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A cross-over study is a comparitive experiment in which subjects receive a sequence
of two or more treatments, one in each of a series of successive time periods, and
the response of each subject is measured at the end of every period. A common
problem, particularly in medicine, is that subjects fail to complete a study through
dropping out during the later stages of the trial for reasons unrelated to the treat-
ments received. Current practice is to select a design for a study on the basis of
its performance under the assumption that no subjects drop out, using a criterion
such as A-optimality. This is an unrealistic assumption for many medical applica-
tions. This thesis investigates how studies should be designed when 1t is unrealistic

to assume that subjects will not drop out.

A method of assessing cross-over designs is presented which judges how accurately
all the pairwise treatment comparisons are estimated under the assumption that each
subject has a fixed probability of dropping out during the final period, independent
of treatment received and the other subjects. The method of design assessment
1s computationally intensive even for studies involving a relatively small number
of subjects. Ways of reducing the amount of computation required are presented
through establishing the link between implemented designs and a colouring problem
in combinatorial theory. The reductions achieved make feasible investigations of

currently used designs for cross-over studies.

The results of investigations are presented for designs for the cases of particular
practical importance, namely four treatment, four period and three treatment, three
period studies, in which a simple carry-over model is assumed for the observations.

Designs which are more robust to final period dropout than the currently favoured

designs are 1dentified.
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Chapter 1

Introduction

1.1 Cross-over Trials

Two popular study designs employed in clinical and medical research are the par-
allel group study and the cross-over trial. In a parallel group study each subject is
assigned at random to a group which receives one treatment for the duration of the
study. Treatment differences are then estimated by making comparisons between
the subject groups. In contrast, in a cross-over trial each subject is randomly as-
signed to a sequence of treatments. One treatment is given in each of a series of
successive time periods and the response of each subject 1s measured at the end of
each period. Cross-over trials are widely used in many areas including clinical and
medical research, agriculture and human factors engineering.

In this thesis we consider the design of cross-over trials for clinical and medical
research involving human subjects, either patients or healthy volunteers, to inves-
tigate the effects of different drug or therapeutic treatments. Since each subject
provides a direct comparison of the treatments he/she has received, it is possible
for comparisons to be made within subjects rather than between subjects as in a
parallel group study. In clinical research involving human subjects, the variation
between subjects usually greatly exceeds the within-subject variation. Therefore,

with a cross-over design it is possible to estimate the important contrasts of interest



Chapter 1 2

with greater efficiency since, to obtaln estimates of equal precision to those obtained
from a parallel group study, fewer subjects and observations are required. This leads
to a considerable saving of resources.

Cross-over trials should only be used in situations where the treatments being
applied are not expected to have a permanent effect upon the subjects. They are
unsuitable for studying a condition in which subjects may experience a considerable
improvement or deterioration in their condition, regardless of treatment received,
during the course of the trial. Thus, in a medical context, cross-over trials are
best suited to investigating treatments for chronic conditions in which the aim is
to alleviate svmptoms, rather than permanently improve the condition. For exam-
ple, trials concerned with comparing the relative efficacy of different treatments for
conditions such as asthma, diabetes, angina, epilepsy, hypertension or arthritis are
often cross-over experiments.

The order in which each subject receives the treatments under investigation 1s
determined by the particular design chosen for the study. Designs used in cross-over
trials are referred to as cross-over, change-over or repeated measurement
designs. The latter term, however, is used more widely to include longitudinal
studies in which sequences of observations are made on subjects who receive repeated
applications of the same treatment.

An example of a cross-over design to compare the effects of four treatments over
four treatment periods using four different treatment sequences is given in Example
1.1. In the example, and throughout this thesis, designs will be shown as two-way
layouts with rows corresponding to treatment sequences and columns corresponding

to periods.

Example 1.1 A trial to compare the effects of four treatments, labelled A, B, C
and D, using four periods (1,...,4) and 16 subjects might employ the four treatment
sequences (1,...,4) given in Table 1.1, and allocate four subjects to each sequence.

FFor example, a subject allocated to sequence 1 receives treatment A in period 1,
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treatment B in period 2, treatment D in period 3 and treatment C in period 4.

Table 1.1: Cross-over design for Example 1.1

Period
1 2 3 4
1/A B D C
Treatment 2| B C A D
sequence 3| C D B A
41D A C B

The layout of treatment symbols in the example forms a Latin square in that
every symbol appears once in each row and once in each column. It has the further
property that every symbol precedes every other symbol the same number of times.
Latin squares having this property were used by Williams (1949) to give treatment
sequences for designs for agricultural experiments and hence are known as Williams
squares. Williams developed the designs to address the particular problem of treat-
ments persisting or carrying over beyond the period in which they are applied and
the designs have since been widely used in cross-over studies. The early work in
this area assumed a simple model for the observations from the studies. More re-
cently, more complicated models have been proposed and these, together with the
simple model, are reviewed in the following section. In Section 1.3 the controversies
surrounding cross-over studies are discussed. The problem of how to design stud-
ies when subjects may drop out is described in Section 1.4 where the aims of the
thesis are stated. In Section 1.5 the estimation under a simple model of direct and
carrv-over treatments effects is summarised for reference later in the thesis. Finally,

Section 1.6 gives definitions of design selection criteria used in later chapters.
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1.2 Models used in Cross-over Studies

In planning a cross-over experiment, it is often important to allow for the possibility
that the contribution to a subject’s response from a particular treatment may persist
beyond the period in which the treatment is administered. This is because, in
many situations, it is unrealistic to assume that a treatment ceases to have an
effect immediately 1t is stopped. Several different models have been proposed in the
literature for the observations from cross-over studies. In recent years controversies
have arisen regarding the most appropriate models to adopt at the planning stage
of an experiment. In this section, a variety of models is reviewed for cross-over trials
to compare the effects of ¢ > 2 treatments over p > 2 periods using a total of mn

subjects, where n subjects are allocated to each of m distinct treatment sequences.

1.2.1 The Simple Carry-over Model

The model most frequently assumed for the observation obtained from the yth sub-

ject allocated to the ith sequence in the kth period is the additive model:

where g 1s the overall mean, s;; 1s the effect of the jth subject receiving the :th
sequence, 7 is the Ath period effect, ayg; k) 1s the direct effect of the treatment
d(z, 7, k) administered to the jth subject receiving the ith sequence in the kth pe-
riod, Aggjr-1y (B = 2,...,p) is the first-order carry-over effect of the treatment
administered in the (£ — 1)th period to the jth subject receiving the ith sequence,
Adgijo) = 0 and the €;;;’s denote random errors which are assumed to be indepen-
dently and identically distributed with zero mean and variance o?. All effects in the
model are assumed to be constants, that is the effects are fixed.

Model (1.1) expresses the carry-over from a treatment in its simplest form and
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for this reason is often referred to as the simple carry-over model. The model
1s widely used in the literature and has been adopted by many authors in their
search for optimal or efficient cross-over designs for many experimental situations,
as discussed in Chapters 4 and 5. In recent years the simple carry-over model has
received some criticism in the medical literature mainly because some of the assump-
tions required by the model are not always satisfied in the context of pharmacological
measurements. In Section 1.3 we review the criticisms of the model together with

additional controversies concerning cross-over experiments.

1.2.2 Inclusion of Interactions

It 1s possible to allow for interactions between the factors in the experiment by
extending model (1.1) to include interaction terms. In this section we describe some
of the more important interactions which may be included and outline situations in

which they may be needed in the model.

(1) Direct treatment x period interaction. Such an interaction occurs when
the effect of a treatment is modified according to the period in which it 1s adminis-
tered. For example, consider a two treatment, two period cross-over experiment to
compare the efficacy of two different asthma drugs in patients who also suffer from
hay-fever. If period one occurs during the hay-fever season, but period two does
not take place until after the season is over, then a significant period effect may be
observed. Suppose that one of the drugs is an effective treatment for asthma in the
absence of hay-fever, but is ineffective when a subject is suffering from hay-fever,
but the action of the other drug is unaffected by hay-fever, then a treatment x
period interaction may arise.

If evidence of a treatment x period interaction is present, it can be very difficult
to interpret the results and draw conclusions about the efficacy of the treatments in
the absence of a period effect.

Several authors have included a treatment x period interaction term in their
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models when seeking efficient cross-over designs. For example, Baalam {1968) uses
a model with a treatment x period interaction, but no carry-over effects, to find
efficient designs for ¢ treatments, ¢? experimental units and two treatment peri-
ods. Lasarre (1991) finds efficient two treatment designs using a similar model but

incorporating random, rather than fixed, subject effects.

(i1) Direct treatment x subject interaction. Senn (1993) argues that, in
certain medical situations, a general treatment effect may not exist, but the effect of
a treatment may vary from patient to patient. It is then necessary to include a direct
treatment X subject interaction term in the model. In these circumstances, 1t will
be very difficult to draw conclusions about the general efficacy of the treatment. In
particular, it will be very difficult to predict in advance how effective the treatment
will be for an individual patient.

The problem of interpretation may be one reason why very little discussion of
the direct treatment x subject interaction appears in the literature. Alternatively,
the absence of models including the interaction could be because the existence of a
significant interaction will only increase the amount of variation in the trial, rather

than render any analysis invalid, as discussed by Cox (1984).

(111) Subject x period interaction. Another interaction term which may be
included in the model is a subject x period interaction. Such an interaction may
be present if time trend effects occur which are not the same for all subjects. For
instance, in some studies patients are not always recruited together but over a consid-
erable length of time. Consequently, environmental conditions may vary for patients
recruited at different times. In the asthma study described previously, suppose that
patients recruited to the study at an early stage have their first period before the
hay-fever season and their second period during it, whilst patients recruited at a
later stage have their first period during the hay-fever season and their second after

1t has finished. Then a significant subject x period interaction may be observed.
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(iv) Direct treatment X first-order carry-over interaction. A potentially
important term which could be included in the model is a direct treatment x first-
order carry-over interaction which is needed if the carry-over effect of the treatment
administered during period (k — 1) to the jth subject on the ith sequence varies
according to the treatment administered to the subject during period k. Fleiss
(1986) and Matthews (1993) draw attention to the possibility that the amount of
carry-over a particular treatment exerts onto itself may differ from the amount of
carry-over 1t exerts onto a different treatment. More discussion of this particular

Issue appears 1n Section 1.3.

A consequence of adding any of the interaction terms discussed in this section to
model (1.1) 1s that the number of parameters to be estimated will be increased. The
resultant increase in the number of subjects required, together with the difficulties
of interpreting the results and of knowing in advance which particular interactions
need to be included, may be why few authors include interaction terms in models
for designing cross-over experiments. An exception is the algorithmic approach of

Jones and Donev (1994).

1.2.3 Higher Order Carry-over Effects

In the simple carry-over model 1t is assumed that the carry-over effect of a treatment
will persist for no more than one period. However, in cross-over studies involving
p > 2 treatment periods there is the possibility that carry-over effects may persist
for longer. A carry-over treatment effect which lasts up to and including the rth
period after the treatment has ceased 1s known as an rth-order carry-over effect.
Model (1.1) can be extended to include all possible higher order carry-over effects

as follows:

2 T
ik = R st e cug s AN F A ey o AL

=1,...,m;7=1,...,n; k=1,...,p),
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where /\5178‘.]' kery IS the carry-over effect, observed in period £ of the treatment ad-

ministered in the (£ — r)th period to the jth subject on the 7th sequence, such that
Ac(lf(?,j,k~h) =0 for £ < h where h = 1,...,r. All other terms are as for model (1.1).

Senn (1992) questions whether it is appropriate to exclude higher order carry-
over effects from a model when first-order effects are included. Decisions on the
anticipated duration of carrv-over effects should be made on the basis of knowledge
of the nature of the treatments to be administered.

Williams (1949) considered the design and analysis of experiments when, not
only first and second-order carry-over effects may exist, but also their interactions
cannot be assumed negligible. The design and analysis of experiments involving

higher order carry-over effects is also considered by Patterson and Lucas (1962).

1.2.4 Models Including Correlated Errors

In the simple carry-over model the random errors are assumed to be independently
and identically distributed. This may be an unrealistic assumption since several
measurements are made on the same subject and hence may be correlated. One
way of extending the model to allow for this possibility is to assume some form of
serially correlated error structure. If we assume that the measurements on different
subjects are independent and that measurements taken on the same subject are

correlated, then we can replace the independence assumption of model (1.1) by
Var(e) = (In, @ V;)o7,

where € = (€111, - €11py -« -, Elnls -« > Elnps -+ - Emnls - - - Emnp) 1S a0 MNP X 1 vector
containing the random errors for each observation, I, is the mn x mn identity
matrix, V, 1s the p x p varlance-covariance matrix for the observations on each
subject and & denotes the Kronecker product.

The majority of work in the literature on finding designs under the assumption
of correlated errors has assumed that V), has the form for a first-order autoregres-

sive process, see for example Kunert (1985, 1991) and Matthews (1987), defined as
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follows.

Stationary first-order autoregressive process. [f we assume the errors for
the jth subject ( = 1,...,n) receiving the ith sequence (: = 1,...,m) follow a

stationary first-order autoregressive process we can define

ik for k=1
PEij(k—1) T Nijk for k> 1
where 7;;1 are independent, identically distributed random variables with zero mean
. , . .
and variance o7 and p is the autoregression parameter.
This results in a variance-covariance matrix for the within-subject errors, V, = (va),

of order p, whose elements are given by
Vgp = —;JZ (a,b=1,...,p),
where —1 < p < +1 and |a — b| denotes the absolute difference of ¢ and &.

An error structure of this form, in which the correlation gradually decreases
over time, may provide a reasonable approximation to reality for some experiments.
However, the popularity of such an error structure in the literature may be due to
1ts mathematical tractability rather than evidence of its plausibility. A disadvantage
of models including autoregressive errors is that the autoregression parameter p is
assumed to be known. Kunert (1985) considers such models, assuming there are no
carry-over effects; and defends their use by arguing that it is often possible to obtain
imformation about p from previous similar studies.

In practice, however, previous studies can only provide an approximation to the
true value of p. This is an important consideration which may effect design selection
since, as Kunert demonstrates, an optimal design for a particular size of study, in
the sense of minimising the maximum variance of the treatment effects, will usually
depend upon the value of the autoregression parameter p. Methods for constructing

the optimal designs proposed by Kunert have been given by Street (1989).
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Several authors have sought optimal or efficient two treatment designs under
model (1.1) with the assumption of independent errors replaced by an autoregressive
error structure. Matthews (1987) gives optimal designs, in the sense of minimising
the variances of & and A, for experiments involving three and four periods which
require the allocation of unequal subject numbers to the treatment sequences. He
also gives sub-optimal designs which have equal numbers of subjects per sequence as

he considers that these are preferred by experimenters. Kunert (1991) gives eflicient

designs for p > 3.

An alternative approach to modelling the correlation between the within-subject

errors 1s to use the following first-order moving average process.

Stationary first-order moving average process. The errors for the jth subject
( =1,...,n) receiving the ith sequence (7 = 1,...,m) have the form
Tijk for k=1
Eijk = .
Mijk = PMijh-1) for k>1
where 7,;; are independent, identically distributed random variables with zero mean

and variance o2 and p is the moving average parameter. The variance-covariance

matrix, V;, for the within-subject errors then has elements of the form

ple=tlag? if ja — b < 1
Uab =
0 otherwise,

where —1/2 < p < 1/2.

Designs which are known to be optimal or efficient using models containing cer-
tain correlated error structures have practical application only to experiments in
which the error structure is known at the planning stage. In many fields of inves-
tigation, including medical trials, it is not usually possible to predict in advance
the nature of the correlation. In these situations, a design which can be shown to
provide efficient estimates of the contrasts of interest under models using several

different, plausible error structures is desirable, that is, a design which is robust
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to mis-specification of the error structure. If the assumed error structure is subse-
quently found to have been inappropriate, then the design will have been selected
on the basis of incorrect values for the variances of the estimated treatment effects.
This may have serious consequences, unless the design is known to be robust to
assumptions on the errors. Matthews (1990) examined this issue, but only for the
designs in Matthews (1987) and the two correlated error structures described in this
section.

In practice, most experimenters adopt a design which 1s efficient when the errors
are assumed to be independent because they cannot predict the error structure in

advance.

1.3 Controversies Concerning Cross-over Trials

In this section some of the issues and controversies concerning cross-over trials are
briefly reviewed. The issues arise from consideration of the existence, nature and

duration of carry-over effects.

1.3.1 The Need for Carry-over Effects

The size of physical carry-over effects can sometimes be reduced by the use of wash-
out periods, that i1s time intervals inserted between the treatment periods during
which the subjects receive no active treatment. The aim of the wash-out period is to
allow the contribution of the treatment administered in the previous period to lessen
to such an extent that its effect may be assumed to be negligible. Unfortunately, in
many practical applications, there is no guarantee that wash-out periods will achieve
this alm and, as pointed out by Matthews (1993), for certain therapeutic studies
there may be ethical objections to their use. For pharmacological applications, Senn
(1993) argues that when the time for which the drugs under investigation remain
in the body is known, it will be possible to make the wash-out period long enough

for any carry-over effects to be eliminated. However, there is no guarantee that
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carry-over effects of a non-physical nature will not exist.

In medicine it is widely believed that the act of being treated can have a profound
effect upon some patients which cannot always be accounted for by the physical
action of the treatment(s) being administered. Such psychological effects can be
observed in clinical trials in which placebo treatments or sham procedures are used.
A placebo i1s an Inactive substance which is manufactured so that it is identical in
appearance and taste to that of the active treatment under investigation. A sham
procedure is a dummy procedure in which the patient undergoes the same regime
as those patients recelving an experimental procedure.

Trials of this nature are usually double-blind, that is, neither the patient nor
the clinician 1s aware which treatment is being administered. There are numerous
examples in the literature of trials which report a significant placebo effect. Many
involve conditions with a psychosomatic cause such as anxiety, but others involve
conditions such as epilepsy and post-operative pain. For example, Group (1989) de-
scribes a study to investigate the effectiveness of cinromide in reducing the frequency
of seizures in epileptics in which 23% of the patients experienced a 50% reduction
in seizure frequency whilst receiving a placebo.

There is a great deal of evidence in the medical literature to support the exis-
tence and significance of psychological treatment effects. Therefore, the possibility
that such effects may persist into subsequent treatment periods cannot be ignored.
Baker et al (1982) state that psychological carry-over can occur if the effect of a
second treatment is partly dependent upon a subject’s attitude following the first
treatment. For example, consider a pain relief study to compare an active treatment
with a placebo. The subjects who receive the active treatment during the first pe-
riod may experience a reduction in pain and enter the second period with confidence.
Alternatively, the patients who receive the placebo during the first period may re-
cerve little or no pain relief and thus enter the second period with apprehension or
possibly withdraw from the study completely. Jones and Kenward (1989) and Wilan

and Pater (1986) give similar discussions of psychological carry-over effects.
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1.3.2 Criticisms of the Simple Carry-over Model

In recent years a number of authors have expressed some concern regarding the
use of the simple carry-over model (1.1) for certain clinical cross-over studies, for
example Fleiss (1986, 1989), Matthews (1993) and Senn (1992, 1993). The most
comprehensive discussions of the disadvantages of the model are given by Senn who
argues that the model is not only of little use but also harmful. His main criticism is
that the presence of a first-order carry-over effect in the model gives the misleading
impression that it is no longer necessary to use effective wash-out periods. He
further argues that, in order to justify the use of the simple carry-over model, an
experimenter must either know or make assumptions about the persistence of carry-
over effects. If the decision to use the model is based on actual knowledge, then
it must be possible to design the study in such a way that carry-over effects are
eliminated. Thus the need to include a carry-over term in the model 1s removed.
Alternatively, if its use is justified by assumptions, then any conclusions drawn will
depend upon the validity of the assumptions. Furthermore, if it is reasonable to
assume that the effect of a particular treatment will only persist for one period
beyond the period of application, why is it unrealistic to assume that there are
no carry-over effects, or that they persist for more than one period? Essentially,
Senn questions whether any assumptions concerning the duration of carry-over are
reasonable. Fleiss (1989) argues that the assumption that carry-over effects only
persist for one period is made for mathematical convenience rather than because it
1s believed that the model is an accurate description of the response.

Nevertheless, much of the literature is in agreement that important carry-over
effects may exist and that often carry-over terms higher than first-order are negligi-
ble. Clearly, anybody who employs the simple carry-over model does not believe it
to be “true”. However, they should satisfy themselves that it provides a reasonable
approximation to reality through scientific judgement.

A further criticism of the simple carry-over model arises when a design involves
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treatment sequences in which a treatment follows itself. Fleiss (1989) and Matthews
(1993) question the assumption in the model that the carry-over of a treatment
onto itself is identical to its carry-over onto any other treatment. In drug trials this
may be an unrealistic assumption to make, since the duration of periods is usually
chosen to allow the effect of each treatment to reach its maximum. Consequently,
if any treatment is followed by itself, the result may be that there is no carry-
over present when the second measurement is made. Matthews (1993) proposes an
alternative model for two treatment cross-over studies in which the carry-over effect
of a treatment onto itself is set to zero. This can easily be generalised to provide a

model for designs involving any number of treatments as follows:

Yijk = p+ Sy T Tk + agigr) T )\d(i,j,l:—l){l — ¢} + ik

i=1,....m;3=1...,n; k=1,...,p),

where
{ Lo d(z, g,k —1) =d(s,5,k)

0 otherwise

and d(z,7,k) 1s defined in (1.1).

Another controversy associated with the simple carry-over model is whether or
not estimates based on it are efficient. Senn (1993) states that he believes esti-
mates obtained using this model will be inefficient and illustrates his argument via
an example. In the example he shows that the estimates of the direct treatment
effects, adjusted for carry-over effects, have a larger variance and worse bias than the
unadjusted estimates. Senn’s opinion is valid for the particular example given, in
which he has made certain pharmacodynamic assumptions about the nature of the
response obtained. Whether his opinion is valid in general is debatable. Abeyasek-
era and Curnow (1984) argue that it is always preferable to adjust for carry-over
effects since, if very small carry-over effects exist but are ignored, then this can lead
to a blas in the estimates of the direct treatment effects. This point of view is in

direct contrast to that of Senn.
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When designing experiments it is important to include in the model those terms
which may account for substantial amounts of variation. The model selected for
this purpose is a tool used to guide the experimenter to the most appropriate design
to use. Different models will lead to different choices of design and this can have a
profound effect on the design proposed for the study. Therefore, it is important that
the model used during the planning stage is appropriate. We do not recommend the
indiscriminate use of the simple carry-over model since there are circumstances n
which it 1s not realistic. However, many experimental situations do exist, particu-
larly in medicine, in which it is believed to be appropriate to consider the possibility
of carry-over effects at the planning stage and to employ the simple carry-over model

when planning the study.

1.4 The Problem of Subject Dropout and the
Aims of the Thesis

Frequently in cross-over trials, particularly in medicine, subjects fail to complete
a study, most commonly dropping out during the last one or two periods. It is
generally acknowledged that dropouts are a frequently occurring problem in cross-
over studies. Matthews (1987) states that dropouts are inevitable 1n clinical cross-
over trials and Gough (1994) says that dropouts are a major concern in the design
and analysis of clinical trials. Despite this fact, there are few examples in the
literature of cross-over studies in which dropouts have occurred. One reason for
this may be that such studies are not reported because no firm conclusions can be
drawn due to the number of missing observations and their distribution across the

treatment sequences, as in the following example.

Example 1.2 In Example 1.1 suppose that the simple carry-over model (1.1) 1s as-
sumed for the observations. When the experiment is performed there are very many

possible outcomes which may result. Two of these are shown in Table 1.2, where
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the numbers shown in brackets denote the number of subjects present throughout
the period and the absence of the number indicates that all subjects are present

throughout the period.

Table 1.2: Two possible outcomes for Example 1.2.

Outcome 1 Outcome 2
Period Period
12 3 4 1 2 3 4
1 A B D(4) C4) I A B D@E) C@3)
Treatment 2 B C A(4) D(3) Treatment 2 B C A(3) D(0)
sequence 3 C D B(4) A(3) sequence 3 C D B(2) A(0)
4 D A C(4) B(2) 4 D A C(3) C(2)

[n outcome 1, four dropouts occur during the final period, namely one from
each of sequences 2 and 3 and two from sequence 4. If this outcome were realised
from the experiment, then the resultant increase in the total variance of the least
squares estimators of the direct and first-order carry-over treatment comparisons
under model (1.1), compared with that of the design in Example 1.1 is small, being
only 8.68% and 8.38% respectively. In contrast, the objective of the experiment
could not be achieved if outcome 2 were realised, that is four subjects lost in the
third period and a further seven subjects in the final period. The resulting design is
disconnected with respect to the estimation of both the direct and first-order carry-
over effects, that 1s under model (1.1) some of the pairwise direct and first-order

carry-over treatment comparisons cannot be estimated.

When a trial is being planned, it is sometimes known that subjects may drop
out in the later stages. There are often similar trials which have been undertaken
earlier from which an estimate of the probability of a subject dropping out during

a particular period can be made. Current practice fails to use this information in

planning a trial. A design is chosen under the assumption that subjects will not
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drop out. As Example 1.2 illustrates, this approach may have severe consequences
for estimating the treatment comparisons of interest.

The reasons a subject withdraws from a study prematurely are not necessarily
connected to the treatments under investigation. Diggle and Kenward (1994) list
three types of dropout processes: completely random dropout, in which the probabil-
ity of a subject dropping out is completely unrelated to the treatments administered;
random dropout, that is the probability of dropout is related to the treatment(s)
which precede the subject leaving the study; informative dropout, where the prob-
ability of dropout is related to the treatment being administered at the time of
dropout. There can be serious ethical objections to using a particular treatment
in a trial 1f 1t is believed at the outset that this treatment may lead to subjects
dropping out, as in random or informative dropout. In this thesis we shall consider
only completely random dropout. The methodology can be extended to consider
situations involving random or informative dropout.

The aim of this thesis is to present a method for investigating the robustness
of cross-over desigus to dropouts in order that this information may be used in
selecting a design. The method presented is not model-dependent and can be used
in conjunction with any of the models described in Section 1.2. It is presented for
experiments having p > 3 in which it is anticipated that subjects may drop out
only in the final period. If dropout is an issue in a two period study then the same
approach could be used. However, the use of a parallel group study is a more realistic
proposition. In this thesis the method is developed under the assumption that the
observations follow model (1.1). Designs are obtained for t = p=3 and t = p =4
which are more robust to dropouts than those currently favoured. The approach can
be applied to designs having larger numbers of periods. However, when dropout is
an issue, 1t 1s usually not sensible to plan studies involving more than four periods.

In Chapter 2 the method of assessing the robustness of cross-over designs is given.
The implementation of this methodology is a daunting task, since the number of

designs to be evaluated is considerable even for relatively small studies. In Chapter
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3 we show how the size of the computational problem can be reduced by using
results from combinatorial theory. In Chapters 4 and 5 we investigate designs in
which ¢ = p =4 and ¢t = p = 3 respectively. Chapter 6 outlines how the method can
be extended to situations in which subjects may drop out during any period and
identifies areas for further research.

In the final section of this chapter the estimation of treatment comparisons via
least squares analysis for a cross-over trial is described for reference in later chapters

of this thesis.

1.5 Analysis and Estimability

In this section an analysis is outlined for observations from a cross-over experiment
to compare the effects of ¢ treatments over p periods in which nm subjects are
assigned to m treatment sequences so that n subjects receive each sequence.

We assume that the observations follow the model (1.1) which can be expressed

In matrix form as
Y = 1mnp/L + Xs”s + Xrvs + X—ava + X,\U/\ + e, (12>

where Y is an mnp x 1 vector of observations, X,, X,, X, and X, are matrices
with mnp rows and mn, p, t and ¢ columns respectively which hold the subject,
period, direct and first-order carry-over treatment effects respectively and vs, vr, v,
and vy are vectors of length mn, p, t and ¢ respectively which hold the parameters
of interest for subjects, periods, direct and first-order carry-over treatment effects
respectively. The vector 1,,,, of length mnp has every element unity and € is a
vector of length mnp which holds the random errors. Alternatively equation (1.2)
can be written as:

Y:X,B—Jr&, (13)

where X is the partitioned matrix (Lyn, | Xs | Xx | Xo | X)) and § is the vector

holding all the model parameters. The variance-covariance matrix of € is fp;.
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The following notation is used in this section and throughout the thesis. The
transpose of a matrix M is denoted by M’ and a generalised inverse of M is denoted
M~. The projection matrix onto the column space of M is denoted by pr(M) =
M(M'M)Y=M'. Let I, denote the identity matrix of order z and pr+(M) = [, —
pr(M) denote the projection matrix onto the space which is orthogonal to the column
space of M.

Suppose that, when the experiment is performed, there are [; ; dropouts on se-
quence j who complete 7 periods and then drop out during period ¢ + 1, where
1 =0,...,p—1land y =1,...,m. Then the resulting incomplete set of observations
and their model can be obtained by premultiplying each of the matrices in equation
(1.2) by an mnp — ¢ x mnp matrix L of zeros and ones, where ¢ is the total number
of missing observations. The matrix L acts on the terms in (1.2) in such a way that
the rows corresponding to the missing observations are deleted and will be called the
loss matriz. The purpose of introducing this matrix is to simplify the computations
of the variance-covariance matrices, for all designs which may result from subjects
dropping out, required for the investigations presented in Chapters 4 and 5.

Premultiplying equation (1.2) by the loss matrix gives the model
LY = L(XJ3 +¢). (1.4)

The ordinary least squares estimator of the vector of parameters J is obtained by

/

minimising the error sum of squares, €’¢, with respect to 4. The normal equations

can be shown to be

(X'L'LX)3 = X'L'LY. (1.5)

On eliminating the subject and period effects from the normal equations we

obtain

X' KXoty + XLEX\0y, = X.KY (1.6)
XIK Xabo + X{ KXoy = X\KY (1.7)
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where

K = WprH(Wx)|w

W = Lprt(LX,)]L

1.5.1 Estimators of the Direct Treatment Effects

From equation (1.7) it can be shown that
vy = [XAK X\ {XIRY — X{K X, 04} (1.8)

Substituting (1.8) into (1.6) we obtain
{X.KX, - XILKX\XIKEX) XK X o, = { XK — XLKXG[XAK X, X(KY

Hence the reduced normal equations for estimating the direct treatment effects

can be expressed as
Auio = Qu (19)
where
A, = XLKX, — XIKXH\ [ X KX, X KX,
and
Qo= { X, K — X, KX\ [XG KX, X K }Y.
A, 1s the information matrix for estimating the direct treatment effects and
Q. is the vector of direct treatment totals after adjusting for subject, period and
first-order carry-over treatment effects. Since rank(A,) < ¢ — 1, there 1s no unique

solution to (1.9). A solution can be obtained as
Vo = Q0Qa, (1.10)
where (0, is a generalised inverse of A,. The general solution of (1.10) is given by
Vo = NaQa + (Ao — 1)Z, (1.11)

where 7 is an arbitrary vector, see Searle (1971, p 11).
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1.5.2 Estimators of the First-order Carry-over Effects

From equation (1.6) it can be shown that
b = [X KX X KY — X' K Xa0y) (1.12)
On substituting (1.12) into (1.5) we obtain
(XUK Xy~ XK XX KX X KX 6y = (XIK — X\KX X KX X K},

Hence the reduced normal equations for estimating the first-order carry-over

effects are
Axoy = Q) (1.13)
where
Ay = XSKX, — XIK XX KX, XLKX,
and

Q)= {X|K - X\ KX, [X/ KX, )X/ K}Y.
Ay Is the information matrix for the carry-over treatment effects and @y 1s the
vector holding the totals of the carry-over treatment effects after adjusting for sub-

ject, period and direct treatment effects.

One solution to equations (1.13) is given by

7}/\ = \Q/\Q/\, (1.14)

where 1) is a generalised inverse of A,. Again it is not possible to find a unique
solution to the equations because rank (A,) <t — 1. The general solution of (1.13)
is, for any specific 2y,

where 7 is an arbitrary vector.
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1.5.3 Estimating Treatment Contrasts

In this section results on the estimators of treatment contrasts are given for reference
later in the thesis.

Let ', and C) be contrast matrices of rank at most £—1 in the treatment effects,
that is CJ; = C\J; = 0y , where J; = 1,1} and 0; is a vector of length ¢ with every
element zero. Then the least squares estimators of C,v, and Cyv, are, from (1.11)

and (1.15)

?

Coty = CofleQu + Co(QuAn — )2 and (1.16)

C,\?:’,\ = C/\QAQ/\—{-C')\(QAA/\*])Z (117)
where Z 1s an arbitrary vector.

The following lemmas give necessary and sufficient conditions for contrasts in
the direct and carry-over treatment effects to be estimable and gives the properties

of the estimators.

Lemma 1.1
(1) C,0, is unique and hence estimable if and only if
Co(QuAL—1)Z =0 forall Z,

that is, if and only if

or

(ii) When C,0aAqs = Co

(a) E(Cya{)a’) = Cv[rva

(b) \/YELI(CCY?A)CY) f— CQQQC';O-Q'
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Lemma 1.2
(1) C\0y is unique and hence estimable if and only if
Ca(WAy—1)Z =0 forall Z,
that is, if and only if
Ch(ady = I) =0,
or
ChOn Ay = O

(11) When C/\Q/\A,\ = O,\

(a) E(Cy0y) = Chuy

(b) Val‘(C,\f)/\) = C/\VQ/\C/'\UQ.

1.5.4 The Case of No Dropouts

The case when all subjects successfully complete the study, that 1s when L = [,
has been extensively researched. The purpose of this section is to outline briefly how
the form of the information matrices given earlier in this section can be reconciled
with the information matrices in the literature for the no dropout case.

When there are no dropouts the design matrices for subject and period effects
are Xy = I, @1, and X, = 1,,, @ [, respectively. Hence the reduced normal

equations (1.9) for estimating the direct treatment effects become

where

A = XK X, — XK XXX ] XK X,
Qo = {X K — XK X[ XA X)X VNG Y and

Ky = [Ipn — (1/mn)Jpn] @1, = (1/p)J,]
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Similarly, the reduced normal equations for estimating the first-order carry-over

treatment effects become
Ay = Qa, (1.19)

where

Ay = XK Xy — XK X[ XK X)X KX,

QO = {X|Ky — X\ KX, [X K X XK }Y

where K7 is as for (1.18). Equations (1.18) and (1.19) can be shown to be identical

to different forms given in the literature, such as Kunert (1983) and Cheng and Wu

(1980).

1.6 Design Selection Criteria

When assessing how well the contrasts of interest can be estimated from a cross-over
design, 1t 1s common practice to assess the design under some appropriate optimality
criterion {CNC"], as defined by Kiefer (1975), where C' is C, or C) and £ is
or €. In this section the design selection criteria used in this thesis are given for
reference in later chapters.

Let D be the class of competing designs for a cross-over study, that is having

the same numbers of subjects, periods and treatments.

Definition 1.1 - The A-criterion A design d* € D is A-optimal over D for
the estimation of the contrasts of interest C v, in the direct effects if d* minimises

the average variance of the contrast estimators; that is,

[CQu(d)C1] < tr[Ca0u(d)C)]

3

forall d € D, where Q,(d) is a generalised inverse of the direct treatment information

matrix for design d.
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The definition of an A-optimal design for the estimation of the contrasts of
interest in the first-order carry-over effects can be obtained by replacing o by A
in Definition 1.1. When choosing between competing designs in D, in addition
to calculating the average variance of the treatment contrasts of interest, it is also
advisable to examine the maximum variance that is obtained from the designs. This

1s the purpose of the following criterion.

Definition 1.2 - The MV-criterion A design d* is MV-optimal over D for
the estimation of the contrasts of interest C,v, in the direct effects if the maximum
variance for the contrast estimators under d* is less than or equal to the maximum
variance for the estimators obtained for each d € D.

An MV-optimal design for the estimation of first-order carry-over treatment
contrasts is defined similarly.

[t should be noted that, when the contrasts of interest C,v, or Cyvy form a com-
plete set of orthonormalised contrasts, such as the basic contrasts, the MV-criterion
is identical to the E-criterion which seeks to minimise the maximum eigenvalue of

the information matrix for the contrasts of interest.

For some experiments designs have been obtained which are optimal for a range
of criteria. For example, Cheng and Wu (1980) identify designs for estimating direct

and carry-over effects which are optimal in the following sense.

Definition 1.3 [Kiefer (1975)] - Universal optimality Suppose that S is the
set of ¢t x t non-negative definite matrices with zero row and column sums and

S — (—o0,00] satisfies:
(1) @ is convex,
(i1) ®[bA.(d)] is nonincreasing in the scalar b > 0, (1.20)

(i11) ® is invariant under each permutation of rows and of columns,
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where A,(d) is the information matrix for the direct treatment effects for design d.
A design d* is universally optimal for the estimation of contrasts of interest
Cave in the direct effects if ®[A(d")] < ®[A(d)] for all d € D and every @ satisfying
(1.20).
A universally optimal design for the estimation of first-order carry-over treatment

comparisons is defined similarly.

A design which is found to be universally optimal will also be A- and MV-
optimal. However, a design which is optimal under one criterion is not necessarily
optimal under the other criterion. Nevertheless, it is usual for a design which is

optimal under one criterion to perform well under the other criterion.
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Design Assessment and Selection

2.1 Introduction

One of the most important decisions made during the planning stage of any cross-
over trial is the design selection. Given that a study aims to compare ¢ treatments
over a maximum of p periods using s subjects, which of the many designs available
should be chosen? An appropriate design is one which is efficient for estimating the
treatment comparisons of interest, most commonly all comparisons of pairs of direct
treatment effects or a set of orthogonal contrasts such as the orthogonal polynomial
contrasts.

A summary of some of the most commonly used design selection criteria has
been given in Chapter 1. These criteria do not, however, assess the performance
of designs when subjects may drop out during the later stages of the trial. Hence
current practice is to select a design on the basis of its performance assuming no
subjects drop out. This is an unrealistic assumption for many medical applications.
For example, in an arthritis trial over four treatment periods separated by wash-out
periods, patients often leave the study in the final period (or even earlier) for reasons
unconnected with the trial, such as leaving the geographical arca.

Matthews (1988), in his discussion concerning the optimality properties of cross-

over designs, queried how robust these properties might be to dropouts. Herzberg
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and Andrews (1976) considered the effects of missing values and outliers on optimal
response surface designs, and defined a measure of expected average precision to
compare designs. In this chapter a similar approach is adopted for comparing designs
for cross-over trials; the main difference is that designs are judged by how accurately
the pairwise treatment comparisons can be estimated with the assumption that each
subject has a fixed probability, 8, of dropping out in the final period, independent
of treatment. These assumptions may be somewhat unrealistic. However, all the
ideas introduced in this chapter can easily be extended to situations where subjects
may drop out during any period or when 1t 1s anticipated that treatment-dependent
dropout may occur, for instance when one treatment is a placebo.

In the following section the definitions and notation used to develop the method
of assessing cross-over designs when subjects may drop out are given. In Section 2.3
the probability of realising any of the designs which can occur when one or more
subjects drop out during the final period is formulated. Two ways of assessing the
performance of cross-over designs subject to final period dropout are described in
Section 2.4 and in Sections 2.5 and 2.6 the preferred method is illustrated. Finally,
in Sections 2.7 and 2.8 the issues of sensitivity and robustness to the probability of
final period dropout are discussed. Criteria for robust designs are formulated and

used to establish a set of design selection criteria which is used, in latter chapters,

to compare the robustness of competing designs to dropouts.

2.2 Definitions and Notation

To consider cross-over designs subject to patient dropout the following definitions

and notation will be employed.

Definition 2.1 The planned design is a cross-over design adopted at the outset
of a study to compare ¢ treatments over p periods using mn subjects with n subjects

allocated to each of m distinct treatment sequences.
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The planned design is denoted by d(¢, m,n, p).

Definition 2.2 The design realised through applying the planned design in a cross-

over trial is called the implemented design.

In order to list the possible implemented designs the following notation is used.

Notation When [; dropouts occur in the final period of sequence: (1 =1,...,m),
A

we denote the implemented design by d;(¢,m,n, p), where [ is the m-tuple }1, ..

Note that d(t,m,n,p) = do(t,m,n,p), where 0 = 00...0.

Definition 2.3 The set of all implementable designs, D, is the set of all possible
realisable designs, that is consisting of d(¢,m,n, p) together with all designs formed

by dropping one or more subjects in the final period of d(¢,m,n, p)

A more concise definition of D is achieved using the following notation.

Notation Let G, ={lIl=0... L ;=0,...,n,0=1,...,m }
i.e. Gy, holds all possible dropout patterns which could be incurred by d(t, m, n, p).
Then D = {d/(t,m,n,p); | € G }.

Note that the size of D, denoted by

D], is given by |D| = (n + 1)™.

In this chapter we consider only implementable designs resulting from dropouts
occurring in the final period. An example of a set of implementable designs is given
in Example 2.1. In the example, and throughout this thesis, designs will be shown
as two-way layouts with rows corresponding to treatment sequences and columns

corresponding to periods.

Example 2.1 Let d(4,4,1,4) be the Williams square of side four for treatment
labels 0, 1, 2 and 3 and initial treatment sequence (0 1 3 2). This design is labelled

doooo 1n Table 2.1. The set, D, of 2* = 16 implementable designs and its elements
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are listed in Table 2.1. In Table 2.1, and throughout this thesis, * is used to indicate
that a subject has dropped out.

In this chapter we assess the performance of any planned design, subject to a fixed
probability, 8, of final period dropout, by assessing each member of 1ts associated set
of implementable designs, D. From these individual assessments it will be possible
to produce summary measures of overall performance or robustness of the planned

design.

2.3 Probability of Implementing d;

Assume that each subject has a fixed probability, 8, of dropping out in the final
period independent of treatment. For each z = 1,...,m let Z; be the total number
of subjects in the 1th sequence group who drop out. Then the Z;’s are independently
distributed binomial random variables with parameters n and 6, i.e Z; ~ B(n, §).
Hence the joint probability function for the numbers of final period dropouts on

each treatment sequence is

Plly,.o0nl0) = ] P(Z = 1]0)

= ﬁ(1>011—0) (2.1)

This is the probability that the design d;, where { = [;...[,, is implemented in
practice. Hence, for each d; € D we can calculate the probability that d; 1s the

realised design, as in the following example.

Example 2.2 Let d(4,4,1,4) be the Williams square given in Example 2.1, whose
set of implementable designs is listed in Table 2.1. The probability of implementation

for each design d; € D, calculated from equation (2.1}, is given in Table 2.2.
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Table 2.1: Full set, D, of implementable designs for Example 2.1.

0 Dropouts
dovoo

0132

1203

2310

3021

1 Dropout

d1000 do100
013* 0132
1203 120%
2310 2310
3021 3021
2 Dropouts
d1100 dyo10
013* 013*
120%* 1203
2310 231*
3021 3021
3 Dropouts
do111 dion
0132 013~
120 1203
231*% 231~
302%* 302%*
4 Dropouts
dy111

013*

120*

231%

302 %

dOOlO
013
1203
2317
3021

6o

leOl

013*
1203
2310
3027

dllOl

013
120
2310
302

dovo1

0132
1203
2310
302%

dOllO
0132

120*
2317
3021

dlllO

013"
1207
2317
3021

dOlOl

0132
120
2310
3027

dOOll

0132
1203
2317
302 %

31
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Table 2.2: Probabilities of implementation for each design d; € D for Example 2.2.

Design | Probability of
Implementation
doono (1-0)
diooo | 0(1 —0)°
doroo | O(1 — 0)°
dooro | O(1 — 0)°
dooor | (1 —0)°
diioo | 0*(1 — 6)?
dipro | 0*(1 —0)?
diom | 0*(1 —0)?
doto | 0*(1 — 0)?
doror | 6%(1 —6)?
doo1n | 0%(1 — 6)?
doin | 0°(1 —6)
dionr | 0°(1 —6)
diior | 6*(1 —6)
diyie | 63(1 —6)
din | 0
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2.4 Assessment of Design Performance Subject
to Final Period Dropout

To assess the performance of a cross-over design, d, subject to a fixed probability, 4.
of final period dropout. we consider the set, D, of all possible implemented designs
derived from d.

We assume that the purpose of the experiment is to estimate contrasts of interest
defined by Cyv, and Chv,, where C, and C) are contrast matrices holding the
coeflicients of the contrasts of interest and v, and vy are vectors holding the direct

and first-order carry-over treatment effects respectively.

2.4.1 Design Requirements

In some practical cases D contains one or more disconnected designs, that is designs
where 1t 1s no longer possible to estimate all the contrasts of interest. For example,
if the aim of a study 1s to compare all the pairwise direct treatment effects and the
design given in Example 2.1 is considered, it can be shown that any design in D
which contains two or more final period dropouts is disconnected. Irom Table 2.2
the probability of implementing a disconnected design is [66?(1—6)*446°(1—6)-+0].
Let Dy € D denote the set of disconnected designs derived from d and P(Dg)
denote the probability of implementing a disconnected design. Ideally, a design d
should generate no disconnected implementable designs. However, for small values
of n and p this is not always achievable. In this case, a desirable property of d is
that the probability of implementing a disconnected design should be small. If the
probability is unacceptably large then an alternative design should be adopted.
Let D, C D denote the set of connected designs derived from d. An additional
requirement of any planned design is that each of the designs in D, estimates, as
accurately as possible, the contrasts of interest in the direct and first-order carry-

over treatment effects. In the next section ways of assessing how well a planned
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design meets this requirement will be considered.

2.4.2 Methods of Assessment

Current practice when assessing the performance of a cross-over design is to consider
how well it performs under one or more appropriate optimality criteria. Kiefer
(1975) gave a general formulation of a criterion as ¥[C Q(d) C'] where C = C, or
Cy, and Q(d) is a generalised inverse of the information matrix for the direct or
for the first-order carry-over treatment effects for the planned design, see Section
1.6. For example, when ¥[C Q(d) C'] = tr[C 2(d) C’] or the maximum eigenvalue
of C'Q(d)C’, then the criterion is A- or E- respectively, applied to the direct or
first-order carry-over treatment effects. In this section two approaches for assessing

cross-over designs subject to dropout are described.

1. The Direct Approach

Fach of the connected implementable designs can be assessed individually using any
of the above optimality criteria. One approach, therefore, is to calculate the ex-
pected average variance of the direct and first-order carry-over treatment effects
for the set of connected designs. This expectation must be restricted to the set of
connected implementable designs, since the average variance of the treatment effects
is not obtainable for any of the disconnected designs.

This method of assessment has the advantage of being a simple extension of the
procedure employed when the probability of dropout is not an issue. The disadvan-
tage of using this method, however, is that the performance measures obtained are
conditional expectations which cannot take into account the disconnected designs.
When D contains one or more disconnected designs the performance measures will
give a misleadingly good impression of the design’s expected performance in repeated
use in experiments. This will cause a problem when trying to compare the relative

performance of two competing designs which have different numbers of disconnected



Chapter 2 35

implementable designs.

2. Alternative Approach

In order to overcome these problems, an alternative method of assessing a planned
design, d, 1s required which involves performance measures for both the connected
and disconnected designs in . These measures are now defined for general sets
of contrasts in the direct and in the first-order carry-over treatment effects. In the

following definitions ¥ denotes the non-negative real numbers.

Definition 2.4 Let X;:D — Rt be a random variable such that

[(Ca Qaldr) CL)J7" for di € D\Dy
0 for d; € Dy

~—~
o
o

~

XNM:{

where 1) is a measure of design performance, C, is a matrix holding the coefficients
of the contrasts of interest in the direct treatment effects and Q,(d;) is a generalised

inverse of the information matrix of d; for estimating the direct treatment effects.

Thus the random variable X, takes values which are reciprocals of the value of the

function 1 for the direct treatment effects for the individual implementable designs.
Definition 2.5 Let Y;:D — RT be a random variable such that

mwﬁz{wng@cm* for d, € D\ Dy 23

0 for d; € Dy
where 1 is a measure of design performance, C) is a matrix holding the coefficients
of the contrasts of interest in the first-order carry-over treatment effects and Q.(d;)
is a generalised inverse of the information matrix of d; for estimating the first-order

carry-over treatment effects.

Similarly, the random variable Y, takes values which are the reciprocals of the
function i for the first-order carry-over treatment effects for the individual 1m-

plementable designs.
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The probability distribution of Xy for a constant probability, 8, of final period
dropout is obtained from (2.1) as

P(X;=z]8) = S P(I]0)

lel

where L ={l € Gpnn;di € D, Xy(d)) =z},

Similarly, the probability distribution of Yy for a constant probability, 8, of final

period dropout 1s

P(Y:=yl6) = S PI6) |

el
where L = {l € Gmn iy di €D, Yd(dl) =y}

In order to summarise the performance of a planned design under repeated use
in experiments with probability § of final period dropout, the mean and variance of

the random variables X; and Y, can be examined.

Definition 2.6 For the planned design d define the mean of Xy by

EXd0) = 3 Xu(d)P(10) = 3 [(CaQuld) COI PUIO) . (24)

d[ED d[ED\Do
where i, C, and Q,(d;) are as in Definition 2.4 and Xj is the random variable

defined in (2.2) for the planned design d.

Definition 2.7 For the planned design d the variance of X, 1s

Var| Xa|0] = E{X, — E[X4]0]}* . (2.

1SV
Ut
-~

A similar summary of design performance for estimating the first-order carry-

over treatment effects can be made using the following definitions.

Definition 2.8 For the planned design d define the mean of Y, by

EYio) = S Yald)PU0) = 3 [(Cyu(d) COI PU0) . (26)

dieD di €D\ Dyg
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where ¥, Uy and Q,(d;) are given in Definition 2.5 and Y} is the random variable

defined in (2.3) for the planned design d.

Definition 2.9 For the planned design d the variance of Yy is

Var[Y,|0] = E{Y; — E[Y,]0]}? . (2.

oo
-1
N

In the next section the second approach is illustrated for the A-criterion and a

Williams square design.

2.5 Illustration using the A-criterion

Cross-over trials are commonly used in studies which aim to compare the efficacy
of two or more treatments. A natural criterion for design selection and assessment
in cross-over trials is, therefore, the A-criterion which seeks to minimise the average
variance of the contrasts of interest, see Section 1.6. The criterion can be applied to
each of the direct and first-order carry-over treatment effects through equations (2.4)
and (2.6) where C,, C, Q.(d;) and Q,(d;) are as defined in the previous section and
) ois tr[CoQa(d)CL] or tr{ChQ(d)CY]. Since tr[CoQu(d)CL] and tr[C O\ (dr)CY]
appear as reciprocals in (2.4) and (2.6) a “good” design is one which has E[X,|0]
as large as possible; similarly for F[Yy]0]. Example 2.3 illustrates the use of this

method for assessing a planned design, d, in the presence of final period dropout.

Example 2.3 Let d(4,4,4,4) be the Williams square of side four for treatment
labels 0, 1, 2 and 3 and initial treatment sequence (0 1 3 2). Assume we wish to

estimate
1. the pairwise direct treatment comparisons, a; — «; for 1 <1 < j <t and,

2. the pairwise first-order carry-over treatment comparisons, A; — A; for

1 <<y <t
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The number of implementable designs realisable from d is
ID| = (n-+1)" =5 =625

An examination of all implementable designs shows that the number of disconnected
implementable designs is |Dy| = 113.

As some of the potentially implementable designs are disconnected, 1t is necessary
to examine P(Dg), the probability of implementing a disconnected design. Applying
equation (2.1) to each of the disconnected implementable designs and considering
the whole range of possible values for 8, 0 < § < 1, we obtain the distribution of

P(Dg) given in Table 2.3.

Table 2.3: Probabilities of implementing a disconnected design for a Williams square

of side four with 16 subjects, d(4,4,4,4).

Probability of Dropout | Probability d; Disconnected
() P(Do)
0.0 0.00
0.1 6.0 x 1078
0.2 2.0 x 10~
0.3 3.9 x 1071
0.4 3.8 x 1073
0.5 2.2 x 1072
0.6 8.4 x 1072
0.7 0.25
0.8 0.54
0.9 0.88
1.0 1.00

It 1s reasonable to assume that any design having a probability greater than 0.2

of producing a disconnected implementable design would not be acceptable to an
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experimenter. If we examine the probabilities given in Table 2.3 we observe that, for
the small practical values of 4, the probability of implementing a disconnected design
is very small. For § < 0.6 this probability is less than 0.09. When 6 > 0.6, however,
the probability rapidly increases beyond 0.2, at which point an experimenter may
reasonably consider that this represents too great a risk to proceed with the planned
design. In these circumstances we could either increase the number of subjects
allocated to each of the sequences sequences or choose an alternative design with
a smaller probability of realising a disconnected design. For this example, if the
probability of subjects dropping out in the final period of a four period study is
anticipated to be as high as 0.7, then there is a strong case for adopting a three
period design instead.

Applying equations (2.4), (2.5), (2.6) and (2.7) to the A-criterion we can obtain
the mean and variance of the performance measures X, and Yy, over the range of pos-
sible 0 values, 0 < 6 < 1. These are given in Table 2.4 and they provide a summary
of the performance of the average variance of the direct and first-order carry-over
0
and [F[Yy|0] change with §. Note that the bars represent E[{Xy|0] + /Var[Xy|0]
and E[Yy|0] £ /Var[Y;|f] which give an indication of the spread of the distribu-
tion of Xy and Yy respectively. In these figures and throughout the thesis, when
E[X 0] — y/Var[Xy|0] or E[Yy|0] — (/Var[Yy]0] is less than zero the bars are not

shown below the ¢ axis.

treatment effects for the planned design. Figures 2.1 and 2.2 show how F[X,

From Iigure 2.1 we observe that as @ increases there 1s a gradual reduction in
the mean of Xy from a maximum value of 7.27, when § = 0.0, to a minimum of 0.00,
when 6 = 1.0. Note that, when the probability of final period dropout is anticipated
to be § = 0.0, the set of implementable designs D contains only one design, that is
the planned design. When the probability of final period dropout is anticipated to
be § = 1.0, D contains only one design, that is the planned design with the entire

final period deleted which in this case is disconnected.
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Table 2.4: Mean and variance of the performance measures Xy and Yy, under the

A-criterion, for the Williams square of side four with 16 subjects, d(4,4,4,4).

0 | E[X40) | Var[X,|0] | E[Ya]6] | Var[Yy)d]
0.0 7.27 0.00 5.00 0.00
0.1 6.90 0.10 4.68 0.07
0.2 6.46 0.26 4.32 0.17
0.3 5.95 0.53 3.91 0.32
0.4 5.33 0.97 3.43 0.53
0.5 4.58 1.62 2.87 0.79
0.6 3.63 2.40 2.22 1.03
0.7 2.50 2.86 1.48 1.10
0.8 1.26 2.21 0.73 0.77
0.9 0.28 0.61 0.16 0.20
1.0 0.00 0.00 0.00 0.00
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E[X,|6]

~
(@1}
]

5.0 T

N

T T T 1
0.0 0.2 0.4 0.6 0.3 1.0

Probability of Dropout

Iigure 2.1: Summary of the performance of the Williams square of Example 2.3

in estimating the pairwise direct treatment effects under the A-criterion, where the

bars denote E[Xy4|0] £ +/Var[X4]0)].
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EY,|0]
7.5 -
5.0 ~
2.5 4
00 | T T i 1 9
0.0 0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 2.2: Summary of the performance of the Williams square of Example 2.3 in

estimating the pairwise first-order carry-over treatment effects under the A-criterion,

where the bars denote E[Yy|0] £ /Var[Yy|0].
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An examination of all the designs in D shows that, for this example, all imple-
mentable designs with two or more sequence groups containing [ = n = 4 dropouts
in the final period are disconnected. There are 113 disconnected implementable de-
signs each containing at least eight dropouts in the final period. This partly explains
the sudden reduction in the mean value of both performance measures at around
¢ = 0.5, which produces an increase in the gradient of each of the curves in Figures
2.1 and 2.2 when 6 > 0.5.

The graphs showing the mean of the performance measures X, and Y, are sim-
ilar but, as expected, the amount of information in the direct treatment effects is
consistently greater than that in the first-order carry-over treatment effects. We can
conclude, therefore, that the rate of loss of information due to final period dropout
is fairly consistent for both the direct and first-order carry-over treatment effects for
this design.

Note that, regardless of the value of 0, each of the distributions for X, will have
a maximum value of 7.27 contributed by the planned design and a minimum value
of 0.00. Similarly, each of the distributions for Yy, regardless of the value of 8, will
have a maximum value of 5.00 contributed by the planned design and a minimum
value of 0.00.

The spread of a distribution will always be smaller when 6 is very small or very
large. When @ is very large the distributions for Xy and Y, will be positively skewed
and when § is very small the distributions will be negatively skewed. The skews
occur because the distributions will be dominated by the performance measures for
the designs with the greatest probability of being implemented. When 8 is small, the
most probable designs are those with high performance measures. When 8 is large,
the most probable designs are those with the poorer performance measures; i our
particular example, the disconnected designs. The distributions with the greatest
spread will be those with values of 6 close to 0.5 because each of the implementable
designs will then have a similar probability of being realised. All these properties

are illustrated in Figures 2.1 and 2.2.
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It can be argued that when a distribution is skewed it may be appropriate to
consider the median value of the distribution in addition to the mean. For very
small values of 8, therefore, the median of the distribution of Xy and Y, could be
used as an additional summary measure. This would not necessarily be appropriate
for large values of f since, as mentioned previously, if the probability of dropouts
occurring in the final period is anticipated to be large then an alternative design

with fewer periods should be sought.

2.6 Illustration using the MV-criterion

Frequently, a cross-over trial is planned with the aim of estimating all the pairwise
treatment comparisons within the direct effects with equal precision, that 1s so
that Var(d; — ¢;) = ko?, where k is constant for all ¢ % j. A design having this
property is called variance balanced for the estimation of direct treatment effects.
Unfortunately, even if variance balance has been achieved in the planned design,
the property is rarely retained when dropouts occur. If variance balance is desired,
but dropouts are anticipated, it is desirable to obtain an indication of the spread
in the variances of the pairwise treatment comparisons which might reasonably be
expected in the implemented experiment. One approach is to calculate the difference
between the highest and lowest pairwise variances achieved for each design in D and
then summarise this in some way.

Ideally, designs which have high variances on some of the contrasts should be
avoided. By considering only the A-criterion, these designs will not always be de-
tected. [f the performance of designs is considered under the MV-criterion which
seeks to minimise the maximum variance of the contrasts of interest, designs will be
discovered which give rise to high variances on some of the contrasts.

The MV-criterion can be applied to each of the direct and first-order carry-over
treatment effects through equations (2.2) and (2.3) by letting [C;Q;(d;)C!] equal the

maximum variance of C;Q;(d,)C! over all d; € D\ Dy for i = o and A. Since the value
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of the maximum variance appears as a reciprocal in the performance measures given
by equations (2.4) and (2.6), a “good” design for estimating the direct treatment
effects will be one which has F[X,|f] as large as possible. Similarly, a “good” design
for estimating the first-order carry-over effects will be one which has E[Y;]0] as
large as possible. By considering these performance measures, in addition to those
obtained using the A-criterion, we have a further way of assessing a planned design

under dropout.

Example 2.4 We assess the Williams square of Example 2.3 using performance
measures based on the MV-criterion. Using equations (2.4), (2.5), (2.6) and (2.7)
with the MV-criterion we can obtain the mean and variance of the performance
measures Xy and Yj, over the range of possible 8 values, 0 < § < 1. These are
given in Table 2.5 and they provide a summary of the performance of the maximum
variance of the direct and carry-over treatment effects for the planned design. The

results are illustrated in Figures 2.3 and 2.4 respectively.

Discussion of Examples 2.3 and 2.4. The observations made concerning the
probability of implementing a disconnected design and the general trend with ¢ for
the mean of X; and Y} for the design assessed under the A-criterion (see Example
2.3) all apply to Example 2.4. In Example 2.3, the effect of final period dropout on
the estimation of the average variance of the treatment comparisons was examined.
In Example 2.4, since the MV-criterion is used to calculate the performance measures
Xy and Yy, the effect of final period dropout on the maximum variance of the
treatment comparisons can be observed. These two estimates are not unconnected.
When a design is variance balanced the performance measures obtained using the A-
or MV-criterion will be identical. When there are no final period dropouts the design
of the example is variance balanced. When final period dropouts occur, however, the
design is only varianced balanced if the number of subjects dropping out is the same

for each treatment sequence. By examining the mean of the performance measures
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Table 2.5: Mean and variance of the performance measures Xy and Y}, under the

MV-criterion, for a Williams square of side four with 16 subjects, d(4,4,4,4).

0 | E[X00) | Var(X,06] | E[val6] | Var[Yye]
0.0 .27 0.00 5.00 0.00
0.1 6.60 0.26 4.45 0.17
0.2 5.97 0.56 3.94 0.34
0.3 5.30 0.96 3.41 0.52
0.4 4.55 1.43 2.85 0.69
0.5 3.70 1.90 2.26 0.81
0.6 2.77 2.18 1.65 0.85
0.7 1.77 2.00 1.04 0.72
0.8 0.83 1.20 0.48 0.40
0.9 0.17 0.25 0.10 0.08
1.0 0.00 0.00 0.00 0.00
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E[X4]0]
75 -

2.5 - | \
T
|
0.0 I \I\ 16

{ T
0.0 0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 2.3: Summary of the performance of the Williams square of Example 2.4 in

estimating the pairwise direct treatment effects under the MV-criterion, where the

bars denote F[Xy]6] £ 1/ Var[X,]0].
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Figure 2.4: Summary of the performance of the Williams square of Example 2.4

in estimating the pairwise first-order carry-over treatment effects under the MV-

criterion, where the bars denote E[Y;|0] £ 1/ Var[Y,|0].



Chapter 2 49

Ay and Yy, under the MV-criterion, an insight into whether the planned design may
give rise to an implemented design having high variances for some contrasts but not
for others will be obtained.

Comparing Tables 2.4 and 2.5 it can be observed that the mean values of X, and
Yy, under the MV-criterion are always smaller than their corresponding A-criterion
values. This is true for any design by definition, since the MV-criterion consid-
ers only the maximum variance of the contrasts of interest while the A-criterion
finds their average. Hence, the reciprocal value of the A-criterion value will alwayvs
be larger than the corresponding MV-criterion value. For the small practical val-
ues of 0, however, they do not differ by very much. From this it is possible to
conclude that, although variance balance is unlikely to occur in the implemented
experiment, the spread across the different treatment comparisons should not be
too great, particularly for small values of 0. For example, when 0 = 0.2 the mean
performance measures for estimating the direct treatment comparisons under the
A- and MV-criteria are 6.46 and 5.97, respectively. Since the performarnce measure
obtained from the maximum variance of the treatment comparisons for each of the
implementable designs does not differ from that achieved by considering the average
value of all the treatment comparisons it is reasonable to conclude that the spread in
the variances of the pairwise treatment comparisons for each of the implementable

designs can never be large.

[xamining the trends of the mean performance measures for the Williams square
of side four given in Examples 2.3 and 2.4 we observe that there is a gradual loss of
information expected in the direct and carry-over treatment effects as § increases.
Even if only one subject is lost in the final period of an experiment the information
available in the resulting implemented design will be less than that of the planned de-
sign. These examples illustrate that even for small anticipated numbers of dropouts
the information available in the implemented experiment may differ considerably

from that of the original planned design. In the design assessment procedures in
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current use, little account is taken of this reduction in performance. By using the
proposed assessment procedures it is possible to assess any planned design more

realistically for trials in which final period dropout is anticipated.

2.7 Sensitivity to Choice of 0

A feature of the proposed design assessment procedure is its Bayesian nature. The
probability of final period dropout, used to obtain the performance measures Xy
and Yy, 1s an anticipated value obtained by considering information provided from
previous similar studies. Ideally, a study will have a proportion of dropouts in the
final period which is close to, but not necessarily identical to, the anticipated number
of dropouts used at the early planning stage to guide design choice. It is important,
therefore, that the sensitivity of a planned design’s performance to changes in ¢ is
investigated. For this reason 1t is proposed that the probability of disconnectivity,
and the mean and variance of the performance measures are examiuned over the
entire range of possible § values. By doing this it will be possible to detect whether
a design is sensitive to changes in § and, if so, the region of § values which lead
to large changes in design performance. This is particularly important if a planned
design gives rise to disconnected implementable designs for certain patterns of final
period dropout. For instance, in Example 2.3, when 0 = 0.6 the probability of
implementing a disconnected design is less than 0.02. However, when § = 0.7, an
increase of only 0.1, this probability rises dramatically to 0.25. The recommendation
concerning whether to proceed with this planned design would be different in each
case.

Clearly, it is very important that a design be robust to a mis-specification of the
probability of final period dropout. Ideally, designs which are robust to changes in
f) are preferable to those which are very sensitive. This is because the performance
measures considered at the planning stage will give a more realistic impression of

what might reasonably be achieved in the implemented experiment.
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If it 1s undesirable to consider the entire range of § values, it may be appropriate
to consider only those values of § close to the anticipated value. For example, if
the investigators are confident that the probability of subjects dropping out in the

final period is in the region of 0.2 then it would be reasonable to only consider

0.1 <6 <0.3.

2.8 Robust Designs

Any implemented design containing final period dropouts will contain less informa-
tion in the direct and first-order carry-over treatment effects than its parent planned
design. It is important, therefore, to establish the characteristics of designs which
indicate whether or not they are robust to final period dropout.

An additional, highly desirable, property of any planned design is that for the
contrasts of interest in the direct and carry-over treatment eftects, the design out-
performs all other candidate designs over the entire range of possible values for 0.
In this section criteria for robust designs are formulated and then used to establish
a set of design selection criteria.

Consider the set, .5, of all possible cross-over designs which compare ¢ treatments
over p periods using mn subjects with n subjects allocated to each of m treatment
sequences. The design in S which is most robust for estimating contrasts C,v, 1n
the direct effects, under final period dropout with fixed probability ¢

, 1s the design

with maximum value of F[X,

0] and minimum Var[ X,

g]. Similarly, the design most
robust for estimating contrasts C'yv, in the first-order carry-over treatment effects
is that with maximum value of E[Yy]0] and minimum Var[Y,]d].

As discussed in Section 2.4, under certain patterns of final period dropout, some
implemented designs are disconnected. An important criterion for robustness is that
the probability of the implemented design being disconnected is zero or, at worst,
acceptably small to the experimenter.

The task of obtaining an appropriate design can now be considered to be that
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of obtaining a design which satisfies the above conditions. Hence, we propose the

following design selection criteria.

2.8.1 Design Selection Criteria

Given a fixed probability 4 of final period dropout, select a design ~ for which:

(1) P(Dg) is zero or very close to zero, where Df is the set of disconnected imple-

mentable designs derived from d*,

(i) E[Xg

0] is as large as possible with minimum Var[X,.

8] provided (i) is satis-

fied, and

(iil) B[V

0] is as large as possible with minimum Var[Yy-

0] provided (1) is satisfied.

Usually the estimation of the direct treatment effects is more important than
the carry-over effects. In these circumstances it may be more appropriate either to

0]

disregard part (iii) or allow a decrease in [[Yy«|f] and/or an increase in Var[Yy.

in order to achieve an increase in E[Xg-

6] and/or a decrease in Var[Xy.|6].

The use of these design selection criteria is now illustrated in the following ex-
ample which compares the relative performance of two different designs built from

Williams squares of side four.

Example 2.5 We wish to compare the performance of the following planned de-
signs under repeated use in cross-over trials with some probability, 8, of final period

dropout.

Design (a) Single Williams square d(4,4,4,4) with treatment labels 0, I, 2 and 3
and initial treatment sequence (0 1 3 2). This is the design considered in Examples

2.3 and 2.4.



Chapter 2 33

Note: All Williamns squares of side four

0 1 3 2 obtained under some permutation of the

1 2 0 3 treatment labels are 1somorphic. However,
2 3 1 0 of the 24 isomorphic squares there are
30 2 1 six different squares, if the order of

the treatment sequences 1s unimportant.

Design (b) Complementary pair of Williams squares d(4,8,2,4) with treatment

labels 0, 1, 2 and 3 and initial sequences (0 1 3 2) and (0 3 1 2).

01 3 2 Note: For each of the six possible
1 2 0 3 arrangements of a Williams square
2 3 1 0 of side four each square has only
30 2 1 one complement 1.e. there are

0 3 1 2 three complementary pairs.

1 0 2 3

21 3 0

3 2 0 1

The sccond square complements the first in the sense of not replicating any of the
ordered pairs of treatments in the third and fourth periods found in the first square.
[n design (b) there are eight distinct ordered pairs of treatments in the final two
periods, while in design (a) there are only four. Design (b), therefore, achieves a
better spread of treatment pairs in the final two periods than design (a). Designs
formed by replicating the sequences of a complementary pair of Williams squares of

side four are discussed in more detail in Chapter 4.

Assume that we wish to compare all the pairwise direct and first-order carry-over
treatment effects. Using equations (2.4), (2.5), (2.6) and (2.7) with the A-criterion
we can obtain a summary of the average variance of the direct and first-order carry-
over treatment effects for each design. Summary measures for designs (a) and (b)

are given 1 Table 2.4 and Table 2.6, respectively.
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Table 2.6: Mean and variance of the performance measures Xy and Yy, under the A-

criterion, for a complementary pair of Williams squares with 16 subjects, d{4,8,2,4).

—

0 | E[X400] | Var[X40] | E[Yl0] | Var[X,]0]
0.0 7.27 0.00 5.00 0.00
0.1 6.92 (.07 4.69 0.06
0.2 6.54 0.15 4.37 0.11
0.3 6.16 0.22 4.04 0.16
0.4 5.75 0.28 3.70 0.20
0.5 5.32 0.34 3.34 0.23
0.6 4.86 0.36 2.98 0.23
0.7 4.39 0.35 2.60 0.21
0.8 3.90 0.27 2.23 0.16
0.9 3.45 0.12 1.89 0.06
1.0 3.20 0.00 1.71 0.00
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Comparisons of the graphs of the mean of X; and ¥, against 8, for 0 < 6 < 1.
for designs (a) and (b), are given in Figures 2.5 and 2.6 respectively. From these we
observe that the range of values for the mean ot X, or Y, as ¢ varies is not as large
for design (b) as for design (a). For design (a) the ranges are 7.27-0.00 and 5.00-
0.00, respectively, while for design (b) they are 7.27-3.20 and 5.00-1.71, respectively.
Consequently, design (b) is less sensitive to the choice of § than design (a).

Using the design selection criteria of Section 2.8.1 with the A-criterion leads to
the choice of design (b) for any probability of final period dropout 0 < 8 < 1. This
is because (b) does not produce any disconnected implementable designs, unlike
design (a). Examining the mean performance measures given in Tables 2.4 and 2.6

and illustrated in Figures 2.5 and 2.6 shows that
BNy [0) = B[X4,10] and EYy,|0] = BY,, 0]
for each probability of final period dropout 8, given in the tables.

Sumilarly, if we compare the respective variances for Xy and Yy for each design

from Tables 2.4 and 2.6 we observe that
Var[Xy,|0] < Var[X,, 0] and Var[Yy,|0] < Var[Yy,|d]
for each probability of final period dropout 8, given in the tables.

Alternatively, we could compare the relative performance of each design using
the summary measures provided by equations (2.4), (2.5), (2.6) and (2.7) with the
MV-criterion. Summary measures for designs (a) and (b) under the MV-criterion
are given in Tables 2.5 and 2.7, respectively.

Comparisons of the graphs of the mean of Xy and Y, against 0, for 0 < 6 <1,
7

gures 2

for designs (a) and (b) are given in Ii and 2.8 respectively.
Using the design selection criteria of Section 2.8.1 we would again select design
(b). This is because, as before, it does not produce any disconnected implementable

designs, unlike design (a). Also the mean values of X, and Y} are always larger for
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E[X4|0]
7.5 4
5.0 4
(b)
2.5 o
(a)

0.0 T T T I 1 9

0.0 0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 2.5: Comparison of the graphs showing the mean of X, under the A-criterion,

for designs (a) and (b).
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E[Yq|0]
7.5 4
5.0 -
(b)
2.5
()

0.0 ! I T I 1 9

0.0 0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Iigure 2.6: Comparison of the graphs showing the mean of Yy, under the A-criterion,

for designs (a) and (b).
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Table 2.7:

58

Mean and variance of the performance measures X; and Yy, under

the MV-criterion, for a complementary pair of Williams squares with 16 subjects,

d(4,8,2,4).

6 | E[X400) | Var[Xo|0] | B[Y,16] | Var[Yl0]
0.0 7.27 0.00 5.00 0.00
0.1| 6.63 0.20 4.47 0.14
0.2 6.11 0.30 4.02 0.21
03] 5.62 0.37 3.60 0.26
0.4 | 5.14 0.43 3.19 0.29
05| 4.66 0.46 2.80 0.29
0.6 417 0.46 2.41 0.27
0.7] 3.68 0.42 2.03 0.22
0.8| 321 0.29 1.69 0.14
0.9 2.82 0.10 1.43 0.04
1.0 | 2.67 0.00 1.33 0.00
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E[X4)0]
7.5 7
5.0 4
(b)
2.5 4
(a)
0.0 i T T T\\x 7,

0.0 0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 2.7: Comparison of the graphs showing the mean of Xy, under the MV-

criterion, for designs (a) and (b).
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E[Y4]0]
75 5
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2.5 - (b)
(a)
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0.0 0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 2.8: Comparison of the graphs showing the mean of Y;, under the MV-

criterion, for designs (a) and (b).
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design (b), with corresponding smaller variances, for each probability of final period

dropout considered.

To summarise, the advantages of selecting design (b) rather than design (a) are
that the probability of producing a disconnected implemented design 1s eliminated
while the mean values of the performance measures X, and Y, are increased, for
all values of ¢ > 0, with a corresponding reduction in their variances. This is true
whether we use the A- or MV-criterion when calculating the performance measures
Xy and Yy,

[f the probability of final period dropout had not been considered when compar-
ing the relative performance of these planned designs, the conclusion reached would
have been that there was no difference between the designs because the planned de-
signs possess the same performance measures for the estimation of both the direct
and first-order carry-over treatment comparisons. This 1s true whether the A- or

MV-criterion 1s employed.

2.9 Discussion

In this chapter methods for the assessment and selection of cross-over designs in the
presence of final period dropout have been presented. These methods have been
lustrated using examples involving Williams squares of side four. This design was
chosen because 1t 1s of particular practical importance. [t is widely used in ex-
periments because, when the possibility of dropouts is ignored, it 1s known to be
universally optimal, over the class of uniform designs in which ¢ = p, for estimating
the direct and first-order carry-over treatment effects under the simple carry-over
model (1.1). In Example 2.5 we have shown that, by carefully combining two “dif-
ferent” Williams squares of side four, 1t is possible to produce a design which is more
robust to final period dropout than two copies of a single Williams square. These

results suggest the following questions: How do different designs perform subject
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to the assessment criteria? Which designs are robust to final period dropout? In
Chapters 4 and 5 these questions are considered for cross-over designs in which ¢ = p
involving four and three treatments respectively.

The task of identifying an optimal design under the selection criteria given in
Section 2.8.1 is difficult. This 1s because it 1s necessary to obtain performance
measures for each of the implementable designs in D. The set of implementable
designs is large, even for relatively small studies, and so the computational problems
involved are considerable. For example, a design involving 24 subjects in an eight
sequence design will give rise to 65,536 different implementable designs. It is for this
reason that all the examples presented in this chapter have involved fewer subjects
than would usually be used in practice. Fortunately, the size of the computational
problem can be reduced using results from combinatorial theory. In Chapter 3 these
combinatorial results are presented together with examples illustrating their role in

reducing the size of the computational problem.
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Computational Reductions

3.1 Introduction

To assess the performance of a cross-over design d(¢,m, n, p) using the criteria pro-
posed in Chapter 2 1t is necessary to obtain performance measures for each of the
connected implementable designs in D. The number of implementable designs may
be large even for relatively small studies. Hence, there are considerable computa-
tional difficulties involved in evaluating designs using this approach. In this chapter
wayvs of reducing the amount of computation required are preseuted, using results

from combinatorial theory.

3.2 FEquivalence

In order to reduce the computation involved it 1s necessary to consider which designs
in D give rise to the same performance measures under (2.2) and (2.3). Any designs

which do this are equivalent in the following sense:

Definition 3.1 Consider the planned design d(¢,m, n,p) and its associated set of
implementable designs D. Designs dy,, d, € D\ Dy are performance equivalent

with respect to direct and first-order carryover effects if and only if

63
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(00 (de ) LT = [(Cullu () O]

and

(SO (d )OO = [(CaQu(dr, ) O],

where ¥, Cy, Ch, Q4(d;) and Q.(d;) are as in Definitions 2.4 and 2.5.

Remark: This definition can be extended to include performance equivalence with
respect to higher order carrv-over effects, see Section 1.2.3, if these are present in

the model.

If it can be established which of the implementable designs are performance
equivalent, then D can be partitioned into equivalence classes and it will be unnec-
essary to calculate performance measures for every implementable design. Instead,
it will be sufficient to obtain performance measures for one member from each equiv-
alence class and then combine these to obtain summary measures for the planned
design by multiplyving cach of the performance measures by the size of the corre-
sponding equivalence class.

In order to do this we seek answers to the following questions. Given a planned
design d(t,m,n,p) with an associated set of implementable designs, D, of size

(n+ 17,

(1) how can we identify the performance equivalent designs without calculating the

performance measures,
(i1) how many equivalence classes are there,
(111) what is the size of each equivalence class, and

(1v) how can we identify one member from each class?
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This set of questions is analogous to those considered by a particular colouring
problem found in combinatorics. In the next section the colouring problem is re-
viewed and in Section 3.4 the theory of the colouring problem is used to provide
answers to questions (ii)-(iv) above. In the remainder of this section we define a com-
binatorial equivalence relationship between designs which is sufficient to establish

performarice equivalent designs.

In order that real reductions in computational effort can be achieved by using the
techniques developed for the colouring problem (see Section 3.3), it is necessary to
establish conditions for equivalence which do not require the performance measures
of the implementable designs to be calculated. Cross-over designs which can be
shown to be the same under some permutation of either the treatment labels or
the treatment sequences are regarded as equivalent in the sense that their design
properties are identical with respect to the estimation of treatment comparisons.
Using this process of establishing equivalence via permutations of the treatment
labels and/or the treatment sequences, we now define a combinatorial equivalence
relationship between designs which is sufficient to establish performance equivalent
designs and has the computational advantage that its equivalence classes can be

found without calculating the performance measures of the designs.

Definition 3.2 Consider the planned design d, and its associated set of imple-
mentable designs D. Designs d;,d;, € D are combinatorially equivalent if d,,
can be obtained from d;; by permuting firstly the order of the treatment sequences
and, secondly, the treatment labels.

To illustrate combinatorial equivalence we consider the following examples.

Example 3.1 Let d(2,2,1,3) be the planned design with treatment labels A and
B listed, together with its associated set of implementable designs, in Figure 3.1.
We wish to establish whether the implementable designs djg and dy; are combi-

natorially equivalent. They will be combinatorially equivalent if there exists some
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Figure 3.1: Full set of implementable designs for Example 3.1.

dog dyo doy diy
A B B A B o« A B B A B =
B A A B A A B A =« B A =

permutation of the treatment labels and/or treatment sequences which when ap-
plied to design dyy gives design dg;. A permutation of just the treatment labels will
not achieve this, since all such permutations will leave the position of the dropout
unchanged. To obtain a design in which the dropout occurs on a different treatment
sequence it is necessary to permute the order of the treatment sequences. For this
design only one permutation of the treatment sequences, other than the identity,
exists. This is the permutation which reverses the order of the treatment sequences.
[T we let treatment sequence 1 be defined as r; then this operation is defined, in cycle
notation, by the permutation (r1r;).

If we apply the permutation (ryr2) to the implementable design d;p we obtain

the following.

A B = (7'17'3) B A A
B A A A B %

Thus the application of this permutation does not give dg;. However, if we now
relabel the treatments using the permutation (AB), defined on the treatment labels.

it 1s possible to obtain the design dy; as follows

B A A (4B) A B B

—

A B B A =

Therefore, we conclude that the implementable designs dig and dy; are combinato-

rially equivalent.

A permutation of the treatment sequences will not necessarily act on an im-

plementable design d;,, where d;; € D, to give a design which can be shown to
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be equivalent, under some relabelling of the treatments, to another implementable

design d, € D. This is illustrated in the following example.

Example 3.2 Let d(2,2,1,3) be the planned design with treatment labels A and

B listed, together with its associated set of implementable designs, in I'igure 3.2.

Figure 3.2: Full set of implementable designs for Example 3.2.

oo dio doy dy
A B A A B x A B A A B =«
B A A B A A B A x B A o«

We wish to establish whether the designs dyg and doy, in Figure 3.2, are combina-
torially equivalent. Taking djy and permuting the order of the treatment sequences

we obtain the following

/4 B * (T’ng) B fl /1
B A A A B o«

In this case it is not possible to act on the treatment labels of the resultant
design to obtain the implementable design do;. Theretfore, we conclude that, in this

case, the implementable designs djp and dy, are not combinatorially equivalent.

In IExamples 3.1 and 3.2 it has been shown that, by cousidering appropriate
permutations of the treatment sequences and treatment labels, 1t 1s possible to de-
termine which, if any, of the implementable designs d; € D are combinatorially
equivalent and hence performance equivalent, without having to calculate their re-
spective performance measures. Note that if two, or more, designs are combinatori-
ally equivalent they will always be performance equivalent. However, it 1s possible

for designs to be performance equivalent without being combinatorially equivalent.
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3.3 Review of the Colouring Problem

To illustrate the colouring problem we shall consider the following example.

Example 3.3 Suppose we have a square tray and we seek to place a coloured disc
at each of the four corners. If each disc may be either black or white, how many

different patterns can we form?

Since there is a choice of two colours for each disc, and each tray contains four

discs, the total number of colourings, provided the tray remains fixed, is given by

(SN}

1 = 16. These 16 colourings are illustrated in Figure 3.3.

Figure 3.3: Sixteen colourings of a square tray using black and white discs.

o O e O 0O e O O |0 O
C1 C 2 C 3 C4 C5
o O o 1© O O
®

® o O 0O e
C6 C7 C8 C9
O O elle e
®

O
O

C 10 C 11

e O O e
O
o
o
O

® O e o o
C 12 C 13 C 14 C 15 C 16
® o & o & OO e o o

Having found the total number of possible colourings, it 1s necessary to establish
whether or not any of these are equivalent. If the tray must remain fixed all 16
colourings are different. If, however, the tray may be rotated clockwise then some
of these can be shown to be equivalent. For example, C2 is equivalent to C3, since
we can obtain C3 from C2 by rotating the tray through an angle of #/2.

In this example, there are four distinct rotational symmetries of the tray, namely

the identity and rotations through angles of /2, # and 37 /2. If we label the four
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vertices 1, 2, 3, and 4, as in Figure 3.4, then the action of the group of rotations on
the four vertices can be represented by the following permutations, written in cycle
notation.

g1 = (1)(2)(3)(4), the identity

g2 = (1234)

gs = (13)(24)

Figure 3.4: Square tray with vertices labelled 1, 2, 3 and 4.

The action of this group permutes the vertices 1, 2, 3 and 4, while the action we

are interested in rotates the 16 colourings C'1, ..., C'16. Lach of these colourings can

be regarded as a mapping from the set of vertices {1,2,3,4} to the set of colours

{black, white} as follows
f:{1.2,3,4} — {black,white} .

For example, if we let Ci be represented by the mapping f; (e = 1,...,16) then C2,
in Figure 3.1 corresponds to the mapping f, given by
f2(1) = black, f2(2) = f2(3) = f2(4) = white.
In this way the set of colourings, {C'1,...,C16}, can be represented by the set of
mappings, {fis- .., fio}.
[t 1s now possible to apply the group of permutations to the set of colourings by

considering the effect of each permutation upon each mapping. For example, the

permutation g, transforms f3 into f3 as follows.
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It 1s conventional, however, to denote the set of mappings in terms of their
corresponding colourings and to consider the colouring as representing the relevant
mapping.

Applying the set of permutations to the colourings in this way we observe that
there are only six different patterns amongst the 16 different colourings. We can
divide the colourings into the following sets, where all the colourings belonging to

the same set have the same pattern.

1. {C1}

2. {C2, C3, C4, C5}

3. {C6, CT7, C8, C9}

4. {C10, C11}

5. {Cl12, C13, Cl14, C15}
6. {C16)

The underlying theory of the colouring problem concerns the relationship be-
tween a group and the members of a set. In Iixample 3.3 the group is the rotational
symmetries of a square and the 16 colourings form the set of mappings of interest.
In this example, the svmmetries of the square interact with each of the colourings
to produce another, possibly different, colouring. In general this situation can be
described as one in which an element from a group G acts on any member of a set

D to give another, not necessarily different, member of the set D.
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[n order to explain the general theory behind the colouring problem and apply
it to evaluating the number and type of equivalence classes in any given set it is
necessary to recall some general results from group theory. Further details arve given
in Slomson (1991) and Cohen (1978).

We adopt the following notation for two operations:

Notation [If D is a set and G any group then for g1, g2 € G and d € D we denote
the product of the elements ¢; and g, under the group operation by g9, and the

action of the element g; on the set member d by g1 - d.

Definition 3.3 Let D be a set and G any group. We say that G acts on D 1f
for each d € D and each ¢ € G, there exists an element g - d € D which has the

following properties.
1. Foreachd e D, In-d = d, where I represents the identity of ¢
2. Torall ¢g;, g; € G, and each d € D

gi (g5 - d) = (g:i9;) - d.

The situation in which a group acts on a set is called a group action and the

properties given in Definition 3.3 are called the axioms for a group action.

Definition 3.4 Let G be a group which acts on the set D. For each ¢ € G and

all d; € D if g - d; = d; then d; is a fixed point of g and the set
Ma(g)={d;e D; g-d; =d;}

15 called the fixed point set of 4.

Example 3.4 Suppose we wish to obtain the fixed point set for each ¢; € G for

the colouring problem of IExample 3.3. In this case, (¢ is the group of rotational
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symmetries of a square, given previously, and D is the set of 16 colourings given in

Figure 3.3.
Using Definition 3.4, the fixed point set of ¢; 1s given by
Fiz(g) = {dieD; gy di=di}
= {C1, C2, O3, C4, C5, 06, CT, CS8,
€9, C10, C11, C12, C13, C'l4, C15, C16}
Similarly.
Fiz(g.) = {C1, C16}
Fiz(gs) = {C1, C10, C11, C16}
Fiz(gs) = {C1, C'16}

Definition 3.5 Let (G be a group which acts on the set D. We can define a relation

~c on D such that
for all d;,d; € D, d; ~¢ d; if and only if for some g € GG, ¢g-d; = d;,

where ~¢ is an equivalence relation on D.

The two elements d; and d; are said to be equivalent with respect to this equivalence
relation. The relationship of equivalence splits DD into disjoint equivalence classes

which are frequently referred to as the orbits of the group action.

Definition 3.6 If d; € D then the orbit of the element d;, denoted by Orb(d;), is
defined by

Orb(d;)={d; € D; dj=g-di, g €G}

As the orbits represent the equivalence classes which partition the set D then the
question posed in Lxample 3.3, namely how many different patterns can we form
by placing black and white discs at the corners of a square tray, can be answered
by finding the number of different orbits contained in the set ot 16 colourings. The

following result enables the number of orbits to be determined.
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Theorem 3.1 (Burnsides’s Lemma) If (G is a finite group which acts on the

finite set D, then the number of distinct orbits is given by

1
1

> [Fiz(g)].

1€

In order to apply Burnsides’s Lemma to Example 3.3 it is necessarv to obtain
{Fliz(g)] for each element g € G. Now, from Example 3.4, we have that g;, the
identity, fixes all 16 colourings, ¢, fixes C1 and C'16, g3 fixes C'l, €10, C'11 and C'16
and g4 fixes C'1 and (C'16. Therefore, applying Burnside’s Lemma we find that the
total number of distinct orbits is given by (16 +2 44 4 2)/4 = 6.

[n this example there are only two choices of coloured discs available. Hence, the
total number of possible colourings is small enough to list individually. When three
or more colours of disc are available, however, it will be impracticable to list all the
possible colourings. Nevertheless, it is still possible to find the total number of orbits
by using a generalised version of Burnside's Lemma. Also, by applying a theorem
developed by Polya, it is possible to obtain an algebraic expression, known as the
pattern inventory, which identifies the number of orbits with each possible combi-
nation of coloured discs. Before stating these theorems the following definitions and

notation are needed:

Definition 3.7 A cycle (1z9...2,) has length n and 1s called an n-cycle. We

denote an n-cycle by s,.

Notation If (G is a group of permutations, for any element g € G let N(g) denote

o consists of two

the total number of cycles in ¢g. For example, if g = (12)(34) then g

cyveles each of length two.
Definition 3.8 For any permutation ¢ € (7, written in cycle notation, the cycle
monomial is the single term

() g2 (w) Ja(g)
s e
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where s, is an n-cycle and 7,(¢g) is the number of n-cycles in the cycle representation

of g.

Example 3.5 The element (12)(34) consists of two cycles each of length two and
therefore has cycle monomial s3; the element (1)(23)(4) consists of two cycles of

length one and one cycle of length two and therefores has cycle monomial s?s,.

Definition 3.9 [f (G is a group of permutations, the cycle index of (7, denoted

by Zg, 1s defined to be the polynomial

1
|G

Z 5{1 (g)sff(g)ség(g) o
9€G
Definition 3.10 For any set C' a weight function on the set C'is a mapping w

which assigns an algebraic symbol w(¢) to each ¢ € C.

Theorem 3.2 (Burnside’s Lemma -generalised) [f (7 is a finite group which
acts on the finite set D and C denotes the set of colours, then the number of distinct

orbits is given by

|_é. S |V,

ged

In order to apply Theorem 3.2 to Example 3.3 it is necessary to obtain the total
number of cycles, N(g), for each element ¢ € . Now ¢y, the identity, consists
of four cycles, g, one cycle, g3 two cycles and g4 one cycle. Therefore, applying
Theorem 3.2, we find that the total number of distinct orbits can be represented by

1

lG‘ Z |0|N(9) — i(cd‘ + C2 T .ZC) <31>

g€G
where ¢ = |C].

In Example 3.3 the number of colours available is two, namely black and white.
Substituting ¢ = 2 into equation (3.1) we find that the number of distinct orbits is

(L/4)(2" 4+ 2% + 4) = 6, which agrees with our previous findings.
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Equation (3.1) can be used to calculate the number of different patterns, or

orbits, for examples using a range of different values of ¢ suitable for application to

our design problem, see Section 3.4. This is shown in Table 3.1.

Table 3.1: The number of colourings and orbits that can be formed from a square

tray and a range ot different coloured discs.

Number of orbits.

Number of colours. | Number of colourings.

1 1

2 16

3 81

4 256
5 625
6 1296
7 2401
3 4096
9 6561
10 10000
11 14641
12 20736

165
336
616
1044
1665
2530
3696

5226

The following theorem allows the pattern inventory, which gives the number of

orbits with each possible combination of coloured discs, to be determined.

Theorem 3.3 (Polya’s Theorem) Let D be the set of all mappings from the
set. V' to the set (', and let w be a weight function on C. Let &G be a group of

permutations of V' which acts on D. If the cycle index of G 1s Zg(s1, 52, .- -

the pattern inventory is

Zc <Z w(e), Z w(c)?, Z w(c)?, .. ) .

cc ceC ceC

(W1
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The application of Theorem 3.3 means that the pattern inventory is obtained as

follows.

1. Find the cycle index for the action G on D.

W]

Replace each s; in the cycle index by the sum of the weights, each sy by the
sum of the squares of the weights, each sy by the sum of the cubes of the

welights, and so on.

(S)

Expand the resultant expression to obtain a polynomial in the weight tunc-

tions.

The pattern inventory is a polynomial in terms of the weight functions. Lach
term of the polynomial denotes a particular type of pattern, or combination of the
weight functions. For example, for the two weights a and b the term ab® denotes a
pattern containing one element of type a and three elements of type b. The coefficient
of each term denotes the number of patterns, or orbits, which contain the particular
combination of elements it describes. For example, the term 2ab® would represent
two distinct patterns, or orbits, containing one element of type a and three elements
of type b.

The following example illustrates the use of Polya’s Theorem (Theorem 3.3).
Example 3.6 Suppose we wish to obtain the pattern inventory for the colouring
problem of Example 3.3.

In this case V is the set of vertices {1,2,3,4} and C is the set of colours

{black, white}. The weight function w is given by
w(black) = b, w(white) = w.

The group (7 is the group of permutations of V' which correspond to the rotational

symmetries of a square. That is
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The cycle index of G is given by
l 4 2 Yo ’)
Zc(81,82,84) = Z(Sl + 55 + 254). (3.2)
Applying Polya’s Theorem (Theorem 3.3), the pattern inventory is obtained by

substituting s; = b+w, 55 = b*+w? and s4 = b* +w? into equation (3.2). Therefore,

the pattern inventorv is
I .
Z[(b )t + (B2 w?)? 4200 4 wh)] = b+ B + 26007+ bw® + wt (3.3)

Examining each of the terms in the pattern inventory, (3.3), we find that, for

this example, there exists:

one pattern with four black discs,

one pattern with three black and one white disc,

two patterns with two white and two black discs,

one pattern with one black and three white discs, and

one pattern with four white discs.

This agrees with our previous findings, in Figure 3.3. Note that if we sum the
coefficients of each of the terms in the pattern inventory we will always obtain the
total number of orbits, since this polynomial is an algebraic representation of each
of the distinct orbits.

[n addition to finding the number of orbits, or equivalence classes, the following
theorem enables the number of colourings belonging to the same equivalence class
as any given colouring to be determined. Hence, the size of each equivalence class

can be found without listing all the individual colourings.

Definition 3.11 Let & be a finite group which acts on a set D. If d € D then the
stabilizer of d, denoted by Sta(d), is the set of all permutations ¢ € & which leave
d fixed. That is

Sta(d) = (g € Gig-d = d}.
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Theorem 3.4 (The Orbit-Stabilizer Theorem) Let (7 be a finite group which
acts on the finite set D. Then for each d € D the number of elements in Orb(d)
multiplied by the number of elements in Sta{d) 1s equal to the number of elements
in the group . That is

10rb(d)| % |Sta(d)| = |G].

Corollary 3.1 The number of elements in Orb(d), that is the size of the equiva-
lence class containing d, 1s given by

|Orb(d)| = T%ﬂ

In the following example the corollary to the Orbit-Stabilizer Theorem is used

to establish the size of each equivalence class formed from the 16 colourings of a

square tray given in Figure 3.3.

Example 3.7 Suppose we wish to calculate the size of each orbit for the colouring
problem of Example 3.3. It has already been established that there are 16 different
colourings which can be partitioned into six equivalence classes. Given that C1, C2,
6, C10, C12 and C16, from Figure 3.3, all belong to different equivalence classes
we wish to establish the size of their respective equivalence classes.

In order to apply Corollary 3.1 we require the elements of the group GG and the
stabilizers of each colouring. The group G is the set of rotational symmetries of a
square given previously. The stabilizers of each of the colourings C1, C2, C6, C10,
Cl12 and Cl16 are given in Table 3.2.

Applying Corollary 3.1 we find that the equivalence classes containing Cl and
C16 have one member cach, C2, C6 and C12 have four members each and C10 has

two members.
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Table 3.2: Description of the stabilizers for the six different patterns given in Ex-

ample 3.7.

Colouring | Stabilizer |Stal
| Cl {91,92, 93,94} | 4
C2 {o} 1
C'6 {91} 1
C'10 {91, 95} 2
C12 {91} 1
Cl6 {91,92,95,94} | 4

3.4 The Colouring Problem and Cross-over
Designs Subject to Final Period Dropout

In this section techniques for obtaining the number of equivalence classes contained
within a set, D, of implementable designs and their respective sizes are established
using results developed from the theory ot the colouring problem.

In order to apply the theory of the colouring problem, outlined in Section 3.3,
to our design problem it is necessary to define a group, 7, which will act on the set
of implementable designs in the same way as the rotational symmetries of a square
acts on the colourings given in Figure 3.3. Each of these rotational symmetries acts
on the empty square tray, that is the tray without any coloured discs, to give an
image which is 1dentical to itself. Therefore, the group we require will consist only
of those elements which, when they act on the planned design, will transform 1t into
itself. Also, in the colouring problem, since the coloured discs are to be placed at
the corners of the tray, each of the rotational symmetries is defined in terms of its
action on the set of vertices. This enables each of the colourings to be represented by
a mapping from the set of vertices to the set of colours. For our design problem to

be similar, since the dropouts occur in the final period of each treatment sequence,
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we require the group (7 to consist of elements defined in terms of an action on the
distinct treatment sequences and each implementable design to be represented by
a mapping from the set of distinct treatment sequences to the set of final period

dropouts.

Definition 3.12 Let the planned design d(t,m,n, p) be defined as the set R of m
distinct treatment sequences 71,73, ..., 7, where each of these treatment sequences

consists of a different arrangement of treatment labels.

Definition 3.13 Let the set of dropout identifiers be the set ' whose elements
are all the possible dropout totals which can occur in the final period of each distinct
treatment sequence of the planned design. Then C = {0,1,...,n}, where n is the
number of subjects allocated to each distinct treatment sequence of the planned
design.

Using this notation each implementable design can be represented by a mapping

from the set R to the set (' as follows
fodryre, oo rmt — {0,1,...,n}.
For instance, in Example 3.1 the mapping can be defined as follows
fi{r, 2} — {0,1}.

[t we let the implementable design d; be represented by the mapping f; then the

design dg; corresponds to the mapping fo; given by

for(r1) =0, for(re) = 1.

As in the colouring problem, it is now possible to apply the appropriate group
G to the set of implementable designs by considering the effect of each element
g € G upon each mapping. This leads to the following definition of the group of

permutations we require.
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Definition 3.14 Let G be a permutation group which acts on the set R of distinct
treatment sequences of a planned design. A permutation g, of the sequences, belongs
to G if and only if the planned design can be preserved by applying ¢ to the sequences

and then relabelling the treatments.

The following example illustrates how to find the elements of the group G.

Example 3.8 Let d(4,4,1,4) be the Williams square with treatment labels 0, 1,
2 and 3, given in Example 2.1.

Consider the following operations.

1. Permute the order of the treatment sequences using the permutation (r1rar37ry),

then
2. relabel the treatments using the permutation of the treatment labels (0123).

[f we apply these operations to the planned design we obtain the following.

01 3 2 30 2 1 01 3 2
1 2 0 3  (rrersra) 0 1 3 2 (0123) 1 2 0 3
- —

2310 1 20 3 2.3 10
30 2 1 2 31 0 30 2 1

The image of these operations is the planned design. Therefore, the permutation

of the treatment sequences (r;rarary) is an element of the group G.

Example 3.9 For the design in Example 3.8, consider the following operations.

1. Permute the order of the treatment sequences using the permutation

(r172)(r3)(r4), then
2. relabel the treatments using the permutation of the treatment labels (0321).

If we apply these operations to the planned design we obtain the following.
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0 1 3 2 1 2 0 3 01 3 2
? E—
2 3 1 0 2 3 10 1 2 0 3
' 30 2 1 3 0 2 1 23 10

Unlike the situation in Example 3.8, the image of the operations is not the
planned design. In addition, no further relabelling of the treatments can possi-
bly give the planned design. Therefore, we conclude that the permutation of the

treatment labels (r;73)(r3)(r4) is not an element of the group G.

When all the elements of the group G have been identified it is possible to
determine the umplementable designs which will give rise to identical performance

measures using the following definition of equivalence. '

Definition 3.15 Ior the planned design d(¢,m,n,p) any two implementable de-

signs dyzy and dy,y € D will be equivalent if and only if
digyy = g - dyzy for some g € G.

If we replace the square tray by the planned design, the set of vertices by the set
of distinct treatment sequences, the group of rotational symmetries by the group of
permutations of the distinct treatment sequences given in Definition 3.15 and the
set of colours by the set of dropout identifiers, then we can define a problem which
is directly analogous to the colouring problem. Therefore, the following results can

be derived directly.

Theorem 3.5 Let d(¢{,m,n.p) be a planned design, D its set of implementable
designs and ¢ a finite permutation group of the distinct treatment sequences of the
planned design which satisfies Definition 3.14. If the group G acts on the set [ then
the number of equivalence classes contained 1n D 1s given by

Ly

Gl e

[N (g)).
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The proot follows directly from Burnside’s Lemma (Theorem 3.1).

Theorem 3.6 Let d(¢,m,n,p) be a planned design, D its set of implementable
designs and G a finite group consisting of permutations of the distinct treatment
sequences of the planned design which satisfies Definition 3.14. If the group G acts

on the set D then the number of equivalence classes contained in D is given by

1
|Gl

Z(n T 1):\'(g);

9€G
where n denotes the number of subjects allocated to each distinct treatment sequence
and N(g¢) the number of cycles in g.

The proof follows directly from Theorem 3.2.

Theorem 3.7 Let D be the set of implementable designs formed by dropping one
or more subject in the final period of the planned design d(¢, m,n,p). Each design |
di € D can be represented by a set of mappings from the set of distinct treatment
sequences, R, to the set of dropout identifiers, C'. Let w be a weight function on €
and GG be a group of permutations of R which acts on D and satisfies Definition 3.14.
If the cycle index of G is Zg(s1, s9,...), then the polynomial which determines the
number of equivalence classes with each possible combination of dropout identifiers

is,

26 (2 wlel, Sl Sule -]

ceC cel ceC

and will be referred to as the equivalence class inventory.

The proof follows directly from that of Polya’s Theorem (Theorem 3.3).

Theorem 3.8 Let D be the set of implementable designs formed by dropping one
or more subject in the final period of the planned design d(¢,m,n,p) and let G be a

group of permutations which acts on D and satisfies Definition 3.14. Then for ecach
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d; € D the number of elements in Orb(d;), that is the size of the equivalence class

containing d;, is given by

G
[Orb(dg)1 s m

The proof follows directly from that of the Orbit-Stabilizer Theorem (Theorem 3.4).

In the next section these results are illustrated using designs of particular impor-

tance when examining the robustness of cross-over designs to final period dropout.

3.5 Illustrations

Example 3.10 Let d(4,4,n,4) be the design formed from the sequences of a
Williams square of side four having treatment labels 0, 1, 2 and 3 and initial treat-
ment sequence (0 1 3 2) in which n subjects are allocated to each treatment sequence.

The set, &2, of distinct treatment sequences consists of the following elements. ‘
rm1=0132 r,=1203, 3=2310 and r,=3021

The group G of permutations of the distinct treatment sequences which satisty

the conditions of Definition 3.14 is as follows.

G = {(r)(ro)(ra)(r4), (rirarary), (rirs)(rara), (rirarsr) .

Hence,

|Gl =4, N(g1) =4, N(g2) =1, N(g3) =2 and N(gy) = L.
Applying Theorem 3.6, the total number of equivalence classes 1s given by

1
Z[(n+1)“+(n+1)2+2(n+1)]. (3.4)
Table 3.3 lists the number of equivalence classes, calculated from expression

(3.4), for a range of values for n, the number of subjects allocated to each treatment

sequence.
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Table 3.3: The number of equivalence classes and implementable designs for designs

based on a single Williams square of side four with up to 12 subjects per treatment

sequence.

Number of subjects per | Number of implementable | Number of equivalence
treatment sequence, n. designs, |D]. classes.

1 16 6

2 81 24

3 256 70

4 625 165

5 1296 336

6 2401 616

7 4096 1044

8 6561 1665

9 10000 2530

10 14641 3696

11 20736 5226

12 28561 7189
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From Table 3.3 we observe that, by only having to obtain performance measures
for one member from each equivalence class, it is possible to reduce substantially
the amount of computation involved in evaluating the mean and variance of the
performance measures for each planned design. The reduction is particularly great
for large values of n. In fact, for the designs based on a single Williams square
of side four given in this example, we find that the computational reduction is
approximately three quarters.

In order to evaluate the performance measures for the planned design by only
evaluating the individual performance measures of non-equivalent designs, it s nec-
essary to identify one design from each of the equivalence classes and determine the
size of each class. The following example outlines how this can be achieved using

the equivalence class inventory defined in Theorem 3.7.

Example 3.11 Suppose we wish to find the equivalence class inventory for the
Williams design d(4,4, 1,4) whose set of implementable designs is given in Table
2.1.

The number of subjects allocated to each treatment sequence isn = 1. Therefore,

the set of dropout identifiers C' = {0, 1} and the weight function w is given by
w(0) = zo, w(l) = 2.
The group (' 1s the group of permutations given in Example 3.10 and the cycle index
of (G i1s given by
1 .
42 -
ZG(SH‘S'Z»&i) = Z('Sl +52+251) (33)
Applying Theorem 3.7, the equivalence class inventory 1s obtained by substitut-
o . — o ey — 212 o oA R fam (25
ing sy = xg+z1, $2 = 224 2? and sy = x5+ 2] Into the cycle index, equation (3.5).
Hence, the equivalence class inventory 1s
(oo 4+ )t + (@2 + 2D 4 2(a) + ) = 2f + zga + 2aiat -z + 2],

[xamining each of the terms in this expression we find that the design based

on a single Williams square d(4,4,1,4), subject to some probability of final period
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dropout, has a set of implementable designs with the following inventory of equiva-

lence classes.
1. One class of designs with four sequences each containing zero dropouts,

2. one class of designs with three complete sequences and one sequence containing

one dropout,

3. two classes of designs with two complete sequences and two sequences contain-

ing one dropout each,

4. one class of designs with one complete sequence and three sequences containing

one dropout each, and

5. one class of designs with four sequences each containing one dropout.

Having found the equivalence class inventory it 1s necessary to find one member |
from each equivalence class and the size of the class to which each of the designs
belong. For a small set of implementable designs, as in this example, 1t 1s possible ;
to list all the designs and establish whether they are equivalent using the conditions
for equivalence given in Definition 3.15. Doing this we find that the set of 16

implementable designs consists of the following six equivalence classes.

- {doooo}

1

2. {(11000, do100, doo1o, doom}
3. {d1100, o110, doo11, d1001 }
4. {d10107d0101}

5. {di110, d1101, 1011, dor11 }
6. {di111}
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For planned designs involving larger numbers of subjects it will be impractical
to list all the implementable designs. An alternative approach, which is illustrated
in the following example, is to search for the appropriate number of non-equivalent
designs and find the size of the equivalence class to which each of these belongs using

Theorem 3.8.

Example 3.12 Consider the Williams design d(4,4,1,4) of Example 3.11. We
wish to identity one member from, and the size of, each of the equivalence classes
into which its set of implementable designs can be partitioned.

There are 16 designs in the set of implementable designs and from Table 3.3 we
observe that these can be partitioned into six equivalence classes. From the equiv-
alence class inventory obtained in Example 3.11, we observe that these equivalence
classes fall into five distinct categories, one for each of the possible combinations of
dropout identifiers. A description of the equivalence class inventory has been given
in Example 3.11.

Using this information we find that the following implementable designs all be-

long to different equivalence classes.

dOOOO dOOOl dOOll dOlOl dOlll dllll-

In order to apply Theorem 3.8 and establish the size of the six equivalence classes
to which each of the designs belongs it is necessary to find the stabilizers of each of
these designs with respect to the group . The group (' is the group of permutations
of the distinct treatment sequences given in Example 3.10. The stabilizers of each
of these implementable designs and the size of their respective equivalence classes 1s

given in Table 3.4 whose results all agree with our previous findings.

Example 3.13 Let d(4,8,n,4) be the design based on a complementary pair of
Williams squares with treatment labels 0, 1, 2 and 3, initial sequences (0 1 3 2) and
(320 1) and n subjects allocated to each treatment sequence.

The set, R, of distinct treatment sequences consists of the following elements.

o e opn e ™
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the six non-equivalent designs given in Example 3.12.

Table 3.4: Table showing the stabilizers and the size of the equivalence classes for

on the elements rq,. ..

Implementable design, | Sta(d;) |Sta(d;)| | Size of equivalence
d;. class containing d;.
doooo {91,92,%,9‘4} 4 1
dooo1 {91} 1 ‘
doo11 {91} 1 4
d0101 {91,93} 2 2
dOlll {91} 1 4
diin {91,92,93,94} 4 1
P =0132 7 =1203, r3=2310, r,=3021,

rs=3201, re =0312,

g1 =
g =
gz =
g4 =
gs =
g =
g7 =

gs =

r,=1023, andrg =2130.

The group G is the group of permutations of the treatment sequences which act
,Ts, I such a way that the planned design can be preserved
by applying the permutation and then relabelling the treatments. Therefore, the

group (& consists of the following permutations, written in cycle notation.

ri)(ra)(rs)(ra)(rs)(re) (77) (rs)

r179TaT4)(TsT6eT7Ts)
717“3)(7“27 1)(7 57'7>(’F67‘8)

(
(
(
(rirarars)(rsrsrars)
(r
(r
(r
(r
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Hence,

Gl =8, N{g) =8, Ng2) =2, N(g3) =4, N(g4) = 2,
1\/(g5> = 4./ jV(gG) — 4, [\/(97) = 4 and [\/(g8> = 4.

Applying Theorem 3.6 we find that the total number of equivalence classes is given

by

é—[(n+l)8+5(n+ 1)* +2(n+1)%. (3.6)

Using this expression it is possible to find the total number of equivalence classes

for experiments using designs based on a complementary pair of Williams squares
with any suitable number of subjects allocated to each of the distinct treatment
sequences. The number of equivalence classes together with the total number of

implementable designs which exist for each size of experiment considered are given

in Table 3.5. Examining these we observe that there will be a considerable saving
when calculating the performance measures if only one member from each of the i
equivalence classes need be used. In fact, we observe that for designs based on a

complementary pair of Williams squares of side four the total number of equivalence

m— B s W e

classes 1s approximately one eighth of the total number of implementable designs
for each size of experiment considered.
As before, in order to calculate performance measures for the planned design it

is necessary to identify one design from each equivalence class and the size of the

equivalence class to which each of these designs belongs. For example, when n = 1
we observe from Table 3.5 that the number of implementable designs 1s 256 and
that these can be partitioned into 43 equivalence classes. Therefore, in order to
evaluate the performance measures as efficiently as possible, 1t is necessary to find
43 non-cquivalent designs and the size of the equivalence class to which each of these
belongs.

To assist this process it is useful to obtain the equivalence class inventory. In
order to obtain this we require the cycle index of G. This is given by

. 1 y - -
Z(;(Sl, S92, .54) = 5(5? -+ DS;} + ZSi) (3 (')
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Table 3.5: The number of equivalence classes and implementable designs for designs
based on a complementary pair of Williams squares with up to six subjects per

treatment sequence.

Number of subjects per | Number of implementable | Number of equivalence
treatment sequence, n. designs, |D]. classes.

1 256 43

2 6561 873

3 65536 3356

4 390625 49225

5 1679616 210771

6 5764801 722113

If C is the set of dropout identifiers {0,1} and the weight function w is given by

w(0) = zg, w(l) =z,

Ty A 1o e o . P 2 ok A Y o

then applying Theorem 3.7 the equivalence class inventory is obtained by substitut-
ing s; = zg + 21, $o =z + a? and s4 = 2§ + z} Into equation (3.7). Therefore, the

equivalence class inventory is

1 412
gl@o+21)” +5(zf + 21)" + 2(ep + 27)" =

8 7 6.2 | ~.5.3 44 3.5 | p.2.6 | 7 8
g+ zozy + bzgr] + Tegr] + 13zz] + Tzpz] + bzgzy + oz + 27

Examining each of the terms in this expression we find that the 43 equivalence
classes can be divided into nine categories as shown in Table 3.6.

[t is necessary to calculate one member from each of the 43 equivalence classes
described in Table 3.6. Having done this the size of each of their respective classes
can be determined by obtaining the stabilizer {for each design and applying Theorem

3.8.
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Table 3.6: The interpretation of the equivalence class inventory of Example 3.13.

Number of equivalence | Number of treatment sequences containing
classes. zero dropouts one dropout.
1 8 0
1 7 1
6 6 2
7 5 3
13 4 4
T 3 3
6 2 6
1 1 7
1 0 8

Example 3.14 Let d(4,12,n,4) be the design based on a complete set of mutually
orthogonal Latin squares of side four with treatment labels 0, 1, 2 and 3 and n
subjects allocated to each distinct treatment sequence.

The set, R, of distinct treatment sequences consists of the following elements.

ry=0123, r,=1032 2301, ry=3210,

\3
w
Il

7‘520312, T6:l203’ 7'7:2130, 7’8:3021,

TR . ST W 1 et S . S s o et 4 Py cn e

rg=0231, r¢=1320, r{;, =2013 and r,=3102.

The group G consists of the following permutations of the distinct treatment

sequences, written in cycle notation.

g1 = (r)(r2)(ra)(ra) (r3)(re ) (77) (75) (79) (710) (1) (712)

)
g2 = (7'17‘2)(7‘37‘4>’576)(7'”7'8)(7‘97‘1())(7‘117“12)
57‘7>(7"G7'8)<7‘97'11)(7‘107'12>
5 ) (

-
578) (1677 ) (rer12) (110711 )

(
gz = (rira){rarg)(
(

g4 = (7'1711)(7'27'3) T
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95 = (T17“ 7“9)(797“8T11)(7“37‘67"12)(7‘47'77"10)
gs = (rirer1n)(rarer)(rarsrio)(rarsriz)
gr = (ryreryy)(rarerio)(rarsre) (rarsrin)
gs = (rirsmio)(rarsri)(rarerin ) (rarers)
o = (7“1797 (T°T11T8)(7“57‘1276 (7"47‘107" )
gi0 = (riryors)(rariars)(rariry ) (rarers)
gn = (rirure)(rerery)(rariors)(rariars)
gi2 = (rirprs)(rariores)(rarers ) (rariirs)

Hence,

|G| =12, N(g1) =12, N(g2) =6, N(gs) =6, N(gs) =6, N(gs) =4, N(gs) = 4,

N(gr) =4, N(gs) =4, N(go) =4, N(g10) =4, N(gn1) =4 and N(g12) = 4.
Applying Theorem 3.8, we find that the total number of equivalence classes 1s
given by

Z

%[(n + D)2 +3(n+1)° +8(n+ 1) (3:8)

The number of implementable designs which can be formed by dropping one
or more subjects in the final period of the planned design of this example 1s given
by |D] = (n+ 1)'?. Using expression (3.8) the number of equivalence classes into

which the implementable designs are partitioned can be evaluated. These are listed S

T TR, AR 1T \ A oy e e e O e e § Wby 3 AT e T

in Table 3.7 for a range of values of n, the number of subjects allocated to each
sequence, which might realistically be used in cross-over experiments.

Examining Table 3.7 we observe that, as before, there will be a considerable sav-
ing if the mean and variance of the performance measures for each of the planned
designs is evaluated by considering only one member from each of the equivalence
classes rather than evaluating the individual performance measures for all the im-
plementable designs. In each of the planned designs listed in Table 3.7 the total
number of equivalence classes is approximately one twelfth of the total number of

implementable designs.
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Table 3.7: The number of equivalence classes and implementable designs for designs
based on a complete set of mutually orthogonal Latin squares of side four and up

to three subjects per treatment sequence.

Number of subjects per | Number of implementable | Number of equivalence
treatment sequence, n. designs, |D]. classes.

1 4096 368

2 531441 44523

3 16777216 1399296

3.6 Discussion

In this chapter methods have been presented for reducing the amount of compu-
tation required to assess the performance of a cross-over design, when final period Lo

dropout may occur, using the criteria proposed in Chapter 2. These allow the mean i

and variance of the individual performance measures of the implementable designs
to be evaluated by obtaining the size of each of the equivalence classes into which the
implementable designs can be partitioned and an assessment of only one member
from each. Consequently, 1t is possible to reduce the amount of computation re-
quited. However, for certain designs involving relatively small numbers of subjects,

this reduction is not as large as we would like it to be. For instance, consider the

T A NRL k. SR S 1 o Ay e ey mm

complete set of mutually orthogonal Latin squares of Example 3.14. For a relatively
small study, that is one involving just 24 subjects, even after reducing the necessary
computation to considering only the non-equivalent designs, to obtain the summary
measures for the design’s performance, it will be necessary to calculate performance
measures for 44,523 different implementable designs. Therefore, even after the re-
duction made available by using the results presented in this chapter, a great deal of
computation is required to obtain the summary measures for this particular design.

This will be true for any planned design which involves a large number of distinct
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treatment sequences. The total number of implementable designs 1s considerably

larger for designs involving the same numbers of subjects but larger numbers of dis-

tinct treatment sequences. For instance, when 24 subjects are allocated to a single
Williams square, a complementary pair of Williams squares or a complete set of
mutually orthogonal Latin squares of side four, the total numbers of implementable
designs are respectively, 2401, 65536, or 531441. Consequently, even after reducing
the necessary calculations to just the non-equivalent designs, the amount of com-
putation required to evaluate the summary measures for designs involving a large
| number of distinct treatment sequences is considerable.

There s an additional difficulty involved in evaluating the performance measures
for planned designs which give rise to a large number of implementable designs. To
obtain the mean and variance of the individual performance measures it is necessary
to obtain the individual probabilities for each of the implementable designs, for the
particular probability of final period dropout being considered. If there are a large
number of implementable designs, then each of these individual probabilities will be i
very small. In fact for certain designs these probabilities may be so small that it is

difficult to accurately compute them, given the limitations regarding the smallest

. e, 6 i v Wy 1 et o A T

possible number that a computer can accurately store.
Considerable computational reductions can be achieved by using the methods de-

scribed In this chapter when evaluating the mean and variance of the performance

I k. SIS R s

measures of a planned design. A computer program incorporating the methods de-
scribed in this chapter and developed at my instigation by B. D. McKay (Australian
National University) has been used in the comparative studies presented in Chap-
ters 4 and 5. However, for designs involving large numbers of distinct treatment
sequences, or large numbers of subjects allocated to a relatively small number of
distinct treatment sequences, this method of assessing a planned design still incurs

a large amount of computation.
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Four Treatment, Four Period

Designs

4.1 Introduction

When planning any cross-over trial, before selecting an appropriate design for the

study i1t 1s usual to consider the following:
(1) the number of treatments to be investigated,
(i) the maximum number of treatment periods available,

(ii1) the maximum number of treatment sequences which can reasonably be ex-

pected to be administered correctly, and
1v) the maximum number of subjects available for the study.
J 3

Experiments in which cross-over designs are ecmployed may be very different in
terms of the number of treatments to be compared and the resources available. Much
work has already been carried out to determine the most appropriate design(s) to
employ for experiments with different requirements. Frequently, the recommended

design 1s the design which 1s optimal, over the set of competing designs, for the

96
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estimation of the direct and/or carry-over treatment comparisons under some ap-
propriate optimality criterion such as A-optimality.

| As stated previously in Section 2.1, selecting the appropriate design to use is
one of the most crucial decisions made during the planning stage of any cross-over
trial. At present, this decision is made without considering how the efficiency of
the treatment comparisons, obtained for the various competing designs, might be
affected 1f subjects drop out during the study. This happens even when information
from previous, similar studies indicates that there is a real possibility of subjects

dropping out during the later stages of the trial.

In Chapter 2, a method for assessing the performance of cross-over designs has

been established, when it is believed a priori that dropouts may occur during the fi-
nal period. In Chapter 3 we have shown how the considerable computation involved
in evaluating these performance measures can be reduced using results from com-
binatorial theory. In the next two chapters, this methodology is used to study the
performance of frequently employed cross-over designs when final period dropout P
may occur. It is a widely held belief that the longer a chinical trial lasts, the greater
will be the probability of subjects dropping out, for reasons unrelated to the treat-
ments administered. Consequently, it is uncommon and unwise for cross-over trials
imvolving a large number of treatment periods to be contemplated. Often the max-

imum number of treatment periods believed to be viable 1s four. In this chapter

L R e RS bt T i - m s . oty . e e Ml

we consider the performance of cross-over designs involving four treatment periods .
since, of the designs most commonly used in medical trials, it is these designs which
appear to be most vulnerable to subjects dropping out during the final period. In
Chapter 5 the performance of three period designs subject to final period dropout
is addressed.
The main purposes of the study described in the current and next chapter are

as follows:

L. To examine the robustness of the most frequently emploved cross-over designs

to final period dropout with probability, §. Also to consider the sensitivity of
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the mean performance measures to slight increases or decreases in the value

of 6.

2. To compare the relative performance measures of competing designs and hence
to recommend which designs should be used for studies in which final period

dropouts are anticipated.

3. To investigate the “best” last period to employ in designs recommended for
studies in which final period dropouts are anticipated. By “best” we mean the
final period which enables the design to possess the maximum mean pertor-
mance measures and the minimum variances for estimating the direct and/or

carry-over treatment comparisons.

‘ 4. To investigate the properties of those designs which are more robust to final

period dropout than others. !

Throughout these chapters we adopt the simple carry-over model (1.1) for the

observations. If a different model is adopted, the design assessments will yield dif-

s A i 0 By e, e A o A 55

ferent performance measures and this may alter the recommendations concerning
design selection. In addition, we assume throughout that the purpose of the ex-
periments in which these designs are to be employed 1s to estimate all the pairwise =

differences amongst the ¢ treatments giving equal importance to each comparison.

Hence, the contrasts of interest used are all the pairwise direct and first-order carry-
over treatment comparisons. If different sets of contrasts are considered, or if some
contrasts are given more importance than others, then the overall conclusions con-
cerning design selection may again be different.

We begin, in the following section, by defining uniformly balanced designs. In
subsequent sections we examine designs for four treatments and four periods of three
different types: designs derived from a single Williams square, designs built from
pairs of such squares and designs based upon sets of mutually orthogonal Latin

squares. We investigate the performance of the designs for different values of 0. A
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comparison is then made of the different types of designs and recommendations are

given on which designs to employ when final period dropouts may occur.

4.2 Uniform Balanced Designs

In Sections 2.5 and 2.6 a Williams square of side four and 16 subjects was used
to illustrate the design assessment procedures proposed in this thesis. This design

possesses each of the following properties:

Definition 4.1 A design is uniform on the periods if, in each period, each

treatment occurs equally often.

Definition 4.2 A design is uniform on the subjects if each subject receives each

treatment equally often.

Definition 4.3 A design is uniform if it is uniform on both subjects and periods.

e S et  § g ik B A T 201

Definition 4.4 A design is balanced if each treatment is preceded equally often
by every other treatment but never by itself.
Hedayat and Afsarinejad (1978) showed that, over the class of uniform designs in

which p = t, a uniformly balanced design (that is, both uniform and balanced) is uni-

A Wl ST ST 1.t 4y o

versally optimal for the estimation of the direct and first-order carry-over treatment
effects under the simple carry-over model (1.1). Thus, the particular Williams de-
sign of Sections 2.5 and 2.6 1s universally optimal because it is a uniformly balanced
design. For this reason it is a design frequently employed in cross-over studies.
The class of cross-over designs over which Hedayat and Afsarinejad were able
to establish universal optimality is, as commented on by several authors, somewhat
restrictive. Cheng and Wu (1980) and Kunert (1983, 1984) have attempted to relax
these conditions. Unfortunately there has been only limited success, particularly

for the estimation of direct treatment effects which is often of greater importance
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than the estimation of carry-over effects. Furthermore, the classes of designs over
which these additional optimality results have been established involve additional
treatment periods. Since it is undesirable to consider designs which have a large
number of treatment periods for studies in which dropouts are anticipated, these
results are of little benefit to the problem addressed in this thesis.

i For studies involving four treatments there are good reasons for considering uni-
form balanced designs. They do not involve too many treatment periods and, if
the probability of dropout 1s very small, there is a fairly high probability that the
implemented experiment will be the planned design and hence a universally optimal
design.

In the following sections, we examine the robustness to final period dropout of

a varlety of uniform balanced designs of practical size. In addition, for designs of {
an equal size we recommend which of the designs should be used when final period %
P ‘- !

dropouts are anticipated. o
|

A 4.3 Examination of Williams Square Designs

In this section, the results are presented of an investigation into the performance
of designs based on a Williams square of side four involving up to 48 subjects, for

estimating direct and carry-over treatment effects. There are 12 different designs to

consider, namely the designs in which n, the number of subjects allocated to each
treatment sequence, takes each of the values 1,...,12. For each design Tables 4.1.1
- 4.1.12 (given on pages 101-106) contain the mean and variance of the performance
measures X, and Yy under the A-criterion, over the range of possible § values 0 <
¢ < 1 in steps of 0.1. The tables provide a summary of the performance of the
average varlance of the direct and carry-over treatment effects for each of the 12
planned designs.

[igures 4.1 and 4.2 show how F[X;]0] and [7[Y;]6] change with 0 for two of these

designs, namely, those involving 24 and 48 subjects. The bars represent ][N,|0] +
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Table 4.1: Mean and variance of the performance measures Xy and Y,, under the

A-criterion, for designs based on a Williams square of side four and < 48 subjects.

Table4.1.1: t=4, m=4,n=1,p=4

g E[X410] | Var[X,|6] EY,|6] Var[Yy]0]
0.0 1.82 0.00 1.25 0.00
0.1 1.50 0.24 1.01 0.13
0.2 1.18 0.43 0.78 0.21
0.3 0.87 0.49 0.57 0.23
0.4 0.60 0.45 0.39 0.20
0.5 0.38 0.34 0.24 0.15
0.6 0.21 0.21 0.13 0.09
0.7 0.09 0.10 0.06 0.04
0.8 0.03 0.03 0.02 0.01
0.940x107243x107° [ 25x%x107% | 1.7 x 1073
1.0 0.00 0.00 0.00 0.00

Table 4.1.2: t=4, m=4,n=2,p=4
6 | B[X4|0] | Var[Xy|0] | E[Yal0] | Var[Yy|d)
0.0 3.64 0.00 2.50 0.00
0.1 3.38 0.13 2.28 0.08
0.2 3.05 0.37 2.03 0.21
0.3 2.65 0.71 1.73 0.36
0.4 2.18 1.06 1.39 0.49
0.5 1.65 1.27 1.03 0.55
0.6 111 1.21 0.68 0.49
0.7 0.61 0.85 0.37 0.32
0.8 0.24 0.37 0.14 0.14
0.9 0.04 0.06 0.02 0.02
1.0 0.00 0.00 0.00 0.00
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Table4.1.3: t=4, m=4,n=3,p=4
0 | E[X4|0] | Var[Xul0] | E[Y4|6] | Var[Y|6)]
0.0 5.45 0.00 3.75 0.00
0.1 5.15 0.10 3.49 0.07
0.2 4.78 0.28 3.19 0.18
0.3 4.33 0.59 2.84 0.33
0.4 3.79 1.06 2.43 0.53
0.5 3.13 1.61 1.96 0.74
0.6 2.34 2.04 1.43 0.84
0.7 1.47 1.96 0.88 0.74
0.8 0.66 1.17 0.39 0.41
0.9 0.13 0.25 0.07 0.08
1.0 0.00 0.00 0.00 0.00

Tabled414: t=4 m=4,n=4,p=4
0 | E[X4]0] | Var[X,|0]) | E[Yal0] | Var[Ya]d]
0.0 7.27 0.00 5.00 0.00
0.1 6.90 0.10 4.68 0.07
0.2 6.46 0.26 4.32 0.17
0.3 5.95 0.53 3.91 0.32
0.4 5.33 0.97 3.43 0.53
0.5 4.58 1.62 2.87 0.79
0.6 3.63 2.40 2.22 1.03
0.7 2.50 2.86 1.48 1.10
0.8 .26 2.21 0.73 0.77
0.9 0.28 0.61 0.16 0.20
1.0 0.00 0.00 0.00 0.00

R
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Table4.1.5: t=4, m=4,n=5p=4
o | BLxA0) | VarlXalo] | £[val6] | Var[valo
0.0 9.09 0.00 6.25 0.00
0.1 8.65 0.11 5.87 0.08
0.2 8.14 0.27 5.44 0.18
0.3 .54 0.53 4.96 0.33
0.4 6.84 0.94 4.41 0.54
0.5 5.98 1.58 3.76 0.81
0.6 4.91 2.49 3.00 1.12
0.7 3.57 3.42 2.11 1.35
0.8 1.97 3.26 1.13 1.14
0.9 (.49 1.13 0.27 0.36
1.0 0.00 0.00 0.00 0.00

Table4.16: t=4, m=4,n=6,p=14.

0 | E[X406] | Var(Xa6) | E[Y]8] | Var[Y,i)
0.0 10.91 0.00 7.50 0.00
0.1 10.39 0.12 7.06 0.08
02| 9.80 0.29 6.56 0.20
03] 9.12 0.54 6.01 0.3
0.4 8.32 0.94 5.37 0.56
05| 7.36 1.57 4.63 0.83
0.6| 6.16 2.52 3.71 1.18
0.7 4.64 3.73 2.75 1.51
0.8| 2.73 4.16 1.56 1.46
0.91 0.76 1.80 0.42 0.57
1.0| 0.00 0.00 0.00 0.00
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Table 4 1.7 t=4, m=4,n="7p=4.
0 | B[X4]0] | Var[Xy|0] | E(Y4l0] | Var[Yy|6]
0.0 12.73 0.00 8.75 0.00
0.1 12.14 0.13 8.25 0.09
0.2 11.47 0.31 7.68 0.21
0.3 10.70 0.58 7.05 0.37
0.4 9.80 0.97 6.33 0.59
0.5 8.72 1.59 5.50 0.87
0.6 7.39 2.55 4.53 1.23
0.7 5.70 3.90 3.38 1.62
081 3.53 4.87 2.01 1.73
0.9 1.08 2.57 0.59 0.80
1.0 0.00 0.00 (.00 0.00

Table418 t=4, m=4,n=8 p=4
0 | E[X,4]0] | Var[X4|0] | E[Y4]0] | Var[Yy|0]
0.0 14.55 0.00 10.00 0.00
0.1 13.88 0.14 9.43 0.10
0.2 13.13 0.34 8.80 0.23
0.3 12.27 0.62 8.09 0.40
0.4 11.27 1.02 7.29 0.63
0.5 10.07 1.64 6.36 0.92
0.6 8.61 2.60 5.28 1.29
0.7 6.75 4.03 4.01 1.71
0.8 4.33 5.42 2.47 1.95
0.9 1.44 3.39 0.79 1.05
1.0 0.00 0.00 0.00 0.00
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Table4.19: t=4,m=4,n=9,p=4

6 | E[X4|0] | Var[X4|0] | E[Y4|0] | Var[Y|0]
0.0 16.36 0.00 11.25 0.00
0.1 15.63 0.16 10.62 0.11
0.2 14.79 0.37 9.92 0.25
0.3 13.84 0.66 9.13 0.44
04| 12.73 1.08 8.24 0.67
0.5 11.42 1.71 7.22 0.97
0.6 9.81 2.67 6.03 1.35
0.7 7.79 4.14 4.63 1.80
0.8 5.14 5.83 2.93 2.12
0.9 1.82 4.22 0.99 1.31
1.0 0.00 0.00 0.00 0.00
Table 4.1.10: t =4, m=4,n=10,p=4
0 | E[X4|0] | Var[X4|0] | E[Y4l0] | Var[Yy)|d]
0.0 18.18 0.00 12.50 0.00
0.1 17.37 0.17 11.81 0.12
0.2 ] 16.46 0.40 11.03 0.28
0.3 15.41 0.71 10.17 0.47
0.4 14.20 1.15 9.19 0.71
0.5 12.76 1.79 8.07 1.03
0.6 11.01 2.77 6.78 1.42
0.7 8.82 4.25 5.24 1.88
0.8 5.95 6.16 3.39 2.27
0.9 2.23 5.04 1.21 1.56
1.0 0.00 0.00 (.00 0.00

e
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Table 4.1.11: t =4, m=4,n=11,p=4
6 | E[X4)0] | Var[Xy|0) | E[Y4]0) | Var[Yyld]
0.0 20.00 0.00 13.75 0.00
0.1 19.12 0.18 12.99 0.13
0.2 18.12 0.43 12.15 0.30
0.3 16.98 0.76 11.21 0.50
0.4 15.66 1.22 10.14 0.76
0.5 14.10 1.88 8.93 1.08
0.6 12.21 2.87 7.52 1.49
0.7 9.85 4.38 5.86 1.97
0.8 6.75 6.43 3.85 2.40
0.9 2.66 5.82 1.45 1.80
1.0 0.00 0.00 0.00 0.00

Table 4.1.12: t=4, m=4,n=12, p=4.

0 | E[Xa|0] | Var[Xu|0] | B[Y216] | Var[vy)e]
0.0 21.82 0.00 15.00 0.00
0.1 20.86 0.20 14.18 0.14
0.2 19.78 0.45 13.27 0.32
0.3 18.55 0.80 12.25 0.54
0.4 17.12 1.29 11.10 0.81
0.5 15.44 1.98 9.78 1.15
0.6 13.40 2.99 8.26 1.56
0.7 10.87 4.52 6.47 2.06
0.8 7.55 6.66 4.31 2.52
0.9 3.10 6.55 1.68 2.03
1.0 0.00 0.00 0.00 0.00
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Iigure 4.1: Performance for direct treatment comparisons under the A-criterion

of single Willlams square designs for 24 and 48 subjects, where the bars denote

EIX 0] + /Var[X,6].
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E[Y,]0]
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Probability of Dropout

I'igure 4.2: Performance for carry-over treatment comparisons under the A-criterion

of single Willlams square designs for 24 and 48 subjects, where the bars denote

EYa10] £ /Var[Ya)6].
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/ Var[Xyl0] and E[Y;

‘ included to give an indication of the spread of the distributions for each value of 6.

= \/Var[Yd{@] respectively for each design. These have been

For larger values of #, the full extent of the bar is not given since it would extend
below the § axis.
From I'igures 4.1 and 4.2 we observe that, as expected, the mean values of both
X, and Yy increase as the number of subjects, n, allocated to each treatment se-
quence 1s increased. In each case we observe that, as § increases, there is a gradual
reduction in the mean values of X,; and Y, for each design. Note that, when the
! probability of final period dropout is anticipated to be § = 0.0, the set of 1mple-
y mentable designs, D, contains only one design which is the planned design. When
the probability of final period dropout is anticipated to be § = 1.0, D again con-
sists of only one design, namely the planned design with the entire final period
deleted, which is a disconnected design. The sudden and, in the case of the larger
designs, very rapid reduction in the mean values of both performances measures as
the value of § approaches 1.0 is explained by the fact that, in every case, the set of -
implementable designs, D, contains a number of disconnected designs.
g The spread of the distributions is always smaller when 8 is either very small or
very large. This 1s because, irrespective of the number of subjects allocated to the
design, the distribution of X, and Y, will always be dominated by those designs

with the greatest probability of being implemented. When 6 is small these are the

TR e SIS W kel Loy S i e s 55 Wy < e S S T

designs with the fewest number of dropouts and consequently the higher performance
measures. When § is large these are the designs containing a greater number of final
period dropouts and consequently the poorer performance measures; for a Williams
square of side four these are mainly disconnected designs.

Tables 4.2.1 - 4.2.12 (given on pages 111-116) contain the mean and variance of
the performance measures Xy and Yy, under the MV-criterion, for the same values
of 8 and for each size of design in turn. The tables provide a summary of the
performance of the maximum variance of the direct and carry-over treatment effects

for each of the 12 planned designs considered. As mentioned in Section 2.6, the
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performance measures obtained using either the A- or MV-criterion are related and
will be identical if the particular implementable design being evaluated is variance
balanced. A uniform balanced design is always variance balanced for the direct and
first-order carry-over pairwise treatment comparisons. Hence, when 6 = 0.0, all the
designs considered in this section will give equal mean performance measures for
both Xy and Y, based on either the A- or MV-criterion. However, when ¢ > 0 the
set of implementable designs will contain only a small number of variance balanced
designs. I'or example, for a design based on a Williams square of side four and 0 > 0,
the variance balanced designs are those designs in which the number of subjects
dropping out during the final period is the same for each treatment sequence. These
form only a very small proportion of all the implementable designs. It is therefore,
important to examine the performance of designs under both the A- and MV-criteria.
The mean values of X; and Y}, obtained under the MV-criterion, will always

be smaller than their corresponding A-criterion values irrespective of the planned
| design being assessed, see Section 2.6. By comparing the distributions of Xy and :

71 obtained using each criterion we can examine the differences between the mean

s = e ¢ B e e St T

‘ average variance of the treatment contrasts and the mean maximum variance of
the treatment contrasts. If these do not differ by much we can conclude that the
differences amongst the variances of the treatment comparisons obtained from the

implemented experiment should not be great. Comparing Tables 4.1 and 4.2 we

observe that, for small values of 8§, say 6 < 0.2, this difference is always small. For
example, for the design d(4,4,12,4) when ¢ = 0.2, the mean performance measures
for estimating the direct treatment comparisons under the A- and MV-criteria are
19.78 and 18.80 respectively. Note that the relative difference between the respec-
tive measures becomes smaller as the number of subjects allocated to the design
increases. This 1s true for both direct and carry-over treatment effects.

Figures 4.3 and 4.4 show how F[Xy|0] and E[Y}

0], obtained under the MV-
criterion, change with 0 for two of these designs namely those involving 24 and 48

subjects. As previously, the bars represent E[Xy|0] + /Var[Xy|0] and E[Y,]0] +
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Table 4.2: Mean and variance of the performance measures X; and Y}, under the

MV-criterion, for designs based on a Williams square of side four and < 48 subjects.

Table 4.2.1: t =4, m=4,n=1,p=4.

e R R

0 E[Xql0] | Var[X,]0] E[Y,16] Var[Y,]0]
0.0 1.82 0.00 1.25 0.00
0.1 1.39 0.36 0.94 0.19
0.2 1.03 0.49 0.68 0.25
0.3 0.72 0.47 0.47 0.22
0.4 0.47 0.37 0.31 0.17
0.5 0.29 0.24 0.18 0.11
0.6 0.15 0.13 0.10 0.06
0.7 0.07 0.06 0.04 0.02
0.8 0.02 0.02 0.01 0.01
0.9]26x102120x102]1.6x1072|78x 10"
1.0 0.00 0.00 0.00 0.00

Table 4.22: t =4, m=4,n=2,p=4
0 | BIX40] | Var[X,l0] | E[Y;]0] | Var[Yy|0]
0.0 3.64 0.00 2.50 0.00
0.1 3.19 0.28 2.14 0.16
0.2 2.74 0.59 1.80 0.31
0.3 2.26 0.89 1.46 0.42
0.4 1.77 1.07 1.12 0.48
0.5 1.27 1.06 0.79 0.44
0.6 0.81 0.85 (.49 0.33
0.7 0.42 0.50 0.26 0.19
0.8 0.16 0.19 0.09 0.07
0.9 0.02 0.03 0.01 0.01
1.0 0.00 0.00 0.00 0.00
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Table 4.2.3: t =4, m=4,n=3,p=4.
0 | B[Xy)0] | Var[Xy]0] | E[Y4]0) | Var[Yyd]
0.0 5.45 0.00 3.75 0.00
0.1 4.90 0.25 3.30 0.16
0.2 4.37 0.55 2.88 0.31
0.3 3.80 0.92 2.44 0.47
0.4 3.7 1.33 1.99 0.61
0.5 2.48 1.62 1.52 0.68
0.6 175 1.64 1.05 0.63
0.7 1.03 1.26 0.61 0.46
0.8 0.43 0.61 0.25 0.21
0.9 0.08 0.10 0.04 0.03
1.0 0.00 0.00 0.00 0.00

Table4.24: t =4, m=4,n=4,p=4
0 | BLXa0) | Varlxo] | BLvalo) | Varlvile)
0.0 .27 0.00 5.00 0.00
0.1 6.60 0.26 4.45 0.17
0.2 5.97 0.56 3.94 0.34
0.3 5.30 0.96 3.41 0.52
0.4 4.55 1.43 2.85 0.69
0.5 3.70 1.90 2.26 0.81
0.6 2.77 2.18 1.65 0.85
0.7 1.77 2.00 1.04 0.72
0.8 0.83 1.20 0.48 0.40
0.9 0.17 0.25 0.10 0.08
1.0 0.00 0.00 0.00 0.00
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Tabled4.25 t=4, m=4n=5p=4
§ | B[Xy|0] | Var[X,|0] | E[Y;]0) | Var[Yy]0]
0.0 9.09 0.00 6.25 0.00
0.1 8.31 0.28 5.60 0.19
0.2 7.58 0.59 5.00 0.37
0.3 6.79 1.02 4.37 0.57
0.4 5.90 1.54 3.70 0.76
0.5 4.91 2.09 3.00 0.92
0.6 3.80 2.54 2.26 1.00
0.7 2.57 2.61 1.49 0.93
0.8 1.30 1.85 0.74 0.61
0.9 0.30 0.48 0.17 0.15
1.0 0.00 0.00 0.00 0.00

Table 4.2.6: t =4, m=4,n=6, p=4.

0 | E[X400] | Var[Xul6) | E[Y4]0) | Var[Y,|d]
0.0 | 10.91 0.00 7.50 0.00
0.1| 10.01 0.30 6.76 0.21
02 9.18 0.64 6.05 0.41
0.3 827 1.10 5.32 0.63
0.4 | 7.25 1.66 4.55 0.84
05| 6.11 2.27 3.74 1.02
0.6 | 4.82 2.83 2.87 1.14
071 3.38 3.09 1.96 1.11
0.8 1.82 2.48 1.03 0.82
0.9 0.46 0.77 0.26 0.24
1.0 0.00 0.00 0.00 0.00
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Table4.2.7. t=4, m=4,n="Tp=4
0 | BlX40) | Var[X40) | E[Y4]0] | Var]Yy0]
0.0 12.73 0.00 8.75 0.00
0.1 11.72 0.32 7.91 0.23
0.2 10.78 0.70 7.11 0.45
0.3 9.75 1.20 6.28 0.69
0.4 8.60 1.79 5.40 0.92
0.5 7.31 2.46 4.47 1.12
0.6 5.84 3.10 3.48 1.26
0.7 4.20 3.49 2.43 1.26
0.8 2.37 3.06 1.34 1.00
0.9 0.65 1.12 0.36 0.34
1.0 0.00 0.00 0.00 0.00

Table 42.8: t=4 m=4,n=28, p=4.

0 | BIX4J6) | VarlX,0] | B(Yal0) | Var[¥il6]
0.0 14 .55 0.00 10.00 0.00
0.1 13.43 0.35 9.06 0.25
0.2 12.38 0.76 8.17 0.49
0.3 11.23 1.29 .24 0.75
04 9.95 1.93 6.25 1.00
0.5 8.50 2.65 5.20 1.23
0.6 6.86 3.35 4.08 1.38
0.7 5.01 3.84 2.90 1.40
0.8 2.94 3.57 1.65 1.17
0.9 0.87 1.50 0.48 0.46
1.0 0.00 0.00 0.00 0.00
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Table 42.9: t =4 m=4,n=9,p=4.

8 | B[X40] | Var[X,4|0] | E[Y4]0] | Var[Y,]6]
0.0 16.36 0.00 11.25 0.00
0.1 15.14 0.38 10.22 0.27
0.2 13.99 0.82 9.23 0.54
0.3 12.72 1.39 8.19 0.81
0.4 11.29 2.07 7.10 1.08
0.5 9.69 2.84 5.93 1.33
0.6 7.88 3.61 4.69 1.50
0.7 5.83 4.17 3.37 1.54
0.8 3.51 4.02 1.97 1.32
0.9 1.11 1.91 0.61 0.58
1.0 0.00 0.00 0.00 0.00

Table 4.2.10: t =4, m=4, n=10, p=4.
6 | B[X,|0] | Var[X4|0] | E[Ys]0] | Var[Yal6]
0.0 18.18 0.00 12.50 0.00
0.1 16.85 0.40 11.37 0.29
0.2 15.59 0.89 10.29 0.58
0.3 14.20 1.49 9.15 0.88
0.4 12.64 2.22 7.94 1.17
0.5 10.88 3.04 6.66 1.43
0.6 8.90 3.86 5.29 1.62
0.7 6.65 4.49 3.84 1.67
0.8 4.09 4.44 2.29 1.46
0.9 1.36 2.33 0.75 0.70
1.0 0.00 0.00 0.00 0.00
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Table 4.2.11: t=4, m=4,n=11,p=4
0 | E[X40] | Var[X,0] | E[Y;]0] | Var[Yy)0]
0.0 20.00 0.00 13.75 0.60
0.1 18.56 0.43 12.52 0.32
0.2 17.19 0.95 11.34 0.62
0.3 15.68 1.60 10.11 0.94
0.4 13.98 2.37 8.79 1.26
0.5 12.08 3.24 7.39 1.54
0.6 9.92 4.12 5.90 1.74
0.7 7.46 4.81 4.31 1.80
0.8 4.67 4.82 2.61 1.59
0.9 1.63 2.75 0.89 0.82
1.0 0.00 0.00 0.00 0.00
Table 4.2.12: t=4, m=4,n=12,p=4
6 | B[X40) | Var[X,0] | E[Y2]0) | Var[Yy6]
0.0 21.82 0.00 15.00 0.00
0.1 20.28 0.46 13.68 0.34
0.2 18.80 1.01 12.40 0.67
0.3 17.16 1.70 11.06 1.01
0.4 15.33 2.51 9.64 1.34
0.5 13.27 3.44 8.13 1.64
0.6 10.93 4.38 §.51 1.86
0.7 8.28 5.13 4.78 1.92
0.8 5.25 5.19 2.94 1.71
0.9 1.91 3.16 1.04 0.94
1.0 0.00 0.00 0.00 .00
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I'igure 4.3: Performance for direct treatment comparisons under the MV-criterion

of single Williams square designs for 24 and 48 subjects, where the bars denote

E[Af{zw] + 4/ \f'ar[Xd ‘9}
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Figure 4.4: Performance for carry-over treatment comparisons under the MV-

criterion of single Williams square designs for 24 and 48 subjects, where the bars

denote F[Yy|0] + +/Var[Y;]0].
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y/ Var(Yy|0], and are included to give an indication of the spread of the distributions
for the associated value of #. Apart from the fact that the values obtained for the
mean performance measures for X; and Y, under the MV-criterion are always less
than for the A-criterion, the observations made concerning the general trend of X
and Yy as 0 changes when obtained under the A-criterion all continue to apply here.

Each of the planned designs obtained by allocating an increasing number of
subjects to the treatment sequences of a Williams square of side four gives rise to
a number of disconnected implementable designs, Dy. It is necessary, therefore,
to examine P(Dp), the probability of implementing a disconnected design, when
considering the robustness to final period dropout of each of these designs. The
distribution of P(Dg) can be investigated for each design by applying equation

(2.1) to the set of disconnected designs arising from each planned design and then

ik,

considering values of 0, in steps of 0.1 across 0 < # < 1. The values of P(Dy)
are given in Tables 4.3. in which all probabilities are listed correct to two decimal
places. x

[t is a reasonable assumption that, any design in which the probability of im-
plementing a disconnected design is greater than 0.2 represents too great a risk to
an experimenter. Fxamining the probabilities given in Table 4.3 we observe that,
when 0 < 0.2, the probability of realising an implemented design is below 0.2. When

0 > 0.9, however, the probability is consistently above 0.2 and in most cases con-
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siderably greater. Whenever the probability of subjects dropping out during the
final period of a four period study is anticipated to be as high as 0.9, it 1s unwise
to consider running a four period study. A three period study is a safer option.
In fact, it is very unlikely that a four period study would be seriously considered
if the expected number of subjects to be lost during the final period exceeds the
expected number completing the study, that is for ¢ > 0.5. Examining Table 4.3 we
observe that, provided the number of subjects available for the study is greater than
or equal to 12, then when 6 < 0.5 the probability of implementing a disconnected

design never exceeds 0.08.
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Table 4.3: Probability, P(Dy), of implementing a disconnected design for designs

based on a Williams square of side four and < 48 subjects.

P(Dy)

g | n=1|n=2 | n=3 n =4 n=>5 n==~06
0.0} 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.05 0.00 0.00 0.00 0.00 0.00
0.2 0.18 0.01 0.00 0.00 0.00 0.00
0.3 0.35 0.04 0.00 0.00 0.00 0.00
0.4 0.52 0.12 0.02 0.00 0.00 0.00
0.5 0.69 0.26 0.08 0.02 0.01 0.00
0.6 0.82 0.45 0.21 0.08 0.03 0.01
0.7 0.92 0.67 0.42 0.25 0.13 0.07
0.8 0.97 0.86 0.71 0.54 0.40 0.28
0.9 0.99 0.98 0.94 0.88 0.81 0.73
1.0} 1.00 1.00 1.00 1.00 1.00 1.00

P(Dy)

g | n=7T | n=8 | n=9 | n=10 | n=11 | n=12
0.0 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.00 0.00 0.00
0.3 ] 0.00 0.00 0.00 0.00 0.00 0.00
04| 0.00 0.00 0.00 0.00 0.00 0.00
0.51 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.00 0.00 0.00 0.60 0.00 0.00
0.7 0.04 0.02 0.01 0.00 0.00 0.00
0.8 0.20 0.13 0.09 0.05 0.04 0.03
0.9 065 0.58 0.50 0.43 0.37 0.32
1.0 1.00 1.00 1.00 1.00 1.00 1.00
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4.4 Combining Williams Squares

A design based on a Williams square of side four is the design, for four treatments
and four periods, which has the fewest number of distinct treatment sequences to
achieve uniform balance. (See Definitions 4.3 and 4.4.) If the total number of
subjects available is only four, which is inconceivable in practice, this is the only
uniform balanced design available. However, when the number of subjects available
is 4n, for some integer n > 1, this design consists of the same four treatment
sequences each replicated n times. If, rather than allocating increasing numbers of
subjects to the same set of treatment sequences, it is possible to increase the total
number of treatment sequences then other uniform balanced designs are available.
In this section we consider the performance under final period dropout of uniform
balanced designs formed by combining two Williams squares of side four which are
“different” in the way described below.

It 1s known that all Williams squares of side four obtained under some per-
mutation of the treatment labels are isomorphic. 1f we consider all the possible
isomorphic designs formed by permuting the treatment labels 0, 1, 2 and 3 of the
Williams square with initial treatment sequence (0 1 3 2) there are 24 different
possible arrangements. In a cross-over design the order of the treatment sequences
is unimportant since it does not affect the overall structure of the design. If the
order of the treatment sequences is ignored, there are only six arrangements which
have distinct sets of treatment sequences. These six squares, arranged such that the
treatment labels in the first column of each square appears in lexicographical order,
are given in Table 4.4.

Note that, each of the squares in Table 4.4 is a uniform balanced design. There-
fore, when the probability of final period dropout is not cousidered they are all
universally optimal over the class of uniform designs for estimating the direct and
carry-over treatment effects. In addition, when assessing the performance of each

design subject to final period dropout, the mean and variance of the performance
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Table 4.4: Six “different” Williams squares of side four.

i) 0 1 3 2 i) 0 3 1 2 (i) 0 2 1 3
1 2 0 3 10 2 3 1 0 3 2
2 3 1 0 2 1 3 0 2 3 0 1
3.0 2 1 32 0 1 3 1 2 0

(iv) 0 1 2 3 (v) 0 3 2 1 (vi) 0 2 3 1
1 3 0 2 1 2 30 1 3 2 0
2.0 3 1 2 0 1 3 2 1 0 3
3 2 1 0 31 0 2 3.0 1 2

measures Xy and Yy, obtained using either the A- or MV-criterion, are identical over
the entire range of § values, for designs involving equal numbers of subjects. The
same is true of the respective probabilities of implementing a disconnected design.

These results are unsurprising since the designs are all isomorphic under permuta-

B, € s y g 4 e S T

tions of the treatment labels. The mean and variance of the performance measures
Xy and Yy and the probabilities of implementing a disconnected design have already
been given in Section 4.3 for design (1) involving up to a maximum of 48 subjects. B

Any eight sequence design formed as the union of the sequences from any two of

the Williams squares in Table 4.4 is uniform balanced. Hence, when the probability

of final period dropout is not considered, each of these designs is universally optimal.

The same is true for any design formed by combining in this way any number of
squares. The question we address in the remainder of this section is: when combining
two or more “different” Williams squares, does the choice of squares atfect the
robustness of the design to final period dropout?

6
There are (

) = 15 different possible designs which can be formed by com-
2

bining any two of the Williams squares given in Table 4.4. Example 4.1 compares
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the relative performance of two of these designs.

Example 4.1 The performance of the following two planned designs will be com-
pared under their repeated use in cross-over trials with given probability, 8, of final

period dropout.

Design (b): The pair of Williams squares d(4,8,2,4) with treatment labels 0, 1,
2 and 3 and initial sequences (01 3 2) and (0 3 1 2). This is the design considered

previously in Example 2.5.

01 3 2 Note: The design is the union of the
1 2 0 3 sequences from squares (i) and (ii)

2 3 1 0 of Table 4.4.

3 0 2 1

0 3 1 2

I 0 2 3

21 3 0

3 2 0 1

Design (c): The pair of Williams squares d(4, 8,2,4) with treatment labels 0, 1,

2 and 3 and initial sequences (0 1 3 2) and (0 2 1 3).

01 3 2 Note: The design is the union of the
1 2 0 3 sequences from squares (i) and (iii)
2 3 1 0 of Table 4.4.

30 2 1

0o 2 1 3

10 3 2

2 3 0 1

31 20

The performance of each design in comparing all the direct and first-order carry-

over treatment effects can be summarised by applying equations (2.4), (2.5), (2.6)
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and (2.7) with the A-criterion to obtain the average variance of the direct and first-
order carry-over treatment effects. Summary measures for design (b) have already

been given in Table 2.6. Summary measures for design (c) are given in Table 4.5.

Table 4.5: Mean and variance of the performance measures X, and Y,, under the

A-criterion, for design (c), with 16 subjects.

0 | ELXA16] | Var[X4(0] | E[Yal6] | Var[Yil9]

0.0 7.27 0.00 5.00 0.00

0.1 6.92 0.08 4.69 0.06

0.2| 6.54 0.17 4.38 0.12

03| 6.14 0.28 4.04 0.18

04| 5.70 0.42 3.69 0.26
05| 522 0.59 3.31 0.34 2
0.6 4.68 0.79 2.90 0.42 . 1
0.7 | 4.06 0.96 2.46 0.47 ' {
0.8 | 3.36 0.94 1.96 0.43 N
0.9 2.61 0.51 1.46 0.22
10| 215 0.00 116 0.00 !

Comparisons of the graphs of the mean of the performance measures X, and Y

(defined in Definitions 2.4 and 2.5) against 0, for 0 < 0 < 1, for designs (b) and (¢},

are given in [Figures 4.5 and 4.6 respectively. From these we observe that each design
gives rise to identical mean performance measures correct to two decimal places for
f < 0.2. As the value of § increases beyond 6 = 0.4, however, each of the graphs
depicting the mean of X, and Y, begins to diverge. In each case it 1s design (b)
which gives rise to the larger mean performance measures. Consequently, the range
of values for the mean of X, or Y} as # varies is not as large for design (b) as it is
for design (c). For design (b) the ranges are 7.27-3.20 and 5.00-1.71 respectively,
while for design (c¢) they are 7.27-2.15 and 5.00-1.16 respectively. Note that when

¢ 1s small, and particularly when 8 = 0.3, the mean of Y} for design (c¢) marginally
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Probability of Dropout

Figure 4.5: Comparisons of the graphs showing the mean of X, under the

A-criterion, for designs (b) and (c).
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[Figure 4.6: Comparisons of the graphs showing the mean of Yy, under the

A-criterion, for designs (b) and (c).
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exceeds that obtained for design (b). The difference, however, is very small, never

exceeding 0.01, and therefore can reasonably be considered to be negligible.
Choosing between designs (b) and (c¢) using the approach of Section 2.8.1 based

on the A-criterion and using the evidence described above we recommend design (b)

rather than design (c) for studies in which final period dropout is anticipated.

We now compare the performance of the designs using equations (2.4), (2.5),
(2.6) and (2.7) and the MV-criterion. Summary measures for design (b), under
the MV-criterion, have been given previously in Table 2.7. Summary measures for

design (c), under the MV-criterion, are given in Table 4.6.

Table 4.6: Mean and variance of the performance measures X, and Yy, under the

MV-criterion. for design (c), with 16 subjects.

0 | EIXu|0] | Var[X.|0] | E[Ya]0) | Var[Yild]
0.0 7.27 0.00 5.00 0.00
0.1 6.64 0.20 4.48 0.13
0.2 6.12 0.33 4.06 0.21
0.3 5.63 0.49 3.66 0.29
0.4 5.12 0.69 3.26 0.37
0.5 4.58 0.91 2.86 0.45
0.6 3.99 1.15 2.44 0.52
0.7 3.32 1.31 1.99 0.55
0.8 2.58 1.20 1.51 0.48
0.9 1.80 0.60 1.02 0.23
1.0 1.35 0.00 0.75 0.00

Comparisons of the graphs of the mean of X, and Y, obtained using the MV-
criterion, for 0 < 6 < 1, for designs (b) and (c) are given in Figures 4.7 and 4.8
respectively. We observe that the mean values of X; when 6 < 0.4 arc marginally

larger for design (c) than for design (b). This difference, however, never exceeds
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Figure 4.7: Comparisons of the graphs showing the mean of Xy, under the

MV-criterion, for designs (b) and (c).
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Figure 4.8: Comparisons of the graphs showing the mean of Yy, under the

MV-criterion, for designs (b) and (c).
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0.01 and can therefore reasonably be considered to be negligible, particularly since

the variances corresponding to these mean values are always larger for design (c).

When 6 = 0.4 the mean values of X, obtained for design (b) begin to exceed
those obtained for design (c) with the difference between the respective mean values
increasing rapidly as § increases. The mean values of Y; when 6 < 0.7 are larger for
design (c). As previously, this difference is very small, never exceeding 0.07, and can
therefore reasonably be considered to be negligible, particularly since the variances
of the mean values obtained for design (c) always exceed those for design (b). When
§ > 0.7, the mean values of Y; obtained for design (b) begin to exceed those obtained
for design (c), with the magnitude of the difference between respective mean values

rapidly becoming large.

e o ¢ 3

When 6 is small, using the design selection criteria of Section 2.8.1 with the MV-

criterion, design (c) may be preferred to design (b), since the mean values of X, and

Yy are always very slightly larger for design (c¢). However, given that this difference

is small enough to be assumed negligible and that the corresponding variances are

o e e tem

i always considerably smaller for design (b), this slight difference for small 6 is not

significant enough to change the recommendation, obtained under the A-criterion,
that design (b) is the preferred design.
To summarise, given an experimenter wishes to use a design having eight differ-

ent treatment sequences, there should be no difficulty in employing design (b) rather

LR Wk e Sl - o | i s

than design (c), since each is formed by combining two different Williams squares.

When final period dropouts may occur, the use of design (b) rather than design (c)
1s recommended. This is because the mean performance measures for X; obtained
using the A- criterion are always higher with correspondingly lower variances, while
those obtained using the MV-criterion are only marginally smaller for small 0 and
higher for all other values of 0, with the variance of X, being lower across the en-
tire range of 0 values. In addition, the values obtained for Y, using either the A- or
MV-criterion are always higher, with corresponding lower variances, when 0 is large,

while those obtained using either criterion are only marginally smaller for small 0,
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with the variance of Y, being lower across the entire range of possible # values.
Furthermore, our aim is to select the design which provides the greatest protection
against the possibility of final period dropout. If we consider the individual perfor-
mance measures X, and Y obtained using either the A- or MV-criterion for each of
the implementable designs associated with designs (b) and (c), we observe that the
very best that can be achieved is that no subjects drop out during the final period.
In this case the performance measures obtained for each design are identical. The
worst situation is that every subject is lost during the final period. In this case the
implemented design will be the planned design with the entire final period deleted.
The performance measures obtained from the implemented design consisting of the
first three periods of design (c) are considerably smaller than those obtained from
the implemented design consisting of the first three periods of design (b). That is,
although the best that can be achieved in terms of performance measures will be
the same if either design (b) or (c) is used the worst situation is considerably poorer
if design (c) s selected. Hence, better overall protection to final period dropout can

be achieved using design (b) rather than design (¢).

Example 4.1 demonstrates that not all eight sequence designs formed by com-
bining two different Williams squares of side four are equally robust to final period
dropout. Considering all 15 designs which can be formed, we observe that these can

be separated into two categories. Those which have mean performance measures

T R SR 5 b i e e i v, - 5 Treey e e oWRed e o i BT

identical to those of design (b) and those which have mean performance measures
identical to design (c). Each class of designs is listed in Table 4.7.

The common feature of the designs in the first category is that the two squares
used to form the designs complement each other in the final two periods in the sense
that neither square replicates any ordered pair of treatments appearing in the third
and fourth periods of the other square. For this reason these designs are called

complementary pairs of Williams squares.
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Table 4.7: Categories of designs created from the union of the treatment sequences

from two “different 7 Williams squares of side four.

Category [: Complementary Pairs
(1) and (i)
(111) and (iv)
(v) and (vi).
Category II: Non-complementary Pairs
(i) and (ii1), (i) and (iv), (i) and (v), (i) and (vi)
(1) and (i), (ii) and (iv), (i) and (v), (i) and (vi)
(i) and (v), (iii) and (vi), (iv)and (v), (iv)and (vi).

By definition, each pair of complementary squares contains eight distinct or-
dered pairs of treatments in the final two periods of the design, unlike the designs
in the second category. In the latter category of designs there are only seven dif-
ferent ordered pairs of treatments in the final two periods, one of which appears in
each square. Since this difference in balance is the only difference between the two
categories of design, it is conjectured that the increased protection to final period
dropout achieved by the complementary squares 1s due to the increased combinato-
rial balance achieved in the final two periods.

In the remainder of this section, the mean and variance of the performance mea-
sures Xy and Y}, for a complementary pair of Williams squares are investigated under
both the A- and MV-criterion. The designs considered involve up to 32 subjects. In
practice, it is sometimes realistic for experiments involving more than 32 subjects
to be considered. Unfortunately, despite the reductions made possible by using the
results presented in Chapter 3, it would require an excessive amount of computation
to obtain results for a complementary pair of Williams squares involving more than
32 subjects.

Tables 4.8.1 - 4.8.4 (given on pages 134-135) contain the mean and variance of

the performance measures Xy and Y; under the A-criterion, whilst Tables 4.9.1 -

P e v v st
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4.9.4 (given on pages 136-137) contain the mean and variance of X, and Yy under
the MV-criterion.

I'igures 4.9 and 4.10 show how FE[X,

0] and F[Yy]0] change with 6 under the
A-criterion for two of these designs, namely those involving 16 and 32 subjects.
Similarly, Figures 4.11 and 4.12 show how the measures change with 4, under the
MV-criterion for the designs involving 16 and 32 subjects. The bars shown on each

of the figures represent F[Xy]0] + 1/Var[X,|0] and E[Y;]0] 4= \/Var[Yy]6] and have

been included to give an indication of the spread of the distributions for each value
of 4.

As expected, the mean performance measures increase as the number of subjects
allocated to each treatment sequence is increased. The reduction in each mean
performance measure appears to be fairly gradual across the entire range of values
for 0. In addition, the gradient of the curves for each respective mean performance
measure does not appear to change very much when the number of subjects is

Increased.

One important feature of a design built from a complementary pair of Williams

S B ot 2 By A et v R B

squares is that the set of implementable designs formed by dropping one or more sub-
jects in the final period does not contain any disconnected designs. A consequence
of this is that relatively small variances are obtained for each mean performance

measure. As with any planned design the variances are greater when § is close to

0.5, and smaller when 0 1s either small or large.

In this section we have shown that a design to compare four treatments formed
from a complementary pair of Williams squares 1s more robust to final period
dropout than any other pair of Williams squares of side four. In addition we have
conjectured that this is because only these designs have eight distinct ordered pairs
of treatments in the final two periods. If this is true, increasing the number of
treatment sequences in a design, in order to enable the maximum possible number

of ordered pairs to appear in the final two periods, should produce a design with
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Table 4.8: Mean and variance of the performance measures Xy and Y, under the
A-criterion, for a design based on a complementary pair of Williams squares of side

four and < 32 subjects.

Table4.8.1: t=4, m=8, n=1,p=4.

0 | E[X40) | Var[X4|0] | E[Y]6] | Var[Yy)6)

00| 3.64 0.00 2.50 0.00

0.1] 3.41 0.06 2.30 0.04

02| 347 0.11 2.11 0.08

0.3 2.93 0.16 1.91 0.11

04 270 0.18 1.71 0.12

05| 2.46 0.19 1.52 0.13

0.6 2.22 0.17 1.33 0.11 :
0.7] 2.00 0.13 1.16 0.08 H
08| 1.81 0.08 1.01 0.04 g
0.9 1.66 0.02 0.90 0.01
1.0] 1.60 0.00 0.86 0.00

Table 4.8.2: t =4, m=8,n=2,p=4.

0 | E[Xy|0) | Var[X.]0] | E[Yal6] | Var[Vy]0]
0.0 7.27 0.00 5.00 0.00
0.1 6.92 0.08 4.69 0.06
0.2 6.54 0.15 4.37 0.11
0.3 6.16 0.22 4.04 0.16
0.4 5.75 0.28 3.70 0.20
0.5 5.32 0.34 3.34 0.23
0.6 4.86 0.36 2.98 0.23
0.7 4.39 0.35 2.60 0.21
0.8 3.90 0.27 2.23 0.16
0.9 3.45 0.12 1.89 0.06
1.0 3.20 0.00 1.71 0.00
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Table483: t=4, m=8 n=3,p=4.

o | BLx6) | Var(Xalo] | ELYl0) | VarlYalt]
0.0 10.91 0.00 7.50 0.00
0.1 10.41 0.10 7.07 0.07
0.2 9.89 0.19 6.63 0.14
0.3 9.35 0.29 6.16 0.21
0.4 8.77 0.37 5.67 0.26
0.5 8.16 0.44 5.16 0.31
0.6 7.51 0.50 4.63 0.33
0.7 6.82 0.51 4.07 0.32
0.8 6.07 0.45 3.50 0.26
0.9 5.30 0.25 2.93 0.13
1.0 4.80 0.00 2.57 0.00

Table 484 t=4, m=8, n=4,p=4.

6 | E[X4|0] | Var[X4|0] | E[Y4l0] | Var[Yald]
0.0 14.55 0.00 10.00 0.00
0.1 13.91 0.12 9.45 0.09
0.2 13.24 0.24 8.87 0.18
0.3 12.54 0.35 8.27 0.26
041 11.79 0.46 7.64 0.33
0.5 11.00 0.55 6.98 0.38
0.6 10.16 0.62 6.28 0.41
0.7 9.25 0.65 5.55 0.41
0.8 8.25 0.60 4.78 0.35
0.9 7.19 0.38 3.99 0.20
1.0 6.40 0.00 3.43 0.00
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Table 4.9: Mean and variance of the performance measures X,; and Yj, under the
MV-criterion, for a design based on a complementary pair of Williams squares of

side four and < 32 subjects.

Table49.1: t=4,m=8,n=1,p=4

0 | E[X4)0] | Var[Xyl0] | E[Y2]6] | Var[Yy|6]

0.0 3.64 0.00 2.50 0.00

0.1] 3.22 0.17 2.16 0.11

02| 288 0.23 1.88 0.15

03] 2.58 0.25 1.63 0.17

0.4 ] 2.30 0.25 1.40 0.16

05| 2.05 0.23 1.20 0.14

0.6 1.82 0.19 1.02 0.11 ¥
0.7 1.62 0.13 0.87 0.07 3
0.8] 1.46 0.06 0.75 0.03 H
0.9 1.36 0.01 0.69 0.01 |
10| 1.33 0.00 0.67 0.00

Table 4.9.2: t=4, m=8,n=2p=4.

0 | E[X40] | Var[Xu|0] | E[Yy]6] | Var[Yy]6]
0.0 .27 0.00 5.00 0.00
0.1 6.63 0.20 4.47 0.14
0.2 6.11 0.30 4.02 0.21
03| 5.62 0.37 3.60 0.26
0.4 5.14 0.43 3.19 0.29
05| 4.66 0.46 2.80 0.29
0.6 | 4.17 0.46 2.41 0.27
0.7| 3.68 0.42 2.03 0.22
0.8| 3.21 0.29 1.69 0.14
0.9 2.82 0.10 1.43 0.04
1.0 2.67 0.00 1.33 0.00
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Table 4.93: t=4, m=8,n=3,p=4
0 | E[X4l0] | Var[X4|0] | E[Y4|0] | Var[Y4]9]
0.0 10.91 0.00 7.50 0.00
0.1 10.05 0.24 6.77 0.17
0.2 9.35 0.37 6.16 0.27
0.3 8.67 (.49 5.57 0.35
0.4 7.99 0.58 4.98 0.39
0.5 7.30 0.64 4.40 0.41
0.6 6.58 0.66 3.83 0.40
0.7 5.84 0.64 3.26 0.33
0.8 5.07 0.53 2.71 0.25
0.9 4.35 0.24 2.23 0.10
1.0 4.00 0.00 2.00 0.00

Table4.94: t =4, m=8 n=4,p=4.

0 | E[X4|0] | Var[X40] | F[Y4]0] | Var[Yy]d]
0.0 14.55 0.00 10.00 0.00
0.1 13.47 0.28 9.09 0.21
0.2 12.59 0.46 8.30 0.34
0.3 11.72 0.61 7.53 0.44
0.47 10.84 0.73 6.77 0.50
0.5 9.93 0.81 6.01 0.52
0.6 8.99 0.84 5.26 0.51
0.7 8.01 0.83 4.50 0.46
0.8 6.98 0.73 3.75 0.35
0.9 5.93 0.40 3.05 0.17
1.0 5.33 0.00 2.67 0.00
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Figure 4.9: Performance for direct treatment comparisons under the A-criterion of

designs based on complementary pairs of Williams squares for 16 and 32 subjects,

where the bars denote E[X,]0] + /Var[X,|d)].
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Iigure 4.10: Performance for carry-over treatment comparisons under the A-

criterion of designs based on complementary pairs of Williams squares for 16 and

32 subjects, where the bars denote E[Y,]0] + 1/ Var[Yu|0].
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0.0 T I T T 1 9
0.0 0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 4.11: Performance for direct treatment comparisons under the MV-criterion

of designs based on complementary pairs of Williams squares for 16 and 32 subjects,

where the bars denote E[X4|0] &+ /Var[X4]0].
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Figure 4.12: Performance for direct treatment comparisons under the MV-criterion

of designs based on complementary pairs of Williams squares for 16 and 32 subjects,

where the bars denote E[Yy]0] + /Var[Y,|8].
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even better protection against final period dropout. Designs having this property

are considered in the following section.

4.5 Mutually Orthogonal Latin Squares

For designs involving four treatments when no treatment 1s allowed to follow itself,
there are 12 distinct ordered pairs of treatments. If we consider the Williams squares
given in Table 4.4, we observe that it is not possible to combine three of these to
achieve a twelve sequence design in which each of the ordered pairs of treatments
occurs once in the third and fourth periods. However, this feature can be achieved
by using the particular complete set of mutually orthogonal Latin squares of side

four given in Table 4.10.

Table 4.10: Complete set of balanced mutually orthogonal Latin squares of side four

with treatment labels 0, 1, 2, and 3.
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A set of Latin squares is mutually orthogonal if every pair of squares is orthog-

onal, that is when superimposed on each other the treatment labels of one square
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occur once with each of the labels of the other square. Furthermore, since there can
only be at most (¢ — 1) mutually orthogonal Latin squares of side ¢, a collection of
(t — 1) Latin squares which are mutually orthogonal is known as a complete set of
mutually orthogonal Latin squares of side t.

The complete set of mutually orthogonal Latin squares given in Table 4.10 pos-
sesses the additional property of balance, that is each treatment is preceded equally
often by every other treatment but never by itself. Consequently, it provides a twelve
sequence design in which each of the ordered pairs of treatments occurs once in the
third and fourth periods. Note that, not all complete sets of mutually orthogonal
Latin squares can be combined to give designs which are balanced. T'or this rea-
son, any complete set of mutually orthogonal Latin squares which can be combined

to form a design which is balanced shall be referred to as balanced mutually

[

orthogonal Latin squares.

\ In this section the mean and variance of the performance measures X,y and Y},
\ under both the A- and MV-criterion, for designs formed from the sequences of the S
complete set of balanced mutually orthogonal Latin squares of side four given in

Table 4.10, are presented. Since this is a design involving 12 different treatment

‘ sequences, the set of implementable designs requiring evaluation in order to obtain

A e A 8 4iAs B e B ke ¢ Py e T

! the mean performance measures is large, even when the number of subjects allo-

cated to the sequences is small. It is possible, using the theory presented in Chapter

" DR ke kot

3, to reduce the computational burden sufficiently to obtain the mean performance
measures for designs involving 12 and 24 subjects. Unfortunately, despite the enor-
mous savings achieved by applying the results from combinatorial theory, 1t still
requires an excessive amount of computation to obtain mean performance measures
for designs formed from the sequences of a set of balanced mutually orthogonal Latin
squares involving more than 24 subjects.

Tables 4.11.1 and 4.11.2 contain the mean and variance of the performance mea-
sures Xy and Yy, under the A-criterion, whilst Tables 4.12.1 and 4.12.2 contain the

mean and variance of the performance measures Xy and Y, under the MV-criterion.
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Table 4.11: Mean and variance of the performance measures X, and Yy, under the
A-criterion, for a design based on a complete set of balanced mutually orthogonal

Latin squares of side four and < 24 subjects.

Table 4.11.1: t =4, m=12,n=1,p=4.

0 | E[X,00) | Var[X4|0] | E[Ya]0] | Var[Yy|6]
0.0| 545 0.00 3.75 0.00
0.1| 517 0.07 3.51 0.04
0.2 4.89 0.17 3.28 0.07
0.3| 4.61 0.24 3.05 0.09
0.4 | 4.36 0.23 2.84 0.09
0.5| 4.13 0.17 2.64 0.09
06| 3.91 0.13 2.44 0.08
0.7] 3.69 0.09 2.26 0.06
0.8 3.49 0.05 2.09 0.04
0.9 3.32 0.02 1.95 0.01
1.0 3.24 0.00 1.89 0.00

Table 4.11.2: t =4 m =12, n =2, p=4.

0 | E[X00] | Var[X,00] | E[Y410] | Var]Yyo]
0.0 10.91 0.00 7.50 0.00
0.1 10.43 0.09 7.08 0.06
0.2 9.94 0.16 6.67 0.11
0.3 9.47 0.20 6.26 0.15
0.4 9.00 0.23 5.86 0.16
0.5 8.53 0.23 5.47 0.17
0.6 8.07 0.22 5.08 0.15
0.7 7.61 0.19 4.70 0.13
0.8 7.17 0.14 4.34 0.09
0.9 6.74 0.07 3.99 0.04
1.0 6.48 0.00 3.78 0.00
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Table 4.12: Mean and variance of the performance measures Xy and Yj, under the
MV-criterion, for a design based on a complete set of balanced mutually orthogonal

Latin squares of side four and < 24 subjects.

Table 4.12.1: t=4, m=12, n=1, p = 4.

b | E[X,00] | Var[X,6) | E[Yal6] | Var[V|d]
0.0 5.45 0.00 3.75 0.00
0.1 4.95 0.16 3.33 0.10
0.2 4.56 0.24 3.02 0.12
0.3 4.25 0.26 2.77 0.12
0.4 4.00 0.22 2.54 0.10
0.5 3.78 0.16 2.35 0.08
0.6 3.59 0.09 2.19 0.06
0.7 3.43 0.05 2.05 0.03
0.8 3.32 0.02 1.95 0.01
0.9 3.25 2.6 x 1073 1.90 1.7 x 1073
1.0 3.24 0.00 1.89 0.00

Table 4.12.2: t=4, m =12, n=2,p =4
0 | E[X4)0]) | Var[X,0] | E[Y4]0] | Var|[Yyl0]
0.0 10.91 0.00 7.50 (.00
0.1 10.09 0.19 6.82 0.13
0.2 9.49 0.25 6.31 0.18
0.3 8.96 0.29 5.86 0.20
0.4 8.47 0.29 5.44 0.20
0.5 8.00 0.27 5.05 0.19
0.6 7.57 0.23 4.68 0.16
0.7 7.17 0.17 4.35 0.11
0.8 6.81 0.09 4.05 0.06
0.9 6.56 0.02 3.84 0.01
1.0 6.48 0.00 3.78 0.00
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Figure 4.13: Performance for direct treatment comparisons under the A-criterion of

designs based on balanced mutually orthogonal Latin squares for 12 and 24 subjects,

where the bars denote F[X,|0] £ /Var[X,]d].
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Probability of Dropout

Performance for carry-over treatment comparisons under the A-

criterion of designs based on balanced mutually orthogonal Latin squares for 12

and 24 subjects, where the bars denote E[Y,|0] & /Var[Yy|d].
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Figure 4.15: Performance for direct treatment comparisons under the MV-criterion

of designs based on balanced mutually orthogonal Latin squares for 12 and 24 sub-

jects, where the bars denote F[X |] £ 1/ Var[X|0].
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Figure 4.16: Performance for carry-over treatment comparisons under the MV-
criterion of designs based on balanced mutually orthogonal Latin squares for 12

and 24 subjects, where the bars denote E[Y;|0] £ 1/ Var[Yy|0].
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Figures 4.13 and 4.14 show how E[X,|f] and F[Y}

6] change with 6 for each
design, under the A-criterion, while Figures 4.15 and 4.16 indicate how £[X,]6] and
E[Y;]0] change with 6 for each design, under the MV-criterion. The bars shown on

0] + 1/ Var[ X 0] and E[Y,|0] £ /Var[Y;]0] respectively.

These have been included to give an indication of the spread of the distributions for

each graph represent F[X,

the associated value of 4.

The important features of this design are that the probability of implementing a
disconnected design is zero, the mean values obtained under the A- or MV-criteria
for the performance measures X; and Y; have very small variances irrespective
of the value of 8, and the respective mean performance measures obtained under
each criterion do not differ very much, suggesting that the individual variances of
the treatment comparisons for each potentially implementable design do not differ

greatly. Fach of these qualities is highly desirable in any planned design.

PSR e

4.6 Comparison of different designs

One of the most important features of the design assessment procedures proposed in
this thesis is their ability to compare the performance of competing designs subject
to some fixed probability § of final period dropout. These comparisons can then
be used to make recommendations concerning the appropriate choice of design for

different experimental situations. In the previous three sections, the robustness to

"R ey s S - s oy i ootk £ e

final period dropout of designs involving 4, 8, and 12 treatment sequences have been
investigated. In this section, we compare the performance of three of the designs so
that appropriate recommendations can be made concerning their use. The designs,

labelled (a), (b) and (c) are as follows:

Design (a) The single Williams square d(4,4,6,4) with treatment labels 0, 1, 2
and 3 and initial treatment sequence (0 1 3 2), that is design (1) of Table 4.4 involving

24 subjects.
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Design (b) The complementary pair of Williams squares d(4,8,3,4) with treat-
ment labels 0. 1, 2 and 3 and initial treatment sequences (0 1 3 2) and (0 3 1 2).

This is design (b) of Example 4.1 involving 24 subjects.

Design (c) A complete set of balanced mutually orthogonal Latin squares
d(4,12,2,4) with treatment labels 0, 1, 2 and 3. This is the design formed from the
sequences given in Table 4.10 involving 24 subjects.

Assume first that we wish to compare the performance of the designs in esti-
mating all the pairwise direct and first-order carry-over treatment effects under the
A-criterion. Summary measures for each design have been given in Tables 4.1.6,
4.8.3 and 4.11.2, respectively. Comparisons of the graphs of the mean of X, and
Yy against ¢, 0 < 8 < 1, for each of these designs, are given in Figures 4.17 and
4.18 respectively. We observe that, although all three designs have identical mean
performance measures when § = 0.0, the measures begin to diverge as § increases.
Further design (c) consistently gives the highest values and design (a) the lowest.
Design (a) vields particularly poor mean performance measures when ¢ is large be-
cause the set of implementable designs produced from this particular planned design
contains a number of disconnected designs. This does not happen for designs (b) or
(c).

Using the design selection criteria of Section 2.8.1 leads to the choice of design
(¢) for any probability of final period dropout 0 < § < 1. This is because it does not
give rise to any disconnected implementable designs and the study shown in Figures

4.17 and 4.18 indicates that

E[X4.10] > E[X4,[0] > E[Xy,10] and E[Yy,

0 2 B[ X, [0] 2 E[Yq,|0]

for 0 = 0,0.1,...,1.0..
Similarly, if we compare the respective variances for Xy and Y; for each design

from Tables 4.1.6, 4.8.3 and 4.11.2 we observe that

Va.r[Xdc )0] S VELI‘[,de

0] < Var[Xy,]0] and Var[Yy |0] < Var[Yy,|0] < Var[Yy,|0]
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E[Xaq|0]
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(b)
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Probability of Dropout

Iigure 4.17: Comparisons of the graphs showing the mean of X, under the

A-criterion, for designs (a), (b) and (c).
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E[Y;]0]
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Probability of Dropout

Figure 4.18: Comparisons of the graphs showing the mean of Yy, under the

A-criterion, for designs (a), (b) and (c).
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for § =0,0.1,...,1.0.

‘ Alternatively, we can compare all the pairwise direct and first-order carry-over
k treatment effects under the MV-criterion. The corresponding summary measures for
| each design are given in Tables 4.2.6, 4.9.3 and 4.12.2. Comparisons of the graphs
| of the mean of X, and Y, against 6, 0 < # < 1, for each of these designs, are given
1 in Figures 4.19 and 4.20.
| Each comparison again clearly demonstrates the superior performance of design
| (c), the complete set of balanced mutually orthogonal Latin squares, across the
‘ entire range of possible ¢ values. This conclusion is reinforced by applying the
design selection criteria of Section 2.8.1 which again leads to selection of design (c),
since the mean values of X; and Y are always the largest, with the correspondingly
~ lowest variances, for any §, 0 < 8 < 1.
To summarise, when choosing between the three planned designs considered in
this section we recommend the use of design (c¢), the complete set of balanced mu-
tually orthogonal Latin squares, rather than either of the other designs, provided

subject numbers permit. Design (c) has a zero probability of producing a discon-

O U PO S

nected implemented design and the mean values of X; and Y, are the largest with
correspondingly lower variances, for all values of 8§ > 0. The properties hold whether
we use the A- or MV-criterion when calculating the performance measures. In addi-

tion, we strongly recommend that design (a), the single Williams square, is avoided

T ey S A s i -y B

because its use may give rise to a disconnected design and because it is acutely
sensitive to the probability of final period dropout. These conclusions appear to be
directly opposed to comments made by Jones and Kenward (1989, p 199) who state
that “the loss of subjects from the complete set [of balanced mutually orthogonal
Latin squares| is likely to be more damaging as its combinatorial structure is more
complex.” It is not entirely clear, however, whether their comments related to the

problem of subjects dropping out of a study part way through the trial or to the loss

of subjects for the entire trial leading to the loss of an entire treatment sequence.
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Figure 4.19: Comparisons of the graphs showing the mean of X, under the

MV-criterion, for designs (a), (b) and (c).
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EYq]0]
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Probability of Dropout

Figure 4.20: Comparisons of the graphs showing the mean of Y, under the

MV-criterion, for designs (a), (b) and (c).
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4.7 Discussion

In this chapter a study of the performance subject to final period dropout of a se-
lection of four treatment, four period, uniform balanced designs has been presented.
This has shown that although each of these designs is equally good when the prob-
ability of final period dropout is not considered, they are not equally robust to final
period dropout.

We have shown that the use of a design in which equal numbers of subjects are
assigned to the treatment sequences of a complementary pair of Williams squares of
side four is more robust to final period dropout than the currently favoured design
which employs replications of the sequences from a single square. I'urthermore, a
design formed from the sequences of a complete set of balanced mutually orthogonal
Latin squares is more robust to final period dropout then replicates of either a single
Williams square or complementary pair of Williams squares. The increased robust-
ness is achieved at no extra cost in subject numbers. The only penalty incurred
is that the number of distinct treatment sequences is increased from four to either
eight or twelve. We should not forget that when @ 1s large the mean values obtained
for each performance measure are considerably smaller than those of the planned
design. An experiment should only proceed if the mean performance measures for
the anticipated level of dropout are acceptably large. If not, an alternative design
involving more subjects or fewer treatment periods should be considered.

We recommend that designs formed from replicates of a single Williams square
are avolded whenever possible because there 1s always a chance, albeit reasonably
small when the number of subjects to be assessed is large, that the implemented
experiment is disconnected. In addition, the mean performance measures are not
as high as can be achieved using alternative designs. If the maximum number of
treatment sequences that can be employed is cight, we recommend that a comple-
mentary pair of Williams squares is used since this is more robust to final period

dropout than any other combination of Williams squares. Finally, if it 1s possible
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to employ 12 different treatment sequences we recommend that a design based on a
complete set of balanced mutually orthogonal Latin squares is used because, for the
sizes of experiment evaluated thus far, we have found that it is the most robust to
final period dropout. Furthermore, combinatorial considerations suggest that this
will continue to be the case for experiments involving larger numbers of subjects.
The only disadvantage in using this design is that there is an increased chance that a
sequence 1s incorrectly administered due to human error. This is the main objection
to the use of designs involving a large number of different treatment sequences.

It has not been possible to present studies of designs involving more than 12
treatment sequences, such as designs formed by combining four, five or even all six
Williams squares of side four. This is because of the excessive amount of computation

which would be required, despite the application of the results presented in Chapter

ot

3. It 1s not clear, however, that increasing the number of treatment sequences

beyond 12 will lead to designs which will be more robust to final period dropout

Byt e i

than a complete set of balanced mutually orthogonal Latin squares since this design

already contains all 12 distinct ordered pairs of treatments in the final two periods.

Any design having greater than 12 treatment sequences will have to contain some of

the ordered pairs of treatments in the final two periods more than once. Therefore,

it e e p St B e n

unless this replication is in equal numbers, such as every ordered pair twice, the

R

resultant design may not be as robust to final period dropout as a complete set of
balanced mutually orthogonal Latin squares of corresponding size. This is, however,
only speculation and we need to demonstrate whether or not this is in fact true by
means of an actual example. Even if this proves to be the case designs formed from
the treatment sequences of balanced mutually orthogonal Latin squares can only be
applied in experiments in which the number of subjects available is some multiple
of 12. When this is not the case a design involving 16 treatment sequences may be
preterable to an eight sequence design such as a complementary pair of Williams
squares. This needs to be investigated further.

Another interesting fact worthy of further study is that the 24 sequence design
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formed by combining all six different Williams squares of side four consists of the
same 24 treatment sequences as two sets of balanced mutually orthogonal Latin
squares which are isomorphic under a permutation of the treatment labels. It would
be interesting to examine whether or not such a design is any more robust to final
period dropout than a single set of balanced mutually orthogonal Latin squares with
two subjects allocated to each treatment sequence.

There is scope, when the computational difficulties can be overcome, for further
investigation of four treatment, four period designs. In the next chapter, however we

turn our attention to examining the performance of three treatment, three period

designs subject to final period dropout.

s
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Chapter 5

Three Treatment, Three Period

Designs

5.1 Introduction

In Chapter 4 the important practical case of four treatment, four period cross-over
experiments was studied. In this chapter designs for another common multi-period
experiment, namely three treatments and three periods are investigated, when the
experiments are subject to final period dropout.

We begin by examining the performance of uniform balanced designs based on
a pair of Williams squares of side three. In Section 5.3 results from the literature
on the optimality of uniform balanced designs, introduced in Section 4.2, are briefly
reviewed for experiments in which dropouts do not occur. Some of the limitations of
these designs are 1dentified in order to determine additional designs whose robustness
to final period dropout is then examined. In Section 5.4, a comparison is made of
the different designs and recommendations are given on design selection. Finally, a
numerical study is made to determine if altering the treatments administered in the
final period of a pair of Williams squares produces an increase in robustness to final

period dropout.
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5.2 Uniform Balanced Designs

Williams (1949) established that, when the number of treatments is odd, a uniform

\ balanced design can be constructed by using two particular Latin squares, usually
\\ referred to as a pair of Williams squares. For example, the pair of Williams squares,

fort = 3 and treatment labels 0, 1 and 2, with initial treatment sequences (0 1 2) and
(0 2 1) is given in Figure 5.1. Note that, when ¢ = 3, the pair of Williams squares

1s a complete set of balanced mutually orthogonal Latin squares of side three.

Figure 5.1: Pair of Williams squares design for ¢ = 3.

‘ 01 2
1 2 0 -
2 0 1 o
0 2 1
10 2 o
2 1 0 :

For experiments in which dropouts do not occur, Hedayat and Afsarinejad (1975)
considered the construction of cross-over designs in which the property of balance is
achieved using the minimum possible number of subjects in the experiment. They

showed that, when ¢ = 3, it is not possible to construct a balanced design using only

B L

three subjects. When using six subjects, however, they showed that balance could be
achieved using the six treatment sequences from the pair of Williams squares shown
in ['igure 5.1. Since this design is a uniform balanced design, 1t is universally optimal
over the class of all uniform designs in which p = ¢ = 3 for the estimation of the
direct and first-order carry-over treatment effects, when dropouts are not considered.
[or these reasons, and the fact that the design has no obvious competitors, 1t is a
design frequently employed in cross-over studies.

The purpose of this section is to describe the results of an investigation into

the robustness to dropouts of designs in which an equal number of subjects is al-
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located to each of the treatment sequences of a pair of Williams squares of side
three. As in Chapter 4, the designs are assessed by considering the variance of the
estimated pairwise comparisons for the direct and first-order carry-over treatment
effects when final period dropout may occur. The investigation was carried out for
designs involving a maximum of 36 subjects.

There are six different sizes of design to consider, namely the designs in which
n, the number of subjects allocated to each treatment sequence takes each of the
values 1,...,6.

An important feature of planned designs formed from replicates of the sequences
in Figure 5.1 1s that, in each case, the set of implementable designs requiring evalu-
ation does not contain any disconnected designs. The probability of implementing a

disconnected design in each case is, therefore, zero. Examining the pair of Williams

squares 1n Figure 5.1 we observe that, in common with the complete set of balanced

mutually orthogonal Latin squares of side four, it contains each of the distinct or-

R

dered pairs of treatments in the final two periods. In this case, there are six distinct P

ordered pairs of treatments which can be formed when no treatment is allowed to

follow itself.
For each design, Tables 5.1.1 - 5.1.6 (given on pages 163-165) contain the mean
and variance of the performance measures X, and Y}, under the A-criterion, whilst

Tables 5.2.1 - 5.2.6 (given on pages 166-168) contain the mean and variance of Xy

T AR Ak s s s S A chen

and Yy, under the MV-criterion.

Figures 5.2 and 5.3 show how E[X,|0] and E[Y,]f] change with #, under the
A-criterion, for two of these designs, namely those involving 24 and 36 subjects.
Similarly, Figures 5.4 and 5.5 show how E{Xy|0] and E[Y;]6] change with 0, under
the MV-criterion, for these two designs.

Examining the trends of the mean performance measures given in Tables 5.1.1

- 5.1.6 and Tables 5.2.1 - 5.2.6 and illustrated in Figures 5.2 - 5.5 we observe that,

as expected, for any particular value of §, the mean performance measures increase

as the number of subjects is increased. Also, we note there is a gradual reduction
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Table 5.1: Mean and variance of the performance measures X; and Y,, under the

A-criterion, for designs based on a pair of Williams squares of side three and < 36

subjects.

Table 51.1: t =3, m=6,n=1,p=3.

0 | E[X4|0] | Var[X4l0] | E[Y4|0] | Var[Yy|6]
0.0 2.40 0.00 1.33 0.00
0.1 2.07 0.17 1.12 0.07
0.2 1.76 0.29 0.92 0.11
0.3 1.47 0.34 0.73 0.12
0.4 1.20 0.34 0.57 0.12
0.5 0.96 0.28 0.43 0.09
0.6 0.75 0.20 0.32 0.06
0.7 0.59 0.11 0.23 0.03
0.8 0.47 0.45 0.17 0.01
0.9 0.40 0.01 0.14 2.1 x 1073
1.0 0.38 0.00 0.13 0.00

Table 5.1.2: t =3, m=6,n=2,p=3.

0 | BE[Xy]0] | Var[Xul0] | E[Y4|60] | Var[Yy|0]
0.0 4.80 0.00 2.67 0.00
0.1 4.36 0.16 2.36 0.07
0.2 3.91 0.31 2.06 0.14
0.3 3.46 0.45 1.76 0.18
0.4 3.00 0.57 1.46 0.21
0.5 2.52 0.64 1.18 0.21
0.6 2.05 0.62 0.91 0.18
0.7 1.60 0.49 0.66 0.13
0.8 1.19 0.28 0.45 0.07
0.9 0.88 0.08 0.31 0.02
1.0 0.75 0.00 0.25 0.00
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Table 51.3: 1 =3, m=6,n=3,p=3.

0 | B[X4|0] | Var[X,[6] | E[Y,]6] | Var[Y0]
0.0 7.20 0.00 4.00 0.00
0.1| 661 0.18 3.58 0.09
0.2| 6.01 0.35 3.17 0.16
0.3 | 5.40 0.51 2.76 0.22
0.4 | 4.77 0.66 2.35 0.26
0.5 4.11 0.78 1.94 0.28
0.6| 3.44 0.86 1.54 0.27
0.7 2.74 0.82 1.15 0.22
0.8 2.05 0.59 0.80 0.14
0.9 1.43 0.21 0.51 0.04
1.0 1.13 0.00 0.38 0.00

Table5.14: t=3, m=6,n=4,p=3.

6 | BIX40] | Var[X,18] | E[Yal0] | Var[Yild]
0.0 9.60 0.00 5.33 0.00
0.1 8.85 0.22 4.80 0.11
0.2 8.09 0.42 4.27 0.20
0.3 7.31 0.59 3.75 0.26
0.4 6.51 0.75 3.22 0.31
0.5 5.69 0.90 2.69 0.33
0.6 4.82 1.01 2.17 0.33
0.7 3.91 1.05 1.66 0.29
0.8 2.96 0.88 1.16 0.21
0.9 2.04 0.39 0.73 0.08
1.0 1.50 0.00 0.50 0.00
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Table 51.5: t=3, m=6,n=5,p=3.

0 | BIX40] | Var|Xu0] | E(Y:10] | Var[Yid]
0.0 12.00 0.00 6.67 0.00
0.1 11.09 0.26 6.02 0.13
0.2 10.17 0.48 5.38 0.23
0.3 9.22 0.68 4.73 0.31
0.4 8.25 0.86 4.09 0.36
0.5 7.24 1.02 3.44 0.39
0.6 6.19 1.15 2.80 0.39
0.7 5.07 1.22 2.16 0.35
0.8 3.89 1.10 1.54 0.26
0.9 2.67 0.58 0.96 0.11
1.0 1.88 0.00 0.63 0.00

Table 51.6: t =3, m=6,n=6,p=23.

6 | E[X,0] | Var[X.0) | E[Y4l6] | Var[Yy|6]
0.0 | 14.40 0.00 8.00 0.00
0.1 13.33 0.30 7.24 0.15
0.2 12.24 0.56 6.48 0.27
0.3 11.13 0.78 5.72 0.36
0.4 9.98 0.98 4.95 0.42
05| 8.0 1.15 4.19 0.45
0.6 | 7.56 1.29 3.43 0.45
07| 6.24 1.37 2.67 0.41
0.8 4.82 1.29 1.92 0.31
0.9 3.32 0.76 1.21 0.15
1.0 225 0.00 0.75 0.00
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Table 5.2: Mean and variance of the performance measures X; and Yy, under the

MV-criterion, for designs based on a pair of Williams squares of side three and < 36

subjects.

Table52.1:t=3, m=6,n=1,p=23.

b | E[X40] | Var[Xu|8) | E[Ya]0) | Var[Yy|6]
0.0 2.40 0.00 1.33 0.00
0.1] 1.93 0.28 1.03 0.11
0.2 1.56 0.35 0.80 0.13
0.3 1.26 0.33 0.62 0.12
0.4 | 1.0l 0.28 0.47 0.10
05| 081 0.22 0.35 0.07
0.6 0.64 0.14 0.26 0.04
0.7] 052 0.08 0.19 0.02
0.8| 0.43 0.03 0.15 0.01
09| 039 |43%x10°*| 013 |1.1x1073
1.0 ] 0.38 0.00 0.13 0.00

Table 5.2.2: t =3, m=6,n=2,p=3.

0 | BE[X,410] | Var[X4|6] | E[Y4l6] | Var[Y,|6]
0.0 4.80 0.00 2.67 0.00
0.1 4.14 0.28 2.22 0.12
0.2 3.62 0.44 1.87 0.18
0.3 3.12 0.56 1.56 0.21
0.4 2.65 0.61 1.27 0.21
0.5 2.20 0.60 1.00 0.19
0.6 .77 0.53 0.76 0.15
0.7 1.38 0.39 0.55 0.10
0.8 1.05 0.21 0.38 0.05
0.9 0.83 0.05 0.28 0.01
1.0 0.75 0.00 0.25 0.00
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Table 5.2.3: t =3, m=6,n=23,p=3.

0 | E[X400) | Var[X,|0] | E[Yal0] | Var[Y,0]
0.0| 7.20 0.00 4.00 0.00
0.1] 6.34 0.31 3.41 0.14
02| 5.65 0.51 2.94 0.22
0.3] 4.98 0.66 2.50 0.26
04| 4.33 0.78 2.09 0.29
0.5| 3.68 0.85 1.70 0.28
0.6 3.03 0.84 1.32 0.25
0.7 2.40 0.73 0.98 0.19
0.8] 1.80 0.48 0.67 0.11
0.9 1.32 0.14 0.45 0.03
1.0 1.13 0.00 0.38 0.00

Table 5.2.4: t =3, m=6,n=4, p=3.

6 | E[X,00] | Var[X4|0] | E[Y46] | Var[Yy|6]
0.0] 9.60 0.00 5.33 0.00
0.1| 854 0.36 4.60 0.17
0.2 | T7.67 0.59 4.00 0.26
0.3 6.83 0.77 3.45 0.32
04| 6.00 0.92 2.92 0.35
05| 517 1.03 2.40 0.36
0.6 4.33 1.07 1.90 0.33
0.7 3.47 1.01 1.43 0.27
0.8] 2.62 0.76 1.00 0.18
0.9 1.86 0.29 0.64 0.05
1.0 1.50 0.00 0.50 0.00
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Table 5.2.5: t =3, m=6,n=5, p=3.

0 | E[X,00] | Var[X,|6] | E[Yal6] | Var[V;]6]
0.0 12.00 0.00 6.67 0.00
0.1] 10.75 0.41 5.79 0.19
0.2 9.70 0.68 5.07 0.30
0.3] 8.69 0.89 4.40 0.38
0.4 | 7.68 1.06 3.74 0.42
05| 6.66 1.19 3.11 0.43
0.6 | 5.63 1.27 2.49 0.40
0.7 4.56 1.24 1.89 0.34
0.8 | 3.47 1.02 1.33 0.24
0.9 2.43 0.46 0.85 0.09
1.0 1.88 0.00 0.63 0.00

Table 52.6:t =3, m=6,n=6, p=3.

O | E[X4l0] | Var[Xy|0] | £[Yal0] | Var[Y]0]
0.0 14.40 0.00 8.00 0.00
0.1 12.96 0.46 65.98 0.22
0.2 11.74 0.76 6.15 0.35
0.3 10.55 1.01 5.35 0.44
0.4 9.36 1.21 4.57 0.49
0.5 8.16 1.36 3.82 0.50
0.6 6.93 1.45 3.08 0.47
0.7 5.65 1.45 2.36 0.41
0.8 4.33 1.25 1.68 0.29
0.9 3.02 0.63 1.06 0.12
1.0 2.25 0.00 0.75 0.00
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Figure 5.2: Performance for direct treatment comparisons under the A-criterion of

designs based on Iligure 5.1 for 24 and 36 subjects, where the bars denote

B[X4|0] % \/Var[X,]6).
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E{Y,|6]

15

12

Probability of Dropout

Figure 5.3: Performance for direct treatment comparisons under the A-criterion of

designs based on Figure 5.1 for 24 and 36 subjects, where the bars denote

E{Y;10] + \/Var[Yy]0].
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Probability of Dropout

[Migure 5.4: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.1 for 24 and 36 subjects, where the bars denote

E[X40) £ \/Var| X4|0).
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Probability of Dropout

Figure 5.5: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.1 for 24 and 36 subjects, where the bars denote

EY4|0) + 1/ Var[Yy|6].
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in the value of each mean performance measure as # increases. Examining Tables
5.1.1 - 5.1.6 and Tables 5.2.1 - 5.2.6 we observe that the variance of the perfor-
mance measures is reasonably small and the difference between the respective mean
performance measures obtained under either criterion is not large, suggesting that
the spread in the variances of the pairwise treatment comparisons for each of the
designs can never be large. Equality or near equality amongst the variances of the
pairwise treatment comparisons is a highly desirable feature of any design used in
experiments which aim to compare all the different treatments with equal precision.

The results obtained in this section demonstrate that designs based on a pair of
Williams squares of side three are reasonably robust to final period dropout, provided
that the value of 0 is small. However, in common with the designs of Chapter 4
for the four treatment case, the results obtained also show that the information
available in the implemented experiment may be considerably less than that of the
original planned design, even when the anticipated number of final period dropouts
is small. It 1s important, therefore, that the problem of dropouts is considered very
carefully during the planning stage.

Ideally, in order to decide whether or not to proceed with a particular design its
performance measures should be compared with those obtained from other compet-
ing, designs. In the next section we examine the robustness to final period dropout
of two alternative designs and, in Section 5.4, all three designs are compared. The
comparisons lead to recommendations on the choice of a three treatment, three

period design for a given number of subjects and a given value of .

5.3 Non-uniform, Unbalanced Designs

Every design considered so far has been a uniform balanced designs. As discussed
previously, when ¢ = p = 3 the only uniform balanced design in common use in
clinical cross-over studies is the pair of Williams squares investigated in the previous

section.
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[deally, we should like to compare the performance of this design, in the pres-
ence of final period dropout, with other designs which employ the same number of
subjects. In order to do this it is necessary to establish which of the many non-
uniform, three treatment, three period designs available are worth investigating. In
this section a short review of the results concerning the optimality of uniform and
non-uniform designs 1s presented together with some discussion concerning their use

in cross-over experiments in which dropouts are anticipated.

One of the main arguments put forward for using a uniform design i1s that, under
the simple carry-over model of equation (1.1), it ensures that the least squares esti-
mators of the direct treatment effects are orthogonal to the estimators of both the

periods and the subjects. This property leads to simplification in the interpretation

of the results and, less importantly, in the analysis. However, if subjects drop out

of a study during the final period, the realised design will no longer be uniform.
Hence, irrespective of the choice of planned design, orthogonality of the parameter i
estimators 1s no longer possible. Therefore, when final period dropouts are antici- o
pated, there is only a very small probability that the gain from having a uniform i

implemented design will be realised.

o me g e

The relationship between the orthogonality of various design parameters and the

universal optimality of designs was considered by Kunert (1983) who established the

P .

optimality of several unbalanced designs. The approach he used was to compare the i
information matrices of a design under two different linear models, referred to as the
finer and simpler models. The finer model contains all the parameters of the simpler
model in addition to some extra nuisance parameter(s). Kunert used an ordering
property, due to Magda (1980), defined on the information matrices obtained for
each model in order to establish an orthogonality condition. When the condition is
satisfled, it ensures that the information matrix for estimating an effect is the same
under each of the models. It follows that if a design can be shown to be universally

optimal for the estimation of either the direct or the first-order carry-over treatment
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effects under one of the models and the orthogonality condition is satisfied, then the
design 1s also optimal for estimating the same effects under the other model. For
example, a design which satisfies the orthogonality condition for the estimation of
the direct treatment effects for two linear models, one with a first-order carry-over
treatment effect term and the other without, will be universally optimal for the
estimation of the direct treatment effects under both models if it can be shown to
be universally optimal under just one of these models.

Kunert gives examples of unbalanced designs which fulfil the orthogonality con-
dition and proves their universal optimality over the class of all possible cross-over
designs. Many of the designs require a large number of treatment periods which 1s
an undesirable feature for a design intended for studies in which dropout is antic-
ipated. In many of the designs it is necessary to incorporate an additional initial
period, or pre-period, in the study in order to satisfy the orthogonality condition.
The purpose of this period is to ensure that the observations made during the next
period include a carry-over effect and no use is normally made of the observation on
the subject at the end of a pre-period. The tendency of subjects to drop out of a
study when there are too many treatment periods is an argument against employing
a design which requires a pre-period.

Another reason for the popularity of uniform balanced designs is that they are
known to be universally optimal for the estimation of direct and first-order carry-over
treatment comparisons within the class of uniform designs for which ¢ = p. Cheng
and Wu (1980) doubted whether a uniform balanced design would be universally
optimal over the class of all cross-over designs in which ¢ = p. They argued that
removing the restriction of uniformity makes intractable the maximisation of the
trace of the information matrices (see equations 1.11 and 1.15), a necessary step in
establishing the universal optimality of a design. Nevertheless, they did establish
some important results concerning the optimality of uniform balanced and strongly

balanced designs.

et e e
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Definition 5.1 A design 1s strongly balanced if each treatment is preceded

equally often by every other treatment including itself.

In particular they proved that a strongly balanced design formed by adding an
extra period to a uniform balanced design is universally optimal for the estimation
of direct and first-order carry-over treatment effects within the class of all designs
involving £t subjects, for & integer, in which p =1¢ -+ 1.

Clearly, 1f 1t 1s believed that subjects may drop out during the final period of
a three period study, it 1s not desirable to consider forming a strongly balanced
design by extending the number of periods. If, however, a strongly balanced design,
or a design with almost equal occurrence of all ordered pairs of treatment labels,

can be found which uses only three periods then such a design is worth investigating

further as an alternative to the currently favoured designs based on pairs of Williams

squares of side three.

Kunert (1984) investigated the optimality of uniform balanced designs within the i
class of all possible designs. He found that, when the restriction of uniformity is re- |
moved, then the optimal designs for estimating the direct and first-order carry-over
effects are not usually the same. In addition, even when ¢ = p, uniform balanced de-
signs will not generally be optimal when designs involving adjacent pairs of identical i

treatments are allowed. In particular Kunert established the following:

1. When t = s = p # 2 and a balanced Latin square exists, it is universally ‘
optimal for the estimation of the direct treatment effects over the class of all

designs in which t = s = p.

o

When t = p > 6 and s = 2t, a uniform balanced design is universally optimal
for the estimation of the direct treatment effects over the class of all designs

in which ¢ = p and s = 2¢.

3. Whent =pands =1t(t—1)an orthogonal residual effects design, defined

below, 1s universally optimal for the estimation of the first-order carry-over
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treatment effects over the class of all designs in which ¢t = p and s = (¢t — 1).

Definition 5.2 Suppose there is a uniform balanced design, d, involving p periods,
t treatments and m = t(¢t — 1) distinct treatment sequences such that each ordered
pair of treatments appears once and only once between the last and second to last
periods of the design. The design formed by taking the first (p — 1) periods of d
and forming a final period by repeating the (p — 1)th period of design d is called an
orthogonal residual effects design.

An example of an orthogonal residual effects design for ¢t = 3 and s = 6 is
given in Figure 5.6. Note that the property of universal optimality for estimating
the first-order carry-over effects only holds for this design and does not extend to
designs involving 6n subjects, for integer n > 1, formed by taking n copies of the
six treatment sequences.

In addition to the results above, Kunert (1984) also established that, when the
number of subjects is large, uniform balanced designs are not universally optimal for
the estimation of the direct treatment effects since designs giving universally better
estimates of the treatment comparisons can be found. Of particular interest 1s the

following result.

Proposition 5.1 [Kunert (1984) Proposition 2.4] Let ¢ =p > 2 and s = At,

where A 1s an integer such that
A > t(t—1)%/2.

Assume there is a design ¢ involving ¢ treatments, p periods and s subjects with the

following properties.
(i) The first ¢(¢ — 1) subjects of g form an orthogonal residual effects design f, and
(1i) the remaining s — ¢(t — 1) subjects of g form a uniform balanced design.

Then g 1s universally better for the estimation of the direct treatment effects than

any uniform balanced design for ¢ treatments ¢ periods and s subjects.
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Note that, when ¢ = 3, the minimum number of distinct treatment sequences
required to obtain a design which satisfies Proposition 5.1 is 18. An examination
of the robustness to final period dropout of an eighteen sequence design requires a
prohibitive amount of computation. The concept of formulating designs by combin-
ing a uniform balanced design with an orthogonal residual effects design, however,
1s worth further investigation and is the motivation behind the design investigated
in Section 5.3.2.

Kunert (1984) has demonstrated that, when dropouts are not considered, cer-
tain non-uniform and unbalanced designs give universally better estimates of the
treatment comparisons than uniform balanced designs. His work raises the question
of whether or not the designs he presents continue to out-perform uniform balanced
designs in the presence of final period dropouts and provides further justification for
not restricting the choice of design to the class of uniform designs.

In the remainder of this section, the robustness to final period dropout of two
particular non-uniform designs is examined. In Section 5.3.1 the performance of an
orthogonal residual effects design for ¢ = p = 3 is investigated. In Section 5.3.2 the
performance of a design which is a compromise between the pair of Williams squares

and the orthogonal residual effects design is investigated.

5.3.1 Examination of Orthogonal Residual Effects Designs

Let d(3,6,n,3) be the planned design with treatment labels 0, 1, and 2 formed by
taking n copies of the design given in Figure 5.6.

In order to investigate the robustness to final period dropout of designs built
from the orthogonal residual effects design of igure 5.6, for studies involving up to
a maximum of 36 subjects, there are six different sizes of design to consider. In each
case the appropriate design is formed by allocating n subjects to each treatment
sequence, where n takes each of the values 1,...,6.

One important feature of each of the planned designs, in common with designs

ot e
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Figure 5.6: Orthogonal residual effects design for ¢ = 3 and treatment labels 0, 1,

and 2.
0 1 1
I 2 2
2 0 0
0 2 2
1 0 0
2 1 1

based on a pair of Williams squares of side three, is that, in each case, the set
of implementable designs arising from the planned design does not contain any
disconnected designs.

For each design, the mean and variance of the performance measures X, and
Yy, under the A-criterion, are given in Tables 5.3.1 - 5.3.6 (given on pages 180-182)
whilst Tables 5.4.1 - 5.4.6 (given on pages 183-185) contain the mean and variance
of the performance measures X, and Y, under the MV-criterion.

Figures 5.7 and 5.8 show how E[X,|0] and E[Y,|0] change with 6, under the
A-criterion, for two of these designs, namely those involving 24 and 36 subjects.
Similarly, Figures 5.9 and 5.10 show how E[X4|0] and E[Y;]0] change with 8, for
each design under the MV-criterion.

The observations made concerning the general trend of the mean of X, and Y; as
¢ increases for the designs based on a pair of Williams squares of side three under the
A- and MV-criteria also apply to these designs. Note, however, that although the
amount of information in the direct treatment effects is, as expected, consistently
greater than that in the first-order carry-over effects for each design, the magnitude
of this difference is not as great as for the corresponding values obtained for the

designs based on a pair of Williams squares.
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Table 5.3: Mean and variance of the performance measures X; and Yy, under the

180

A-criterion, for designs based on the orthogonal residual effects design of Figure 5.6

and < 36 subjects.

Table 53.1:t=3, m=6,n=1,p=3.

0 | BIX,00] | Var[X4)0) | E[Yq]0] | Var[Yy|6]
0.0 2.00 0.00 1.67 0.00
0.1] 1.89 0.03 1.47 0.06
02| 175 0.09 1.27 0.13
0.3] 1.57 0.17 1.05 0.19
0.4 | 1.36 0.24 0.84 0.21
05| 1.12 0.27 0.63 0.19
0.6 0.89 0.24 0.45 0.15
0.7 ] 0.68 0.17 0.30 0.08
0.8| 0.51 0.08 0.20 0.03
0.9 041 0.02 0.14 0.01
1.0 0.38 0.00 0.13 0.00

Table 53.2:t =3, m=6,n=2,p=3.

0 | B[X00] | Var[X.0) | E[Y.]6] | Var[Ya]6]
0.0 4.00 0.00 3.33 0.00
0.1 3.86 0.02 3.04 0.08
0.2 3.69 0.06 2.73 0.15
0.3 3.47 0.13 2.40 0.23
0.4 3.20 0.25 2.04 0.31
0.5 2.85 0.42 1.67 0.36
0.6 2.42 0.59 1.29 0.37
0.7 1.91 0.63 0.91 0.30
0.8 1.38 0.45 0.58 0.16
0.9 0.93 0.14 0.34 0.04
1.0 0.75 0.00 0.25 0.00
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Table 53.3:t=3, m=6,n=3 p=23.

0 | BIX4|0) | Var[Xul6] | E[Yal0] | Var[Y|d]
0.0 6.00 0.00 5.00 0.00
0.1 5.81 0.02 4.59 0.09
0.2 5.58 0.06 4.16 0.18
0.3 5.31 0.12 3.70 0.28
0.4 4.97 0.23 3.22 0.37
0.5 4.53 0.42 2.70 0.45
0.6 3.98 0.68 2.16 0.49
0.7 3.27 0.94 1.60 0.47
0.8 2.42 0.91 1.04 0.32
0.9 1.57 0.39 0.58 0.10
1.0 1.13 0.060 0.38 0.00

Table 5.34: t =3, m=6,n=4,p=23.

0 | BE[X4]0) | Var[X,|0]) | E[Ya]6] | Var{Ya]6]
0.0 8.00 0.00 6.67 0.00
0.1 7.76 0.03 6.14 0.11
0.2 .47 0.07 5.58 0.22
0.3 7.13 0.13 5.00 0.33
0.4 6.71 0.24 4.38 0.44
0.5 6.18 0.43 3.72 0.53
0.6 5.52 0.72 3.02 0.59
0.7 4.65 1.09 2.29 0.59
0.8 3.54 1.28 1.54 0.46
0.9 2.27 0.72 0.85 0.18
1.0 1.50 0.00 0.50 0.00
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Table 53.5:t=3, m=6,n=25,p=23.

6 | E[X4|0] | Var[X4l|0] | E[Y4|6] | Var[Yal6]
0.0 10.00 0.00 3.33 0.00
0.1 9.70 0.03 7.69 0.13
0.2 9.36 0.08 7.01 0.27
0.3 8.94 0.15 6.29 0.40
0.4 8.44 0.27 5.53 0.51
0.5 7.82 0.46 4.73 0.62
0.6 7.03 0.76 3.88 0.69
0.7 6.01 1.19 2.99 0.70
0.8 4.67 1.56 2.05 0.58
0.9 3.03 1.08 1.15 0.27
1.0 1.88 0.00 0.63 0.00

Table 5.3.6: t =3, m=6,n=06, p=3.

b | E[X,0) | Var[X,6] | E[Y.]0] | Var[Vyld]
0.0 12.00 0.00 10.00 0.00
0.1 11.65 0.04 9.24 0.16
0.2 11.24 0.09 8.43 0.31
0.3 10.76 0.17 7.58 0.46
0.4 10.17 0.30 6.69 0.59
0.5 9.45 0.50 5.74 0.71
0.6 8.94 0.81 4.74 0.78
0.7 7.36 1.28 3.68 0.79
0.8 5.80 .77 2.57 0.69
0.9 3.81 1.42 1.45 0.35
1.0 2.25 0.00 0.75 0.00
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Table 5.4: Mean and variance of the performance measures X, and Yy, under the

MV-criterion, for designs based on the orthogonal residual effects design of Figure

5.6 and < 36 subjects

Table 54.1: t =3, m=6,n=1,p=3.

0 | BIX,40) | Var[X.0] | E[Yal0] | Var[Yy6]
0.0 2.00 0.00 1.67 0.00
0.1 1.83 0.05 1.39 0.11
0.2 1.65 0.13 1.14 0.17
0.3 1.44 0.21 0.91 0.19
0.4 1.21 0.27 0.71 0.19
0.5 0.98 0.28 0.52 0.16
0.6 0.76 0.22 0.36 0.12
0.7 0.58 0.13 0.25 0.06
0.8 0.45 0.05 0.17 0.02
0.9 0.39 0.01 0.13 3.1 x 1073
1.0 0.38 0.00 0.13 0.00

Table 542t =3, m=6,n=2,p=3.

0 | E[X)0] | Var[X4)0) | E[Ya]6] | Var][Y.))
0.0 | 4.00 0.00 3.33 0.00
0.1 3.78 0.04 2.90 0.13
0.2 3.56 0.10 2.53 0.20
0.3 3.29 0.19 2.16 0.28
0.4 2.98 0.34 1.80 0.34
05| 259 0.52 1.44 0.36
0.6 2.13 0.65 1.08 0.33
0.7 1.64 0.62 0.74 0.25
0.8 | 1.17 0.37 0.47 0.12
0.9 0.84 0.08 0.29 0.02
1.0 0.75 0.00 0.25 0.00
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Table 543: t=3, m=6n=3,p=3.

0 | E[X410) | Var[Xa|0] | E[Yal6] | Var[Yald]
0.0] 6.00 0.00 5.00 0.00
0.1( 571 0.04 4.41 0.15
02| 5.43 0.10 3.90 0.26
0.3] 5.10 0.19 3.41 0.35
04| 4.70 0.34 2.90 0.43
05| 4.22 0.56 2.39 0.49
0.6| 3.61 0.84 1.86 0.49
071 2.88 1.03 1.34 0.43
0.8 2.07 0.85 0.85 0.26
0.9 1.37 0.26 0.49 0.07
1.0 113 0.00 0.38 0.00

Table 54.4: t =3, m=6,n=4,p=3.

6 | E[X4)0] | Var[X,4)0] | E[Ya]8) | Var[Yy|0)
0.0 8.00 0.00 6.67 0.00
0.1 7.65 0.05 5.93 0.18
0.2 7.30 0.11 5.29 0.31
0.3 6.89 0.21 4.65 0.43
0.4 6.41 0.36 4.00 0.53
0.5 5.82 0.60 3.34 0.60
0.6 5.09 0.93 2.66 0.62
0.7 4.17 1.28 1.96 0.57
0.8 3.07 1.31 1.28 0.41
0.9 1.97 0.54 0.71 0.13
1.0 1.50 0.00 0.50 0.00
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Table 54.5: t =3, m=6,n=>5, p=23.

0 | E[X0) | Var[X,|0) | E[Y]6] | Var[Yyld]
0.0 10.00 0.00 8.33 0.00
0.1] 9.58 0.05 7.45 0.21
02 9.17 0.13 6.68 0.37
0.3| 8.69 0.23 5.90 0.51
0.4 | 812 0.40 5.11 0.63
05| 7.42 0.64 4.30 0.71
0.6| 6.56 1.00 3.46 0.74
0.7] 547 1.45 2.60 0.70
0.8 | 4.11 1.68 1.73 0.54
0.9 2.62 0.88 0.96 0.20
1.0 1.88 0.00 0.63 0.00

Table 54.6: t =3, m=6,n=06,p=3.

0 | E[X,00] | Var[X6] | E[Ya]0] | Var[Ya|6]
0.0 | 12.00 0.00 10.00 | 0.00
0.1] 11.52 0.06 8.97 0.24
0.2 | 11.04 0.14 8.07 0.42
0.3 | 1048 0.26 7.15 0.59
0.4 ] 9.82 0.43 6.22 0.73
0.5 | 9.02 0.70 5.25 0.83
0.6 | 8.02 1.09 4.26 0.86
0.7 6.77 1.60 3.23 0.82
0.8 5.17 1.98 2.19 0.65
0.9 3.30 1.24 1.22 0.28
1.0 2.25 0.00 0.75 0.00
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0.0 T T T T 1 6
0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 5.7: Performance for direct treatment comparisons under the A-criterion of
designs based on Figure 5.6 for 24 and 36 subjects, where the bars denote

EIXal0) + 1/ Var[X,|0].
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E[Y;]0]

0.0 T 1 1 I 1 9
0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 5.8: Performance for direct treatment comparisons under the A-criterion of

designs based on Figure 5.6 for 24 and 36 subjects, where the bars denote

EY10] + +/Var[Ya]g].
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0.0 T T T T 1 6
0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 5.9: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.6 for 24 and 36 subjects, where the bars denote

E[X4]0) + /Var[X,0).
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0.0

T T T T 1 6
0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 5.10: Performance for direct treatment comparisons under the MV-criterion

of designs based on IMigure 5.6 for 24 and 36 subjects, where the bars denote

E[Y310] £ \/Var[Yy|0)].
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5.3.2 Examination of Compromise Designs

Let d(3,6.n.3) be the planned design with treatment labels 0, 1, and 2 formed by
taking n copies of the design given in Figure 5.11. The design given in Figure 5.11
is a design which is a compromise between the pair of Williams squares of side three
(Figure 5.1) and the orthogonal residual effects design (Figure 5.6), since it consists
of the first three sequences of the Williams design and the final three sequences of

the orthogonal residual effects design.

Figure 5.11: Three treatment, three period design with treatment labels 0, 1 and 2.

0 1 2
120
2 0 1 i
0 2 2
100
2 11 {

As for the designs investigated in Section 5.3.1, there are six distinct treatment !
sequences and hence, in order to investigate the robustness to final period dropout fi
of designs built form the design of Figure 5.11, involving up to 36 subjects, there
are six different sizes of design to consider.

In common with designs built from pairs of Williams squares of side three or
replicates of the orthogonal residual effects designs given in igure 5.6, designs built
from replicates of the design given in Figure 5.11 do not give rise to any disconnected
implementable designs. For each design, Tables 5.5.1 - 5.5.6 (given on pages 191-193)
contain the mean and variance of the performance measures Xy and Yy under the
A-criterion, whilst Tables 5.6.1 - 5.6.6 (given on pages 194-196) contain the mean
and variance of the performance measures X; and Y; under the MV-criterion.

Figures 5.12 and 5.13 show how E[X,|0] and E[Y4|0] change with 0, for each
design under the A-criterion, for two of these designs, namely those involving 24

and 36 subjects. Similarly, Figures 5.14 and 5.15 show how E[X,|f] and E[Y,|/]
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Table 5.5: Mean and variance of the performance measures X, and Yy, under the

A-criterion, for designs based on the pair of squares of Figure 5.11 and < 36 subjects.

Table 5.5.1: t=3, m=6,n=1,p=3.

| 0 | E[X4]0] | Var[X4|8] | E[Y2]0] | Var[Vy|6]

| 0.0 215 0.00 1.43 0.00
0.1] 1.95 0.08 1.24 0.07
0.2 1.74 0.16 1.05 0.12
| 031 151 0.24 0.86 0.14
0.4 ] 1.28 0.28 0.68 0.14
\ 05| 1.04 0.28 0.52 0.12
0.6| 0.83 0.22 0.38 0.09
0.7 0.64 0.14 0.26 0.05
0.8 ] 0.49 0.06 0.18 0.02

0.9] 040 0.01 0.14 |3.2x 1073
1.0| 0.38 0.00 0.13 0.00

Table 55.2:t =3, m=6,n=2,p=3.
0 | E[X400) | Var[Xa|0) | E[Y.]0] | Var[Yyld]

0.0| 4.30 0.00 2.87 0.00
0.1] 4.03 0.07 2.59 0.07
02| 3.74 0.15 2.30 0.14
0.3 | 342 0.26 2.00 0.20
04| 3.07 0.39 1.70 0.24
0.5 2.67 0.51 1.38 0.26
0.6 | 2.23 0.59 1.07 0.25
07| 1.75 0.56 0.77 0.19
0.8 ] 1.29 0.36 0.51 0.10
0.9] 091 0.11 0.32 0.02
| 1.0| 0.75 0.00 0.25 0.00
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Table 553: t =3, m=6,n=3, p=3.

0 | E[X,00) | Var|X.[0] | E[Y.]6) | Var[Yi)d]
0.0 6.45 0.00 4.30 0.00
0.1 6.08 0.08 3.91 0.09
0.2 5.69 0.17 3.52 0.17
0.3 5.27 0.28 3.11 0.24
0.4 4.81 0.42 2.69 0.30
0.5 4.28 0.59 2.25 0.34
0.6 3.69 0.77 1.81 0.35
0.7 3.00 0.87 1.35 0.31
0.8 2.24 0.74 0.91 0.21
0.9 1.50 0.29 0.54 0.06
1.0 1.13 0.00 0.38 0.00

Table 5.54: t =3, m=6,n=4,p=3.

0 [ ELx0) [ varlxal6) | E(vao] | Varlvile
0.0 8.60 0.00 5.73 0.00
0.1 8.13 0.10 5.24 0.11
0.2 7.64 0.20 4.73 0.21
0.3 7.11 0.32 4.21 0.30
0.4 6.52 0.47 3.67 0.36
0.5 5.87 0.65 3.11 0.41
0.6 5.13 0.87 2.53 0.43
0.7 4.26 1.07 1.94 0.41
0.8 3.24 1.06 1.34 0.30
0.9 2.16 0.54 0.79 0.12
1.0 1.50 0.00 0.50 0.00
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Var[Y}

0

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.00
0.13
0.25
0.35
0.43
0.48
0.51
0.49
0.39
0.17
0.00

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.16
0.29
0.41
0.50
0.56
0.58
0.56
0.46
0.23
0.00 {
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Table 5.6: Mean and variance of the performance measures X, and Y, under the

194

MV-criterion, for designs based on the pair of squares of Figure 5.11 and < 36

subjects.

Table 5.6.1: t =3, m=6,n=1,p=3.

0 | E[X40) | Var[X40) | E[Yal6] | Var[Y6]
0.0] 215 0.00 1.43 0.00
0.1] 185 0.14 1.16 0.11
0.2 ] 1.59 0.23 0.93 0.15
0.3 ] 1.34 0.29 0.73 0.16
0.4 | 1.10 0.31 0.56 0.14
0.5| 0.88 0.28 0.41 0.11
0.6 | 0.69 0.20 0.30 0.07
0.7] 0.54 0.12 0.21 0.04
0.8] 0.44 0.04 0.15 0.01
0.9 0.39 0.01 0.13 | 1.6 x 1073
1.0 0.38 0.00 0.13 0.00

Table 5.6.2: t =3, m=6,n=2,p=3.

0 | ELe0) | Varlxo) | EYal6) | Varilo)
0.0 4.30 0.00 2.87 0.00
0.1 3.89 0.14 2.45 0.13
0.2 3.52 0.25 2.10 0.19
0.3 3.16 0.37 1.78 0.24
0.4 2.778 0.51 1.47 0.27
0.5 2.36 0.62 1.17 0.27
0.6 1.93 0.66 0.88 0.23
0.7 1.48 0.56 0.62 0.16
0.8 1.08 0.31 0.41 0.07
0.9 0.82 0.07 0.28 0.01
1.0 0.75 0.00 0.25 0.00
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Table 56.3: t =3, m=6,n=3,p=3.

6 | E[Xy]0] | Var[X4|0] | F[Y,]0] | Var]Yy|6)
0.0 6.45 0.00 4.30 0.00
0.1 5.91 0.15 3.74 0.16
0.2 5.43 0.28 3.27 0.24
0.3 4.95 0.43 2.83 0.31
0.4 4.44 0.60 2.40 0.35
0.5 3.89 0.78 1.97 0.37
0.6 3.27 0.94 1.54 0.36
0.7 2.60 0.97 1.12 0.29
0.8 1.89 0.71 0.73 0.17
0.9 1.32 0.21 0.46 0.04
1.0 1.13 0.00 0.38 0.00

Table 5.64: t =3, m=6n=4,p=3.

0 | E[X4|0] | Var[X,[0] | E[Y]0] | Var[Vil6]
0.0 8.60 0.00 5.73 0.00
0.1] 7.93 0.17 5.03 0.18
02| 7.35 0.32 4.45 0.29
0.3| 6.74 0.49 3.89 0.38
0.4 | 6.11 0.69 3.33 0.44
0.5 5.41 0.91 2.77 0.47
0.6 4.64 1.13 2.21 0.46
0.7| 3.76 1.28 1.64 0.40
0.8 2.78 1.12 1.10 0.27
0.9 1.87 0.42 0.66 0.08
1.0 1.50 0.00 0.50 0.00
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Table 5.6.5: t =3, m=6,n=25p=3.

0 | E[X40] | Var[X40] | E[Yal6] | Var[Yald]
0.0] 10.73 0.00 7.17 0.00
0.1] 9.96 0.19 6.33 0.21
0.2] 9.26 0.37 5.63 0.35
0.3 8.94 0.56 4.94 0.45
0.4 | 7.77 0.78 4.26 0.52
05| 6.93 1.03 3.57 0.56
0.6 | 6.00 1.30 2.88 0.55
071 4.93 1.52 2.18 0.50
0.8] 3.71 1.47 1.49 0.36
0.9 2.46 0.68 0.88 0.13
1.0 1.88 0.00 0.63 0.00

Table 5.6.6: t =3, m=6,n=6, p=23.

0 | B[X,0] | Var[X,]0] | E[Y4l0] | Var[Yal0]
0.0 12.90 0.00 8.60 0.00
0.1 11.99 0.22 7.63 0.24
0.2 11.17 0.41 6.80 0.40
0.3 10.33 0.63 6.00 0.52
0.4 9.43 0.88 5.19 0.61
0.5 8.04 1.15 4.38 0.65
0.6 7.36 1.45 3.55 0.65
0.7 6.11 1.73 2.72 0.59
0.8 4.66 1.78 1.88 0.45
0.9 3.08 0.97 1.11 0.18
1.0 2.25 0.00 0.75 0.00
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Probability of Dropout

Figure 5.12: Performance for direct treatment comparisons under the A-criterion of

designs based on Figure 5.11 for 24 and 36 subjects, where the bars denote

E[AXEZW] + \/Var[Xd\()].
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Figure 5.13: Performance for direct treatment comparisons under the A-criterion of

designs based on Figure 5.11 for 24 and 36 subjects, where the bars denote

E[Y10] + /Var[Vy]0].



Chapter 5 199
E[Xal]
15 o
0.0 T T T T 1 6
0.2 0.4 0.6 0.8 ' 1.0

Probability of Dropout

Figure 5.14: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.11 for 24 and 36 subjects, where the bars denote

E[X4]6] £ \/Var[X,]6].
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Probability of Dropout

Figure 5.15: Performance for direct treatment comparisons under the MV-criterion

of designs based on Figure 5.11 for 24 and 36 subjects, where the bars denote

E[Ya|8] + +/Var[Yal6)].
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change with 8, for each design under the MV-criterion.

Examining the trends of the mean performance measures given in Tables 5.5.1 -
5.5.6 and 5.6.1 - 5.6.6 and illustrated in Figures 5.12 - 5.15 we observe that for any
particular value of §, each of the respective mean performance measures increases as
the number of subjects is increased. Also, we note that there is a gradual reduction in
the value of each mean performance measure as ¢ increases. In addition we observe
that the variance of the mean performance measures is small and the difference
between the mean performance measures obtained under either criterion is not large
which suggests that the spread of the variances amongst the pairwise treatment
comparisons for each design will never be large.

Thus far we have investigated separately the performance, subject to final period
dropout, of the three classes of designs built from replicating each of the designs given
in Figures 5.1, 5.6 and 5.11. In the next sections the performance of the designs are
compared and recommendations on the choice of design for different experimental
situations are given. The recommendations are dependent on the assumption that
the simple model of equation (1.1) describes the observations. Both the orthogonal
residual effects design (Figure 5.6) and the design of Figure 5.11 involve treatment
sequences in which a treatment is followed by a second application of the same
treatment. Caution in interpreting the comparisons is needed if the appropriateness

of the model 1s in doubt, see Section 1.3.2.

5.4 Comparison of Designs: 6 =0.0,0.1,...,1.0

In this section, the performance subject to final period dropout, of three of the
designs investigated in the earlier sections of this chapter are compared so that
appropriate recommendations can be made concerning their use. Throughout this
section a subset of all possible values of 8, namely § = 0.0,0.1,...,1.0, has been
investigated. All the conclusions concerning design selection are therefore limited to

the values of 6 considered. In Section 5.5 the investigation is extended to examine
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the relative performance of each design for 0 < 6 < 1.

The designs to be compared, labelled I, Il and III are as follows:

I A pair of Williams squares d(3,6,1,3). This is the design given in Figure 5.1 with

six subjects 1n total.

IT An orthogonal residual effects design d(3,6,1,3). This is the design given in

Figure 5.6 with six subjects.
IIT The design d(3,6,1,3) given in Figure 5.11 with six subjects.

Assume that we wish to compare all the pairwise direct and first-order carry-
over treatment effects. Using equations (2.4), (2.3), (2.6) and (2.7) with the A-
criterion we can obtain a summary of the average variance of the direct and carry-
over treatment effects for each design. These summary measures have been given in
Tables 5.1.1, 5.3.1 and 5.5.1 respectively.

Comparisons of the graphs of the means of X; and Y, against 0, for designs I,
I, and III, are given 1n Figures 5.16 and 5.17, respectively. We observe that the
range of values for the mean of Xy and Y, from ¢ = 0.0 - ¢ = 1.0 is different for
each design. For design [ the ranges are 2.40-0.38 and 1.33-0.13 respectively; for
design 1I, 2.00-0.38 and 1.67-0.13 respectively; for design I1I, 2.15-0.38 and 1.43-
0.13 respectively. An examination of the ranges shows that the orthogonal residual
effects design, design II, has the smallest range of values for the estimation of the
direct treatment effects but has the largest range for the estimation of the first-order
carry-over treatment effects. In contrast, the pair of Williams squares, design I, has
the smallest range of values for the estimation of the first-order carry-over treatment
effects and the largest range for the estimation of the direct treatment effects. We
conclude that design II is the least sensitive to the choice of § for the estimation of
the direct treatment effects and design I is the least sensitive to the choice of § for
the estimation of the carry-over treatment effects. In contrast to the comparisons

of designs given in Sections 2.8 and 4.6, the designs which demonstrate the least
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E[Xq)0]
i
11
2.0
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1.0
OO ] T T T 1 9
0.2 0.4 0.6 0.8 1.0

Probability of Dropout

Figure 5.16: Comparison of the graphs for showing the mean of X, under the

A-criterion, for designs I, 11, and 1L
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EYq|0]
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{1
111
1.0 I
OO T I T | 1 9
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Probability of Dropout

Figure 5.17: Comparison of the graphs for showing the mean of Yy, under the

A-criterion, for designs I, I, and I1I.
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sensitivity to the choice of § do not necessarily represent the “best” choice of design.
This is because the designs being compared are identical in the first two periods
only differing in the final period. Consequently, it is when # = 1.0 rather than when
0 = 0.0 that the values of the mean performance measure E[Xy|0] are equal for
cach design. Similarly, when 6 = 1.0, the values of the mean performance measure
E[Y,|0] are equal for each design. In the comparisons given in Section 2.8 and 4.6,
although the designs compared are different, they are all uniform balanced designs
and hence have i1dentical performance measures when no dropouts occur. In these
circumstances designs with larger ranges of values for the mean performance mea-
sures represent designs which experience a greater loss of information as increasing
numbers of subjects are lost in the final period. Consequently those designs most
sensitive to the choice of § are also the poorer designs. For the designs compared
1 this section, this is no longer true. The design whose mean performance changes
most from 6 = 0.0- § = 1.0 is the design which has the largest mean performance
measure when complete and when only a few subjects are lost in the final period.
Thus a design with less sensitivity to 0 does not necessarily have greater robustness
to final period dropout.

In practice it will be unusual to proceed with a three period study if it is antici-
pated that large numbers of subjects will dropout during the third period. Conse-
quently designs which can be shown to have higher mean values for X, and/or Y}
when the value of § is small are of practical worth.

From Tables 5.1.1, 5.3.1, and 5.5.1 we observe that when § = 0.0 design I has
the largest mean value for Xy, while design 11 has the largest mean value for Y.
The result concerning the first-order carry-over effects i1s as expected since Kunert
(1984) proved that, over the class of all cross-over designs in which ¢t = p = 3
involving a total of six subjects, the universally optimal design for the estimation of
the first-order carry-over treatment effects is an orthogonal residual effects design.

By considering the mean values of X; and Y; over the entire range of possible

values for #. 1t 1s possible to investigate whether the design which gives the largest
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mean performance measure when no dropouts occur also performs better than com-
peting designs when final period dropouts are anticipated. In particular, whether
the orthogonal residual effects design which is known to be optimal for the estima-
tion ot the first-order carry-over treatment effects when complete, performs better

than competing designs when dropouts may occur. We do this by considering the

design selection criteria of Section 2.8.1.

The application of the criteria is not as straight forward as in previous examples.
Unlike the designs compared in Chapter 4, one design does not emerge as being
“better” than the others in the sense of having larger values for E[X;|0] and E[Yy]6]

with correspondingly smaller values for Var[X},

] and Var[Yy|0] across the entire
range of possible values of §. Consequently, if the probability of final period dropout
is changed, the design recommended under the proposed criteria may also change.
From the tables of summary measures for each design we observe that a clear or-
dering of the designs does exist for the estimation of first-order carry-over treatment

effects alone. The ordering is:

E[}/’l[1|9l 2 E{Y’hu](ﬂ 2 E[YJIW]

and
Var[Yy,, 0] < Var(Yy,,,10] < VarlYy, |0}
and holds when both the A- and MV-criteria are employed.
Hence, if the estimation of the first-order carry-over treatment effects i1s the

primary concern, we recommend the use of design II, that 1s the orthogonal residual

effects design, for all possible values of .

In practice, however, it is much more common for the estimation of the direct
treatment effects to be the major concern of an experimenter. In these circumstances
it may be appropriate to either disregard the information obtained concerning the
estimation of first-order carry-over effects or seek a design which gives a higher value
for E[X,]0] and, if possible, reduced values for Var[X, 0] by allowing a decrease in

I5Y4]0] and/or an increase in Var|[Yy|d].
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We now establish which design to recommend for each of the values of § consid-

ered.

5.4.1 Design Selection Based on the A-criterion

A summary of the results obtained using the design selection criteria of Section
2.8.1, for the estimation of the direct treatment effects with the A-criterion, can
be obtained by examining Tables 5.1.1, 5.3.1 and 5.5.1. The summary is given in
Table 5.7 in which the designs are ordered according to the magnitude of F[X,|d]
and Var[X,10] for § = 0.0,0.0,...,1.0. The comparison of the designs summarised
in Table 5.7 shows that no one single design out-performs both of the other designs
for all values of # investigated. However, apart from when 6 = 0.2 when design I1I
has the smallest mean performance measure, design I consistently out-performs
one of the alternative designs. When 6 < 0.1 design III out-performs design Il and
when 8 > 0.3 design III out-performs design I. Design III is a compromise between
the other designs, having a final period which makes the first square of the design
identical to that of design I and the second square identical to that of design IL. It
follows that design Il has several implementable designs in common with the other
designs. It 1s therefore unsurprising that, for most of the values of § for which design
[ 1s out-performed by design II, it is also out performed by design III. Similarly, it
is unsurprising that, for most of the values of 8 for which design II i1s out-performed
by design I, it is also out-performed by design I11.

When 0.3 < 0 < 0.5 we recommend the use of design II since it has the largest
mean value of X, together with the correspondingly smallest variance. When ¢ < 0.2
or when 0 > 0.6, the design with the largest mean value of X, is also the design
with the largest variance. In these circumstances, provided the variance is not very
different from that obtained for each of the other designs, the preferred design 1s the
one with the largest mean performance measure. When § < 0.2 this is design [ and

when ¢ > 0.6 this is design 1L



Table 5.7: Comparison of the mean and variance of X, under the A-criterion, for

designs I, IT and III. The designs are given in decreasing order of the mean and

increasing order of the variance.

0 Order of F[X4]0]
0.0, 0.1 I IIL 1
0.2 110 100
0.3,...,1.0 I, 111, 1
o Order of Var[X,|0]
0.0, .05 1, 111 1
0.6, .10 LI

5.4.2 Design Selection Based on the MV-criterion

Alternatively, we may wish to compare the relative performance of the designs [-11]
using the summary measures provided by equations (2.4), (2.5), (2.6) and (2.7) and
the MV-criterion, see Tables 5.2.1, 5.4.1 and 5.6.1. Comparisons of the graphs of
the mean of X, and Y against ¢, for § = 0.0,0.1,... 1.0, are given in Figures 5.18
and 5.19 respectively.

When the estimation of the first-order carry-over treatment effects i1s most im-
portant, the use of the design selection criteria of Section 2.8.1 with the MV-criterion
again leads to the recommendation of design II. This is because, as before, the mean
values of Yy are always the largest with the correspondingly smallest variances for
any probability of final period dropout for the values of § considered.

For experiments in which the estimation of the direct treatment effects 1s at least
as important as the estimation of the first-order carry-over treatment effects, then
from Figures 5.18 and 5.19 the recommended design depends upon the particular
value of § considered. If § changes then so may the recommended design.

A summary of the results obtained using the design selection criteria of Section

2.8.1, for the estimation of the direct treatment effects with the MV-criterion can
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[igure 5.18: Comparison of the graphs for showing the mean of X, under the

MV-criterion, for designs I, II, and I1I.
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Figure 5.19: Comparison of the graphs for showing the mean of Y,, under the

MV-criterion, for designs I, II, and III.
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be obtained by examining Tables 5.2.1, 5.4.1 and 5.6.1. The summary is given in
Table 5.8 in which the designs are ordered according to the magnitude of E[X,10]
and Var[X,y|0] for 6 = 0.0,0.1,...,1.0. The comparison of the designs summarised in
Table 5.8 shows that for each value of 0 considered the design with the largest mean
performance measure never has the smallest variance. Again in these circumstances
provided that the variance is not large the preferred design will be the design with

the largest mean performance measure. When 6 < 0.1 this is design I and when

g > 0.2 this is design II.

Table 5.8: Comparison of the mean and variance of Xy, under the MV-criterion,
for designs [, I and III. The designs are given in decreasing order of the mean and

increasing order of the variance.

Z Order of F[X,|0]
0.0, 0.1 I, 11, 11
0.2,...,0.8 I, 111, 1
0.9, 1.0 IT, 1, 111
g Order of Var|[X,|0]
0.0, 0.1 I, 111, 1
0.2,...,1.0 I, 111, 11

5.5 Comparison of Designs: 0 <8 <1

Ideally, in order to determine the exact value(s) of § for which a particular design is
recommended, it Is necessary to determine the behaviour of the mean performance
measures for each competing design across all possible values of 0. In the following
subsections, we show how this can be achieved by considering the mean performance
measures, £{X;]0] and [Yy]0], obtained using firstly the A- and secondly the MV-

criterion, as functions of 4.
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5.5.1 Mean Performance Based on the A-criterion
Let designs I, II and III be the three planned designs d(3,6,1,3) considered in
Section 5.4 and given in Figures 5.1, 5.6 and 5.11 respectively.

Using equations (2.4) and (2.6) with the A-criterion we can obtain the mean of

the performance measures Xy and Y, as polynomials in terms of 0.

Let f;(#) denote F[X,;|0] for design j where 7 =I, Il or 111, then

f1(0) = 2.4(1 —0)° +11.0778(1 — 6)° +19.8150%(1 — 0)* +
17.2770°(1 — 0)° +8.0450% (1 — 6)* 4+ 2.250°(1 — 0) + 0.3750° (5.1)
fri(0) = 2.0(1 —6)% +11.1050(1 — 0)® + 23.9950%(1 — 0)* +
23.4620°(1 — 0)° + 8.7620™(1 — )% + 2.250°(1 — 0) + 0.3750° (5.2)
fir(0) = 2.15(1 = 0)° +10.9680(1 — 0)® + 21.9876%(1 — 0)* +

20.6490°(1 — )% +8.4730%(1 — )% + 2.256°(1 — 0) + 0.3756° (5.3)

Similarly, let g; denote E[Y;|0] for design j where j =I, II and I1I, then

gr(0) = 1.333(1 — 0)® +5.760(1 — 0)°> + 9.5276%(1 — 0)* +
T3TLO%(1 — 0)> + 2.8690% (1 — 0)> + 0.736°(1 — 6) + 0.1250° (5.4)
gri(0) = 1.667(1 — 0)° +8.15380(1 — 0)° + 14.980*(1 — 6)* +
11.7466% (1 — 0)* + 3.1620%(1 — 0)* + 0.750°(1 — 6) + 0.1256° (5.5)
gri(0) = 1.433(1 —0)® +6.7060(1 — 0)° 4 11.8196*(1 — )" +

9.340°(1 — 0) + 3.0520*(1 — 0)* + 0.750°(1 — 0) + 0.12560°  (5.6)

I'rom the design selection criteria of Section 2.8.1, a recommended design must
have, for some anticipated value of 4, the largest value of E[X,}0] over the class

of competing designs. If the design satisfying this condition changes, according to

the value of 0 selected, then one or more of the curves describing the behaviour of
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0], for each of the competing designs must intersect at some value of # in the
range 0 < 6 < 1.

Since the value of # chosen for design purposes is only an estimate of the antici-
pated level of final period dropout, it is important to know whether slight changes
to this value have any effect upon the design recommended. If the curves describing
the behaviour of F[X,]0] intersect at some value of 8 close to the anticipated value,
then a change in the recommended design could result. Therefore, information on
the values of 8 at which the curves intersect needs to be taken into account during
the planning stage. However, if the difference between the respective performance
measures 1s small, for all values of § close to the anticipated value, the fact that the
curves intersect is less likely to alter the choice of design than when the difference
is large.

In order to obtain a full comparison of the performance of designs I, IT and 111
for estimating the average variance of all the pairwise direct treatment effects, it is
necessary to establish the points of intersection of f;, frr and fr;; given in equations
(5.1), (5.2) and (5.3) respectively. It will then be possible to determine the value(s)
of § at which one design begins to out-perform another; that is the value(s) of 0 for
which the recommended design changes.

In order to find the points of intersection it is necessary to obtain the roots of

the following equations:

fi—=fiu =0 (5.
fr—=frr = 0 (5.
fir=frr =0 (5.

Ut Ut
o8] -1
~ ~—

<
<O
~—

Designs 1 and Il have identical mean performance measures, £[X;[0], at the
values of ¢ which satisfy equation (5.7). Similarly, designs I and III have identical
mcan performance measures, £[X,|0], at the values of 0 which satisfy equation (5.8)

and designs IT and Il have identical mean performance measures, F[X,|4], at the
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values of # which satisfy equation (5.9).

The only roots of interest for each of equations (5.7), (5.8) and (5.9) are real
roots such that 0 < @ < 1. From Section 5.4, since all three designs are identical
in the first two periods, they have equal values for the mean of the performance
measures Xy and Y; when § = 1.0 obtained using either the A- or the MV-criterion.
Hence, each of the equations (5.7), (5.8) and (5.9) has a root # = 1.0.

Further, from Section 5.4, a second root of equation (5.7) lies in the range 0.2 <

§ < 0.3, since design | has a larger value for F[X,

f] than designs II when 6 = 0.2,
while design Il has a larger value that design I when § = 0.3. Similarly, a second
root of equations (5.8) also lies in the range 0.2 < § < 0.3 while a second root of
equation (3.9) occurs in the range 0.1 < § < 0.2.

The roots of equations (5.7), (5.8) and (5.9) can be obtained by using the solve
or fsolve commands in the computer algebra package MAPLE. The command
solve seeks to find the exact solutions to an equation in closed-form while the
command fsolve carries out numerical analysis procedures such as Newton’s method

of iteration to find the roots of an equation. The following roots were obtained:

Equation (5.7): § = 0.2060 and § = 1.0;
Equation (5.8): 6 = 0.2287 and 0 = 1.0;
5.9):

Equation (5.9): § = 0.1766 and § = 1.0.

These results confirm the observations made earlier.

Examining these points of intersection together with the individual polynomials
representing the mean performance measures [7[X4}|f] for each design, the relative
performance of each design across all possible values of ¢ in the range 0 < 0 <1
can be determined: see Table 5.9 in which, for ranges of 0 values the recommended
design is given together with the ordering of the designs with respect to the mean
performance measure E[Xy|0].

From these results we conclude that, if the aim of an experiment is to compare all

the direct treatment effects as accurately as possible, when the probability of final
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Table 5.9: Comparison of the mean of X, under the A-criterion, for designs [, II,

and III. The designs are given in decreasing order of the mean.

6 Order of E[X;|0]
0.0000 < § < 0.1766 I, 111, 11
0.1766 < 6 < 0.2060 1,11, 101
0.2060 < 0 <0.2287 I, I, 111
0.2287 < 0 < 1.0000 I I, 1

period dropout is anticipated to be in the range 0.0 < # < 0.2060 the recommended
design 1s the pair of Williams squares, design [. If the probability of final period
dropout is believed to be in the range 0.2060 < 6 < 1.0 the recommended design
is the orthogonal residual effects design, design II. However, since there is a change
in the recommended design at § = 0.2060 experiments in which the value of 0 is
believed to be close to 0.2 may need careful consideration with other factors being
taken into account before making the final design selection. These findings are
similar to those of Section 5.4 but cover all possible values of § which could arise

rather than a subset of specific values.

Similar procedures can be carried out to obtain a full comparison of the perfor-
matice of designs I, II and III for estimating the average variance of all the pairwise
first-order carry-over treatment effects by investigating the points of intersection
between equations (5.4), (5.5) and (5.6). On doing this we discover that, in each

case, the only point of intersection occurs when ¢ = 1.0. Furthermore,
X0 0] > [B[Xay, 0] 2 (PIX0,J0] for 0021,

Hence, regardless of the anticipated value of 8, for experiments which aim to
compare all the pairwise first-order carry-over treatment effects as accurately as
possible, the recommended design is always design II. It 1s unlikely, however, that

an experiment would only aim to compare first-order carry-over treatment effects.
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This information would, therefore, be used in conjunction with that obtained for

the estimation of the direct treatment effects and could be particularly influential if

the value of # was anticipated to be around 0.2.

5.5.2 Mean Performance Based on the MV-criterion

In Section 5.5.1, the effect of final period dropout on the estimation of the direct
and first-order carry-over treatment comparisons has been examined. If the effect

of final period dropout on the maximum variance of the treatment comparisons is

sought then similar comparisons can be obtained using performance measures based
on the MV-criterion, as described below.

Let designs [, II and III be the three planned designs d(3,6,1,3) considered in
Section 5.5.1 and given in Figures 5.1, 5.6, and 5.11 respectively. Using equations
(2.4) and (2.6) with the MV-criterion we can obtain the mean of the performance
measures Xy and Y, as polynomials in terms of 6.

Let f;(0) denote L[X4]0] for design j where j =I, Il or III then,

fi(0) = 2.4(1 —0)° +9.00(1 — 0)° +16.7280*(1 — 6)* +
14.2470°(1 — 0)® + 6.5760% (1 — 0)* 4 2.250°(1 — 0) + 0.375095.10)
fr(0) = 2.0(1 —0)° +10.3330(1 — 0)® +22.0250*(1 — 0)* +
19.0780%(1 — 0)® + 6.340% (1 — 6)* +2.250°(1 — ) + 0.3750° (5.11)
frr(0) = 2.15(1 — 0)° +9.7360(1 — 0)° + 18.9230%(1 — 0)* +

16.7940%(1 — 0)* + 6.0200% (1 — 6)* +2.250°(1 — 0) + 0.3750%5.12)
Similarly, let ¢;(#) denote E[Y;]0] for design j where j =1, IT or III, then

gr(0) = 1.333(1 — 0)° +4.3710(1 — 0)° 4 7.6820*(1 — 0)* +
5.9190°%(1 — 0)% + 2.1550" (1 — 6)* + 0.750°(1 — 0) + 0.1256°(5.13)

gri(0) = 1.667(1 —0)° +6.9660(1 — 0)° + 12.6850°(1 — 0)* +

8.9710°(1 — 0)* + 2.1550" (1 — 0)* + 0.750°(1 — ) 4 0.1250°(5.14)
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grrr(0) = 1.433(1 — 6)° +5.6790(1 — 0)° + 9.50*(1 — 0)* +
6.9766°(1 — 6)> 4 2.0190%(1 — 0)* + 0.750°(1 — 6) + 0.1256°(5.15)

Asin Section 5.5.1, the values of 6 at which the recommended design may change are
obtained by investigating the roots of the appropriate difference equations. On ex-
amining these values together with the polynomials representing F[X 0] and E[Y;|0]
we can determine the relative performance of each design over the entire range of
possible § values, 0 < 8 < 1. This is summarised in Table 5.10 in which, for ranges
of # values, the recommended design is given together with the ordering of the de-

signs with respect to the magnitude of the mean performance measures F[X,|0] and

B[Yal0)

Table 5.10: Comparison of the mean of X, and Y}, under the MV-criterion, for

designs I, IT and III. The designs are given in decreasing order of the mean.

0 Order of E[X,|0]
0.0000 < 6 < 0.1224 110, 10
0.1224 < 0 < 0.1446 1L T
0.1446 < 0 < 0.1650 I, 1, 11
0.1650 < 6 < 0.8429 I 100 T
0.8429 < 6 < 0.9556 I, 1,111
0.9556 < 8 < 1.0000 I 11, 111

0 Order of E[Y,|0)
0.0000 < 0 < 0.9028 1, 1, I
0.9028 < 0 < 1.0000 11, 111, 1

From Table 5.10 we observe that when 0.1446 < 6 < 0.9556 the recommended
design for estimating both the direct and first-order carry-over effects 1s design II.
For all other values of § the preferred design for estimating the direct treatment
effects is design 1. The preferred design for the estimation of the first-order carry-

over cffects 1s design 11 when 0 < 0 < 1.
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5.6 Comparisons for Larger Numbers of

Subjects

In Section 5.5 the robustness to dropout of designs I, I and Il was investigated.
The designs involved only six subjects, that is one subject was allocated at random
to each of the distinct treatment sequences of Figures 5.1, 5.6, and 5.11. In this
section, the relative performances are investigated of designs formed by allocating
larger numbers of subjects (n < 4) to each of the distinct treatment sequences in the
figures. In order to simplify a comparison of the designs with each other and those
of the previous sections, any design formed by allocating equal subject numbers to
the sequences of Figures 5.1, 5.6 and 5.11 will be labelled designs I-111 respectively.

The approach used is identical to that of Sections 5.5.1 and 5.5.2. The polynomi-
als derived for the mean performance measures for the direct and first-order carry-
over treatment effects (analogous to (5.1)-(5.6) and (5.10)-(5.15)) include terms of
order 24 in . Due to their complexity the polynomials are not explicitly given here,
but they are used to derive the results in Tables 5.11 and 5.12, for the A-criterion,
and in Tables 5.13 and 5.14, for the MV-criterion.

In the tables the designs are ordered according to the size of the mean per-
formance measure, where the first design listed has the largest mean performance
measure. For any particular experiment, the experimenters can use this informa-

tion to guide their choice of design for the anticipated value of 6 as illustrated in

Examples 5.1 and 5.2.

Example 5.1 Suppose an experiment is proposed to compare direct treatment
effects using 18 subjects, and the probability of dropout 1s thought to be in the region
of 0.1. From Table 5.11 we observe that the recommended design 1s design I, when
E[X,4]0] is obtained using the A-criterion. Similarly, from Table 5.13 we observe
that the recommended design is also design I when the performance measures are

obtained using the MV-criterion.
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Example 5.2 Suppose an experiment is proposed to compare direct treatment
effects using 24 subjects, and the anticipated value of # is in the region of 0.3. From
Tables 5.11 and 5.13 we observe that the recommended design is design [ when the
performance measures are obtained using the A-criterion, but design II when the

performance measures are obtained using the MV-criterion.

For the experiment described in Example 5.1, the experimenters should have
no difficulty in selecting design I since this is the recommended design for perfor-
mance measures obtained using both the A- and MV-criteria. Design selection is less
straight forward for the experiment described in Example 5.2. In this case the rec-
ommended design is not the same for performance measures obtained using different
optimality criteria. In these circumstances the priorities of the experimenters must
guide the choice of design. For example, if minimising the expected average vari-
ance of the pairwise treatment comparisons is a priority, then the most appropriate
design to use is design 1. If however minimising the expected maximum variance of
the pairwise treatment comparisons is essential, then design II will be the preferred
design.

From Table 5.11, we observe that when 0 is very small, the preferred design
for the estimation of direct treatment effects is design I, for each size of study
investigated. However, in each case, there reaches a point when design 11 begins to
out-perform design I and its superiority continues for all subsequent values of . Let
Uy be the value of 8 at which design 11 begins to out-perform design I. From Table
5.11 we see that the value of g increases with the number of subjects allocated to
each treatment sequence. For example, when the number of subjects in the study
1s six , 8o = 0.2060. When the number of subjects on the study 1s increased to 24
8y = 0.3469. Note that, right across the ordering of the designs, the larger the value
of n the greater the value of # at which the change in the ordering of the designs
occurs. It is conjectured that for studies involving larger numbers of subjects 8y will

continue to increase in a similar manner. If this is true, then for § < 0.3 and n > 3,
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Table 5.11: Comparisons of the mean of Xy, under the A-criterion, for designs 1, 11

and III and < 24 subjects. The designs are given in decreasing order of the mean.

f Order of F[X,}0]
n=1s=6 |0.0000<6<0.1766 1110, 11
0.1766 < 0 < 0.2060 I 1L, 11
0.2060 < 0 < 0.2287 I, 1, 111
0.2287 <6 < 1.0000 I, I 1
n=2 s=12|0.0000 <8 <0.2466 As previous
0.2466 < 0 < 0.2942 ordering.

0.2942 < 6 <0.3397
0.3397 < 6 < 1.0000
n=3 s=18]0.0000 <0 <0.2748 As previous
0.2748 < 6 < 0.3290 ordering.

0.3290 <6 <0.3738
0.3738 < 9 < 1.0000
n=4,s =724 10,0000 <§ <0.289 As previous
0.2894 < § < (0.3469 ordering.

0.3469 < 8§ < 0.3394
0.3394 < 4 < 1.0000

Table 5.12: Comparisons of the mean of Yy, under the A-criterion, for designs I, I1

and III and < 24 subjects. The designs are given in decreasing order of the mean.

0 Order of E[Y,|0]
n=1s8s=6 [00<6<1.0 I, 111, 1
n=2 s=12]00<6<1.0]| As previous ordering.
n=3s=1810.0<60<1.0]| As previous ordering.
n=4,s=24100<6 <101 As previous ordering.
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Table 5.13: Comparisons of the mean of X, under the MV-criterion, for designs I,

[T and IIT and < 24 subjects. The designs are given in decreasing order of the mean.

0.1723 < 0 < 0.2243
0.2243 < § < 0.2648
0.2648 < 4 < 0.8740
0.8740 < # < 0.9613
0.9613 < # < 1.0000

g Order of E[X,]0]
n=15=6 |00000<f<01224 LuLu |
0.1224 < § < 0.1446 I, 11, 111
0.1446 < § < 0.1650 1110
0.1650 < 6 < 0.8429 1L, 111, 1
0.8429 < # < 0.9556 1, 101
0.9556 < ¢ < 1.0000 I, 11, 111
n=2 s=12100000<6<0.1723 As previous

ordering.

n =3,

S

0.0000 < 0 < 0.2038
0.2038 < 6 < 0.2621
0.2621 < § < 0.3167
0.3167 < 6 < 0.8995
0.8995 < 6 < 0.9661
0.9661 < 6 < 1.0000

As previous

ordering.

=
I
NN

[

24

0.0000 < 6 < 0.2038
0.2229 < § < 0.2726
0.2726 < 0 < 0.3437
0.3437 < 6 < 0.9055
0.9055 < # < 0.9751
0.9751 < 6 < 1.0000

As previous

ordering.

O]
Q]




Chapter 5

222

Table 5.14: Comparisons of the mean of Y, under the MV-criterion, for designs I,

IT and 1] and < 24 subjects. The designs are given in decreasing order of the mean.

6 Order of E[Y,|0]
n=1s=6 |0.0000 <8< 09028 111, 111
0.9028 < 6 < 1.0000 11101, 1
n=2 s=12 | 0.0000 < 0 < 0.9170 11 101, 1
0.9170 < 6 < 0.9986 111, 100
0.9986 < 0 < 1.0000 I 11, 111

18

0.0000 < § < 0.9291
0.9291 < 0 < 0.9984
0.9984 < 0 < 1.0000

As previous

ordering.

24

0.0000 <0 <0.9418
0.9418 < 0 < 0.9950
0.9950 < 8 < 1.0000

As previous

ordering.
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amongst the three designs investigated in this section, the pair of Williams squares,
design I, will always be the preferred design for the estimation of direct treatment
effects.

Examining Table 5.13, we observe that the comments made concerning design
selection when the performance measures for X, are obtained using the MV-criterion
are similar to those made when these are obtained using the A-criterion. There are
two notable differences. Firstly, when 6 is very large, § > 0.95, design [ begins to
out-perform design II again. This is of little practical importance, however, since 1t
would be unthinkable for a cross-over design to proceed for such a large anticipated
value of §. The more important difference is that the value of § at which design II
begins to out-perform design [ is consistently smaller when the performance measures
are calculated using the MV-criterion in preference to the A-criterion. The choice
of study needs very careful consideration when the value of 8 is anticipated to be in
the region where a different design is recommended under each criterion.

For all sizes of study considered, Tables 5.12 and 5.14 show that the recom-
mended design for the estimation of first-order carry-over treatment effects under
both criteria is the orthogonal residual effects design, design II, provided that the
value of 8§ < 0.9.

For small studies and a small value of § the recommended design for estimating
the direct treatment effects is not the same as that for estimating the first-order
carry-over effects. In these circumstances, the priorities of the experimenter should

be used to choose the design.

5.7 Designs Formed by Changing the Final
Period

In the previous section, the performance subject to final period dropout of three

different cross-over designs has been investigated. The common feature of the designs
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1s that they are identical in the first two treatment periods and differ only in the
period under threat; the final period. The findings show that, particularly with
respect to the estimation of direct treatment effects, the design which has the largest
mean performance measure when § = 0.0 is out-performed by alternative designs
for particular values of # > 0. The work presented in the previous sections of this
chapter raises the issue of whether a design with improved robustness to final period
dropout can be found by changing the final period of a pair of Williams squares of
side three. In order to investigate this an exhaustive computer search of all possible
designs for six subjects was undertaken.

The total number of possible three period designs which can be formed using
the first two periods of a pair of Williams squares and allowing the final period of
each treatment sequence to involve any of the three treatments is 3° = 729. The
designs considered in Sections 5.4 and 5.5 are just three of the total number of
designs to be investigated. Note that some of the 729 possible designs can be shown
to be isomorphic under a permutation of the treatment labels and of the treatment
sequences.

An investigation of the mean and variance of the performance measures Xy
and Yy calculated using both the A- and MV-criteria for all 729 designs has been
performed for § = 0.0,0.1,...,1.0. The results can be used to establish which of
the designs give rise to “better” mean performance measures for different values of

¢ and to address the following questions:

(1) Which of the designs give “better” mean performance measures for the direct

treatment effects?

(i1) Which of the designs give “better” mean performance measures for the carry-

over treatment effects?

(i11) Do any of the designs provide “good” mean performance measures for both

the direct and carry-over treatment effects?
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5.7.1 Direct Treatment Effects

When the probability of final period dropout is § = 0.0, the design with the largest
mean performance measure £[X;]0], using both the A- and MV-criterion, is the pair
of Williams squares given in Figure 5.1. This design 1s therefore, both A- and MV-
optimal, within the class of 729 designs under investigation, for estimating the direct
treatment effects. It has already been established in Section 5.4, however, that this

design does not always give the largest mean performance measures E[X,

8] when
0> 0.

In practice, it will be unusual to proceed with an experiment in which the prob-
ability of final period dropout is anticipated to be greater than 0.3. An examination
of the mean performance measures obtained for each of the designs under investi-

9],

gation shows that several designs give larger mean performance measures F[X,

obtained using either the A- or MV-criterion, than a pair of Williams squares, for
some value of 8 in the range 0.0 < § < 0.3. These designs, together with the pair
of Williams squares, are listed in Table 5.15. Note that the designs labelled a, b
and c in Table 5.15 are designs I, I and III investigated in Section 5.4. Examining
these designs we observe that the designs a, b, ¢, d and h are all designs which are
uniform on the periods. In addition, the remaining three designs may be thought of
as being “nearly” uniform on the periods since, in the final period of each design, one
treatment occurs three times, one treatment occurs twice and the final treatment
occurs once. This is a switch of only one treatment.

The relative performances of the eight designs listed in Table 5.15 for estimating
the direct treatment effects using both the A- and MV-criteria, are summarised in
Table 5.16 for 0 = 0.0,...,0.3. In the table the designs are given in decreasing order
of B[X4]0].

Examining Table 5.16 we observe that when § > 0.2 the pair of Williams squares.
design a, no longer gives the largest mean performance measures when calculated

under either optimality criterion. In addition, designs a b, d, and h give the largest
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Table 5.15: Designs using the first two periods of Figure 5.1 which perform at least

as well as Figure 5.1 for the estimation of the direct treatment comparisons when

6 <0.3.

a 0 1 2
1 2 0
2 0 1
0 2 1
I 0 2
2 1 0
e 0 1 1
12 2
2 0 0
0 2 1
10 0
2 1 1

Table 5.16: Comparisons of the mean of Xy, under the A- and MV-criteria, for

designs a-h. The designs are given in decreasing order of the mean.

b 0 1 1 c 0 1 2 d
1 2 2 1 2 0
2.0 0 2 0 1
0 2 2 0 2 2
1 0 0 1 0 0
2 1 1 2 1 1

f 0 1 1 g 0 1 1 h
12 2 12 2
2 0 1 2.0 0
0 2 1 0 2 1
1 0 0 1 0 0
2 1 0 2 1 0
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mean performance measures under at least one criterion, for some value of 4 in the
given range. Having found four designs which perform well for studies involving just
six subjects, an Investigation into the relative performance of the four designs for
studies involving up to 24 subjects for 0 < § < 1 was undertaken. A summary of
the results for performance measures obtained using both the A- and MV-criteria is
given in Tables 5.17 and 5.18 respectively.

Note that the larger the value of n, that is the larger the number of subjects
allocated to each treatment sequence, the greater the value of # at which the change
in the ordering of the designs occurs. However, this increase in the value of 0 is
not rapid. For example, when the performance measures are obtained using the
A-criterion and n = 1, design a, the pair of Williams squares of side three, ceases to
have the largest mean value of X; when 6 > 0.1070. When n = 4 the mean value of

Xy obtained for design a is out-performed when § > 0.2134.

5.7.2 Carry-over treatment effects

Due to Kunert (1984), we know that within the class of designs in whicht =p =3
mvolving six subjects, the universally optimal design for estimating first-order carry-
over effects, when dropouts are not considered, is the orthogonal residual effects
design given in Figure 5.6. Consequently, this design is universally optimal amongst
the 729 designs under investigation when 6 = 0.0.

The investigation of the mean performance measures E[Y;|0] obtained for each

of the 729 designs shows that, when d* is the orthogonal residual effects design, then

E[Y.

0] > L]Y,]0]

for the values of # in the investigation and when the performance measures are

obtained using either the A- or MV-criterion.
Unfortunately, the orthogonal residual effects design does not always give smaller

values for Var[Yy|0] than all the other 729 designs considered. However, the values
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Table 5.17: Comparisons of the mean of X,;, under the A-criterion, for designs a, b,

d and h and < 24 subjects. The designs are given in decreasing order of the mean.

0

Order of E[X,]6]

0.0000 < § < 0.1070
0.1070 < § < 0.1602
0.1602 < 6 < 0.2060
0.2060 < 6§ < 0.2104
0.2104 < # < 0.2569
0.2569 < 6 < 0.3098
0.3098 < § < 1.0000

a, h,d, b
h,a, d, b
h,d,a, b
h,d, b, a
d, h, b, a
d, b, h,a
b, d, h, a

0.0000 < 6 < 0.1755
0.1755 < 6 < 0.2429
0.2429 < 6 < 0.2942
0.2942 < 6 < 0.2961
0.2961 < § < 0.3413
0.3413 < 6 < 0.3854
0.3854 < 6 < 1.0000

As previous

ordering.

n=3s5=18

0.0000 < ¢ < 0.2009
0.2009 < 6 < 0.2745
0.2745 < § < 0.3290
0.3290 < § < 0.3309
0.3309 < # < 0.3763
0.3763 < 0 < 0.4193
0.4193 < 6 < 1.0000

As previous

ordering.

n=4, s =24

0.0000 < 6§ < 0.2134
0.2134 < § < 0.2904
0.2904 < 6§ < 0.3469
0.3469 < 0 < 0.3476
0.3476 < § < 0.3950
0.3950 < 6 < 0.4383
0.4383 < § < 1.0000

As previous

ordering.
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Table 5.18: Comparisons of the mean of X;, under the MV-criterion, for designs

a, b, d and h and < 24 subjects. The designs are given in decreasing order of the

mean.
g Order of E[X,]0]
n=1 s=6 |0.0000<8 <0119 a, b, d. b
0.1192 < § < 0.1438 h, a, d, b
0.1438 < § < 0.1446 h,d, a, b
0.1446 < § < 0.1471 h,d b, a
0.1471 < § < 0.1598 h,b d a
0.1598 < # < 0.1684 b h,d a
0.1684 < 6 < 0.7869 b d h a
0.7869 < # < 0.8641 b,d a h
0.8641 < 0 < 0.9556 b, a, d, h
0.9556 < 6 < 0.9595 a, b, d, h
0.9595 < ¢ < 1.0000 a, b, h, d
n=2 s=12|0.0000 <4 < 0.1513 a b, d, b
01513 < § < 0.2098 hoa d b
0.2098 < # < 0.2248 h,d, a, b
0.2248 < § < 0.2553 h d b a
0.2553 < 0 < 0.2582 d h b a
02582 < § < 0.2623 d, b h a
0.2623 < § < 0.8193 b,d h,a
0.8193 < § < 0.8880 b, d, a, h
0.8880 < § < 0.9613 b, a d, h
0.9613 <6 <0.9679 a, b,d, h
0.9679 < § < 1.0000 a, b, h,d
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Table 5.18: continued.

7

Order of E[X,]|0]

n=3 s5=18

0.0000 < 6 < 0.1636
0.1636 < 6 < 0.2402
0.2402 < 0 < 0.2621
0.2621 < 6 < 0.2929
0.2929 < # < 0.3037
0.3037 < 6 < 0.3195
0.3195 < 6 < 0.8435
0.8435 < 6 < 0.9049
0.9049 < # < 0.9661
0.9661 < 6 < 0.9751
0.9751 < 6 < 1.0000

a, h,d, b
h,d, a, b
a, h,d, b
h,d, b, a
d, h, b, a
d, b, h, a
b,d, h,a
b, d, a, h
b, a,d, h
a, b,d, h
a, b, h, d

n=4,5=24

0.0000 < 6 < 0.1731
0.1731 < 6 < 0.2596
0.2596 < 0 < 0.2852
0.2852 < 0 < 0.3138%
0.3138 < # < 0.3288
0.3288 < 6 < 0.3509
0.3509 < # < 0.8648
0.8648 < # < 0.9189
0.9189 < § < 0.9671
0.9671 < # < 0.9781
0.9781 < § < 1.0000

As previous

ordering.
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of Var[Yy]d] obtained for the orthogonal residual effects design are never large or

very different from those obtained for any other design, particularly when 6 is small.

5.8 Discussion

In this chapter a study has been presented of the performance of a selection of three
treatment, three period designs each involving six different treatment sequences and
subject to final period dropout. This has shown that, of the designs investigated
for the estimation of first-order carry-over treatment effects, designs formed from
replicates of the orthogonal residual effects design of Figure 5.6 are the most robust
to final period dropout.

With respect to the estimation of direct treatment effects, the study has shown
that the design recommended will depend upon the anticipated probability of final
period dropout. This is because the design with the largest value of E[X;]0] is not
the same for all possible values of 8. Of the designs investigated when § < 0.14,
the design formed from one or more replicates of a pair of Williams squares of side
three will always give the largest mean performance measures. As the value of
¢ increases there will reach a point at which the design will be out-performed by
other designs. This value of § will depend upon the number of subjects allocated
to the study. Increasing the number of subjects does not generally affect the overall
ordering amongst the performance measures of competing designs it just increases
the value of # at which the ordering changes.

[f the aim of a study is to investigate both the direct and first-order carry-over
treatment effects, designs formed from replicates of the orthogonal residual effects
design are realistic alternatives to the currently favoured designs formed from a pair
of Williams squares. Although for small values of § designs formed from a pair of
Williams squares provide large mean values of X, the mean values of Y, are poor
in comparison to those of other designs. Regardless of the anticipated value of 0,

designs formed from the orthogonal residual effects design have been found to be
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the most robust to final period dropout for the estimation of first-order carry-over
treatment effects. When 6 1s small, although the designs do not provide the largest
mean values of X, the values obtained are very close to those of designs formed from
pairs of Williams squares. In addition, for each size of study considered, there is a
large region of ¢ values for which designs formed from replicates of the orthogonal
residual effects design give the largest mean values of X,.

All the designs investigated in this chapter involve six different treatment se-
quences. Further investigation is required of designs involving different numbers of
treatment sequences. These need not be uniform balanced designs since, as shown
in this chapter. these will not necessarily be the most robust to final period dropout.
Designs formed by combining the treatment sequences of a uniform balanced design
with an orthogonal residual effects design are particularly interesting candidates
for further investigation. An example of such a design is the eighteen treatment
sequences formed using Proposition 5.1. Kunert (1984) has shown this design to
be universally better for the estimation of direct treatment effects than a uniform
balanced design when dropouts are not considered.

In this chapter designs for three treatment, three period studies have been dis-
cussed and some areas for further investigation have been identified. In Chapter

6 tfurther areas for future research are described and conclusions from the current

work are given.
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Extensions and Future Work

6.1 Introduction

In this chapter issues which have arisen in this research are discussed and directions
for future work are identified. Finally, conclusions from the research project are

presented.

6.2 Assessing Designs When Multi-period

Dropout May Occur

In Chapter 2 methods for assessing the performance of cross-over designs in the
presence of final period dropout were presented. In some practical situations it is
unrealistic to assume that the final period is the only stage at which dropouts may
occur. In this section we show how to extend the methods presented earlier in this
thesis to assess the performance of cross-over designs when subjects may drop out in
any period of the study. Note that, when a subject drops out in a particular period,
it is assumed that the current and all subsequent observations on the subject are
not made, that is that the subject does not return to the study.

A similar approach to that of Section 2.4 can be adopted, provided the following

233
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extensions are made:

(1) The set of all possible implementable designs, D, is extended to include each of
the designs d;y where [ = (loy... L1 .. . lom ..., ) in which [;; denotes the number
of subjects on sequence j who complete i periods and then drop out during period

1+ 1 and [, ; denotes the number of subjects on sequence j who complete the study,

)

(i1) The probability of realising each of the implementable designs is obtained from

where 1 =0,...,p—land j=1,...,m.

Note that the total number of designs in D is then given by |D| =

a multinomial distribution, rather than a binomial distribution, as follows.
Consider a planned design d(t.m,n,p) and assume that each subject has a fixed

probability 0; of completing ¢ periods and then dropping out during period 1 +1 (7 =

0,...,p—1), where 8, = 1—5°220 8; denotes the probability that a subject completes

the study. Suppose that there are [;; subjects (1 = 0,...,p—1; y =1,...,m) on

sequence j who complete ¢ periods and then drop out during period ¢ 4 1 resulting

i an implemented design, d;. Then the probability that d; is realised is given by

- n!

P00, ...\ 0p—1) = ] ———057 ... 010 (6.1)

i1 logle byl
Hence using equation (6.1) we can calculate the probability that d; is the realised
design for each d; € D.

The mean and variance of the performance measures X, and Yy, given in Defi-
nitions 2.4 and 2.5, can be used to provide summary measures for the performance
of the planned design under repeated use in experiments. Note that the probability
distributions for X, and Y for given values of §; ( = 0,...,p—1) are obtained from
(6.1) as

P(Xg=allo,...,0,-1) = > P(l|bs,...,0,-1), (6.2)
€L

where L = {l:d; € D, X,(d;) = 2} and
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P(}/d = yi()o .. .,9P~1) = ZP(”@O .. .7673*1), (63)
leL
where [ = {l:d; € D, Yy(d;) = y}.

For experiments of a realistic size, obtaining summary performance measures for
a planned design from (6.2) and (6.3) can involve a prohibitive amount of compu-
tation. Fortunately, the combinatorial theory set out in Chapter 3 can be extended
to provide significant computational reductions when assessing cross-over designs
in the presence of multi-period dropouts. For example, Table 6.1 lists the number
of implementable designs and the corresponding number of equivalence classes into
which D can be partitioned for a Williams square of side four and two periods of
dropout. From Table 6.1 we observe that the computational reduction achieved is
approximately three quarters. The above results have been reported in Low, Lewis,

McKay and Prescott (1994).

Table 6.1: Number of equivalence classes and implementable designs for designs

based on a Williams square of side four and two periods of dropout.

Number of | Number of implementable | Number of combinatorial
subjects. designs. equivalence classes.

12 10000 2530

16 50625 12720

20 194481 48741

24 614656 153874

28 1679616 420246

32 4100625 1025685

36 9150625 2288440

Work remaining to be done in the future includes the implementation of these
extensions, including the computational savings, in order to investigate the per-

formance of different cross-over designs. An issue of particular interest i1s whether



Chapter 6 236

those designs which have been identified as robust under final period dropout are

also robust to dropouts occurring earlier in the study.

6.3 Treatment Related Dropout

In Section 1.4, three categories of dropout for repeated measurement studies were
given using the definitions of Diggle and Kenwood (1994): completely random
dropout, random dropout and informative dropout. Throughout this thesis, it has
been assumed that each subject has a fixed probability # of dropping out in the
final period unrelated to the proposed treatment, that is, that the dropout process
is completely random.

The other two dropout processes relate to situations in which the reason for a
subject dropping out is treatment related. If a study is undertaken and dropouts
occur which can be shown to be treatment related, then this finding will be one of
the most important outcomes of the investigation. In practice, 1t 1s unlikely that a
study will be carried out if it is strongly believed a priori that one or more of the
active treatments has known side-effects which might lead to subjects dropping out.

In many clinical investigations it i1s required to investigate the efficacy of a drug
through comparison with a placebo treatment, that is an inactive substance, as well
as with other active drugs. When a placebo is included in a trial it may be reasonable
to assume that the probability of a subject dropping out during or immediately
after a period of placebo treatment is greater than during any other period; for
example, the probability that a subject drops out during the final period might be 0
when the final treatment administered is active and 20 when the final treatment is
placebo. The methodology presented in this thesis can be easily extended to cover
situations where this form of treatment related dropout is anticipated. However,
the computational reductions described in Chapter 3 will not be as large as in
the case when the dropout process is completely random. This is because not all

designs which are combinatorially equivalent will have the same probability of being



Chapter 6

3]
[US]
—1

implemented when the probability of dropping out is treatment related.

Future directions for work in this area includes assessing the performance of
different designs for experiments in which a placebo is included, comparing the dif-
ferent designs available and, in particular, establishing whether or not the proposed

inclusion of a placebo alters the recommendations concerning design selection.

6.4 Investigations for Alternative Models

The investigations carried out throughout this thesis have assumed that the obser-
vations follow the simple carry-over model of equation (1.1). The methodology for
examining the robustness of cross-over designs to dropouts described in Chapter 2 is
not dependent upon the use of this particular model and could be used in conjunc-
tion with any appropriate model. Examples are models which include additional
carry-over effects from treatments in earlier periods or interaction terms such as
that between the direct treatment and carry-over terms. Alternatively, the assump-
tion of independently and identically distributed random errors could be replaced
by some form of correlated error structure.

A review of the various models which could be adopted for the observations from
a cross-over study has been given in Section 1.3 and these could be used for future
assessment of the performance of different designs.

[t is particularly difficult to predict in advance an appropriate form of correlated
error structure. In recent years several authors have investigated the robustness of
cross-over designs to different forms of correlated error structures. The main purpose
of this work is to establish which designs perform well under a variety of different
error structures so that a mis-specification of the error structure during the planning
stage will not have drastic consequences on the realised experiment. One important
area of future work will be to try to find designs which are robust to both correlated

error structures and dropouts.
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6.5 Derivation of Universally Optimal Designs

Several of the important advances in the design of experiments have been made
possible by the work on universal optimality due to Kiefer (1975). An interesting
area for future research is to apply the techniques of Kiefer to establish which de-
signs have the maximum mean performance either for direct or carry-over treatment
comparisons, as defined in equation (2.4) and (2.6).

The following lemma, which is analogous to Proposition 1 Kiefer (1975), shows
that the main problem to be addressed is that of finding a design which maximises
the trace of a matrix. The matrix is a weighted sum of the information matrices of
all the implemented designs arising from a planned design, either for the estimation

of the direct or carry-over effects, A, or Aj.

Lemma 6.1 Let F be the set of all cross-over designs involving t treatments, p
periods and s subjects. Let Z be the set of non-negative definite matrices having

zero row and column sums such that

N

N

={z;z2=>_ A(d)P(l|§), forsome de F},

lel
where A 1s A, or Ay and {d;;1 € L} is the set of implementable designs arising from
a planned design d.

Let Z contaln a matrix z* such that
(a) z™ is completely symmetric, and
(b) tr(z*) = maz.eztr(z).

Then
Q(z7) < ®(z) forall =€ Z,

for ® as defined in Definition 1.3.

[n the presence of final period dropout, very few designs will give rise to a matrix

= which 1s completely symmetric when § # 0. However due to its particular com-
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binatoric properties, any complete set of mutually orthogonal Latin squares which
possess the additional property of balance will always give rise to completely sym-
metric z, irrespective of the probability of final period dropout §. Future work is
required to establish the class of cross-over design over which a set of balanced mutu-
ally orthogonal Latin squares can be shown to be optimal when final period dropout
is anticipated; that is the class of designs over which condition (b) is satisfied. A

full investigation of other designs which satisfy the above criteria is also required.

The development of optimality results for cross-over designs in the presence of
dropouts is a particular challenging area of investigation in which there is a great

deal of potential for future research.

6.6 Conclusions

In this final section the conclusions arising from the research presented in this thesis
are outlined.

One of the most important decisions taken during the planning stage of any
experiment is selecting an appropriate design. A problem frequently encountered
in the context of clinical cross-over studies is that subjects fail to complete their
allotted sequence of treatments. Even though this problem is widely acknowledged
it 1s usual to select a design on the basis of performance measures which assume no
subjects drop out. The aim of the work undertaken in this thesis has been to address
this problem by developing methods for assessing cross-over designs when dropouts
may occur, investigate the robustness of a variety of the most frequently emploved
cross-over designs and make recommendations concerning design selection.

In Chapter 1 the problem of dropouts was presented and the direction of the
research outlined. The particular features of cross-over experiments were described
and some of the controversies concerning their use discussed. The different models

which can be assumed for the observations were reviewed and some of the arguments
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agalust the use of the most commonly used model, namely the simple carry-over
model, were considered.

In Chapter 2 a method for assessing cross-over designs in the presence of final
period dropout was presented together with criteria for choosing between differ-
ent competing designs. These were illustrated using examples involving Williams
squares of side four.

Assessing the performance of cross-over designs using the criteria developed in
Chapter 2 requires a considerable amount of computation. In Chapter 3 ways of
reducing this by applying results from combinatorial theory were presented and
lustrated.

In Chapter 4 a study of the performance subject to final period dropout of three
different four treatment, four period, uniform balanced designs was given. This
showed that, although each of the designs investigated performs equally well when
the probability of dropout is not considered, each design is not equally robust to
the probability of final period dropout. From this study we conclude that a single
Williams square of side four should be avoided since its mean performance measures
are not as high as can be obtained using alternative designs and there is a non-zero
probability that the implemented design will be disconnected. When the maximum
number of treatment sequences is eight we recommend that a complementary pair
of Williams squares should be used. When the maximum number of treatment
sequences available is 12 we recommend using a design based on a complete set of
balanced mutually orthogonal Latin squares.

In Chapter 5 the performance subject to final period dropout of three treatment,
three period designs was investigated. Unlike Chapter 4, attention was not restricted
to uniform balanced designs. A review of the optimality of designs when the restric-
tion of uniformity is removed was presented and these results were used to identify
which particular designs to investigate. Attention was drawn to the fact that, if
final period dropouts occur, the realised experiment cannot be uniform balanced.

Since it 1s known that when dropouts are not considered uniform balanced designs
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are not necessarily optimal outside the class of uniform designs, it is sensible to
consider non-uniform designs for use in experiments in which final period dropouts
are anticipated. A study of the performance subject to final period dropout of three
different designs was undertaken and the results for designs involving up to 36 sub-
jects presented. These showed that the recommended design may change as the
probability of final period dropout increases.

Since the designs compared were identical in the first two periods, an investiga-
tion was made into the “best” third period to employ using an exhaustive search of
all the 729 possible designs. An examination of the mean and variance of the per-
formance measures X, and Y} for each of the possible 729 designs showed that, with
reference to the estimation of first-order carry-over treatment effects, irrespective of
the value of 0, an orthogonal residual effects design is recommended. Conclusions
concerning the estimation of direct treatment effects depend upon the anticipated
value of 0. Tables indicating the recommended design for ranges of 0 values were
given, together with a discussion concerning which designs to use if efficient esti-
mates of both the direct and first-order carry-over treatment effects are required.

The research presented in this thesis indicates that when choosing a design for
studies in which subjects may drop out the robustness of competing designs to
dropouts should be considered. Further work is required to establish designs which
are robust to subjects dropping out during any period of a study, to establish designs
which are robust to the problem of treatment related dropout and to find designs
which are robust to dropouts for studies in which it is appropriate to assume the

observations follow models other than the simple carry-over model.
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Computer Program

This appendix contains a computer program written in SAS/IML which evaluates
the mean and variance of the performance measures X, and Y}, under both the A-
and MV-criteria, for a cross-over design when the observations are assumed to follow
the simple carry-over model. This particular program will assess the robustness to
final period dropout of designs based on n replicates of a complementary pair of

Williams squares of side four for § = 0.0,0.1,...,1.0.
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/* Program to obtain summary measures for robustness of */
/* designs using complementary pairs of Williams squares */
/* of side four */

options linesize=70;

DATA missing;

/* To input file of dropout identifiers and equivalence x/
/* class sizes */

INFILE ’dropout.data’;

INPUT di1 d2 d3 d4 45 d6 d7 d8 size;

PROC IML;

START spec(m,n,p,s,Xp,Xs,Xalpha,Xlambda);

/* This subroutine contains the design specifications */
/* p= number of periods */
/* t= number of treatments */
/* m= number of treatment sequences */
/* n= number of subjects per treatment sequence */
/* s= total number of subjects */
/* D= Design in block form */
/* Xp= Design matrix holding period effects */
/* Xs= Design matrix holding subject effects */
/* Xalpha= Design matrix holding direct treatment effects */
/* Xlambda= Design matrix holding carry-over effects */

p=4; t=4; m=8; n=2; s=m#n;
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D= J(n,1)e{t 2 4 3}//
J(n,1)e{2 3 1 4}//
J(n,1)e{3 4 2 1}//
J(n,1)e{4 1 3 2}//
J(n,1)e{1 3 2 4}//
J(n,1)e{2 1 4 3}//
J(n,1)0{3 4 1 2}//

J(n,1)e{4 2 3 1};

Xs= I(s)ei(p,1);

Xp= J(s,1)eI(p);

/* To generate the design matrix Xalpha
DD=SHAPE(D, s#p) ;

Xalpha=DESIGN(DD) ;

/* To generate the design matrix Xlambda
ZERDO=J(s,1,0);

R=ZERO |1 D(I,1:(p-1)1);
RR=SHAPE(R, s#p) ;

RRR=DESIGN(RR) ;

Xlambda=RRR(|,2: (t+1)]);

FREE ZERO D DD R RR RRR;
FINISH,;

244
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START lossmat(n,p,q1,92,93,94,95,96,97,98,L);

/*This subroutine generates the loss matrix */
DROP=SHAPE(0,p~1,1);

DR=I(p-1)||DROP;

FREE DROP;

START  submat(gi,Li,n,p,DR);

IF qi=0 THEN DO;

Li=I(n*p);
END;
ELSE DO;
IF gi=n THEN DO;
Li=I(n)@DR;
END;
ELSE DO;
Li=BLOCK(I(n-qi)@I(p) , I(qi)@DR);
END ;
END;
FINISH;

RUN submat(ql,Ll,n,p,DR);

RUN submat(q2,L2,n,p,DR);

Do

(X
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RUN submat(q3,L3,n,p,DR);
RUN submat{(q4,L4,n,p,DR);
RUN submat(q5,L5,n,p,DR);
RUN submat(q6,L6,n,p,DR);
RUN submat(q7,L7,n,p,DR);

RUN submat(g8,L8,n,p,DR);

L=BLOCK(L1,L2,L3,L4,L5,L6,L7,1L8);

FINISH;

START assess(m,n,p,s,Q,dvec,L,Xp,Xs,Xalpha,Xlambda,ADT,ACO,MVDT,MVCO) ;
/* This subroutine calculates the information matrices and the */
/* and the preformance measures for direct and carry-over */

/* effects under the A~ and MV-criteria for each non-equivalent */

/* implementable design. x/
/* Aalp=information matrix for direct treatment effects */
/* Alam=information matrix for carry-over effects */
/* C=matrix holding the contrasts of interest */

/* To calculate the matrix to adjust for subjects and periods  */

LXp=L*Xp;

LXs=L*Xs;

prLXs=LXs*INV(LXs ‘*LXs)*LXs";
W=(I((s*p)-0)-prLXs);
K=W-W*LXp*GINV (LXp ‘*W*LXp)*LXp‘ *W;

/* To calculate the information matrices * /
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Lxalpha=L*Xalpha;
LXlambda=L*Xlambda;
ini=LXalpha ‘*K*LXalpha;
in2=LXalpha ‘*K+*LXlambda;

in3=LXlambda ‘*K*LXlambda;

Aalp=in1-in2*GINV(in3)*in2‘;

Alam=in3-1in?2 ‘*GINV(ini)*in2;

C={1 -1 0 0,

001 -17};

VARDT=C*GINV(Aalp)*C*;

VARCO=C*GINV(Alam)*C‘;

/* To calculate the reciprical average variances */
ADT=6/TRACE (VARDT) ;

AC0=6/TRACE(VARCO) ;

/* To calculate the reciprocal of the maximum variance * /

VDT=VARDT (|1,11)//VARDT(|2,21)//VARDT(I3,31)//VARDT(14,41)//
VARDT(15,51)//VARDT(16,61);

VCO=VARCO(I1,11)//VARCcO(]2,21)//VARCO(|3,31)//VARCO(|4,41)//

VARCO(I5,51)//VARCO(]6,61);
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MVARDT=MAX (VDT) ;

MVARCO=MAX (VCQ) ;

MVDT=INV(MVARDT) ;

MVCO=INV(MVARCO);

FREE LXp LXs prLXp prLXs LXalpha LXlambda K W inl 1n2 in3 C;
FREE VAECO VARDT VDT VCO MVARDT MVARCO;

FINISH;

START dropout(n,ql,q2,93,94,95,96,97,98,size,theta,PrL);
/* This subroutine calculates the probability of implementation */

/* for each implemntable design */

START facto(z,fact);

/* This subrotine calculates factorials */

j=z; /* j is a dummy variable */

IF z=1| z=0 THEN DO;
fact=1;

END;

ELSE DO i=1 to (z-1) by 1;
fact=3j*(z-1);
j=fact;
END;
END;

FREE j;
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FINISH;

START sequence(qi,n,theta,Pqi);
/* This subroutine calculates the probability of dropout per */

/* treatment sequeunce */

nqi=n-qi;

RUN facto(n,factn);

RUN facto(gi,factqi);
RUN facto(nqi,factnqi);

Pgi=(factn/(factqit#tfactnqi))#(theta#t#tqi)#((1-theta)##nqi);

FREE factn factqi factnqi nqi ;

FINISH;

RUN sequence(ql,n,theta,Pql);
RUN sequence(q2,n,theta,Pq2);
RUN sequence(q3,n,theta,Pq3);
RUN sequence(qg4,n,theta,Pg4);
RUN sequence(q5,n,theta,Pg5);
RUN sequence(qG,n,theta,PqB);
RUN sequence(q7,n,theta,Pq7);

RUN sequence(g8,n,theta,Pqg8);

PrL=Pql#Pq2#Pq3#Pq4#Pq5#Pq6#Pq7#Pq8#size;

FREE Pgl Pq2 Pg3 Pg4 Pgb Pg6 Pq7 Pqg8;
FINISH;
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START main;

RUN spec(m,n,p,s,Xp,Xs,Xalpha,Xlambda);
use missing;

read all into xdrop;

k=NROW (xdrop) ;

do a= 1 to k by 1;

ql=xdrop(la,1l);

q2=xdrop(ia,21);

g3=xdrop(la,3!);

gq4=xdrop(la,4|);

q5=xdrop(la,51);

q6=xdrop(la,61);

q7=xdrop(la,71);

g8=xdrop(la,8l);

size=xdrop(la,9l);
dvec=qlllq2l1q3| g4l lq5lia6liq7l1q8;

Q=ql+q2+q3+q4+q5+q6+q7+g8; /* total number of dropouts */

RUN lossmat(n,p,ql,92,93,94,95,96,97,98,L);

RUN assess(m,n,p,s,Q,dvec,L,Xp,Xs,Xalpha,Xlanbda,ADT,ACO,MVDT ,MVCO) ;

/* To create an output dataset for a-opt and mv-opt measures*/;
AOUT=ADT| | (ADT##2) | [ACO | | (ACO##2) ;

MVQUT=MVDT| | (MVDT##2) | IMVCQ| | (MVCO##2) ;

IF a=1 THEN DO;
ARES=A0QUT;
MVRES=MVOUT;

END;
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ELSE DO;
ASTATS=ARES//AQUT;
MVSTATS=MVRES//MVQUT;
ARES=ASTATS;
MVRES=MVSTATS;

END ;

END;

DO theta=0.1 to 0.9 by 0.1;

DO b= 1 to k by 1;

ql=xdrop(lb,1l);
q2=xdrop(lb,2]);
q3=xdrop(|b,31);
q4=xdrop(lb,4]);
q5=xdrop(lb,51);
g6=xdrop(ib,61);
q7=xdrop(|b,7});
g8=xdrop(|b,81);

size=xdrop(|b,91);

RUN dropout(n,ql,q2,93,94,95,96,97,98,size,theta,PrL);

IF b=1 THEN DQ;

prob=PrL;
END;
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ELSE DO;
newp=prob//PrL;
prob=newp;

END;

END;

/* TO OBTAIN OUTPUT FOR A-OPT MEASURES */

ARS=prob‘*ARES;

MADT=ARS(|1,11);

VARADT=ARS([1,2])-MADT##2;

MACO=ARS(|1,31]);

VARACO=ARS(|1,4])-MACO##2;

AFINAL=theta||MADT| | VARADT| |MACO| | VARACO;

/* TO OBTAIN OUTPUT FOR MV-OPT MEASURES */

MVRS=prob ‘*MVRES;

MEMVDT=MVRS(}1,1]);

VARMVDT=MVRS(|1,2])-MEMVDT##2;

MEMVCO=MVRS (|1,31]);

VARMVCO=MVRS (| 1,4{)-MEMVCO##2;

MVFINAL=theta| |MEMVDT| | VARMVDT| |[MEMVCO| | VARMVCO;
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IF theta=0.1 THEN DO;
CREATE ARESULTS FROM AFINAL;
APPEND FROM AFINAL;
CREATE MVRESULTS FROM MVFINAL;
APPEND FROM MVFINAL;
END;

ELSE DO;

SETOUT ARESULTS;
APPEND FROM AFINAL;
SETOUT MVRESULTS;
APPEND FROM MVFINAL;

END;

END;

FINISH;

RUN main;

CLOSE ARESULTS;

CLOSE MVRESULTS;

PROC print DATA=ARESULTS;

PROC print DATA=MVRESULTS;

%)
Ct
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