyce. SEQUEL: A structured English query lan-

guage. In Proc. 1974 ACM SIGFIDET (now SIGMOD) workshop on Data de-

scription, access and control, pages 249–264. ACM, 1974.

[46] C. Chan, J. Ansel, Yee Lok Wong, S. Amarasinghe, and A. Edelman. Autotuning

multigrid with PetaBricks. In Proc. Conference on High Performance Computing

Networking, Storage and Analysis, (SC’09), pages 1–12, Nov 2009.

[47] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von

Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster

computing. In Proc. 20th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications, pages 519–538. ACM, 2005.

http://www.gwu.edu/~upc/publications/upctr.pdf
http://doi.acm.org/10.1145/1248648.1248652
http://chapel.cray.com/papers/ChapelCUG13.pdf
http://dl.acm.org/citation.cfm?id=1863086.1863098
http://dl.acm.org/citation.cfm?id=1863086.1863098
http://doi.acm.org/10.1145/800296.811515
http://doi.acm.org/10.1145/800296.811515
http://doi.acm.org/10.1145/1094811.1094852
http://doi.acm.org/10.1145/1094811.1094852

BIBLIOGRAPHY 205

[48] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber, and Sh.-H. Teng. Gen-

erating Local Addresses and Communication Sets for Data-parallel Programs. In

Proc. 4th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming (PPoPP’93), pages 149–158. ACM, 1993.

[49] S. Chatterjee, J. R. Gilbert, R. Schreiber, and Sh.-H. Teng. Automatic Array

Alignment in Data-parallel Programs. In Proc. 20th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (PPoPP’93), pages 16–28.

ACM, 1993.

[50] S. Chellappa, F. Franchetti, and M. Püschel. High performance linear transform

program generation for the Cell BE. High Performance Embedded Computing

(HPEC), 2009.

[51] C. Chen, J. Chame, and M. Hall. Combining models and guided empirical search to

optimize for multiple levels of the memory hierarchy. In International Symposium

on Code Generation and Optimization (CGO’05), pages 111–122, March 2005.

[52] Ch. Chen, J. Chame, and M. Hall. CHiLL: A framework for composing high-

level loop transformations, University of Southern California, California, USA.

Technical report, pages 08–897, 2008.

[53] R. Chen, H. Chen, and B. Zang. Tiled-mapreduce: optimizing resource usages of

data-parallel applications on multicore with tiling. In Proc. 19th International

Conference on Parallel Architectures and Compilation Techniques (PACT’10),

pages 523–534. ACM, 2010.

[54] S. Chen and S. W. Schlosser. Map-reduce meets wider varieties of applications,

Intel Research Pittsburgh. Technical Report IRP-TR-08-05, 2008.

[55] A. Church. An Unsolvable Problem of Elementary Number Theory. American

Journal of Mathematics, 58(2):pp. 345–363, 1936.

[56] A. Church. The Calculi of Lambda Conversion. Annals of Mathematics Studies

(AM-6) Princeton University Press, 1985.

[57] M. Classen and M. Griebl. Automatic code generation for distributed memory

architectures in the polytope model. In 20th International Parallel and Distributed

Processing Symposium, 2006., page 7, April 2006.

[58] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13:377–387, June 1970.

[59] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.

MIT Press, 1991.

http://doi.acm.org/10.1145/155332.155348
http://doi.acm.org/10.1145/155332.155348
http://doi.acm.org/10.1145/158511.158517
http://doi.acm.org/10.1145/158511.158517
http://www.cs.usc.edu/assets/001/82866.pdf
http://www.cs.usc.edu/assets/001/82866.pdf
http://www.cs.cmu.edu/~chensm/papers/IRP-TR-08-05.pdf
http://www.jstor.org/stable/2371045
http://doi.acm.org/10.1145/362384.362685

206 BIBLIOGRAPHY

[60] C. Ţăpuş, I.-H. Chung, and J. K. Hollingsworth. Active Harmony: Towards Auto-

mated Performance Tuning. In Proc. ACM/IEEE Conference on Supercomputing

(SC’02), pages 1–11. IEEE Computer Society Press, 2002.

[61] L. Dagum and R. Menon. OpenMP: an industry standard API for shared-memory

programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

[62] L. Damas and R. Milner. Principal type-schemes for functional programs. In

Proc. 9th ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages, pages 207–212. ACM, 1982.

[63] J. Darlington, A. Field, P. Harrison, P. Kelly, D. Sharp, Q. Wu, and R. While.

Parallel programming using skeleton functions. In Proc. Parallel Architectures and

Languages Europe (PARLE’93), LNCS 694, pages 146–160. Springer, 1993.

[64] L. Davis. Genetic Algorithms and Simulated Annealing. Pitman, 1987.

[65] F. De Mesmay, A. Rimmel, Y. Voronenko, and M. Püschel. Bandit-based Opti-

mization on Graphs with Application to Library Performance Tuning. In Proc.

26th Annual International Conference on Machine Learning, pages 729–736. ACM,

2009.

[66] J. Dean, S. Ghemawat, P. Kelly, D. Sharp, Q. Wu, and R. While. MapReduce:

simplified data processing on large clusters. In Proc. 6th Conference on Symposium

on Operating Systems Design & Implementation (OSDI04). USENIX Association,

2004.

[67] R. Dementiev, L. Kettner, and P. Sanders. STXXL: Standard template library for

XXL data sets. Springer, 2005.

[68] A. Donaldson, C. Riley, A. Lokhmotov, and A. Cook. Auto-parallelisation of Sieve

C++ programs. In Proc. 2007 conference on Parallel processing, pages 18–27.

Springer-Verlag, 2007.

[69] L. DOrazio and S. Bimonte. Multidimensional Arrays for Warehousing Data on

Clouds. In Data Management in Grid and Peer-to-Peer Systems, LNCS 6265,

pages 26–37. Springer, 2010.

[70] Ch. Dornan and I. Jones. Alex User Guide, 2003.

[71] T.B. Downing. Java RMI: Remote Method Invocation. IDG Books Worldwide,

Inc., 1st edition, 1998.

[72] J. Duffy and E. Essey. Parallel LINQ: Running Queries On Multi-Core Processors.

MSDN Magazine, pages 70–78, October 2007.

[73] E. Dumbill and N. M. Bornstein. Mono: a developer’s notebook. O’Reilly Media,

Inc., 2004.

http://dl.acm.org/citation.cfm?id=762761.762771
http://dl.acm.org/citation.cfm?id=762761.762771
http://doi.acm.org/10.1145/582153.582176
http://doi.acm.org/10.1145/1553374.1553468
http://doi.acm.org/10.1145/1553374.1553468
http://dx.doi.org/10.1007/978-3-642-15108-8_3
http://dx.doi.org/10.1007/978-3-642-15108-8_3
https://www.haskell.org/alex/doc/alex.pdf

BIBLIOGRAPHY 207

[74] J. Ekanayake, T. Gunarathne, G. Fox, A. S. Balkir, C. Poulain, N. Araujo, and

R. Barga. Dryadlinq for scientific analyses. In 2009 Fifth IEEE International

Conference on e-Science, pages 329–336. IEEE, 2009.

[75] J. Ekanayake, H. Li, B. Zhang, Th. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox.

Twister: a runtime for iterative MapReduce. In Proc. 19th ACM International

Symposium on High Performance Distributed Computing, pages 810–818. ACM,

2010.

[76] J. Ekanayake, S. Pallickara, and G. Fox. MapReduce for Data Intensive Scientific

Analyses. In IEEE Fourth International Conference on eScience, 2008., pages

277–284, 2008.

[77] M. A. Ellis and B. Stroustrup. The annotated C++ reference manual. Addison-

Wesley Longman Publishing Co., Inc., 1990.

[78] J. Enmyren and C. W. Kessler. SkePU: A Multi-backend Skeleton Programming

Library for multi-GPU Systems. In Proc. 4th International Workshop on High-

level Parallel Programming and Applications, pages 5–14. ACM, 2010.

[79] Z. Fadika, E. Dede, M. Govindaraju, and L. Ramakrishnan. MARIANE: MApRe-

duce Implementation Adapted for HPC Environments. In Grid Computing

(GRID), 2011 12th IEEE/ACM International Conference on, pages 82–89, 2011.

[80] J. Falcou, J. Sérot, T. Chateau, and J. T. Lapresté. Quaff: efficient C++ design

for parallel skeletons. Parallel Computing, 32(78):604 – 615, 2006.

[81] P. Feautrier. Some efficient solutions to the affine scheduling problem. I. One-

dimensional time. International Journal of Parallel Programming, 21(5):313–347,

1992.

[82] J. T. Feo, D. C. Cann, and R. R. Oldehoeft. A report on the sisal language project.

Journal of Parallel and Distributed Computing, 10(4):349 – 366, 1990.

[83] M.J. Flynn. Some Computer Organizations and Their Effectiveness. IEEE Trans.

Computers, C-21(9):948–960, September 1972.

[84] F. Franchetti, F. Mesmay, D. McFarlin, and M. Püschel. Operator Language: A

Program Generation Framework for Fast Kernels. In Domain-Specific Languages,

pages 385–409. Springer, 2009.

[85] A.S. Fraser. Simulation of Genetic Systems by Automatic Digital Computers VI.

Epistasis. Australian Journal of Biological Sciences, 13(2):150–162, January 1960.

[86] M. Frigo and S. G. Johnson. FFTW: an adaptive software architecture for the

FFT. In Proc. IEEE International Conference on Acoustics, Speech and Signal

Processing, 1998., volume 3, pages 1381–1384, May 1998.

http://doi.acm.org/10.1145/1851476.1851593
http://doi.acm.org/10.1145/1863482.1863487
http://doi.acm.org/10.1145/1863482.1863487
http://www.sciencedirect.com/science/article/pii/S0167819106000275
http://www.sciencedirect.com/science/article/pii/S0167819106000275
http://dx.doi.org/10.1007/BF01407835
http://dx.doi.org/10.1007/BF01407835
http://www.sciencedirect.com/science/article/B6WKJ-4BRJJ83-5V/2/b0e67a979dcb3b4d0d941a45d823a1c4
http://dx.doi.org/10.1007/978-3-642-03034-5_18
http://dx.doi.org/10.1007/978-3-642-03034-5_18
http://www.publish.csiro.au/paper/BI9600150
http://www.publish.csiro.au/paper/BI9600150

208 BIBLIOGRAPHY

[87] M. Frigo and S. G. Johnson. The Design and Implementation of FFTW3. Proc.

IEEE, 93(2):216–231, 2005.

[88] D. Adler G. Colvin, B. Dawes and P. Dimov. The boost shared ptr class template.

[89] J. Garcia, E. Ayguade, and J. Labarta. A Novel Approach Towards Automatic

Data Distribution. In Proc. IEEE/ACM Supercomputing Conference, 1995., pages

78–78, 1995.

[90] A. F. Gates, O. Natkovich, S. Chopra, P. Kamath, S. M. Narayanamurthy, C. Ol-

ston, B. Reed, S. Srinivasan, and U. Srivastava. Building a high-level dataflow

system on top of Map-Reduce: the Pig experience. Proc. VLDB Endow., 2:1414–

1425, August 2009.

[91] W. Gehrke. Fortran 95 language guide. Springer-Verlag New York, Inc., 1996.

[92] A. Geist, W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, W. Saphir,

T. Skjellum, and M. Snir. MPI-2: Extending the message-passing interface. In

Euro-Par’96 Parallel Processing, pages 128–135. Springer, 1996.

[93] A. Ghuloum, A. Sharp, N. Clemons, S. D. Toit, R. Malladi, M. Gangadhar, M. Mc-

Cool, and H. Pabst. Array Building Blocks: A Flexible Parallel Programming

Model for Multicore and Many-Core Architectures, September 2010.

[94] W. D. Goldfarb. The undecidability of the second-order unification problem. The-

oretical Computer Science, 13(2):225–230, 1981.

[95] J. Gosling. The Java language specification. Prentice Hall, 2000.

[96] G. Goumas, N. Drosinos, M. Athanasaki, and N. Koziris. Message-passing code

generation for non-rectangular tiling transformations. Parallel Computing, 32(10):

711 – 732, 2006.

[97] C. Grelck. Single Assignment C (SAC) High Productivity Meets High Perfor-

mance. In Central European Functional Programming School, pages 207–278.

Springer, 2012.

[98] C. Grleck. Shared memory multiprocessor support for functional array processing

in SAC. Journal of Functional Programming (JFP’05), 15(03):353–401, 2005.

[99] W. Gropp, E. L. Lusk, and A. Skjellum. Using Mpi: Portable Parallel Program-

ming With the Message-Passing Interface. Number v. 1. University Press Group

Limited, 1999.

[100] M. Gupta and P. Banerjee. PARADIGM: a compiler for automatic data distribu-

tion on multicomputers. In Proc. 7th international conference on Supercomputing,

pages 87–96. ACM, 1993.

http://www.boost.org/doc/libs/1_55_0/libs/smart_ptr/shared_ptr.htm
http://portal.acm.org/citation.cfm?id=1687553.1687568
http://portal.acm.org/citation.cfm?id=1687553.1687568
http://dx.doi.org/10.1007/3-540-61626-8_16
http://www.drdobbs.com/go-parallel/article/print?articleId=227300084
http://www.drdobbs.com/go-parallel/article/print?articleId=227300084
http://www.sciencedirect.com/science/article/pii/0304397581900402
http://www.sciencedirect.com/science/article/pii/S0167819106000470
http://www.sciencedirect.com/science/article/pii/S0167819106000470
http://dx.doi.org/10.1007/978-3-642-32096-5_5
http://dx.doi.org/10.1007/978-3-642-32096-5_5
http://dx.doi.org/10.1017/S0956796805005538
http://dx.doi.org/10.1017/S0956796805005538
http://doi.acm.org/10.1145/165939.165959
http://doi.acm.org/10.1145/165939.165959

BIBLIOGRAPHY 209

[101] M. Harman. The Current State and Future of Search Based Software Engineering.

In 2007 Future of Software Engineering, pages 342–357. IEEE Computer Society,

2007.

[102] M. Harman. Software Engineering: An Ideal Set of Challenges for Evolutionary

Computation. In Proceeding of the Fifteenth Annual Conference Companion on

Genetic and Evolutionary Computation Conference Companion, pages 1759–1760.

ACM, 2013.

[103] M. Harman and B. F. Jones. Search-based software engineering. Information and

Software Technology, 43(14):833 – 839, 2001.

[104] R. Harper, R. Milner, and M. Tofte. The Definition of Standard ML Version 2.

Department of Computer Science, University of Edinburgh, UK. Technical Report

ECS-LFCS-88-62, August 1988.

[105] A. Hejlsberg, S. Wiltamuth, and P. Golde. C# Language Specification. Addison-

Wesley Longman Publishing Co., Inc., 2003.

[106] P. N. Hilfinger, D. Bonachea, K. Datta, D. Gay, S. Graham, A. Kamil, B. Liblit,

G. Pike, J. Su, and K. Yelick. Titanium language reference manual version 2.22.

Technical Report UCB/EECS-2005-15.4, August 2006.

[107] W.D. Hillis. The connection machine. MIT Press, 1989.

[108] R. Hindley. The Principal Type-Scheme of an Object in Combinatory Logic.

Transactions of the American Mathematical Society, 146:29–60, 1969.

[109] A. Homaifar, Ch. X. Qi, and S. H. Lai. Constrained Optimization Via Genetic

Algorithms. SIMULATION, 62(4):242–253, 1994.

[110] R. Hooke. Direct search solution of numerical and statistical problems. Journal

of the Association for Computing Machinery (ACM), pages 212–239, 1961.

[111] G. P. Huet. The undecidability of unification in third order logic. Information and

Control, 22(3):257 – 267, 1973.

[112] M. Isard and Y. Yu. Distributed data-parallel computing using a high-level pro-

gramming language. In Proc. 35th SIGMOD international conference on Manage-

ment of data, pages 987–994. Microsoft, ACM, 2009.

[113] W. Jiang, V. T. Ravi, and G. Agrawal. A Map-Reduce System with an Alternate

API for Multi-core Environments. In 10th IEEE/ACM International Conference

on Cluster, Cloud and Grid Computing (CCGrid’10), pages 84 –93. Department

of Computer Science and Engineering, The Ohio State University, Columbis, OH

43210, 2010.

http://dx.doi.org/10.1109/FOSE.2007.29
http://doi.acm.org/10.1145/2464576.2480770
http://doi.acm.org/10.1145/2464576.2480770
http://www.sciencedirect.com/science/article/pii/S0950584901001896
http://www.cs.berkeley.edu/~kamil/titanium/doc/lang-ref.pdf
http://www.jstor.org/stable/1995158
http://sim.sagepub.com/content/62/4/242.abstract
http://sim.sagepub.com/content/62/4/242.abstract
http://ci.nii.ac.jp/naid/30021965981/en/
http://www.sciencedirect.com/science/article/pii/S001999587390301X
http://doi.acm.org/10.1145/1559845.1559962
http://doi.acm.org/10.1145/1559845.1559962

210 BIBLIOGRAPHY

[114] K. Kennedy, C. Koelbel, and H. Zima. The rise and fall of High Performance

Fortran: an historical object lesson. In Proc. 3rd ACM SIGPLAN conference on

History of programming languages, pages 7:1–7:22. ACM, 2007.

[115] K. Kennedy and U. Kremer. Automatic data layout for high performance Fortran.

In Proc. 1995 ACM/IEEE conference on Supercomputing (CDROM). ACM, 1995.

[116] K. Kennedy and U. Kremer. Automatic data layout for distributed-memory ma-

chines. ACM Transactions on Programming Languages and Systems., 20(4):869–

916, July 1998.

[117] D. Kossmann. The state of the art in distributed query processing. ACM Comput.

Surv., 32:422–469, December 2000.

[118] H. Kuchen and J. Striegnitz. Higher-order Functions and Partial Applications for

a C++ Skeleton Library. In Proc. 2002 Joint ACM-ISCOPE Conference on Java

Grande, pages 122–130. ACM, 2002.

[119] P. J. Landin. The Mechanical Evaluation of Expressions. The Computer Journal,

6(4):308–320, 1964.

[120] W. B. Langdon and M. Harman. Evolving a CUDA kernel from an nVidia tem-

plate. In Proc. IEEE Congress on Evolutionary Computation (CEC’10), pages

1–8, 2010.

[121] M. Le Fur, J.-L. Pazat, and F. C. André. Static domain analysis for compiling

commutative loop nests. Technical Report RR-2067, 1993.

[122] E.A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[123] C. Lengauer. Loop parallelization in the polytope model. In CONCUR’93, pages

398–416. Springer , 1993.

[124] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,

M. Horowitz, and M. S. Lam. The Stanford Dash multiprocessor. Computer, 25

(3):63–79, March 1992.

[125] D. Levine, D. Callahan, and J. Dongarra. A comparative study of automatic

vectorizing compilers. Parallel Computing, 17(10-11):1223 – 1244, 1991.

[126] M. Leyton and J. M. Piquer. Skandium: Multi-core Programming with Algorith-

mic Skeletons. In 18th Euromicro International Conference on Parallel, Distributed

and Network-Based Processing (PDP), 2010, pages 289–296, Febuary 2010.

[127] J. Li and M. Chen. Generating Explicit Communication from Shared-memory

Program References. In Proc. 1990 ACM/IEEE Conference on Supercomputing,

pages 865–876. IEEE Computer Society Press, 1990.

http://doi.acm.org/10.1145/1238844.1238851
http://doi.acm.org/10.1145/1238844.1238851
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.1167
http://doi.acm.org/10.1145/291891.291901
http://doi.acm.org/10.1145/291891.291901
http://doi.acm.org/10.1145/371578.371598
http://doi.acm.org/10.1145/583810.583824
http://doi.acm.org/10.1145/583810.583824
http://comjnl.oxfordjournals.org/content/6/4/308.abstract
http://hal.inria.fr/inria-00074605
http://hal.inria.fr/inria-00074605
http://dx.doi.org/10.1007/3-540-57208-2_28
http://www.sciencedirect.com/science/article/pii/S0167819105800353
http://www.sciencedirect.com/science/article/pii/S0167819105800353
http://dl.acm.org/citation.cfm?id=110382.110618
http://dl.acm.org/citation.cfm?id=110382.110618

BIBLIOGRAPHY 211

[128] J. Li and M. Chen. Index domain alignment: minimizing cost of cross-referencing

between distributed arrays. In Proc. 3rd Symposium on the Frontiers of Massively

Parallel Computation, 1990., pages 424–433, Oct 1990.

[129] G. Liao, K. Datta, and Th. Willke. Gunther: Search-Based Auto-Tuning of

MapReduce. In Euro-Par 2013 Parallel Processing, pages 406–419. Springer Berlin

Heidelberg, 2013.

[130] A. W. Lim, G. I. Cheong, and M. S. Lam. An Affine Partitioning Algorithm to

Maximize Parallelism and Minimize Communication. In Proc. 13th International

Conference on Supercomputing, pages 228–237. ACM, 1999.

[131] A. W. Lim and M. S. Lam. Maximizing Parallelism and Minimizing Synchroniza-

tion with Affine Transforms. In Proc. 24th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, pages 201–214. ACM, 1997.

[132] C. Lin and L. Snyder. ZPL: An array sublanguage. In Languages and Compilers

for Parallel Computing, pages 96–114. Springer , 1994.

[133] T. Lindholm and F. Yellin. Java virtual machine specification. Addison-Wesley

Longman Publishing Co., Inc., 1999.

[134] R. Loogen, Y. Ortega-Mallén, and R. Peña maŕl. Parallel functional programming

in Eden. Journal of Functional Programming, 15:431–475, 5 2005.

[135] D.B. Loveman. High performance Fortran. Parallel Distributed Technology: Sys-

tems Applications, IEEE, 1(1):25 –42, 1993.

[136] C. Lucchesi. The Undecidability of the Unification Problem for 3rd Order Lan-

guages. Department of Applied Analysis and Computer Science, Faculty of Math-

ematics, University of Waterloo, 1972.

[137] G. Luecke, H. Chen, J. Coyle, J. Hoekstra, M. Kraeva, and Y. Zou. MPI-CHECK:

a tool for checking Fortran 90 MPI programs. Concurrency and Computation:

Practice and Experience, 15(2):93–100, 2003.

[138] N. R. Mahapatra and B. Venkatrao. The processor-memory bottleneck: problems

and solutions. Crossroads, 5, April 1999.

[139] B. Mandelbrot. Fractals and chaos: the Mandelbrot set and beyond, volume 3.

Springer, 2004.

[140] S. Marlow and A. Gill. Happy: The parser generator for haskell, 2004.

[141] A. Martelli and U. Montanari. An Efficient Unification Algorithm. ACM Trans-

actions on Programming Languages and Systems, 4(2):258–282, 1982.

http://dx.doi.org/10.1007/978-3-642-40047-6_42
http://dx.doi.org/10.1007/978-3-642-40047-6_42
http://doi.acm.org/10.1145/305138.305197
http://doi.acm.org/10.1145/305138.305197
http://doi.acm.org/10.1145/263699.263719
http://doi.acm.org/10.1145/263699.263719
http://dx.doi.org/10.1007/3-540-57659-2_6
http://journals.cambridge.org/article_S0956796805005526
http://journals.cambridge.org/article_S0956796805005526
http://dx.doi.org/10.1002/cpe.705
http://dx.doi.org/10.1002/cpe.705
http://doi.acm.org/10.1145/357783.331677
http://doi.acm.org/10.1145/357783.331677
https://www.haskell.org/happy/doc/html/index.html
http://doi.acm.org/10.1145/357162.357169

212 BIBLIOGRAPHY

[142] E. Meijer, B. Beckman, and G. Bierman. LINQ: reconciling object, relations

and XML in the .NET framework. In Proc. 2006 ACM SIGMOD international

conference on Management of data, pages 706–706. ACM, 2006.

[143] J. Melton. SQL language summary. ACM Comput. Surv., 28(1):141–143, 1996.

[144] R. Milner. A theory of type polymorphism in programming. Journal of Computer

and System Sciences, 17(3):348 – 375, 1978.

[145] R. Milner. The Polyadic -Calculus: a Tutorial. In Logic and Algebra of Specifica-

tion, volume 94, pages 203–246. Springer Berlin Heidelberg, 1993.

[146] R. Mistry and S. Misner. Introducing Microsoft SQL Server 2008 R2. Microsoft

Press, 2010.

[147] MySQL. Overview of Partitioning in MySQL, 1997.

[148] B. Nichols, D. Buttlar, and J. P. Farrell. Pthreads programming. O’Reilly Media,

1996.

[149] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Programming

with CUDA. Queue, 6:40–53, March 2008.

[150] J. Nieplocha and B. Carpenter. ARMCI: A portable remote memory copy library

for distributed array libraries and compiler run-time systems. In Parallel and

Distributed Processing, pages 533–546. Springer , 1999.

[151] R. W. Numrich and J. Reid. Co-array Fortran for parallel programming. SIGPLAN

Fortran Forum, 17:1–31, August 1998.

[152] NVIDIA. Compute Unified Device Architecture Programming Guide. NVIDIA:

Santa Clara, CA, 83:129, 2007.

[153] M. Odersky. The Scala Language Specification version 2.9. May 2011.

[154] L. Oliker, A. Canning, J. Carter, J. Shalf, and S. Ethier. Scientific Computations

on Modern Parallel Vector Systems. In Proc. 2004 ACM/IEEE Conference on

Supercomputing, page 10. IEEE Computer Society, 2004.

[155] D. M. Olsson and L. S. Nelson. The Nelder-Mead Simplex Procedure for Function

Minimization. Technometrics, 17(1):45–51, 1975.

[156] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig latin: a not-so-

foreign language for data processing. In Proc. 2008 ACM SIGMOD international

conference on Management of data, pages 1099–1110. Yahoo, ACM, 2008.

[157] S. Papadomanolakis and A. Ailamaki. AutoPart: automating schema design

for large scientific databases using data partitioning. In Scientific and Statisti-

cal Database Management, 2004. Proceedings. 16th International Conference on,

pages 383–392, 2004.

http://doi.acm.org/10.1145/1142473.1142552
http://doi.acm.org/10.1145/1142473.1142552
http://doi.acm.org/10.1145/234313.234374
http://www.sciencedirect.com/science/article/pii/0022000078900144
http://dx.doi.org/10.1007/978-3-642-58041-3_6
http://dev.mysql.com/doc/refman/5.1/en/partitioning-overview.html
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://dx.doi.org/10.1007/BFb0097937
http://dx.doi.org/10.1007/BFb0097937
http://doi.acm.org/10.1145/289918.289920
http://developer.download.nvidia.com/compute/cuda/1_1/NVIDIA_CUDA_Programming_Guide_1.1.pdf
http://dx.doi.org/10.1109/SC.2004.54
http://dx.doi.org/10.1109/SC.2004.54
http://www.tandfonline.com/doi/abs/10.1080/00401706.1975.10489269
http://www.tandfonline.com/doi/abs/10.1080/00401706.1975.10489269
http://doi.acm.org/10.1145/1376616.1376726
http://doi.acm.org/10.1145/1376616.1376726

BIBLIOGRAPHY 213

[158] S. Peyton Jones. Haskell 98 language and libraries: the revised report. Cambridge

University Press, 2003.

[159] S. Peyton Jones. Harnessing the Multicores: Nested Data Parallelism in Haskell.

In Programming Languages and Systems, pages 138–138. Springer, 2008.

[160] S. Peyton Jones and S. Singh. A tutorial on parallel and concurrent program-

ming in Haskell. In Proc. 6th international conference on Advanced functional

programming, pages 267–305. Springer-Verlag, 2009.

[161] B.C. Pierce. Types and Programming Languages. Mit Press, 2002.

[162] B.C. Pierce. Advanced Topics In Types And Programming Languages. Mit Press,

2005.

[163] S. J. Plimpton and K. D. Devine. MapReduce in MPI for Large-scale graph

algorithms. Parallel Computing, 37(9):610–632, 2011.

[164] L. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and P. Sadayap-

pan. Combined iterative and model-driven optimization in an automatic paral-

lelization framework. In International Conference for High Performance Comput-

ing, Networking, Storage and Analysis (SC’10), pages 1–11, 2010.

[165] M. Püschel, F. Franchetti, and Y. Voronenko. Encyclopedia of Parallel Computing,

chapter Spiral. Springer, 2011.

[166] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. Johnson, D. Padua, M. Veloso,

and R. W. Johnson. Spiral: A Generator for Platform-Adapted Libraries of Signal

Processing Alogorithms. International Journal of High Performance Computing

Applications, 18(1):21–45, 2004.

[167] J. Ramanujam and P. Sadayappan. Compile-time techniques for data distribution

in distributed memory machines. IEEE Trans. Parallel and Distributed Systems,

2(4):472–482, Oct 1991.

[168] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. Evaluat-

ing mapreduce for multi-core and multiprocessor systems. In Proc. IEEE 13th In-

ternational Symposium on High Performance Computer Architecture (HPCA’13),

pages 13–24, 2007.

[169] S. K. Rao and T. Kailath. Regular iterative algorithms and their implementation

on processor arrays. Proc. IEEE, 76(3):259–269, Mar 1988.

[170] C. Reichenbach, Y. Smaragdakis, and N. Immerman. PQL: A Purely-Declarative

Java Extension for Parallel Programming. In ECOOP 2012 - Object-Oriented

Programming, pages 53–78. Springer Berlin Heidelberg, 2012.

http://dx.doi.org/10.1007/978-3-540-89330-1_10
http://portal.acm.org/citation.cfm?id=1813347.1813353
http://portal.acm.org/citation.cfm?id=1813347.1813353
http://hpc.sagepub.com/content/18/1/21.abstract
http://hpc.sagepub.com/content/18/1/21.abstract
http://dx.doi.org/10.1007/978-3-642-31057-7_4
http://dx.doi.org/10.1007/978-3-642-31057-7_4

214 BIBLIOGRAPHY

[171] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems.

Transactions of the American Mathematical Society, 74(2):358–366, 1953.

[172] D. Ridge, D. Becker, P. Merkey, and T. Sterling. Beowulf: harnessing the power of

parallelism in a pile-of-PCs. In Proc. IEEE Aerospace Conference, 1997., volume 2,

pages 79–91, February 1997.

[173] J. A. Robinson. A Machine-Oriented Logic Based on the Resolution Principle. J.

ACM, 12(1):23–41, 1965.

[174] R. M. Russell. The CRAY-1 computer system. Commun. ACM, 21:63–72, January

1978.

[175] T. Saidani, J. Falcou, C. Tadonki, L. Lacassagne, and D. Etiemble. Algorithmic

Skeletons within an Embedded Domain Specific Language for the CELL Proces-

sor. In 18th International Conference on Parallel Architectures and Compilation

Techniques (PACT’09)., pages 67–76, September 2009.

[176] A. Sanz, R. Asenjo, J. Lopez, R. Larrosa, A. Navarro, V. Litvinov, Sung-Eun

Choi, and B. L. Chamberlain. Global Data Re-allocation via Communication

Aggregation in Chapel. In IEEE 24th International Symposium on Computer

Architecture and High Performance Computing (SBAC-PAD’12), pages 235–242,

2012.

[177] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove. The X10 language

specification. Technical report, May 2011.

[178] V. Sarkar and D. Cann. POSC - a partitioning and optimizing SISAL compiler.

In Proc. 4th international conference on Supercomputing, pages 148–164. ACM,

1990.

[179] V. Sarkar and J. Hennessy. Compile-time partitioning and scheduling of parallel

programs. In Proc. 1986 SIGPLAN symposium on Compiler construction (CC’86),

pages 17–26. ACM, 1986.

[180] N. Scaife, S. Horiguchi, G. Michaelson, and P. Bristow. A parallel SML compiler

based on algorithmic skeletons. Journal of Functional Programming, 15:615–650,

7 2005.

[181] R. G. Scarborough and H. G. Kolsky. A vectorizing Fortran compiler. IBM Journal

of Research and Development, 30(2):163 –171, march 1986.

[182] S. B. Scholz. Single Assignment C: efficient support for high-level array operations

in a functional setting. Journal of Functional Programming, 13(06):1005–1059,

November 2003.

[183] S. Schulz. System Description: E 1.8. In Proc. 19th LPAR, Stellenbosch, volume

8312, pages 735–743. Springer, 2013.

http://www.jstor.org/stable/1990888
http://doi.acm.org/10.1145/321250.321253
http://doi.acm.org/10.1145/359327.359336
http://dist.codehaus.org/x10/documentation/languagespec/x10-latest.pdf
http://dist.codehaus.org/x10/documentation/languagespec/x10-latest.pdf
http://doi.acm.org/10.1145/77726.255152
http://journals.cambridge.org/article_S0956796804005489
http://journals.cambridge.org/article_S0956796804005489
http://dx.doi.org/10.1017/S0956796802004458
http://dx.doi.org/10.1017/S0956796802004458

BIBLIOGRAPHY 215

[184] J. T. Schwartz, R. B. Dewar, E. Schonberg, and E. Dubinsky. Programming with

sets; an introduction to SETL. Springer-Verlag New York, Inc., 1986.

[185] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price.

Access path selection in a relational database management system. pages 23–34,

1979.

[186] J. Shin, M. W. Hall, J. Chame, Ch. Chen, P. F. Fischer, and P. D. Hovland.

Speeding Up Nek5000 with Autotuning and Specialization. In Proc. 24th ACM

International Conference on Supercomputing, pages 253–262. ACM, 2010.

[187] B. Singer and M. Veloso. Stochastic Search for Signal Processing Algorithm Op-

timization. In Supercomputing, ACM/IEEE 2001 Conference, pages 41–41, 2001.

[188] A. Sinkarovs and S.-B. Scholz. Semantics-preserving data layout transformations

for improved vectorisation. In Proc. 2nd ACM SIGPLAN workshop on Functional

high-performance computing, pages 59–70. ACM, 2013.

[189] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI–the com-

plete reference. MIT Press (Cambridge, Mass.), Feb 1996.

[190] S. Srinivasan. Kilim: A server framework with lightweight actors, isolation types

and zero-copy messaging. Technical Report UCAM-CL-TR-769, February 2010.

[191] S. Srinivasan and A. Mycroft. Kilim: Isolation-Typed Actors for Java. In ECOOP

2008 Object-Oriented Programming, pages 104–128. Springer, 2008.

[192] J. Srot, D. Ginhac, and J.-P. Drutin. SKiPPER: A Skeleton-Based Parallel Pro-

gramming Environment for Real-Time Image Processing Applications. In Parallel

Computing Technologies, pages 296–305. Springer, 1999.

[193] V. S. Sunderam. PVM: A framework for parallel distributed computing. Concur-

rency: Practice and Experience, 2(4):315–339, 1990.

[194] V. Tabatabaee, A. Tiwari, and J. K. Hollingsworth. Parallel Parameter Tuning for

Applications with Performance Variability. In Proc. 2005 ACM/IEEE Conference

on Supercomputing, page 57. IEEE Computer Society, 2005.

[195] P. Tang and J. N. Zigman. Reducing Data Communication Overhead for

DOACROSS Loop Nests. In Proc. 8th International Conference on Supercom-

puting, pages 44–53. ACM, 1994.

[196] The glorious Glasgow Haskell compilation system users guide version 7.6.1, 2007.

[197] A. Tiwari, Chun Chen, J. Chame, M. Hall, and J. K. Hollingsworth. A scalable

auto-tuning framework for compiler optimization. In IEEE International Sympo-

sium on Parallel Distributed Processing (IPDPS’09), pages 1–12, 2009.

http://doi.acm.org/10.1145/582095.582099
http://doi.acm.org/10.1145/1810085.1810120
http://doi.acm.org/10.1145/2502323.2502332
http://doi.acm.org/10.1145/2502323.2502332
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.1372&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.154.1372&rep=rep1&type=pdf
http://dx.doi.org/10.1007/978-3-540-70592-5_6
http://dx.doi.org/10.1007/3-540-48387-X_31
http://dx.doi.org/10.1007/3-540-48387-X_31
http://dx.doi.org/10.1002/cpe.4330020404
http://dx.doi.org/10.1109/SC.2005.52
http://dx.doi.org/10.1109/SC.2005.52
http://doi.acm.org/10.1145/181181.181261
http://doi.acm.org/10.1145/181181.181261
https://downloads.haskell.org/~ghc/7.6.1/docs/html/users_guide/

216 BIBLIOGRAPHY

[198] A. Tiwari, V. Tabatabaee, and J. K. Hollingsworth. Tuning parallel applications

in parallel. Parallel Computing, 35(89):475 – 492, 2009.

[199] T. Tsuda and Y. Kunieda. V-Pascal: an automatic vectorizing compiler for Pascal

with no language extensions. In Proc. 1988 ACM/IEEE conference on Supercom-

puting, pages 182–189. IEEE Computer Society Press, 1988.

[200] A. M. Turing. On Computable Numbers, with an Application to the Entschei-

dungsproblem. Proc. London Mathematical Society, s2-42(1):230–265, 1937.

[201] D. Turner. Miranda: A non-strict functional language with polymorphic types.

In Functional Programming Languages and Computer Architecture, pages 1–16.

Springer, 1985.

[202] University of Southampton. The Iridis Compute Cluster, 2014.

[203] D. Vandevoorde and N. M. Josuttis. C++ Templates. Addison-Wesley Longman

Publishing Co., Inc., 2002.

[204] C. Varela and G. Agha. Programming dynamically reconfigurable open systems

with SALSA. SIGPLAN Not., 36:20–34, December 2001.

[205] T. L. Veldhuizen. C++ templates as partial evaluation. CoRR, cs.PL/9810010,

1998.

[206] M. Weiland. Chapel, Fortress and X10: novel languages for HPC, HPCx Consor-

tium. Technical report 0706, October 2007.

[207] R. C. Whaley. ATLAS Version 3.9: Overview and Status. In Software Automatic

Tuning, pages 19–32. Springer New York, 2010.

[208] R. C. Whaley and J. J. Dongarra. Automatically Tuned Linear Algebra Software.

In Proc. 1998 ACM/IEEE Conference on Supercomputing, pages 1–27. IEEE Com-

puter Society, 1998.

[209] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated empirical optimizations

of software and the ATLAS project. Parallel Computing, 27(12):3 – 35, 2001.

[210] T. White. Hadoop: The Definitive Guide. Yahoo Press, 2010.

[211] A. N. Wilschut and P. M. G. Apers. Dataflow Query Execution in a Parallel

Main-Memory Environment. In Distributed and Parallel Databases, pages 68–77,

1991.

[212] N. Wirth. The programming language pascal. Acta Informatica, 1(1):35–63, 1971.

[213] H. Xi. Dependent ML An approach to practical programming with dependent

types. Journal of Functional Programming, 17:215–286, 3 2007.

http://www.sciencedirect.com/science/article/pii/S0167819109000805
http://www.sciencedirect.com/science/article/pii/S0167819109000805
http://portal.acm.org/citation.cfm?id=62972.62997
http://portal.acm.org/citation.cfm?id=62972.62997
http://plms.oxfordjournals.org/content/s2-42/1/230.short
http://plms.oxfordjournals.org/content/s2-42/1/230.short
http://dx.doi.org/10.1007/3-540-15975-4_26
http://www.southampton.ac.uk/isolutions/computing/hpc/iridis/
http://doi.acm.org/10.1145/583960.583964
http://doi.acm.org/10.1145/583960.583964
http://dblp.uni-trier.de/rec/bib/journals/corr/cs-PL-9810010
http://www.hpcx.ac.uk/research/hpc/technical_reports/HPCxTR0706.pdf
http://dx.doi.org/10.1007/978-1-4419-6935-4_2
http://dl.acm.org/citation.cfm?id=509058.509096
http://www.sciencedirect.com/science/article/pii/S0167819100000879
http://www.sciencedirect.com/science/article/pii/S0167819100000879
http://dx.doi.org/10.1007/BF00264291
http://journals.cambridge.org/article_S0956796806006216
http://journals.cambridge.org/article_S0956796806006216

BIBLIOGRAPHY 217

[214] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown. SATzilla: Portfolio-based

Algorithm Selection for SAT. (1111.2249), Nov 2011.

[215] H.-C. Yang, A. Dasdan, R.-L. Hsiao, and D. S. Parker. Map-reduce-merge: sim-

plified relational data processing on large clusters. In Proc. ACM SIGMOD Inter-

national Conference on Management of Data, pages 1029–1040. ACM, 2007.

[216] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit, A. Krishnamurthy,

P. Hilfinger, S. Graham, D. Gay, P. Colella, and Y. M. Others. Titanium: A

high-performance Java dialect. Concurrency Practice and Experience, 10(11-13):

825–836, 1998.

[217] Y. Yu, P. K. Gunda, and M. Isard. Distributed aggregation for data-parallel com-

puting: interfaces and implementations. In Proc. ACM SIGOPS 22nd symposium

on Operating systems principles, pages 247–260. ACM, 2009.

http://www.cs.berkeley.edu/~kamil/titanium/doc/lang-ref.pdf
http://www.cs.berkeley.edu/~kamil/titanium/doc/lang-ref.pdf
http://doi.acm.org/10.1145/1629575.1629600
http://doi.acm.org/10.1145/1629575.1629600

“Better is the end of a thing than its beginning, and the patient in spirit is

better than the proud in spirit.” Ecclesiastes 7:8

