
ARTICLE IN PRESS
JID: EOR [m5G;September 15, 2015;20:39]

European Journal of Operational Research 000 (2015) 1–12

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Can involving clients in simulation studies help them solve their future

problems? A transfer of learning experiment

Thomas Monks a,∗, Stewart Robinson b, Kathy Kotiadis c

a Faculty of Health Sciences, University of Southampton, Southampton SO17 1BJ, UK
b School of Business and Economics, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
c School of Computing, University of Kent, Canterbury, Kent CT2 7NZ, UK

a r t i c l e i n f o

Article history:

Received 1 October 2014

Accepted 24 August 2015

Available online xxx

Keywords:

Behavioural OR

Psychology of decision

Model building

Model reuse

Discrete-event simulation

a b s t r a c t

It is often stated that involving the client in operational research studies increases conceptual learning about

a system which can then be applied repeatedly to other, similar, systems. Our study provides a novel measure-

ment approach for behavioural OR studies that aim to analyse the impact of modelling in long term problem

solving and decision making. In particular, our approach is the first to operationalise the measurement of

transfer of learning from modelling using the concepts of close and far transfer, and overconfidence. We in-

vestigate learning in discrete-event simulation (DES) projects through an experimental study. Participants

were trained to manage queuing problems by varying the degree to which they were involved in building

and using a DES model of a hospital emergency department. They were then asked to transfer learning to a

set of analogous problems. Findings demonstrate that transfer of learning from a simulation study is difficult,

but possible. However, this learning is only accessible when sufficient time is provided for clients to process

the structural behaviour of the model. Overconfidence is also an issue when the clients who were involved in

model building attempt to transfer their learning without the aid of a new model. Behavioural OR studies that

aim to understand learning from modelling can ultimately improve our modelling interactions with clients;

helping to ensure the benefits for a longer term; and enabling modelling efforts to become more sustainable.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

Going back as far as Churchman and Schainblatt (1965) it has been

rgued that client involvement in operational research (OR) stud-

es, particularly in model building, is beneficial for successfully im-

lementing a study’s findings. Implementation can take the form of

oncrete changes to the system studied (Kotiadis, Tako, & Vasilakis,

014), or as learning where the clients gain an understanding that

an impact their future decision-making (Robinson, 2014). From this

elief that involvement leads to implementation emanates a stream

f research on client involvement, for instance, group model build-

ng (Andersen, Vennix, Richardson, & Rouwette, 2007; Rouwette,

orzilius, Vennix, & Jacobs, 2011; Rouwette, Vennix, & Mullemkom,

002) and facilitated modelling (Franco & Montibeller, 2010). In the

eld of interest in this study, discrete-event simulation (DES), there

ave been a number of recent papers that focus on how to en-

ance client involvement in the process of developing and/or using
∗ Corresponding author. Tel.: +44 023 8120 8201.
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model (Adamides & Karacapilidis, 2006; den Hengst, de Vreede, &

aghnouji, 2007; Kotiadis et al., 2014; Robinson, 2001; Robin-

on, Radnor, Burgess, & Worthington, 2012; Robinson, Worthington,

urgess, & Radnor, 2014). There is, however, very little evidence, other

han the anecdotal, that the hypothesised relationship between client

nvolvement and successful implementation actually exists.

In a recent study by the authors, implementation as learning is

tudied by investingating the so called high involvement hypothe-

is: that client involvement in a DES study improves client learning

Monks, Robinson, & Kotiadis, 2014). We found that involvement in

ncremental model development and validation, aids clients in the

iscovery of improvement options or variables previously not consid-

red. The study also provided empirical evidence about the impact of

nvolvement in model building and experimentation on single loop

earning (Argyris & Schön, 1996): a change in client attitudes towards

anagement implementation options brought about by involvement

n modelling. Although facilitating single-loop learning through mod-

ls is important the OR literature often comments on the behavioural

ssumption that modelling within a social context leads to deeper

earning about concepts, such as queuing, that can be transferred and

dapted to solve future problems.
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Dimensions of transfer: surface similarity and structural similarity to a hospital

emergency department.
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In this paper we provide a new analysis and new data to test the

impact of client involvement in a DES study on the ability of clients

to transfer their learning to another context i.e. a degree of learn-

ing more in line with a ‘double-loop’ (Argyris & Schön, 1996). Here

management actions, deep transferrable understanding about a prob-

lem and management norms about how to learn are corrected. We

contribute new empirical results that involvement in modelling aids

learning for future decision making by such a double-loop. We also

provide a novel measurement approach for investigating structural

and conceptual learning and confidence effects from models. These

contributions go beyond our previous work that focused simply on

solving an immediate management problem. Our new results and

measurement approach focus on the ability of clients to learn more

deeply and to recognise the generic lessons that could apply to situa-

tions with a similar structure. For example, having realised for a spe-

cific queuing problem that resources should not be loaded at 100 per-

cent, the client then transfers that same lesson to a new context in-

volving a similar queuing problem. The benefit of such learning is that

the implementation of the DES study extends beyond the immediate

problem and it can repeatedly impact upon many problem situations

in which the client is involved without the need for further simu-

lation. Behavioural OR studies that aim to understand such learning

from modelling can ultimately improve the community of practice’s

interaction with clients; helping to ensure that benefits are longer

term; and enabling modelling efforts to become more sustainable.

The specific objectives of the current study are: to determine if

clients can transfer their learning from a DES study to another con-

text; and to determine the effect of client involvement on their abil-

ity to transfer that learning. As such, our work aligns with research

in behavioural OR that analyses the psychological aspects of model

use in problem solving (Hämälläinen, Luoma, & Saarinen, 2013). The

problem solving focus means that the study has much in common

with research about client learning in group model building in system

dynamics (Andersen et al., 2007; Lane, 1994; Rouwette et al., 2002 ,

2011; Scott, Cavana, & Cameron, 2014). The main difference is that we

use experimental methods to explore the impact of study processes

at the individual level.

The remainder of this paper is organised as follows. We firstly

present an overview of the theory associated with transfer of learn-

ing. This covers both the conditions required for successful transfer

and the difficulties people typically face. Secondly, we provide an ex-

planation of the experimental study and materials used in our re-

search. We follow this with the results of the experiment along with

a discussion of both the implications and limitations of the work.

2. Transfer of learning

A typical behavioural experiment for transfer of learning consists

of analogous training and transfer problems. A participant solves the

training problem, is given feedback, and then attempts to solve the

transfer problem (Bassok, 2003). An often cited study uses the Tower

of Hanoi problem in the training task (Gick & Holyoak, 1980). Partici-

pants play the role of a general that must use an army to capture the

Tower of Hanoi from a rival general. There are four routes to the tower.

If the participant attempts to capture the tower using any single route

the army is defeated. However, if the participant divides their army

and uses all four routes at once they can overpower the enemy forces

and capture the tower. In the transfer problem the participant must

decide how to kill a tumour in a patient using X-rays. The problem

is that the required dosage of X-ray will damage the tissue it passes

through on the way to the tumour. The transfer concept is divide and

conquer, i.e. apply lower intensity X-rays from different sides of the

body simultaneously.

There are two important factors in the success of the transfer of

learning: structural and perceived surface similarity. Structural simi-

larity refers to the underlying mechanics of the problem being stud-
Please cite this article as: T. Monks et al., Can involving clients in simul

learning experiment, European Journal of Operational Research (2015), ht
ed. For example, Bakken, Gould, and Kim (1994) study the transfer

erformance between two system dynamics models with the same

nderlying feedback structure, but different surface components: a

ousing market and an oil tanker market. Similarly, in the context of

ES both an emergency department and a call centre have an element

f structural similarity. They can be considered as queuing systems

hat are subject to stochastic variation, with much of the variability

eing driven by arrivals and service times.

Surface similarity refers to whether an individual perceives the

raining task and transfer task to be similar. Surface similarity is an

mportant cue for initiating a transfer attempt. If an individual does

ot see any similarity to the training task in the transfer task then

hey will not attempt to transfer the knowledge. If, however, they do

ee the similarity, then transfer will be attempted (Bassok, 2003).

Transfer success is most likely when there is both structural and

erceived surface similarity. In this case an individual perceives that

he new problem is highly similar to one they have tackled before. In

ddition, the original and new problems are structurally similar so it

s valid to transfer the learning from the one situation to the other.

Fig. 1 illustrates the surface and structural similarity of four dif-

erent queuing problems to a hospital emergency department (the

raining task). For the healthcare walk in clinic there is a high level

f both surface and structural similarity; both concern people in a

ealthcare setting being seen by healthcare professionals, and both

ave highly unpredictable inter-arrival times. Structurally a call cen-

re is very similar to an emergency department, but given the differ-

nt context, the similarity on the surface is not as apparent.

Fig. 1 shows that transfer of learning is probably much less likely

rom a healthcare context to a manufacturing context. This is, in part,

ecause surface similarity is low; individuals are likely to perceive

large difference between the patients in a healthcare setting and

idgets on a production line. Meanwhile, structurally the problems

re quite different: in the manufacturing domain variation is driven

rom cycle times and machine breakdowns as opposed to arrivals and

ervice times.

In a situation where an individual perceives a problem to be highly

imilar to one they have tackled before, but structurally they are

ery different, there is a danger of incorrectly transferring learning.

ne such example is delayed discharges of patients from a hospital.

s shown in Fig. 1, this is a problem that might appear very sim-

lar on the surface to an emergency department, i.e. there are pa-

ients queuing for resource to discharge them. Structurally, however,

he discharge of patients is quite different and improving the timeli-

ess of patient discharge involves understanding inter-organisation
ation studies help them solve their future problems? A transfer of
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o-ordination as well as understanding the trade-off between de-

and and capacity.

Transfer of learning is classified as either close or far. The degree

f closeness is associated with the perceived surface similarity of

he training and transfer problems. For example, a learner may per-

eive that on the surface a manufacturing domain is very different

rom a healthcare domain. Successful positive transfer from a health-

are training problem to a manufacturing transfer problem would

herefore be classified as far transfer. Empirical studies support the

iew that learning for far transfer is generally more difficult (Barnett

Ceci, 2002). Although this appears to be a fairly straightforward

oint to grasp it is actually quite difficult to define far, as perceived

imilarity is highly dependent on contextual and individual factors

Barnett & Ceci, 2002). Classification of problems as far may refer to

ifferent contexts (such as manufacturing and healthcare), the time

ag between transfer attempts or the location where transfer is at-

empted (e.g. a classroom versus a work environment). One method

hat seems to have a positive effect on transfer is to provide multiple

xamples of the problem in the training task. Transfer performance

ppears to improve if both close and far examples are given during

raining (Gick & Holyoak, 1980). The explanation appears to be that

he differences in surface similarity in the examples improve the indi-

iduals’ ability to abstract the structure of the problem – giving them

deeper understanding that is transferable.

A final aspect to consider is spontaneous versus informed trans-

er (Bassok, 2003; Gick & Holyoak, 1987). Consider a manager who

s involved in a simulation study of a manufacturing production line.

n the study the manager learns that she cannot run production line

achines at greater than 90 percent utilisation and still achieve lead

ime targets. Furthermore, the manager finds that there are huge dif-

erences in lead times if machines are run at 85 percent and 95 per-

ent utilisation. Sometime later the manager moves organisation and

s put in charge of a new production line. If, unprompted, the manager

onsiders making similar decisions in the new context (i.e. consid-

rs lower average utilisation to improve lead times), then the trans-

er was spontaneous. The manager recognised the similarity between

he problems, accessed the relevant knowledge and transferred it

uccessfully.

Informed transfer is where the manager is told to transfer what

hey have learnt in training. Informed transfer is an artificial proce-

ure only available in a laboratory setting. Its use is in differentiating

etween problems in accessing relevant knowledge and problems in

earning. Many transfer of learning studies employ a design where

ne group is given a transfer hint (i.e. now use what you have learnt to

olve the following problem) and another group is simply presented

ith the new problem (Bassok, 2003). If the hint group outperforms

he no-hint group then it can be concluded that learning is present,

ut there is an access problem, i.e. the no-hint group does not recog-

ise the similarity between the training and transfer problems. If nei-

her group perform well then there would appear to be a learning

roblem.

In summary, to achieve transfer an individual must not only pos-

ess the relevant knowledge, but also perceive the new problem to

e similar to a previous problem. Of course, for transfer to be cor-

ect the new problem must also be structurally similar to the previ-

us. Perceived similarity can be subjectively divided into close and

ar; the likelihood of transfer success declining with distance. Im-

rovement of transfer likelihood to far domains comes with increased

xposure to analogous problems in different domains. As an anal-

gy consider an experienced DES modeller who has worked in simi-

ar projects across manufacturing, healthcare, the public sector and

ther domains during their career. They are much more likely to

hink in terms of the structure of the queuing problem than an in-

ividual who has had involvement in only a single simulation study.

eanwhile, in daily life, transfer, if it occurs, is spontaneous; there

s no need for prompting. However, in the artificial world of the
Please cite this article as: T. Monks et al., Can involving clients in simul

learning experiment, European Journal of Operational Research (2015), ht
aboratory hints may be needed to encourage subjects to access the

elevant knowledge.

. Transfer experiment

To investigate transfer of learning we sought to design an exper-

ment to explore the degree to which novice simulation users could

uccessfully transfer learning from a recent simulation study to anal-

gous problems in the same and different domains. This investigation

nvolved collecting additional data from the experiments reported in

onks et al. (2014). As such, we do not report the full details of the ex-

eriment here, but provide an overview with details of the approach

sed for measuring transfer of learning.

.1. Overview of the experiment

The purpose of the experiment is to investigate the hypothesis

hat greater involvement in model building leads to greater learn-

ng about the structure of a problem and so to an improved ability

o transfer learning. We created a behavioural experiment making

se of novice simulation users (64 business undergraduate students

ith no simulation training). Bakken et al. (1994) found that MBA

tudents substantially outperformed experts in an experiment that

ested for transfer of insights with system dynamics models, since

xperts tended to refer to their real life experience. As a result, our

xpectation was that the students would yield a higher rate of trans-

er success than experts would in our experiment.

The context of the training queuing problem is a fictitious hos-

ital emergency department. To solve the training problem and im-

rove the emergency department performance participants must

earn about two concepts:

• There is a non-linear relationship between resource utilisation

and the time an entity spends in a process (T1).
• Management (or reduction) of process variation can reduce the

time an entity spends in a process (T2).

The simplified process for developing and using the model that

e followed with the students allowed the participants to engage in

simulation study in a similar manner as a client would in the real

orld. For example, participants could question the assumptions in

model, perform face validation checks, request extra detail and de-

ne scenarios to be run. At the end of the simulation study we as-

essed the participants’ ability to transfer their learning to eight sce-

arios containing a description of a queuing problem analogous to

he problem faced in the emergency department. We now provide

n overview of how the participants were involved in model build-

ng and experimentation as well as the three experimental condi-

ions used to vary the degree to which clients are involved in model

uilding.

.1.1. Involvement in model building

In order to involve participants in model building we created a

ondensed simulation study process with a modeller and a client.

articipants took the role of a client while a researcher provided the

odelling expertise. The model begins very simply as a single queue

nd server model where treatment in ED is represented by a single

ctivity with a single first in first out queue. There are six rounds of

efinement to the model where detail is added. The final model is

hen used for experimentation. Although each participant used the

ame model for experimentation, the model may evolve quite differ-

ntly depending on participant choices during the training task. By

he end of the model building, all participants have interacted with

ach of the six models.

Fig. 2 illustrates the procedure used for each refinement of the

odel. For example, a participant may have chosen to add either doc-

or resources or split patients into major and minor injuries to the ini-

ial single server model. Once this choice had been made a sub-model
ation studies help them solve their future problems? A transfer of
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Fig. 2. Model building procedure.

Table 1

Experimental conditions.

Condition Time (hours) N Description

MR 1.25 22 Model reuse. Participants reuse a

pre-existing model to investigate the

emergency department problem.

There are six predefined scenarios.

Participants have free choice over

remaining scenarios.

MBL 1.25 21 Model building with limited

experimentation time. Participants are

involved in building the model. They

only have 15 minutes for

experimentation, enabling them to

explore three scenarios.

MB 2 21 Model building. Participants are

involved in building the model. They

have a further hour to experiment

with the model. Same

experimentation conditions as MR.
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was opened containing the correct level of detail (all combinations

are available to the researcher). The participant was presented with

a conceptual model summarising the change that has been made,

and the remaining simplifications and assumptions. Once reviewed

the participant inspected the visual model and could explore a re-

sults spreadsheet. The procedure is repeated when the participant

asks for another level of detail to be added to the model (e.g. doc-

tor seniority or prioritisation of major injuries). The model building

stage ended after the sixth model was completed and all the detail

had been added.

Fig. 2 also illustrates that not all participants’ requests could be ac-

commodated by the researcher. A common example involves a sim-

plification of doctor multi-tasking (Günal & Pidd, 2006). Emergency

department doctors treat multiple patients concurrently and move

between them during the patients’ stay. In the simulation this con-

current treatment is simplified and modelled as slots, i.e. a doctor can

treat four patients concurrently therefore we add four doctor slots for

every doctor resource available. If a participant asked for this simpli-

fication to be removed the researcher had a scripted answer avail-

able: ‘it is not possible to remove that simplification as we do not

have data available on individual doctor consultations’. In these situ-

ations the participant has to reconsider which simplification should

be removed. A minority of participants continued to question model

simplifications (or requested additional model detail) once the model

was ‘complete’. This is not unlike standard client face validation pro-

cesses in real studies. In the instances where additional detail was re-

quested the scripted answer was that the study did not have sufficient

data to include this detail. In the instance where the request related to

an assumption, the scripted answer was to advise the participant that

assumptions could be explored during the experimentation phase.

3.1.2. Involvement in experimentation

For the experimentation participants again acted as the clients.

Participants directed the researcher with regards to which scenarios

were run while the researcher provided guidance on what is possible.

Participants were able to watch the model running in visual mode
Please cite this article as: T. Monks et al., Can involving clients in simul

learning experiment, European Journal of Operational Research (2015), ht
nd review batch run results. A spreadsheet tracked all scenarios run

nd provided a summary so that the participants could review their

xperimentation history.

.1.3. Three types of client involvement

We manipulated participant involvement in model building and

xperimentation by including three experimental conditions which

re summarised in Table 1. Low involvement was investigated in

condition where participants reuse a pre-existing model (‘model

euse’ – MR). High involvement was investigated in two conditions.

n both the participants were involved in the same model build-

ng process. However, in the first high involvement condition the

udget of time available for building and using the model is equal

o that for MR (‘model building with limited experimentation time’

MBL). As a result they only had limited time for experimenta-

ion; enough to explore three scenarios. In the second high involve-

ent condition (‘model building’ – MB), participants were given
ation studies help them solve their future problems? A transfer of
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Table 2

Description of transfer problems.

Transfer Problem Context Scenario Transfer cues Concept

Close S1 GP surgery waiting

times

Participants must consider two options: running the

clinic as a drop-in system or making use of

appointment slots.

• Queues/waiting times
• Variable IAT and process times

(people)

T1

S2 Emergency department

waiting times

Participants must consider how to manage the

resource levels on a shift in the emergency

department in face of an increase in demand.

Summary statistics for the waiting time and

utilisation of resources are provided.

• Queues/waiting times
• Variable IAT and process times

(people)
• Resource utilisation statistics/shifts

patterns

T2

S3 Operating theatre

waiting times

Participants are asked to consider three options for

reducing theatre waiting times. Attempt to

maximise current utilisation, increasing capacity

and extending the duration of slots.

• Queues/waiting times
• Variable process times (people)
• Resource utilisation statistics

T2

S4 Receptionist waiting

times

A walk in centre and a GPs surgery are being

co-located. Participants are asked to consider if the

queues for reception should be pooled or

un-pooled.

• Queues/waiting times
• Variable IAT and process times

(calls/people)
• Queue pooling

T1

Far S5 Food manufacturing

cycle time

Participants are asked to how they would reduce the

lead time of a three part assembly process with

deterministic arrivals and no breakdowns.

Summary statistics of the utilisation of each work

station are provided.

• Queues and lead time
• Resource utilisation statistics
• Variable process times (food

widgets)

T2

S6 Police call centre

waiting times

Participants must consider if performance will be

improved at a call centre, by increasing resource,

pooling resource or creating dedicated resource.

• Queues/waiting times
• Variable IAT and process times

(calls/people)
• Queue pooling

T1

S7 Food manufacturing

cycle time

Participants are asked how they would maintain

cycle time of a four part assembly process with a

bound queue. Summary statistics are provided for

process and machine breakdown times.

• Queues/lead time
• Variable process times (food

widgets)
• Inter-arrival times (breakdowns)

T1

S8 Service call centre

waiting times

Participants must consider how manage the resource

across four shifts at a service call centre. There are

options for hiring additional call takers,

reallocation of resource and splitting shifts.

Summary statistics are provided for the utilisation

and performance of each shift.

• Queues/waiting times
• Variable IAT and process times

(calls/people)
• Resource utilisation statistics/shift

patterns

T2
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the allocation of nurses to shifts and the use of resources to learn
5 minutes longer enabling them to carry out much more extensive

xperimentation. This means they had equivalent time for experi-

entation as the MR participants. For the experiment the students

ere randomly assigned to the three conditions to give 22 students

n the MR group, 21 in the MBL group and 21 students in the MB

roup. We make use of randomisation in the allocation of participants

o groups to mitigate the risk of imbalances across groups in factors

uch as intelligence and experience of problem solving.

Participants in the MR group were introduced to simulation in the

ame manner as the MB and MBL groups, as detailed in Section 3.1.1.

owever, there were no iterative steps in building the model. Instead,

nce the introduction to the simulation was complete, MR partic-

pants were presented with the complete and final model as used

y the participants in MB and MBL. The MR participants were then

alked through the logic of the model using a script. Participants in

ll conditions were given the same documentation about the model.

.2. Measuring transfer of learning

We created eight transfer problems with varying distances of sur-

ace similarity to the emergency department problem. All partici-

ants answered these in the same order. For simplicity we classify
Please cite this article as: T. Monks et al., Can involving clients in simul

learning experiment, European Journal of Operational Research (2015), ht
hese as either close or far transfer problems. The four close transfer

roblems are set in a healthcare context. These scenarios have high

urface similarity and high structural similarity to the training prob-

em. In contrast the far transfer problems have low surface similarity

o the training problem, but are still structurally similar (i.e. a queu-

ng problem). The far transfer problems are either set in call centres

r a food manufacturing plant. Each problem details a scenario, pro-

ides transfer cues, lists multiple choice answers and provides space

or a qualitative answer. We include the qualitative answer in order

o accurately separate the random chance of selecting a correct an-

wer from the successful transfer of learning. Transfer cues are pieces

f information that prompt participants to recall the case study prob-

em. For example, queues of customers in a scenario should prompt

articipants to recall that the ED problem was based around queue

anagement. Each scenario was designed to test for one of the two

ransfer concepts listed in Section 3.1.

The eight transfer scenarios, and the associated transfer cues and

oncepts, are summarised in Table 2. We presented these to each par-

icipant using a questionnaire following the training task. The train-

ng problem contains numerous examples of the two transfer con-

epts in action. For example, participants ran experiments analysing
ation studies help them solve their future problems? A transfer of
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Table 3

An example scenario: call centre scenario S6.

Scenario The waiting time of a number of regional emergency call

centres needs to be improved.

Options a. Split call centres into smaller geographic regions (more

queues).

b. Hire more call takers (more resource).

c. Create a single large call centre to take all calls (less

queues).

Transfer success Transfer is achieved by recognising that performance is

driven by the variation in inter-arrival time variability. A

combined call centre – answer c – manages the peaks and

troughs in inter-arrival variation more efficiently.
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about resource utilisation and performance. Scenarios S2 and S8

listed in Table 2 test for transfer of this learning (T1). Scenario S2

presents the problem of resource utilisation at another similar hos-

pital where performance is currently good, but demand is about to

increase. To transfer the learning successfully participants must cor-

rectly reason that the loss of spare (buffer) capacity will likely reduce

average performance against targets. Far transfer is tested by Sce-

nario S8 set in a service call centre. For successful transfer of learning

the participants must identify that the better performing shifts have

more spare capacity.

An example of concept T2 in the training problem is the man-

agement of the variation of different kinds of patient emergencies

by pooling treatment cubicles. Scenarios S4 and S6 test for transfer

of this concept. Scenario S4 asks participants to decide how wait-

ing time could be minimised when checking into a co-located walk

in centre and GP surgery. For successful transfer participants must

correctly reason that combining the queues is a more efficient way

to manage the variation in types of patient arriving. Far transfer is

tested by scenario S6, a police call centre context, where participants

are asked how to reduce caller waiting time to a number of small re-

gional call centres. For successful transfer of learning the participants

must recognise that a single larger call centre manages the variation

in regional demand more efficiently. Full details of the scenarios can

be found in the online supplementary material.

3.2.1. Dependent variables

We measured two types of dependent variables: success in trans-

fer of learning to problems analogous to the training problem and the

overconfidence in the participants’ answers. There are three transfer

of learning measures: total, close and far transfer. Overconfidence has

two measures, overestimation of ability to correctly transfer and the

proportion of errors made in high confidence.

3.2.2. Questionnaire

Transfer of learning was assessed using a post-test questionnaire

consisting of eight scenarios that were developed over a pilot of

16 participants. Each transfer scenario asked participants to select a

multiple choice answer, provide a qualitative answer describing their

reasoning and report the confidence they had in their answer. All par-

ticipants were given the same scenarios in the same order and pro-

vided the same information

Measurement of the confidence participants had in their answers

to the transfer scenarios is based on scales used to measure metacog-

nitive confidence (Petty, Briñol, & Tormala, 2002). After answering

each transfer problem participants were asked to rate the confidence

they have in their answer on a nine-point scale (1 = not at all confi-

dent to 9 = extremely confident). Participants were told that answers

of above five reflected the belief that their answer was correct. Post-

hoc analysis revealed that only 18 percent of answers were below five

indicating that the vast majority of participants believed they were

successful in solving each transfer problem.

As an example of a transfer scenario, consider call centre sce-

nario S6 described in Table 3. This scenario provides three options to

choose from to reduce call centre waiting times. Participant MR1 be-

lieved that waiting time performance would be improved by choos-

ing the option that split the call centres into smaller geographic re-

gions. Participant MR1 provided the following qualitative answer:

“[Option A allows] specialisation of tasks increasing focus and

speed. Obviously if [the call centres are] still not meeting targets

[then] increase staffing and lines. Combining everything (option

c) complicates tasks and therefore increases queues”

Participant MR1 was very confident that this answer was correct

and scored herself as an eight out of nine.
Please cite this article as: T. Monks et al., Can involving clients in simul
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.2.3. Scoring transfer of learning

The answers were coded twice by one of the authors (Monks) with

six month time gap. To minimise any bias the participant details

ere hidden from view during coding and the order of the answers

as randomised in each coding. The coding had a high reliability, α
0.87, and it had a high intra-class correlation coefficient, 0.838 < r

0.895 (91 percent of the codings were the same). The differences

etween each coding typically reflected cases where the participants

ad provided minimal detail on their reasoning. The differences were

esolved by reviewing the comments made in each coding and agree-

ng a final score.

As an example of the coding procedure consider the information

ues provided to a participant by scenario S2 detailed in Table 2. The

erformance target and percentages provide the cues to recall the

erformance of the simulation model. The participants were asked if

hey agree that more staff should be introduced. All participants were

sked to give the reasons why they think their choice would improve

he performance of the system. An example answer provided by a

articipant is:

“As the workload is going to increase, it is important to increase

the number of staff so that they can cope. Depending on the in-

crease in workload it may also be necessary to increase the num-

ber of cubicles, but is unlikely as their utilisation is currently lower

than staff utilisation and won’t reach its maximum”

The second sentence provides the most detail on the participants’

easoning. The participant was thinking in terms of maximum capac-

ty. If the resources are working at less than 100 percent then they

an cope. If 100 percent is exceeded then more resource is necessary.

hilst this seems sensible it fails to transfer any learning from the

raining problem in which it was identified that even with utilisation

elow 100 percent, resources cannot cope when there is variability

n arrival and service times. An example of successful transfer would

iscuss performance levels and the relationship to utilisation: even if

tilisation is increased to 90 percent there will be a change in the per-

ormance of the system. Hence the example answer above is coded as

zero – failure to transfer learning.

Subjectivity in the coding procedure was minimised by construct-

ng focused transfer scenarios testing a single transfer concept and

y issuing a standardised model answer to the coder. As importantly,

he pilot experiments provided insight into the phrasing of partici-

ant responses and the associated understanding of the transfer con-

ept. We illustrate the potential differences in participant answers

or transfer scenario S6 in Table 4. This lists the participant identi-

er, their qualitative answer, if the correct multiple choice answer is

hosen and if the reasoning has been coded as correct. The first three

xamples are coded as successful transfer and illustrate the range of

hrasings that participants used to describe the benefits of queue

ooling to handle variability. Although different phrasings are used

t is clear that each participant recognises variability in inter-arrival
ation studies help them solve their future problems? A transfer of
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Table 4

Example qualitative answers to transfer scenario s6.

Participant Answer Correct

answer

Correct

reasoning

MB12 “[This] makes [the] police call centres

more flexible. If demand in one

geographic area is high, additional call

takers, who [were] working in

different areas previously, are

available ”

1 1

MBL11 “Put everyone in one queue. This means

that [there is] no area operators

overloaded whist another area has

free [operators]. It levels supply.”

1 1

MR19 “It’s all about resource utilisation,

combining all operations into a single

call centre would be rational. Idle call

takers would be able to help other call

takers who have queues ….”

1 1

MB7 “… transferring information between

various stages [of the call centres]

consumes time. A single call centre

would increase efficiency and reduce

it.”

1 0

MBL4 Emergency demand in [the] different

regions will be uniform, so only way is

to increase staff
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ates and service times lies at the heart of the problem. Incorrect

ualitative answers often stood in stark contrast to successful trans-

er. MB7’s answer in Table 4 illustrates this point i.e. the participant

rgued that a larger call centre is more efficient (lower average ser-

ice times) than multiple smaller call centres. The final participant

BL4 in Table 4 chose an incorrect answer (more call operators), but

gain illustrates the clear cut nature of incorrect answers. Here the

articipant argues that the demand in each region is ‘uniform’ (mean-

ng constant and equal) and hence there is no benefit in pooling.

.2.4. Scoring overconfidence

Rather than simply assessing incorrect transfer we adopted two

easures of overconfidence in transfer. This allowed us to distinguish

etween an erroneous answer made because the participant was un-

ure what to do and erroneous answers that would potentially be

cted upon by the participant. The two overconfidence measures are

onstructed from the participant’s confidence scores on each trans-

er scenario. Overestimation of their own abilities (Bendoly, Croson,

oncalves, & Schultz, 2010) is the difference between the proportion

f problems to which a participant predicts that they have success-

ully transferred learning and the actual proportion where learning

s successfully transferred. For example, if a participant predicts that

hey have correctly answered six out of the eight problems correctly

75 percent), but have actually only answered four correctly (50 per-

ent) then they have overestimated their ability by 25 percent. Sec-

ndly, overconfidence was measured as the proportion of errors that

re made with high confidence. High confidence is classed as a re-

orted confidence score (Section 3.4.2) of greater than five. There-

ore, a high confidence error is an incorrect answer made with a con-

dence score of greater than five. As the choice of the cut-off for high

onfidence errors was a judgement (i.e. the upper half of the scale),

e include a sensitivity analysis of results using a more stringent cut-

ff of eight out of nine (section 4.3).

. Results

The results from the experiment are now presented firstly with

espect to transfer success for each scenario, then the transfer perfor-

ance of the experimental conditions, and finally the results for the

onfidence of the participants are presented.
Please cite this article as: T. Monks et al., Can involving clients in simul
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.1. Transfer performance by scenario

Overall transfer of learning successfully occurred most frequently

n the healthcare scenarios (44 percent), followed by call centre sce-

arios (35 percent) and least frequently in the manufacturing sce-

arios (13 percent). This was as expected given the levels of surface

imilarity. Transfer of learning across the two transfer concepts was

imilar (T1 = T2 = 34 percent).

Fig. 3 presents transfer of learning success and the associated con-

dence for each scenario ordered by transfer success. This indicates

he level of surface similarity that the participants perceived between

he training task and each scenario. Participants generally performed

etter in those scenarios that we initially classified as close transfer

S1 to S4) than those we classified as far transfer (S5 to S8). An ex-

eption is scenario S8 that is ranked as the second most successful

cenario and a substantial improvement over the other far transfer

cenarios.

Scenario S8 is set in a call centre and tests the transfer of partici-

ants learning about resource utilisation and performance. It is sim-

lar to the training task as there are four staff shifts across the day.

articipants see the performance (percentage of calls answered in a

arget time) of each shift individually along with the utilisation of

taff. Transfer success is achieved by recognising that underperform-

ng shifts are so busy (high utilisation) that they are into the non-

inear explosion of customers waiting time (concept T1). In addition

ny increase in staff resource utilisation on the shifts currently meet-

ng targets will reduce their performance against the call answering

arget. The majority of participants (55 percent) successfully trans-

erred their learning from the emergency department training task

o this scenario.

An explanation for the participants recognising the structural sim-

larity of scenario S8 is that this scenario may be closer in surface

imilarity to the training task than expected. In particular, the emer-

ency department model has specific examples about shift reallo-

ation. One participant from the MBL group even referred to the

ehaviour of the simulation model outputs in his answers. In the re-

aining analysis we reclassify close transfer to incorporate scenarios

1–4 and S8.

.2. Transfer performance by experimental condition

As a reminder we measured transfer of learning at three levels: to-

al, close and far transfer. Transfer of learning results by condition are

eported in Table 5. Total transfer was significantly different across

roups with MB participants typically transferring learning to one

roblem more than MBL and MR. Overall MR and MBL participants

erformed similarly. The majority of the difference in total transfer

etween groups is explained by our revised classification of close

ransfer performance (S1–4, S8); MB outperformed MBL and MR. All

roups performed poorly in the far transfer scenarios on average an-

wering one or less correctly.

Fig. 4 presents the transfer of learning results by scenario and

roup. Scenarios are presented in the order of perceived surface sim-

larity observed across all participants. There are two notable points.

irstly performance across scenario S1, which has the most surface

imilarity, is similar across all conditions. Secondly, participants in

he MB group outperformed the MBL and MR participants across

cenarios S3, S4 and S5. The MB group also performs at a similar

evel across scenarios S2, S3, S4 and S8 (range = 43–52 percent). The

lightly lower performance of MB in S8 is not significant (X2(2) =
.700, p = 0.731, Kruskal–Wallis).

Performance across the far transfer scenarios (S5–7) is consis-

ently low across groups and small differences cannot be explained

y anything other than chance. The largest difference exists in sce-

ario S5, set in a manufacturing plant, where 29 percent of MB par-

icipants could correctly identify that the process bottleneck was a
ation studies help them solve their future problems? A transfer of
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Fig. 3. Perceived similarity of transfer scenarios to the emergency department training.

Table 5

Transfer of learning results.

Mean (St. Dev.) Group differences Mean difference (95 percent CI); p-value†

MB MBL MR MB–MR MB–MBL MBL–MR

Total transfer 3.4 (1.4) 2.3 (1.1) 2.5 (1.1) F = 4.53; p = 0.015∗∗ 0.9 (0.1–1.6); p = 0.008∗∗∗ 1.0 (0.3–1.8); p = 0.035∗∗ −0.2 (−0.9–0.5); p = 0.533

Close transfer 2.8 (1.1) 2.0 (0.9) 2.1 (1.0) F = 7.32; p = 0.028∗∗ 0.7 (0.1–1.3); p = 0.039∗∗ 0.8 (0.2–1.4); p = 0.016∗∗ −0.0 (−0.5–0.6); p = 0.756

Far transfer 0.6 (0.7) 0.3 (0.5) 0.4 (0.6) F = 0.86; p = 0.289

Close transfer scenarios: S1–4, S8. Transfer measured as number of correct answers coded with correct reasoning.
† Significance key: ∗∗p < 0.05; ∗∗∗p < 0.01; F = one way ANOVA.
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highly utilised work station compared to 14 percent in MBL and 9

percent in MR.

Overall confidence in the participants’ answers was high and con-

sistent (median = 7.0; inter-quartile range = 2.0) with no signifi-

cant difference between the groups (Kruskal–Wallis: H(2) = 2.7, p

= 0.252). Fig. 4 illustrates only minor variation in confidence across

conditions.

4.3. Overconfidence

We measured overconfidence in terms of participant’s overesti-

mation of their own abilities and the proportion of errors committed

in high confidence. Full test results and summary statistics are re-

ported in Table 6 . Participants in all three groups overestimated their

performance by an average of 47 percent (95 percent CI 40.3–53.1

percent). There was evidence that this was different across groups.

Participants in the MBL (meanMBL = 60 percent) group overestimated

their performance more frequently than MB participants (meanMB =
45 percent). However, the result for the comparison of MBL and MR

was not significant at the 95 percent level (meanMR = 47 percent;

mean difference = 12.7; 90 percent CI 0.9–24.5). There was no evi-

dence of a difference in overestimation between MR and MB.

Our second measure of overconfidence, the proportion of errors

committed in high confidence, was different across groups. Partici-

pants in the MBL group typically made a higher proportion of their

errors in high confidence than MR. The weaker evidence of a higher
Please cite this article as: T. Monks et al., Can involving clients in simul

learning experiment, European Journal of Operational Research (2015), ht
roportion in MB than MR (mean difference = 12.8; 90 percent CI

.7–24.0) was validated by bootstrapping (95 percent CIBca 0.2–25.0,

= 0.047; replications = 2000).

As the choice of the cut-off for high confidence errors was a judge-

ent, we conducted a sensitivity analysis of results using a more

tringent cut-off of eight out of nine (112 answers were rated eight

r above). Again participants in the MBL group made a higher pro-

ortion of their errors with high confidence than MR (mean differ-

nce = 12.0; 95 percent CI 1.0–23.0). The results for the MB ver-

us MR were not significant at either the 90 percent of 95 percent

evel using standard tests (mean difference = 8.9 percent, 95 percent

I −2.6–20.4).

. Discussion

We now discuss the results with respect to the research objec-

ives: to determine if clients can transfer their learning from a DES

tudy to another context; and to determine the impact of client in-

olvement on their ability to transfer that learning. We also discuss

he impact of involvement on confidence, the limitations of the study

nd the contribution of the work to behavioural OR.

.1. Can DES clients transfer learning?

Transfer of learning to the analogous problems proved difficult

or our participants on average only achieving transfer success for
ation studies help them solve their future problems? A transfer of
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Fig. 4. Transfer performance and median confidence in answers by scenario and group.

Table 6

Overconfidence results.

Mean (St. Dev.) Group differences† Mean difference (95 percent CI); p-value††

MB MBL MR MB–MR MB–MBL MBL–MR

Overestimation

percent

45 (18) 60 (29) 47 (23) F = 2.87; p = 0.06∗ 2.4 (−10.8–15.6); p =
0.713

15.1 (2.1–28.1); p =
0.023∗∗

12.7 (−1.5–27.0); p =
0.078∗

High confidence

errors percent

49 56 37 χ2 = 9.50; p = 0.009∗∗∗ 12.8 (−0.3–26); p =
0.058∗

6.8 (−6.5–20); p = 0.319 19.6 (7.2–32.0); p =
0.002∗∗

† F = one way ANOVA; χ2 = Chi-squared test of association.
†† Significance key: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
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hree out of eight scenarios. The majority of this transfer success was

chieved in the scenarios we pre-specified as close transfer. These

cenarios had high surface and structural similarity to the emergency

epartment training problem i.e. a healthcare context where it is

eople who queue. A large group of participants were also able to

uccessfully transfer learning to a scenario with lower surface sim-

larity to the emergency department. The result for scenario S8, a

all centre context, demonstrates that participants identified a struc-

ural similarity between the transfer and the training problems. In

act, performance was so high in scenario S8 that it is ranked higher

han scenario S2 set in an emergency department. We defined surface

imilarity in terms of application domain (for example, a healthcare

cenario bares more resemblance to the training task than a call cen-

re scenario). These results suggest a more subtle effect. Both scenar-

os consider shifts of workers, resource utilisation and variable inter-

rrival times. However, a key difference is that scenario S2 considers

nly one shift while, in the same manner as the emergency depart-

ent training problem, scenario S8 considers four shifts of workers.

his subtle difference appears to have given scenario S8 more surface

imilarity to the training problem and led to access problems in sce-

ario S2

In summary, we demonstrate that, in line with theory, transfer of

earning from a simulation study to another problem is difficult with

ubtle reasons why one problem may have more surface similarity

han another. However, given some limited success in scenario S8, a
Please cite this article as: T. Monks et al., Can involving clients in simul

learning experiment, European Journal of Operational Research (2015), ht
cenario we originally classed as far transfer, we are able to provide

vidence that involvement in simulation studies does enable deep

tructural understanding of the problem studied. This brings us to

ur second research objective exploring the effect of three different

ypes of study involvement on learning.

.2. The effect of involvement on transfer

Out of the three groups, participants in MB scored more highly

han the two groups with a tighter time constraint. An explanation

or this difference then appears to be that more time was needed to

rocess the complexity of the transfer concepts and hence increase

ransfer success; time provided in the MB group. However, it is clear

hat MBL and MR still learnt about the structure of the queuing prob-

em in the emergency department, as a majority could transfer this

earning to scenario S8. One explanation therefore is that MBL and

R had learnt the relevant knowledge, but could not access it as eas-

ly as the MB group. This has implications for the practice of DES. In

articular involving clients is not a panacea and some thought should

e given to the length of the experimentation phase of the project.

his correlates with evidence from experimentation practice that

hows that more experienced modellers have slightly shorter model

uilding phases, allowing more time for experimentation

Hoad, Monks, & O’Brien, 2015).
ation studies help them solve their future problems? A transfer of
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A related question to our findings is how DES can be most ef-

fectively used to support training of managers. Learning from sim-

ulation has often been studied from a serious gaming perspec-

tive (Lane, 1995; Langley & Morecroft, 2004; Rouwette, Größler, &

Vennix, 2004; van der Zee, Holkenborg, & Robinson, 2012; van der

Zee & Slomp, 2009) with mixed reports on its success as a learning aid

(Lane, 1995). Our results suggest that access to learning from serious

gaming and the transfer of that learning is improved if serious games

are designed so that managers are allocated additional time for in-

volvement in model building, or at least the conceptualisation of the

model. Meanwhile, this should not come at the expense of the time

available for experimentation (gaming) with the model. Our method-

ology to measure transfer of learning is also highly applicable to as-

sess the benefits of training with DES and could be incorporated in to

the design of serious games.

5.3. The effect of involvement on overconfidence

The previous section highlighted that it is the time available for

client involvement in both model building and experimentation that

is associated with transfer success and access. For our secondary

measure – overconfidence – we can conclude that the degree of client

involvement in model building has an effect.

In general the confidence of participants was consistent and high

across the transfer problems. Participants overestimated (over pre-

dicted) their own performance on average 47 percent of the time.

There was evidence that MBL group has the highest overconfidence;

overestimating their score on average 60 percent of the time com-

pared to 45 percent and 47 percent in MB and MR, respectively. There

was also strong evidence that when an error was committed that it

was typically with higher confidence in participants that had been

involved in model building (MB make less mistakes overall, but when

they do make a mistake it was with higher confidence than MR).

We propose two mechanisms at work that affect the difference

in the overconfidence of participants. Firstly, involvement in model

building may affect what we term as ownership pride. That is, in-

volvement in building the model biased and inflated a participant’s

beliefs about their own knowledge. When combined with difficulties

in accessing knowledge in MBL this led to increased overestimation.

Secondly, we cannot rule out that the model reuse participants suf-

fered to some extent from not invented here syndrome (Pidd, 2002;

Robinson et al., 2004). That is, trust in the model is more difficult

when you have not had some involvement in its development. Diffi-

culties in trust would perhaps prevent the inflation of a participant’s

belief in their own knowledge. To investigate these propositions, fur-

ther research could replicate our experiment and add a group that

does not use simulation during training. There are two methodologi-

cal issues to overcome in such a design. Firstly, what feedback should

be given to participants in the training task and how should it be de-

livered? Secondly, what level of experience in simulation should par-

ticipants have: none or some degree of training?

5.4. Limitations

A key factor effecting transfer is the background knowledge of the

decision maker (Gick & Holyoak, 1987). As we used students, the par-

ticipants in the experiment lacked familiarity with the system. Thus

a proportion of their cognitive processing power was put to work on

building familiarity with the system while building understanding

about DES in general and emergency department performance. Par-

ticipants may also expend effort attempting to work out the experi-

mental hypothesis (Field & Hole, 2003); clearly this is not the case in

real world studies.

To an extent this increased mental effort is compensated for by

the simplified training problem. However, decision makers within a

real system may find it easier to concentrate on understanding the
Please cite this article as: T. Monks et al., Can involving clients in simul

learning experiment, European Journal of Operational Research (2015), ht
roblem and hence improve transfer likelihood. We also note that

he opposite can happen: increased background knowledge of deci-

ion makers can lead to transfer difficulties. In an experiment testing

or transfer of insights between analogous System Dynamics models,

esearchers found that students substantially outperformed experts

Bakken et al., 1994). Experts would ‘take the actions they would have

aken in real life’ (Bakken et al., 1994) rather than experiment with

ifferent approaches to see the effect.

An alternative explanation of the lower MBL transfer results could

e that the complexity of the model was too low for the benefits

f involvement in model building to take effect. In a large complex

rocess, for example of a whole hospital (Günal & Pidd, 2011), sup-

ly chain (Katsaliaki & Brailsford, 2006) or whole healthcare system

Brailsford, Lattimer, Tarnaras, & Turnbull, 2004), decision makers

ay be more likely to think in terms of local optimisation than our

articipants. The transferrable learning therefore might be an indi-

idual’s approach to problem solving rather than the queuing con-

epts we tested. Framing the problem in this manner would mean

hat successful transfer would involve recognising that (possibly de-

ayed) effects of changes may occur downstream in a process.

Although we controlled the models that participants could use

n the experiment, we provided participants the freedom to build

he model in an order they chose. Further work employing a simi-

ar methodology should consider exploring if such an approach has

ny practical effect on transfer success.

Finally the overconfidence effects that we saw in the model build-

ng groups may be associated with the population of participants in

he experiment. In particular, students who are more familiar with

ssessments may be more confident in their answers than managers

orking in industry. Although we again note that the overconfidence

ffect was systematically different between the model building and

euse groups.

.5. Contribution to behavioural OR

Our study provides a novel measurement approach for be-

avioural OR studies that aims to analyse the impact of modelling and

odel use in long term problem solving and decision making. In par-

icular, our approach is the first to operationalise the measurement of

ransfer of learning from modelling using the concepts of close and

ar transfer, and overconfidence. A strength of this approach is that

t has the ability to highlight access issues (i.e. the inability to access

earned knowledge) given particular types of ‘training’ and hypoth-

sise learning mechanisms that clients experience when involved in

odel building.

Our empirical findings add to the limited, but growing, evidence

ase that is beginning to support the belief that client involvement in

odelling facilitates learning. It also tests the high level behavioural

ssumption that modelling leads to deep conceptual learning about a

roblem that can be transferred to future problems.

We grounded our approach in a psychological learning frame-

ork, transfer of learning theory, (Bassok et al., 2003) and to aid fur-

her behavioural OR research in this area we provide a detailed review

nd introduction to this area. Given these contributions, our multi-

le close and far scenario approach is highly adaptable to DES appli-

ation domains other than healthcare. Further observational studies

ight consider applying the approach to real clients following a sim-

lation study, although this will rely on researchers having access to

uitable material to draw on. Behavioural factors relating to clients

nd model use are often associated with studies in problem struc-

uring methods (e.g. Franco, 2013; Franco & Rouwette, 2011; Franco,

eadows, & Armstrong, 2013) or system dynamics (e.g. Hovmand et

l., 2012; Korzilius, Raaijmakers, Rouwette, & Vennix, 2014; Rouwette

t al., 2011; Rouwette, Bleijenbergh, & Vennix, 2014; Shields, 2001,

002). We extend this literature to the study of model develop-

ent and use in DES which is one of the most prominent hard OR
ation studies help them solve their future problems? A transfer of

tp://dx.doi.org/10.1016/j.ejor.2015.08.037
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ethods used in practice (Jahangirian, Eldabi, Naseer, Stergioulas, &

oung, 2010). Our focus on clients’ use of models complements other

ehavioural DES research, such as Onggo and Hill (2014), that focuses

n how modellers conduct their simulation studies.

. Conclusions

Practical simulation studies that aim to help clients and busi-

esses better manage their processes should take note our results.

t is often assumed that involvement of clients in modelling leads

o (double-loop) learning about the underlying structure of processes

nd systems under study. Our results demonstrate that, in line with

earning theory, such learning is difficult to transfer to analogous

roblems even in the same domain. We found transfer of learning

rom a simulation study is difficult, but possible. The main difficulty

or participants was recognising the structural similarity of the trans-

er and training problems; however, access problems were reduced

hen participants were provided sufficient time for involvement in

oth model building and experimentation. In the real world, where

he surface similarity of analogous problems is even more obscured

nd budget is tight, we should expect this to be even more difficult

or clients. Maybe the primary learning that can be transferred from

DES study is that the problem addressed was non-trivial and that

hen a similar problem is encountered in the future it would be use-

ul to employ DES again.

A novel contribution of our behavioural research is that the level

f involvement in model building and experimentation affects over-

onfidence in subsequent decisions; specifically we saw that model

uilding groups made a higher proportion of high confidence errors

han model reusers. Further fieldwork research is needed to replicate

nd understand these confidence effects. For instance are differences

ue to model ownership and pride, achieved through involvement in

odel building, or due to not invented here syndrome, an issue with

odel reuse.

As the field of behavioural OR emerges, the body of experimen-

al and fieldwork studies that analyse modelling and model use of-

er a unique opportunity to improve the knowledge of how to run

odelling projects to achieve maximum benefit both in terms of im-

roved understanding and improved likelihood of implementation of

ndings. Our study provides results and a novel measurement ap-

roach to further these aspirations.
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