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Abstract
Motivated by the fact that differential diffusion can affect pollutant emission and flame stability in practical com-
bustion systems, this paper presents a modified Euclidean Minimum Spanning Tree mixing model which accounts
for differential diffusion. The new Probability Density Function modelling satisfies requirements of realizability and
conservation of mass, and validation is conducted by comparison with Direct Numerical Simulation data.

Introduction
Modelling of turbulent reacting flows requires closure

for averaged or filtered chemical source terms. Probabil-
ity density function (PDF) methods (1) provide an exact
closure for chemical reaction rates but molecular mix-
ing terms remain unclosed and must be modelled. Un-
der particular conditions, for example in the presence of
flames, modelling for the effects of molecular mixing on
the composition PDF can be deficient (2). Attempts have
been made to address aspects of mixing associated with
flames, such as localness (3; 4) and differential diffusion
(5; 6).

In the flamelet regime of turbulent premixed combus-
tion the scalar length scales are imposed predominantly
by the reaction-diffusion balance in the flame front, rather
than by the turbulence cascade process. It is observed
from several DNS studies of mixing in homogeneous tur-
bulence (7; 8) that, when the scalar length scales are con-
trolled by the turbulence cascade process, the scalar dis-
sipation rate is independent of species diffusivities, and
proportional to the turbulent frequency,ω = ǫ/k (whereǫ
is the dissipation rate of turbulent kinetic energyk). The
simulations by Juneja and Pope (7) are initialized with
a scalar field which is independent from the turbulent
field. In this situation, they observe that theinitial scalar
dissipation rates depend on the length scales character-
ising the scalar fields (shorter length scales increase the
scalar dissipation rate), and on the species diffusivities
(higher diffusivities increase the scalar dissipation rate).
Because, in flamelet combustion, the scalar length scales
are not controlled only by the turbulence cascade process,
we expect the scalar dissipation rate to depend partly on
the flame length scales, and, consequently, on the molec-
ular diffusivities of the individual scalars as well. This
causes scalar dissipation rates to differ among species (9;
10). The transition between flamelet premixed combus-
tion and distributed premixed combustion is delineated
indicatively by a Karlovitz number (Ka) of order unity
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(11). Because the Karlovitz number can be varied inde-
pendently from the Reynolds number, it is important to
note that flamelet combustion, and effects of the asso-
ciated differential diffusion processes, can occur even at
high Reynolds number, provided thatKa is small.

Specific Objectives
The specific objectives of this paper are two-fold: (i)

to present a new variant of the Euclidean Minimum Span-
ning Tree (EMST) mixing model (3) which accounts for
differential diffusion while satisfying appropriate realiz-
ability constraints; and (ii) to use Direct Numerical Simu-
lation (DNS) data for a turbulent premixed Bunsen flame
to compare the performance of the new EMST model
with the standard EMST and Interaction by Exchange
with the Mean (IEM) (12) models.

The EMST-DD model for differential diffusion
Meyer (6) provides a summary of the performance

of a comprehensive selection of mixing models. From
Meyer’s comparison, the EMST model is the only multi-
scalar mixing model which enforces scalar-localness. Be-
cause the localness property is important in flamelet com-
bustion (where differential diffusion is also expected to
be important) we choose to develop the EMST model
to account for differential diffusion. PDF mixing mod-
els that have been applied to differential diffusion previ-
ously (6; 13) are problematic because these mixing mod-
els guarantee neither conservation of means nor that the
sum of mass fractions remains equal to unity (the latter is
a realizabilityconstraint).

A complete description of the EMST mixing model
is provided by Subramaniam and Pope (3). The EMST
model describes the mixing among an ensemble of no-
tional particles that are used to represent the composition-
PDF. Pairwise mixing occurs along branches of a Mini-
mum Spanning Tree, constructed in composition space.
The contribution to the change of the mass fractionY

(p)
α

of speciesα on the notional particle(p), due solely to the
mixing along the branch connecting particles(p) and(q),



is given by:

w(p) dY
(p)
α

dt
= −aBpq(Y

(p) −Y(q)). (1)

The overall rate of change ofY(p)
α is given by summing

the contributions, evaluated using Eq. 1, from every par-
ticle (q) connected to directly to particle(p) by the Min-
imum Spanning Tree.w(p) is the statistical weight of
particle(p), ‘a’ is a global mixing coefficient, andBpq

is a mixing coefficient that depends on the location of the
branch(pq) within the tree. In the standard EMST mix-
ing model, the mixing coefficients are the same for every
species. The EMST-Differential Diffusion (EMST-DD)
model accounts for differential diffusion by introducing
an additional mixing coefficient,Cα, whose value can be
different for each species, in a manner which depends on
the diffusivities of the individual species. To ensure that
the EMST-DD model enforces realizability, a correction
term is required so that allM mass fractions evolve ac-
cording to:

w(p) dY
(p)
α

dt
= −aCαBpq(Y

(p)
α −Y(q)

α ) (2)

+ Y(p)
α

M∑

β=1

aCβBpq(Y
(p)
β −Y

(q)
β ).

The correction term in Eq. 2 is analogous to the cor-
rection velocity that is employed in some models for the
diffusion velocities in systems with differential diffusion
(page 16, in ref. (14)). Summing Eq. 2 over all species
gives d{

∑
α Y

(p)
α }/dt = 0, as required for realizabil-

ity. The individual mass fractions also remain bounded
by zero since the second term on the right hand side in
Eq. 2 tends to zero asY(p)

α approaches zero, and the first
term on the right hand side is known to satisfy realizabil-
ity constraints provided that the mixing coefficients are
all positive (3). Since Eq. 2 ensures that the mass frac-
tions are non-negative and that they sum to unity, the cor-
rection term also ensures that the individual species mass
fractions can not exceed unity.

Conservation of means then requires an exchange of
particle weight given by,

dw(p)
α

dt
= −

M∑

β=1

aCβBpq(Y
(p)
β −Y

(q)
β ). (3)

According to Eq. 3 it is possible (although unlikely in
practice) for some particle weights to decrease to zero.
If the statistical weight of a particle decreases to zero it
should be removed it from the ensemble.

The EMST-DD model does not guarantee that all species
variances decay since the second term on the right hand
side of Eq. 2 may have a magnitude greater than the first.
The possibility of predicting scalar variance production
by molecular mixing – which at first sight may appear
alarming – is physically permissible in the case of differ-
entially diffusing mixtures. This claim can be verified by

considering a premixed flame in which an inert species
has the same mass fraction in the products and the reac-
tants. The mass fraction of the inert species, however, can
fluctuate within the flame front due to differential diffu-
sion of other reactive species, thereby differential diffu-
sion generates a variation of an initially uniform species
mass fraction (this has been confirmed by computations
of laminar premixed flames using multi-component trans-
port models in ref. (15)).

If the joint-PDF of composition includes the specific
enthalpy of the mixture,h, a correction term is required
in order to achieve conservation of the mean specific en-
thalpy:

w(p)dh
(p)

dt
= −aChBpq(h

(p) − h(q)) (4)

+ h(p)
M∑

β=1

aCβBpq(Y
(p)
β −Y

(q)
β ).

The changing particle weights also lead to a correction
for the particle velocities. It is shown in Ref. (15) that
conservation of mass, momentum and kinetic energy dic-
tate that the particle velocitiesu(i) evolve according to:

du(p)

dt
=

dw(p)

dt

(
u
(q) − u

(p)

2w(p)

)
. (5)

A model for the functional form of the species-dependent
mixing coefficients must now be specified. We propose
the following model:

Cα = 1 + CK(
1

Leα
− 1), (6)

in which the species dependent mixing coefficients de-
pend on the species Lewis numbersLeα, and a model pa-
rameterCK which takes a value between zero and unity.
WhenCK equals zero the standard EMST model is re-
covered. WhenCK equals unity, the rate at which mass
is transferred between two particles is proportional to the
diffusivity and the scalar-difference between the pair, and
‘differential mixing’ occurs. Based on the discussion in
the introduction, we expect differential diffusion to be-
come important in the flamelet regime of combustion,
and to be unimportant in high-Reynolds number mixing
of inert or low-Damköhler number mixtures. This sug-
gests thatCK should be a function of the combustion
regime, for example, measured by the Karlovitz number:
i.e. CK → 0 for Ka≫ 1, andCK → 1 for Ka≪ 1. In
this investigation we do not specify a functional form for
CK but test a range of values.

Simulation configuration and methods
Turbulent flame DNS:A three-dimensional turbulent

perfectly-premixed Bunsen flame has been analyzed in
this study. The flame simulated by Sankaranet al. (16)
comprises a planar jet of unburned methane and air at
800K, 1 atm and equivalence ratioφ=0.7 issuing into a
coflowing product stream from adiabatic combustion of
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the mixture. The DNS configuration is shown in Fig. 1.
The slot jet width, H=1.8mm, the jet velocity (100ms−1)
and coflow velocity (25ms−1) give a jet Reynolds num-
ber of 2100. The simulations were performed using the
DNS code S3D, using a reduced chemical reaction model
with 13 species (17), and constant, non-unity Lewis num-
ber transport (except for N2 which makes up the balance
of the composition). Full details of the simulation are
presented by Richardsonet al. (9).

Figure 1: Premixed flame DNS configuration, show-
ing an instantaneous iso-surface for progress vari-
able = 0.65.

PDF simulation method:The premixed Bunsen con-
figuration has also been simulated using a one-dimensional
transported PDF approach, implemented using Lagrangian
particles. The PDF calculations use the mean velocity
field, the turbulent kinetic energy, and the Favre averaged
dissipation rate taken from the DNS. The PDF compu-
tations exploit the statistical homogeneity along the z-
direction, and symmetry around the y=0 plane in the DNS
configuration. Further simplification is made by employ-
ing a one-dimensional PDF domain (which extends across
half of the y-direction in the DNS domain), and integrat-
ing the PDF equations in spatial increments along the x-
direction (by assuming that the time increments∆t =
∆x/Ũ, whereŨ is the mean axial velocity from the DNS).
The cross-stream positions of the particles are advanced
using the simplified Langevin model for particle acceler-
ation (18). This simple parabolic solution method can-
not be expected to give accurate predictions of the mean
flame shape in general. Here we report conditional statis-
tics, and ratios of mixing timescales, which are relatively
insensitive to the overall flame shape, and which permit a
useful comparison between micro-mixing models. PDF
simulation data are presented for the IEM, EMST, and
EMST-DD models. The PDF simulation is initialized at
3.3 jet heights from the nozzle, and the results are re-

ported at 6.6H (cf.x/Lx in Fig. 1.

Results and Discussion
Analysis of the DNS simulation (9) indicates that com-

bustion occurs in the thickened flame regime (11). The
analysis by Richardsonet al. (9) shows that the non-unity
ratios between species mixing rates, shown in Fig. 2a,
are due to the presence of premixed flames. In this study,

the scalar dissipation rate is evaluated asχα = −2 ˜Y ′′

α Γα

[from Eq. B.2 in Ref. (19)], whereΓα is the diffusion
source term. An occurrence ofχα < 0 indicates vari-
ance production due to differential diffusion (as discussed
in the section on the EMST-DD model). Note that fur-
ther simplification to the commonly used expression for

scalar dissipationχα = 2 ˜Dα(∇Y′′

α)
2, whereDα is the

species’ diffusivity, requires assumptions of Fickian dif-
fusion with equal diffusivities, and we do not make these
assumptions in this study. We define the species mix-
ing rate asΛα = χ̃α/Ỹ

′′2
α . Ratios ofΛα/ΛO2

for α ∈
{H2, H,OH,CO,N2} are also shown for the EMST and
EMST-DD models in Fig. 2. Note that the IEM model
gives identicalΛα for all species, and it is not plotted.
The EMST model predicts mixing ratios which are close
to unity at the centre of the flame brush (y/H≈0.5 at the
axial location of x=6.6H which is plotted). The EMST-
DD model gives greatly improved prediction of the rela-
tive species mixing rates. The EMST-DD data are shown
for CK = 0.3 which gives close agreement with the DNS
mixing rates.

Diffusion rates ofYCO, sampled from across the y-
direction at x=6.6H, are plotted in Fig. 3 for DNS, IEM,
and EMST simulations. Data are plotted versus the progress
variable sample space variableζ, where progress vari-
able (equal to zero in reactants and unity in the products)
has been based onYO2. The IEM model fails to predict
the structure of the diffusion process in progress variable-
space. The EMST model gives a distribution of mixing
rates which have the same shape as the DNS. The fre-
quent occurrence of zero mixing in the EMST is due to
the model’s intermittency feature described in (3). The
species dependent mixing coefficients in Eq. 2 then serve
to adjust the relative magnitude of the species mixing
terms, resulting in the improved predictions of the mixing
rate ratios seen in Fig. 2.

Differential diffusion is responsible for the curvature
of the conditional meanYH2

profile, in the non-reactive
mixture of the pre-heat zone (ζ <0.5), which is seen
for the DNS data in Fig. 4a. Since there is no chemi-
cal reaction in this mixture, the curvature arises because
YH2

diffuses faster into the reactants than the diffusion
of progress variable itself. Over the same range ofζ,
the EMST model predicts a linear variation of the condi-
tional mean. The EMST-DD, however, produces accurate
predictions of the conditional mean and rms ofYH2

for
ζ < 0.5. The conditionally averagedYH2

diffusion rates
in Fig. 4b also shows that the EMST-DD model improves
upon the predictions of the standard EMST. EMST pre-
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Figure 2: Ratios forΛ between selected species
(H2,H,OH,CO,N2) and O2 in the (a) DNS, (b)
EMST, and (c) EMST-DD simulations.
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Figure 3: Diffusion rates of CO in progress variable
space from (a) the DNS, (b) IEM, and (c) EMST
simulations. The solid line is the conditional mean.
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dictions of the conditional averageCO andO2 mass frac-
tion and diffusion rates in Fig. 4 are changed little by the
differential diffusion correction, and they agree with the
DNS data closely.

Variation of theYN2
conditional mean mass fraction

is shown in Fig. 4e. There is a finite variation in of
YN2

in the initial condition of the PDF calculations, and
this persists even in the case of the EMST model. The
effect of differential diffusion is seen in the DNS and
EMST-DD profiles, where differential diffusion moves
YN2

from the preheat-zone into the reactant zone, gen-
erating variance. While the variation ofYN2

is small,
and unlikely to have any practical significance in a com-
bustion system, we note that the EMST-DD model repro-
duces this feature which is symptomatic of differential
diffusion. We note also that the EMST-DD reproduces
the negative values, and the shape of the cross-stream
variation, of theΛN2

/ΛO2
mixing ratio seen in the DNS

in Fig. 2.

Conclusions
An extension of the EMST mixing model has been

presented which accounts for differential diffusion. To
the authors’ knowledge this is the first PDF mixing model
which accounts for differential diffusion in a manner which
conserves mass and enforces basic realizability constraints.
The new EMST-DD model retains most other advantages
(e.g. localness), and limitations, of the standard EMST
model. A remarkable novel feature of the EMST-DD
model is that it permits differential diffusion to produce
scalar variance.

The performance of the EMST-DD, EMST, and IEM
models has been assessed by comparison of conditional
statistics and mixing timescales with DNS data for a pre-
mixed turbulent Bunsen flame. Unlike the IEM model,
the EMST models describe the structure of mixing through
the flame correctly. Combining the EMST description of
scalar localness with differential mixing rates, the EMST-
DD model, predicts mixing rate ratios similar to those in
the DNS. The EMST-DD correctly predicts that variance
of YN2

is produced in the premixed combustion DNS.
This study has demonstrated that the EMST-DD model

predictions exhibit successfully several features which char-
acterize flamelet combustion with differential diffusion.
The modelling for the parameterCK remains to be deter-
mined in general, and the modelling now requires further
validation across a broader range of mixing regimes.
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Figure 4: DNS (solid lines), EMST (dashes), and EMST-DD (dots) data for conditional mean (lines) and
rms (lines with symbols) species mass fractions of H2, CO, and N2 (left column), and diffusion rates of H2,
CO, and O2 (right column).
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