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A cross-over study is a comparitive experiment in which subjects receive a sequence

ot two or more treatments, one in each of a series of successive time periods, and

the response of each subject is measured at the end of every period. A common

problem, particularly in medicine, is that subjects fail to complete a study through

dropping out during the later stages of the trial for reasons unrelated to the treat-

ments received! Current practice is to select a design for a study on the basis of

its performance under the assumption that no subjects drop out, using a criterion

such as A-optimality. This is an unrealistic assumption for many medical applica-

tions. This thesis investigates how studies should be designed when it is unrealistic

to assume that subjects will not drop out.

A method of assessing cross-over designs is presented which judges how accurately

all the pairwise treatment comparisons are estimated under the assumption that each

subject has a fixed probability of dropping out during the final period, independent

of treatment received and the other subjects. The method of design assessment

is computationally intensive even for studies involving a relatively small number

of subjects. Ways of reducing the amount of computation required are presented

through establishing the link between implemented designs and a colouring problem

in combinatorial theory. The reductions achieved make feasible investigations of

currently used designs for cross-over studies.

The results of investigations are presented for designs for the cases of particular

practical importance, namely four treatment, four period and three treatment, three

period studies, in which a simple carry-over model is assumed for the observations.

Designs which are more robust to final period dropout than the currently favoured

designs are identified.
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Chapter 1

Introduction

1.1 Cross-over Trials

Two popular study designs employed in clinical and medical research are the par-

allel group study and the cross-over trial. In a parallel group study each subject is

assigned at random to a group which receives one treatment for the duration of the

study. Treatment differences are then estimated by making comparisons between

the subject groups. In contrast, in a cross-over trial each subject is randomly as-

signed to a sequence of treatments. One treatment is given in each of a series of

successive time periods and the response of each subject is measured at the end of

each period. Cross-over trials are widely used in many areas including clinical and

medical research, agriculture and human factors engineering.

In this thesis we consider the design of cross-over trials for clinical and medical

research involving human subjects, either patients or healthy volunteers, to inves-

tigate the effects of different drug or therapeutic treatments. Since each subject

provides a direct comparison of the treatments he/she has received, it is possible

for comparisons to be made within subjects rather than between subjects as in a

parallel group study. In clinical research involving human subjects, the variation

between subjects usually greatly exceeds the withm-subject variation. Therefore,

with a cross-over design it is possible to estimate the important contrasts of interest

1



Chapter 1 2

with greater efficiency since, to obtain estimates of equal precision to those obtained

from a parallel group study, fewer subjects and observations are required. This leads

to a considerable saving of resources.

Cross-over trials should only be used in situations where the treatments being

applied are not expected to have a permanent effect upon the subjects. They are

unsuitable for studying a condition in which subjects may experience a considerable

improvement or deterioration in their condition, regardless of treatment received,

during the course of the trial. Thus, in a medical context, cross-over trials are

best suited to investigating treatments for chronic conditions in which the aim is

to alleviate symptoms, rather than permanently improve the condition. For exam-

ple, trials concerned with comparing the relative efficacy of different treatments for

conditions such as asthma, diabetes, angina, epilepsy, hypertension or arthritis are

often cross-over experiments.

The order in which each subject receives the treatments under investigation is

determined by the particular design chosen for the study. Designs used in cross-over

trials are referred to as cross-over, change-over or repeated measurement

designs. The latter term, however, is used more widely to include longitudinal

studies in which sequences of observations are made on subjects who receive repeated

applications of the same treatment.

An example of a cross-over design to compare the effects oi four treatments over

four treatment periods using four different treatment sequences is given in Example

1.1. In the example, and throughout this thesis, designs will be shown as two-way

layouts with rows corresponding to treatment sequences and columns corresponding

to periods.

Example 1.1 A trial to compare the effects of four treatments, labelled A, B, C

and D, using four periods (1, . . . , 4) and 16 subjects might employ the four treatment

sequences (1, . . . ,4) given in Table 1.1, and allocate four subjects to each sequence.

For example, a subject allocated to sequence 1 receives treatment A in period 1.
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treatment B in period 2, treatment D in period 3 and treatment C in period 4.

Table 1.1: Cross-over design for Example 1.1

Treatment

sequence

1

2

3

4

1

A

B

C

D

Period

2

B

C

D

A

3

D

A

B

C

4

C

D

A

B

The layout of treatment symbols in the example forms a Latin square in that

every symbol appears once in each row and once in each column. It has the further

property that every symbol precedes every other symbol the same number of times.

Latin squares having this property were used by Williams (1949) to give treatment

sequences for designs for agricultural experiments and hence are known as Williams

squares. Williams developed the designs to address the particular problem of treat-

ments persisting or carrying over beyond the period in which they are applied and

the designs have since been widely used in cross-over studies. The early work in

this area assumed a simple model for the observations from the studies. More re-

cently, more complicated models have been proposed and these, together with the

simple model, are reviewed in the following section. In Section 1.3 the controversies

surrounding cross-over studies are discussed. The problem of how to design stud-

ies when subjects may drop out is described in Section 1.4 where the aims of the

thesis are stated. In Section 1.5 the estimation under a simple model of direct and

carry-over treatments effects is summarised for reference later in the thesis. Finally,

Section 1.6 gives definitions of design selection criteria used in later chapters.
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1.2 Models used in Cross-over Studies

In planning a cross-over experiment, it is often important to allow for the possibility

that the contribution to a subject's response Irom a particular treatment may persist

beyond the period in which the treatment is administered. This is because, in

many situations, it is unrealistic to assume that a treatment ceases to have an

effect immediately it is stopped. Several different models have been proposed in the

literature for the observations from cross-over studies. In recent years controversies

have arisen regarding the most appropriate models to adopt at the planning stage

of an experiment. In this section, a variety of models is reviewed for cross-over trials

to compare the effects of t > 2 treatments over p > 2 periods using a total of run

subjects, where n subjects are allocated to each of m distinct treatment sequences.

1.2.1 The Simple Carry-over Model

The model most frequently assumed for the observation obtained from the j/'th sub-

ject allocated to the ith sequence in the kth period is the additive model:

Uijk = n + Sij + 7i-/: + otd(i,j,k) + Xd{i,j,k-i) + £ijh (1-1)

(i = 1,- • -,m; j = 1,. . .,n- k - 1 , . . . ,p),

where \i is the overall mean, 5,-j is the effect of the j t h subject receiving the ith

sequence, TT/; is the A;th period effect, a.d{i,j.k) IS the direct effect of the treatment

d(i,j,k) administered to the jth subject receiving the zth sequence in the /cth pe-

riod, \d(i,j,k-i) {k = 2, • • - ,?) is the first-order carry-over effect of the treatment

administered in the (k — l ) th period to the jth subject receiving the zth sequence,

Xd(i,j,o) = 0 and the £t]k's denote random errors which are assumed to be indepen-

dently and identically distributed with zero mean and variance a2. All effects in the

model are assumed to be constants, that is the effects are fixed.

Model (1.1) expresses the carry-over from a treatment in its simplest form and
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for this reason is often referred to as the simple carry-over model. The model

is widely used in the literature and has been adopted by many authors in their

search for optimal or efficient cross-over designs for many experimental situations,

as discussed in Chapters 4 and 5. In recent years the simple carry-over model has

received some criticism in the medical literature mainly because some of the assump-

tions required by the model are not always satisfied in the context of pharmacological

measurements. In Section 1.3 we review the criticisms of the model together with

additional controversies concerning cross-over experiments.

1.2.2 Inclusion of Interactions

It is possible to allow for interactions between the factors in the experiment by

extending model (1.1) to include interaction terms. In this section we describe some

of the more important interactions which may be included and outline situations in

which they may be needed in the model.

(i) Direct treatment x period interaction. Such an interaction occurs when

the effect of a treatment is modified according to the period m which it is adminis-

tered. For example, consider a two treatment, two period cross-over experiment to

compare the efficacy of two different asthma drugs in patients who also suffer from

hay-fever. If period one occurs during the hay-fever season, but period two does

not take place until after the season is over, then a significant period effect may be

observed. Suppose that one of the drugs is an effective treatment for asthma in the

absence of hay-fever, but is ineffective when a subject is suffering from hay-fever,

but the action of the other drug is unaffected by hay-fever, then a treatment x

period interaction may arise.

If evidence of a treatment x period interaction is present, it can be very difficult

to interpret the results and draw conclusions about the efficacy of the treatments in

the absence of a period effect.

Several authors have included a treatment x period interaction term in their
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models when seeking efficient cross-over designs. For example, Baalam (1968) uses

a model with a treatment x period interaction, but no carry-over effects, to find

efficient designs for t treatments, t2 experimental units and two treatment peri-

ods. Lasarre (1991) finds efficient two treatment designs using a similar model but

incorporating random, rather than fixed, subject effects.

(ii) Direct treatment x subject interaction. Senn (1993) argues that, in

certain medical situations, a general treatment effect may not exist, but the effect of

a treatment may vary from patient to patient. It is then necessary to include a direct

treatment x subject interaction term in the model. In these circumstances, it will

be very difficult to draw conclusions about the general efficacy of the treatment. In

particular, it will be very difficult to predict in advance how effective the treatment

will be for an individual patient.

The problem of interpretation may be one reason why very little discussion of

the direct treatment x subject interaction appears in the literature. Alternatively,

the absence of models including the interaction could be because the existence of a

significant interaction will only increase the amount ot variation in the trial, rather

than render any analysis invalid, as discussed by Cox (1984).

(iii) Subject x period interaction. Another interaction term which may be

included in the model is a subject x period interaction. Such an interaction may

be present if time trend effects occur which are not the same for all subjects. For

instance, in some studies patients are not always recruited together but over a consid-

erable length of time. Consequently, environmental conditions may vary for patients

recruited at different times. In the asthma study described previously, suppose that

patients recruited to the study at an early stage have their first period before the

hay-fever season and their second period during it, whilst patients recruited at a

later stage have their first period during the hay-fever season and their second after

it has finished. Then a significant subject x period interaction may be observed.
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(iv) Direct treatment x first-order carry-over interaction. A potentially

important term which could be included in the model is a direct treatment x first-

order carry-over interaction wThich is needed if the carry-over effect of the treatment

administered during period (k — 1) to the j th subject on the ith sequence varies

according to the treatment administered to the subject during period k. Fleiss

(1986) and Matthews (1993) draw attention to the possibility that the amount of

carry-over a particular treatment exerts onto itself may differ from the amount of

carry-over it exerts onto a different treatment. More discussion of this particular

issue appears m Section 1.3.

A consequence of adding any of the interaction terms discussed in this section to

model (1.1) is that the number of parameters to be estimated will be increased. The

resultant increase in the number of subjects required, together with the difficulties

of interpreting the results and of knowing in advance which particular interactions

need to be included, may be why few authors include interaction terms in models

for designing cross-over experiments. An exception is the algorithmic approach of

Jones and Donev (1994).

1.2.3 Higher Order Carry-over Effects

In the simple carry-over model it is assumed that the carry-over effect of a treatment

will persist for no more than one period. However, in cross-over studies involving

p > 2 treatment periods there is the possibility that carry-over effects may persist

for longer. A carry-over treatment effect which lasts up to and including the rth

period after the treatment has ceased is known as an rth-order carry-over effect.

Model (1.1) can be extended to include all possible higher order carry-over effects

as follows:

!<• + sij + 7Tfc + ad{hjJ:) + A j ^ . j j + Ag ] j i f c_2 ) + . . . + A^(J.ijifc_r) + eijk

(i = 1, . . . , m ; j = 1, . . . ,n; k = 1, . . . ,p),
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where ÂV- • fc_ , is the carry-over effect, observed in period k of the treatment ad-

ministered in the (k — r)th period to the j th subject on the zth sequence, such that

AU .• k_h\ = 0 for k < h where h = 1, . . . , r. All other terms are as for model (1.1).

Senn (1992) questions whether it is appropriate to exclude higher order carry-

over effects from a model when first-order effects are included. Decisions on the

anticipated duration of carry-over effects should be made on the basis of knowledge

of the nature of the treatments to be administered.

Williams (1949) considered the design and analysis of experiments when, not

only first and second-order carry-over effects may exist, but also their interactions

cannot be assumed negligible. The design and analysis of experiments involving

higher order carry-over effects is also considered by Patterson and Lucas (1962).

1.2.4 Models Including Correlated Errors

In the simple carry-over model the random errors are assumed to be independently

and identically distributed. This may be an unrealistic assumption since several

measurements are made on the same subject and hence may be correlated. One

way of extending the model to allow for this possibility is to assume some form of

serially correlated error structure. If we assume that the measurements on different

subjects are independent and that measurements taken on the same subject are

correlated, then we can replace the independence assumption of model (1.1) by

where e = ( c m , . . . , e n p , . . . , £ l n l , . . . , c l n p , . . . , e m n l , . . . ,emnp) is an mnp x 1 vector

containing the random errors for each observation, Imn is the rnn x ran identity

matrix, Vp is the p x p variance-covanance matrix for the observations on each

subject and ® denotes the Kronecker product.

The majority ol work in the literature on finding designs under the assumption

of correlated errors has assumed that Vp has the form for a first-order autoregres-

sive process, see for example Kunert (1985, 1991) and Matthews (1987). defined as
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follows.

S t a t i o n a r y f i rs t -order au to reg res s ive p rocess . If we assume the errors for

the j t h subject (j = l , . . . , n ) receiving the ith sequence (i = l , . . . , m ) follow a

stationary first-order autoregressive process we can define

J Vijk for k = 1
£ijk = \

[ p£ij(k-i) + Vuk for k > 1

where Tjt]iz are independent, identically distributed random variables with zero mean

and variance a^ and p is the autoregression parameter.

This results in a variance-covariance matrix for the within-subject errors, Vp = (vab),

of order p, whose elements are given by

p\*-b\
vab - l _ 2cre ( a , 6 = 1 , . . . , p ) ,

where — f < p < +1 and \a — 6| denotes the absolute difference of a and b.

An error structure of this form, in which the correlation gradually decreases

over time, may provide a reasonable approximation to reality for some experiments.

However, the popularity of such an error structure in the literature may be due to

its mathematical tractability rather than evidence of its plausibility. A disadvantage

of models including autoregressive errors is that the autoregression parameter p is

assumed to be known. Kunert (1985) considers such models, assuming there are no

carry-over effects, and defends their use by arguing that it is often possible to obtain

information about p from previous similar studies.

In practice, however, previous studies can only provide an approximation to the

true value of p. This is an important consideration which may effect design selection

since, as Kunert demonstrates, an optimal design for a particular size of study, in

the sense of minimising the maximum variance of the treatment effects, will usually

depend upon the value of the autoregression parameter p. Methods for constructing

the optimal designs proposed by Kunert have been given by Street (1989).
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Several authors have sought optimal or efficient two treatment designs under

model (1.1) with the assumption of independent errors replaced by an autoregressive

error structure. Matthews (1987) gives optimal designs, in the sense of minimising

the variances of a and A, for experiments involving three and four periods which

require the allocation of unequal subject numbers to the treatment sequences. He

also gives sub-optimal designs which have equal numbers of subjects per sequence as

he considers that these are preferred by experimenters. Kunert (1991) gives efficient

designs for p > 3.

An alternative approach to modelling the correlation between the within-subject

errors is to use the following first-order moving average process.

Stationary first-order moving average process. The errors for the jth subject

(j = I, . . . ,n) receiving the zth sequence (i — 1, . . . , rn) have the form

j 7)ijk for k = 1

[ Vijk ~ PVij{k-\) f° r k > l

where r\l3\. are independent, identically distributed random variables with zero mean

and variance o2
e and p is the moving average parameter. The variance-covariance

matrix, Vv, for the within-subject errors then has elements of the form

" V if \a -b\<\

otherwise,

where - 1 / 2 <p< 1/2.

Designs which are known to be optimal or efficient using models containing cer-

tain correlated error structures have practical application only to experiments in

which the error structure is known at the planning stage. In many fields of inves-

tigation, including medical trials, it is not usually possible to predict in advance

the nature of the correlation. In these situations, a design which can be shown to

provide efficient estimates of the contrasts of interest under models using several

different, plausible error structures is desirable, that is, a design which is robust
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to mis-specification of the error structure. If the assumed error structure is subse-

quently found to have been inappropriate, then the design will have been selected

on the basis of incorrect values for the variances of the estimated treatment effects.

This may have serious consequences, unless the design is known to be robust to

assumptions on the errors. Matthews (1990) examined this issue, but only for the

designs in Matthews (1987) and the two correlated error structures described in this

section.

In practice, most experimenters adopt a design which is efficient when the errors

are assumed to be independent because they cannot predict the error structure in

advance.

1.3 Controversies Concerning Cross-over Trials

In this section some of the issues and controversies concerning cross-over trials are

briefly reviewed. The issues arise from consideration of the existence, nature and

duration of carry-over effects.

1.3.1 The Need for Carry-over Effects

The size of physical carry-over effects can sometimes be reduced by the use of wash-

out periods, that is time intervals inserted between the treatment periods during

which the subjects receive no active treatment. The aim of the wash-out period is to

allow the contribution of the treatment administered in the previous period to lessen

to such an extent that its effect may be assumed to be negligible. Unfortunately, in

many practical applications, there is no guarantee that wash-out periods will achieve

this aim and, as pointed out by Matthews (1993), for certain therapeutic studies

there may be ethical objections to their use. For pharmacological applications, Senn

(1993) argues that when the time for which the drugs under investigation remain

in the body is known, it will be possible to make the wash-out period long enough

for any carry-over effects to be eliminated. However, there is no guarantee that
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carry-over effects of a non-physical nature will not exist.

In medicine it is widely believed that the act of being treated can have a profound

effect upon some patients which cannot always be accounted for by the physical

action of the treatment(s) being administered. Such psychological effects can be

observed in clinical trials in which placebo treatments or sham procedures are used.

A placebo is an inactive substance which is manufactured so that it is identical in

appearance and taste to that of the active treatment under investigation. A sham

procedure is a dummy procedure in which the patient undergoes the same regime

as those patients receiving an experimental procedure.

Trials of this nature are usually double-blind, that is, neither the patient nor

the clinician is aware which treatment is being administered. There are numerous

examples in the literature of trials which report a significant placebo effect. Many

involve conditions with a psychosomatic cause such as anxiety, but others involve

conditions such as epilepsy and post-operative pain. For example, Group (1989) de-

scribes a study to investigate the effectiveness of cinromide in reducing the frequency

of seizures in epileptics in which 23% of the patients experienced a 50% reduction

in seizure frequency whilst receiving a placebo.

There is a great deal of evidence in the medical literature to support the exis-

tence and significance of psychological treatment effects. Therefore, the possibility

that such effects may persist into subsequent treatment periods cannot be ignored.

Baker et al (1982) state that psychological carry-over can occur if the effect of a

second treatment is partly dependent upon a subject's attitude following the first

treatment. For example, consider a pain relief study to compare an active treatment

with a placebo. The subjects who receive the active treatment during the first pe-

riod may experience a reduction in pain and enter the second period with confidence.

Alternatively, the patients who receive the placebo during the first period may re-

ceive little or no pain relief and thus enter the second period with apprehension or

possibly withdraw from the study completely. Jones and Kenward (1989) and Wilan

and Pater (1986) give similar discussions of psychological carry-over effects.



Chapter 1 13

1.3.2 Criticisms of the Simple Carry-over Model

In recent years a number of authors have expressed some concern regarding the

use of the simple carry-over model (1.1) for certain clinical cross-over studies, for

example Fleiss (1986, 1989), Matthews (1993) and Senn (1992, 1993). The most

comprehensive discussions of the disadvantages of the model are given by Senn who

argues that the model is not only of little use but also harmful. His main criticism is

that the presence of a first-order carry-over effect in the model gives the misleading

impression that it is no longer necessary to use effective wash-out periods. He

further argues that, in order to justify the use of the simple carry-over model, an

experimenter must either know or make assumptions about the persistence of carry-

over effects. If the decision to use the model is based on actual knowledge, then

it must be possible to design the study in such a way that carry-over effects are

eliminated. Thus the need to include a carry-over term in the model is removed.

Alternatively, if its use is justified by assumptions, then any conclusions drawn will

depend upon the validity of the assumptions. Furthermore, if it is reasonable to

assume that the effect of a particular treatment will only persist for one period

beyond the period of application, why is it unrealistic to assume that there are

no carry-over effects, or that they persist for more than one period? Essentially,

Senn questions whether any assumptions concerning the duration of carry-over are

reasonable. Fleiss (1989) argues that the assumption that carry-over effects only

persist for one period is made for mathematical convenience rather than because it

is believed that the model is an accurate description of the response.

Nevertheless, much of the literature is in agreement that important carry-over

effects may exist and that often carry-over terms higher than first-order are negligi-

ble. Clearly, anybody who employs the simple carry-over model does not believe it

to be "true". However, they should satisfy themselves that it provides a reasonable

approximation to reality through scientific judgement.

A further criticism of the simple carry-over model arises when a design involves
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treatment sequences in which a treatment follows itself. Fleiss (1989) and Matthews

(1993) question the assumption in the model that the carry-over of a treatment

onto itself is identical to its carry-over onto any other treatment. In drug trials this

may be an unrealistic assumption to make, since the duration of periods is usually

chosen to allow the effect of each treatment to reach its maximum. Consequently,

if any treatment is followed by itself, the result may be that there is no carry-

over present when the second measurement is made. Matthews (1993) proposes an

alternative model for two treatment cross-over studies in which the carry-over effect

of a treatment onto itself is set to zero. This can easily be generalised to provide a

model for designs involving any number of treatments as follows:

yijk = fJ- +sij+iTk +otd(i,j,k)Jr ^d(i,j,k-i){i-— 4>) + £ijk

(i = ! , • • • , m ; j = 1 . . . . , n ; k = 1 , . . . , p ) ,

where
, ( 1 \id{i,j,k-l) = d(i,j}k)

<P= \
^ 0 otherwise

and d(i,j,k) is defined in (1.1).

Another controversy associated with the simple carry-over model is whether or

not estimates based on it are efficient. Serin (1993) states that he believes esti-

mates obtained using this model will be inefficient and illustrates his argument via

an example. In the example he shows that the estimates of the direct treatment

effects, adjusted for carry-over effects, have a larger variance and worse bias than the

unadjusted estimates. Senn's opinion is valid for the particular example given, in

which he has made certain pharmacodynamic assumptions about the nature of the

response obtained. Whether his opinion is valid in general is debatable. Abeyasek-

era and Curnow (1984) argue that it is always preferable to adjust for carry-over

effects since, if very small carry-over effects exist but are ignored, then this can lead

to a bias in the estimates of the direct treatment effects. This point of view is in

direct contrast to that of Senn.
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When designing experiments it is important to include in the model those terms

which may account for substantial amounts of variation. The model selected for

this purpose is a tool used to guide the experimenter to the most appropriate design

to use. Different models will lead to different choices of design and this can have a

profound effect on the design proposed for the study. Therefore, it is important that

the model used during the planning stage is appropriate. We do not recommend the

indiscriminate use of the simple carry-over model since there are circumstances in

which it is not realistic. However, many experimental situations do exist, particu-

larly in medicine, in which it is believed to be appropriate to consider the possibility

of carry-over effects at the planning stage and to employ the simple carry-over model

when planning the study.

1.4 The Problem of Subject Dropout and the

Aims of the Thesis

Frequently in cross-over trials, particularly in medicine, subjects fail to complete

a study, most commonly dropping out during the last one or two periods. It is

generally acknowledged that dropouts are a frequently occurring problem in cross-

over studies. Matthews (1987) states that dropouts are inevitable in clinical cross-

over trials and Gough (1994) says that dropouts are a major concern in the design

and analysis of clinical trials. Despite this fact, there are few examples in the

literature of cross-over studies in which dropouts have occurred. One reason for

this may be that such studies are not reported because no firm conclusions can be

drawn due to the number of missing observations and their distribution across the

treatment sequences, as m the following example.

Example 1.2 In Example 1.1 suppose that the simple carry-over model (l.l) is as-

sumed for the observations. When the experiment is performed there are very many

possible outcomes which may result. Two ol these are shown m Table 1.2, where
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the numbers shown in brackets denote the number of subjects present throughout

the period and the absence of the number indicates that all subjects are present

throughout the period.

Table 1.2: Two possible outcomes for Example 1.2.

Outcome 1 Outcome 2

Period Period

1 2 3 4 1 2 3 4

1 A B D(4) C(4) 1 A B D(4) C(3)

Treatment 2 B C A(4) D(3) Treatment 2 B C A(3) D(0)

sequence 3 C D B(4) A(3) sequence 3 C D B(2) A(0)

4 D A C(4) B(2) 4 D A C(3) C(2)

In outcome 1, four dropouts occur during the final period, namely one from

each of sequences 2 and 3 and two from sequence 4. If this outcome were realised

from the experiment, then the resultant increase in the total variance of the least

squares estimators of the direct and first-order carry-over treatment comparisons

under model (1.1), compared with that of the design in Example 1.1 is small, being

only 8.68% and 8.38% respectively. In contrast, the objective of the experiment

could not be achieved if outcome 2 were realised, that is four subjects lost in the

third period and a further seven subjects in the final period. The resulting design is

disconnected with respect to the estimation of both the direct and first-order carry-

over effects, that is under model (1.1) some of the pairwise direct and first-order

carry-over treatment comparisons cannot be estimated.

When a trial is being planned, it is sometimes known that subjects may drop

out in the later stages. There are often similar trials which have been undertaken

earlier from which an estimate of the probability of a subject dropping out during

a particular period can be made. Current practice fails to use this information in

planning a trial. A design is chosen under the assumption that subjects will not
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drop out. As Example 1.2 illustrates, this approach may have severe consequences

for estimating the treatment comparisons of interest.

The reasons a subject withdraws from a study prematurely are not necessarily

connected to the treatments under investigation. Diggle and Kenward (1994) list-

three types of dropout processes: completely random dropout, in which the probabil-

ity of a subject dropping out is completely unrelated to the treatments administered;

random dropout, that is the probability of dropout is related to the treatment(s)

which precede the subject leaving the study; informative dropout, where the prob-

ability of dropout is related to the treatment being administered at the time of

dropout. There can be serious ethical objections to using a particular treatment

in a trial if it is believed at the outset that this treatment may lead to subjects

dropping out, as in random or informative dropout. In this thesis we shall consider

only completely random dropout. The methodology can be extended to consider

situations involving random or informative dropout.

The aim of this thesis is to present a method for investigating the robustness

of cross-over designs to dropouts in order that this information may be used in

selecting a design. The method presented is not model-dependent and can be used

in conjunction with any of the models described in Section 1.2. It is presented for

experiments having p > 3 in which it is anticipated that subjects may drop out

only in the final period. If dropout is an issue in a two period study then the same

approach could be used. However, the use of a parallel group study is a more realistic

proposition. In this thesis the method is developed under the assumption that the

observations follow model (l . l) . Designs are obtained for t = p = 3 and t — p = 4

which are more robust to dropouts than those currently favoured. The approach can

be applied to designs having larger numbers of periods. However, when dropout is

an issue, it is usually not sensible to plan studies involving more than four periods.

In Chapter 2 the method of assessing the robustness ot cross-over designs is given.

The implementation of this methodology is a daunting task, since the number oi

designs to be evaluated is considerable even for relatively small studies. In Chapter
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3 we show how the size of the computational problem can be reduced by using

results from combinatorial theory. In Chapters 4 and 5 we investigate designs in

which t = p = 4 and t = p = 3 respectively. Chapter 6 outlines how the method can

be extended to situations in which subjects may drop out during any period and

identifies areas for further research.

In the final section of this chapter the estimation of treatment comparisons via

least squares analysis for a cross-over trial is described for reference in later chapters

of this thesis.

1.5 Analysis and Estimability

In this section an analysis is outlined for observations from a cross-over experiment

to compare the effects of t treatments over p periods in which nm subjects are

assigned to m treatment sequences so that n subjects receive each sequence.

We assume that the observations follow the model (1.1) which can be expressed

in matrix form as

y = lmnp/i + XSVS + X~V- + XaVa + X\V\ + £, (1.2)

where Y is an mnp x 1 vector of observations, Xs, X^, Xa and X\ are matrices

with mnp rows and rnn, p, t and t columns respectively which hold the subject,

period, direct and first-order carry-over treatment effects respectively and vs, v-^, va

and v\ are vectors of length rnn, p, t and t respectively which hold the parameters

of interest for subjects, periods, direct and first-order carry-over treatment effects

respectively. The vector lmnp of length mnp has every element unity and e is a

vector of length mnp which holds the random errors. Alternatively equation (1.2)

can be written as:

Y = X6 + £, (1.3)

where X is the partitioned matrix (lm n p Xs \ X^ \ Xa X\) and j3 is the vector

holding all the model parameters. The variance-covariance matrix of e is Imnp.
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The following notation is used in this section and throughout the thesis. The

transpose of a matrix M is denoted by M' and a generalised inverse ot M is denoted

M~. The projection matrix onto the column space of M is denoted by pr(M) =

M(M'M)~M'. Let Ix denote the identity matrix of order x and prA-(M) = Ix -

pr(M) denote the projection matrix onto the space which is orthogonal to the column

space of M.

Suppose that, when the experiment is performed, there are /,-,., dropouts on se-

quence j who complete i periods and then drop out during period i + 1, where

i = 0, . . . ,p— 1 and j = 1, . . . ,m. Then the resulting incomplete set oi observations

and their model can be obtained by premultiplymg each oi the matrices m equation

(1.2) by an mnp — q X mnp matrix L of zeros and ones, where q is the total number

of missing observations. The matrix L acts on the terms in (1.2) in such a way that

the rows corresponding to the missing observations are deleted and will be called the

loss matrix. The purpose of introducing this matrix is to simplify the computations

of the variance-covariance matrices, for all designs which may result from subjects

dropping out, required for the investigations presented in Chapters 4 and 5.

Premultiplying equation (1.2) by the loss matrix gives the model

LY = L(X(3 + e). (1.4)

The ordinary least squares estimator of the vector of parameters (i is obtained by

minimising the error sum of squares, e'e, with respect to 6. The normal equations

can be shown to be

[X'L'LX]J3 = X'L'LY. (1.5)

On eliminating the subject and period effects from the normal equations we

obtain

X'aKXJja + X'J<Xxvx = X'JxY (1.6)

= X'XKY (1.7)
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where

K = W\prA-(WX~)]W

W = L'[PrL{LXs)}L

1.5.1 Estimators of the Direct Treatment Effects

From equation (1.7) it can be shown that

vx = [X'XKXX]~{X'XKY - X'xKXava). (1.8)

Substituting (1.8) into (1.6) we obtain

{X'aKXa - X'aKXx{X'xKXx]~X'xKXQ}va = {X'aK - X'aKXx[X'xKXx}-X'XK}Y

Hence the reduced normal equations for estimating the direct treatment effects

can be expressed as

Aava — LJa v i

where

Aa = X'aKXa - X'J<Xx[X'xKXx]-X'xKXa

and

Qa = {X'J< - X'aKXx[X'xKXx]-X'xK}Y.

Aa is the information matrix for estimating the direct treatment effects and

Qa is the vector of direct treatment totals after adjusting for subject, period and

first-order carry-over treatment effects. Since rank(Aa) < t — 1, there is no unique

solution to (1-9). A solution can be obtained as

Va = V,aQa, (1-10)

where fiQ is a generalised inverse of Aa. The general solution of (1.10) is given by

va = naQa + {naAa-i)z, ( i . i i )

where Z is an arbitrary vector, see Searle (1971, p 11).
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1.5.2 Estimators of the First-order Carry-over Effects

From equation (1.6) it can be shown that

va = [X'aKXa]-{X'J<Y - X'aKXxvx) (1.12)

On substituting (1.12) into (1.5) we obtain

{X'XKXX - X'xKXa[X'aKXaYX'J<Xx}vx = {X'XK - X'XKXa[X'aKXa]-X'aK}Y.

Hence the reduced normal equations for estimating the first-order carry-over

effects are

Axvx = Qx, (1.13)

where

Ax = X'XKXX - XxKXa[X'aKXa]-X'aKXx

an d

Qx = {X'XK - XxKXa[X'aKXa]-X'aK}Y.

Ax is the information matrix for the carry-over treatment effects and Qx is the

vector holding the totals of the carry-over treatment effects after adjusting for sub-

ject, period and direct treatment effects.

One solution to equations (1.13) is given by

vx = £lxQx, (1-14)

where flx is a generalised inverse of Ax. Again it is not possible to find a unique

solution to the equations because rank (Ax) < t — 1. The general solution of (1-13)

is, for any specific fi,\,

where Z is an arbitrary vector.
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1.5.3 Estimating Treatment Contrasts

In this section results on the estimators of treatment contrasts are given for reference

later in the thesis.

Let Ca and C\ be contrast matrices of rank at most t — \ in the treatment effects,

that is CaJt = C\Jt = 0( , where Jt = \tl't and 0t is a vector of length t with every

element zero. Then the least squares estimators of Cava and C\v\ are, from (1.11)

and (1.15),

Gava = CJlaQa + Ca{naAa~I)Z and (1.16)

cxvx = c\nxQx + c\{nxAx-i)z (1.17)

where Z is an arbitrary vector.

The following lemmas give necessary and sufficient conditions for contrasts in

the direct and carry-over treatment effects to be estimable and gives the properties

of the estimators.

Lemma 1.1

(i) Cava is unique and hence estimable if and only if

Ca(CtaAa-I)Z = 0 for all Z,

that is, if and only if

ca(naAa - /) = o,

or

C fi A = C

(ii) When CanaAa = Ca

(a) E(Cava) = Cava

(b) Var(Cv;a) = CaClaC"aa
2.
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Lemma 1.2

(i) C\V\ is unique and hence estimable if and only if

Cxi^xAx- I)Z = 0 for all Z,

that is, if and only if

CX{9.XAX - / ) = 0,

or

cAnA/iA = c,v

(ii) When CxClxAx = Cx

(a) £(CA£A) = C\vx

(b) Var(C7A{)A) = CxnxC'xa
2.

1.5.4 The Case of No Dropouts

The case when all subjects successfully complete the study, that is when L — Imnp,

has been extensively researched. The purpose of this section is to outline briefly how

the form of the information matrices given earlier in this section can be reconciled

with the information matrices in the literature for the no dropout case.

When there are no dropouts the design matrices for subject and period effects

are Xs = Imn ® lp and X^ = lmn ® Ip respectively. Hence the reduced normal

equations (1.9) for estimating the direct treatment effects become

Aava = Qa, (1.18)

where

Aa = X'aK1Xa-X'aK,Xx[X'xK1Xs}-X'xKlXa

Qa = {X'Ju-X'JuXxiX'JuX^X'.K^Y and

A'i = [Imn-{l/mn)Jmn]®[Ip-(l/p)Jp]
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Similarly, the reduced normal equations for estimating the first-order carry-over

treatment effects become

Axvx = Qx, (1.19)

where

Ax = X'^Xx-X'JuX^X'JuX^-X'JuXx

Qx = {X'XKX - X'JUX^ [X'JUX^X'Jx^Y

where Ki is as for (1.18). Equations (1.18) and (1.19) can be shown to be identical

to different forms given in the literature, such as Kunert (1983) and Cheng and Wu

(1980).

1.6 Design Selection Criteria

When assessing how well the contrasts of interest can be estimated from a cross-over

design, it is common practice to assess the design under some appropriate optimality

criterion i/>[CfiC"], as defined by Kiefer (1975), where C is Cu or C\ and 0, is P.a

or Cl\. In this section the design selection criteria used in this thesis are given for

reference in later chapters.

Let D be the class of competing designs for a cross-over study, that is having

the same numbers of subjects, periods and treatments.

Definition 1.1 - The A-criterion A design d" G D is A-optimal over D for

the estimation of the contrasts of interest Cava in the direct effects if d" minimises

the average variance of the contrast estimators; that is,

tr[Cana(d')C'a] < tr[CQna{d)C'a]

for all d G D, where Q.a(d) is a generalised inverse of the direct treatment information

matrix for design d.
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The definition of an A-optimal design for the estimation of the contrasts of

interest in the first-order carry-over effects can be obtained by replacing a by A

in Definition f.f. When choosing between competing designs in D, in addition

to calculating the average variance of the treatment contrasts of interest, it is also

advisable to examine the maximum variance that is obtained from the designs. This

is the purpose of the following criterion.

Definition 1.2 - The MV-criterion A design d" is MV-optimal over D for

the estimation of the contrasts of interest Cava in the direct effects if the maximum

variance for the contrast estimators under d" is less than or equal to the maximum

variance for the estimators obtained for each d G D.

An MV-optimal design for the estimation of first-order carry-over treatment

contrasts is denned similarly.

It should be noted that, when the contrasts of interest Cava or C\v\ form a com-

plete set of orthonormalised contrasts, such as the basic contrasts, the MV-criterion

is identical to the E-criterion which seeks to minimise the maximum eigenvalue of

the information matrix for the contrasts of interest.

For some experiments designs have been obtained which are optimal for a range

of criteria. For example, Cheng and Wu (1980) identify designs for estimating direct

and carry-over effects which are optimal in the following sense.

Definition 1.3 [Kiefer (1975)] - Universal optimality Suppose that S is the

set of t x t non-negative definite matrices with zero row and column sums and

$ : S > ( — 00,00] satisfies:

(i) $ is convex,

(ii) $[6/ia(<i)] is nonincreasing in the scalar b > 0, (1.20)

(iii) $ is invariant under each permutation of rows and of columns,
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where Aa(d) is the information matrix for the direct treatment effects for design d.

A design d' is universally optimal for the estimation of contrasts of interest

Cava in the direct effects if $[A(c/*)] < $[A(d)} for all d G D and every $ satisfying

(1.20).

A universally optimal design for the estimation of first-order carry-over treatment

comparisons is defined similarly.

A design which is found to be universally optimal will also be A- and MV-

optimal. However, a design which is optimal under one criterion is not necessarily

optimal under the other criterion. Nevertheless, it is usual for a design which is

optimal under one criterion to perform well under the other criterion.
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Design Assessment and Selection

2.1 Introduction

One of the most important decisions made during the planning stage of any cross-

over trial is the design selection. Given that a study aims to compare t treatments

over a maximum of p periods using 5 subjects, which of the many designs available

should be chosen? An appropriate design is one which is efficient for estimating the

treatment comparisons of interest, most commonly all comparisons of pairs of direct

treatment effects or a set of orthogonal contrasts such as the orthogonal polynomial

contrasts.

A summary of some of the most commonly used design selection criteria has

been given in Chapter 1. These criteria do not, however, assess the performance

of designs when subjects may drop out during the later stages of the trial. Hence

current practice is to select a design on the basis of its performance assuming no

subjects drop out. This is an unrealistic assumption for many medical applications.

For example, in an arthritis trial over four treatment periods separated by wash-out

periods, patients often leave the study in the final period (or even earlier) tor reasons

unconnected with the trial, such as leaving the geographical area.

Matthews (1988), in his discussion concerning the optimality properties of cross-

over designs, queried how robust these properties might be to dropouts. Herzberg
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and Andrews (1976) considered the effects of missing values and outliers on optimal

response surface designs, and defined a measure of expected average precision to

compare designs. In this chapter a similar approach is adopted for comparing designs

for cross-over trials; the main difference is that designs are judged by how accurately

the pairwise treatment comparisons can be estimated wTith the assumption that each

subject has a fixed probability. #, of dropping out m the final period, independent

of treatment. These assumptions may be somewhat unrealistic. However, all the

ideas introduced in this chapter can easily be extended to situations where subjects

may drop out during any period or when it is anticipated that treatment-dependent

dropout may occur, for instance when one treatment is a placebo.

In the following section the definitions and notation used to develop the method

of assessing cross-over designs when subjects may drop out are given. In Section 2.3

the probability of realising any of the designs which can occur when one or more

subjects drop out during the final period is formulated. Two ways of assessing the

performance of cross-over designs subject to final period dropout are described in

Section 2.4 and in Sections 2.5 and 2.6 the preferred method is illustrated. Finally,

in Sections 2.7 and 2.8 the issues of sensitivity and robustness to the probability of

final period dropout are discussed. Criteria for robust designs are formulated and

used to establish a set of design selection criteria which is used, in latter chapters,

to compare the robustness of competing designs to dropouts.

2.2 Definitions and Notation

To consider cross-over designs subject to patient dropout the following definitions

and notation will be employed.

Definition 2.1 The planned design is a cross-over design adopted at the outset

of a study to compare t treatments over p periods using mn subjects with n subjects

allocated to each of m distinct treatment sequences.
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The planned design is denoted by d(t,m,n,p).

Definition 2.2 The design realised through applying the planned design in a cross-

over trial is called the implemented design.

In order to list the possible implemented designs the following notation is used.

Notation When /, dropouts occur in the final period of sequence i (i = 1. . . . , rn) ,

we denote the implemented design by d[(t,m,n,p), where / is the m-tuple l\U • • • lm.

N o t e t h a t d ( t , r n , n , p) = d o ( t , r n , n , p ) , w h e r e 0 = 0 0 . . . 0 .

Definition 2.3 The set of all implementable designs, D, is the set of all possible

realisable designs, that is consisting of d(t,m,n,p) together with all designs formed

by dropping one or more subjects in the final period of d(t,rn,n,p)

A more concise definition of D is achieved using the following notation.

Notation Let G'm.n = { /: I = l\ . . .lm, /, = 0,. . . , n, i = 1, . . . , rn }

i.e. Gmi l holds all possible dropout patterns which could be incurred by d(t. rn,n,p).

I n e n JJ — \ d.i(t,rn,n,p); I £ C T ^ . ^ }.

Note that the size of D, denoted by |D|, is given by |D| = (n + l ) m .

In this chapter we consider only implementable designs resulting from dropouts

occurring in the final period. An example of a set of implementable designs is given

in Example 2.1. In the example, and throughout this thesis, designs will be shown

as two-way layouts with rows corresponding to treatment sequences and columns

corresponding to periods.

Example 2.1 Let <i(4,4,l,4) be the Williams square of side four for treatment

labels 0, 1,2 and 3 and initial treatment sequence (0 13 2). This design is labelled

<̂oooo in Table 2.1. The set, D, of 24 = 16 implementable designs and its elements
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are listed in Table 2.1. In Table 2.1, and throughout this thesis, * is used to indicate

that a subject has dropped out.

In this chapter we assess the performance of any planned design, subject to a fixed

probability, 9. of final period dropout, by assessing each member ol its associated set

of implement-able designs, D. From these individual assessments it will be possible

to produce summary measures of overall performance or robustness of the planned

design.

2.3 Probability of Implementing d\

Assume that each subject has a fixed probability, 9. of dropping out in the final

period independent of treatment. For each i =• 1, . . . , m let Z, be the total number

of subjects in the zth sequence group who drop out. Then the Z;'s are independently

distributed binomial random variables with parameters n and 6*, i.e Zt ~ B(n, 9).

Hence the joint probability function for the numbers of final period dropouts on

each treatment sequence is

P(lu...Jm\9) =
i = l

m / r, \

-())n~l< (2.1)

This is the probability that the design d[, where / = /j . . . lm, is implemented in

practice. Hence, for each d\ £ D we can calculate the probability that d\ is the

realised design, as in the following example.

Example 2.2 Let c/(4,4, 1,4) be the Williams square given in Example 2.1, whose

set of implementable designs is listed in Table 2.1. The probability of implementation

for each design d; £ D, calculated from equation (2.1), is given in Table 2.2.
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Table 2.1: Full set, D, of implementable designs for Example 2.1.

0 Dropouts

^0000

0 1 3 2

1 2 0 3

2 3 1 0

3 0 2 1

1

di

0

1

2

3

2

d,

0

1

2

3

3

d,

0

1

2

3

4

f/

0

1

2

3

Dropout

000

1 3 *

2 0 3

3 1 0

0 2 1

Dropouts

100

1 3 *

2 0 *

3 1 0

0 2 1

Dropouts

m i

1 3 2

2 0 *

3 1 *

0 2 *

Dropouts

m i

1 3 *

2 0 *

3 1 *

0 2 *

^0100

0

1

2

3

d,

0

1

2

3

d

0

1

2

3

1

2

3

0

3

0

1

2

1010

1

2

3

0

3

0

1

2

1011

1

2

3

0

3

0

1

2

2

0

1

"•¥•

3

1

3

*

*

dc

0

1

2

3

d,

0

1

2

3

0

1

2

3

)01

1

2

3

0

0

3

0

1

2

1001

1

2

3

0

3

0

1

2

1101

1

2

3

0

3

0

1

9

2

3

1

*

3

0

*

0
*

<*(

0

1

2

3

d<

0

1

2

3

0

1

2

3

mo

1

2

3

0

311

1

2

3

0

l

3

0

1

2

0

3

0

1

2

1110

1

2

3

0

3

0

1

2

2

3

0

*

2
*

1

1

0

1

2

3

0101

1

2

3

0

3 2

0 *

1 0

2 *

0

1

2

3

0011

1

2

3

0

3 2

0 3

1 *

2 *
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Table 2.2: Probabilities of implementation for each design di £ D for Example 2.2.

Design

c^oooo

fl^tooo

^0100

c^ooio

<^0001

<^1100

^1010

<^1001

c^ono

^0101

^0011

^0111

t^ion

•^1101

c^mo

•^1111

Probability of

Implementation

( I - * ) 4

9(1 -9)3

62(l-9)2

92(l-9)2

92(1 -9f

92(l-9)2

92(l-9)2

92(l-9f

93(l-9)

93(l-9)

93(l-9)

93(1~9)

94
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2.4 Assessment of Design Performance Subject

to Final Period Dropout

To assess the performance of a cross-over design, d, subject to a fixed probability, 8,

of final period dropout, we consider the set, D, of all possible implemented designs

derived from d.

We assume that the purpose of the experiment is to estimate contrasts of interest

defined by Cava and C\v^, where Ca and C\ are contrast matrices holding the

coefficients of the contrasts of interest and va and v\ are vectors holding the direct

and first-order carry-over treatment effects respectively.

2.4.1 Design Requirements

In some practical cases D contains one or more disconnected designs, that is designs

where it is no longer possible to estimate all the contrasts of interest. For example,

if the aim of a study is to compare all the pairwise direct treatment effects and the

design given in Example 2.1 is considered, it can be shown that any design in D

which contains two or more final period drop outs is disconnected. From Table 2.2

the probability of implementing a disconnected design is [652(l —19)2 +46)3(1 — 6)-\-04].

Let Do C D denote the set of disconnected designs derived from d and Y(DQ)

denote the probability of implementing a disconnected design. Ideally, a design d

should generate no disconnected implementable designs. However, for small values

of n and p this is not always achievable. In this case, a desirable property of d is

that the probability of implementing a disconnected design should be small. If the

probability is unacceptably large then an alternative design should be adopted.

Let Dc C D denote the set of connected designs derived from d. An additional

requirement of any planned design is that each of the designs in Dc estimates, as

accurately as possible, the contrasts of interest in the direct and first-order carry-

over treatment effects. In the next section ways oi assessing how well a planned



Chapter 2 34

design meets this requirement will be considered.

2.4.2 Methods of Assessment

Current practice when assessing the performance of a cross-over design is to consider

how well it performs under one or more appropriate optimality criteria. Kiefer

(1975) gave a general formulation of a criterion as ip[C fl(d) C] where C = Ca or

C\, and D,(d) is a generalised inverse of the information matrix for the direct or

for the first-order carry-over treatment effects for the planned design, see Section

1.6. For example, when t^[CQ,(d) C] = tr[Cfi(d)C"] or the maximum eigenvalue

of Cfl(d)C'} then the criterion is A- or E- respectively, applied to the direct or

first-order carry-over treatment effects. In this section two approaches for assessing

cross-over designs subject to dropout are described.

1. The Direct Approach

Each of the connected implementable designs can be assessed individually using any

of the above optimality criteria. One approach, therefore, is to calculate the ex-

pected average variance of the direct and first-order carry-over treatment effects

for the set of connected designs. This expectation must be restricted to the set of

connected implementable designs, since the average variance of the treatment effects

is not obtainable for any of the disconnected designs.

This method of assessment has the advantage of being a simple extension of the

procedure employed when the probability of dropout is not an issue. The disadvan-

tage of using this method, however, is that the performance measures obtained are

conditional expectations which cannot take into account the disconnected designs.

When D contains one or more disconnected designs the performance measures will

give a misleadingly good impression of the design's expected performance in repeated

use in experiments. This will cause a problem when trying to compare the relative

performance of two competing designs which have different numbers of disconnected
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implementable designs.

2. Al te rna t ive Approach

In order to overcome these problems, an alternative method of assessing a planned

design, d, is required which involves performance measures for both the connected

and disconnected designs in D. These measures are now defined for general sets

of contrasts in the direct and in the first-order carry-over treatment effects. In the

following definitions SR+ denotes the non-negative real numbers.

Definition 2.4 Let Xd:D —> cR+ be a random variable such that

Xd{di) = <̂  (2.2)
{ 0 ior di G Do ,

where i[) is a measure of design performance, Ca is a matrix holding the coefficients

of the contrasts of interest in the direct treatment effects and fla(di) is a generalised

inverse of the information matrix of d\ for estimating the direct treatment effects.

Thus the random variable Xd takes values which are reciprocals of the value of the

function T/> for the direct treatment effects for the individual implementable designs.

Definition 2.5 Let Y,y.D —> 5ft+ be a random variable such that

v f n f [^Cxnx{d,)C'x)]-' for d,ED\DQ
Yd(di) = I (2.3)

[ 0 for di e Do ,

where tp is a measure of design performance, C\ is a matrix holding the coefficients

of the contrasts of interest m the first-order carry-over treatment effects and fl\(di)

is a generalised inverse of the information matrix of di for estimating the first-order

carry-over treatment effects.

Similarly, the random variable Yd takes values which are the reciprocals of the

function \p for the first-order carry-over treatment effects for the individual im-

plementable designs.
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The probability distribution of Xd for a constant probability, 9, of final period

dropout is obtained from (2.1) as

w here L = {I £ Gm,n \d\ G D , Xd(di) = x}.

Similarly, the probability distribution of Yi for a constant probability, 9, of final

period dropout is

where L = {/ e Gm,n ; d/ G A Ki(^) = y}.

In order to summarise the performance of a planned design under repeated use

in experiments with probability 6 of final period dropout, the mean and variance of

the random variables Xj and Yd can be examined.

Definition 2.6 For the planned design d define the mean of X,i by

E[Xd\6]=Y,Mdi)P(l\0)= E bKCa^id^C'^Pm , (2.4)

where ?/>, Ca and Qa(dt) arc as in Definition 2.4 and Xd is the random variable

defined in (2.2) for the planned design d.

Definition 2.7 For the planned design d the variance of Xd is

- E[Xd\O]Y . (2.5)

A similar summary of design performance for estimating the first-order carry-

over treatment effects can be made using the following definitions.

Definition 2.8 For the planned design d define the mean of Yd by

E[Yd\0]=J£Yd{dl)P{l\0)= Y, [WCxnx(di)C'x)]-lP{l\Q) , (2.6)
dteD\D0
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where ?/;, C\ and fi,\(<i/) are given in Definition 2.5 and Yd is the random variable

defined in (2.3) for the planned design d.

Definition 2.9 For the planned design d the variance of Yd is

In the next section the second approach is illustrated for the A-criterion and a

Williams square design.

2.5 Illustration using the A-criterion

Cross-over trials are commonly used in studies which aim to compare the efficacy

of two or more treatments. A natural criterion for design selection and assessment

in cross-over trials is, therefore, the A-criterion which seeks to minimise the average

variance of the contrasts of interest, see Section 1.6. The criterion can be applied to

each of the direct and first-order carry-over treatment effects through equations (2.4)

and (2.6) where Ca, C\, Qa(di) and fi,\(di) are as defined in the previous section and

0 is tr[Cana{di)C'a] or tr[CAP.A(d;)CU Since tr[Ca£la(di)C'a] and tr[Cxnx{di)C'x}

appear as reciprocals in (2.4) and (2.6) a "good" design is one which has E[Xd\9]

as large as possible; similarly for ^ [ V ^ ] . Example 2.3 illustrates the use of this

method for assessing a planned design, d, in the presence of final period dropout.

Example 2.3 Let ̂ (4,4,4,4) be the Williams square of side four for treatment

labels 0, 1, 2 and 3 and initial treatment sequence (0 1 3 2). Assume we wish to

estimate

1. the pairwise direct treatment comparisons, a; — OCJ tor 1 < i < j < t and,

2. the pairwise first-order carry-over treatment comparisons, A; — X: for

1 < i < ] < t.
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The number of implementable designs realisable from d is

\D\ = (n = 54 = 625

An examination of all implementable designs shows that the number of disconnected

implementable designs is \D0\ = 113.

As some of the potentially implementable designs are disconnected, it is necessary

to examine P(D0), the probability of implementing a disconnected design. Applying

equation (2.1) to each of the disconnected implementable designs and considering

the whole range of possible values for 6, 0 < 9 < 1, we obtain the distribution of

P(Do) given in Table 2.3.

Table 2.3: Probabilities of implementing a disconnected design for a Williams square

of side four with 16 subjects, <i(4,4,4,4).

Probability of Dropout

(0)
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Probability d\ Disconnected

P(A>)
0.00

6.0 x 10"8

2.0 x 10~4

3.9 x 10~4

3.8 x 10"3

2.2 x 10"2

8.4 x 10~2

0.25

0.54

0.88

1.00

It is reasonable to assume that any design having a probability greater than 0.2

of producing a disconnected implementable design would not be acceptable to an
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experimenter. If we examine the probabilities given in Table 2.3 we observe that, for

the small practical values of 9, the probability of implementing a disconnected design

is very small. For 9 < 0.6 this probability is less than 0.09. When 9 > 0.6, however,

the probability rapidly increases beyond 0.2, at which point an experimenter may

reasonably consider that this represents too great a risk to proceed with the planned

design. In these circumstances we could either increase the number of subjects

allocated to each ot the sequences sequences or choose an alternative design with

a smaller probability of realising a disconnected design. For this example, if the

probability of subjects dropping out in the final period of a four period study is

anticipated to be as high as 0.7, then there is a strong case for adopting a three

period design instead.

Applying equations (2.4), (2.5), (2.6) and (2.7) to the A-criterion we can obtain

the mean and variance of the performance measures Xd and Yd, over the range of pos-

sible 9 values, 0 < 9 < 1. These are given in Table 2.4 and they provide a summary

of the performance of the average variance of the direct and first-order carry-over

treatment effects for the planned design. Figures 2.1 and 2.2 show how E[Xd\B]

and JSfy l̂̂ ] change with 9. Note that the bars represent ^[A^l^] ±

and iSfY Î̂ ] ± i/Var[Kz|#] which give an indication of the spread of the distribu-

tion of Xd and Yd respectively. In these figures and throughout the thesis, when

E[Xd\9] - ^Vav{Xd\9} or E[Yd\0] - -JVav[Yd\9] is less than zero the bars are not

shown below the 9 axis.

From Figure 2.1 we observe that as 9 increases there is a gradual reduction in

the mean of Xd from a maximum value of 7.27, when 9 = 0.0, to a minimum of 0.00,

when ^ = 1.0. Note that, when the probability of final period dropout is anticipated

to be 6 = 0.0, the set of implementable designs D contains only one design, that is

the planned design. When the probability of final period dropout is anticipated to

be 9 = 1.0, D contains only one design, that is the planned design with the entire

final period deleted which in this case is disconnected.
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Table 2.4: Mean and variance of the performance measures Xj. and Yd, under the

A-criterion, for the Williams square of side four with 16 subjects, <i(4,4,4,4).

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

7.27

6.90

6.46

5.95

5.33

4.58

3.63

2.50

1.26

0.28

0.00

v^[xd\6}

0.00

0.10

0.26

0.53

0.97

1.62

2.40

2.86

2.21

0.61

0.00

E[Yd\9)

5.00

4.68

4.32

3.91

3.43

2.87

2.22

1.48

0.73

0.16

0.00

Var[Kd|0]

0.00

0.07

0.17

0.32

0.53

0.79

1.03

1.10

0.77

0.20

0.00
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E[Xd\6]
7.5 -i

5.0 -

2.5 -

0.0
0.0 0.2 0.4 0.6 0.8

Probability of Dropout

1.0

Figure 2.1: Summary of the performance of the Williams square of Example 2.3

in estimating the pairwise direct treatment effects under the A-criterion, where the

bars denote E[Xd\0] ± Jv&v[Xd\9].
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E[Yd\6]
7.5 -,

Probability of Dropout

Figure 2.2: Summary of the performance of the Williams square of Example 2.3 in

estimating the pairwise first-order carry-over treatment effects under the A-criterion,

where the bars denote E[Yd\6] ± yJVa.r[Yd\6].
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An examination of all the designs in D shows that, for this example, all imple-

mentable designs with twTo or more sequence groups containing / = n = 4 dropouts

in the final period are disconnected. There are 113 disconnected implementable de-

signs each containing at least eight dropouts in the final period. This partly explains

the sudden reduction in the mean value of both performance measures at around

6 = 0.5, which produces an increase in the gradient of each of the curves in Figures

2.1 and 2.2 when 9 > 0.5.

The graphs showing the mean of the performance measures Xci and Yj. are sim-

ilar but, as expected, the amount of information in the direct treatment effects is

consistently greater than that in the first-order carry-over treatment effects. We can

conclude, therefore, that the rate of loss of information due to final period dropout

is fairly consistent for both the direct and first-order carry-over treatment effects for

this design.

Note that, regardless of the value of 0, each of the distributions for X,j will have

a maximum value of 7.27 contributed by the planned design and a minimum value

of 0.00. Similarly, each of the distributions for Y^) regardless of the value oi 0, will

have a maximum value of 5.00 contributed by the planned design and a minimum

value of 0.00.

The spread of a distribution will always be smaller when 9 is very small or very

large. When 9 is very large the distributions for Xd and Yj, will be positively skewed

and when 0 is very small the distributions will be negatively skewed. The skews

occur because the distributions will be dominated by the performance measures for

the designs with the greatest probability of being implemented. When 0 is small, the

most probable designs are those with high performance measures. When 9 is large,

the most probable designs are those with the poorer performance measures; in our

particular example, the disconnected designs. The distributions with the greatest

spread will be those with values of 0 close to 0.5 because each of the implementable

designs will then have a similar probability of being realised. All these properties

are illustrated in Figures 2.1 and 2.2.
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It can be argued that when a distribution is skewed it may be appropriate to

consider the median value of the distribution in addition to the mean. For very

small values of 9, therefore, the median of the distribution of Xd and Yd could be

used as an additional summary measure. This would not necessarily be appropriate

for large values of 9 since, as mentioned previously, if the probability of dropouts

occurring in the final period is anticipated to be large then an alternative design

with fewer periods should be sought.

2.6 Illustration using the MV-criterion

Frequently, a cross-over trial is planned with the aim of estimating all the pairwise

treatment comparisons within the direct effects with equal precision, that is so

that Var(d,- — Oj) = ka2, where k is constant for all i ^ j . A design having this

property is called variance balanced for the estimation of direct treatment effects.

Unfortunately, even if variance balance has been achieved in the planned design,

the property is rarely retained when dropouts occur. If variance balance is desired,

but dropouts are anticipated, it is desirable to obtain an indication of the spread

in the variances of the pairwise treatment comparisons which might reasonably be

expected in the implemented experiment. One approach is to calculate the difference

between the highest and lowest pairwise variances achieved for each design in D and

then summarise this in some way.

Ideally, designs which have high variances on some of the contrasts should be

avoided. By considering only the A-criterion, these designs will not always be de-

tected. If the performance of designs is considered under the MV-criterion which

seeks to minimise the maximum variance of the contrasts of interest, designs will be

discovered which give rise to high variances on some of the contrasts.

The MV-criterion can be applied to each of the direct and first-order carry-over

treatment effects through equations (2.2) and (2.3) by letting •tl)[ClVtl{di)C[) equal the

maximum variance of ClVtl{di)C[ over all d\ £ D\D0 for i = a and A. Since the value
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of the maximum variance appears as a reciprocal in the performance measures given

by equations (2.4) and (2.6), a "good" design for estimating the direct treatment

effects will be one which has i^fX^] as large as possible. Similarly, a "good" design

for estimating the first-order carry-over effects will be one which has E[Yd\0) as

large as possible. By considering these performance measures, in addition to those

obtained using the A-criterion, we have a further way of assessing a planned design

under dropout.

Example 2.4 We assess the Williams square of Example 2.3 using performance

measures based on the MV-criterion. Using equations (2.4), (2.5), (2.6) and (2.7)

with the MV-criterion we can obtain the mean and variance of the performance

measures X,j and Yd, over the range of possible 6 values, 0 < 0 < 1. These are

given in Table 2.5 and they provide a summary of the performance of the maximum

variance of the direct and carry-over treatment effects ior the planned design. The

results are illustrated in Figures 2.3 and 2.4 respectively.

Discussion of Examples 2.3 and 2.4. The observations made concerning the

probability of implementing a disconnected design and the general trend with 0 for

the mean of Xd and Y,j for the design assessed under the A-criterion (see Example

2.3) all apply to Example 2.4. In Example 2.3, the effect of final period dropout on

the estimation of the average variance of the treatment comparisons was examined.

In Example 2.4, since the MV-cntenon is used to calculate the pertormance measures

Xd and Yd, the effect of final period dropout on the maximum variance of the

treatment comparisons can be observed. These two estimates are not unconnected.

When a design is variance balanced the performance measures obtained using the A-

or MV-criterion will be identical. When there are no final period dropouts the design

of the example is variance balanced. When final period dropouts occur, however, the

design is only varianced balanced if the number of subjects dropping out is the same

for each treatment sequence. By examining the mean of the performance measures
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Table 2.5: Mean and variance of the performance measures Xd and Y^. under the

MV-criterion, for a Williams square of side four with 16 subjects, J(4, 4,4,4).

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0)

7.27

6.60

5.97

5.30

4.55

3.70

2.77

1.77

0.83

0.17

0.00

Var[Xd|0]

0.00

0.26

0.56

0.96

1.43

1.90

2.18

2.00

1.20

0.25

0.00

E[Yd\6]

5.00

4.45

3.94

3.41

2.85

2.26

1.65

1.04

0.48

0.10

0.00

Var[yd|0]

0.00

0.17

0.34

0.52

0.69

0.81

0.85

0.72

0.40

0.08

0.00
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E[xd\e]
7.5 -,

5.0 -

2.5 -

0.0 e
0.0 0.2 0.4 0.6

Probability of Dropout

0.8 1.0

Figure 2.3: Summary of the performance of the Williams square of Example 2.4 in

estimating the pairwise direct treatment effects under the MV-criterion, where the

bars denote E[Xd\9) ± y/V&r[Xa
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E[YC

0.0
0.2 0.4 0.6 0.8

Probability of Dropout

1.0

Figure 2.4: Summary of the performance of the Williams square of Example 2.4

in estimating the pairwise first-order carry-over treatment effects under the MV-

criterion, where the bars denote JE[K/|#1 ±
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X,j and Yrj. under the MV-criterion, an insight into whether the planned design may

give rise to an implemented design having high variances for some contrasts but not

for others will be obtained.

Comparing Tables 2.4 and 2.5 it can be observed that the mean values of X,j. and

Yd, under the MV-criterion are always smaller than their corresponding A-criterion

values. This is true for any design by definition, since the MV-criterion consid-

ers only the maximum variance of the contrasts of interest while the A-criterion

finds their average. Hence, the reciprocal value of the A-critenon value will always

be larger than the corresponding MV-criterion value. For the small practical val-

ues of 0, however, they do not differ by very much. From this it is possible to

conclude that, although variance balance is unlikely to occur in the implemented

experiment, the spread across the different treatment comparisons should not be

too great, particularly for small values of 0. For example, when 0 = 0.2 the mean

performance measures for estimating the direct treatment comparisons under the

A- and MV-criteria are 6.46 and 5.97, respectively. Since the performance measure

obtained from the maximum variance of the treatment comparisons for each of the

implementable designs does not differ from that achieved by considering the average

value of all the treatment comparisons it is reasonable to conclude that the spread in

the variances of the pairwise treatment comparisons for each of the implementable

designs can never be large.

Examining the trends of the mean performance measures for the Williams square

of side lour given in Examples 2.3 and 2.4 we observe that there is a gradual loss of

information expected in the direct and carry-over treatment effects as 6 increases.

Even if only one subject is lost in the final period of an experiment the information

available in the resulting implemented design will be less than that of the planned de-

sign. These examples illustrate that even for small anticipated numbers of dropouts

the information available in the implemented experiment may differ considerably

from that of the original planned design. In the design assessment procedures in
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current use, little account is taken of this reduction in performance. By using the

proposed assessment procedures it is possible to assess any planned design more

realistically for trials in which final period dropout is anticipated.

2.7 Sensitivity to Choice of 6

A feature of the proposed design assessment procedure is its Bayesian nature. The

probability of final period dropout, used to obtain the performance measures Xc[

and Yd- is an anticipated value obtained by considering information provided from

previous similar studies. Ideally, a study will have a proportion of dropouts in the

final period which is close to, but not necessarily identical to, the anticipated number

of dropouts used at the early planning stage to guide design choice. It is important,

therefore, that the sensitivity of a planned design's performance to changes in 9 is

investigated. For this reason it is proposed that the probability of disconnectivity,

and the mean and variance of the performance measures are examined over the

entire range of possible 6 values. By doing this it will be possible to detect whether

a design is sensitive to changes in 0 and, if so, the region of 9 values which lead

to large changes in design performance. This is particularly important if a planned

design gives rise to disconnected implementable designs for certain patterns of final

period dropout. For instance, in Example 2.3, when 0 = 0.6 the probability of

implementing a disconnected design is less than 0.02. However, when 9 = 0.7, an

increase of only O.f, this probability rises dramatically to 0.25. The recommendation

concerning whether to proceed with this planned design would be different in each

case.

Clearly, it is very important that a design be robust to a mis-specification of the

probability of final period dropout. Ideally, designs which are robust to changes in

9 are preferable to those which are very sensitive. This is because the performance

measures considered at the planning stage will give a more realistic impression of

what might reasonably be achieved in the implemented experiment.
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If it is undesirable to consider the entire range of 9 values, it may be appropriate

to consider only those values of 9 close to the anticipated value. For example, if

the investigators are confident that the probability of subjects dropping out in the

final period is in the region of 0.2 then it would be reasonable to only consider

0.1 < 9 < 0.3.

2.8 Robust Designs

Any implemented design containing final period dropouts will contain less informa-

tion in the direct and first-order carry-over treatment effects than its parent planned

design. It is important, therefore, to establish the characteristics of designs which

indicate whether or not they are robust to final period dropout.

An additional, highly desirable, property of any planned design is that for the

contrasts of interest in the direct and carry-over treatment effects, the design out-

performs all other candidate designs over the entire range of possible values for 9.

In this section criteria for robust designs are formulated and then used to establish

a set of design selection criteria.

Consider the set, S, of all possible cross-over designs which compare t treatments

over p periods using rnn subjects with n subjects allocated to each of rn treatment

sequences. The design in S which is most robust for estimating contrasts Cava m

the direct effects, under final period dropout with fixed probability 9, is the design

with maximum value of .E[A^|#] and minimum VarfA^j^]. Similarly, the design most

robust for estimating contrasts C\V\ in the first-order carry-over treatment effects

is that with maximum value of i^V^I^] and minimum Yar[Yrj|#].

As discussed in Section 2.4, under certain patterns of final period dropout, some

implemented designs are disconnected. An important criterion for robustness is that

the probability of the implemented design being disconnected is zero or, at worst,

acceptably small to the experimenter.

The task of obtaining an appropriate design can now be considered to be that
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of obtaining a design which satisfies the above conditions. Hence, we propose the

following design selection criteria.

2.8.1 Design Selection Criteria

Given a fixed probability 6 of final period dropout, select a design d" for which:

(i) P(DQ) is zero or very close to zero, where DQ is the set of disconnected imple-

ment able designs derived from c/*,

(ii) E[Xd* \0] is as large as possible with minimum \'ax\Xd* \0] provided (i) is satis-

fied, and

(iii) E\Yd* \0\ is as large as possible with minimum VarfV^. \0] provided (i) is satisfied.

Usually the estimation of the direct treatment effects is more important than

the carry-over efFects. In these circumstances it may be more appropriate either to

disregard part (iii) or allow a decrease in E\Yd* \0] and/or an increase in VarfV^ \0)

in order to achieve an increase in E[Xd* \0] and/or a decrease in VarfA^j. \0).

The use of these design selection criteria is now illustrated in the following ex-

ample which compares the relative performance of two different designs built from

Williams squares of side four.

E x a m p l e 2.5 We wish to compare the performance of the following planned de-

signs under repeated use in cross-over trials with some probability, 0, of final period

dropout.

Des ign (a) Single Williams square c/(4,4,4,4) with treatment labels 0, f, 2 and 3

and initial treatment sequence (0 f 3 2). This is the design considered in Examples

2.3 and 2.4.
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Note: All Williams squares of side four

0 1 3 2 obtained under some permutation of the

1 2 0 3 treatment labels are isomorphic. However.

2 3 1 0 of the 24 isomorphic squares there are

3 0 2 1 six different squares, if the order of

the treatment sequences is unimportant.

Design (b) Complementary pair of Williams squares a!(4,8,2,4) with treatment

labels 0, 1, 2 and 3 and initial sequences (0 1 3 2) and (0 3 1 2).

0 1 3 2 Note: For each of the six possible

1 2 0 3 arrangements of a Williams square

2 3 1 0 of side four each square has only

3 0 2 1 one complement i.e. there axe

0 3 1 2 three complementary pairs.

1 0 2 3

2 1 3 0

3 2 0 1

The second square complements the first m the sense of not replicating any of the

ordered pairs of treatments in the third and fourth periods found in the first square.

In design (b) there are eight distinct ordered pairs of treatments in the final two

periods, while in design (a) there are only four. Design (b), therefore, achieves a

better spread of treatment pairs in the final two periods than design (a). Designs

formed by replicating the sequences of a complementary pair of Williams squares of

side four are discussed in more detail in Chapter 4.

Assume that we wish to compare all the pairwise direct and first-order carry-over

treatment effects. Using equations (2.4), (2.5), (2.6) and (2.7) with the A-criterion

we can obtain a summary of the average variance of the direct and first-order carry-

over treatment effects for each design. Summary measures for designs (a) and (b)

are given in Table 2.4 and Table 2.6, respectively.
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Table 2.6: Mean and variance of the performance measures Xrj and Yd, under the A-

criterion, for a complementary pair of Williams squares with 16 subjects, <i(4, 8, 2, 4).

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\B]

7.27

6.92

6.54

6.16

5.75

5.32

4.86

4.39

3.90

3.45

3.20

Va.r[Xd\9]

0.00

0.07

0.15

0.22

0.28

0.34

0.36

0.35

0.27

0.12

0.00

E[Yd\6]

5.00

4.69

4.37

4.04

3.70

3.34

2.98

2.60

2.23

1.89

1.71

Vav[Xd\e]

0.00

0.06

0.11

0.16

0.20

0.23

0.23

0.21

0.16

0.06

0.00
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Comparisons of the graphs of the mean of Xd and Yd against 9, for 0 < 9 < 1.

for designs (a) and (b), are given in Figures 2.5 and 2.6 respectively. From these we

observe that the range of values for the mean of X,x or Y,j as 9 varies is not as large

for design (b) as for design (a). For design (a) the ranges are 7.27-0.00 and 5.00-

0.00. respectively, while for design (b) they are 7.27-3.20 and 5.00-1.71, respectively.

Consequently, design (b) is less sensitive to the choice of 6 than design (a).

Using the design selection criteria of Section 2.8.1 with the A-critenon leads to

the choice of design (b) for any probability of final period dropout 0 < 0 < 1. This

is because (b) does not produce any disconnected implementable designs, unlike

design (a). Examining the mean performance measures given in Tables 2.4 and 2.6

and illustrated in Figures 2.5 and 2.6 shows that
' o

E[Xdb\0]>E[Xda\6] and E[Ydb\0] > E[Yda\O]

for each probability of final period dropout 0, given in the tables.

Similarly, if we compare the respective variances lor Xd and Yd for each design

from Tables 2.4 and 2.6 we observe that

Var[A'dfc|0] < Var[A'dJ0] and Var^Jfl] < Var^Jfl]

for each probability of final period dropout 9, given in the tables.

Alternatively, we could compare the relative performance of each design using

the summary measures provided by equations (2.4), (2.5), (2.6) and (2.7) with the

MV-criterion. Summary measures for designs (a) and (b) under the MV-criterion

are given in Tables 2.5 and 2.7, respectively.

Comparisons of the graphs of the mean ol Xd and Yd against 0, tor 0 < 9 < 1,

lor designs (a) and (b) are given in Figures 2.7 and 2.8 respectively.

Using the design selection criteria oi Section 2.8.1 we would again select design

(b). This is because, as before, it does not produce any disconnected implementable

designs, unlike design (a). Also the mean values of Xd and Y,j are always larger for
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E[Xd\9]
7.5 -i

5.0 -

0.0

(b)

0.2 0.4 0.6 0.8

Probability of Dropout

1.0

Figure 2.5: Comparison of the graphs showing the mean of Xj., under the A-cntenon,

for designs (a) and (b).
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E[Yd\6]
7.5 -,

(b)

0.2 0.4 0.6 0.8

Probability of Dropout

1.0

Figure 2.6: Comparison of the graphs showing the mean of Yd, under the A-criterion.

for designs (a) and (b).
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Table 2.7: Mean and variance of the performance measures Xj, and Yd, under

the MV-criterion, for a complementary pair of Williams squares with 16 subjects,

ri(4,8,2,4).

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

7.27

6.63

6.11

5.62

5.14

4,66

4.17

3.68

3.21

2.82

2.67

Var[Xd|0]

0.00

0.20

0.30

0.37

0.43

0.46

0.46

0.42

0.29

0.10

0.00

E[Yd\6]

5.00

4,47

4.02

3.60

3.19

2.80

2.41

2.03

1.69

1.43

1.33

Var[rd|0]

0.00

0.14

0.21

0.26

0.29

0.29

0.27

0.22

0.14

0.04

0.00
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E[Xd\9]
7.5 -,

5.0 -

2.5 -

(b)

Probability of Dropout

1.0

Figure 2.7: Comparison of the graphs showing the mean of Xj, under the MY

criterion, for designs (a) and (b).
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E[Yd\0]
7.5 -i

5.0 -

2.5 -

0.2 0.4 0.6 0.8

Probability of Dropout

Figure 2.8: Comparison of the graphs showing the mean of Yd, under the MV

criterion, for designs (a) and (b).
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design (b), with corresponding smaller variances, for each probability of final period

dropout considered.

To summarise, the advantages of selecting design (b) rather than design (a) are

that the probability of producing a disconnected implemented design is eliminated

while the mean values of the performance measures X,j and Kj are increased, for

all values of 6 > 0, with a corresponding reduction in their variances. This is true

whether we use the A- or MV-criterion when calculating the performance measures

X(i and Yd-

If the probability of final period dropout had not been considered when compar-

ing the relative performance of these planned designs, the conclusion reached would

have been that there was no difference between the designs because the planned de-

signs possess the same performance measures for the estimation of both the direct

and first-order carry-over treatment comparisons. This is true whether the A- or

MV-cnterion is employed.

2.9 Discussion

In this chapter methods for the assessment and selection of cross-over designs in the

presence of final period dropout have been presented. These methods have been

illustrated using examples involving Williams squares of side four. This design was

chosen because it is of particular practical importance. It is widely used in ex-

periments because, when the possibility of dropouts is ignored, it is known to be

universally optimal, over the class of uniform designs in which t = p, for estimating

the direct and first-order carry-over treatment effects under the simple carry-over

model (1.1). In Example 2.5 we have shown that, by carefully combining two "dif-

ferent" Williams squares of side four, it is possible to produce a design which is more

robust to final period dropout than two copies of a single Williams square. These

results suggest the following questions: How do different designs perform subject
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to the assessment criteria? Which designs are robust to final period dropout? In

Chapters 4 and 5 these questions are considered for cross-over designs in which t = p

involving lour and three treatments respectively.

The task of identifying an optimal design under the selection criteria given in

Section 2.8.1 is difficult. This is because it is necessary to obtain performance

measures for each of the implementable designs in D. The set of implementable

designs is large, even for relatively small studies, and so the computational problems

involved are considerable. For example, a design involving 24 subjects in an eight

sequence design will give rise to 65,536 different implementable designs. It is for this

reason that all the examples presented in this chapter have involved fewer subjects

than would usually be used in practice. Fortunately, the size of the computational

problem can be reduced using results from combinatorial theory. In Chapter 3 these

combinatorial results are presented together with examples illustrating their role in

reducing the size of the computational problem.
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Computational Reductions

3.1 Introduction

To assess the performance of a cross-over design d(t,m,n,p) using the criteria pro-

posed in Chapter 2 it is necessary to obtain performance measures for each of the

connected implementable designs in D. The number of implementable designs may

be large even for relatively small studies. Hence, there are considerable computa-

tional difficulties involved in evaluating designs using this approach. In this chapter

ways of reducing the amount of computation required are presented, using results

from combinatorial theory.

3.2 Equivalence

In order to reduce the computation involved it is necessary to consider which designs

in D give rise to the same performance measures under (2.2) and (2.3). Any designs

which do this are equivalent in the following sense:

Definition 3.1 Consider the planned design d(l,m,n,p) and its associated set of

implementable designs D. Designs d[l, f//2 6 D\DQ are p e r f o r m a n c e equ iva len t

with respect to direct and first-order carryover effects if and only if

63
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and

where -0, Ca. C\, fia(c//) and Q\(di) are as in Definitions 2.4 and 2.5.

Remark: This definition can be extended to include performance equivalence with

respect to higher order carry-over effects, see Section 1.2.3, if these are present m

the model.

If it can be established which of the implementable designs are performance

equivalent, then D can be partitioned into equivalence classes and it will be unnec-

essary to calculate performance measures for every implementable design. Instead,

it will be sufficient to obtain performance measures for one member from each equiv-

alence class and then combine these to obtain summary measures for the planned

design by multiplying each of the performance measures by the size of the corre-

sponding equivalence class.

In order to do this we seek answers to the following questions. Given a planned

design d(t,m.n.p) with an associated set of implementable designs, D. of size

( n + l ) m ,

(i) how can we identify the performance equivalent designs without calculating the

performance measures,

(ii) how many equivalence classes are there,

(lii) what is the size of each equivalence class, and

(iv) how can we identify one member from each class?
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This set of questions is analogous to those considered by a particular colouring

problem iound in combinatorics. In the next section the colouring problem is re-

viewed and in Section 3.4 the theory of the colouring problem is used to provide

answers to questions (ii)-(iv) above. In the remainder of this section we define a com-

binatorial equivalence relationship between designs which is sufficient to establish

performance equivalent designs.

In order that real reductions in computational effort can be achieved by using the

techniques developed for the colouring problem (see Section 3.3), it is necessary to

establish conditions for equivalence which do not require the performance measures

of the implementable designs to be calculated. Cross-over designs which can be

shown to be the same under some permutation of either the treatment labels or

the treatment sequences are regarded as equivalent in the sense that their design

properties are identical with respect to the estimation of treatment comparisons.

Using this process of establishing equivalence via permutations of the treatment

labels and/or the treatment sequences, we now define a combinatorial equivalence

relationship between designs which is sufficient to establish performance equivalent

designs and has the computational advantage that its equivalence classes can be

found without calculating the performance measures of the designs.

Definition 3.2 Consider the planned design d, and its associated set of imple-

mentable designs D. Designs d^, d\2 £ D are combinatorially equivalent if c//2

can be obtained from d\x by permuting firstly the order of the treatment sequences

and, secondly, the treatment labels.

To illustrate combinatorial equivalence we consider the following examples.

Example 3.1 Let r/(2, 2, 1, 3) be the planned design with treatment labels A and

13 listed, together with its associated set of implcmentable designs, m Figure 3.1.

We wish to establish whether the implementable designs c/10 and dm are combi-

natorial!}' equivalent. They will be combinatorially equivalent if there exists some
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Figure 3.1: Full set of implementable designs for Example 3.1.
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A

B

*

A

B

dn

B *

A *

permutation of the treatment labels and/or treatment sequences which when ap-

plied to design dw gives design c/Oi. A permutation of just the treatment labels will

not achieve this, since all such permutations will leave the position of the dropout

unchanged. To obtain a design in which the dropout occurs on a different treatment

sequence it is necessary to permute the order of the treatment sequences. For this

design only one permutation of the treatment sequences, other than the identity,

exists. This is the permutation which reverses the order of the treatment sequences.

If we let treatment sequence i be defined as r; then this operation is defined, in cycle

notation, by the permutation (Vi^).

If we apply the permutation (?'ir2) to the implementable design c/10 we obtain

the following.

A B * ( T V 2 ) B A A

B A A A B *

Thus the application of this permutation does not give doi- However, if we now

relabel the treatments using the permutation {AB), defined on the treatment labels,

it is possible to obtain the design <iOi as follows

B A A (AB) A B B

A B * B A *

Therefore, we conclude that the implementable designs d\o a n d <̂oi a r e combmato-

rially equivalent.

A permutation of the treatment sequences will not necessarily act on an im-

plementable design r/; where c// £ D, to give a design which can be shown to
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be equivalent, under some relabelling of the treatments, to another implementable

design di2 £ D. This is illustrated in the following example.

Example 3.2 Let ei(2,2, 1,3) be the planned design with treatment labels A and

B listed, together with its associated set of implementable designs, in Figure 3.2.

Figure 3.2: Full set of implementable designs for Example 3.2.
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We wish to establish whether the designs di0 and dot, in Figure 3.2, are combina-

torially equivalent. Taking <i10 and permuting the order of the treatment sequences

we obtain the following

A B * (rir2) B A A

B A A A B *

In this case it is not possible to act on the treatment labels of the resultant

design to obtain the implementable design c/Oi. Therefore, we conclude that, in this

case, the implementable designs dw and dO\ are not combinatorially equivalent.

In Examples 3.1 and 3.2 it has been shown that, by considering appropriate

permutations ol the treatment sequences and treatment labels, it is possible to de-

termine which, if any, of the implementable designs d\ £ D are combinatorially

equivalent and hence performance equivalent, without having to calculate their re-

spective performance measures. Note that if two, or more, designs are combinatori-

ally equivalent they will always be performance equivalent. However, it is possible

for designs to be performance equivalent without being combmatonally equivalent.
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3.3 Review of the Colouring Problem

To illustrate the colouring problem we shall consider the following example.

Example 3.3 Suppose we have a square tray and we seek to place a coloured disc

at each of the four corners. If each disc may be either black or white, how many

different patterns can we form?

Since there is a choice of two colours for each disc, and each tray contains four

discs, the total number of colourings, provided the tray remains fixed, is given by

24 = f6. These 16 colourings are illustrated in Figure 3.3.

Figure 3.3: Sixteen colourings of a square tray using black and white discs.
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Having found the total number of possible colourings, it is necessary to establish

whether or not any ot these are equivalent. If the tray must remain fixed all 16

colourings are different. If, however, the tray may be rotated clockwise then some

of these can be shown to be equivalent. For example, C2 is equivalent to C3, since

we can obtain C3 from C2 by rotating the tray through an angle of TT/2.

In this example, there are four distinct rotational symmetries of the tray, namely

the identity and rotations through angles ol TT/2, ~ and 3~/2. If we label the tour
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vertices 1, 2, 3, and 4, as in Figure 3.4, then the action of the group of rotations on

the four vertices can be represented by the following permutations, written in cycle

notation.

gx = (1)(2)(3)(4). the identity

g2 = (1234)

93 = (13)(24)

g4 = (1432)

Figure 3.4: Square tray with vertices labelled 1, 2, 3 and 4.

The action of this group permutes the vertices 1, 2, 3 and 4, while the action we

are interested in rotates the 16 colourings Ci, . . . . C16. Each oi these colourings can

be regarded as a mapping from the set of vertices {1 ,2 ,3 ,4} to the set of colours

{black, white} as follows

/ : {1,2,3,4} > {black, white} .

For example, if we let Ci be represented by the mapping fr (i = 1, . . . , 16) then C2,

in Figure 3.1 corresponds to the mapping / 2 given by

/2(1) = black, /2(2) = /2(3) = /2(4) = white.

In this way the set of colourings, {Cl,. . . , C16}, can be represented by the set of

mappings, {/1; . . . , / 1 6 } -

It is now possible to apply the group of permutations to the set of colourings by

considering the effect of each permutation upon each mapping. For example, the

permutation g^ transforms / 2 into j-j, as iollows.
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It is conventional, however, to denote the set of mappings m terms of their

corresponding colourings and to consider the colouring as representing the relevant

mapping.

Applying the set of permutations to the colourings in this way we observe that

there are only six different patterns amongst the 16 different colourings. We can

divide the colourings into the following sets, where all the colourings belonging to

the same set have the same pattern.

1. {Cl}

2. {C2, C3, C4, C5}

3. {C6; C7, C8, C9}

4. {CIO, Cll}

5. {C12, C13, C14, C15}

6. {C.L6}

The underlying theory of the colouring problem concerns the relationship be-

tween a group and the members of a set. In Example 3.3 the group is the rotational

symmetries of a square and the 16 colourings form the set of mappings of interest.

In this example, the symmetries of the square interact with each of the colourings

to produce another, possibly different, colouring. In general this situation can be

described as one in which an element from a group G acts on any member of a set

D to give another, not necessarily different, member of the set D.



Chapter 3 71

In order to explain the general theory behind the colouring problem and apply

it to evaluating the number and type of equivalence classes in any given set it is

necessary to recall some general results from group theory. Further details are given

in Slomson (1991) and Cohen (1978).

We adopt the following notation for two operations:

Notation If D is a set and G any group then for </i, #2 £ G and d £ D we denote

the product of the elements g\ and qi under the group operation by gxg2 and the

action of the element gx on the set member d by gx • d.

Definition 3.3 Let D be a set and G any group. We say that G acts on D if

for each d G D and each g G G, there exists an element g • d £ D which has the

following properties.

1. For each d £ D, IQ • d = d, where 1Q represents the identity of G.

2. For all </,-, g3 G G, and each d G D

9i • (9J • d) = (9i9j) • d-

'I'he situation m which a group acts on a set is called a group action and the

properties given in Definition 3.3 are called the axioms for a group action.

Definition 3.4 Let G be a group which acts on the set D. For each g £ G and

all c/j £ D if g • dt = dt then dl is a fixed point of g and the set

Fix[g) = {di G D ; g • d{ = dt}

is called the fixed point set of g.

Example 3.4 Suppose we wish to obtain the fixed point set for each gl £ G for

the colouring problem of Example 3.3. In this case, G is the group of rotational
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symmetries of a square, given previously, and D is the set of 16 colourings given in

Figure 3.3.

Using Definition 3.4, the fixed point set of g\ is given by

Fix{(jl) = {di G D ; gx • eh = d{)

= {Cl, C2, C3, C4, Co, C6, C7, C8,

C9, CIO, Cl l , C12, C13, C14, C15, C16}

Similarly.

i^z(<72) = {Cl, C16}

Fix(g3) = {Cl, CIO, C l l , C16}

Fix{g4) = {Cl, C16}

Definition 3.5 Let G be a group which acts on the set D. We can define a relation

~G on D such that

for all dZ) dj G Z), clt ~ G ^J if and only it for some g G G, g • dl = d3l

where ~ G is an equivalence relation on D.

The two elements dl and dj are said to be equivalent with respect to this equivalence

relation. The relationship of equivalence splits D into disjoint equivalence classes

which are frequently referred to as the orbits of the group action.

Definition 3.6 If dt G D then the orbit of the element dt, denoted by Orb(di), is

defined by

Orb{di) = {dj G D • dj = g • d-t , g G G)

As the orbits represent the equivalence classes which partition the set D then the

question posed in Example 3.3, namely how many different patterns can we form

by placing black and white discs at the corners of a square tray, can be answered

by finding the number of different orbits contained in the set of 16 colourings. The

following result enables the number of orbits to be determined.
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Theorem 3.1 (Burnsides's Lemma) If G is a finite group which acts on the

finite set D, then the number of distinct orbits is given by

gee

In order to apply Burnsides's Lemma to Example 3.3 it is necessary to obtain

\Fix(g)\ for each element g £ G. Now, from Example 3.4, we have that gi, the

identity, fixes all 16 colourings, g2 fixes Cl and C16, </3 fixes C'l, GTO, Cl l and C'16

and </4 fixes Cl and CT6. Therefore, applying Burnside's Lemma we find that the

total number of distinct orbits is given by (16 + 2 + 4 + 2)/4 = 6.

In this example there are only two choices of coloured discs available. Hence, the

total number of possible colourings is small enough to list individually. \\ hen three

or more colours of disc are available, however, it will be impracticable to list all the

possible colourings. Nevertheless, it is still possible to find the total number of orbits

by using a generalised version of Burnside's Lemma. Also, by applying a theorem

developed by Polya, it is possible to obtain an algebraic expression, known as the

pattern inventory, which identifies the number of orbits with each possible combi-

nation of coloured discs. Before stating these theorems the following definitions and

notation are needed:

Definition 3.7 A cycle (xjXo . • . xn) has length n and is called an ?~i-cycle. We

denote an n-cycle by sn.

Notation If G is a group of permutations, for any element g £ G let i\(g) denote

the total number of cycles in g. For example, if g = (12)(34) then g consists of two

cycles each of length two.

Definition 3.8 For any permutation q £ G, written in cycle notation, the cycle

monomial is the single term

b 6 S
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where sn is an ri-cycle and jn(g) is the number of n-cycles in the cycle representation

of g.

Example 3.5 The element (12)(34) consists of two cycles each of length two and

therefore has cycle monomial s,: the element (1)(23)(4) consists of two cycles of

length one and one cycle of length two and therefores has cycle monomial s\s2.

Definition 3.9 If G is a group of permutations, the cycle index of G, denoted

by ZQ, is defined to be the polynomial

Definition 3.10 For any set C a weight function on the set C is a mapping u>

which assigns an algebraic symbol <-o(c) to each c £ C.

Theorem 3.2 (Burnside's Lemma -generalised) If G is a finite group which

acts on the finite set D and C denotes the set of colours, then the number of distinct

orbits is given by

Y\c\N{3)

In order to apply Theorem 3.2 to Example 3.3 it is necessary to obtain the total

number of cycles. N(g), for each element g €E G. Now </j, the identity, consists

of four cycles, g2 one cycle, g^ two cycles and g4 OIK; cycle. Therefore, applying

Theorem 3.2, we find that the total number of distinct orbits can be represented by

^ E | C r ( 3 ) = l( c 4 + c 2 + 2 c ) : (3.1)
gec

where c = \C\.

In Example 3.3 the number of colours available is two, namely black and white.

Substituting c — 2 into equation (3.1) we find that the number of distinct orbits is

(l/4)(2'' + 22 + 4) = 6, which agrees with our previous findings.
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Equation (3.1) can be used to calculate the number of different patterns, or

orbits, for examples using a range of different values of c suitable for application to

our design problem, see Section 3.4. This is shown in Table 3.1.

Table 3.1: The number of colourings and orbits that can be formed from a square

tray and a range of different coloured discs.

Number of colours.

1

2

3

4

5

6

i

8

9

10

11

12

Number of colourings.

1

16

81

256

625

1296

2401

4096

6561

10000

14641

20736

Number of orbits.

1

6

24

70

165

336

616

1044

1665

2530

3696

5226

The following theorem allows the pattern inventory, which gives the number of

orbits with each possible combination of coloured discs, to be determined.

Theorem 3.3 (Polya's Theorem) Let D be the set of all mappings from the

set V to the set C, and let LJ be a weight function on C. Let G be a group of

permutations of V which acts on D. If the cycle index of G is ZG{S\,S-2, • • • )>

the pattern inventory is
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The application of Theorem 3.3 means that the pattern inventory is obtained as

follows.

1. Find the cycle index for the action G on D.

2. Replace each s\ in the cycle index by the sum of the weights, each 52 by the

sum of the squares of the weights, each s3 by the sum of the cubes of the

weights, and so on.

3. Expand the resultant expression to obtain a polynomial in the weight func-

tions.

The pattern inventory is a polynomial in terms of the weight functions. Each

term of the polynomial denotes a particular type ot pattern, or combination of the

weight functions. For example, for the two weights a and b the term o63 denotes a

pattern containing one element of type a and three elements of type b. The coefficient

of each term denotes the number of patterns, or orbits, which contain the particular

combination of elements it describes. For example, the term 2ab3 would represent

two distinct patterns, or orbits, containing one element ot type a and three elements

of type b.

The following example illustrates the use of Polya:s Theorem (Theorem 3.3).

Example 3.6 Suppose we wish to obtain the pattern inventory for the colouring

problem of Example 3.3.

In this case V is the set of vertices {1,2,3,4} and C is the set of colours

{black, white]. The weight function u is given by

u(black) = b, u(white) = w.

The group G is the group of permutations of V which correspond to the rotational

symmetries of a square. That is

G'={(1)(2)(3)(4), (1234), (13)(24), (1432)}.
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The cycle index of G is given by

ZG(si,s2,s4) - -(s4 + si + 2.s4). (3.2)

Applying Polya's Theorem (Theorem 3.3), the pattern inventory is obtained by

substituting si = b + w, s2 = b2jrw2 and s4 = b4 + w4 into equation (3.2). Therefore,

the pattern inventory is

-[(6 + io)4 + (b2 + w2)2 + 2{b4 + iv4)} = b4 + b3w + 2b2w2 + bw3 + w4. (3.3)

Examining each of the terms in the pattern inventory, (3.3), we find that, for

this example, there exists:

one pattern with four black discs,

one pattern with three black and one white disc,

two patterns with two white and two black discs,

one pattern with one black and three white discs, and

one pattern with four white discs.

This agrees with our previous findings, in Figure 3.3. Note that if we sum the

coefficients of each of the terms in the pattern inventory we will always obtain the

total number of orbits, since this polynomial is an algebraic representation of each

of the distinct orbits.

In addition to finding the number of orbits, or equivalence classes, the following

theorem enables the number of colourings belonging to the same equivalence class

as any given colouring to be determined. Hence, the size of each equivalence class

can be found without listing all the individual colourings.

Definition 3.11 Let G be a finite group which acts on a set D. If d 6 D then the

stabilizer of d. denoted by Sta(d), is the set of all permutations g £ G which leave

d fixed. That is

Sta{d) = {g e G;g-d = d } .
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Theorem 3.4 (The Orbit-Stabilizer Theorem) Let G be a finite group which

acts on the finite set D. Then for each d £ D the number of elements in Orb(d)

multiplied by the number of elements in Sta(d) is equal to the number of elements

in the group G. That is

\Orb(d)\ x \Sta(d)\ = \G .

Corollary 3.1 The number of elements in Orb(d), that is the size of the equiva-

lence class containing d, is given by

\G
\Orb(d)\ =

\Sta{d)\'

In the following example the corollary to the Orbit-Stabilizer Theorem is used

to establish the size of each equivalence class formed from the 16 colourings of a

square tray given in Figure 3.3.

Example 3.7 Suppose we wish to calculate the size of each orbit for the colouring

problem of Example 3.3. It has already been established that there are 16 different

colourings which can be partitioned into six equivalence classes. Given that Cl, C2,

C6. C.10, CT2 and C16. from Figure 3.3, all belong to different equivalence classes

we wish to establish the size of their respective equivalence classes.

In order to apply Corollary 3.1 we require the elements of the group G and the

stabilizers of each colouring. The group G is the set of rotational symmetries of a

square given previously. The stabilizers of each of the colourings Cl, C2, C6, CIO,

C12 and C16 are given in Table 3.2.

Applying Corollary 3.1 we find that the equivalence classes containing Cl and

C16 have one member each, C2, C6 and C12 have four members each and CIO has

two members.
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Table 3.2: Description of the stabilizers for the six different patterns given in Ex-

ample 3.7.

Colouring

C l

C2

C6

CIO

C12

C16

Stabilizer

{9i

{9.

{gi

{91

{*
{9,

92,93,

}

}
93}

}

92,93,

94}

94}

\S'ta

4

1

1

2

1

4

3.4 The Colouring Problem and Cross-over

Designs Subject to Final Period Dropout

In this section techniques for obtaining the number of equivalence classes contained

within a set. D. of implementable designs and their respective sizes are established

using results developed from the theory of the colouring problem.

In order to apply the theory of the colouring problem, outlined in Section 3.3,

to our design problem it is necessary to define a group, G. which will act on the set

of implementable designs in the same way as the rotational symmetries of a square

acts on the colourings given in Figure 3.3. Each of these rotational symmetries acts

on the empty square tray, that is the tray without any coloured discs, to give an

image which is identical to itself. Therefore, the group we require will consist only

of those elements which, when they act on the planned design, will transform it into

itself. Also, in the colouring problem, since the coloured discs are to be placed at

the corners of the tray, each of the rotational symmetries is defined in terms of its

action on the set of vertices. This enables each of the colourings to be represented by

a mapping from the set of vertices to the set of colours. For our design problem to

be similar, since the dropouts occur in the final period of each treatment sequence,
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we require the group G to consist of elements defined in terms of an action on the

distinct treatment sequences and each implementable design to be represented by

a mapping from the set of distinct treatment sequences to the set of final period

dropouts.

Definition 3.12 Let the planned design d(t, rn, n, p) be defined as the set R of m

distinct treatment sequences 7'i,r2,. . . , rm where each of these treatment sequences

consists of a different arrangement of treatment labels.

Definition 3.13 Let the set of dropout identifiers be the set C whose elements

are all the possible dropout totals which can occur in the final period of each distinct

treatment sequence of the planned design. Then C = {0, f,. . . , n}, where n is the

number of subjects allocated to each distinct treatment sequence of the planned

design.

Using this notation each implementable design can be represented by a mapping

from the set R to the set C as follows

/ : {n,?'2,. • • ,rm} > {0,1,. .. ,n}.

For instance, in Example 3.1 the mapping can be defined as follows

/ : K r 2 } ^ { 0 , l } .

If we let the implementable design d\ be represented by the mapping /; then the

design d0l corresponds to the mapping /Oi given by

/oi(n) = 0, /oi(r2) = 1.

As in the colouring problem, it is now possible to apply the appropriate group

G to the set of implementable designs by considering the effect of each element

fj G G upon each mapping. This leads to the following definition of the group of

permutations we require.
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Definition 3.14 Let G be a permutation group which acts on the set R of distinct

treatment sequences of a planned design. A permutation </, of the sequences, belongs

to G if and only if the planned design can be preserved by applying g to the sequences

and then relabelling the treatments.

The following example illustrates how to find the elements of the group G.

Example 3.8 Let cZ(4, 4, 1,4) be the Williams square with treatment labels 0, 1,

2 and 3, given in Example 2.1.

Consider the following operations.

1. Permute the order of the treatment sequences using the permutation (r : 7*2 r3r4),

then

2. relabel the treatments using the permutation of the treatment labels (0123).

If we apply these operations to the planned design we obtain the following.

0 1 3 2 3 0 2 1 0 1 3 2

1 2 0 3 {r1r2r:ir4) 0 1 3 2 (0123) 1 2 0 3

2 3 1 0 1 2 0 3 2 3 1 0

3 0 2 ] . 2 3 1 0 3 0 2 1

The image of these operations is the planned design. Therefore, the permutation

of the treatment sequences (ri7v3r4) is an element of the group G.

Example 3.9 For the design in Example 3.8, consider the following operations.

1. Permute the order of the treatment sequences using the permutation

(rir2){r3){r4), then

2. relabel the treatments using the permutation of the treatment labels (0321).

If we apply these operations to the planned design we obtain the following.



Chapter 3 82

0 1 3 2 1 2 0 3 0 1 3 2

1 2 0 3 {rir2)(r3)(r4) 0 1 3 2 (0321) 3 0 2 1

2 3 1 0 2 3 1 0 1 2 0 3

3 0 2 1 3 0 2 1 2 3 1 0

Unlike the situation in Example 3.8, the image of the operations is not the

planned design. In addition, no further relabelling ot the treatments can possi-

bly give the planned design. Therefore, we conclude that the permutation of the

treatment labels ( r ^ ) ^ ) ^ ) is not an element of the group G.

When all the elements of the group G have been identified it is possible to

determine the implementable designs which will give rise to identical performance

measures using the following definition of equivalence.

Definition 3.15 For the planned design d(t,rn,n,p) any two implementable de-

signs d[(x} and <i/(y) £ D will be equivalent if and only it

ci/(y) = g • d((x) for some g £ G.

If we replace the square tray by the planned design, the set of vertices by the set

of distinct treatment sequences, the group of rotational symmetries by the group of

permutations of the distinct treatment sequences given in Definition 3.15 and the

set of colours by the set of dropout identifiers, then we can define a problem which

is directly analogous to the colouring problem. Therefore, the following results can

be derived directly.

Theorem 3.5 Let d(t,rn,n.p) be a planned design, D its set of implementable

designs and G a finite permutation group of the distinct treatment sequences o! the

planned design which satisfies Definition 3.14. It the group G acts on the set D then

the number ot equivalence classes contained in D is given by
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The proof follows directly from Burnside's Lemma (Theorem 3.1).

T h e o r e m 3.6 Let d(t,m,n,p) be a planned design, D its set of implementable

designs and G a finite group consisting of permutations of the distinct treatment

sequences of the planned design which satisfies Definition 3.14. If the group G acts

on the set D then the number of equivalence classes contained in D is given by

IG ' gee

where n denotes the number of subjects allocated to each distinct treatment sequence

and N(g) the number of cycles in g.

The proof follows directly from Theorem 3.2.

T h e o r e m 3.7 Let D be the set of implementable designs formed by dropping one

or more subject in the final period of the planned design d(t,m.n,p). Each design

di £ D can be represented by a set of mappings from the set of distinct treatment

sequences, R, to the set of dropout identifiers, G. Let ix> be a weight function on C

a.nd G be a group of permutations of R which acts on D and satisfies Definition 3.14.

If the cycle index of G is Zc(5 1 ,5 2 , . . .), then the polynomial which determines the

number of equivalence classes with each possible combination of dropout identifiers

i s ,

Vcec cec cec I

and will be referred to as the equivalence class inventory.

The proof follows directly from that of Polya's Theorem (Theorem 3.3).

Theorem 3.8 Let D be the set of implementable designs formed by dropping one

or more subject in the final period of the planned design d(t,m,n,p) and let G be a

group of permutations which acts on D and satisfies Definition 3.14. Then for each
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d\ c D the number of elements in Orb(di), that is the size of the equivalence class

containing di, is given by

\Orb(di)\ = lr)
G[u-1 > i>] \Sta{dt)\

The proof follows directly from that of the Orbit-Stabilizer Theorem (Theorem 3.4).

In the next section these results are illustrated using designs of particular impor-

tance when examining the robustness of cross-over designs to final period dropout.

3.5 Illustrations

Example 3.10 Let ci(4,4,n,4) be the design formed from the sequences of a

Williams square of side four having treatment labels 0, f, 2 and 3 and initial treat-

ment sequence (0 13 2) in which n subjects are allocated to each treatment sequence.

The set, R, of distinct treatment sequences consists of the following elements.

r : = 0 1 3 2, r2 = 1 2 0 3 , r3 = 2 3 1 0 and r,{ = 3 0 2 1

The group G of permutations of the distinct treatment sequences which satisfy

the conditions of Definition 3.14 is as follows.

G = {{ri)(r2){r3)(r4), {rxr2r3r4), (rxr3)(r2r4)i {rir4r3r2)}.

Hence,

\G\ = 4, N(9l) = 4, N(g2) = 1, N(g3) = 2 and N(g4) = 1.

Applying Theorem 3.6. the total number of equivalence classes is given by

I [ ( n + l ) 4 + (n + l ) 2 + 2 ( n + l ) ] . (3.4)

Table 3.3 lists the number of equivalence classes, calculated from expression

(3.4), for a range oi values for n, the number of subjects allocated to each treatment

sequence.
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Table 3.3: The number of equivalence classes and implementable designs for designs

based on a single Williams square of side four with up to 12 subjects per treatment

sequence.

Number of subjects per

treatment sequence, n.

1

2

3

4

5

6

7

8

9

10

11

12

Number of implementable

designs, \D\.

16

81

256

625

1296

2401

4096

6561

10000

14641

20736

28561

Number of equivalence

classes.

6

24

70

165

336

616

1044

1665

2530

3696

5226

7189
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From Table 3.3 we observe that, by only having to obtain performance measures

for one member from each equivalence class, it is possible to reduce substantially

the amount of computation involved in evaluating the mean and variance of the

performance measures for each planned design. The reduction is particularly great

for large values of n. In fact, lor the designs based on a single Williams square

of side four given in this example, we find that the computational reduction is

approximately three quarters.

In order to evaluate the performance measures for the planned design by only

evaluating the individual performance measures of non-equivalent designs, it is nec-

essary to identify one design from each of the equivalence classes and determine the

size of each class. The following example outlines how this can be achieved using

the equivalence class inventory defined in Theorem 3.7.

Example 3.11 Suppose we wish to find the equivalence class inventory for the

Williams design f/(4,4, 1.4) whose set of implementable designs is given in Table

2.1.

The number ol subjects allocated to each treatment sequence is n = 1. Therefore,

the set of dropout identifiers C = {0, 1} and the weight function u is given by

UJ(0) = x0. LO{1) = xi.

The group G is the group of permutations given in Example 3.10 and the cycle index

of G is given by

Zc(sus2)S4) = ^(si + sl + 2S4). (3.5)

Applying Theorem 3.7, the equivalence class inventory is obtained by substitut-

ing S] = XQ-\-X-[, S-> = Xg + xI and .s..j = XQ-\-X* into the cycle index, equation (3.5).

Hence, the equivalence class inventory is

-{{x0 + x , ) 4 + (x2 + X2,)2 + 2(x4
Q + x'l) = x4 + xfai + 2x2

0x
2 + xox? + x \ .

Examining each of the terms in this expression we find that the design based

on a single Williams square d(4, 4, 1, 4), subject to some probability of final period
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dropout, has a set of implementable designs with the following inventory of equiva-

lence classes.

1. One class of designs with four sequences each containing zero dropouts,

2. one class of designs with three complete sequences and one sequence containing

one dropout,

3. two classes of designs with two complete sequences and two sequences contain-

ing one dropout each,

4. one class of designs with one complete sequence and three sequences containing

one dropout each, and

5. one class of designs with four sequences each containing one dropout.

Having found the equivalence class inventory it is necessary to find one member

from each equivalence class and the size of the class to which each of the designs

belong. For a small set of implementable designs, as in this example, it is possible

to list all the designs and establish whether they are equivalent using the conditions

for equivalence given in Definition 3.15. Doing this we find that the set of 16

implementable designs consists of the following six equivalence classes.

1- {"oooo}

2. {ĉ iooo) c/oioo, <̂ ooio, ĉ oooi}

3. {^1100,^0110,^0011,^1001}

4- {^1010,^0101}

5- {"ino, "iIOI, "ion, "oni}

6. {dun}
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For planned designs involving larger numbers of subjects it will be impractical

to list all the implementable designs. An alternative approach, which is illustrated

in the following example, is to search for the appropriate number of non-equivalent

designs and find the size of the equivalence class to which each of these belongs using

Theorem 3.8.

Example 3.12 Consider the Williams design d(4,i, 1,4) of Example 3.11. We

wish to identify one member from, and the size of, each of the equivalence classes

into which its set of implementable designs can be partitioned.

There are 16 designs in the set of implementable designs and from Table 3.3 we

observe that these can be partitioned into six equivalence classes. From the equiv-

alence class inventory obtained in Example 3.11, we observe that these equivalence

classes fall into five distinct categories, one for each of the possible combinations ot

dropout identifiers. A description of the equivalence class inventory has been given

in Example 3.11.

Using this information we find that the following implementable designs all be-

long to different equivalence classes.

"0000 "0001 "0011 "0101 "0111 "1111- :: !

In order to apply Theorem 3.8 and establish the size of the six equivalence classes '• j

to which each of the designs belongs it is necessary to find the stabilizers of each of

these designs with respect to the group G. The group G is the group of permutations

of the distinct treatment sequences given in Example 3.10. The stabilizers ol each

of these implementable designs and the size of their respective equivalence classes is

given in Table 3.4 whose results all agree with our previous findings.

E x a m p l e 3.13 Let cf(4,8,n,4) be the design based on a complementary pair of

Williams squares with treatment labels 0, 1, 2 and 3, initial sequences (0 1 3 2) and

(3 2 0 1) and n subjects allocated to each treatment sequence.

The set, R, ol distinct treatment sequences consists of the following elements.
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Table 3.4: Table showing the stabilizers and the size of the equivalence classes for

the six non-equivalent designs given in Example 3.12.

Implementable design,

d{.

^0000

^0001

^0011

^0101

^0111

Chilli

Sta(di)

{91,92,93,94}

{9i}

{9i}

{91,93}

{9i}

{g\,92,g3,g4}

\Sta(di)\

4

1

1

2

1

4

Size of equivalence

class containing d\.

1

4

4

2

4

1

r i = 0 1 3 2 , r2 = 1 2 0 3, r3 = 2 3 1 0 , r4 = 3 0 2 1,

r5 = 3 2 0 1, r6 = 0 3 1 2, r~ = 1 0 2 3, and r8 = 2 1 3 0 .

The group G is the group of permutations of the treatment sequences which act

on the elements r l 5 . . . , r§, in such a way that the planned design can be preserved

by applying the permutation and then relabelling the treatments. Therefore, the

group G consists of the following permutations, written in cycle notation.

9i = (ri)(r2)(r3)(r4)(r5)(r6)(r7)(r8)

93

9A

95

9s, =

{rir3)(r2r4)(r5r7)(r6r8)

(rir4r3r2)(r5rsr7r6)

{rir5)(r2rs)(r3r7)(r4r6)

{r-irG){r2r5)(r3r8)(r4r7)

(r^r7)(r2r6)(r3r5)(r4r8)

{rir8)(r2r-)(r3r6)(r4r5)
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Hence,

\G\ = 8, N{9l) = 8, N(g2) = 2, ;V(<?3) = 4, N(g4) = 2,

iVf(/5) = 4, A<(</6) = 4, N{g7) = 4 and 7V(</8) = 4.

Applying Theorem 3.6 we find that the total number of equivalence classes is given

by

I [ ( n + l ) 8 + 5(n + l ) 4 + 2(n + l ) 2 ] . (3.6)

Using this expression it is possible to find the total number of equivalence classes

for experiments using designs based on a complementary pair of Williams squares

with any suitable number of subjects allocated to each of the distinct treatment

sequences. The number of equivalence classes together with the total number of

implementable designs which exist for each size of experiment considered are given

in Table 3.5. Examining these we observe that there will be a considerable saving

when calculating the performance measures if only one member from each ot the

equivalence classes need be used. In fact, we observe that for designs based on a

complementary pair of Williams squares of side four the total number of equivalence

classes is approximately one eighth of the total number of implementable designs '
\

for each size of experiment considered. ; . f

As before, in order to calculate performance measures for the planned design it : {

is necessary to identify one design from each equivalence class and the size of the : J

equivalence class to which each of these designs belongs. For example, when n — 1 '" I

we observe from Table 3.5 that the number of implementable designs is 256 and

that these can be partitioned into 43 equivalence classes. Therefore, in order to

evaluate the performance measures as efficiently as possible, it is necessary to find

43 non-equivalent designs and the size of the equivalence class to which each of these

belongs.

To assist this process it is useful to obtain the equivalence class inventory. In

order to obtain this we require the cycle index ot G. This is given by

ZG(-SI,S2) s4) = i ( s s + 5st + 2s2
A). (3.7)
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Table 3.5: The number of equivalence classes and implementable designs for designs

lementary pair of Williams squares with up to six subjects perbased on a compk

treatment sequence.

Number of subjects per

treatment sequence, n.

1

2

3

4

5

6

Number of implementable

designs, \D\.

256

6561

65536

390625

1679616

5764801

Number of equivalence

classes.

43

873

8356

49225

210771

722113

If C is the set of dropout identifiers {0,1} and the weight function u> is given by

CJ(0) = Xo, w ( l ) = Xj,

then applying Theorem 3.7 the equivalence class inventory is obtained by substitut-

ing sj = x0 + i'i, 52 = XQ -f xj and 6'4 = Xg + x'-J into equation (3.7). Therefore, the

equivalence class inventory is

8 '

xb
0 xQx[

Examining each of the terms in this expression we find that the 43 equivalence

classes can be divided into nine categories as shown in Table 3.6.

It is necessary to calculate one member from each of the 43 equivalence classes

described in Table 3.6. Having done this the size of each of their respective classes

can be determined by obtaining the stabilizer for each design and applying Theorem

3.8.
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Table 3.6: The interpretation of the equivalence class inventory of Example 3.13.

Number of equivalence

classes.

1

1

6

/

13

7

6

1

1

Number of treatment sequences containing

zero dropouts

8

7

6

5

4

3

2

1

0

one dropout.

0

1

2

3

4

5

6

7

8

E x a m p l e 3.14 Let c/(4, 12. n, 4) be the design based on a complete set of mutually

orthogonal Latin squares of side four with treatment labels 0, 1, 2 and 3 and n

subjects allocated to each distinct treatment sequence.

The set. R, of distinct treatment sequences consists of the following elements.

r1 = 0 1 2 3, r2 = 10 3 2, r3 = 2 3 0 1, r4 = 3 2 1 0,

7-5 = 0 3 1 2, r6 = 1 2 0 3, r- = 2 1 3 0 , r8 = 3 0 2 1,

r9 = 0 2 3 1 , 7-io = 1 3 2 0 , r n = 2 0 1 3 and ru = 3 1 0 2 .

The group G consists of the following permutations of the distinct treatment

sequences, written in cycle notation.

9i = (n)(r2)(r3)(r4)(r5)(r6)(r7)(rs)(r9)(7'10)(rn)(r12)

.92 = (nr2) (r 3 7-4) (7 - 5 r 6 ) (? - 7 7- 8 ) (7 - 9 7- 1 0 ) (r n r 1 2 )

93 = (n^3)(r2r.i)(r57-7)(r6r8)(r9rn)(r107-12)

.9-1 = ('•i^i)(r2r3)(r5r8)(7-6r7)(r97-12)(r1orn)

i : !
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g-o = ( r i r 5 r 9 ) ( r2 r s r 1 1 ) ( r3 r 6 r 1 2 ) ( r4 r 7 r 1 o)

ge = {rir6ru)(r2r7r9)(r3r5rl0)(r4r8ru)

gr = {rir7rri)(r2r6rw){r3r8r9)(r4r5ru)

f/s = (? ' i r 8 r 1 0 ) ( r2r5r 1 2)(r3r7r 1 1 ) ( r4r 6 r 9 )

59 = ( r i r 9 r 5 ) ( r 2 r n r 8 ) ( r 3 r 1 2 r 6 ) ( r 4 r 1 o r 7 )

#io = {rirwrs){r2'ri2rs){rsrur7)(r4rctr6)

5i2 = (rir12r7)(r2r1or6)(r3r9r8)(r4?-11r5)

Hence,

|G| = 12, N(g,) = 12, N{g2) = 6, N{g3) = 6, A'(^4) = 6, N{g5) = 4, A r( 5 6) = 4 , j

N(g-) = 4, N(g8) = 4, Ar((79) = 4, A'(#10) = 4, N(gn) = 4 and Ar((/i2) = 4 . : j j

Applying Theorem 3.8, we find t ha t t he total number of equivalence classes is ; • j

given by i • ;
i

— [(rz + l ) 1 2 + 3 ( ^ + l ) 6 + 8 ( n + l ) 4 ] . ( 3 . 8 ) '' |

i

The number of implementable designs which can be iormed by dropping one j

or more subjects in the final period of the planned design of this example is given : : j

by \D\ = (n + I)1 2 . Using expression (3.8) the number of equivalence classes into - •• |

which the implementable designs are partitioned can be evaluated. These are listed ;> f

in Table 3.7 for a range of values of n, the number of subjects allocated to each

sequence, which might realistically be used in cross-over experiments.

Examining Table 3.7 we observe that, as before, there will be a considerable sav-

ing if the mean and variance of the performance measures for each of the planned

designs is evaluated by considering only one member from each of the equivalence

classes rather than evaluating the individual performance measures for all the im-

plementable designs. In each of the planned designs listed in Table 3.7 the total

number of equivalence classes is approximately one twelfth of the total number of

implementable designs.
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Table 3.7: The number of equivalence classes and implementable designs for designs

based on a complete set of mutually orthogonal Latin squares of side four and up

to three subjects per treatment sequence.

Number of subjects per

treatment sequence, n.

1

2

3

Number of implementable

designs, \D\.

4096

531441

16777216

Number of equivalence

classes.

368

44523

1399296

3.6 Discussion

In this chapter methods have been presented for reducing the amount of compu-

tation required to assess the performance of a cross-over design, when final period

dropout may occur, using the criteria proposed in Chapter 2. These allow the mean

and variance of the individual performance measures of the implementable designs

to be evaluated by obtaining the size of each of the equivalence classes into which the

implementable designs can be partitioned and an assessment of only one member

from each. Consequently, it is possible to reduce the amount of computation re-

quired. However, for certain designs involving relatively small numbers of subjects,

this reduction is not as large as we would like it to be. For instance, consider the

complete set of mutually orthogonal Latin squares of Example 3.14. For a relatively

small study, that is one involving just 24 subjects, even after reducing the necessary

computation to considering only the non-equivalent designs, to obtain the summary

measures for the design's performance, it will be necessary to calculate performance

measures tor 44,523 different implementable designs. Therefore, even after the re-

duction made available by using the results presented in this chapter, a great deal of

computation is required to obtain the summary measures for this particular design.

This will be true for any planned design which involves a large number of distinct
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treatment sequences. The total number of implementable designs is considerably

larger for designs involving the same numbers of subjects but larger numbers of dis-

tinct treatment sequences. For instance, when 24 subjects are allocated to a single

Williams square, a complementary pair of Williams squares or a complete set of

mutually orthogonal Latin squares of side four, the total numbers of implementable

designs are respectively, 2401, 65536, or 531441. Consequently, even after reducing

the necessary calculations to just the non-equivalent designs, the amount of com-

putation required to evaluate the summary measures for designs involving a large

number of distinct treatment sequences is considerable.

There is an additional difficulty involved in evaluating the performance measures

for planned designs which give rise to a large number of implementable designs. To

obtain the mean and variance of the individual performance measures it is necessary j

to obtain the individual probabilities for each of the implementable designs, for the ' : j

particular probability of final period dropout being considered. If there are a large ; ' ',
•! i

number of implementable designs, then each of these individual probabilities will be • •

very small. In fact for certain designs these probabilities may be so small that it is J

difficult to accurately compute them, given the limitations regarding the smallest '. <

possible number that a computer can accurately store. • ' ;

Considerable computational reductions can be achieved by using the methods de- ' ' :,

scribed in this chapter when evaluating the mean and variance of the performance : : j

measures of a planned design. A computer program incorporating the methods de- _ ,,(

scribed in this chapter and developed at my instigation by B. D. McKay (Australian

National University) has been used in the comparative studies presented in Chap-

ters 4 and 5. However, for designs involving large numbers of distinct treatment

sequences, or large numbers of subjects allocated to a relatively small number of

distinct treatment sequences, this method of assessing a planned design still incurs

a large amount of computation.
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Four Treatment, Four Period

Designs

' o p

(1) the number of treatments to be investigated,

(ii) the maximum number of treatment periods available,

(iii) the maximum number of treatment sequences which can reasonably be ex-

pected to be administered correctly, and

(iv) the maximum number of subjects available for the study.

Experiments in which cross-over designs are employed may be very different m

terms of the number of treatments to be compared and the resources available. Much

work has already been carried out to determine the most appropriate design(s) to

employ for experiments with different requirements. Frequently, the recommended

design is the design which is optimal, over the set of competing designs, for the

96

4.1 Introduction i \
•: j

When planning any cross-over trial, before selecting an appropriate design for the • \
' i

study it is usual to consider the following: I
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estimation of the direct and/or carry-over treatment comparisons under some ap-

propriate optimality criterion such as A-optimality.

As stated previously in Section 2.1. selecting the appropriate design to use is

one of the most crucial decisions made during the planning stage of any cross-over

trial. At present, this decision is made without considering how the efficiency of

the treatment comparisons, obtained for the various competing designs, might be

affected if subjects drop out during the study. This happens even when information

from previous, similar studies indicates that there is a real possibility of subjects

dropping out during the later stages of the trial.

In Chapter 2, a method for assessing the performance of cross-over designs has

been established, when it is believed a priori that dropouts may occur during the fi-

nal period. In Chapter 3 we have shown how the considerable computation involved \

in evaluating these performance measures can be reduced using results from com- : |

binatorial theory. In the next two chapters, this methodology is used to study the ; j
•\ 1

performance of frequently employed cross-over designs when final period dropout ; . ;
: i

may occur. It is a widelv held belief that the longer a clinical trial lasts, the greater '
'. I

will be the probability of subjects dropping out, for reasons unrelated to the treat- •

merits administered. Consequently, it is uncommon and unwise for cross-over trials • ' \

involving a large number of treatment periods to be contemplated. Often the max- ' ' |

imum number of treatment periods believed to be viable is four. In this chapter : '. j

we consider the performance of cross-over designs involving four treatment periods , '

since, of the designs most commonly used in medical trials, it is these designs which

appear to be most vulnerable to subjects dropping out during the final period. In

Chapter 5 the performance of three period designs subject to final period dropout

is addressed.

The main purposes of the study described in the current and next chapter are

as follows:

1. To examine the robustness ol the most frequently employed cross-over designs

to final period dropout with probability, 0. Also to consider the sensitivity of
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the mean performance measures to slight increases or decreases in the value

of 9.

2. To compare the relative performance measures of competing designs and hence

to recommend which designs should be used for studies in which final period

dropouts are anticipated.

3. To investigate the "best" last period to employ in designs recommended for

studies in which final period dropouts are anticipated. By "best" we mean the

final period which enables the design to possess the maximum mean perfor-

mance measures and the minimum variances for estimating the direct and/or

carry-over treatment comparisons.

4. To investigate the properties of those designs which are more robust to final •; •

period dropout than others. • ! ;
• i i

Throughout these chapters we adopt the simple carry-over model (1.1) for the j ;

i

observations. If a different model is adopted, the design assessments will yield dif- ! I

terent performance measures and this may alter the recommendations concerning ; ]

design selection. In addition, we assume throughout that the purpose of the ex- - • {

pe r imen t s in which these designs are to be employed is to e s t ima te all t h e pairwise ; • !

differences amongst the t t r e a t m e n t s giving equal i m p o r t a n c e to each compar ison. . • f

Hence, t h e cont ras t s of interest used are all t h e pairwise direct and first-order carry- !

over t r e a t m e n t comparisons. If different sets of cont ras t s are considered, or if some

contrasts are given more importance than others, then the overall conclusions con-

cerning design selection may again be different.

We begin, m the following section, by defining uniformly balanced designs. In

subsequent sections we examine designs for four treatments and four periods ot three

different types: designs derived from a single Williams square, designs built from

pairs ot such squares and designs based upon sets of mutually orthogonal Latin

squares. We investigate the performance of the designs for different values of 0. A
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comparison is then made of the different types of designs and recommendations are

given on which designs to employ when final period dropouts may occur.

4.2 Uniform Balanced Designs

In Sections 2.5 and 2.6 a Williams square of side four and 16 subjects was used

to illustrate the design assessment procedures proposed in this thesis. This design

possesses each of the following properties:

Definition 4.1 A design is uniform on the periods if, in each period, each

treatment occurs equally often.

Definition 4.2 A design is uniform on the subjects if each subject receives each

treatment equally often.

Definition 4.3 A design is uniform if it is uniform on both subjects and periods.

Definition 4.4 A design is balanced if each treatment is preceded equally often

by every other treatment but never by itself.

Hedayat and Afsarinejad (1978) showed that, over the class of uniform designs in

which p = t, a uniformly balanced design (that is, both uniform and balanced) is uni-

versally optimal for the estimation of the direct and first-order carry-over treatment

effects under the simple carry-over model (1.1). Thus, the particular Williams de-

sign of Sections 2.5 and 2.6 is universally optimal because it is a uniformly balanced

design. For this reason it is a design frequently employed in cross-over studies.

The class of cross-over designs over which Hedayat and Afsarinejad were able

to establish universal optimality is, as commented on by several authors, somewhat

restrictive. Cheng and Wu (1980) and Kunert (1983, 1984) have attempted to relax

these conditions. Unfortunately there has been only limited success, particularly

for the estimation of direct treatment effects which is often of greater importance
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than the es t imat ion of carry-over effects. Fur the rmore , the classes of designs over

which these addi t ional op t imal i ty results have been established involve addi t ional

t r e a t m e n t periods. Since it is undesirable to consider designs which have a large

number of t r e a t m e n t periods for studies in which dropouts are ant ic ipa ted , these

results are of li t t le benefit to the problem addressed in this thesis.

For studies involving four t r ea tmen t s there are good reasons for considering uni-

form balanced designs. T h e y do not involve too many t r e a t m e n t periods and, if

the probabi l i ty of dropout is very small, there is a fairly high probabi l i ty t h a t the

implemented exper iment will be the planned design and hence a universally opt imal

design.

In the following sections, we examine t he robustness to final period dropout of

a variety of uniform balanced designs of pract ical size. In addi t ion, for designs of

an equal size we recommend which of the designs should be used when final period

dropouts are anticipated.

4.3 Examination of Williams Square Designs
t

In this section, t he results are presented of an investigation into t he performance [ • J

of designs based on a Will iams square of side four involving up to 48 subjects , for : - \

es t imat ing direct and carry-over t r e a t m e n t effects. There are 12 different designs to : f

consider, namely the designs in which ra, the number of subjects al located to each |

t r e a t m e n t sequence, takes each of t he values 1, . . . , 12. For each design Tables 4.1.1

- 4.1.12 (given on pages 101-106) contain t he mean and variance of t he performance

measures X,j and Y,j under the A-criterion, over the range of possible 0 values 0 <

0 < 1 in steps of 0.1. T h e tables provide a summary of the performance of the

average variance of the direct and carry-over t r e a tmen t effects for each of t he 12

planned designs.

Figures 4.1 and 4.2 show how .E[A^|#] and i s f } ^ ] change with 0 for two of these

designs, namely, those involving 24 and 48 subjects . The bars represent isfA^jO] ±
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Table 4.1: Mean and variance of the performance measures Xd and Yd, under the

A-criterion, for designs based on a Williams square of side four and < 48 subjects.

Table 4.1.1: t = 4, m = 4, n = 1, p = 4.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\8]

1.82

1.50

1.18

0.87

0.60

0.38

0.21

0.09

0.03

4.0 x 10"3

0.00

Va.r[Xd\6]

0.00

0.24

0.43

0.49

0.45

0.34

0.21

0.10

0.03

4.3 x 10-3

0.00

E[Yd\0)

1.25

1.01

0.78

0.57

0.39

0.24

0.13

0.06

0.02

2.5 x 10-3

0.00

Va.v[Yd\e]

0.00

0.13

0.21

0.23

0.20

0.15

0.09

0.04

0.01

1.7 x 10-3

0.00

Table 4.1.2: t = 4, m = 4, n = 2, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

3.64

3.38

3.05

2.65

2.18

1.65

1.11

0.61

0.24

0.04

0.00

Var[JQ|0]

0.00

0.13

0.37

0.71

1.06

1.27

1.21

0.85

0.37

0.06

0.00

E[Yd\6)

2.50

2.28

2.03

1.73

1.39

1.03

0.68

0.37

0.14

0.02

0.00

V*.v[Yd\6]

0.00

0.08

0.21

0.36

0.49

0.55

0.49

0.32

0.14

0.02

0.00
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Table 4.1.3: t = 4, m = 4, n = 3, p = 4.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd 9]

5.45

5.15

4.78

4.33

3.79

3.13

2.34

1.47

0.66

0.13

0.00

v™[xd\e]
0.00

0.10

0.28

0.59

1.06

1.61

2.04

1.96

1.17

0.25

0.00

E[Yd\9]

3.75

3.49

3.19

2.84

2.43

1.96

1.43

0.88

0.39

0.07

0.00

V&T[Yd\6]

0.00

0.07

0.18

0.33

0.53

0.74

0.84

0.74

0.41

0.08

0.00 I j

Table 4.1.4: t = 4, m = 4, n = 4, p = 4.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

7.27

6.90

6.46

5.95

5.33

4.58

3.63

2.50

1.26

0.28

0.00

V&T{Xd\9}

0.00

0.10

0.26

0.53

0.97

1.62

2.40

2.86

2.21

0.61

0.00

E[Yd\9]

5.00

4.68

4.32

3.91

3.43

2.87

2.22

1.48

0.73

0.16

0.00

Va.T[Yd\6]

0.00

0.07

0.17

0.32

0.53

0.79

1.03

1.10

0.77

0.20

0.00
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Table 4.1.5: t = 4, m = 4, n = 5, p = 4.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

9.09

8.65

8.14

7.54

6.84

5.98

4.91

3.57

1.97

0.49

0.00

Var[Zd|0]

0.00

0.11

0.27

0.53

0.94

1.58

2.49

3.42

3.26

1.13

0.00

E{Yd\9]

6.25

5.87

5.44

4.96

4.41

3.76

3.00

2.11

1.13

0.27

0.00

Xzr[Yd\6]

0.00

0.08

0.18

0.33

0.54

0.81

1.12

1.35

1.14

0.36

0.00

Table 4.1.6: t = 4, m = 4, n = 6, p = 4.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

10.91

10.39

9.80

9.12

8.32

7.36

6.16

4.64

2.73

0.76

0.00

V™[Xd\6]

0.00

0.12

0.29

0.54

0.94

1.57

2.52

3.73

4.16

1.80

0.00

E[Yd\9]

7.50

7.06

6.56

6.01

5.37

4.63

3.77

2.75

1.56

0.42

0.00

Var[Kd|0]

0.00

0.08

0.20

0.35

0.56

0.83

1.18

1.51

1.46

0.57

0.00
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Table 4.1.7: t = 4, m = 4, n = 7, p = 4.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\B]

12.73

12.14

11.47

10.70

9.80

8.72

7.39

5.70

3.53

1.08

0.00

Vtt[Xd\0)

0.00

0.13

0.31

0.58

0.97

1.59

2.55

3.90

4.87

2.57

0.00

E[Yd 9]

8.75

8.25

7.68

7.05

6.33

5.50

4.53

3.38

2.01

0.59

0.00

Var[rd|0]

0.00

0.09

0.21

0.37

0.59

0.87

1.23

1.62

1.73

0.80

0.00

Table 4.1.8: t = 4, m = 4, n = 8, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

14.55

13.88

13.13

12.27

11.27

10.07

8.61

6.75

4.33

1.44

0.00

Var[Xd|0]

0.00

0.14

0.34

0.62

1.02

1.64

2.60

4.03

5.42

3.39

0.00

E{Yd\9)

10.00

9.43

8.80

8.09

7.29

6.36

5.28

4.01

2.47

0.79

0.00

Va.r[Yd\6]

0.00

0.10

0.23

0.40

0.63

0.92

1.29

1.71

1.95

1.05

0.00
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Table 4.1.9: t = 4, m = 4, n = 9, p = 4.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[xd\e\

16.36

15.63

14.79

13.84

12.73

11.42

9.81

7.79

5.14

1.82

0.00

Var[Xd|0]

0.00

0.16

0.37

0.66

1.08

1.71

2.67

4.14

5.83

4.22

0.00

E[Yd\9)

11.25

10.62

9.92

9.13

8.24

7.22

6.03

4.63

2.93

0.99

0.00

V*.r[Yd\6]

0.00

0.11

0.25

0.44

0.67

0.97

1.35

1.80

2.12

1.31

0.00

Table 4.1.10: t = 4, m = 4, n = 10, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

18.18

17.37

16.46

15.41

14.20

12.76

11.01

8.82

5.95

2.23

0.00

Var[A^ 6)

0.00

0.17

0.40

0.71

1.15

1.79

2.77

4.25

6.16

5.04

0.00

E[Yd\9]

12.50

11.81

11.03

10.17

9.19

8.07

6.78

5.24

3.39

1.21

0.00

Va.T[Yd\9]

0.00

0.12

0.28

0.47

0.71

1.03

1.42

1.88

2.27

1.56

0.00
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Table 4.1.11: t = 4, m = 4, n = 11, p = 4.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

20.00

19.12

18.12

16.98

15.66

14.10

12.21

9.85

6.75

2.66

0.00

Var[Xd|0]

0.00

0.18

0.43

0.76

1.22

1.88

2.87

4.38

6.43

5.82

0.00

E[Yd\6]

13.75

12.99

12.15

11.21

10.14

8.93

7.52

5.86

3.85

1.45

0.00

Var[rd 6]

0.00

0.13

0.30

0.50

0.76

1.08

1.49

1.97

2.40

1.80

0.00

Table 4.1.12: t = 4, m = 4, n = 12, p = 4.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

21.82

20.86

19.78

18.55

17.12

15.44

13.40

10.87

7.55

3.10

0.00

Var[Xd|0]

0.00

0.20

0.45

0.80

1.29

1.98

2.99

4.52

6.66

6.55

0.00

E[Yd\9]

15.00

14.18

13.27

12.25

11.10

9.78

8.26

6.47

4.31

1.68

0.00

Va.v[Yd\9]

0.00

0.14

0.32

0.54

0.81

1.15

1.56

2.06

2,52

2.03

0.00
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0.0
0.0 0.2

Probability of Dropout

Figure 4.1: Performance for direct treatment comparisons under the A-criterion

of single Williams square designs for 24 and 48 subjects, where the bars denote

E[Xd\0] ± yVarlx
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0.0
0.0 0.2 0.4 0.6

Probability of Dropout

Figure 4.2: Performance for carry-over treatment comparisons under the A-criterion

of single Williams square designs for 24 and 48 subjects, where the bars denote

E[Yd\e\ d
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I

JVar[Xd\0] and i?[K/j#] ± JVar[Y,j\8] respectively for each design. These have been

included to give an indication of the spread of the distributions for each value of 6.

For larger values of 0, the full extent of the bar is not given since it would extend

below the 6 axis.

From Figures 4.1 and 4.2 we observe that, as expected, the mean values of both

X,j and Yd increase as the number of subjects, n. allocated to each treatment se-

quence is increased. In each case we observe that, as 0 increases, there is a gradual

reduction in the mean values of Xd and Yd for each design. Note that, when the

probability of final period dropout is anticipated to be 0 = 0.0, the set oi imple-

mentable designs, D, contains only one design which is the planned design. When

the probability of final period dropout is anticipated to be 6 = 1.0, D again con-

sists of only one design, namely the planned design with the entire final period |
':: i

deleted, which is a disconnected design. The sudden and, in the case of the larger '• f

designs, very rapid reduction in the mean values of both performances measures as

the value of 0 approaches 1.0 is explained by the fact that, in every case, the set of

implementable designs, D, contains a number of disconnected designs.

The spread of the distributions is always smaller when 6 is either very small or

very large. This is because, irrespective of the number of subjects allocated to the ; ' }

design, the distribution of Xd and Yd will always be dominated by those designs ' |

with the greatest probability of being implemented. When 6 is small these are the • • j

designs with the fewest number of dropouts and consequently the higher performance , . J

measures. When 6 is large these are the designs containing a greater number of final

period dropouts and consequently the poorer performance measures; for a Williams

square of side four these are mainly disconnected designs.

Tables 4.2.1 - 4.2.12 (given on pages 111-116) contain the mean and variance of

the performance measures Xd and Yd, under the MV-criterion, for the same values

of 6 and for each size of design in turn. The tables provide a summary of the

performance of the maximum variance of the direct and carry-over treatment effects

for each of the 12 planned designs considered. As mentioned in Section 2.6, the
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performance measures obtained using either the A- or MV-criterion are related and

will be identical if the particular implementable design being evaluated is variance

balanced. A uniform balanced design is always variance balanced for the direct and

first-order carry-over pairwise t r ea tment comparisons. Hence, when 9 = 0.0, all the

designs considered m this section will give equal mean performance measures for

both Xd and Yd based on either the A- or MV-criterion. However, when 0 > 0 the

set of implementable designs will contain only a small number of variance balanced

designs. For example, for a design based on a Williams square of side four and 0 > 0,

the variance balanced designs are those designs in which the number of subjects

dropping out during the final period is the same for each t rea tment sequence. These

form only a very small proportion of all the implementable designs. It is therefore,

impor tan t to examine the performance of designs under both the A- and MV-criteria. j
; ' i

T h e mean values of Xd and Yd, obtained under the MV-criterion, will always ' : j

be smaller than their corresponding A-criterion values irrespective of the planned [ _ I

design being assessed, see Section 2.6. By comparing the distributions of Xd and • . ;

Yd obtained using each criterion we can examine the differences between the mean ' ' j
I

average variance of the treatment contrasts and the mean maximum variance of '. >

the treatment contrasts. If these do not differ by much we can conclude that the • ' i

differences amongst the variances of the treatment comparisons obtained from the ' ' j

implemented experiment should not be great. Comparing Tables 4.1 and 4.2 we : [ j

observe that, for small values of 0, say 0 < 0.2, this difference is always small. For ,,'

example, for the design c/(4, 4,12,4) when 9 = 0.2, the mean performance measures

for estimating the direct treatment comparisons under the A- and MV-criteria are

19.78 and 18.80 respectively. Note that the relative difference between the respec-

tive measures becomes smaller as the number of subjects allocated to the design

increases. This is true for both direct and carry-over treatment effects.

Figures 4.3 and 4.4 show how E[Xd\0] and E[Yd\9], obtained under the MV-

critenon, change with 0 for two of these designs namely those involving 24 and 48

subjects. As previously, the bars represent E[Xd\0] ± JV&Y{Xd\0] and E[Y'd\
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Table 4.2: Mean and variance of the performance measures Xrj and Yd, under the

MV-criterion. for designs based on a Williams square of side four and < 48 subjects.

Table 4.2.1: t = 4, m = 4, n = 1, p = 4.

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6)

1.82

1.39

1.03

0.72

0.47

0.29

0.15

0.07

0.02

2.6 x 10"3

0.00

Var[Xd|0]

0.00

0.36

0.49

0.47

0.37

0.24

0.13

0.06

0.02

2.0 x 10-3

0.00

E[Yd\e\

1.25

0.94

0.68

0.47

0.31

0.18

0.10

0.04

0.01

1.6 x 10~3

0.00

Var[Kd|0]

0.00

0.19

0.25

0.22

0.17

0.11

0.06

0.02

0.01

7.8 x 10~4

0.00

Table 4.2.2: t = 4, m = 4, n - 2, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6\

3.64

3.19

2.74

2.26

1.77

1.27

0.81

0.42

0.16

0.02

0.00

Var[A'd|0]

0.00

0.28

0.59

0.89

1.07

1.06

0.85

0.50

0.19

0.03

0.00

E[Yd\9]

2.50

2.14

1.80

1.46

1.12

0.79

0.49

0.26

0.09

0.01

0.00

Va.r[Yd\6]

0.00

0.16

0.31

0.42

0.48

0.44

0.33

0.19

0.07

0.01

0.00
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Table 4.2.3: t = 4, rn = 4, n = 3, p = 4.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

5.45

4.90

4.37

3.80

3.17

2.48

1.75

1.03

0.43

0.08

0.00

Var[Xd|0]

0.00

0.25

0.55

0.92

1.33

1.62

1.64

1.26

0.61

0.10

0.00

E[Yd\0)

3.75

3.30

2.88

2.44

1.99

1.52

1.05

0.61

0.25

0.04

0.00

Var[y^]

0.00

0.16

0.31

0.47

0.61

0.68

0.63

0.46

0.21

0.03

0.00

Table 4.2.4: t = 4, m = 4, n = 4, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6\

7.27

6.60

5.97

5.30

4.55

3.70

2.77

1.77

0.83

0.17

0.00

Var[X#]

0.00

0.26

0.56

0.96

1.43

1.90

2.18

2.00

1.20

0.25

0.00

E[Yd\6]

5.00

4.45

3.94

3.41

2.85

2.26

1.65

1.04

0.48

0.10

0.00

Va.r[Yd\0]

0.00

0.17

0.34

0.52

0.69

0.81

0.85

0.72

0.40

0.08

0.00
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Table 4.2.5: t = 4, m = 4, n = 5, p = 4.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

9.09

8.31

7.58

6.79

5.90

4.91

3.80

2.57

1.30

0.30

0.00

Va.r[Xd\6]

0.00

0.28

0.59

1.02

1.54

2.09

2.54

2.61

1.85

0.48

0.00

E[Yd\0]

6.25

5.60

5.00

4.37

3.70

3.00

2.26

1.49

0.74

0.17

0.00

V*r[Yd\6]

0.00

0.19

0.37

0.57

0.76

0.92

1.00

0.93

0.61

0.15

0.00

Table 4.2.6: t = 4, m = 4, n = 6, p = 4.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\d]

10.91

10.01

9.18

8.27

7.25

6.11

4.82

3.38

1.82

0.46

0.00

Var[X#]
0.00

0.30

0.64

1.10

1.66

2.27

2.83

3.09

2.48

0.77

0.00

E[Yd\d]

7.50

6.76

6.05

5.32

4.55

3.74

2.87

1.96

1.03

0.26

0.00

Va.v[Yd\0]

0.00

0.21

0.41

0.63

0.84

1.02

1.14

1.11

0.82

0.24

0.00
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Table 4.2.7: t — 4, m = 4, n — 7, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

12.73

11.72

10.78

9.75

8.60

7.31

5.84

4.20

2.37

0.65

0.00

V&r[Xd\6]

0.00

0.32

0.70

1.20

1.79

2.46

3.10

3.49

3.06

1.12

0.00

E[Yd\9]

8.75

7.91

7.11

6.28

5.40

4.47

3.48

2.43

1.34

0.36

0.00

Var[K#]

0.00

0.23

0.45

0.69

0.92

1.12

1.26

1.26

1.00

0.34

0.00

Table 4.2.8: t = 4, m = 4, n = 8, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

14.55

13.43

12.38

11.23

9.95

8.50

6.86

5.01

2.94

0.87

0.00

V*x[Xd\9)

0.00

0.35

0.76

1.29

1.93

2.65

3.35

3.84

3.57

1.50

0.00

E[Yd\9)

10.00

9.06

8.17

7.24

6.25

5.20

4.08

2.90

1.65

0.48

0.00

Var[yd|0]

0.00

0.25

0.49

0.75

1.00

1.23

1.38

1.40

1.17

0.46

0.00
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Table 4.2.9: t = 4, m = 4, n = 9, p = 4.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T?\ V 1/31

16.36

15.14

13.99

12.72

11.29

9.69

7.88

5.83

3.51

1.11

0.00

Var[Xd|0]

0.00

0.38

0.82

1.39

2.07

2.84

3.61

4.17

4.02

1.91

0.00

E[Yd\B]

11.25

10.22

9.23

8.19

7.10

5.93

4.69

3.37

1.97

0.61

0.00

Var[yd|0]

0.00

0.27

0.54

0.81

1.08

1.33

1.50

1.54

1.32

0.58

0.00

Table 4.2.10: t = 4, m = 4, n = 10, p = 4.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

18.18

16.85

15.59

14.20

12.64

10.88

8.90

6.65

4.09

1.36

0.00

Var[A'd|0]

0.00

0.40

0.89

1.49

2.22

3.04

3.86

4.49

4.44

2.33

0.00

E[Yd\9]

12.50

11.37

10.29

9.15

7.94

6.66

5.29

3.84

2.29

0.75

0.00

Var[Kd|0]

0.00

0.29

0.58

0.88

1.17

1.43

1.62

1.67

1.46

0.70

0.00



Chapter 4 116

Table 4.2.11: t = 4, m = 4, n = 11, p = 4.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

20.00

18.56

17.19

15.68

13.98

12.08

9.92

7.46

4.67

1.63

0.00

Yzx{xd\e\

0.00

0.43

0.95

1.60

2.37

3.24

4.12

4.81

4,82

2.75

0.00

E[Yd 9}

13.75

12.52

11.34

10.11

8.79

7.39

5.90

4.31

2.61

0.89

0.00

Var[yd|0]

0.00

0.32

0.62

0.94

1.26

1.54

1.74

1.80

1.59

0.82

0.00

Table 4.2.12: t = 4, m = 4, n = 12, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

21.82

20.28

18.80

17.16

15.33

13.27

10.93

8.28

5.25

1.91

0.00

Var[A^j£]

0.00

0.46

1.01

1.70

2.51

3.44

4.38

5.13

5.19

3.16

0.00

E[Yd\9]

15.00

13.68

12.40

11.06

9.64

8.13

6.51

4.78

2.94

1.04

0.00

Var[rd|0]

0.00

0.34

0.67

1.01

1.34

1.64

1.86

1.92

1.71

0.94

0.00
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0.0
0.0

i I

, i

Probability of Dropout

Figure 4.3: Performance for direct treatment comparisons under the MV-criterion

of single Williams square designs for 24 and 48 subjects, where the bars denote

E[Xd\0] ±
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E[Yd\e]

21 -

18 -

15 -

12 -

9 -

6 -

3 -

0.0 -

s = 48 \ s .

X i

s = 24

1 ^

K

i

• • \

f
0.0 0.2 0.4 0.6

Probability of Dropout

0.8 1.0

Figure 4.4: Performance for carry-over treatment comparisons under the MV-

criterion of single Williams square designs for 24 and 48 subjects, where the bars

denote E[Yd\9] ± ^Var[Yd\9}.
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•JVav[Yd\0}, and are included to give an indication of the spread of the distributions

for the associated value of 8. Apart from the fact that the values obtained for the

mean performance measures for Xd and Yd under the MV-criterion are always less

than for the A-criterion, the observations made concerning the general trend of Xd

and Yd as 6 changes when obtained under the A-criterion all continue to apply here.

Each of the planned designs obtained by allocating an increasing number of

subjects to the treatment sequences of a Williams square of side four gives rise to

a number of disconnected implementable designs, Do- It is necessary, therefore,

to examine P(DQ), the probability of implementing a disconnected design, when

considering the robustness to final period dropout of each of these designs. The

distribution of P[D0) can be investigated for each design by applying equation

(2.1) to the set of disconnected designs arising from each planned design and then

considering values of 8, in steps of 0.1 across 0 < 8 < 1. The values of P(DQ)

are given in Tables 4.3. in which all probabilities are listed correct to two decimal

places. ; • ;
i

It is a reasonable assumption that, any design in which the probability of im- !

plementing a disconnected design is greater than 0.2 represents too great a risk to - !

an experimenter. Examining the probabilities given in Table 4.3 we observe that, j

when 0 < 0.2, the probability of realising an implemented design is below 0.2. When I

0 > 0.9, however, the probability is consistently above 0.2 and in most cases con- • '. J

siderably greater. Whenever the probability of subjects dropping out during the . ,!

final period of a four period study is anticipated to be as high as 0.9, it is unwise

to consider running a four period study. A three period study is a safer option.

In fact, it is very unlikely that a four period study would be seriously considered

if the expected number of subjects to be lost during the final period exceeds the

expected number completing the study, that is for 0 > 0.5. Examining Table 4.3 we

observe that, provided the number of subjects available for the study is greater than

or equal to 12, then when 0 < 0.5 the probability of implementing a disconnected

design never exceeds 0.08.
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Table 4.3: Probability, P(D0), of implementing a disconnected design for designs

based on a Williams square of side four and < 48 subjects.

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P(D0)

n = 1

0.00

0.05

0.18

0.35

0.52

0.69

0.82

0.92

0.97

0.99

1.00

n = 2

0.00

0.00

0.01

0.04

0.12

0.26

0.45

0.67

0.86

0.98

1.00

n = 3

0.00

0.00

0.00

0.00

0.02

0.08

0.21

0.42

0.71

0.94

1.00

n = 4

0.00

0.00

0.00

0.00

0.00

0.02

0.08

0.25

0.54

0.88

1.00

n = 5

0.00

0.00

0.00

0.00

0.00

0.01

0.03

0.13

0.40

0.81

1.00

n = 6

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.07

0.28

0.73

1.00

P(D0)

n = 1

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.20

0.65

1.00

n = 8

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.02

0.13

0.58

1.00

n = 9

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.01

0.09

0.50

1.00

re = 10

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.05

0.43

1.00

n = 11

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.04

0.37

1.00

n = 12

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.00

0.03

0.32

1.00
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4.4 Combining Williams Squares

A design based on a Williams square of side four is the design, for four treatments

and four periods, which has the fewest number of distinct treatment sequences to

achieve uniform balance. (See Definitions 4.3 and 4.4.) If the total number of

subjects available is only four, which is inconceivable in practice, this is the only

uniform balanced design available. However, when the number of subjects available

is An, for some integer n > 1, this design consists of the same four treatment

sequences each replicated n times. If, rather than allocating increasing numbers of

subjects to the same set of treatment sequences, it is possible to increase the total

number of treatment sequences then other uniform balanced designs are available.

In this section we consider the performance under final period dropout of uniform

balanced designs formed by combining two Williams squares of side four which are : '

"different" in the way described below. : j

It is known that all Williams squares of side four obtained under some per- : ',

mutation of the treatment labels are isomorphic. If we consider all the possible ;

isomorphic designs formed by permuting the treatment labels 0, 1, 2 and 3 of the I

Williams square with initial treatment sequence (0 1 3 2) there are 24 different *

possible arrangements. In a cross-over design the order of the treatment sequences ] j

is unimportant since it does not affect the overall structure of the design. If the '; ' |

order of the treatment sequences is ignored, there are only six arrangements which - ••" |

have distinct sets of treatment sequences. These six squares, arranged such that the

treatment labels in the first column of each square appears in lexicographical order,

are given in Table 4.4.

Note that, each of the squares in Table 4.4 is a uniform balanced design. There-

tore, when the probability of final period dropout is not considered they are all

universally optimal over the class of uniform designs for estimating the direct and

carry-over treatment effects. In addition, when assessing the performance of each

design subject to final period dropout, the mean and variance of the performance
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Table 4.4: Six "different" Williams squares of side four.

(i) 0 1 3 2 (ii) 0 3 1 2 (iii) 0 2 1 3

1 2 0 3 1 0 2 3 1 0 3 2

2 3 1 0 2 1 3 0 2 3 0 1

3 0 2 1 3 2 0 1 3 1 2 0

(iv) 0 1 2 3 (v) 0 3 2 1 (vi) 0 2 3 1

1 3 0 2 1 2 3 0 1 3 2 0

2 0 3 1 2 0 1 3 2 1 0 3

3 2 1 0 3 1 0 2 3 0 1 2

measures Xrj and Yd, obtained using either the A- or MV-cnterion, are identical over ; ' i

the entire range of 9 values, for designs involving equal numbers of subjects. The • • ',

same is true of the respective probabilities of implementing a disconnected design. ; , j

These results are unsurprising since the designs are all isomorphic under permuta- • j
i

tions of the treatment labels. The mean and variance of the performance measures j

Xj, and Yd and the probabilities of implementing a disconnected design have already ]

been given in Section 4.3 for design (i) involving up to a maximum of 48 subjects. ; ' j

Any eight sequence design formed as the union of the sequences from any two of •: ! t

the Williams squares in Table 4.4 is uniform balanced. Hence, when the probability - -" jj

of final period dropout is not considered, each of these designs is universally optimal.

The same is true for any design formed by combining in this way any number of

squares. The question we address in the remainder of this section is: when combining

two or more "different" Williams squares, does the choice of squares affect the

robustness of the design to final period dropout?

( e\
There are = 1 5 different possible designs which can be formed by com-

bining any two of the Williams squares given in Table 4.4. Example 4.1 compares
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the relative performance of two of these designs.

Example 4.1 The performance of the following two planned designs will be com-

pared under their repeated use in cross-over trials with given probability, 6, of final

period dropout.

Design (b): The pair of Williams squares d(4,8,2,4) with treatment labels 0, 1.

2 and 3 and initial sequences (0 13 2) and (0 3 1 2). This is the design considered

previously m Example 2.5.

0 1 3 2 Note: The design is the union of the

1 2 0 3 sequences from squares (i) and (ii)

2 3 1 0 of Table 4.4.

3 0 2 1

0 3 1 2 :; i
• - i

1 0 2 3 • • : 1

2 1 3 0 ; j

3 2 0 1 |

J

D e s i g n ( c ) : T h e pair of Will iams squares <i(4,8,2,4) with t r e a t m e n t labels 0, 1, . • j

2 and 3 and initial sequences (0 1 3 2) and ( 0 2 1 3 ) . '• • \

[ |
0 1 3 2 Note: The design is the union of the - -" |

I

1 2 0 3 sequences from squares (i) and (iii)

2 3 1 0 of Table 4.4.

3 0 2 10 2 1 3

1 0 3 2

2 3 0 1

3 1 2 0

T h e performance of each design in compar ing all the direct and first-order carry-

over t r e a t m e n t effects can be summarised by applying equat ions (2.4), (2.5), (2.6)
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and (2.7) with the A-criterion to obtain the average variance of the direct and first-

order carry-over treatment effects. Summary measures for design (b) have already

been given in Table 2.6. Summary measures for design (c) are given in Table 4.5.

Table 4.5: Mean and variance ot the performance measures X,j and Yd- under the

A-criterion, for design (c), with 16 subjects.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

7.27

6.92

6.54

6.14

5.70

5.22

4.68

4.06

3.36

2.61

2.15

Var[Xd|0]

0.00

0.08

0.17

0.28

0.42

0.59

0.79

0.96

0.94

0.51

0.00

E[Yd\9]

5.00

4.69

4.38

4.04

3.69

3.31

2.90

2.46

1.96

1.46

1.16

Va.v[Yd\0]

0.00

0.06

0.12

0.18

0.26

0.34

0.42

0.47

0.43

0.22

0.00

Comparisons of the graphs of the mean of the performance measures X,j and Yj

(defined in Definitions 2.4 and 2.5) against 0, for 0 < 0 < 1, for designs (b) and (c),

are given in Figures 4.5 and 4.6 respectively. From these we observe that each design

gives rise to identical mean performance measures correct to two decimal places for

6 < 0.2. As the value of 6 increases beyond 0 = 0.4, however, each of the graphs

depicting the mean of Xd and Yd begins to diverge. In each case it is design (b)

which gives rise to the larger mean performance measures. Consequently, the range

of values for the mean of Xd or Yd as 0 varies is not as large for design (b) as it is

tor design (c). For design (b) the ranges are 7.27-3.20 and 5.00-1.71 respectively,

while for design (c) they are 7.27-2.15 and 5.00-1.16 respectively. Note that when

0 is small, and particularly when 0 = 0.3, the mean of Y,j for design (c) marginally

L
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E[Xd\O

(b)

e
0.0 0.2 0.4 0.6 0.8

Probability of Dropout

1.0

• J

Figure 4.5: Comparisons of the graphs showing the mean of X,j) under the

A-criterion, for designs (b) and (c).
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E[Yd\6

0.0
0.0 0.2 0.4 0.6 0.8

Probability of Dropout

Figure 4.6: Comparisons of the graphs showing the mean of Yd-, under the

A-criterion, for designs (b) and (c).
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exceeds that obtained for design (b). The difference, however, is very small, never

exceeding 0.01, and therefore can reasonably be considered to be negligible.

Choosing between designs (b) and (c) using the approach of Section 2.8.1 based

on the A-criterion and using the evidence described above we recommend design (b)

rather than design (c) for studies in which final period dropout is anticipated.

We now compare the performance of the designs using equations (2.4), (2.5).

(2.6) and (2.7) and the MV-criterion. Summary measures for design (b), under

the MV-criterion, have been given previously in Table 2.7. Summary measures for

design (c), under the MV-criterion, are given in Table 4.6.

Table 4.6: Mean and variance of the performance measures X,j and Yd, under the

MV-criterion. for design (c), with 16 subjects.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

7.27

6.64

6.12

5.63

5.12

4.58

3.99

3.32

2.58

1.80

1.35

Va,T[Xd\6]

0.00

0.20

0.33

0.49

0.69

0.91

1.15

1.31

1.20

0.60

0.00

E\Yd\Q)

5.00

4.48

4,06

3.66

3.26

2.86

2.44

1.99

1.51

1.02

0.75

Var[?#]

0.00

0.13

0.21

0.29

0.37

0.45

0.52

0.55

0.48

0.23

0.00

Comparisons of the graphs of the mean of X,j and Yd obtained using the MV-

criterion, for 0 < 0 < 1, for designs (b) and (c) are given in Figures 4.7 and 4.8

respectively. We observe that the mean values of Xd when 0 < 0.4 arc marginally

larger lor design (c) than for design (b). This difference, however, never exceeds
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E[Xd

7.5

5.0 -

2.5 -

0.0
0.0

i

0.2 0.4 0.6 0.8

Probability of Dropout

1.0

: f

Figure 4.7: Comparisons of the graphs showing the mean of Xj, under the

MV-criterion, for designs (b) and (c).
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E[Yd\9

i .o

5.0 -

0.0

ii i

(b)

Probability of Dropout

Figure 4.8: Comparisons of the graphs showing the mean of Yd, under the

MV-criterion, for designs (b) and (c).
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0.01 and can therefore reasonably be considered to be negligible, particularly since

the variances corresponding to these mean values are always larger for design (c).

When 9 = 0.4 the mean values of X,i obtained for design (b) begin to exceed

those obtained for design (c) with the difference between the respective mean values

increasing rapidly as 0 increases. The mean values of Yd when 0 < 0.7 are larger for

design (c). As previously, this difference is very small, never exceeding 0.07, and can

therefore reasonably be considered to be negligible, particularly since the variances

of the mean values obtained for design (c) always exceed those for design (b). When

0 > 0.7, the mean values of Yd obtained for design (b) begin to exceed those obtained

for design (c), with the magnitude of the difference between respective mean values

rapidly becoming large.

When 6 is small, using the design selection criteria of Section 2.8.1 with the MV- *

criterion, design (c) may be preferred to design (b), since the mean values of X,i and ' • j

Yd are always very slightly larger for design (c). However, given that this difference • ' \

is small enough to be assumed negligible and that the corresponding variances are • : :

always considerably smaller for design (b), this slight difference for small 9 is not ' \

j
significant enough to change the recommendation, obtained under the A-criterion, ' J

that design (b) is the preferred design. .. • {

To summarise, given an experimenter wishes to use a design having eight differ- :: • !

ent treatment sequences, there should be no difficulty in employing design (b) rather . • J

than design (c), since each is formed by combining two different Williams squares. I

When final period dropouts may occur, the use of design (b) rather than design (c)

is recommended. This is because the mean performance measures for Xd obtained

using the A- criterion are always higher with correspondingly lower variances, while

those obtained using the MV-criterion are only marginally smaller for small 0 and

higher for all other values of 0, with the variance of Xd being lower across the en-

tire range of 0 values. In addition, the values obtained for Yj using either the A- or

MV-criterion are always higher, with corresponding lower variances, when 0 is large,

while those obtained using either criterion are only marginally smaller for small 0,
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with the variance of Y,j being lower across the entire range of possible 6 values.

Furthermore, our aim is to select the design which provides the greatest protection

against the possibility of final period dropout. If we consider the individual perfor-

mance measures X,± and Yd obtained using either the A- or MV-criterion for each of

the implementable designs associated with designs (b) and (c), we observe that the

very best that can be achieved is that no subjects drop out during the final period.

In this case the performance measures obtained for each design are identical. The

worst situation is that every subject is lost during the final period. In this case the

implemented design will be the planned design with the entire final period deleted.

The performance measures obtained from the implemented design consisting oi the

first three periods of design (c) are considerably smaller than those obtained from

the implemented design consisting of the first three periods of design (b). That is.

although the best that can be achieved in terms of performance measures will be : :

the same if either design (b) or (c) is used the worst situation is considerably poorer • ' *

if design (c) is selected. Hence, better overall protection to final period dropout can ' : !

be achieved using design (b) rather than design (c). '' \
j

Example 4.1 demonstrates that not all eight sequence designs formed by com- 1

bining two different Williams squares of side four are equally robust to final period ; - j

dropout. Considering all 15 designs wThich can be formed, we observe that these can .'. ̂  |

be separated into two categories. Those which have mean performance measures

identical to those of design (b) and those which have mean performance measures

identical to design (c). Each class of designs is listed in Table 4.7.

The common feature of the designs in the first category is that the two squares

used to form the designs complement each other in the final two periods in the sense

that neither square replicates any ordered pair of treatments appearing in the third

and fourth periods of the other square. For this reason these designs are called

complementary pairs of Williams squares.
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'fable 4.7: Categories of designs created from the union of the treatment sequences

from two "different " Williams squares of side four.

Category I: Complementary Pairs

(i) and (ii)

(iii) and (iv)

(v) and (vi).

Category II: Non-complementary Pairs

(i) and (iii), (i) and (iv), (i) and (v), (i) and (vi)

(ii) and (iii), (ii) and (iv), (ii) and (v), (ii) and (vi)

(iii) and (v), (iii) and (vi), (iv) and (v), (iv) and (vi).

By definition, each pair of complementary squares contains eight distinct or-

dered pairs of treatments in the final two periods of the design, unlike the designs

in the second category. In the latter category of designs there are only seven dif-

ferent ordered pairs of treatments in the final two periods, one of which appears in ; . ;

each square. Since this difference in balance is the only difference between the two ' j

categories of design, it is conjectured that the increased protection to final period . j

dropout achieved by the complementary squares is due to the increased combinato- • ' t

rial balance achieved in the final two periods. ' ' •

In the remainder of this section, the mean and variance of the performance mea- : ; \

sures X,x and Y,j, for a complementary pair of Williams squares are investigated under , 1

both the A- and MV-criterion. The designs considered involve up to 32 subjects. In

practice, it is sometimes realistic for experiments involving more than 32 subjects

to be considered. Unfortunately, despite the reductions made possible by using the

results presented in Chapter 3, it would require an excessive amount of computation

to obtain results for a complementary pair oi Williams squares involving more than

32 subjects.

Tables 4.8.1 - 4.8.4 (given on pages 134-135) contain the mean and variance of

the performance measures Xd and Yj, under the A-criterion, whilst Tables 4.9.1 -

L
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4.9.4 (given on pages 136-137) contain the mean and variance of Xd and Yd under

the MV-criterion.

Figures 4.9 and 4.10 show how E[Xd\9) and E[Yd\0] change with 9 under the

A-criterion for two of these designs, namely those involving 16 and 32 subjects.

Similarly. Figures 4.11 and 4.12 show how the measures change with 9, under the

MV-criterion for the designs involving 16 and 32 subjects. The bars shown on each

of the figures represent E[Xd\9] ± ^V&x[Xd\9} and E[Yd\6] ± ^Va.r[Yd\9] and have

been included to give an indication of the spread of the distributions for each value

of 0.

As expected, the mean performance measures increase as the number of subjects

allocated to each treatment sequence is increased. The reduction in each mean

performance measure appears to be fairly gradual across the entire range of values

for 9. In addition, the gradient of the curves for each respective mean performance \

measure does not appear to change very much when the number of subjects is '.

increased. j •
• • i

One important feature of a design built from a complementary pair of Williams j

squares is that the set of implementable designs formed by dropping one or more sub- |

jects in the final period does not contain any disconnected designs. A consequence • \

of this is that relatively small variances are obtained for each mean performance ' |

measure. As with any planned design the variances are greater when 9 is close to : • j
" "" !

0.5, and smaller when 9 is either small or large. , f-

In this section we have shown that a design to compare four treatments formed

from a complementary pair of Williams squares is more robust to final period

dropout than any other pair of Williams squares of side four. In addition we have

conjectured that this is because only these designs have eight distinct ordered pairs

of treatments in the final two periods. If this is true, increasing the number of

treatment sequences in a design, in order to enable the maximum possible number

of ordered pairs to appear in the final two periods, should produce a design with
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Table 4.8: Mean and variance of the performance measures Xrj and Yd, under the

A-criterion, for a design based on a complementary pair of Williams squares of side

four and < 32 subjects.

Table 4.8.1: t = 4, m = 8, n = 1, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

3.64

3.41

3.17

2.93

2.70

2.46

2.22

2.00

1.81

1.66

1.60

Vax[Xd\0)

0.00

0.06

0.11

0.16

0.18

0.19

0.17

0.13

0.08

0.02

0.00

E[Yd\9]

2.50

2.30

2.11

1.91

1.71

1.52

1.33

1.16

1.01

0.90

0.86

Var^lfl]
0.00

0.04

0.08

0.11

0.12

0.13

0.11

0.08

0.04

0.01

0.00

Table 4.8.2: t = 4, m = 8, n = 2, p = 4.

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

7.27

6.92

6.54

6.16

5.75

5.32

4.86

4.39

3.90

3.45

3.20

Var[Xd\9]

0.00

0.08

0.15

0.22

0.28

0.34

0.36

0.35

0.27

0.12

0.00

E[Yd\9]

5.00

4.69

4.37

4.04

3.70

3.34

2.98

2.60

2.23

1.89

1.71

Var[K#]

0.00

0.06

0.11

0.16

0.20

0.23

0.23

0.21

0.16

0.06

0.00

! I
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Table 4.8.3: t = 4, m = 8, n = 3, p = 4.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E{Xd\6]

10.91

10.41

9.89

9.35

8.77

8.16

7.51

6.82

6.07

5.30

4.80

Vax[Xd\0]

0.00

0.10

0.19

0.29

0.37

0.44

0.50

0.51

0.45

0.25

0.00

E\Yd\e\
7.50

7.07

6.63

6.16

5.67

5.16

4.63

4.07

3.50

2.93

2.57

Var[Kd|0]

0.00

0.07

0.14

0.21

0.26

0.31

0.33

0.32

0.26

0.13

0.00

Table 4.8.4: t = 4, m = 8, n = 4, p = 4.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9)

14.55

13.91

13.24

12.54

11.79

11.00

10.16

9.25

8.25

7.19

6.40

Vz.v[Xd\d)

0.00

0.12

0.24

0.35

0.46

0.55

0.62

0.65

0.60

0.38

0.00

E[Yd\6]

10.00

9.45

8.87

8.27

7.64

6.98

6.28

5.55

4.78

3.99

3.43

Va,T[Yd\9]

0.00

0.09

0.18

0.26

0.33

0.38

0.41

0.41

0.35

0.20

0.00
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Table 4.9: Mean and variance of the performance measures Xd and Yd, under the

MV-criterion, for a design based on a complementary pair of Williams squares of

side four and < 32 subjects.

Table 4.9.1: t = 4, m = 8, n = 1, p = 4.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

3.64

3.22

2.88

2.58

2.30

2.05

1.82

1.62

1.46

1.36

1.33

Var[Xd|0]

0.00

0.17

0.23

0.25

0.25

0.23

0.19

0.13

0.06

0.01

0.00

E[Yd\6)

2.50

2.16

1.88

1.63

1.40

1.20

1.02

0.87

0.75

0.69

0.67

Va.r[Yd\6]

0.00

0.11

0.15

0.17

0.16

0.14

0.11

0.07

0.03

0.01

0.00

Table 4.9.2: t = 4, m = 8, n = 2, p = 4.

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

7.27

6.63

6.11

5.62

5.14

4,66

4.17

3.68

3.21

2.82

2.67

Var[Xd|0]

0.00

0.20

0.30

0.37

0.43

0.46

0.46

0.42

0.29

0.10

0.00

E[Yd\9]

5.00

4.47

4.02

3.60

3.19

2.80

2.41

2.03

1.69

1.43

1.33

V*.r[Yd\6]

0.00

0.14

0.21

0.26

0.29

0.29

0.27

0.22

0.14

0.04

0.00
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Table 4.9.3: t = 4, m = 8, n = 3, p = 4.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

10.91

10.05

9.35

8.67

7.99

7.30

6.58

5.84

5.07

4.35

4.00

Vax[Xd\6]

0.00

0.24

0.37

0.49

0.58

0.64

0.66

0.64

0.53

0.24

0.00

E[Yd\9)

7.50

6.77

6.16

5.57

4.98

4.40

3.83

3.26

2.71

2.23

2.00

Var[Yd\9]

0.00

0.17

0.27

0.35

0.39

0.41

0.40

0.35

0.25

0.10

0.00

1

I t

Table 4.9.4: t = 4, m = 8, n - 4, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

14.55

13.47

12.59

11.72

10.84

9.93

8.99

8.01

6.98

5.93

5.33

Var[Xd|0]

0.00

0.28

0.46

0.61

0.73

0.81

0.84

0.83

0.73

0.40

0.00

E[Yd\9]

10.00

9.09

8.30

7.53

6.77

6.01

5.26

4,50

3.75

3.05

2.67

Va.r[Yd\9]

0.00

0.21

0.34

0.44

0.50

0.52

0.51

0.46

0.35

0.17

0.00
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0.0
0.0 0.2 0.4 0.6

Probability of Dropout

Figure 4.9: Performance for direct treatment comparisons under the A-criterion of

designs based on complementary pairs of Williams squares for 16 and 32 subjects,

where the bars denote E[Xd\0} ± Jv&r[Xd\9}.
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0.0
0.0 1.0

Probability of Dropout

Figure 4.10: Performance for carry-over treatment comparisons under the A-

criterion of designs based on complementary pairs of Williams squares for 16 and

32 subjects, where the bars denote E[Yd\0] ±
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0.0
0.2 0.4 0.6

Probability of Dropout

0.1 1.0

Figure 4.11: Performance for direct treatment comparisons under the MV-criterion

of designs based on complementary pairs of Williams squares for 16 and 32 subjects,

where the bars denote .E[Xi|#] ±
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E[Yd\9]

15 -,

12 -

9 -

6 -

0.0

Probability of Dropout

Figure 4.12: Performance for direct treatment comparisons under the MV-criterion

of designs based on complementary pairs of Williams squares for 16 and 32 subjects.

where the bars denote E[Yd\0) ± yJVsx[Yd\e).
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even better protection against final period dropout. Designs having this property

are considered in the following section.

4.5 Mutually Orthogonal Latin Squares

For designs involving four treatments when no treatment is allowed to follow itself,

there are 12 distinct ordered pairs of treatments. If we consider the Williams squares

given in Table 4.4, we observe that it is not possible to combine three of these to

achieve a twelve sequence design in which each of the ordered pairs of treatments

occurs once in the third and fourth periods. However, this feature can be achieved

by using the particular complete set of mutually orthogonal Latin squares of side

four given in Table 4.10.

Table 4.10: Complete set of balanced mutually orthogonal Latin squares of side four

with treatment labels 0, 1 2, and 3.

0 1 2 3 !
l

1 0 3 2 ' j

2 3 0 1 - j

3 2 1 0 '•'. 1
0 3 1 2 • i

1 2 0 3 : -" I

2 1 3 0

3 0 2 1

0 2 3 1

1 3 2 0

2 0 1 3

3 1 0 2

A set of Latin squares is mutually orthogonal if every pair of squares is orthog-

onal, that is when superimposed on each other the treatment labels of one square
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occur once with each of the labels of the other square. Fur thermore , since there can

only be at most (t — 1) mutual ly orthogonal Latin squares of side t, a collection of

(t — 1) Latin squares which are mutual ly orthogonal is known as a complete set of

mutual ly orthogonal Latin squares of side t.

The complete set of mutual ly orthogonal Latin squares given in Table 4.10 pos-

sesses the additional proper ty of balance, t ha t is each t r ea tmen t is preceded equally

often by every other t r ea tmen t but never by itself. Consequently, it provides a twelve

sequence design in which each of the ordered pairs of t r ea tmen t s occurs once in the

third and fourth periods. Note tha t , not all complete sets of mutua l ly orthogonal

Latin squares can be combined to give designs which are balanced. For this rea-

son, any complete set of mutual ly orthogonal Latin squares wrhich can be combined

to form a design which is balanced shall be referred to as b a l a n c e d m u t u a l l y

orthogonal Latin squares.

\In this section the mean and variance of the performance measures Xrj and }\J.
• ' I

under both the A- and MV-criterion, for designs formed from the sequences of the • . •
j

complete set of balanced mutual ly orthogonal Latin squares of side four given in ;

Table 4.10, are presented. Since this is a design involving 12 different t r ea tmen t • >

sequences, the set of implementable designs requiring evaluation in order to obtain ' J

the mean performance measures is large, even when the number of subjects allo- " ;

cated to the sequences is small. It is possible, using the theory presented in Chapter - ; |
' "" "i

3. to reduce the computat ional burden sufficiently to obtain the mean performance j

measures for designs involving 12 and 24 subjects. Unfortunately, despite the enor-

mous savings achieved by applying the results from combinatorial theory, it still

requires an excessive amount of computat ion to obtain mean performance measures

for designs formed from the sequences of a set of balanced mutua l ly orthogonal Latin

squares involving more than 24 subjects.

Tables 4.11.1 and 4.11.2 contain the mean and variance of the performance mea-

sures Xd and Y,2, under the A-criterion, whilst Tables 4.12.1 and 4.12.2 contain the

mean and variance of the performance measures Xd and Yd under the MV-criterion.
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Table 4.11: Mean and variance of the performance measures Xd and Yd, under the

A-criterion, for a design based on a complete set of balanced mutually orthogonal

Latin squares of side four and < 24 subjects.

Table 4.11.1: t = 4, m = 12, n = 1, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

5.45

5.17

4.89

4.61

4.36

4.13

3.91

3.69

3.49

3.32

3.24

Var[^d|#]

0.00

0.07

0.17

0.24

0.23

0.17

0.13

0.09

0.05

0.02

0.00

E[Yd\0]

3.75

3.51

3.28

3.05

2.84

2.64

2.44

2.26

2.09

1.95

1.89

Vzr[Yd\e]

0.00

0.04

0.07

0.09

0.09

0.09

0.08

0.06

0.04

0.01

0.00

Table 4.11.2: t = 4, m = 12, n = 2, p = 4.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

10.91

10.43

9.94

9.47

9.00

8.53

8.07

7.61

7.17

6.74

6.48

Var[Xd|0]

0.00

0.09

0.16

0.20

0.23

0.23

0.22

0.19

0.14

0.07

0.00

E[Yd\e\

7.50

7.08

6.67

6.26

5.86

5.47

5.08

4.70

4.34

3.99

3.78

V^[Yd\0]

0.00

0.06

0.11

0.15

0.16

0.17

0.15

0.13

0.09

0.04

0.00
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Table 4.12: Mean and variance of the performance measures Xd and Yd, under the

MV-cnterion, for a design based on a complete set of balanced mutually orthogonal

Latin squares of side four and < 24 subjects.

Table 4.12.1: t = 4, m = 12, n = 1, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0}

5.45

4.95

4.56

4.25

4.00

3.78

3.59

3.43

3.32

3.25

3.24

Va.v[Xd\e)

0.00

0.16

0.24

0.26

0.22

0.16

0.09

0.05

0.02

2.6 x 10"3

0.00

E[Yd\9)

3.75

3.33

3.02

2.77

2.54

2.35

2.19

2.05

1.95

1.90

1.89

V™[Yd\6)

0.00

0.10

0.12

0.12

0.10

0.08

0.06

0.03

0.01

1.7 x 10~3

0.00

Table 4.12.2: t = 4, m = 12, n = 2, p = 4.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

10.91

10.09

9.49

8.96

8.47

8.00

7.57

7.17

6.81

6.56

6.48

V&r[Xd\9]

0.00

0.19

0.25

0.29

0.29

0.27

0.23

0.17

0.09

0.02

0.00

E[Yd\9]

7.50

6.82

6.31

5.86

5.44

5.05

4.68

4,35

4.05

3.84

3.78

Var[y#]

0.00

0.13

0.18

0.20

0.20

0.19

0.16

0.11

0.06

0.01

0.00

I I
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E[XC

10.0 -

7.5 -

5.0 -

2.5 A

0.0

s = 24

s = 12

0.0 0.2 0.4 0.6

Probability of Dropout

0.8
9

1.0

Figure 4.13: Performance for direct treatment comparisons under the A-criterion of

designs ba,sed on balanced mutually orthogonal Latin squares for 12 and 24 subjects,

where the bars denote i?[.Yc/|#] ±
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E\Y,

10.0 -

7.5

5.0 -

2.5 -

0.0
0.0

s = 24

5 = 12

0.2 0.4 0.6

Probability of Dropout

i

0.8
-i 6
1.0

Figure 4.14: Performance for carry-over treatment comparisons under the A-

criterion of designs based on balanced mutually orthogonal Latin squares for 12

and 24 subjects, where the bars denote ± JVar[Yd\9}.
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E[Xt

10.0 -

7.t> -

5.0 -

2.5 -

0.0

s = 24

s = 12

0.0 0.2 0.4 0.6 0.8

Probability of Dropout

1.0

Figure 4.15: Performance for direct treatment comparisons under the MV-criterion

of designs based on balanced mutually orthogonal Latin squares for 12 and 24 sub-

jects, where the bars denote MA^I^] ±
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E[Yd\O)

10.0 -

I .b -

5.0 -

0.0
0.0 0.4 0.6 0.8

Probability of Dropout

10
1.0

Figure 4.16: Performance for carry-over treatment comparisons under the MV-

criterion of designs based on balanced mutually orthogonal Latin squares for 12

and 24 subjects, where the bars denote i2[Frf|0] ±
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Figures 4.13 and 4.14 show how E[Xd\9] and E[Yd\0] change with 9 for each

design, under the A-criterion, while Figures 4.15 and 4.16 indicate how E[X,j\0\ and

|0] change with 9 for each design, under the MV-criterion. The bars shown on

each graph represent E[Xd\9] ± y/Var[Xd\d] and E[Yd\9] ± y/Var[Yd\9] respectively.

These have been included to give an indication of the spread of the distributions for

the associated value of 9.

The important features of this design are that the probability of implementing a

disconnected design is zero, the mean values obtained under the A- or MV-criteria

for the performance measures Xd and Yd have very small variances irrespective

of the value of 9, and the respective mean performance measures obtained under

each criterion do not differ very much, suggesting that the individual variances of

the treatment comparisons for each potentially implementable design do not differ

greatly. Each of these qualities is highly desirable in any planned design.

4.6 Comparison of different designs

One of the most important features of the design assessment procedures proposed in

this thesis is their ability to compare the performance of competing designs subject

to some fixed probability 9 of final period dropout. These comparisons can then

be used to make recommendations concerning the appropriate choice of design for

different experimental situations. In the previous three sections, the robustness to

final period dropout of designs involving 4, 8, and 12 treatment sequences have been

investigated. In this section, we compare the performance of three of the designs so

that appropriate recommendations can be made concerning their use. The designs,

labelled (a), (b) and (c) are as follows:

Design (a) The single Williams square c/(4,4,6,4) with treatment labels 0, 1, 2

and 3 and initial treatment sequence (0 1 3 2), that is design (i) of Table 4.4 involving

24 subjects.

! i
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Design (b) The complementary pair of Williams squares cf(4,8,3,4) with treat-

ment labels 0. 1. 2 and 3 and initial treatment sequences (0 13 2) and (0 3 1 2).

This is design (b) of Example 4.1 involving 24 subjects.

Design (c) A complete set of balanced mutually orthogonal Latin squares

el(4, 12,2,4) with treatment labels 0, 1, 2 and 3. This is the design formed from the

sequences given in Table 4.10 involving 24 subjects.

Assume first that we wish to compare the performance of the designs in esti-

mating all the pairwise direct and first-order carry-over treatment effects under the

A-criterion. Summary measures for each design have been given in Tables 4.1.6,

4.8.3 and 4.11.2, respectively. Comparisons of the graphs of the mean of Xd and

Y(i against 0, 0 < 0 < I, for each of these designs, are given in Figures 4.17 and

4.18 respectively. We observe that, although all three designs have identical mean :
 ;

performance measures when 9 = 0.0, the measures begin to diverge as 0 increases. • i

Further design (c) consistently gives the highest values and design (a) the lowest. ' •

Design (a) yields particularly poor mean performance measures when 0 is large be- : >

cause the set of implementable designs produced from this particular planned design

contains a number of disconnected designs. This does not happen for designs (b) or

(c). : .'

Using the design selection criteria of Section 2.8.1 leads to the choice of design ; J
i

(c) for any probability of final period dropout 0 < 0 < 1. This is because it does not " f

give rise to any disconnected implementable designs and the study shown in Figures

4.17 and 4.18 indicates that

E[Xdc\9] > E[Xdb\0] > E[Xda\6] and E[Ydc\O] > E[Xdb\0\ > E[YdJ0]

for 0 = 0 , 0 . 1 , . . . , 1.0..

Similarly, if we compare the respective variances for Xci and Yd for each design

from Tables 4.1.6, 4.8.3 and 4.11.2 we observe that

Vzr[Xdc\0] < Va.v[Xdb\0] < Var[A'dJ0] and Var[rdc|0] < Va,v[Ydb\e] < Var[KdJ0]
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E[Xd\O]

10.0 -

7.5 -

5.0 -
i f

Probability of Dropout

Figure 4.17: Comparisons of the graphs showing the mean of Xj, under the

A-criterion, for designs (a), (b) and (c).
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E[Yd

10.0 -

i.o -

0.0 0.2 0.4 0.6 0.8

Probability of Dropout

1.0

i i

Figure 4.18: Comparisons of the graphs showing the mean of Yd, under the

A-criterion, for designs (a), (b) and (c).
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for 9 = 0 ,0 .1 , . . . ,1 .0 .

Alternatively, we can compare all the pairwise direct and first-order carry-over

treatment effects under the MV-criterion. The corresponding summary measures for

each design are given in Tables 4.2.6, 4.9.3 and 4.12.2. Comparisons of the graphs

of the mean of Xj, and Yj against 9, 0 < 9 < 1, for each of these designs, are given

in Figures 4.19 and 4.20.

Each comparison again clearly demonstrates the superior performance of design

(c), the complete set of balanced mutually orthogonal Latin squares, across the

entire range of possible 9 values. This conclusion is reinforced by applying the

design selection criteria of Section 2.8.1 which again leads to selection of design (c),

since the mean values of Xd and Yrj are always the largest, with the correspondingly

lowest variances, for any 9, 0 < 9 < 1. }

To summarise, when choosing between the three planned designs considered in • ; I

this section we recommend the use of design (c), the complete set of balanced mu- ] I,
• ; 1

tually orthogonal Latin squares, rather than either of the other designs, provided ; ;
i

subject numbers permit. Design (c) has a zero probability of producing a discon- ' ;
I

nected implemented design and the mean values of X,j and Yd are the largest with j

correspondingly lower variances, for all values of 6 > 0. The properties hold whether ;

we use the A- or MV-criterion when calculating the performance measures. In addi- i

tion, we strongly recommend that design (a,), the single Williams square, is avoided " \
if

because its use may give rise to a disconnected design and because it is acutely /

sensitive to the probability of final period dropout. These conclusions appear to be

directly opposed to comments made by Jones and Kenward (1989, p 199) who state

that "the loss of subjects from the complete set [of balanced mutually orthogonal

Latin squares] is likely to be more damaging as its combinatorial structure is more

complex." It is not entirely clear, however, whether their comments related to the

problem of subjects dropping out of a study part way through the trial or to the loss

of subjects for the entire trial leading to the loss of an entire treatment sequence.
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E[Xd\O]

10.0 -

7.5 -

5.0 -

0.0 0.2 0.4 0.6 0.8

Probability of Dropout

1.0

Figure 4.19: Comparisons of the graphs showing the mean of Xj., under the

MV-criterion, for designs (a), (b) and (c).
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E[Yd

10.0 -

7.5 -

5.0 -

T
1.0

Fi:* igure

0.2 0.4 0.6 0.8

Probability of Dropout

4.20: Comparisons of the graphs showing the mean of Yd, under the

MV-criterion, for designs (a), (b) and (c).
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4.7 Discussion

In this chapter a study of the performance subject to final period dropout of a se-

lection of four treatment, four period, uniform balanced designs has been presented.

This has shown that although each of these designs is equally good when the prob-

ability of final period dropout is not considered, they are not equally robust to final

period dropout.

We have shown that the use of a design in which equal numbers of subjects are

assigned to the treatment sequences of a complementary pair oi Williams squares of

side four is more robust to final period dropout than the currently favoured design

which employs replications of the sequences from a single square. Furthermore, a

design formed from the sequences of a complete set of balanced mutually orthogonal

Latin squares is more robust to final period dropout then replicates of either a single : ',, i

Williams square or complementary pair of Williams squares. The increased robust- • ' ,

ness is achieved at no extra cost in subject numbers. The only penalty incurred , . j

is that the number of distinct treatment sequences is increased from four to either I
f

eight or twrelve. We should not forget that when 0 is large the mean values obtained i

for each performance measure are considerably smaller than those of the planned ,
• " !

design. An experiment should only proceed if the mean performance measures for : ' f

the anticipated level of dropout are acceptably large. If not, an alternative design . : 1"

involving more subjects or fewer treatment periods should be considered. ' -" j

We recommend that designs formed from replicates of a single Williams square

are avoided whenever possible because there is always a chance, albeit reasonably

small when the number of subjects to be assessed is large, that the implemented

experiment is disconnected. In addition, the mean performance measures are not

as high as can be achieved using alternative designs. If the maximum number of

treatment sequences that can be employed is eight, we recommend that a comple-

mentary pair of Williams squares is used since this is more robust to final period

dropout than any other combination of Williams squares. Finally, if it is possible
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to employ 12 different treatment sequences we recommend that a design based on a

complete set of balanced mutually orthogonal Latin squares is used because, for the

sizes of experiment evaluated thus far, we have found that it is the most robust to

final period dropout. Furthermore, combinatorial considerations suggest that this

will continue to be the case for experiments involving larger numbers of subjects.

The only disadvantage in using this design is that there is an increased chance that a

sequence is incorrectly administered due to human error. This is the main objection

to the use of designs involving a large number of different treatment sequences.

It has not been possible to present studies of designs involving more than 12

treatment sequences, such as designs formed by combining four, five or even all six

Williams squares of side four. This is because of the excessive amount of computation

which would be required, despite the application of the results presented in Chapter

3. It is not clear, however, that increasing the number of treatment sequences

beyond 12 will lead to designs which will be more robust to final period dropout

than a complete set of balanced mutually orthogonal Latin squares since this design

already contains all 12 distinct ordered pairs of treatments in the final two periods.

Any design having greater than 12 treatment sequences will have to contain some of

the ordered pairs of treatments in the final two periods more than once. Therefore.

unless this replication is in equal numbers, such as every ordered pair twice, the

resultant design may not be as robust to final period dropout as a complete set of

balanced mutually orthogonal Latin squares of corresponding size. This is, however,

only speculation and we need to demonstrate whether or not this is in fact true by

means of an actual example. Even if this proves to be the case designs formed from

the treatment sequences of balanced mutually orthogonal Latin squares can only be

applied in experiments in which the number of subjects available is some multiple

of 12. When this is not the case a design involving 16 treatment sequences may be

preferable to an eight sequence design such as a complementary pair of Williams

squares. This needs to be investigated further.

Another interesting fact worthy of further study is that the 24 sequence design

L
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formed by combining all six different Williams squares of side four consists of the

same 24 treatment sequences as two sets of balanced mutually orthogonal Latin

squares which are isomorphic under a permutation of the treatment labels. It would

be interesting to examine whether or not such a design is any more robust to final

period dropout than a single set of balanced mutually orthogonal Latin squares with

two subjects allocated to each treatment sequence.

There is scope, when the computational difficulties can be overcome, for further

investigation of four treatment, four period designs. In the next chapter, however we

turn our attention to examining the performance of three treatment, three period

designs subject to final period dropout.



Chapter 5

Three Treatment, Three Period

Designs

5.1 Introduction

In Chapter 4 the important practical case of four treatment, four period cross-over

experiments was studied. In this chapter designs for another common multi-period

experiment, namely three treatments and three periods are investigated, when the

experiments are subject to final period dropout.

We begin by examining the performance of uniform balanced designs based on

a pair of Williams squares of side three. In Section 5.3 results from the literature

on the optimahty ol uniform balanced designs, introduced in Section 4.2, are briefly

reviewed for experiments in which dropouts do not occur. Some of the limitations of

these designs are identified in order to determine additional designs whose robustness

to final period dropout is then examined. In Section 5.4, a comparison is made ot

the different designs and recommendations are given on design selection. Finally, a

numerical study is made to determine if altering the treatments administered in the

final period of a pair of Williams squares produces an increase in robustness to final

period dropout.

160
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5.2 Uniform Balanced Designs

Williams (1949) established that, when the number of treatments is odd, a uniform

balanced design can be constructed by using two particular Latin squares, usually

referred to as a pair of Williams squares. For example, the pair of Williams squares,

for t = 3 and treatment labels 0, 1 and 2, with initial treatment sequences (0 1 2) and

(0 2 1) is given in Figure 5.1. Note that, when t = 3, the pair of Williams squares

is a complete set of balanced mutually orthogonal Latin squares of side three.

Figure 5.1: Pair of Williams squares design for t = 3.
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For experiments in which dropouts do not occur, Hedayat and Afsarinejad (1975) ',

considered the construction of cross-over designs in which the property of balance is I

achieved using the minimum possible number of subjects in the experiment. They \

showed that, when t = 3, it is not possible to construct a balanced design using only f

three subjects. When using six subjects, however, they showed that balance could be |

achieved using the six treatment sequences from the pair of Williams squares shown

in Figure 5.1. Since this design is a uniform balanced design, it is universally optimal

over the class of all uniform designs in which p = t = 3 for the estimation of the

direct and first-order carry-over treatment effects, when dropouts are not considered.

For these reasons, and the fact that the design has no obvious competitors, it is a

design frequently employed in cross-over studies.

The purpose of this section is to describe the results of an investigation into

the robustness to dropouts of designs in which an equal number of subjects is al-
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located to each of the treatment sequences of a pair of Williams squares of side

three. As in Chapter 4, the designs are assessed by considering the variance of the

estimated pairwise comparisons for the direct and first-order carry-over treatment

effects when final period dropout may occur. The investigation was carried out for

designs involving a maximum of 36 subjects.

There are six different sizes of design to consider, namely the designs in which

n, the number of subjects allocated to each treatment sequence takes each of the

values 1, . . . . 6.

An important feature of planned designs formed from replicates of the sequences

in Figure 5.1 is that, in each case, the set of implementable designs requiring evalu-

ation does not contain any disconnected designs. The probability of implementing a

disconnected design in each case is, therefore, zero. Examining the pair of Williams )

squares in Figure 5.1 we observe that, in common with the complete set of balanced j |

mutually orthogonal Latin squares of side four, it contains each of the distinct or- i
, |

dered pairs of treatments in the final two periods. In this case, there are six distinct : . :
i

ordered pairs of treatments which can be formed when no treatment is allowed to ;
j

follow itself. j

For each design, Tables 5.1.1 - 5.1.6 (given on pages 163-165) contain the mean ;

and variance of the performance measures Xri and K/, under the A-cnterion, whilst |
1

Tables 5.2.1 - 5.2.6 (given on pages 166-168) contain the mean and variance of X,j. \

and Yd, under the MV-criterion. f

Figures 5.2 and 5.3 show how EfA^I^] and EfF^^] change with 9, under the

A-criterion, for two of these designs, namely those involving 24 and 36 subjects.

Similarly, Figures 5.4 and 5.5 show how EfA^I^] and E[Vd|0] change with 0, under

the MV-criterion, for these two designs.

Examining the trends of the mean performance measures given in Tables 5.1.1

- 5.1.6 and Tables 5.2.1 - 5.2.6 and illustrated in Figures 5.2 - 5.5 we observe that,

as expected, for any particular value of 0, the mean performance measures increase

as the number of subjects is increased. Also, we note there is a gradual reduction
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Table 5.1: Mean and variance of the performance measures Xj. and Yd, under the

A-criterion, for designs based on a pair of Williams squares of side three and < 36

subjects.

Table 5.1.1: t = 3, m = 6, n = 1, p = 3.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

2.40

2.07

1.76

1.47

1.20

0.96

0.75

0.59

0.47

0.40

0.38

VarpQIfl]

0.00

0.17

0.29

0.34

0.34

0.28

0.20

0.11

0.45

0.01

0.00

E[Yd\9\

1.33

1.12

0.92

0.73

0.57

0.43

0.32

0.23

0.17

0.14

0.13

Var[Kd|0]

0.00

0.07

0.11

0.12

0.12

0.09

0.06

0.03

0.01

2.1 x 10"3

0.00

Table 5.1.2: t = 3, m = 6, n = 2, p = 3.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

4.80

4.36

3.91

3.46

3.00

2.52

2.05

1.60

1.19

0.88

0.75

Va.r[Xd\0)

0.00

0.16

0.31

0.45

0.57

0.64

0.62

0.49

0.28

0.08

0.00

E[Yd\9]

2.67

2.36

2.06

1.76

1.46

1.18

0.91

0.66

0.45

0.31

0.25

Var[Kd|0]

0.00

0.07

0.14

0.18

0.21

0.21

0.18

0.13

0.07

0.02

0.00
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Table 5.1.3: t = 3, m = 6, n = 3, p = 3.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6)

7.20

6.61

6.01

5.40

4.77

4.11

3.44

2.74

2.05

1.43

1.13

VarW]

0.00

0.18

0.35

0.51

0.66

0.78

0.86

0.82

0.59

0.21

0.00

E[Yd\0]

4.00

3.58

3.17

2.76

2.35

1.94

1.54

1.15

0.80

0.51

0.38

Va.r[Yd\9]

0.00

0.09

0.16

0.22

0.26

0.28

0.27

0.22

0.14

0.04

0.00

Table 5.1.4: t = 3, m = 6, n = 4, p = 3.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[xd\e\

9.60

8.85

8.09

7.31

6.51

5.69

4.82

3.91

2.96

2.04

1.50

Var[Xd|0]

0.00

0.22

0.42

0.59

0.75

0.90

1.01

1.05

0.88

0.39

0.00

E[Yd\6)

5.33

4.80

4.27

3.75

3.22

2.69

2.17

1.66

1.16

0.73

0.50

V&r[Yd\6]

0.00

0.11

0.20

0.26

0.31

0.33

0.33

0.29

0.21

0.08

0.00
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Table 5.1.5: t = 3, m = 6, n = 5, p = 3.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

12.00

11.09

10.17

9.22

8.25

7.24

6.19

5.07

3.89

2.67

1.88

v^[xd\e]
0.00

0.26

0.48

0.68

0.86

1.02

1.15

1.22

1.10

0.58

0.00

E[Yd\9]

6.67

6.02

5.38

4.73

4.09

3.44

2.80

2.16

1.54

0.96

0.63

Var[rd 6]

0.00

0.13

0.23

0.31

0.36

0.39

0.39

0.35

0.26

0.11

0.00

Table 5.1.6: t = 3, m = 6, n = 6, p = 3.

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T?\ V 1/31

14.40

13.33

12.24

11.13

9.98

8.80

7.56

6.24

4.82

3.32

2.25

Va,r[Xd\6]

0.00

0.30

0.56

0.78

0.98

1.15

1.29

1.37

1.29

0.76

0.00

E[Yd\9)

8.00

7.24

6.48

5.72

4.95

4.19

3.43

2.67

1.92

1.21

0.75

Var[Fd|0]

0.00

0.15

0.27

0.36

0.42

0.45

0.45

0.41

0.31

0.15

0.00
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Table 5.2: Mean and variance of the performance measures Xd and Yd, under the

MV-criterion, for designs based on a pair of Williams squares of side three and < 36

subjects.

Table 5.2.1: t = 3. m = 6, n = 1, p = 3.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E{Xd\9)

2.40

1.93

1.56

1.26

1.01

0.81

0.64

0.52

0.43

0.39

0.38

Var[Xd 9}

0.00

0.28

0.35

0.33

0.28

0.22

0.14

0.08

0.03

4.3 x 10~3

0.00

E[Yd\9]

1.33

1.03

0.80

0.62

0.47

0.35

0.26

0.19

0.15

0.13

0.13

Va.r[Yd\9]

0.00

0.11

0.13

0.12

0.10

0.07

0.04

0.02

0.01

1.1 x 10~3

0.00

Table 5.2.2: t = 3, m = 6, n = 2, p = 3.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd 9}

4.80

4.14

3.62

3.12

2.65

2.20

1.77

1.38

1.05

0.83

0.75

Var[Xd\9]

0.00

0.28

0.44

0.56

0.61

0.60

0.53

0.39

0.21

0.05

0.00

E{Yd\9]

2.67

2.22

1.87

1.56

1.27

1.00

0.76

0.55

0.38

0.28

0.25

Var[Ki|#]

0.00

0.12

0.18

0.21

0.21

0.19

0.15

0.10

0.05

0.01

0.00

' f

^
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T a b l e 5 . 2 . 3 : i = 3 , m =

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

7.20

6.34

5.65

4.98

4.33

3.68

3.03

2.40

1.80

1.32

1.13

Vtt[Xd\6]

0.00

0.31

0.51

0.66

0.78

0.85

0.84

0.73

0.48

0.14

0.00

E[Yd\9]

4.00

3.41

2.94

2.50

2.09

1.70

1.32

0.98

0.67

0.45

0.38

Va.r[Yd\0]

0.00

0.14

0.22

0.26

0.29

0.28

0.25

0.19

0.11

0.03

0.00

Table 5.2.4: t = 3, m = 6, n — 4, p = 3.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

9.60

8.54

7.67

6.83

6.00

5.17

4.33

3.47

2.62

1.86

1.50

Var[Xd|0]

0.00

0.36

0.59

0.77

0.92

1.03

1.07

1.01

0.76

0.29

0.00

E[Yd\6]

5.33

4.60

4.00

3.45

2.92

2.40

1.90

1.43

1.00

0.64

0.50

Var[Kd|0]

0.00

0.17

0.26

0.32

0.35

0.36

0.33

0.27

0.18

0.05

0.00
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Table 5.2.5: £ =

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

12.00

10.75

9.70

8.69

7.68

6.66

5.63

4.56

3.47

2.43

1.88

Vzr[Xd\9]

0.00

0.41

0.68

0.89

1.06

1.19

1.27

1.24

1.02

0.46

0.00

E[Yd\9]

6.67

5.79

5.07

4.40

3.74

3.11

2.49

1.89

1.33

0.85

0.63

Var[yd|0]

0.00

0.19

0.30

0.38

0.42

0.43

0.40

0.34

0.24

0.09

0.00

Table 5.2.6: £ = 3 , m =

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd 9}

14.40

12.96

11.74

10.55

9.36

8.16

6.93

5.65

4.33

3.02

2.25

V&i[Xd\6]

0.00

0.46

0.76

1.01

1.21

1.36

1.45

1.45

1.25

0.63

0.00

E[Yd\9)

8.00

6.98

6.15

5.35

4.57

3.82

3.08

2.36

1.68

1.06

0.75

Vzr[Yd\9]

0.00

0.22

0.35

0.44

0.49

0.50

0.47

0.41

0.29

0.12

0.00
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0.0

Probability of Dropout

Figure 5.2: Performance for direct treatment comparisons under the A-criterion of

designs based on Figure 5.1 for 24 and 36 subjects, where the bars denote

E[Xd\0]±y/\'a,v[Xd\9}.
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E[Yd\9]

15 -,

12 -

0.6

Probability of Dropout

0.8 1.0

Figure 5.3: Performance for direct treatment comparisons under the A-criterion of

designs based on Figure 5.1 for 24 and 36 subjects, where the bars denote

E[Yd\6]±
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E[Xd\O]

15 -,

12 -

9 -

6 -

3 -

0.0

s ~ 24

0.60.2 0.4

Probability of Dropout

r
0.8

- 1 0
1.0

Figure 5.4: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.1 for 24 and 36 subjects, where the bars denote

E[Xd\9] ±
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0.2 0.4 0.6

Probability of Dropout

1.0

Figure 5.5: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.1 for 24 and 36 subjects, where the bars denote
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m the value of each mean performance measure as 6 increases. Examining Tables

5.1.1 - 5.1.6 and Tables 5.2.1 - 5.2.6 we observe that the variance of the perfor-

mance measures is reasonably small and the difference between the respective mean

performance measures obtained under either criterion is not large, suggesting that

the spread in the variances of the pairwise treatment comparisons for each of the

designs can never be large. Equality or near equality amongst the variances of the

pairwise treatment comparisons is a highly desirable feature of any design used in

experiments which aim to compare all the different treatments with equal precision.

The results obtained in this section demonstrate that designs based on a pair of

Williams squares of side three are reasonably robust to final period dropout, provided

that the value of 0 is small. However, in common with the designs of Chapter 4

for the four treatment case, the results obtained also show that the information

available in the implemented experiment may be considerably less than that of the

original planned design, even when the anticipated number of final period dropouts

is small. It is important, therefore, that the problem of dropouts is considered very

carefully during the planning stage.

Ideally, in order to decide whether or not to proceed with a particular design its

performance measures should be compared with those obtained from other compet-

ing, designs. In the next section we examine the robustness to final period dropout

of two alternative designs and, in Section 5.4, all three designs are compared. The

comparisons lead to recommendations on the choice of a three treatment, three

period design for a given number of subjects and a given value of 6.

5.3 Non-uniform, Unbalanced Designs

Every design considered so far has been a uniform balanced designs. As discussed

previously, when t — p = 3 the only uniform balanced design in common use in

clinical cross-over studies is the pair of Williams squares investigated in the previous

section.
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Ideally, we should like to compare the performance of this design, in the pres-

ence of final period dropout, with other designs which employ the same number of

subjects. In order to do this it is necessary to establish which of the many rion-

uniiorm, three treatment, three period designs available are worth investigating. In

this section a short review of the results concerning the optimality of uniform and

non-uniform designs is presented together with some discussion concerning their use

in cross-over experiments in which dropouts are anticipated.

One of the main arguments put forward for using a uniform design is that, under

the simple carry-over model of equation (1-1), it ensures that the least squares esti-

mators of the direct treatment effects are orthogonal to the estimators of both the

periods and the subjects. This property leads to simplification in the interpretation

of the results and, less importantly, in the analysis. However, if subjects drop out

ot a study during the final period, the realised design will no longer be uniform.

Hence, irrespective of the choice of planned design, orthogonality of the parameter

estimators is no longer possible. Therefore, when final period dropouts are antici-

pated, there is only a very small probability that the gain from having a uniform

implemented design will be realised.

The relationship between the orthogonality of various design parameters and the

universal optimality of designs was considered by Kunert (1983) who established the

optimality of several unbalanced designs. The approach he used was to compare the

information matrices of a design under two different linear models, referred to as the

finer and simpler models. The finer model contains all the parameters of the simpler

model m addition to some extra nuisance parameter(s). Kunert used an ordering

property, due to Magda (1980), denned on the information matrices obtained for

each model in order to establish an orthogonality condition. When the condition is

satisfied, it ensures that the information matrix lor estimating an effect is the same

under each of the models. It follows that if a design can be shown to be universally

optimal for the estimation of either the direct or the first-order carry-over treatment
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effects under one of the models and the orthogonality condition is satisfied, then the

design is also optimal for estimating the same effects under the other model. For

example, a design which satisfies the orthogonality condition for the estimation of

the direct treatment effects for two linear models, one with a first-order carry-over

treatment effect term and the other without, will be universally optimal for the

estimation of the direct treatment effects under both models if it can be shown to

be universally optimal under just one of these models.

Kunert gives examples of unbalanced designs which fulfil the orthogonality con-

dition and proves their universal optimality over the class of all possible cross-over

designs. Many of the designs require a large number of treatment periods which is

an undesirable feature for a design intended for studies in which dropout is antic-

ipated. In many of the designs it is necessary to incorporate an additional initial

period, or pre-period, in the study in order to satisfy the orthogonality condition.

The purpose of this period is to ensure that the observations made during the next

period include a carry-over effect and no use is normally made of the observation on

the subject at the end of a pre-period. The tendency of subjects to drop out of a

study when there are too many treatment periods is an argument against employing

a design which requires a pre-period.

Another reason for the popularity of uniform balanced designs is that they are

known to be universally optimal for the estimation of direct and first-order carry-over

treatment comparisons within the class of uniform designs for which t — p. Cheng

and Wu (1980) doubted whether a uniform balanced design would be universally

optimal over the class of all cross-over designs in which t = p. They argued that

removing the restriction of uniformity makes intractable the maximisation of the

trace of the information matrices (see equations 1.11 and 1.15), a necessary step in

establishing the universal optimality of a design. Nevertheless, they did establish

some important results concerning the optimality of uniform balanced and strongly

balanced designs.
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Definition 5.1 A design is strongly balanced if each treatment is preceded

equally often by every other treatment including itself.

In particular they proved that a strongly balanced design formed by adding an

extra period to a uniform balanced design is universally optimal for the estimation

of direct and first-order carry-over treatment effects within the class of all designs

involving kt subjects, for k integer, in which p = t + 1.

Clearly, if it is believed that subjects may drop out during the final period of

a three period study, it is not desirable to consider forming a strongly balanced

design by extending the number of periods. If, however, a strongly balanced design,

or a design with almost equal occurrence of all ordered pairs of treatment labels,

can be found which uses only three periods then such a design is worth investigating

further as an alternative to the currently favoured designs based on pairs of Williams

squares of side three.

Kuriert (1984) investigated the optimality of uniform balanced designs within the

class of all possible designs. He found that, when the restriction of uniformity is re-

moved, then the optimal designs for estimating the direct and first-order carry-over

effects are not usually the same. In addition, even when t = p, uniform balanced de-

signs will not generally be optimal when designs involving adjacent pairs of identical

treatments are allowed. In particular Kunert established the following:

1. When t = s = p ^ 2 and a balanced Latin square exists, it is universally

optimal for the estimation of the direct treatment effects over the class of all

designs in which t = s = p.

2. When t = p > 6 and s = 2t, a uniform balanced design is universally optimal

for the estimation of the direct treatment effects over the class of all designs

in which t = p and s = 2t.

3. When t = p and s = t{t — 1) an orthogonal residual effects design, defined

below, is universally optimal for the estimation of the first-order carry-over
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treatment effects over the class of all designs in which t = p and s = t(t — f).

Definition 5.2 Suppose there is a uniform balanced design, d, involving p periods,

t treatments and rn = t(t — 1) distinct treatment sequences such that each ordered

pair of treatments appears once and only once between the last and second to last

periods of the design. The design formed by taking the first (p — 1) periods of d

and forming a final period by repeating the (p — l)th period of design d is called an

orthogonal residual effects design.

An example of an orthogonal residual effects design for t = 3 and s = 6 is

given in Figure 5.6. Note that the property of universal optimality for estimating

the first-order carry-over effects only holds for this design and does not extend to

designs involving 6n subjects, for integer n > 1, formed by taking n copies of the
!

six treatment sequences. *
i

In addition to the results above, Kunert (1984) also established that, when the \
number of subjects is large, uniform balanced designs are not universally optimal for f

i

the estimation of the direct treatment effects since designs giving universally better ;:

estimates of the treatment comparisons can be found. Of particular interest is the
j

following result. 1

f
Proposition 5.1 [Kunert (1984) Proposition 2.4] Let t = p > 2 and s = \t. \

where A is an integer such that I

\>t{t-l)2/2.

Assume there is a design g involving t treatments, p periods and .s subjects with the

following properties.

(i) The first t(t — 1) subjects of g form an orthogonal residual effects design / , and

(ii) the remaining s — t(i — 1) subjects of g form a uniform balanced design.

Then g is universally better for the estimation of the direct treatment effects than

any uniform balanced design for t treatments t periods and 5 subjects.
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Note that, when 2 = 3, the minimum number of distinct treatment sequences

required to obtain a design which satisfies Proposition 5.1 is 18. An examination

of the robustness to final period dropout of an eighteen sequence design requires a

prohibitive amount of computation. The concept of formulating designs by combin-

ing a uniform balanced design with an orthogonal residual effects design, however,

is worth further investigation and is the motivation behind the design investigated

in Section 5.3.2.

Kunert (1984) has demonstrated that, when dropouts are not considered, cer-

tain non-uniform and unbalanced designs give universally better estimates of the

treatment comparisons than uniform balanced designs. His work raises the question

of whether or not the designs he presents continue to out-perform uniform balanced

designs in the presence of final period dropouts and provides further justification for

not restricting the choice of design to the class of uniform designs.

In the remainder of this section, the robustness to final period dropout of two

particular non-uniform designs is examined. In Section 5.3.1 the performance of an

orthogonal residual effects design for t — p = 3 is investigated. In Section 5.3.2 the

performance of a design which is a compromise between the pair of Williams squares

and the orthogonal residual effects design is investigated.

5.3.1 Examination of Orthogonal Residual Effects Designs

Let c/(3,6,n,3) be the planned design with treatment labels 0, 1, and 2 formed by

taking n copies of the design given in Figure 5.6.

In order to investigate the robustness to final period dropout of designs built

from the orthogonal residual effects design of Figure 5.6, lor studies involving up to

a maximum of 36 subjects, there are six different sizes of design to consider. In each

case the appropriate design is formed by allocating n subjects to each treatment

sequence, where n takes each of the values 1,. . . , 6.

One important feature of each of the planned designs, in common with designs
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Figure 5.6: Orthogonal residual effects design for t = 3 and treatment labels 0, 1,

and 2.

0 1 1

1 2 2

2 0 0

0 2 2

1 0 0

2 1 1

based on a pair of Williams squares of side three, is that, in each case, the set

of implementable designs arising from the planned design does not contain any

disconnected designs.

For each design, the mean and variance of the performance measures Xd and

Yd, under the A-criterion, are given in Tables 5.3.1 - 5.3.6 (given on pages 180-182)

whilst Tables 5.4.1 - 5.4.6 (given on pages 183-185) contain the mean and variance

of the performance measures Xd and Yd under the MV-cntenon.

Figures 5.7 and 5.8 show how E[Xd|0] and Ef^l^] change with 6. under the

A-criterion. for two of these designs, namely those involving 24 and 36 subjects.

Similarly, Figures 5.9 and 5.10 show how E[.A |̂#] and EfF^^] change with 9, for

each design under the MV-criterion.

The observations made concerning the general trend of the mean of Xd and Yd as

9 increases for the designs based on a pair of Williams squares of side three under the

A- and MV-cntena also apply to these designs. Note, however, that although the

amount of information in the direct treatment effects is, as expected, consistently

greater than that in the first-order carry-over effects for each design, the magnitude

of this difference is not as great as for the corresponding values obtained for the

designs based on a pair of Williams squares.
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Table 5.3: Mean and variance of the performance measures Xd and Yd, under the

A-criterion, for designs based on the orthogonal residual effects design of Figure 5.6

and < 36 subjects.

T a b l e 5 . 3 . 1 : t ~ 3 , m = 6 , n = l , p = 3 .

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

2.00

1.89

1.75

1.57

1.36

1.12

0.89

0.68

0.51

0.41

0.38

Va,r[Xd\9]

0.00

0.03

0.09

0.17

0.24

0.27

0.24

0.17

0.08

0.02

0.00

E[Yd\9]

1.67

1.47

1.27

1.05

0.84

0.63

0.45

0.30

0.20

0.14

0.13

Vtt[Yd\6]

0.00

0.06

0.13

0.19

0.21

0.19

0.15

0.08

0.03

0.01

0.00

Table 5.3.2: t = 3, m = 6, n = 2, p = 3.

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\8]

4.00

3.86

3.69

3.47

3.20

2.85

2.42

1.91

1.38

0.93

0.75

Va.T[Xd\0]

0.00

0.02

0.06

0.13

0.25

0.42

0.59

0.63

0.45

0.14

0.00

E[Yd\e]

3.33

3.04

2.73

2.40

2.04

1.67

1.29

0.91

0.58

0.34

0.25

Va.v[Yd\6]

0.00

0.08

0.15

0.23

0.31

0.36

0.37

0.30

0.16

0.04

0.00

.
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Table 5.3.3: t = 3, m = 6, n = 3, p = 3.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[xd\e]

6.00

5.81

5.58

5.31

4.97

4.53

3.98

3.27

2.42

1.57

1.13

y^[xd\6]

0.00

0.02

0.06

0.12

0.23

0.42

0.68

0.94

0.91

0.39

0.00

E[Yd\6]

5.00

4.59

4.16

3.70

3.22

2.70

2.16

1.60

1.04

0.58

0.38

Var[rd|0]

0.00

0.09

0.18

0.28

0.37

0.45

0.49

0.47

0.32

0.10

0.00

Table 5.3.4: t = 3, m — 6, n = 4, p = 3.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

8.00

7.76

7.47

7.13

6.71

6.18

5.52

4.65

3.54

2.27

1.50

Var[Xd|0]

0.00

0.03

0.07

0.13

0.24

0.43

0.72

1.09

1.28

0.72

0.00

E[Yd\e]

6.67

6.14

5.58

5.00

4.38

3.72

3.02

2.29

1.54

0.85

0.50

Va,r[Yd\0]

0.00

0.11

0.22

0.33

0.44

0.53

0.59

0.59

0.46

0.18

0.00

L
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Table 5.3.5: t = 3, m = 6, n = 5, p = 3.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

10.00

9.70

9.36

8.94

8.44

7.82

7.03

6.01

4.67

3.03

1.88

Va.r[Xd\6]

0.00

0.03

0.08

0.15

0.27

0.46

0.76

1.19

1.56

1.08

0.00

E[Yd\6)

8.33

7.69

7.01

6.29

5.53

4.73

3.88

2.99

2.05

1.15

0.63

Var[rd|0]

0.00

0.13

0.27

0.40

0.51

0.62

0.69

0.70

0.58

0.27

0.00

Table 5.3.6: t = 3, m — 6, n = 6, p — 3.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\d]

12.00

11.65

11.24

10.76

10.17

9.45

8.54

7.36

5.80

3.81

2.25

Va,r[Xd\6]

0.00

0.04

0.09

0.17

0.30

0.50

0.81

1.28

1.77

1.42

0.00

E[Yd\9]

10.00

9.24

8.43

7.58

6.69

5.74

4.74

3.68

2.57

1.45

0.75

Va.r[Yd\6]

0.00

0.16

0.31

0.46

0.59

0.71

0.78

0.79

0.69

0.35

0.00
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Table 5.4: Mean and variance of the performance measures Xj and Yd, under the

MV-criterion, for designs based on the orthogonal residual effects design of Figure

5.6 and < 36 subjects

Table 5.4.1: t = 3, m = 6, n = 1, p = 3.

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6)

2.00

1.83

1.65

1.44

1.21

0.98

0.76

0.58

0.45

0.39

0.38

Var[Xd|0]

0.00

0.05

0.13

0.21

0.27

0.28

0.22

0.13

0.05

0.01

0.00

E[Yd\6]

1.67

1.39

1.14

0.91

0.71

0.52

0.36

0.25

0.17

0.13

0.13

Var[yd|0]

0.00

0.11

0.17

0.19

0.19

0.16

0.12

0.06

0.02

3.1 x 10-3

0.00

Table 5.4.2: t = 3, m = 6, n = 2, p = 3.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

4.00

3.78

3.56

3.29

2.98

2.59

2.13

1.64

1.17

0.84

0.75

Va,r[Xd\6)

0.00

0.04

0.10

0.19

0.34

0.52

0.65

0.62

0.37

0.08

0.00

E[Yd\e\

3.33

2.90

2.53

2.16

1.80

1.44

1.08

0.74

0.47

0.29

0.25

Var[F, 9]

0.00

0.13

0.20

0.28

0.34

0.36

0.33

0.25

0.12

0.02

0.00

.
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Table 5.4.3: t = 3, m = 6, n = 3, p = 3.

6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\d)

6.00

5.71

5.43

5.10

4.70

4.22

3.61

2.88

2.07

1.37

1.13

Var[A^]

0.00

0.04

0.10

0.19

0.34

0.56

0.84

1.03

0.85

0.26

0.00

E[Yd\6]

5.00

4.41

3.90

3.41

2.90

2.39

1.86

1.34

0.85

0.49

0.38

Var[Yd\9]

0.00

0.15

0.26

0.35

0.43

0.49

0.49

0.43

0.26

0.07

0.00

Table 5.4.4: t = 3, m = 6, n = 4, p = 3.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

8.00

7.65

7.30

6.89

6.41

5.82

5.09

4.17

3.07

1.97

1.50

v*x[xd\e)
0.00

0.05

0.11

0.21

0.36

0.60

0.93

1.28

1.31

0.54

0.00

E[Yd\9)

6.67

5.93

5.29

4.65

4.00

3.34

2.66

1.96

1.28

0.71

0.50

y^[Yd\e)

0.00

0.18

0.31

0.43

0.53

0.60

0.62

0.57

0.41

0.13

0.00

.
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Table 5.4.5: t = 3, m = 6, n = 5, p = 3.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

10.00

9.58

9.17

8.69

8.12

7.42

6.56

5.47

4.11

2.62

1.88

V&r[Xd\9}

0.00

0.05

0.13

0.23

0.40

0.64

1.00

1.45

1.68

0.88

0.00

E[Yd\e\

8.33

7.45

6.68

5.90

5.11

4.30

3.46

2.60

1.73

0.96

0.63

Var[rd|0]

0.00

0.21

0.37

0.51

0.63

0.71

0.74

0.70

0.54

0.20

0.00

Table 5.4.6: t =

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

12.00

11.52

11.04

10.48

9.82

9.02

8.02

6.77

5.17

3.30

2.25

Va.T[Xd\6]

0.00

0.06

0.14

0.26

0.43

0.70

1.09

1.60

1.98

1.24

0.00

E[Yd\9]

10.00

8.97

8.07

7.15

6.22

5.25

4.26

3.23

2.19

1.22

0.75

Va.v[Yd\9]

0.00

0.24

0.42

0.59

0.73

0.83

0.86

0.82

0.65

0.28

0.00
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0.0
0.2 0.4 0.6

Probability of Dropout

0.8 1.0

Figure 5.7: Performance for direct treatment comparisons under the A-criterion of

designs based on Figure 5.6 for 24 and 36 subjects, where the bars denote

E[Xd\6] d

^
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Probability of Dropout

Figure 5.8: Performance for direct treatment comparisons under the A-criterion of

designs based on Figure 5.6 for 24 and 36 subjects, where the bars denote

E[Yd\0) ± JVa,r[Yd\9].
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0.0
0.2

Probability of Dropout

Figure 5.9: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.6 for 24 and 36 subjects, where the bars denote

E[Xd\0] ± JVa,v[Xd\0]-
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E[Yd\e]

15 -,

12 -

0.2 1.0

Probability of Dropout

Figure 5.10: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.6 for 24 and 36 subjects, where the bars denote

E[Yd\6]±yjV*.T[Yd\6}.
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5.3.2 Examination of Compromise Designs

Let J(3,6,n.3) be the planned design with treatment labels 0, 1, and 2 formed by

taking n copies of the design given in Figure 5.11. The design given in Figure 5.11

is a design which is a compromise between the pair of Williams squares of side three

(Figure 5.1) and the orthogonal residual effects design (Figure 5.6), since it consists

of the first three sequences of the Williams design and the final three sequences of

the orthogonal residual effects design.

Figure 5.11: Three treatment, three period design with treatment labels 0, 1 and 2.

0 1 2

1 2 0

2 0 1

0 2 2

1 0 0

2 1 1

As for the designs investigated in Section 5.3.1, there are six distinct treatment

sequences and hence, in order to investigate the robustness to final period dropout

of designs built form the design of Figure 5.11, involving up to 36 subjects, there

are six different sizes of design to consider.

In common with designs built from pairs of Williams squares of side three or

replicates of the orthogonal residual effects designs given in Figure 5.6, designs built

from replicates of the design given in Figure 5.11 do not give rise to any disconnected

implementable designs. For each design, Tables 5.5.1 - 5.5.6 (given on pages 191-193)

contain the mean and variance of the performance measures Xj. and Yd under the

A-criterion, whilst Tables 5.6.1 - 5.6.6 (given on pages 194-196) contain the mean

and variance of the performance measures Xd and Yd under the MV-criterion.

Figures 5.12 and 5.13 show how E[A'j|#] and Efy ĵ̂ ] change with 6, for each

design under the A-cnterion, for two of these designs, namely those involving 24

and 36 subjects. Similarly, Figures 5.14 and 5.15 show how EfA ĵ̂ ] and
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Table 5.5: Mean and variance of the performance measures Xd and Yd. under the

A-criterion, for designs based on the pair of squares of Figure 5.11 and < 36 subjects.

T a b l e 5 . 5 . 1 : t = 3 , m = 6 , n = l , p = 3 .

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

2.15

1.95

1.74

1.51

1.28

1.04

0.83

0.64

0.49

0.40

0.38

Var[X,|£]

0.00

0.08

0.16

0.24

0.28

0.28

0.22

0.14

0.06

0.01

0.00

E[Yd\e\

1.43

1.24

1.05

0.86

0.68

0.52

0.38

0.26

0.18

0.14

0.13

Var[Fd|0]

0.00

0.07

0.12

0.14

0.14

0.12

0.09

0.05

0.02

3.2 x 10-3

0.00

Table 5.5.2: t = 3, m = 6, n = 2, p = 3.

0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

4.30

4.03

3.74

3.42

3.07

2.67

2.23

1.75

1.29

0.91

0.75

Var[Xd|0]

0.00

0.07

0.15

0.26

0.39

0.51

0.59

0.56

0.36

0.11

0.00

E[Yd\9]

2.87

2.59

2.30

2.00

1.70

1.38

1.07

0.77

0.51

0.32

0.25

Var[^|0]

0.00

0.07

0.14

0.20

0.24

0.26

0.25

0.19

0.10

0.02

0.00
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Table 5.5.3: t = 3, m = 6, n = 3, p = 3.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

6.45

6.08

5.69

5.27

4.81

4.28

3.69

3.00

2.24

1.50

1.13

Var[Xd|#]

0.00

0.08

0.17

0.28

0.42

0.59

0.77

0.87

0.74

0.29

0.00

E[Yd\9]

4.30

3.91

3.52

3.11

2.69

2.25

1.81

1.35

0.91

0.54

0.38

Var[Kd|0]

0.00

0.09

0.17

0.24

0.30

0.34

0.35

0.31

0.21

0.06

0.00

Table 5.5.4: t = 3, m = 6, n = 4, p = 3.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\B]

8.60

8.13

7.64

7.11

6.52

5.87

5.13

4.26

3.24

2.16

1.50

Var[*d|0]

0.00

0.10

0.20

0.32

0.47

0.65

0.87

1.07

1.06

0.54

0.00

E[Yd\9]

5.73

5.24

4.73

4.21

3.67

3.11

2.53

1.94

1.34

0.79

0.50

Va.v[Yd\6]

0.00

0.11

0.21

0.30

0.36

0.41

0.43

0.41

0.30

0.12

0.00



Chapter 5 193

Table 5.5.5: t — 3, m = 6, n = 5, p = 3.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6]

10.75

10.18

9.58

8.94

8.23

7.45

6.56

5.51

4.27

2.85

1.88

Var[A'd|0]

0.00

0.11

0.24

0.37

0.53

0.73

0.96

1.22

1.32

0.80

0.00

E[Yd\6]

7.17

6.56

5.94

5.30

4.65

3.97

3.26

2.53

1.77

1.05

0.63

Var[rd|0]

0.00

0.13

0.25

0.35

0.43

0.48

0.51

0.49

0.39

0.17

0.00

Table 5.5.6: £ = 3 , m =

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd 9}

12.90

12.23

11.53

10.77

9.94

9.02

7.98

6.76

5.29

3.57

2.25

Var[A^]

0.00

0.13

0.27

0.42

0.60

0.81

1.06

1.35

1.53

1.06

0.00

E[Yd\0]

8.60

7.89

7.15

6.40

5.62

4.82

3.98

3.11

2.21

1.32

0.75

Va.v[Yd\9]

0.00

0.16

0.29

0.41

0.50

0.56

0.58

0.56

0.46

0.23

0.00
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Table 5.6: Mean and variance of the performance measures Xj, and Yd, under the

MV-criterion, for designs based on the pair of squares of Figure 5.11 and < 36

subjects.

Table 5.6.1: t = 3, m — 6, n = 1, p = 3.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

rp! v MlE[Ad\U\

2.15

1.85

1.59

1.34

1.10

0.88

0.69

0.54

0.44

0.39

0.38

Var[Xd\6]

0.00

0.14

0.23

0.29

0.31

0.28

0.20

0.12

0.04

0.01

0.00

E[Yd\6]

1.43

1.16

0.93

0.73

0.56

0.41

0.30

0.21

0.15

0.13

0.13

Var[K^]

0.00

0.11

0.15

0.16

0.14

0.11

0.07

0.04

0.01

1.6 x lO"3

0.00

Table 5.6.2: i = 3, m =

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\B]

4.30

3.89

3.52

3.16

2.78

2.36

1.93

1.48

1.08

0.82

0.75

Var^lfl]
0.00

0.14

0.25

0.37

0.51

0.62

0.66

0.56

0.31

0.07

0.00

E[Yd\9]

2.87

2.45

2.10

1.78

1.47

1.17

0.88

0.62

0.41

0.28

0.25

Vzr[Yd\9]

0.00

0.13

0.19

0.24

0.27

0.27

0.23

0.16

0.07

0.01

0.00
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Table 5.6.3: t = 3, m = 6, n = 3, p = 3.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\6)

6.45

5.91

5.43

4.95

4.44

3.89

3.27

2.60

1.89

1.32

1.13

Var[Xd|0]

0.00

0.15

0.28

0.43

0.60

0.78

0.94

0.97

0.71

0.21

0.00

E[Yd\9]

4.30

3.74

3.27

2.83

2.40

1.97

1.54

1.12

0.73

0.46

0.38

Var[rd|0]

0.00

0.16

0.24

0.31

0.35

0.37

0.36

0.29

0.17

0.04

0.00

Table 5.6.4: t — 3, m = 6, n — 4, p = 3.

e
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\0]

8.60

7.93

7.35

6.74

6.11

5.41

4.64

3.76

2.78

1.87

1.50

VarpQ|0]

0.00

0.17

0.32

0.49

0.69

0.91

1.13

1.28

1.12

0.42

0.00

E[Yd\e]

5.73

5.03

4.45

3.89

3.33

2.77

2.21

1.64

1.10

0.66

0.50

Var[Krf|0]

0.00

0.18

0.29

0.38

0.44

0.47

0.46

0.40

0.27

0.08

0.00
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Table 5.6.5: t = 3, rn =-6, n = 5, p = 3.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

10.75

9.96

9.26

8.54

7.77

6.93

6.00

4.93

3.71

2.46

1.88

Vzv[Xd\6]

0.00

0.19

0.37

0.56

0.78

1.03

1.30

1.52

1.47

0.68

0.00

E[Yd\9]

7.17

6.33

5.63

4.94

4.26

3.57

2.88

2.18

1.49

0.88

0.63

Var[rd|0]

0.00

0.21

0.35

0.45

0.52

0.56

0.55

0.50

0.36

0.13

0.00

Table 5.6.6: t = 3, m = 6, n = 6, p = 3.

9

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

E[Xd\9]

12.90

11.99

11.17

10.33

9.43

8.54

7.36

6.11

4.66

3.08

2.25

Va.T[Xd\9]

0.00

0.22

0.41

0.63

0.88

1.15

1.45

1.73

1.78

0.97

0.00

E[Yd\9]

8.60

7.63

6.80

6.00

5.19

4.38

3.55

2.72

1.88

1.11

0.75

V&r[Yd\9]

0.00

0.24

0.40

0.52

0.61

0.65

0.65

0.59

0.45

0.18

0.00

.
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0.0

Probability of Dropout

Figure 5.12: Performance for direct treatment comparisons under the A-critenon of

designs based on Figure 5.11 for 24 and 36 subjects, where the bars denote
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Probability of Dropout

Figure 5.13: Performance for direct treatment comparisons under the A-criterion of

designs based on Figure 5.11 for 24 and 36 subjects, where the bars denote

E[Yd\6]±JVa,r[Yd\

.
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0.0
0.2 0.4

Probability of Dropout

Figure 5.14: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.11 for 24 and 36 subjects, where the bars denote

E[Xd\9]±JVa,r[Xd\8]-
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0.4 0.6

Probability of Dropout

I
0.8 1.0

Figure 5.15: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.11 for 24 and 36 subjects, where the bars denote

E[Yd\B) ±
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change with 6>, for each design under the MV-criterion.

Examining the trends of the mean performance measures given in Tables 5.5.1 -

5.5.6 and 5.6.1 - 5.6.6 and illustrated in Figures 5.12 - 5.15 we observe that for any

particular value of 9, each of the respective mean performance measures increases as

the number of subjects is increased. Also, we note that there is a gradual reduction in

the value of each mean performance measure as 6 increases. In addition we observe

that the variance of the mean performance measures is small and the difference

between the mean performance measures obtained under either criterion is not large

which suggests that the spread of the variances amongst the pairwise treatment

comparisons for each design will never be large.

Thus far we have investigated separately the performance, subject to final period

dropout, of the three classes of designs built from replicating each of the designs given

in Figures 5.1. 5.6 and 5.11. In the next sections the performance of the designs are

compared and recommendations on the choice of design for different experimental

situations are given. The recommendations are dependent on the assumption that

the simple model of equation (1-1) describes the observations. Both the orthogonal

residual effects design (Figure 5.6) and the design of Figure 5.11 involve treatment

sequences in which a treatment is followed by a second application of the same

treatment. Caution in interpreting the comparisons is needed if the appropriateness

of the model is in doubt, see Section 1.3.2.

5.4 Comparison of Designs: 0 = 0.0, 0.1,. . ., 1.0

In this section, the performance subject to final period dropout, of three of the

designs investigated in the earlier sections of this chapter are compared so that

appropriate recommendations can be made concerning their use. Throughout this

section a subset of all possible values of #, namely 0 = 0.0,0.1,. . . , 1.0, has been

investigated. All the conclusions concerning design selection are therefore limited to

the values of 9 considered. In Section 5.5 the investigation is extended to examine
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the relative performance of each design for 0 < 6 < 1.

The designs to be compared, labelled I. II and III are as follows:

I A pair of Williams squares d(3. 6, f, 3). This is the design given in Figure 5.1 with

six subjects in total.

I I An orthogonal residual effects design of(3, 6, 1, 3). This is the design given in

Figure 5.6 with six subjects.

I I I The design ci(3, 6, 1,3) given in Figure 5.11 with six subjects.

Assume that we wish to compare all the pairwise direct and first-order carry-

over treatment effects. Using equations (2.4), (2.5), (2.6) and (2.7) wTith the A-

criterion we can obtain a summary of the average variance of the direct and carry-

over treatment effects for each design. These summary measures have been given in

Tables 5.1.1, 5.3.1 and 5.5.1 respectively.

Comparisons of the graphs of the means of X,j and Y<i against 0, for designs I,

II, and III, are given in Figures 5.16 and 5.17, respectively. We observe that the

range of values for the mean of X<i and Y& from 6 = 0.0 - 0 = 1.0 is different for

each design. For design I the ranges are 2.40-0.38 and 1.33-0.13 respectively; for

design II, 2.00-0.38 and 1.67-0.13 respectively; for design III, 2.15-0.38 and 1.43-

0.13 respectively. An examination of the ranges shows that the orthogonal residual

effects design, design II, has the smallest range of values for the estimation of the

direct treatment effects but has the largest range for the estimation of the first-order

carry-over treatment effects. In contrast, the pair of Williams squares, design I, has

the smallest range of values for the estimation of the first-order carry-over treatment

effects and the largest range for the estimation of the direct treatment effects. We

conclude that design II is the least sensitive to the choice of 0 for the estimation of

the direct treatment effects and design I is the least sensitive to the choice of 0 for

the estimation of the carry-over treatment effects. In contrast to the comparisons

of designs given in Sections 2.8 and 4.6, the designs which demonstrate the least
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E[Xt

0.0
0.2 0.4 0.6

Probability of Dropout

0.8

Figure 5.16: Comparison of the graphs for showing the mean of Xj, under the

A-criterion, for designs I, II, and III.
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E[Yd\6]

2.0 -

III •

1.0 -

0.0

II

0.2 0.4 0.6

Probability of Dropout

0.8 1.0

Figure 5.17: Comparison of the graphs for showing the mean of Yd, under the

A-criterion, for designs I, II, and III.

.
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sensitivity to the choice of 9 do not necessarily represent the "best" choice of design.

This is because the designs being compared are identical in the first two periods

only differing in the final period. Consequently, it is when 9 = 1.0 rather than when

9 = 0.0 that the values of the mean performance measure i?[A^j0] are equal for

each design. Similarly, when 9 = 1.0, the values of the mean performance measure

iS[K/j<9] are equal for each design. In the comparisons given in Section 2.8 and 4.6,

although the designs compared are different, they are all uniform balanced designs

and hence have identical performance measures when no dropouts occur. In these

circumstances designs with larger ranges of values for the mean performance mea-

sures represent designs which experience a greater loss of information as increasing

numbers of subjects are lost in the final period. Consequently those designs most

sensitive to the choice of 9 are also the poorer designs. For the designs compared

in this section, this is no longer true. The design whose mean performance changes

most from 6 = 0.0- 0 = 1.0 is the design which has the largest mean performance

measure when complete and when only a few subjects are lost in the final period.

Thus a design with less sensitivity to 9 does not necessarily have greater robustness

to final period dropout.

In practice it will be unusual to proceed with a three period study if it is antici-

pated that large numbers of subjects will dropout during the third period. Conse-

quently designs which can be shown to have higher mean values for Xj. and/or Yd

when the value of 9 is small are of practical worth.

From Tables 5.1.1, 5.3.1, and 5.5.1 we observe that when 9 = 0.0 design I has

the largest mean value for Xj, while design II has the largest mean value for Yrj.

The result concerning the first-order carry-over effects is as expected since Kunert

(1984) proved that, over the class of all cross-over designs in which t = p = 3

involving a total of six subjects, the universally optimal design for the estimation of

the first-order carry-over treatment effects is an orthogonal residual effects design.

By considering the mean values of Xd and Yd over the entire range of possible

values for 9. it is possible to investigate whether the design which gives the largest
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mean performance measure when no dropouts occur also performs better than com-

peting designs when final period dropouts are anticipated. In particular, whether

the orthogonal residual effects design which is known to be optimal for the estima-

tion of the first-order carry-over treatment effects when complete, performs better

than competing designs when dropouts may occur. We do this by considering the

design selection criteria of Section 2.8.1.

The application of the criteria is not as straight forward as in previous examples.

Unlike the designs compared in Chapter 4. one design does not emerge as being

"better" than the others in the sense of having larger values for EfA^I^] and E[Y |̂(9]

with correspondingly smaller values for Var[A |̂<9] and Var[K/|0] across the entire

range of possible values of 9. Consequently, if the probability of final period dropout

is changed, the design recommended under the proposed criteria may also change.

From the tables of summary measures for each design we observe that a clear or-

dering of the designs does exist for the estimation of first-order carry-over treatment

effects alone. The ordering is:

E[Yd!I\9)>E[YdlII\9}>E{Ydl\0]

and

Var[YdlI\9] < Var[YdlI!\9] < Var{Yd!\9}.

and holds when both the A- and MV-criteria are employed.

Hence, if the estimation of the first-order carry-over treatment effects is the

primary concern, we recommend the use of design II, that is the orthogonal residual

effects design, for all possible values of 0.

In practice, however, it is much more common for the estimation of the direct

treatment effects to be the major concern of an experimenter. In these circumstances

it may be appropriate to either disregard the information obtained concerning the

estimation of first-order carry-over effects or seek a design which gives a higher value

for E[A |̂/9] and. if possible, reduced values for Var[A^|0] by allowing a decrease in

E?j|^] and/or an increase in V
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We now establish which design to recommend for each of the values of 0 consid-

ered.

5.4.1 Design Selection Based on the A-criterion

A summary of the results obtained using the design selection criteria of Section

2.8.1. for the estimation of the direct treatment effects with the A-criterion, can

be obtained by examining Tables 5.1.1, 5.3.1 and 5.5.1. The summary is given in

Table 5.7 in which the designs are ordered according to the magnitude of E[Xd\9]

and Var^Yjj^] for 6 = 0.0, 0 .0 , . . . . 1.0. The comparison of the designs summarised

in Table 5.7 shows that no one single design out-performs both of the other designs

for all values of 9 investigated. However, apart from when 9 = 0.2 when design III

has the smallest mean performance measure, design III consistently out-performs

one of the alternative designs. When 9 < 0.1 design III out-performs design II and

when 9 > 0.3 design III out-performs design I. Design III is a compromise between

the other designs, having a final period which makes the first square of the design

identical to that of design I and the second square identical to that of design II. It

follows that design III has several implementable designs in common with the other

designs. It is therefore unsurprising that, for most of the values of 9 for which design

I is out-performed by design II, it is also out performed by design III. Similarly, it

is unsurprising that, for most of the values of 9 for which design II is out-performed

by design I, it is also out-performed by design III.

When 0.3 < 9 < 0.5 we recommend the use of design II since it has the largest

mean value of Xj. together with the correspondingly smallest variance. When 0 < 0.2

or when 9 > 0.6, the design with the largest mean value of X,j is also the design

with the largest variance. In these circumstances, provided the variance is not very

different from that obtained for each of the other designs, the preferred design is the

one with the largest mean performance measure. When 9 < 0.2 this is design I and

when 9 > 0.6 this is design II.
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Table 5.7: Comparison of the mean and variance of X,j. under the A-criterion, for

designs I, II and III. The designs are given in decreasing order of the mean and

increasing order of the variance.

9

0.0, 0.1

0.2

0.3, . . . ,1 .0

9

0 .0 , . . . , 0.5

0.6, . . . ,1 .0

Order of E[Xd\6]

I, III , II

I, II, III

II, III, I

Order of Var[A^|#]

II, III, I

I, III , II

5.4.2 Design Selection Based on the MV-criterion

Alternatively, we may wish to compare the relative performance ol the designs I -111

using the summary measures provided by equations (2.4), (2.5), (2.6) and (2.7) and

the MV-criterion, see Tables 5.2.1, 5.4.1 and 5.6.1. Comparisons of the graphs of

the mean of Xrj and Y,i against 9, for 9 = 0.0,0.1,. . . 1.0, are given in Figures 5.18

and 5.19 respectively.

When the estimation of the first-order carry-over treatment effects is most im-

portant, the use of the design selection criteria of Section 2.8.1 with the MV-criterion

again leads to the recommendation of design II. This is because, as before, the mean

values of Yd are always the largest with the correspondingly smallest variances for

any probability of final period dropout for the values of 9 considered.

For experiments in which the estimation of the direct treatment effects is at least

as important as the estimation of the first-order carry-over treatment effects, then

from Figures 5.18 and 5.19 the recommended design depends upon the particular

value of 9 considered. If 9 changes then so may the recommended design.

A summary of the results obtained using the design selection criteria of Section

2.8.1. for the estimation of the direct treatment effects with the MV-criterion can
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E[Xd\6]

III •

2.0 -

1.0 -

0.0

II

0.0
I

0.2
I

0.4 0.6 0.8
i u

1.0

Probability of Dropout

Figure 5.18: Comparison of the graphs for showing the mean of Xd, under the

MV-criterion, for designs I, II, and III.
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E[Yd\6]

2.0 -

III •

1.0 -

0.0
0.0 0.2 0.4 0.6

Probability of Dropout

0.8
-10
1.0

Figure 5.19: Comparison of the graphs for showing the mean of Yd, under the

MV-criterion. for designs I, II. and III.
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be obtained by examining Tables 5.2.1, 5.4.1 and 5.6.1. The summary is given in

Table 5.8 in which the designs are ordered according to the magnitude of .E^A^tf]

and Var[A'd|0] for 9 = 0.0, 0.1,. . . . 1.0. The comparison of the designs summarised in

Table 5.8 shows that for each value of 9 considered the design with the largest mean

performance measure never has the smallest variance. Again in these circumstances

provided that the variance is not large the preferred design will be the design with

the largest mean performance measure. When 9 < 0.1 this is design I and when

9 > 0.2 this is design II.

Table 5.8: Comparison of the mean and variance of Xd, under the MV-criterion,

for designs I. II and III. The designs are given in decreasing order of the mean and

increasing order of the variance.

9

0.0, 0.1

0.2,. . . , 0.8

0.9, 1.0

9

0.0, 0.1

0.2,...,1.0

Order of E[Xd\9]

I, III, II

II, III, I

II, I, III

Order of Var[A'd|0]

II, III, I

I, III, II

5.5 Comparison of Designs: 0 < 6 < 1

Ideally, in order to determine the exact value(s) of 9 tor which a particular design is

recommended, it is necessary to determine the behaviour of the mean performance

measures for each competing design across all possible values of 9. In the following

subsections, we show how this can be achieved by considering the mean performance

measures, _E[A'\j|#] and i?[Vjj#], obtained using firstly the A- and secondly the MV-

criterion, as functions of 9.
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5.5.1 Mean Performance Based on the A-criterion

Let designs I. II and III be the three planned designs r/(3, 6, 1, 3) considered in

Section 5.4 and given in Figures 5.1, 5.6 and 5.11 respectively.

Using equations (2.4) and (2.6) with the A-criterion we can obtain the mean of

the performance measures Xrj and Yd as polynomials in terms of 0.

Let fj(6) denote E[Xd\0] for design j where ; =1. II or III, then

fi{9) = 2.4(1 - 0 ) 6 + 11.0770(1 -Of + 19.81502(l - 8)4 +

17.27703(1 - Of + 8.O4504(l - Of + 2.2505(1 - 0) + O.37506 (5.1)

fii{0) = 2.0(1 - 0 ) 6 + 11.1050(1 ~6f + 23.99502(1 - Of +

23.46203(1 - Of + 8.76204(1 - Of + 2.2505(1 - 0) + O.37506 (5.2)

fm{9) = 2.15(1 -0f + 10.9680(1 -Of + 21.9§702(l - 8f +

2O.64903(1 - 0)3 + 8.47304(1 - Of + 2.2505(1 - 0) + O.37506 (5.3)

Similarly, let g3 denote ^ [ ^ [ 0 ] for design j where j =1, II and III, then

<7/(0) = 1.333(1 - 0)r> + 5.760(1 - Of + 9.52702(1 - Of +

7.37103(1 - 0)3 + 2.86904(1 - Of + O.7505(l - 0) + O.12506 (5.4)

giI(Q) = 1.667(1 - 0)6 + 8.1580(1 ~0f + 14.9802(l - 0)4 +

11.74603(1 - 0)3 + 3.16204(1 - 0)2 + O.7505(l - 0) + O.12506 (5.5)

gm(O) = 1.433(1 - 0 ) 6 + 6.7060(1 -Of + 11.81902(l - 0)4 +

9.3403(1 - 0)3 + 3.O5204(1 - 0)2 + O.7505(l - 0) + O.12506 (5.6)

From the design selection criteria of Section 2.8.1, a recommended design must

have, for some anticipated value of 0, the largest value of E[Xci\0] over the class

of competing designs. If the design satisfying this condition changes, according to

the value of 0 selected, then one or more of the curves describing the behaviour of
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E[Xrj\O], for each of the competing designs must intersect at some value ol 9 in the

range 0 < 9 < 1.

Since the value of 9 chosen for design purposes is only an estimate of the antici-

pated level of final period dropout, it is important to know whether slight changes

to this value have any effect upon the design recommended. If the curves describing

the behaviour of _E[A ĵ#] intersect at some value of 9 close to the anticipated value,

then a change in the recommended design could result. Therefore, information on

the values of 9 at which the curves intersect needs to be taken into account during

the planning stage. However, if the difference between the respective performance

measures is small, for all values of 0 close to the anticipated value, the fact that the

curves intersect is less likely to alter the choice of design than when the difference

is large.

In order to obtain a full comparison of the performance of designs I. II and III

for estimating the average variance of all the pairwise direct treatment effects, it is

necessary to establish the points of intersection of / / , / / / and /// / given in equations

(5.1), (5.2) and (5.3) respectively. It will then be possible to determine the value(s)

of 0 at which one design begins to out-perform another; that is the value(s) of 0 lor

which the recommended design changes.

In order to find the points of intersection it is necessary to obtain the roots of

the following equations:

/ / - / / / = 0 (5.7)

/ / - / / / / = 0 (5.8)

In-fni = 0 (5.9)

Designs I and II have identical mean performance measures, E[Xd\9], at the

values of 9 which satisfy equation (5.7). Similarly, designs I and III have identical

mean performance measures, _E[A^|#], at the values of 9 which satisfy equation (5.8)

and designs II and III have identical mean performance measures, i?[Aj|0], at the
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values of 9 which satisfy equation (5.9).

The only roots of interest for each of equations (5.7), (5.8) and (5.9) are real

roots such that 0 < 9 < 1. From Section 5.4, since all three designs are identical

m the first two periods, they have equal values for the mean of the performance

measures X,j and Yd when 9 = 1.0 obtained using either the A- or the MV-criterion.

Hence, each of the equations (5.7), (5.8) and (5.9) has a root 9 = 1.0.

Further, from Section 5.4, a second root of equation (5.7) lies in the range 0.2 <

0 < 0.3, since design I has a larger value for E[Xrj\9] than designs II when 9 = 0.2,

while design II has a larger value that design I when 9 = 0.3. Similarly, a second

root of equations (5.8) also lies in the range 0.2 < 9 < 0.3 while a second root of

equation (5.9) occurs in the range 0.1 < 9 < 0.2.

The roots of equations (5.7), (5.8) and (5.9) can be obtained by using the solve

or fsolve commands in the computer algebra package MAPLE. The command

solve seeks to find the exact solutions to an equation in closed-form while the

command fsolve carries out numerical analysis procedures such as Newton's method

of iteration to find the roots of an equation. The following roots were obtained:

Equation (5.7): 9 = 0.2060 and 9 = 1.0:

Equation (5.8): 9 = 0.2287 and 0 = 1.0;

Equation (5.9): 9 = 0.1766 and 9 = 1.0.

These results confirm the observations made earlier.

Examining these points of intersection together with the individual polynomials

representing the mean performance measures E[Xd\9\ for each design, the relative

performance of each design across all possible values of 9 in the range 0 < 9 < 1

can be determined: see Table 5.9 in which, for ranges of 9 values the recommended

design is given together with the ordering of the designs with respect to the mean

performance measure £[A^|0].

From these results we conclude that, if the aim of an experiment is to compare all

the direct treatment effects as accurately as possible, when the probability of final
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Table 5.9: Comparison of the mean of Xrj, under the A-criterion, for designs I, II,

and III. The designs are given in decreasing order of the mean.

0

0

0

0

.0000

.1766

.2060

.2287

t

< t

< t

< t

< t

? < 0

? < 0

1766

2060

? < 0.2287
? < 1 0000

Order

I,

I,
II

II

of E[Xd

III, II

II, III

, I, HI

, III, I

0}

period dropout is anticipated to be in the range 0.0 < 9 < 0.2060 the recommended

design is the pair of Williams squares, design I. If the probability of final period

dropout is believed to be in the range 0.2060 < 9 < 1.0 the recommended design

is the orthogonal residual effects design, design II. However, since there is a change

in the recommended design at 9 = 0.2060 experiments in which the value of 0 is

believed to be close to 0.2 may need careful consideration with other factors being

taken into account before making the final design selection. These findings are

similar to those of Section 5.4 but cover all possible values of 9 which could arise

rather than a subset of specific values.

Similar procedures can be carried out to obtain a full comparison of the perfor-

mance of designs I, II and III for estimating the average variance of all the pairwise

first-order carry-over treatment effects by investigating the points of intersection

between equations (5.4), (5.5) and (5.6). On doing this we discover that, in each

case, the only point of intersection occurs when 9 = 1.0. Furthermore,

E[XdlI\0]>[E[Xdin\0]>[E[Xdl\9] for 0 < 0 < 1.

Hence, regardless ot the anticipated value of 0, for experiments which aim to

compare all the pairwise first-order carry-over treatment effects as accurately as

possible, the recommended design is always design II. It is unlikely, however, that

an experiment would only aim to compare first-order carry-over treatment effects.
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This information would, therefore, be used in conjunction with that obtained for

the estimation of the direct treatment effects and could be particularly influential if

the value of 9 was anticipated to be around 0.2.

5.5.2 Mean Performance Based on the MV-criterion

In Section 5.5.1. the effect of final period dropout on the estimation of the direct

and first-order carry-over treatment comparisons has been examined. If the effect

of final period dropout on the maximum variance of the treatment comparisons is

sought then similar comparisons can be obtained using performance measures based

on the MV-criterion, as described below.

Let designs I, II and III be the three planned designs <i(3,6,l,3) considered in

Section 5.5.1 and given in Figures 5.1, 5.6, and 5.11 respectively. Using equations

(2.4) and (2.6) with the MV-criterion we can obtain the mean of the performance

measures Xrj and Y,j as polynomials in terms of 0.

Let fj(Q) denote jEfA ĵO] for design j where j = 1, II or III then,

fI(9) = 2.4(1 - 0 ) 6 +9.00(1 - 0 ) 5 + 16.72802(1 - 0 ) 4 +

14.24703(l - 0)3 + 6.57604(l - Of + 2.2505(l - 0) + 0.3750^5.10)

fu{0) = 2.0(1 - 0 ) 6 + 10.3335(1 -Of + 22.O2502(l - 0)4 +

19.O7803(l - 9f + 6.34#4(1 - 9f + 2.256>5(l -9) + O.37506 (5.11)

fin(9) = 2.15(1 - 9f + 9.7360(1 - 9f + 18.92302(1 - #)4 +

16.794#3(1 - Of + 6.020#4(l - 9f + 2.25£5(l - 0) + 0.3159%5A2)

Similarly, let g3(9) denote E[Yd\0] for design j where j =1, II or III, then

gi(0) = 1.333(1 - 0 ) 6 + 4 . 5 7 1 0 ( 1 - 0 ) 5 + 7 . 6 8 2 0 2 ( l - 0 ) 4 +

5.91903(1 - Of + 2.1550-'(1 - Of + O.7505(l - 9) + O.12506(5.13)

gn{9) = 1.667(1 - 0 ) 6 + 6 . 9 6 6 0 ( 1 - 0 ) 5 + 12 .6850 2 ( l - 0 ) 4 +

8.97103(1 - Of + 2.15504(1 - Of + 0.75#5(l - 0) + O.12506(5.14)
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giII(9) = 1.433(1 ~9)6 + 5.6790(1 - 9.5

6.976#3(l - #)3 + 2.O1904(1 - #)2 + 0.75#5(l - 0) + O.12506(5.15)

As in Section 5.5.1, the values of 9 at which the recommended design may change are

obtained by investigating the roots of the appropriate difference equations. On ex-

amining these values together with the polynomials representing JE[XC/|^] and E[Yrj\9]

we can determine the relative performance of each design over the entire range of

possible 9 values, 0 < 9 < 1. This is summarised in Table 5.10 in which, for ranges

of 9 values, the recommended design is given together with the ordering of the de-

signs with respect to the magnitude of the mean performance measures £[^10] and

E\Yd\9}.

Table 5.10: Comparison of the mean of Xd and Yd.i under the MV-criterion, for

designs I, II and III. The designs are given in decreasing order of the mean.

9

0.0000 < 9 < 0.1224

0.1224 < 0 < 0.1446

0.1446 < 9 < 0.1650

0.1650 <9 < 0.8429

0.8429 < 9 < 0.9556

0.9556 < 9 < 1.0000

9

0.0000 < 9 < 0.9028

0.9028 < 9 < 1.0000

Order of E{Xd\9)

I, III , II

I, II, III

II, I, III

II, III , I

II, I, III

I, II, III

Order of E[Yd\9]

II, I, III

II, III, I

From Table 5.10 we observe that when 0.1446 < 9 < 0.9556 the recommended

design for estimating both the direct and first-order carry-over effects is design II.

For all other values of 9 the preferred design for estimating the direct treatment

effects is design I. The preferred design for the estimation of the first-order carry-

over effects is design II when 0 < 9 < 1.
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5.6 Comparisons for Larger Numbers of

Subjects

In Section 5.5 the robustness to dropout of designs I, II and III was investigated.

The designs involved only six subjects, that is one subject was allocated at random

to each of the distinct treatment sequences of Figures 5.1, 5.6, and 5.11. In this

section, the relative performances are investigated of designs formed by allocating

larger numbers ot subjects (n < 4) to each of the distinct treatment sequences in the

figures. In order to simplify a comparison of the designs with each other and those

of the previous sections, any design formed by allocating equal subject numbers to

the sequences of Figures 5.1, 5.6 and 5.11 will be labelled designs I-111 respectively.

The approach used is identical to that of Sections 5.5.1 and 5.5.2. The polynomi-

als derived for the mean performance measures for the direct and first-order carry-

over treatment effects (analogous to (5.1)-(5.6) and (5.10)-(5.15)) include terms of

order 24 in 0. Due to their complexity the polynomials are not explicitly given here,

but they are used to derive the results in Tables 5.11 and 5.12, for the A-criterion,

and in Tables 5.13 and 5.14, for the MV-criterion.

In the tables the designs are ordered according to the size of the mean per-

formance measure, where the first design listed has the largest mean performance

measure. For any particular experiment, the experimenters can use this informa-

tion to guide their choice of design for the anticipated value of 0 as illustrated in

Examples 5.1 and 5.2.

Example 5.1 Suppose an experiment is proposed to compare direct treatment

effects using 18 subjects, and the probability of dropout is thought to be m the region

of 0.1. From Table 5.11 we observe that the recommended design is design I, when

E{X,i\0] is obtained using the A-criterion. Similarly, from Table 5.13 we observe

that the recommended design is also design I when the performance measures are

obtained using the MV-criterion.
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Example 5.2 Suppose an experiment is proposed to compare direct treatment

effects using 24 subjects, and the anticipated value of 9 is in the region of 0.3. From

Tables 5.11 and 5.13 we observe that the recommended design is design I when the

performance measures are obtained using the A-criterion, but design II when the

performance measures are obtained using the MV-criterion.

For the experiment described in Example 5.1, the experimenters should have

no difficulty in selecting design I since this is the recommended design for perior-

mance measures obtained using both the A- and MV-criteria. Design selection is less

straight forward for the experiment described in Example 5.2. In this case the rec-

ommended design is not the same for performance measures obtained using different

optimality criteria. In these circumstances the priorities of the experimenters niust

guide the choice of design. For example, if minimising the expected average vari-

ance of the pairwise treatment comparisons is a. priority, then the most appropriate

design to use is design I. If however minimising the expected maximum variance of

the pairwise treatment comparisons is essential, then design II will be the preferred

design.

From Table 5.11, we observe that when 0 is very small, the preferred design

for the estimation of direct treatment effects is design I, for each size of study

investigated. However, in each case, there reaches a point when design II begins to

out-perform design I and its superiority continues for all subsequent values of 0. Let

OQ be the value of 9 at which design II begins to out-perform design I. From Table

5.11 we see that the value of 90 increases with the number of subjects allocated to

each treatment sequence. For example, when the number of subjects in the study

is six , #o = 0.2060. When the number of subjects on the study is increased to 24

60 = 0.3469. Note that, right across the ordering of the designs, the larger the value

o( n the greater the value of 9 at which the change in the ordering of the designs

occurs. It is conjectured that for studies involving larger numbers of subjects 00 will

continue to increase m a similar manner. II this is true, then for 9 < 0.3 and n > 3,
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Table 5.11: Comparisons of the mean of Xrj, under the A-criterion, for designs I, II

and III and < 24 subjects. The designs are given in decreasing order of the mean.

n = 1, s =

n = 2, s =

n = 3, s —

n = 4, s —

6

12

18

24

0.0000

0.1766

0.2060

0.2287

0.0000

0.2466

0.2942

0.3397

0.0000

0.2748

0.3290

0.3738

0.0000

0.2894

0.3469

0.3394

6

\ (7

< 0

< o
^ U

<o
<e
<o
<o
<o
^ V

<o
<o
<o
<o
^~~ u

\ . (7

< 0.1766

< 0.2060

< 0.2287

< 1.0000

< 0.2466

< 0.2942

< 0.3397

< 1.0000

< 0.2748

< 0.3290

< 0.3738

< 1.0000

< 0.2894

< 0.3469

< 0.3394

< 1.0000

Order of E[Xd\9]

I, III, II

I, II, III

II, I, III

II, III, I

As previous

ordering.

As previous

ordering.

As previous

ordering.

Table 5.12: Comparisons of the mean of Y^, under the A-criterion, for designs I, II

and III and < 24 subjects. The designs are given in decreasing order of the mean.

n = 1, s

n = 2, s

n = 3, s

n = 4, 5

= 6

= 12

= 18

= 24

0

0

0

0

.0

.0

.0

.0

9

<e <
< o <
< o <
<o <

1

1

1

1

.0

.0

.0

.0

As

As

As

Order of E[Yd\6]

II, III, I

previous ordering.

previous ordering.

previous ordering.
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Table 5.13: Comparisons of the mean of Xd, under the MV-criterion, for designs I,

II and III and < 24 subjects. The designs are given in decreasing order of the mean.

n

n

n

n

= 2,

o

= 4,

5 =

S =

S =

s -=

6

12

18

24

0.0000

0.1224

0.1446

0.1650

0.8429

0.9556

0.0000

0.1723

0.2243

0.2648

0.8740

0.9613

0.0000

0.2038

0.2621

0.3167

0.8995

0.9661

0.0000

0.2229

0.2726

0.3437

0.9055

0.9751

e
<o
<o
<o
<o
<o
<o
<Q

<o
<o
<o
<d

<o
<o
<o
< o
<o
< 9

< 6

<o
< o
< o
< o
< o

< 0.1224

< 0.1446

< 0.1650

< 0.8429

< 0.9556

< 1.0000

< 0.1723

< 0.2243

< 0.2648

< 0.8740

< 0.9613

< 1.0000

< 0.2038

< 0.2621

< 0.3167

< 0.8995

< 0.9661

< 1.0000

< 0.2038

< 0.2726

< 0.3437

< 0.9055

< 0.9751

< 1.0000

Order of E[Xd\9]

I, III, II

I, II, III

II, I, III

II, III, I

II, I, III

I, II, III

As previous

ordering.

As previous

ordering.

As previous

ordering.
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Table 5.14: Comparisons of the mean of Yrj, under the MV-criterion, for designs I,

II and III and < 24 subjects. The designs are given in decreasing order of the mean.

n = 1,

n = 2,

n = 3,

n = 4,

5 = 6

5 = 12

s = 18

5 = 24

0.0000

0.9028

0.0000

0.9170

0.9986

0.0000

0.9291

0.9984

0.0000

0.9418

0.9950

6

<o
<o
< 6

< &

< &

< 6

<o
< o
<o
< o

< 0.9028

< 1.0000

< 0.9170

< 0.9986

< 1.0000

< 0.9291

< 0.9984

< 1.0000

< 0.9418

< 0.9950

< 1.0000

Order of E[Yd\6]

II, I, III

II, III, I

II, III, I

II, I, III

I, II, III

As previous

ordering.

As previous

ordering.
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amongst the three designs investigated in this section, the pair of Williams squares,

design I, will always be the preferred design for the estimation of direct treatment

effects.

Examining Table 5.13, we observe that the comments made concerning design

selection when the performance measures for Xd are obtained using the MV-criterion

are similar to those made when these are obtained using the A-cntenon. There are

two notable differences. Firstly, when 9 is very large, 6 > 0.95, design I begins to

out-perform design II again. This is of little practical importance, however, since it

would be unthinkable for a cross-over design to proceed ior such a large anticipated

value of 9. The more important difference is that the value of 0 at which design II

begins to out-perform design I is consistently smaller when the performance measures

are calculated using the MV-criterion in preference to the A-criterion. The choice

of study needs very careful consideration when the value of 6 is anticipated to be in

the region where a different design is recommended under each criterion.

For all sizes of study considered, Tables 5.12 and 5.14 show that the recom-

mended design for the estimation of first-order carry-over treatment effects under

both criteria is the orthogonal residual effects design, design II, provided that the

value of 0 < 0.9.

For small studies and a small value of 9 the recommended design for estimating

the direct treatment effects is not the same as that for estimating the first-order

carry-over effects. In these circumstances, the priorities of the experimenter should

be used to choose the design.

5.7 Designs Formed by Changing the Final

Period

In the previous section, the performance subject to final period dropout of three

different cross-over designs has been investigated. The common feature of the designs



Chapter 5 224

is that they are identical in the first two treatment periods and differ only in the

period under threat; the final period. The findings show that, particularly with

respect to the estimation of direct treatment effects, the design which has the largest

mean performance measure when 9 = 0.0 is out-performed by alternative designs

for particular values of 9 > 0. The work presented in the previous sections of this

chapter raises the issue of whether a design with improved robustness to final period

dropout can be found by changing the final period of a pair of Williams squares of

side three. In order to investigate this an exhaustive computer search of all possible

designs for six subjects was undertaken.

The total number of possible three period designs which can be formed using

the first two periods of a pair of Williams squares and allowing the final period of

each treatment sequence to involve any of the three treatments is 36 = 729. The

designs considered in Sections 5.4 and 5.5 are just three of the total number of

designs to be investigated. Note that some of the 729 possible designs can be shown

to be isomorphic under a permutation of the treatment labels and of the treatment

sequences.

An investigation of the mean and variance of the performance measures X,j

and Y,i calculated using both the A- and MV-criteria for all 729 designs has been

performed for 9 = 0.0, 0.1,. . . , 1.0. The results can be used to establish which of

the designs give rise to "better" mean performance measures for different values of

9 and to address the following questions:

(i) Which of the designs give "better" mean performance measures for the direct

treatment effects?

(ii) Which of the designs give "better" mean performance measures for the carry-

over treatment effects?

(iii) Do any of the designs provide "good" mean performance measures for both

the direct and carry-over treatment effects?
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5.7.1 Direct Treatment Effects

When the probability of final period dropout is 9 = 0.0, the design with the largest

mean performance measure E[Xd\9], using both the A- and MV-criterion, is the pair

of Williams squares given in Figure 5.1. This design is therefore, both A- and MY-

optimal, within the class of 729 designs under investigation, for estimating the direct

treatment effects. It has already been established in Section 5.4, however, that this

design does not always give the largest mean performance measures .EfA^I^] when

e > o.
In practice, it will be unusual to proceed with an experiment in which the prob-

ability of final period dropout is anticipated to be greater than 0.3. An examination

of the mean performance measures obtained for each of the designs under investi-

gation shows that several designs give larger mean performance measures E[Xrj.\9).

obtained using either the A- or MV-criterion, than a pair of Williams squares, for

some value of 9 in the range 0.0 < 9 < 0.3. These designs, together with the pair

of Williams squares, are listed in Table 5.15. Note that the designs labelled a, b

and c in Table 5.15 are designs I, II and III investigated in Section 5.4. Examining

these designs we observe that the designs a, b, c, cl and h are all designs which are

uniform on the periods. In addition, the remaining three designs may be thought of

as being "nearly" uniform on the periods since, in the final period of each design, one

treatment occurs three times, one treatment occurs twice and the final treatment

occurs once. This is a switch of only one treatment.

The relative performances of the eight designs listed in Table 5.15 for estimating

the direct treatment effects using both the A- and MV-criteria, are summarised in

Table 5.16 for 9 = 0.0, . . . , 0.3. In the table the designs are given in decreasing order

of E[Xd\0).

Examining Table 5.16 we observe that when 9 > 0.2 the pair of Williams squares,

design a, no longer gives the largest mean performance measures when calculated

under either optimahty criterion. In addition, designs a b, d, and h give the largest
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Table 5.15: Designs using the first two periods of Figure 5.1 which perform at least

as well as Figure 5.1 for the estimation of the direct treatment comparisons when

9 < 0.3.

a 0 1 2

1 2 0

2 0 1

0 2 1

1 0 2

2 1 0

b O l l

1 2 2

2 0 0

0 2 2

1 0 0

2 1 1

c 0 1 2

1 2 0

2 0 1

0 2 2

1 0 0

2 1 1

d 0 1 2

1 2 2

2 0 0

0 2 1

1 0 0

2 1 1

0 1 1

1 2 2

2 0 0

0 2 1

1 0 0

2 1 1

f ' 0 1 1

1 2 2

2 0 1

0 2 1

1 0 0

2 1 0

0 1 1

1 2 2

2 0 0

0 2 1

1 0 0

2 1 0

h 0 1 2

1 2 2

2 0 1

0 2 1

1 0 0

2 1 0

Table 5.16: Comparisons of the mean of Xd, under the A- and MV-criteria, for

designs a-h. The designs are given in decreasing order of the mean.

e
0.0

0.1

0.2

0.3

A-criterion

Order

a, h,

a, h,

h, d,

d, b,

d,

d,

a,

h,

of

c,

f,

b,

f,

E[X

f 0"

c, b ,

f, c,

e, c,

i\0

b,

cr
O!

e,

a

]
e

e

O"

o

a

MV-criterior

Order

a,

a,

b,

b

h,

h,

d,

d,

c,

d,

h,

c,

of

d,

c,

c,

h,

E[Xd

b,

b,

a.

e,

f,

0"
O5

cr
O'

O'

1

\o

f,

e,

f,

]
e

e

f

a
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mean performance measures under at least one criterion, for some value of 9 in the

given range. Having found four designs which perform well for studies involving just

six subjects, an investigation into the relative performance of the four designs for

studies involving up to 24 subjects for 0 < 9 < 1 was undertaken. A summary of

the results for performance measures obtained using both the A- and MV-criteria is

given in Tables 5.17 and 5.18 respectively.

Note that the larger the value of n, that is the larger the number oi subjects

allocated to each treatment sequence, the greater the value of 9 at which the change

in the ordering of the designs occurs. However, this increase in the value oi 9 is

not rapid. For example, when the performance measures are obtained using the

A-criterion and n = 1, design a, the pair of Williams squares of side three, ceases to

have the largest mean value of Xrj when 9 > 0.1070. When n = 4 the mean value of

Xd obtained for design a is out-performed when 0 > 0.2134.

5.7.2 Carry-over treatment effects

Due to Kunert (1984), we know that within the class of designs in which t = p = 3

involving six subjects, the universally optimal design for estimating first-order carry-

over effects, when dropouts are not considered, is the orthogonal residual effects

design given in Figure 5.6. Consequently, this design is universally optimal amongst

the 729 designs under investigation when 9 = 0.0.

The investigation of the mean performance measures _E[y<ij#] obtained for each

of the 729 designs shows that, when d' is the orthogonal residual effects design, then

E[Yd.\9] >E[Yd\9]

for the values of 9 in the investigation and when the performance measures are

obtained using either the A- or MV-criterion.

Unfortunately, the orthogonal residual effects design does not always give smaller

values for Var[K/|#] than all the other 729 designs considered. However, the values



Chapter 5 228

Table 5.17: Comparisons of the mean of Xrj, under the A-criterion, for designs a, b,

d and h and < 24 subjects. The designs are given in decreasing order of the mean.

n

n

n

n

= 1, s =

= 2, 5 =

= 3, s =

= 4,3 =

6

12

18

24

0.0000

0.1070

0.1602

0.2060

0.2104

0.2569

0.3098

0.0000

0.1755

0.2429

0.2942

0.2961

0.3413

0.3854

0.0000

0.2009

0.2745

0.3290

0.3309

0.3763

0.4193

0.0000

0.2134

0.2904

0.3469

0.3476

0.3950

0.4383

9

<o
<o
<o
< 9

<o
<o
<o

<o

<o
<o
<0

< 0

<o
<o
<o
<o
< 0

< o
<o
<o
<o
< o
< o
< 0

<o
<o

< 0.1070

< 0.1602

< 0.2060

< 0.2104

< 0.2569

< 0.3098

< 1.0000

< 0.1755

< 0.2429

< 0.2942

< 0.2961

< 0.3413

< 0.3854

< 1.0000

< 0.2009

< 0.2745

< 0.3290

< 0.3309

< 0.3763

< 0.4193

< 1.0000

< 0.2134

< 0.2904

< 0.3469

< 0.3476

< 0.3950

< 0.4383

< 1.0000

Order of E[Xd\9)

a, h, d, b

h, a, d. b

h, d, a, b

h, d, b, a

d, h, b, a

d, b, h, a

b, d, h, a

As previous

ordering.

As previous

ordering.

As previous

ordering.
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Table 5.18: Comparisons of the mean of Xj, under the MV-criterion, for designs

a, b, d and h and < 24 subjects. The designs are given in decreasing order of the

mean.

n = 1, s = 6

n = 2, 5 = 12

0.0000

0.1192

0.1438

0.1446

0.1471

0.1598

0.1684

0.7869

0.8641

0.9556

0.9595

0.0000

0.1513

0.2098

0.2248

0.2553

0.2582

0.2623

0.8193

0.8880

0.9613

0.9679

9

<B

<&

<o
<o
<o
<o
< o
< 0

<6

<&

<o
<o
<o
<o
< o
<o
<d

< 9

<6

<o
<o
<o

< 0.1192

< 0.1438

< 0.1446

< 0.1471

< 0.1598

< 0.1684

< 0.7869

< 0.8641

< 0.9556

< 0.9595

< 1.0000

< 0.1513

< 0.2098

< 0.2248

< 0.2553

< 0.2582

< 0.2623

< 0.8193

< 0.8880

< 0.9613

< 0.9679

< 1.0000

Order

a,

h,

h,

h,

h,

b,

b,

b,

b,

a,

a,

a,

h,

h,

h,

d,

d,

b,

b,

b,

a,

a,

of

h,
a,

d,

d,

b,

h,

d,

d,

a,

b,

b,

h,

a,

d,

d,

h,

b,

d,

d,

a,

b,

b,

E[Xd\9]

d, b

d, b

a, b

b, a

d, a

d, a

h, a

a, h

d, h

d,h

h, d

d, b

d, b

a, b

b, a

b, a

h, a

h, a

a, h

d, h

d,h

h, d



Chapter 5 230

Table 5.18: continued.

n = 3, s = 18

n = 4, s = 24

0.0000 < 6> < 0.1636

0.1636 < 5 < 0.2402

0.2402 < 9 < 0.2621

0.2621 < 9 < 0.2929

0.2929 <9< 0.3037

0.3037 < 9 < 0.3195

0.3195 < 9 < 0.8435

0.8435 < 9 < 0.9049

0.9049 < 9 < 0.9661

0.9661 <9 < 0.9751

0.9751 < 9 < 1.0000

0.0000 < 9 < 0.1731

0.1731 < 9 < 0.2596

0.2596 < 0 < 0.2852

0.2852 < 9 < 0.3138

0.3138 < 9 < 0.3288

0.3288 < 9 < 0.3509

0.3509 < 9 < 0.8648

0.8648 < 9 < 0.9189

0.9189 < 0 < 0.9671

0.9671 < 0 < 0.9781

0.9781 < 9 < 1.0000

Order of E[Xd\9]

a, h, d, b

h, d, a, b

a, h, d, b

h, d, b, a

d, h, b, a

d, b. h, a

b, d, h, a

b, d, a, h

b, a, d, h

a, b, d, h

a, b, h, d

As previous

ordering.
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of Varfy^l^] obtained for the orthogonal residual effects design are never large or

very different from those obtained for any other design, particularly when 9 is small.

5.8 Discussion

In this chapter a study has been presented of the performance of a selection of three

treatment, three period designs each involving six different treatment sequences and

subject to final period dropout. This has shown that, of the designs investigated

for the estimation of first-order carry-over treatment effects, designs formed from

replicates of the orthogonal residual effects design of Figure 5.6 are the most robust

to final period dropout.

With respect to the estimation of direct treatment effects, the study has shown

that the design recommended will depend upon the anticipated probability of final

period dropout. This is because the design with the largest value of _£[A"d|$] is not

the same for all possible values of 9. Of the designs investigated when 9 < 0.14,

the design formed from one or more replicates of a pair of Williams squares of side

three will always give the largest mean performance measures. As the value of

9 increases there will reach a point at which the design will be out-performed by

other designs. This value of 9 will depend upon the number of subjects allocated

to the study. Increasing the number of subjects does not generally affect the overall

ordering amongst the performance measures of competing designs it just increases

the value of 0 at which the ordering changes.

If the aim of a study is to investigate both the direct and first-order carry-over

treatment effects, designs formed from replicates of the orthogonal residual effects

design are realistic alternatives to the currently favoured designs tormed from a pair

of Williams squares. Although for small values of 9 designs formed from a pair of

Williams squares provide large mean values of X(i, the mean values of Yd are poor

in comparison to those of other designs. Regardless of the anticipated value of 9.

designs formed from the orthogonal residual effects design have been found to be
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the most robust to final period dropout for the estimation of first-order carry-over

treatment effects. When 9 is small, although the designs do not provide the largest

mean values of Xrj. the values obtained are very close to those of designs formed from

pairs of Williams squares. In addition, for each size of study considered, there is a

large region of 9 values for which designs formed from replicates of the orthogonal

residual effects design give the largest mean values of Xrj.

All the designs investigated in this chapter involve six different treatment se-

quences. Further investigation is required of designs involving different numbers of

treatment sequences. These need not be uniform balanced designs since, as shown

in this chapter, these will not necessarily be the most robust to final period dropout.

Designs formed by combining the treatment sequences of a uniform balanced design

with an orthogonal residual effects design are particularly interesting candidates

for further investigation. An example of such a design is the eighteen treatment

sequences formed using Proposition 5.1. Kunert (1984) has shown this design to

be universally better for the estimation of direct treatment effects than a uniform

balanced design when dropouts are not considered.

In this chapter designs for three treatment, three period studies have been dis-

cussed and some areas for further investigation have been identified. In Chapter

6 further areas for future research are described and conclusions from the current

work are given.



Chapter 6

Extensions and Future Work

6.1 Introduction

In this chapter issues which have arisen in this research are discussed and directions

for future work are identified. Finally, conclusions from the research project are

presented.

6.2 Assessing Designs When Multi-period

Dropout May Occur

In Chapter 2 methods for assessing the performance of cross-over designs in the

presence of final period dropout were presented. In some practical situations it is

unrealistic to assume that the final period is the only stage at which dropouts may

occur. In this section we show how to extend the methods presented earlier in this

thesis to assess the performance of cross-over designs when subjects may drop out in

any period of the study. Note that, when a subject drops out in a particular period,

it is assumed that the current and all subsequent observations on the subject are

not made, that is that the subject does not return to the study.

A similar approach to that of Section 2.4 can be adopted, provided the following

233
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extensions are made:

(i) The set of all possible implementable designs, D, is extended to include each of

the designs di where / = (/Oii . . . /pj . . . /o,m • • • lp,m) in which /,-j denotes the number

of subjects on sequence j who complete i periods and then drop out during period

z + 1 and /p.j denotes the number of subjects on sequence j who complete the study,

where i = 0.. . . , p — 1 and j — 1, . . . , m.

C n + p

P

(ii) The probability of realising each of the implementable designs is obtained from

a multinomial distribution, rather than a binomial distribution, as follows.

Consider a planned design d(t.m,n,p) and assume that each subject has a fixed

probability 9Z of completing i periods and then dropping out during period i + 1 (z =

0, . . . , p— 1), where 9p = 1 — YA=O @i denotes the probability that a subject completes

the study. Suppose that there are /;_., subjects (z = 0,. . . ,p — 1; j = 1, . . . , m) on

sequence j who complete i periods and then drop out during period i + 1 resulting

in an implemented design, d[. Then the probability that d\ is realised is given by

...fy>. (6.1)

Hence using equation (6.1) we can calculate the probability that d\ is the realised

design for each d\ £ D.

The mean and variance of the performance measures Xd and Yd, given in Defi-

nitions 2.4 and 2.5, can be used to provide summary measures for the performance

of the planned design under repeated use in experiments. Note that the probability

distributions for Xd and Yd for given values of 0t (z = 0, . . . , p— 1) are obtained from

(6.1) as

P(Xd = 3:|0O, • • • , 0P-i) = E ^('I0o, • • • , 0P-i)> (6-2)

where L = {I: d\ £ D, Xd(d() = .r} and
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(6.3)
l&L

w here L = {/: c/, G A = y}.

For experiments of a realistic size, obtaining summary performance measures for

a planned design from (6.2) and (6.3) can involve a prohibitive amount of compu-

tation. Fortunately, the combinatorial theory set out m Chapter 3 can be extended

to provide significant computational reductions when assessing cross-over designs

in the presence of multi-period dropouts. For example, Table 6.1 lists the number

of implementable designs and the corresponding number of equivalence classes into

which D can be partitioned for a Williams square of side four and two periods of

dropout. From Table 6.1 we observe that the computational reduction achieved is

approximately three quarters. The above results have been reported in Low, Lewis,

McKay and Prescott (1994).

Table 6.1: Number of equivalence classes and implementable designs for designs

based on a Williams square of side four and two periods of dropout.

Number of

subjects.

12

16

20

24

28

32

36

Number of implementable

designs.

10000

50625

194481

614656

1679616

4100625

9150625

Number of combinatorial

equivalence classes.

2530

12720

48741

153874

420246

1025685

2288440

Work remaining to be done in the future includes the implementation of these

extensions, including the computational savings, in order to investigate the per-

formance of different cross-over designs. An issue of particular interest is whether
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those designs which have been identified as robust under final period dropout are

also robust to dropouts occurring earlier in the study.

6.3 Treatment Related Dropout

In Section 1.4. three categories of dropout for repeated measurement studies were

given using the definitions of Diggle and Kenwood (1994): completely random

dropout, random dropout and informative dropout. Throughout this thesis, it has

been assumed that each subject has a fixed probability 6 of dropping out in the

final period unrelated to the proposed treatment, that is, that the dropout process

is completely random.

The other two dropout processes relate to situations in which the reason for a

subject dropping out is treatment related. If a study is undertaken and dropouts

occur which can be shown to be treatment related, then this finding will be one of

the most important outcomes of the investigation. In practice, it is unlikely that a

study will be carried out if it is strongly believed a priori that one or more of the

active treatments has known side-effects which might lead to subjects dropping out.

In many clinical investigations it is required to investigate the efficacy of a drug

through comparison with a placebo treatment, that is an inactive substance, as well

as with other active drugs. When a placebo is included in a trial it may be reasonable

to assume that the probability of a subject dropping out during or immediately

after a period of placebo treatment is greater than during any other period; for

example, the probability that a subject drops out during the final period might be 0

when the final treatment administered is active and 20 when the final treatment is

placebo. The methodology presented in this thesis can be easily extended to cover

situations where this form of treatment related dropout is anticipated. However,

the computational reductions described in Chapter 3 will not be as large as in

the case when the dropout process is completely random. This is because not all

designs which are combinatonally equivalent will have the same probability of being
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implemented when the probability of dropping out is treatment related.

Future directions for work in this area includes assessing the performance of

different designs for experiments in which a placebo is included, comparing the dif-

ferent designs available and, in particular, establishing whether or not the proposed

inclusion of a placebo alters the recommendations concerning design selection.

6.4 Investigations for Alternative Models

The investigations carried out throughout this thesis have assumed that the obser-

vations follow the simple carry-over model of equation (1-1). The methodology for

examining the robustness of cross-over designs to dropouts described in Chapter 2 is

not dependent upon the use of this particular model and could be used in conjunc-

tion with any appropriate model. Examples are models which include additional

carry-over effects from treatments in earlier periods or interaction terms such as

that between the direct treatment and carry-over terms. Alternatively, the assump-

tion of independently and identically distributed random errors could be replaced

by some form of correlated error structure.

A review of the various models which could be adopted for the observations from

a cross-over study has been given in Section 1.3 and these could be used for future

assessment of the performance of different designs.

It is particularly difficult to predict in advance an appropriate form of correlated

error structure. In recent years several authors have investigated the robustness of

cross-over designs to different forms of correlated error structures. The main purpose

of this work is to establish which designs perform well under a variety of different

error structures so that a mis-specification of the error structure during the planning

stage will not have drastic consequences on the realised experiment. One important

area of future work will be to try to find designs which are robust to both correlated

error structures and dropouts.
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6.5 Derivation of Universally Optimal Designs

Several of the important advances in the design of experiments have been made

possible by the work on universal optimality due to Kiefer (1975). An interesting

area for future research is to apply the techniques of Kiefer to establish which de-

signs have the maximum mean performance either for direct or carry-over treatment

comparisons, as defined in equation (2.4) and (2.6).

The following lemma, which is analogous to Proposition 1 Kiefer (1975), shows

that the main problem to be addressed is that of finding a design which maximises

the trace of a matrix. The matrix is a weighted sum of the information matrices of

all the implemented designs arising from a planned design, either for the estimation

of the direct or carry-over effects, Aa or A\.

Lemma 6.1 Let T be the set of all cross-over designs involving t treatments, p

periods and s subjects. Let Z be the set of non-negative definite matrices having

zero row and column sums such that

Z = {z;z = Y,A(di)P(l\9), for some d G J7},

where A is Aa or A\ and {d\\ I £ L} is the set of implementable designs arising from

a planned design d.

Let Z contain a matrix z* such that

(a) z" is completely symmetric, and

(b) tr(z") = maxzeztr(z).

Then

$(z*) < $(z) for all z e Z,

for $ as denned in Definition 1.3.

In the presence of final period dropout, very few designs will give rise to a matrix

z which is completely symmetric when 0 ^ 0. However due to its particular com-
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binatoric properties, any complete set of mutually orthogonal Latin squares which

possess the additional property of balance will always give rise to completely sym-

metric z, irrespective of the probability of final period dropout 6. Future work is

required to establish the class of cross-over design over which a set of balanced mutu-

ally orthogonal Latin squares can be shown to be optimal when final period dropout

is anticipated; that is the class of designs over which condition (b) is satisfied. A

full investigation of other designs which satisfy the above criteria is also required.

The development of optimality results for cross-over designs in the presence of

dropouts is a particular challenging area of investigation in which there is a great

deal of potential for future research.

6.6 Conclusions

In this final section the conclusions arising from the research presented m this thesis

are outlined.

One of the most important decisions taken during the planning stage of any

experiment is selecting an appropriate design. A problem frequently encountered

in the context of clinical cross-over studies is that subjects fail to complete their

allotted sequence of treatments. Even though this problem is widely acknowledged

it is usual to select a design on the basis of performance measures which assume no

subjects drop out. The aim of the work undertaken in this thesis has been to address

this problem by developing methods for assessing cross-over designs when dropouts

may occur, investigate the robustness of a variety of the most frequently employed

cross-over designs and make recommendations concerning design selection.

In Chapter 1 the problem of dropouts was presented and the direction of the

research outlined. The particular features of cross-over experiments were described

and some of the controversies concerning their use discussed. The different models

which can be assumed for the observations were reviewed and some of the arguments
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against the use oi the most commonly used model, namely the simple carry-over

model, were considered.

In Chapter 2 a method for assessing cross-over designs in the presence of final

period dropout was presented together with criteria for choosing between differ-

ent competing designs. These were illustrated using examples involving Williams

squares of side four.

Assessing the performance of cross-over designs using the criteria developed in

Chapter 2 requires a considerable amount of computation. In Chapter 3 ways of

reducing this by applying results from combinatorial theory were presented and

illustrated.

In Chapter 4 a study of the performance subject to final period dropout of three

different four treatment, four period, uniform balanced designs was given. This

showed that, although each of the designs investigated performs equally well when

the probability of dropout is not considered, each design is not equally robust to

the probability of final period dropout. From this study we conclude that a single

Williams square of side four should be avoided since its mean performance measures

are not as high as can be obtained using alternative designs and there is a non-zero

probability that the implemented design will be disconnected. When the maximum

number of treatment sequences is eight we recommend that a complementary pair

of Williams squares should be used. When the maximum number of treatment

sequences available is 12 we recommend using a design based on a complete set of

balanced mutually orthogonal Latin squares.

In Chapter 5 the performance subject to final period dropout of three treatment,

three period designs was investigated. Unlike Chapter 4, attention was not restricted

to uniform balanced designs. A review of the optimality of designs when the restric-

tion of uniformity is removed was presented and these results were used to identify

which particular designs to investigate. Attention was drawn to the fact that, if

final period dropouts occur, the realised experiment cannot be uniform balanced.

Since it is known that when dropouts are not considered uniform balanced designs
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are not necessarily optimal outside the class of uniform designs, it is sensible to

consider non-uniform designs for use in experiments in which final period dropouts

are anticipated. A study of the performance subject to final period dropout of three

different designs was undertaken and the results for designs involving up to 36 sub-

jects presented. These showed that the recommended design may change as the

probability of final period dropout increases.

Since the designs compared were identical in the first two periods, an investiga-

tion was made into the "best" third period to employ using an exhaustive search of

all the 729 possible designs. An examination of the mean and variance of the per-

formance measures Xj and Yd for each of the possible 729 designs showed that, with

reference to the estimation of first-order carry-over treatment effects, irrespective of

the value of 9, an orthogonal residual effects design is recommended. Conclusions

concerning the estimation of direct treatment effects depend upon the anticipated

value of 0. Tables indicating the recommended design for ranges of 9 values were

given, together with a discussion concerning which designs to use if efficient esti-

mates of both the direct and first-order carry-over treatment effects are required.

The research presented in this thesis indicates that when choosing a design for

studies in which subjects may drop out the robustness of competing designs to

dropouts should be considered. Further work is required to establish designs which

are robust to subjects dropping out during any period of a study, to establish designs

which are robust to the problem of treatment related dropout and to find designs

which are robust to dropouts for studies in which it is appropriate to assume the

observations follow models other than the simple carry-over model.
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Computer Program

This appendix contains a computer program written in SAS/IML which evaluates

the mean and variance of the performance measures Xd and Yd, under both the A-

and MV-criteria, for a cross-over design when the observations are assumed to follow

the simple carry-over model. This particular program will assess the robustness to

final period dropout of designs based on n replicates of a complementary pair ot

Williams squares of side four for 0 = 0.0, 0.1,. . . , 1.0.

242
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/* Program to obtain summary measures for robustness of */

/* designs using complementary pairs of Williams squares */

/* of side four */

options linesize=70;

DATA missing;

/* To input file of dropout identifiers and equivalence */

/* class sizes */

INFILE 'dropout.data';

INPUT dl d2 d3 d4 d5 d6 d7 d8 size;

PROC IML;

START spec(m,n,p,s,Xp,Xs,Xalpha,Xlambda);

/* This subroutine contains the design specifications */

/* p= number of periods */

/* t= number of treatments */

/* m= number of treatment sequences */

/* n= number of subjects per treatment sequence */

/* s= total number of subjects */

/* D= Design in block form */

/* Xp= Design matrix holding period effects */

/* Xs= Design matrix holding subject effects */

/* Xalpha= Design matrix holding direct treatment effects */

/* Xlambda= Design matrix holding carry-over effects */

p=4; t=4; m=8; n=2; s=m#n;
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D= J(n3l)@{l 2 4 3}//

J(n,l)<2{2 3 1 4}//

J(n,l)<2{3 4 2 1}//

J(n,l)<3{4 1 3 2}//

J(n,l)(3{l 3 2 4}//

J(n,l)®{2 1 4 3}//

J(n,l)<2{3 4 1 2}//

J(n,l)<9{4 2 3 1};

Xs= I(

Xp= J(s,l)®Kp);

/* To generate the design matrix Xalpha */

DD=SHAPE(D,s#p);

Xalpha=DESIGN(DD);

/* To generate the design matrix Xlambda */

ZER0=J(s,l,0);

R=ZERD || D(|,l:(p-l)|);

RR-SHAPE(R;s#p);

RRR=DESIGN(RR);

Xlambda=RRR(|,2:(t + l) |) ;

FREE ZERO D DD R RR RRR;

FINISH;
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START lossmat(n,p,ql ,q2,q3,q4,q5,q6,q7,q8,L);

/*This subroutine generates the loss matrix * /

DROP=SHAPE(O,p-l,l);

DR=I(p-l)I|DROP;

FREE DROP;

START submatCqi.Li.n.pjDR);

IF qi=0 THEM DO;

Li=I(n*p);

END;

ELSE DO;

IF qi=n THEN DO;

Li=I(n)@DR;

END;

ELSE DO;

Li=BLOCK(l(n-qi)@I(p) , I(qi)<2DR);

END;

END;

FINISH;

RUN

RUN submat (q2 ,L2 ,n ,p ) DR);
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RUN submat(q3,L3;n,p,DR);

RUN submat(q43L4,n,p,DR);

RUN submat(q5,L5,n,p,DR);

RUN submat(q6,L6;n,p,DR);

RUN submat(q7,L7,n;p,DR);

RUN submat(q8,L8,n,p,DR);

L=BLOCK(LI,L2,L3,L4,L5,L6,L7,L8);

FINISH;

START assessdn.n.p.s.Q,dvec,L,Xp,Xs,Xalpha,Xlambda,ADT,ACQ,MVDT,MVCO);

/* This subroutine calculates the information matrices and the */

/* and the preformance measures for direct and carry-over */

/* effects under the A- and MV-criteria for each non-equivalent */

/* implementable design. */

/* Aalp=information matrix for direct treatment effects */

/* Alam=information matrix for carry-over effects */

/* C=matrix holding the contrasts of interest */

/* To calculate the matrix to adjust for subjects and periods */

LXp=L*Xp;

LXs=L*Xs;

prLXs=LXs*INV(LXs'*LXs)*LXs';

W=(I((s*p)-Q)-prLXs);

K=W-W*LXp*GINV(LXp'*W*LXp)*LXp'*W;

/* To calculate the information matrices */
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Lxalpha=L*Xalpha;

LXlambda=L*Xlambda;

inl=LXalpha'*K*LXalpha;

in2=LXalpha'*K*LXlambda;

in3=LXlambda'*K*LXlambda;

Aalp=in l - in2*GINV(in3)* in2 ' ;

Alam=in3-in2 (*GINV(inl)*in2;

C={1 -1 0 0,

1 0 - 1 0 ,

1 0 0 - 1 ,

0 1 - 1 0 ,

0 1 0 - 1 ,

0 0 1 - 1 } ;

VARDT=C*GINV(Aalp)*C ;

VARCO=C*GINV(Alam)*C' ;

/* To calculate the reciprical average variances */

ADT=6/TRACE(VARDT);

ACD=6/TRACE(VARC0);

/* To calculate the reciprocal of the maximum variance */

VDT=VARDT(11,11)//VARDT(I 2,2|)//VARDT(I 3,3 I)//VARDT(14,4 I)//

VARDT(I 5,5|)//VARDT(I 6,6|);

VCD=VARC0(|1,11)//VARC0(I 2,2 I)//VARC0(|3,3|)//VARCO(14,4 I)//

VARC0(|5,5|)//VARC0(|6,6|);
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MVARDT=MAX(VDT);

MVARCD=MAX(VCQ);

MVDT=INV(MVARDT);

MVCD=INV(MVARCO);

FREE LXp LXs prLXp prLXs LXalpha LXlambda K W m l in2 in3 C;

FREE VAECQ VARDT VDT VCO MVARDT MVARCO;

FINISH;

START dropout(n,ql,q2,q3,q4,q5,q6,q7,q8, size,theta,PrL);

/* This subroutine calculates the probability of implementation */

/* for each implemntable design */

START facto(z,fact);

/* This subrotine calculates factorials */

j=z; /* j is a dummy variable */

IF z=l| z=0 THEN DO;

fact=l;

END;

ELSE DO i=l to (z-1) by 1;

fact=j*(z-i);

j=fact;

END;

END;

FREE j;
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FINISH;

START sequence(qi,n,theta,Pqi) ;

/* This subroutine calculates the probability of dropout per */

/* treatment sequeunce */

nqi=n-qi;

RUN facto(n,factn);

RUN facto(qi,factqi);

RUN facto(nqi,factnqi);

Pqi=(factn/(factqi#factnqi))#(theta##qi)#((1-theta)##nqi);

FREE factn factqi factnqi nqi ;

FINISH;

RUN sequence(ql,n,theta,Pql);

RUN sequence(q2,n,theta,Pq2);

RUN sequence(q3,n,theta,Pq3);

RUN sequence(q4,n;theta,Pq4);

RUN sequence(q5,n,theta,Pq5);

RUN sequence(q6,n,theta,Pq6);

RUN sequence(q7,n,theta,Pq7);

RUN sequence(q8,n,theta,Pq8);

PrL=Pql#Pq2#Pq3#Pq4#Pq5#Pq6#Pq7#Pq8#size;

FREE Pql Pq2 Pq3 Pq4 Pq5 Pq6 Pq7 Pq8;

FINISH;
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START main;

RUN spec(m,n,p,s,Xp,Xs,Xalpha,Xlambda);

use missing;

read all into xdrop;

k=NR0W(xdrop);

do a= 1 to k by 1;

ql=xdrop(|a,lI);

q2=xdrop(|a,2|);

q3=xdrop(I a,3|);

q4=xdrop(|a,4|);

q5=xdrop(I a,5|);

q6=xdrop(I a,6|);

q7=xdrop(I a,7 I);

q8=xdrop(|a,8|);

size=xdrop(|a,9 I);

dvec=ql|Iq2||q3|Iq4I|q5||q6I|q7IIq8;

Q=ql+q2+q3+q4+q5+q6+q7+q8; /* total number of dropouts */

RUN lossmat(n)p,ql)q2,q3)q4,q5)q6)q7,q8,L);

RUN assess(m,n,p,s,Q,dvec,L,Xp,Xs,Xalpha,Xlambda,ADT,ACO,MVDT,MVCO);

/* To create an output dataset for a-opt and mv-opt measures*/;

AOUT=ADTI I(ADT##2)IIACO| |(AC0##2);

MVOUT=MVDT||(MVDT##2)||MVCO||(MVC0##2);

IF a=l THEN DO;

ARES=A0UT;

MVRES=MVOUT;

END;
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ELSE DO;

ASTATS=ARES//AOUT;

MVSTATS=MVRES//MVOUT;

ARES=ASTATS;

MVRES=MVSTATS;

END ;

END;

DO theta=0.1 to 0.9 by 0.1;

DO b= 1 to k by 1;

ql=xdropClb;l|);

q2=xdrop(|b,2|);

q3=xdrop(|b,3|);

q4=xdropClb,4|);

q5=xdrop(|b,5|);

q6=xdrop( |b,6|);

q7=xdrop(|b,7|);

q8=xdrop(|b,8|);

size=xdrop(|b,9 I);

RUN dropout(n,ql)q2)q3,q4,q5,q6,q7,q8,size,theta,PrL);

IF b=l THEN DO;

prob=PrL;

END;
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ELSE DO;

newp=prob//PrL;

prob=newp;

END;

END;

/* TO OBTAIN OUTPUT FOR A-OPT MEASURES */

ARS=prob'*ARES;

MADT=ARS(|1,1|);

VARADT=ARS(I 1,2|)-MADT##2;

MAC0=ARS(|l,3|);

VARACO=ARS(I 1,4 I)-MAC0##2;

AFINAL=theta||MADT||VARADT||MACO||VARACO;

/* TO OBTAIN OUTPUT FOR MV-OPT MEASURES */

MVRS=prob'*MVRES;

MEMVDT=MVRS(11,11);

VARMVDT=MVRS(11,2|)-MEMVDT##2;

MEMVC0=MVRS(|l,3|);

VARMVCO=MVRS(I 1,4|)-MEMVC0##2;

MVFINAL=theta||MEMVDT||VARMVDT||MEMVC0||VARMVCO;
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IF theta=0.1 THEN DO;

CREATE ARESULTS FROM AFINAL;

APPEND FROM AFINAL;

CREATE MVRESULTS FROM MVFINAL;

APPEND FROM MVFINAL;

END;

ELSE DO;

SETOUT ARESULTS;

APPEND FROM AFINAL;

SETOUT MVRESULTS;

APPEND FROM MVFINAL;

END;

END;

FINISH;

RUN main;

CLOSE ARESULTS;

CLOSE MVRESULTS;

PROC print DATA=ARESULTS;

PROC print DATA=MVRESULTS;
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