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Abstract—Heterogeneous cellular networks (HCNs) with em-5
bedded small cells are considered, where multiple mobile users6
wish to download network content of different popularity. By7
caching data into the small-cell base stations, we will design8
distributed caching optimization algorithms via belief propagation9
(BP) for minimizing the downloading latency. First, we derive10
the delay-minimization objective function and formulate an opti-11
mization problem. Then, we develop a framework for modeling12
the underlying HCN topology with the aid of a factor graph.13
Furthermore, a distributed BP algorithm is proposed based on14
the network’s factor graph. Next, we prove that a fixed point15
of convergence exists for our distributed BP algorithm. In order16
to reduce the complexity of the BP, we propose a heuristic BP17
algorithm. Furthermore, we evaluate the average downloading18
performance of our HCN for different numbers and locations19
of the base stations and mobile users, with the aid of stochastic20
geometry theory. By modeling the nodes distributions using a21
Poisson point process, we develop the expressions of the average22
factor graph degree distribution, as well as an upper bound of the23
outage probability for random caching schemes. We also improve24
the performance of random caching. Our simulations show that25
1) the proposed distributed BP algorithm has a near-optimal delay26
performance, approaching that of the high-complexity exhaustive27
search method; 2) the modified BP offers a good delay perfor-28
mance at low communication complexity; 3) both the average29
degree distribution and the outage upper bound analysis relying30
on stochastic geometry match well with our Monte-Carlo simula-31
tions; and 4) the optimization based on the upper bound provides32
both a better outage and a better delay performance than the33
benchmarks.34
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I. INTRODUCTION 37

38W IRELESS data traffic is expected to increase by a factor 39

of 40 over the next five years, from the current level of 40

93 Petabytes to 3600 Petabytes per month [1], driven by a rapid 41

increase in the number of mobile users (MU) and aggravated 42

by their bandwidth-hungry mobile applications. A promising 43

approach to enhancing the network capacity is to embed small 44

cells relying on low-power base stations (BS) into the existing 45

macro-cell based networks. These networks, which are referred 46

to as heterogeneous cellular networks (HCN) [2]–[7], typically 47

contain regularly deployed macro-cells and embedded femto- 48

cells as well as pico-cells [8]–[10] that are served by macro- 49

cell BSs (MBS) and small-cell BSs (SBS), respectively. The 50

aim of these flexibly deployed low-power SBSs is to eliminate 51

the coverage holes and to increase the capacity in hot-spots. 52

There is evidence that the MUs’ downloading of video on- 53

demand files is the main reason for the growth of data traffic 54

over cellular networks [11]. According to the prediction of 55

Cisco on mobile data traffic, the mobile video streaming traffic 56

will occupy 72% percentage of the overall mobile data traffic 57

by 2019. Often, there are numerous repetitive downloading re- 58

quests of popular contents, such as online blockbusters, leading 59

to redundant data streaming. The redundancy of data transmis- 60

sions can be reduced by locally storing popular data, known as 61

caching, into the local SBSs, effectively forming a local cloud 62

caching system (LCCS). The LCCS brings the content closer 63

to the MUs and alleviates redundant data transmissions via 64

redirecting the downloading requests to local SBSs. Also, the 65

SBSs are willing to cache files into their buffers as long as they 66

can, since caching is capable of significantly reducing the tele- 67

traffic load on their back-haul channels, which are expensive. 68

In [12], the authors study the caching strategies of delay- 69

tolerant vehicular networks, where the data subscribers and 70

“helpers” are always moving and the links between them are 71

opportunistic. By proposing an efficient algorithm to carefully 72

allocate the network resources to mobile data, the decision is 73

made as to which content should use the erasure coding, as well 74

as conceiving the coding policy for each mobile data. In [13], 75

optimal cache replacement policies are investigated. The cache 76

replacement process takes place after the data caching process 77

has been completed, and determines which particular data item 78

should be deleted from the cache, when the available storage 79

space is insufficient for accommodating an item to be cached. 80
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Since the HCN structure has been widely adopted in current81

cellular networks and will prevail in near-future networks,82

we are interested in the SBS-based LCCS in the context of83

HCNs. In contrast to the vehicular networks discussed in [12],84

[14], where the mobility and the opportunistic communication85

contact are important issues, in the context of HCNs, the BSs86

are always fixed, and the MUs are assumed to be moving87

at a low speed. Thus, we ignore the mobility issues in the88

HCNs and assume that each MU is associated with a fixed89

BS during file-downloading. At the time of writing, there are90

already technical reports highlighting the advantages of caching91

in HCNs [15]–[17]. Based on these reports, the LCCS with92

SBS caching for HCNs is capable of efficiently 1) reducing the93

transmission latency due to short distance between the SBSs94

and the MUs, 2) offloading redundant data streams from MBSs,95

and 3) alleviating heavy burdens on the back-haul channels96

of the SBSs. Therefore, SBS-based caching will bring about97

significant breakthroughs for future HCNs.98

The concept of caching is common in wireline networks99

and computer systems. However, research on efficient caching100

design for wireless cellular networks relying on small cells is101

still in its infancy [11], [18]. Usually, data caching consists of102

two phases: data placement and data transmission. During the103

data placement phase, data is cached into local SBSs in order104

to form an LCCS. In the data transmission phase, MUs request105

data from the LCCS. The focus of wireless caching research is106

mainly on the optimization of data placement for ensuring that107

the downloading latency is minimized. The caching optimiza-108

tion is a non-trivial problem. This is due to the massive scale of109

video contents to be stored in the limited memory of the SBSs.110

The survey papers [11], [18] report on a range of attractive111

caching architectures conceived for future cellular networks.112

In [19], a caching scheme is proposed for a device-to-device113

(D2D) based cellular network on the MUs’ caching of popular114

data. In this scheme, the D2D cluster size was optimized for115

reducing the downloading delay. In [20], [21], the authors116

propose a caching scheme for wireless sensor networks, where117

the protocol model of [22] is adopted. In [23], a femto-caching118

scheme is proposed for a cellular network combined with SBSs,119

where the data placement at the SBSs is optimized in a cen-120

tralized manner for reducing the transmission delay imposed.121

However, [23] considers an idealized system, where neither the122

interference nor the impact of wireless channels is taken into123

account. The associations between the MUs and the SBSs are124

pre-determined without considering the specific channel con-125

ditions encountered. Furthermore, this centralized optimization126

method assumes that the MBS has perfect knowledge of all the127

channel state information (CSI) between the MUs and SBSs,128

which is impractical.129

Against this background, in this paper, we consider dis-130

tributed caching solutions for HCNs operating under more131

practical considerations. Our contributions consist of two parts.132

133

1) In the first part, we propose distributed caching algorithms134

for enhancing the downloading performance via belief135

propagation (BP) [24]. The BP algorithm is capable of136

decomposing a global optimization problem into multi-137

ple sub-problems, thereby offering an efficient distribu-138

tive approach of solving the global optimization problem 139

[25]–[27]. As the BP method has been widely adopted 140

for distributively solving resource allocation in cellular 141

networks, we arrange file placement via BP algorithms by 142

viewing files as a type of resource. 143

2) In the second part, we analyze the average caching perfor- 144

mance based on stochastic geometry theory [28], [29]. We 145

are interested in optimizing the average performance of a 146

set of HCNs, where the channels exhibit Rayleigh fading 147

and the distributions of network nodes obey a Poisson 148

point process (PPP) [30]. 149

Specifically, our contributions in the first part are follows. 150151

1) We commence by deriving the delay as our optimization 152

objective function (OF) and formulate the problem as 153

optimizing the file placement. 154

2) We develop a framework for modeling the associated 155

factor graph based on the topology of the network. A 156

distributed BP algorithm is proposed based on the factor 157

graph, which allows the file placement to be optimized in 158

a distributed manner between the MUs and SBSs. 159

3) We prove that a fixed point exists in the proposed BP 160

algorithm and show that the BP algorithm is capable of 161

converging to this fixed point under certain conditions. 162

4) To reduce the communication complexity, we propose a 163

heuristic BP algorithm. 164

Our contributions in the second part are follows. 165166

1) By following the stochastic geometry framework, we 167

model the MUs and SBSs in the HCN as different ties 168

of a PPP. Furthermore, we develop the average degree 169

distribution of the factor graph in the BP algorithm. 170

2) A random caching scheme is proposed, where each SBS 171

will cache a file with a pre-determined probability. We 172

can characterize the average downloading performance by 173

outage probability (OP) and develop a tight upper bound 174

of the OP expression with a closed form under the random 175

caching scheme. 176

3) Based on the upper bound derived, we further improve 177

the OP performance of random caching by optimizing the 178

probabilities for caching different files. 179

In the simulations, we first investigate the average degree 180

distribution of the factor graph, as well as the OP and the delay 181

of the random caching schemes, in conjunction with various 182

PPP parameters and power settings. It is shown that both the 183

degree distribution and our upper bound analysis match well 184

with the results of Monte-Carlo simulations. Furthermore, the 185

optimization based on the upper bound provides both a better 186

OP and a better delay than the benchmarks. Then we evaluate 187

the distributed BP algorithm in our HCNs having a fixed num- 188

ber of BSs and MUs. It is shown that the proposed distributed 189

BP algorithm has a near-optimal performance, approaching that 190

of the exhaustive search method. The heuristic BP also offers a 191

relatively good performance, despite its significantly reduced 192

communication complexity. 193

The rest of this paper is organized as follows. We describe 194

the system model in Section II and present the distributed file 195

downloading problem relying on caching in Section III. We 196
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then propose a distributed BP algorithm in Section IV, where197

the proof of existence for a fixed point is also presented. In198

Section V, a heuristic BP algorithm is proposed for reduc-199

ing the associated communication complexity. Our stochastic200

geometry based analysis is detailed in Section VI, where the201

average degree distribution of the factor graph and the OP202

of the random caching scheme are developed. Our simulation203

results are summarized in Section VII, while our conclusions204

are provided in Section VIII.205

II. SYSTEM MODEL206

Let us consider an HCN consisting of a single MBS and K207

SBSs illuminating both femto-cells and pico-cells, while sup-208

porting J MUs randomly located in the network. Let us denote209

by B0 the MBS and by BBB = {B1,B2, · · · ,BK} the set of the210

SBSs, where Bk, k ∈ KKK = {1, 2, · · · , K}, represents the k-th211

SBS. Furthermore, denote by UUU = {U1,U2, · · · UJ} the set of212

the MUs, where Uj, j ∈ JJJ = {1, 2, · · · , J}, represents the j-th213

MU. The MBS B0 caches files into the memories of the SBSs214

during off-peak time via back-haul channels. Once the caching215

process is completed, the MBSs and SBSs are ready to act upon216

the downloading requests of the MUs.217

We assume that a dedicated frequency band of bandwidth W218

is allocated to the downlink channels spanning from the SBSs219

to the MUs for file-dissemination. For reasons of careful load220

balancing, we consider the “SBS-first” constraint, where each221

MU will try to download data from its adjacent SBSs, unless the222

required files cannot be found in these SBSs. In this case, the223

MU will turn to the MBS for retrieving the required files. For224

the sake of simplicity, we assume that the MBS will support a225

fixed download rate, denoted by C0, for the MUs in the channels226

which are orthogonal to those spanning from the SBSs to MUs.227

In order to satisfy the “SBS-first” constraint for offloading228

data from the MBS, some incentives may be provided for229

the MUs. For example, downloading from the SBSs is much230

cheaper than from the MBS. Here, we assume that the down-231

load rate C0 supported by the MBS is never higher than the low-232

est download rate supported by the SBSs. This limit imposed on233

the download rate from the MBS will not only encourage the234

MUs to download from the SBSs first, but also effectively con-235

trol the data traffic of the MBS imposed by file downloading.236

Denote by Pk the transmission power of the k-th SBS, and by237

σ 2 the noise power at each MU. The path-loss between Bk and238

the MU Uj is modeled as d−α
k,j , where dk,j is the distance between239

Bk and Uj, and α is the path-loss exponent. The random channel240

between Bk and Uj is Rayleigh fading, whose coefficient hk,j241

has the average power of one. We assume that all the downlink242

channels spanning from the SBSs to the MUs are independent243

and identically distributed (i.i.d.).244

Suppose that each file is split into multiple chunks and each245

chunk can be downloaded by an MU in a short time slot. Due to246

the short downloading time of a chunk, we assume furthermore247

that the probability of having two MUs streaming a chunk at248

the same time (or within a relative delay of a few seconds)249

from the same SBS is basically zero [20]. Hence, neither direct250

multicasting by exploiting the broadcast nature of the wireless251

medium nor network coding is considered. Furthermore, we252

focus our attention on the saturated scenario, where the SBSs 253

keep transmitting data to the MUs [31]. Hence, each MU is 254

subject to the interference imposed by all the other SBSs in 255

BBB, when downloading files from its associated SBS. Given a 256

channel realization hj = [h1,j, · · · , hK,j], the channel capacity 257

between Bk and Uj can be calculated based on the signal-to- 258

interference-plus-noise ratio (SINR) as 259

Ck,j = W log

⎛⎜⎝1 + h2
k,jd

−α
k,j Pk∑

q∈KKK\{k}
h2

q,jd
−α
q,j Pq + σ 2

⎞⎟⎠ . (1)

Due to the ‘SBS-first’ constraint, we have C0 ≤ Ck,j, ∀ k ∈ 260

KKK, j ∈ JJJ . 261

Denote by FFF the library or set of files, which consists of 262

Q popular files to be requested frequently by the MUs. The 263

popularity distribution among the set FFF is represented by PPP = 264

{p1, p2, · · · , pQ}, where the MUs make independent requests of 265

the f -th file, f = 1, · · · , Q, with the probability of pf . Without 266

any loss of generality, all these files have the same size of 267

M bits. We assume that B0 has a sufficiently large memory 268

and hence accommodates the entire library of files, while the 269

storage of each SBS is limited to G files, where we have G < Q. 270

Without a loss of generality, we assume that Q/G is an 271

integer. The Q files in FFF are divided into N = Q/G file groups 272

(FG), with each FG containing G files. The f -th file, ∀ f ∈ 273

{(n − 1)G + 1, · · · , nG}, is included in the n-th FG, n ∈ NNN = 274

{1, · · · , N}. We denote by Fn the n-th FG, and by PFn the prob- 275

ability that the MUs request a file in Fn. Based on PPP , we have 276

PFn =
nG∑

f =(n−1)G+1

pf . (2)

File caching is then carried out on the basis of FG, i.e., each 277

SBS caches one of the N FGs. 278

III. DISTRIBUTED FILE DOWNLOADING 279

RELYING ON CACHING 280

The caching-based distributed file downloading protocol 281

consists of two stages. The first stage, or file placement stage, 282

includes file content broadcasting and caching. In this stage, 283

B0 broadcasts the FGs to the SBSs via the back-haul during 284

off-peak periods. At the same time, the SBSs listen to the 285

broadcasting from B0, and cache the FGs needed. The second 286

stage, or file downloading stage, includes MU-SBS associations 287

and file content transmissions. In this stage, each MU makes 288

decisions as to which SBSs it should be associated with, and 289

then starts to download files from the associated SBSs. When 290

the requested files are not found in the adjacent SBSs, the MUs 291

will turn to the MBS for these files. 292

A. File Placement Matrix 293

For assigning the N FGs to the K SBSs, we set up a file 294

placement matrix � of size K × N. The entry λk,n ∈ {0, 1} 295

in � indicates whether Fn is cached by Bk or not. We have 296

λk,n = 1 if Fn is cached by Bk, while λk,n = 0 otherwise. The 297
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k-th row of � indicates which FG is cached by Bk, and the298

n-th column indicates which BS caches Fn. The number of the299

SBSs which cache Fn can be calculated as
∑

k∈KKK λk,n. Since300

each SBS caches one FG, we have
∑

n∈NNN λk,n = 1.301

B. MU-SBS Association302

Denote by HHH(j) the subscript set of the specific SBSs, which303

are capable of providing a sufficiently high SINR for the MU304

Uj. The SBSs in HHH(j) are the candidates for Uj to be potentially305

associated with. By setting an SINR threshold δ, Bk will be306

included in HHH(j) if and only if307

h2
k,jd

−α
k,j Pk∑

q∈KKK\{k}
h2

q,jd
−α
q,j Pq + σ 2

≥ δ. (3)

When requesting a file in Fn, Uj first communicates with308

one of the SBSs in HHH(j) which caches Fn. It is possible that309

more than one SBS in HHH(j) caches Fn. In this case, Uj will310

associates with the optimal SBS, which imposes the minimum311

downloading delay.312

It is clear that the downloading delay is inversely propor-313

tional to the downlink transmission rate. According to the file314

request assumption stipulated in the previous section, there is315

only a single MU connected to an SBS at each time. Thus,316

the maximum transmission rate from Bh to Uj, ∀ h ∈ HHH(j), is317

the channel capacity between them, i.e., Ch,j. When Uj tries318

to download a file in Fn, it follows the maximum-capacity319

association criterion. Hence, Uj associates with Bĥ such that320

ĥ = arg max
h∈HHH(j)

{
λh,nCh,j

}
. (4)

When none of the SBSs in HHH(j) caches Fn, i.e., we have321

λh,n = 0, ∀ h ∈ HHH(j), Uj will associate with the MBS for the322

requested file.323

C. Optimization Problem Formulation324

We now optimize the matrix � for minimizing the average325

delay of downloading a file. Only when the optimal � has been326

determined will the file-placement stage commence, where327

the files are placed according this optimal matrix. Once the328

MU-SBS associations have been determined, we can optimize329

the matrix � for minimizing the average delay of downloading330

a file. First, given the channel coefficients and the specific331

location of Uj, the delay of downloading a file in Fn by Uj can332

be calculated as333

Dj,n =
{

M
maxh∈HHH(j){λh,nCh,j} , ∃λh,n �= 0, ∀ h ∈ HHH(j)
M
C0

, otherwise.
(5)

Based on the request probability of each FG, the delay for Uj to334

download a file fromFFF can be written as Dj =∑n∈NNN PFn Dj,n.335

Thus, the average delay for each MU can be calculated as336

D = 1

J

∑
j∈JJJ

Dj. (6)

By setting D as the OF, let us hence formulate the delay 337

optimization problem as follows: 338

minimize D

s.t.
∑
n∈NNN

λk,n = 1, ∀ k ∈ KKK,

� ∈ {0, 1}K×N . (7)

The optimization problem in (7) is an integer programming 339

problem, which is NP-complete. In [14], [23], similar optimiza- 340

tion problems have been solved by sub-optimal solutions, such 341

as the classic greedy algorithm (GA). However, the existing 342

solutions are typically based on centralized optimization. As 343

we can see from (6), a centralized minimization of D at B0 344

requires the global CSI betweenBBB andUUU , which is impractical. 345

Hence, we will dispense with this assumption and optimize � 346

in a distributed manner at a low complexity. 347

IV. DISTRIBUTED BELIEF PROPAGATION ALGORITHM 348

In this section, we propose a distributed algorithm based 349

on BP for solving the optimization problem of (7) as follows: 350

1) We first develop a factor graph for describing the message 351

passing in the BP algorithm. 2) Then we map the resultant 352

factor graph to the network for the sake of facilitating the 353

distributed BP optimization. 3) This solved by solving our 354

optimization problem by proposing a distributed BP algorithm. 355

4) Finally, the proof of existence for a fixed point of conver- 356

gence in the BP algorithm is presented. 357

A. Factor Graph Model 358

In our BP algorithm, the factor graph has to be first es- 359

tablished based on the underlying network as a standard bi- 360

partite graphical representation of a mathematical relationship 361

between the local delay functions and file allocation variables. 362

Then the BP algorithm is implemented by iteratively passing 363

messages between the local functions and their related vari- 364

ables. Our optimization problem is thus solved by the proposed 365

BP algorithm based on the factor graph. 366

Based on the topology of the HCN, we develop a factor graph 367

model GGG = (VVV,EEE), where VVV is the vertex set, and EEE is the edge 368

set. The vertex setVVV consists of factor nodes and variable nodes. 369

Each factor node is related to an MU and each variable node 370

is related to an SBS. To simplify the notations, we denote by 371

j ∈ JJJ the j-th factor node and denote by k ∈ KKK the k-th variable 372

node. Hence, the vertex set VVV is composed of JJJ and KKK, i.e., 373

VVV = {JJJ ,KKK}. 374

As mentioned in the previous section, Bk will be a candidate 375

for Uj to potentially associate with, but only if the received 376

SINR at Uj from Bk is no less than the threshold δ. Corre- 377

spondingly, in our factor graph, an edge in the edge set EEE 378

connecting Uj and Bk, denoted by (j, k), exists if the received 379

SINR at Uj from Bk is no less than δ. The node k is named 380

as a neighboring node of j, if there is an edge (j, k). Actually, 381
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Fig. 1. Factor graph extracted from an HCN composed of 5 SBSs and 10 MUs.
The edge between an SBS and an MU means that the SBS can provide a
sufficiently high SINR for the MU. For instance, B1 can provide a sufficiently
high SINR for U2 as well as U4. At the same time, U3 can receive a sufficiently
high SINR from both B2 and B3.

HHH(j) defined previously represents the set of the neighboring382

nodes of the factor node j. Furthermore, denote byHHH(k) the set383

of neighboring node for the variable node k. Fig. 1 illustrates a384

factor graph extracted from an HCN with 5 SBSs and 10 MUs.385

Take B1 in the factor graph for example. The edges exist386

between B1 and U2 as well as U4, which means that B1 can387

provide a sufficient large SINR for both U2 and U4.388

The distributed BP algorithm is based on the factor graph389

GGG. The factor nodes in JJJ represent the local utility functions390

generated from the decomposition results of the global utility391

function, which will be discussed later in this subsection. The392

variable nodes in KKK represent the variables to be optimized,393

i.e., the entries of �. The factor nodes and variable nodes are394

connected by edges in EEE , indicating the message flows in the BP395

algorithm. That is, messages are only passing between a node396

and its neighbors. We now illustrate the optimization problem397

on the factor graph.398

1) Factor Nodes: According to Eq. (7), the OF can be399

decomposed into J local contributions as D1, · · · , DJ . These400

local contributions are calculated based on Eq. (5). Since the401

BP algorithm solves maximization problems, we define a series402

of utility functions as F � −D and Fj � −Dj. Then our opti-403

mization problem can be rewritten as404

max
�

F(�), F = 1

J

∑
j∈J

Fj. (8)

We use the j-th factor node to represent the j-th local utility405

function Fj, which is related to Uj. Hence, the maximization of406

F can be achieved by maximizing Fj at Uj, ∀ j ∈ JJJ .407

2) Variable Nodes: Each variable node is related to an SBS.408

Here, we use the k-th variable node to represent the k-th row of409

�, denoted by λk, which is related to Bk. The location of ‘1’410

in λk indicates which specific FG is stored by Bk. Note that the411

first constraint in (7) means that each SBS only stores a single412

FG. Given this constraint, λk has N possible values according413

to N different locations of ‘1’. We denote by λ
[1]
k , · · · , λ

[N]
k the414

N values of λk. When we have λk = λ
[n]
k , this implies that the415

FG Fn is stored by Bk. Take N = 2 for example, where λk =416

λ
[1]
k = [1 0] indicates that the FG F1 is stored in the SBS Bk,417

while λk = λ
[2]
k = [0 1] indicates that F2 is stored in Bk. The418

variables λk, k = 1, · · · , K, are the parameters to be optimized419

for maximizing F in (8). For simplicity, we use the matrix � to420

represent the set of the variables λk in the factor graph.421

B. Distributed Belief Propagation 422

In standard BP, the variables are optimized by estimating 423

their marginal probability distributions [32]. Note that the util- 424

ity function F is a function of the file placement matrix �. We 425

define the probability mass function (PMF) p(�) of � based on 426

the utility function F(�) as 427

p(�) � 1

Z
exp (μF(�)) , (9)

where μ is a positive number and Z is the normalization 428

factor. According to [32], the result of large deviations shows 429

that when μ → ∞, p(�) concentrates around the maxima of 430

F(�), i.e., limμ→∞ E(�) = arg max
�

F(�), where E(�) is the 431

expectation of �. Once we obtain E(�), we can have a good 432

estimate of the specific � which maximizes F(�). 433

In our distributed BP, the maximization of F can be decom- 434

posed into J maximization operations on Fj at Uj, j = 1, · · · , J. 435

Correspondingly, the estimation of � is decomposed into J es- 436

timations of its subsets �j at Uj, where �j = {λh,∀ h ∈ HHH(j)}. 437

The PMF of �j is written as pj(�j) = 1
Zj

exp(μFj(�j)), where 438

Zj is the normalization factor. Since all the variables are inde- 439

pendent, the estimation of �j at Uj can be further decomposed 440

into the estimation of each individual λh via calculating its PMF 441

pj(λh), which is the marginal PMF of pj(�j) with respect to 442

the variable λh. Hence we have pj(λh) = E∼λh(pj(�j)), where 443

E∼λh(·) represents the expectation over the elements in �j, 444

except for λh. The PMF pj(λh) is viewed as the message, which 445

is iteratively updated between Uj and Bh, ∀ h ∈ HHH(j). The PMF 446

pj(λh) consists of N probabilities estimated by Uj, i.e., Pr(λh = 447

λ
[1]
h ), · · · , Pr(λh = λ

[N]
h ), where Pr(λh = λ

[n]
h ) represents the 448

probability that Fn is stored by Bh. 449

Without a loss of generality, we assume that the edge (j, k) 450

does exist in the factor graph. We represent the iteration index 451

by t and denote by p(t)
k→j(λk) and p(t)

j→k(λk) the belief messages 452

emanated from Bk to Uj and from Uj to Bk during the t-th 453

iteration, respectively. The steps describing the distributed BP 454

are as follows. 455

1) Initialization: At the variable nodes, set t = 1 and let 456

p(1)
k→j(λk) to be the initial distribution of λk, e.g., the a priori 457

popularity distributionPPP . 458

2) Variable Node Update: During the t-th iteration, each 459

SBS Bk updates the message p(t)
k→j(λk) to be sent to Uj based on 460

the messages gleaned from Bk’s neighboring MUs other than 461

Uj in the previous iteration. This includes the calculations of N 462

probabilities. Given λk = λ
[n]
k , ∀ n ∈ NNN , we have 463

p(t)
k→j

(
λ

[n]
k

)
= 1

Zk

∏
h̄∈HHH(k)\{j}

p(t−1)
h̄→k

(
λ

[n]
k

)
, (10)

where Zk is the normalization factor so that we have 464∑
n∈NNN p(t)

k→j(λ
[n]
k ) = 1. 465

3) Factor Node Update: In the t-th iteration, Uj updates the 466

N probabilities of the message p(t)
j→k(λk) to be sent to Bk, which 467

is based on the messages received from Uj’s neighboring SBSs, 468

except for Bk. The messages updated at the factor nodes are 469
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calculated according to the marginal PMF. Given λk = λ
[n]
k ,470

∀ n ∈ NNN , we have471

p(t)
j→k

(
λ

[n]
k

)
= E∼λk

(
exp

(
μFj

(
λ

[n]
k , {λh, ∀ h ∈ HHH(j) \ {k}}

)))

=
∑

h∈HHH(j)\{k}

λ
[N]
h∑

λh=λ
[1]
h

⎛⎝ ∏
q∈HHH(j)\{k}

p(t)
q→j(λq)·

exp
(
μFj

(
λ

[n]
k , {λh, ∀ h ∈ HHH(j) \ {k}}

))⎞⎠. (11)

4) Final Solution: Let us assume that there are t = T iter-472

ations in the distributed BP algorithm. After T iterations, the473

probability that Fn is stored by Bk can be obtained by474

Pr
(
λk = λ

[n]
k

)
= 1

Zk

∏
h̄∈HHH(k)

p(T)
h̄→k

(
λ

[n]
k

)
. (12)

Based on (12), the decision as to which file should be stored475

by Bk can be made by choosing the specific file that has the476

maximum a posteriori probability Pr(λk = λ
[n]
k ), ∀ n ∈ NNN .477

C. Convergence to a Fixed Point478

Let us now investigate the existence of a fixed point of479

convergence in our distributed BP algorithm. The essence of480

the distributed BP algorithm is to keep updating the PMF pj(λk)481

before reaching its final estimate. Based on (10) and (11), the482

evolution of pj(λk) during the t-th iteration can be obtained483

from the PMFs in the (t − 1)-th iteration as484

p(t)
k→j(λk) = 1

Zk

∏
h̄∈HHH(k)\{j}

∑
h∈HHH(h̄)\{k}

λ
[N]
h∑

λh=λ
[1]
h⎛⎝exp

(
μFh̄(�h̄)

) ·
∏

q∈HHH(h̄)\{k}
p(t−1)

q→h̄ (λq)

⎞⎠ . (13)

We view the PMF p(t)
k→j(λk) as a probability vector of length485

N. We define the probability vector set MMM(t) �
{

p(t)
k→j(λk)

}
for486

all k ∈ KKK as well as j ∈ JJJ , and define the message mapping487

function � : RN×KJ → R
N×KJ based on (13) so that MMM(t) =488

�(MMM(t−1)). Then we have the following lemma.489

Lemma 1: The message mapping function � is a continuous490

mapping.491

Proof: Please refer to Appendix A.492

Given Lemma 1, we have the following theorem.493

Theorem 1: A fixed point of convergence exists for the494

proposed distributed BP algorithm.495

Proof: Please refer to Appendix B.496

The question of convergence to the fixed point is, unfortu-497

nately, not well understood in general [24]. Generally, if the498

factor graph contains no cycles, the belief propagation can be499

shown to converge to a fixed solution point in a finite number 500

of iterations. The performance, including the optimality and the 501

convergence rate, of the BP crucially depends on the choice 502

of the objective function, as well as the scale, the sparsity and 503

the number of cycles in the underlying factor graph. As such, 504

the theoretical analysis of the BP algorithm’s optimality and 505

convergence rate remains an open challenge. 506

V. A HEURISTIC BP WITH REDUCED COMPLEXITY 507

In the context of the BP algorithm, the message pj(λk) 508

exchanged between Uj and Bk in each iteration, includes N 509

probability values, which are real numbers. Hence, the com- 510

munication overhead of the message passing is relatively high. 511

Hence, we propose a heuristic BP (HBP) algorithm for reducing 512

the communication overhead imposed. The rationale behind the 513

term “heuristic BP” is that we still follow the classic concept of 514

belief propagation, but use a different format of the beliefs from 515

the conventional one. 516

Assuming that the edge (j, k) exists, in the t-th iteration of 517

the HBP, instead of forwarding the N probabilities stored in 518

p(t)
j→k(λk) to Bk, Uj randomly selects an FG according to these 519

N probabilities. Then the integer index n(t)
j→k of the FG selected 520

will be forwarded to the SBS Bk. 521

At the SBS side, the SBS Bk receives |HHH(k)| integers, i.e., 522

n(t)
h̄→k, ∀ h̄ ∈ HHH(k), from its neighboring MUs, where | · | de- 523

notes the cardinality of a set. Based on n(t)
h̄→k, the SBS Bk infers 524

the number of those MUs, which indicate that Fn should be 525

stored in the SBS Bk, for n = 1, · · · , N. Let us assume now that 526

in the t-th iteration, there are J(t)
k,n MUs specifically indicating 527

that Fn should be stored in Bk, where we have
∑

n∈NNN J(t)
k,n = 528

|HHH(k)|. We can view
J(t)

k,n
|HHH(k)| as the probability that the specific 529

FG Fn is stored by the SBS Bk. 530

In this case, the probability p(t)
k→j(λ

[n]
k ) in (10) will be recal- 531

culated as 532

p(t)
k→j

(
λ

[n]
k

)
=
⎧⎨⎩

J(t−1)
k,n −1

|HHH(k)|−1 , if n = n(t−1)
j→k ,

J(t−1)
k,n

|HHH(k)|−1 , if n �= n(t−1)
j→k .

(14)

Note that in (14), the information n(t−1)
j→k transmitted from the 533

MU Uj to the SBS Bk is excluded when calculating p(t)
k→j(λ

[n]
k ), 534

for the sake of ensuring that only uncorrelated information is 535

exchanged throughout the HBP. 536

At the MU side, it is clear that the MU Uj has to obtain 537

p(t)
k→j(λ

[n]
k ) for the sake of updating the output information. 538

However, there is no need for the SBS Bk to transmit the 539

N probabilities p(t)
k→j(λ

[n]
k ) to each of its neighboring MUs. 540

Alternatively, Bk broadcasts the N integers, J(t)
k,1, · · · , J(t)

k,N to 541

the neighboring MUs for reducing the transmission overhead. 542

After receiving the N integers from the SBS Bk, the MU Uj 543

calculates p(t)
k→j(λ

[n]
k ) in (14). 544

Based on the above discussions, the HBP algorithm can be 545

summarized as follows. 546
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1) Initialization: At the variable nodes, we set t = 1. The547

SBS Bk randomly generates |HHH(k)| independent integers,548

n1, · · · , n|HHH(k)|, according to the popularity distribution PPP .549

These integers are viewed as the indexes of the FGs. We then550

set J(1)
n,k to be the number of the integers that are equal to n.551

2) Variable Node Update: In the t-th iteration, Bk updates552

and broadcasts the N integers J(t)
n,k, for n = 1, · · · , N, to the553

neighboring MUs. The resulting calculations performed on554

these N integers J(t)
n,k are based on the integers n(t−1)

h̄→k , ∀ h̄ ∈555

HHH(k), received from the neighboring MUs during the last iter-556

ation. Specifically, the n-th integer J(t)
n,k is obtained by counting557

the number of n(t−1)
h̄→k that are equal to n.558

3) Factor Node Update: The MU Uj first calculates the559

probabilities p(t)
h→j(λ

[n]
k ), ∀ h ∈ HHH(j) according to Eq. (14) based560

on the integers gleaned from the SBS Bh. Then based on561

p(t)
h→j(λ

[n]
k ), ∀ h ∈ HHH(j) \ {k}, Uj calculates p(t)

j→k(λ
[n]
k ) according562

to Eq. (11). After obtaining the N probabilities p(t)
j→k(λ

[n]
k ),563

n = 1, · · · , N, Uj randomly chooses an FG according to these564

N probabilities and sends the index n(t)
j→k of the FG to the565

SBS Bk.566

4) Final Solution: After T iterations, the SBS Bk makes the567

decision that the FG Fn̂ should be stored for ensuring that568

n̂ = arg max
n∈NNN

J(T)
k,n . (15)

The overhead of the HBP is significantly lower than that569

of the original BP introduced in the previous section. From570

a communication complexity perspective, in each iteration of571

the HBP, an SBS Bk broadcasts N integers, while an MU Uj572

transmits |HHH(j)| integers. On the other hand, in the original573

BP, Bk transmits N|HHH(k)| real numbers, while Uj transmits574

N|HHH(j)| real numbers for each iteration. From a computational575

complexity perspective, in a single iteration of the HBP, the576

computational complexity is on the order of O(N) at the SBS577

Bk, and O(|H(j)|N|H(j)|) at the MU Uj. On the other hand, in578

the original BP, the computational complexity is O(N|H(k)|2)579

at Bk, and O(|H(j)|N|H(j)|) at Uj for each iteration.580

VI. PERFORMANCE ANALYSIS BASED581

ON STOCHASTIC GEOMETRY582

In this section, we analyze both the average degree dis-583

tribution of the factor graph and the average downloading584

performance based on stochastic geometry theory. We model585

the distribution of the MUs as a PPP �U having the intensity586

of λU , and that of the SBSs as an independent PPP �B with the587

intensity λB [31], [33]. For simplicity, we assume that all the588

SBSs have the same transmission power P. In the following,589

both the degree distribution and the downloading performance590

are averaged over both the channels’ fading coefficients and591

over the PPP distributions of the nodes.592

A. Average Degree Distributions of the Factor Graph593

Let us now investigate the degree distribution of the factor594

graph averaged over PPP. Note that the degree of a factor node j595

is defined as the number of its neighboring variable nodes, given 596

by the cardinality |HHH(j)|, while the degree of a variable node k 597

is defined as the number of its neighboring factor nodes, i.e., 598

|HHH(k)|. Then we have the following theorem. 599

Theorem 2: The factor nodes in the factor graph have the 600

average degree 601

ζU = 2πλBZ(λB, P, α, δ), (16)

and the variable nodes have the average degree 602

ζB = 2πλUZ(λB, P, α, δ), (17)

where we have 603

Z(λB, P, α, δ)

=
∫ ∞

0
exp

{
−2λBπ

α
δ

2
α B

(
2

α
, 1− 2

α

)
r2− δσ 2

P
rα

}
rdr (18)

and the Beta function B(x, y) = ∫ 1
0 tx−1(1 − t)y−1dt. 604

Proof: Please refer to Appendix C. 605

When neglecting the noise, we have the following corollary 606

based on Theorem 2. 607

Corollary 1: When neglecting the noise, Z(λB, P, α, δ) in 608

(18) can be rewritten as 609

Z(λB, P, α, δ) = α

4πλBB
(

2
α
, 1 − 2

α

)
δ

2
α

. (19)

Then we can simplify the average degree of the factor nodes in 610

Eq. (16) to 611

ζU = α

2δ
2
α B
(

2
α
, 1 − 2

α

) , (20)

and the average degree of the variable nodes in Eq. (17) to 612

ζB = λUα

2λBδ
2
α B
(

2
α
, 1 − 2

α

) . (21)

Proof: Please refer to Appendix D. 613

Equations (20) and (21) can be seen as approximations of 614

(16) and (17), respectively, when the effects of the noise are 615

neglected. These approximations are significantly accurate for 616

the HCN, since the interference effects are dominant due to the 617

dense deployments of the SBSs. 618

From (20), we can see that ζU is only related to δ and α, 619

but is independent of λU , P and λB. In other words, the factor 620

node degree has no relation with the intensities of the MUs and 621

SBSs or with the power of the SBSs. The intuitive reason is that 622

although increasing both the PPP intensities and the power of 623

the SBSs can increase the total signal power, the interference 624

also increases at the same time, which keeps the degree ζU 625

of the factor nodes constant. Similarly, observe from (21) 626

that ζB is independent of the power P, i.e., increasing the 627

transmission power of the SBSs will not influence the average 628

degree distribution of the factor graph. 629
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Remark 1: We observe that B
(

2
α
, 1 − 2

α

)
= π when α = 4.630

Thus, we have closed-form expressions for ζU and ζB in (20)631

and (21), respectively, when α = 4.632

B. Downloading Performance of Random Caching633

Since the performance of BP based caching remains diffi-634

cult for mathematical analysis in closed form, we propose a635

random caching scheme and analyze its performance based on636

stochastic geometry theory. The random caching is realized by637

randomly picking out 	Fn · K (0 ≤ 	Fn ≤ 1) SBSs from the638

entire set of K SBSs for caching the FG Fn.639

To evaluate the downloading performance, we first define640

an outage Qn as the event of an MU’s failing to find the FG641

Fn in its neighboring SBSs. The following theorem states an642

upper bound of the OP of Qn. As mentioned before, since the643

interference is the dominant factor predetermining the network644

performance, we ignore the noise effects in the following645

performance analysis to simplify our derivations.646

Theorem 3: The OP for downloading a file in Fn can be647

upper-bounded by648

Pr(Qn) ≤ C(δ, α)
(
1 − 	Fn

)+ A(δ, α)	Fn

C(δ, α)
(
1 − 	Fn

)+ A(δ, α)	Fn + 	Fn

, (22)

where we have C(δ, α) � 2
α
δ

2
α B
(

2
α
, 1 − 2

α

)
, A(δ, α) �649

2δ
α−2 2F1

(
1, 1 − 2

α
; 2 − 2

α
; −δ

)
, and 2F1 represents the650

hypergeometric function.651

Proof: Please refer to Appendix E.652

When the path-loss exponent α = 4, we have C(δ, 4) =
√

δ
2 π653

and A(δ, 4) = δ2F1

(
1, 1

2 ; 3
2 ,−δ

)
. It becomes clear from (22)654

that Pr(Qn) is only related to δ and 	Fn , where a higher δ655

leads to a higher Pr(Qn). This is because a larger δ will reduce656

the number of possibly eligible serving SBSs, resulting in an657

increase of OP. We can see that a higher 	Fn leads to a lower658

Pr(Qn).659

Let us define the averaged OP Q over all the files. Based on660

the file popularity, the OP of Q can be upper-bounded by661

Pr(Q) =
∑
n∈NNN

PFn Pr(Qn)

≤
∑
n∈NNN

PFn

(
C(δ, α)

(
1 − 	Fn

)+ A(δ, α)	Fn

)
C(δ, α)

(
1 − 	Fn

)+ A(δ, α)	Fn + 	Fn

. (23)

The average delay D̄ of each MU can be obtained based on the662

average OP, i.e.,663

D̄ = (1 − Pr(Q)) D̄s + Pr(Q)
M

C0
, (24)

where D̄s is the average delay of downloading from the SBSs.664

The delay D̄ can be seen as the average value of D in Eq. (6)665

over both the PPP and the channel fading. Note that D̄s is666

usually challenging to calculate and does not have a closed form667

in the PPP analysis.668

Next, we optimize 	Fn for improving the downloading per- 669

formance. Since we do not have a closed-form expression for D̄, 670

we minimize the upper bound of Pr(Q) in (23), i.e., 671

max{	Fn}
∑
n∈NNN

PFn	Fn

	Fn (A(δ, α) − C(δ, α) + 1) + C(δ, α)
,

s.t.
∑
n∈NNN

	Fn = 1,

	Fn ≥ 0. (25)

By relying on the classic Lagrangian multiplier, we arrive at the 672

optimal solution as 673

	

Fn

= max

⎧⎨⎩
√

PFn
ξ

− C(δ, α)

A(δ, α) − C(δ, α) + 1
, 0

⎫⎬⎭ , (26)

where ξ =
(∑n∗

q=1
√

PFq

)2

(n∗C(δ,αs)+A(δ,αs)−C(δ,αs)+1)2 , and n∗ satisfies the 674

constraint that 	Fn ≥ 0. 675

VII. SIMULATION RESULTS 676

In this section, we first focus on the HCNs associated with 677

PPP distributed nodes, where we investigate the average degree 678

distribution of the factor graph and the performance of the 679

random caching scheme. Then we consider an HCN supporting 680

a fixed number of nodes. We investigate the delay optimized 681

by the BP algorithm and compare it to other benchmarks, 682

including both the random caching and the optimal scheme 683

using exhaustive search. 684

Note that the physical layer parameters in our simulations, 685

such as the path-loss exponent, noise power, transmit power 686

of the SBSs, and the intensity of the SBSs, are chosen to be 687

practical and in line with the values set by 3GPP standards. 688

For instance, the transmit power of an SBS is typically 2 Watt 689

in 3GPP. The unit of power, such as noise power and transmit 690

power, is the classic Watt. The intensities of the SBSs and MUs 691

are expressed in terms of the numbers of the nodes per square 692

kilometer. Unless specified otherwise, we set the path loss to 693

α = 4, the number of files to Q = 100, transmit power to P = 2, 694

and the noise power to σ 2 = 10−10. All the simulations are 695

executed with MATLAB. Also, we consider the performance 696

averaged over a thousand network cases, where the locations 697

of network nodes are uniformly distributed in each case, and 698

randomly changed from case to case. 699

A. Average Degree Distributions of Factor Graph 700

We compare our Monte-Carlo simulations and analytical 701

results in the HCNs at various transmission powers and node 702

densities. Fig. 2 shows the average degree of the factor nodes 703

with different transmission power P, SBSs’ intensity λB, and 704

MUs’ intensity λU . We can see that for a given δ, the degree 705

ζU remains unaffected by the specific choice of P, λB, and 706

λU . Observe that our analytical results are consistent with the 707

simulations. Similarly, Fig. 3 shows the average degree of 708
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Fig. 2. Average degree of factor nodes ζU vs. δ for different SBS and MU
intensities of λB and λU , and for transmit powers of P = 2 and 4.

Fig. 3. Average degree of variable nodes ζB vs. δ for different SBS and MU
intensities of λB and λU , and for transmit powers of P = 2 and 4.

the variable nodes of different powers and node intensities,709

demonstrating that the results are independent of the power P,710

but depend on the densities λB and λU . We can also see that the711

analytical results match well with the simulation results.712

B. Average Downloading Performance of Random Caching713

Let us now evaluate the average downloading performance of714

the random caching scheme supporting PPP distributed nodes.715

The file distribution PPP = {p1, · · · , pQ} is modeled by the Zipf716

distribution [34], which can be expressed as717

pf = 1/f s∑Q
q=1 1/qs

, for f = 1, · · · , Q, (27)

where the exponent 0 < s ≤ 1 is a real number, and it charac-718

terizes the popularity of files. Explicitly, a larger s corresponds719

to a higher content reuse, i.e., the most popular files account for720

the majority of requests. Note that PFn can be obtained based721

on pf via Eq. (2).722

Fig. 4. Outage probabilities Pr(Qn) · PFn for individual FGs Fn under the
file popularity based random caching (FPRC) and optimized random caching
(ORC) schemes.

For the simulation results of this subsection, we assume that 723

each SBS caches G = 5 files, hence there are N = Q/G = 20 724

FGs. We commence by considering the OP. In our optimized 725

random caching (ORC), we set 	Fn as in (26). For comparison, 726

we also consider another random caching scheme from [19] as 727

our the benchmark, namely, the file popularity based random 728

caching (FPRC). In the FPRC, 	Fn is chosen to be consistent 729

with the file popularity, i.e., we have 	Fn = PFn . 730

Fig. 4 shows the OPs Pr(Qn) · PFn for individual FGs under 731

both the ORC and the FPRC schemes, where we have δ = 0.03 732

and s = 0.5. The conditional OP Pr(Qn) (given a file in Fn 733

is requested) is calculated from Eq. (22), while the request 734

probability PFn of Fn is calculated from Eq. (2). The FGs are 735

arranged in descending order of popularity, i.e., the first FG 736

has the highest popularity, while the last one has the lowest 737

popularity. We can see from the figure that compared to the 738

FPRC, FGs having a higher popularity have a lower OP, while 739

the ones with lower popularity have higher OPs in the ORC. For 740

example, the OP for the most popular FG is around 0.054 in the 741

ORC in contrast to 0.099 in the FPRC, while the probability of 742

the least popular FG is 0.27 in the ORC in contrast to 0.25 in 743

the FPRC. This is because the ORC is reminiscent of the classic 744

water-filling, allocating more SBSs for caching the higher 745

popular FGs for ensuring the minimization of the average OP. 746

Let us now investigate the average OP Pr(Q). Figs. 5 and 747

6 show Pr(Q) for different δ and s values, respectively. In Fig. 5, 748

we fix s = 0.5, while in Fig. 6, we fix δ = 0.03. The dashed 749

lines with different marks are based on the simulations asso- 750

ciated with various power and densities, while the solid lines 751

represent the analytical upper bounds of Eq. (23). We can see 752

that the average OP is independent of both the power P and 753

densities λB and λU . The ORC scheme has a lower average 754

OP than the FPRC. Furthermore, as expected, a higher SINR 755

threshold δ leads to a higher OP, as shown in Fig. 5. At the 756

same time, it is interesting to observe from Fig. 6 that a larger 757

s, representing more imbalanced downloading requests on the 758

different files, can dramatically reduce the OP. We can see that 759

the upper bounds evaluated from Eq. (23) match the simulations 760

quite accurately. 761
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Fig. 5. Average outage probabilities Pr(Q) vs. δ under the FPRC and ORC
schemes for different SBS and MU intensities λB and λU , and for transmit
powers P = 2 and 4.

Fig. 6. Average outage probabilities Pr(Q) vs. the Zipf parameter s under the
FPRC and ORC schemes for different SBS and MU intensities λB and λU , and
for transmit powers P = 2 and 4.

Next, we consider the average delay D̄ in Eq. (24), where762

we assume an SINR threshold of δ = 0.03, a bandwidth of763

W = 107 Hz, and a file size of M = 109 bits. Since C0 should764

be always less than the maximum possible downloading rate765

provided by the SBSs, we assume C0 = W log(1 + δ). For766

δ = 0.03, C0 becomes 4.26 × 105 bits/sec. Fig. 7 illustrates the767

average downloading delay associated with different s values.768

We can see that the ORC scheme always outperforms the FPRC769

scheme, and that their performance gap becomes larger upon770

increasing s. Again, the observed performance does not depend771

on the powers and intensities of the nodes.772

C. Delay Performance of Distributed BP Algorithms773

Let us now study the delay performance of distributed BP-774

based optimizations. We consider HCNs having fixed numbers775

of SBSs and MUs, where the locations of these nodes are time-776

variant. We first consider a small network, in which the optimal777

solution is found with the aid of an exhaustive search. This will778

Fig. 7. Average downloading delay D̄ vs. the Zipf parameter s under the FPRC
and ORC schemes for different SBS and MU intensities λB and λU , and for
transmit powers P = 2 and 4.

Fig. 8. Average downloading delay D̄ vs. the Zipf parameter s under various
schemes in the first scenario.

allow us to characterize the performance disparity between the 779

proposed BP algorithm and the optimal search-based solution. 780

Then we focus our attention on a larger network to show the 781

robustness of our BP algorithms. In both scenarios, we set the 782

SINR threshold to δ = 0.1, the transmission power to P = 2, 783

the bandwidth to W = 107 Hz, and the file size to M = 109 bits. 784

Similar to the previous subsection, we assume that the rate 785

provided by the MBS as C0 = W log(1 + δ). For δ = 0.1, we 786

have C0 as 1.3 × 106 bits/sec. 787

In the first scenario, the nodes are arranged in a 0.6 × 0.6 km2 788

area using 8 SBSs and 4 MUs. We assume that each SBS caches 789

G = 25 files, and there are N = Q/G = 4 FGs. Fig. 8 shows 790

the average delay performance under various schemes, where 791

‘HBP’ is the heuristic BP algorithm proposed in Section V, 792

‘BP’ is the original BP algorithm proposed in Section IV, 793

and ‘Optimal’ is the optimal scheme relying on an exhaustive 794

search. We can see from Fig. 8 that the original BP approaches 795

the optimal scheme within a small delay margin. The proposed 796

HBP performs slightly worse than the original BP, with a 797
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Fig. 9. Average downloading delay D̄ vs. the Zipf parameter s under various
schemes in the second scenario.

relatively modest delay degradation of around 5% or798

20 seconds, while it outperforms the ORC scheme by about799

10% or 40 seconds gain. The FPRC performs the worst among800

all the caching schemes, exhibiting a substantial delay gap801

between the FPRC scheme and the ORC scheme.802

In the second scenario, the nodes are arranged in a803

1.5 × 1.5 km2 area with 50 SBSs and 25 MUs. We consider804

two cases, namely Case1 and Case2. In Case1, we assume that805

each SBS caches G = 20 files and there are N = Q/G = 5 FGs,806

while in Case2, we assume that each SBS caches G = 10 files807

and that we have N = Q/G = 10. Fig. 9 shows the average808

delay performance under various schemes. It is clear from809

Fig. 9 that in both cases the BP algorithm performs the best,810

while the FPRC performs the worst. The HBP exhibits a tiny811

delay increase of around 3% performance loss compared to the812

original BP, although it dramatically reduces the communica-813

tion complexity during the optimization process.814

Note also in Fig. 9 that the ORC suffers from a 5% perfor-815

mance loss compared to the HBP, but it is much less complex816

than the HBP and BP. The optimization in ORC is based on817

the statistical information available about both of channels and818

the locations of the nodes, while both the BP and the HBP819

exploit the relevant instantaneous information at a relatively820

high communication complexity. In this sense, the ORC con-821

stitutes an efficient caching scheme. Furthermore, we can see822

from Fig. 9 that there is a tradeoff between the storage and823

delay, i.e., a larger storage at each SBS in Case1 leads to a lower824

downloading delays compared to Case2.825

In the above BP simulations, we set the maximum number826

of iterations to T = 15. Table I shows the average number827

of iterations under different s values for the two scenarios.828

We can see that the HBP relies on more iterations than the829

BP. Nevertheless, the overall communication complexity of the830

HBP is still lower than that of the BP, as we have discussed831

in Section V. Explicitly, for each iteration of the HBP, Bk832

broadcasts N integers and Uj transmits |HHH(j)| integers. By833

contrast, in the original BP, Bk transmits N|HHH(k)| real numbers834

and Uj transmits N|HHH(j)| real numbers.835

TABLE I
THE AVERAGE NUMBER OF ITERATIONS UNDER DIFFERENT s

Fig. 10. Average downloading delay D̄ vs. the Zipf parameter s under various
schemes in the large scale network.

D. Delay Performance in a Large Scale Network 836

Finally, we consider a large-scale network associated with 837

Q = 1000 files, 50 SBSs, and 100 MUs within an area of 838

5 × 5 km2. Furthermore, we consider a lower connection prob- 839

ability to the SBSs by setting δ = 0.2. By assuming that each 840

SBS is capable of caching 20 files, we have overall 50 file 841

groups. Fig. 10 shows the average delay performance. We can 842

see from the figure that both BP algorithms perform better 843

than the random caching schemes. Particularly, the HBP has 844

a roughly 1% performance loss compared to the original BP, 845

which imposes however a much reduced communication com- 846

plexity. This implies that our BP algorithms are robust in large- 847

scale networks associated with a large number of files and 848

network nodes. 849

Further comparing Figs. 8, 9, and 10, it is interesting to 850

observe that the gap between our BP and HBP algorithms 851

becomes smaller when the network scale becomes larger. More 852

particularly in Fig. 10, the performance of these two schemes 853

almost overlaps. This indicate that in large scale networks, we 854

may consider to use the HBP rather than BP to obtain a good 855

performance at a much reduced complexity. 856

VIII. CONCLUSION 857

In this paper, we designed distributed caching optimization 858

algorithms with the aid of BP for minimizing the downloading 859

latency in HCNs. Specifically, a distributed BP algorithm was 860
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proposed based on the factor graph according to the network861

structure. We demonstrated that a fixed point of convergence862

exists for the distributed BP algorithm. Furthermore, we pro-863

posed a modified heuristic BP algorithm for further reducing864

the complexity. To have a better understanding of the average865

network performance under varying numbers and locations of866

the network nodes, we involved stochastic geometry theory867

in our performance analysis. Specifically, we developed the868

average degree distribution of the factor graph, as well as an869

upper bound of the OP for random caching schemes. The per-870

formance of the random caching was also optimized based on871

the upper bound derived. Simulations showed that the proposed872

distributed BP algorithm approaches the optimal performance873

of the exhaustive search within a small margin, while the mod-874

ified BP offers a good performance at a very low complexity.875

Additionally, the average performance obtained by stochastic876

geometry analysis matches well with our Monte-Carlo simula-877

tions, and the optimization based on the upper bound derived878

provides a better performance than the benchmark of [19].879

APPENDIX A880

PROOF OF LEMMA 1881

To simplify the notation in the proof, we assume that882

HHH(j) = KKK, ∀ j ∈ JJJ and HHH(k) = JJJ , ∀ k ∈ KKK. Consider a pair of883

probability vector sets MMM(t−1) =
{

p(t−1)
k→j (λk)

}
and M̃MM(t−1) =884 {

p̃(t−1)
k→j (λk)

}
. Then we have the supremum norm885 ∣∣∣∣∣∣� (MMM(t−1)
)

− �
(
M̃MM(t−1)

)∣∣∣∣∣∣
sup

= max
k,j,n

∣∣∣p(t)
k→j

(
λ

[n]
k

)
− p̃(t)

k→j

(
λ

[n]
k

)∣∣∣
= max

k,j,n

∣∣∣∣∣∣∣
∏

i∈JJJ \{j}

∑
h∈KKK\{k}

λ
[N]
h∑

λh=λ
[1]
h

⎛⎝exp (μFi(�i))

⎛⎝ ∏
q∈KKK\{k}

p(t−1)
q→i (λq) −

∏
q∈KKK\{k}

p̃(t−1)
q→i (λq)

⎞⎠⎞⎠
∣∣∣∣∣∣∣

(a)≤ max
j

∏
i∈JJJ \{j}

∑
h∈KKK\{k}

λ
[N]
h∑

λh=λ
[1]
h∣∣∣∣∣∣

∏
q∈KKK\{k}

p(t−1)
q→i (λq) −

∏
q∈KKK\{k}

p̃(t−1)
q→i (λq)

∣∣∣∣∣∣
(b)≤ (K − 1)NK−1 max

j∏
i∈JJJ \{j}

max
q∈KKK\{k},n

∣∣∣p(t−1)
q→i

(
λ[n]

q

)
− p̃(t−1)

q→i

(
λ[n]

q

)∣∣∣
≤ (K − 1)NK−1 max

j,q∈KKK\{k},n

∣∣∣p(t−1)
q→i

(
λ[n]

q

)
−p̃(t−1)

q→i

(
λ[n]

q

)∣∣∣J−1

≤ (K − 1)NK−1 max
j,k,n

∣∣∣p(t−1)
k→i

(
λ

[n]
k

)
− p̃(t−1)

k→i

(
λ

[n]
k

)∣∣∣
= (K − 1)NK−1

∣∣∣∣∣∣MMM(t−1) −M̃MM(t−1)
∣∣∣∣∣∣

sup
. (28)

The inequality (a) in (28) is derived by exploiting the 886

following two facts: 1) 0 < exp(μFi(�)) ≤ 1, since Fi(�) is 887

non-positive and μ is positive, and 2)
∑

s |xs| ≤ |∑s(xs)| for 888

arbitrary xs. The inequality (b) in (28) can be obtained from: 889

1) the following lemma, and 2) the fact that
∑

h∈KKK\{k}
∑λ

[N]
h

λh=λ
[1]
h

890

has to carry out the additions of NK−1 items. 891

Lemma 2: Given 0≤a1, · · · , aK ≤1 and 0≤ ã1, · · · , ãK ≤1, 892

we have 893

max
k∈KKK

∣∣∣∣∣∣
∏

q∈KKK\{k}
aq−

∏
q∈KKK\{k}

ãq

∣∣∣∣∣∣≤ (K−1) max
q∈KKK\{k}

|aq−ãq|. (29)

Proof: Please refer to Appendix F. 894

From (28), we can infer that � is a continuous mapping, since 895

the coefficient (K − 1)NK−1 is a constant, and this completes 896

the proof. � 897

APPENDIX B 898

PROOF OF THEOREM 1 899

LetSSS be the collection of the message setMMM(t). The mapping 900

function � maps SSS to SSS with the aid of the function �. 901

According to Lemma 1, � is continuous since � is continuous. 902

Furthermore, it is clear that the set SSS is convex, closed and 903

bounded. Based on Schauder’s fixed point theorem, � has a 904

fixed point. This completes the proof. � 905

APPENDIX C 906

PROOF OF THEOREM 2 907

A. The Average Degree of Factor Nodes 908

Without a loss of generality, we carry out the analysis for a 909

typical MU located at the origin and assume that the potential 910

serving SBSs are located at the point xB. The fading (power) 911

is denoted by hxB , which is assumed to be exponentially dis- 912

tributed, i.e., we have hxB ∼ exp(1). The path-loss function is 913

given by ‖xB‖−α , where ‖ · ‖ denotes the Euclidian distance. 914

The average degree of a factor node in the factor graph is 915

equivalent to the number of SBSs that can provide a high enough 916

SINR (≥ δ) for the typical MU, which can be formulated as 917

NB =
∫
R2

λB Pr (ρ(xB) ≥ δ) dxB, (30)

where ρ(xB) represents the SINR at the typical MU received 918

from the SBSs located at xB. 919

We first focus on the probability Pr(ρ(xB) ≥ δ) in (30) as 920

follows. 921

Pr (ρ(xB) ≥ δ) = Pr

⎛⎜⎝ PhxB‖xB‖−α∑
xk∈�B

Phxk‖xk‖−α + σ 2
≥ δ

⎞⎟⎠
= Pr

(
hxB ≥ δ(I + σ 2)

P‖xB‖−α

)
= EI (exp(−sI)) exp(−sσ 2), (31)
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where xk denotes the location of an interfering SBS, I �
∑

xk∈�B

922

Phxk‖xk‖−α represents the aggregate interference, and s =923
δ‖xB‖α

P . The last step is due to the exponential distribution of924

hxB . Then, we derive EI(exp(−sI)) in (31) as925

EI (exp(−sI))

(a)= E�B

⎛⎝ ∏
xk∈�B

∫ ∞

0
exp

(−sPhxk‖xk‖−α
)

exp
(−hxk

)
dhxk

⎞⎠
(b)= exp

(
−λB

∫
R2

(
1 − 1

1 + sP‖xk‖−α

)
dxk

)

= exp

(
−2πλB

1

α
(sP)

2
α B

(
2

α
, 1 − 2

α

))
, (32)

where (a) is based on the independence of channel fading,926

and (b) follows from E

(∏
x

u(x)

)
= exp(−λ

∫
R2(1 − u(x))dx),927

where x ∈ � and � is an PPP in R
2 with the intensity λ [30].928

Based on the derivation above, the average degree of the929

typical MU can be calculated as930

NB = λB

∫
R2

exp

(
−2π

λB

α
δ

2
α B

(
2

α
, 1 − 2

α

)
‖xB‖2− δσ 2

P
‖xB‖α

)
dxB

= 2πλB

∫ ∞

0
exp

(
−2π

λB

α
δ

2
α B

(
2

α
, 1− 2

α

)
r2− δσ 2

P
rα

)
rdr.

(33)

B. The Average Degree of Variable Nodes931

In this subsection, we consider a typical SBS which is932

located at the origin, and assume that an MU is located at the933

point xU . The average degree of a variable node in the factor934

graph is equivalent to the number of MUs that can receive at a935

high enough SINR (≥ δ) from the typical SBS, which can be936

formulated as937

NU =
∫
R2

λU Pr (ρ(xU) ≥ δ) dxU, (34)

where ρ(xU) represents the received SINR at the MU located at938

xU from the typical SBS, i.e.,939

Pr (ρ(xU) ≥ δ)

= Pr

⎛⎜⎝ PhxU ‖xU‖−α∑
xk∈�B

Phxk‖xk − xU‖−α + σ 2 ≥ δ

⎞⎟⎠ , (35)

where xk denotes the location of an interfering SBS.940

Since the PPP is a stationary process, the distribution of 941

‖xk − xU‖ is independent of the value of xU , i.e., we have 942

p(‖xk − xU‖) = p(‖xk‖), where p(·) represents the probability 943

density function. Then, we have similar results to Eq. (31). That 944

is, we have 945

Pr (ρ(xU) > δ) = EI (exp(−sI)) exp(−sσ 2), (36)

where s = δ‖xU‖α

P . Then we arrive at 946

NU =2πλU

∫ ∞

0
exp

(
−2π

λB

α
δ

2
α B

(
2

α
, 1− 2

α

)
r2− δσ 2

P
rα

)
rdr.

(37)

By combining Eqs. (37) and (33), we complete the proof. � 947

APPENDIX D 948

PROOF OF COROLLARY 1 949

When ignoring the noise, we have 950

Z(λB, P, α, δ)

=
∫ ∞

0
exp

(
−2πλB

α
δ

2
α B

(
2

α
, 1 − 2

α

)
r2
)

rdr

= 1

2

∫ ∞

0
exp

(
−λB

2π

α
δ

2
α B

(
2

α
, 1 − 2

α

)
t

)
dt

= 1

2λB
2π
α

δ
2
α B
(

2
α
, 1 − 2

α

) = α

4πλBB
(

2
α
, 1 − 2

α

)
δ

2
α

. (38)

By substituting the above expression into (17) and (16), we 951

obtain (20) and (21) respectively. This completes the proof. � 952

APPENDIX E 953

PROOF OF THEOREM 3 954

We conduct the analysis for a typical MU that is located at 955

the origin. We assume that when downloading a file in Fn, the 956

MU will always associate with its nearest SBS, which caches 957

Fn. Note that the OP derived under this assumption is an upper 958

bound for the exact OP. This is because the MU will associate 959

with the second-nearest SBS if it can provide a higher received 960

SINR than that provided by the nearest SBS. Therefore, in 961

some cases, the nearest SBS cannot provide a higher enough 962

SINR (≥ δ), while the second-nearest SBS can. According to 963

our assumption, we will neglect these cases, which leads to a 964

higher OP. 965

Let us denote by z the distance between the typical MU and 966

the nearest SBS that caches Fn. The location of the nearest SBS 967

caching Fn is denoted by xZ . The fading (power) for an SBS 968

located at xB, ∀ xB ∈ �B, is denoted by hxB , which is assumed 969

to be exponentially distributed, i.e., hxB ∼ exp(1). The path-loss 970

function for a given point xB is ‖xB‖−α . 971

When random caching is adopted, the distribution of the 972

SBSs that cache Fn can be modeled as an PPP with the intensity 973

of 	FnλB. The event that the typical MU can download a file in 974

Fn from an SBS means that the received SINR from the nearest 975
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SBS which caches Fn is no less than the threshold δ. Let us976

denote by ρ(xZ) the received SINR at the typical MU from977

the nearest SBS. Then the average probability that the MU can978

download the file from an SBS is979

Pr (ρ(xZ) ≥ δ)

=
∫ ∞

0
Pr

⎛⎜⎝ hxZ z−α∑
xk∈�B\{xZ }

hxk‖xk‖−α
≥ δ

∣∣∣∣∣∣∣ z
⎞⎟⎠ fZ(z)dz

=
∫ ∞

0
Pr

⎛⎜⎜⎜⎜⎝hxZ ≥
δ

( ∑
xk∈�B\{xZ }

hxk‖xk‖−α

)
z−α

∣∣∣∣∣∣∣∣∣∣
z

⎞⎟⎟⎟⎟⎠
· 2π	FnλBz exp

(
−π	FnλBz2

)
dz

=
∫ ∞

0
EI
(
exp(−zαδI)

)
2π	FnλBz exp

(
−π	FnλBz2

)
dz,

(39)

where we have I �
∑

xk∈�B\{xZ }
hxk‖xk‖−α , and the PDF of z, i.e.,980

fZ(z), is derived by the null probability of a Poisson process981

with the intensity of 	FnλB. Note that the interference I con-982

sists of I1 and I2, where I1 is emanating from the SBSs caching983

the FGs Fq, ∀ q ∈ NNN , q �= n, while I2 is from the SBSs caching984

Fn excluding xZ . The SBSs contributing to I1, denoted by �n̄,985

have the intensity (1 − 	Fn)λB, while those contributing to I2,986

denoted by �n, have the intensity 	FnλB. Correspondingly, the987

calculation of EI(exp(−zαδI)) will be split into the product of988

two expectations over I1 and I2. The expectation over I1 directly989

follows (32), i.e., we have990

EI1

(
exp(−zαδI1)

) = exp
(
−π

(
1 − 	Fn

)
λBC(δ, α)z2

)
, (40)

where C(δ, α) has been defined as 2
α
δ

2
α B
(

2
α
, 1 − 2

α

)
. The991

expectation over I2 has to take into account z as the distance992

from the nearest interfering SBS, i.e., we obtain993

EI2

(
exp(−zαδI2)

)
= exp

(
−	FnλB2π

∫ ∞

z

(
1 − 1

1 + zαδr−α

)
rdr

)

(a)= exp

(
−	FnλBπδ

2
α z2 2

α

∫ ∞

δ−1

x
2
α −1

1 + x
dx

)

(b)= exp

(
−	FnλBπδz2 2

α − 2
2F1

(
1, 1 − 2

α
; 2 − 2

α
; −δ

))
,

(41)

where (a) defines x � δ−1z−αrα , and 2F1(·) in (b) is994

the hypergeometric function. Since we have defined995

A(δ, α) = 2δ
α−2 2F1

(
1, 1 − 2

α
; 2 − 2

α
; −δ

)
, by substituting (40) 996

and (41) into (39), we have 997

Pr (ρ(xZ) ≥ δ) =
∫ ∞

0
exp

(
−π

(
1 − 	Fn

)
λBC(δ, α)z2

)
exp

(
−π	FnλBz2A(δ, α)

)
2π	FnλBz exp

(
−π	FnλBz2

)
dz

= 	Fn

C(δ, α)
(
1 − 	Fn

)+ A(δ, α)	Fn + 	Fn

. (42)

It is clear that Pr(Qn) = 1 − Pr(ρ(z) ≥ δ). This completes the 998

proof. � 999

APPENDIX F 1000

PROOF OF LEMMA 2 1001

Without loss of generality, we assume k = 1. Then (29) 1002

becomes 1003∣∣∣∣∣∣
K∏

q=2

aq −
K∏

q=2

ãq

∣∣∣∣∣∣ ≤ (K − 1) max
q∈{2,··· ,K} |aq − ãq|. (43)

Again, without loss of generality, we assume 1004

|a2 − ã2| ≥ · · · ≥ |aK − ãK|. (44)

First, we prove that |aK−1aK − ãK−1ãK| ≤ 2|aK−1 − ãK−1|, 1005

under the condition of |aK−1 − ãK−1| ≥ |aK − ãK|. To prove 1006

this, we discuss the following possible cases. 1007

1) When aK−1 ≥ ãK−1 and aK ≥ ãK: We have aK ≤ 1008

aK−1 − ãK−1 + ãK . Then 1009

|aK−1aK − ãK−1ãK|
≤ |aK−1(aK−1 − ãK−1 + ãK) − ãK−1ãK|
= |(aK−1 + ãK)(aK−1 − ãK−1)|
≤ 2|aK−1 − ãK−1|. (45)

2) When aK−1 ≥ ãK−1, aK ≤ ãK, and aK−1aK ≥ ãK−1ãK: 1010

We have 1011

|aK−1aK −ãK−1ãK| ≤ |aK−1ãK − ãK−1ãK|
= |aK−1−ãK−1|ãK ≤|aK−1−ãK−1|. (46)

3) When aK−1 ≥ ãK−1, aK ≤ ãK, and aK−1aK ≤ ãK−1ãK: 1012

We have 1013

|ãK−1ãK −aK−1aK | ≤ |aK−1ãK − aK−1aK|
= |aK − ãK|aK−1 ≤ |aK−1 − ãK−1|. (47)

4) When aK−1 ≤ ãK−1, aK ≥ ãK, and aK−1aK ≥ ãK−1ãK: 1014

We have 1015

|aK−1aK −ãK−1ãK | ≤ |ãK−1aK − ãK−1ãK|
= |aK − ãK|ãK−1 ≤ |aK−1 − ãK−1|. (48)
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5) When aK−1 ≤ ãK−1, aK ≥ ãK , and aK−1aK ≤ ãK−1ãK:1016

We have1017

|ãK−1ãK −aK−1aK |≤ |ãK−1aK − aK−1aK|
= |aK−1−ãK−1|aK ≤|aK−1−ãK−1|. (49)

6) When aK−1 ≤ ãK−1, aK ≤ ãK: We have aK ≥ ãK +1018

aK−1 − ãK−1. Then1019

|ãK−1ãK − aK−1aK| ≤ |ãK−1ãK − aK−1(ãK + aK−1 − ãK−1)|
= |(aK−1 + ãK)(ãK−1 − aK−1)|
≤ 2|aK−1 − ãK−1|. (50)

From the above discussions, we can see that |aK−1aK −1020

ãK−1ãK| ≤ 2|aK−1 − ãK−1|.1021

Second, as there is |aK−1aK − ãK−1ãK| ≤ 2|aK−1 − ãK−1|,1022

we have |aK−1aK − ãK−1ãK| ≤ 2|aK−2 − ãK−2|. With this1023

condition, we can prove that |aK−2aK−1aK − ãK−2ãK−1ãK | ≤1024

3|aK−2 − ãK−2| by following the similar steps above. By doing1025

this iteratively, we have1026 ∣∣∣∣∣∣
K∏

q=2

aq −
K∏

q=2

ãq

∣∣∣∣∣∣ ≤ (K − 1)|a2 − ã2|. (51)

This completes the proof. �1027
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Abstract—Heterogeneous cellular networks (HCNs) with em-5
bedded small cells are considered, where multiple mobile users6
wish to download network content of different popularity. By7
caching data into the small-cell base stations, we will design8
distributed caching optimization algorithms via belief propagation9
(BP) for minimizing the downloading latency. First, we derive10
the delay-minimization objective function and formulate an opti-11
mization problem. Then, we develop a framework for modeling12
the underlying HCN topology with the aid of a factor graph.13
Furthermore, a distributed BP algorithm is proposed based on14
the network’s factor graph. Next, we prove that a fixed point15
of convergence exists for our distributed BP algorithm. In order16
to reduce the complexity of the BP, we propose a heuristic BP17
algorithm. Furthermore, we evaluate the average downloading18
performance of our HCN for different numbers and locations19
of the base stations and mobile users, with the aid of stochastic20
geometry theory. By modeling the nodes distributions using a21
Poisson point process, we develop the expressions of the average22
factor graph degree distribution, as well as an upper bound of the23
outage probability for random caching schemes. We also improve24
the performance of random caching. Our simulations show that25
1) the proposed distributed BP algorithm has a near-optimal delay26
performance, approaching that of the high-complexity exhaustive27
search method; 2) the modified BP offers a good delay perfor-28
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degree distribution and the outage upper bound analysis relying30
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both a better outage and a better delay performance than the33
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I. INTRODUCTION 37

38W IRELESS data traffic is expected to increase by a factor 39

of 40 over the next five years, from the current level of 40

93 Petabytes to 3600 Petabytes per month [1], driven by a rapid 41

increase in the number of mobile users (MU) and aggravated 42

by their bandwidth-hungry mobile applications. A promising 43

approach to enhancing the network capacity is to embed small 44

cells relying on low-power base stations (BS) into the existing 45

macro-cell based networks. These networks, which are referred 46

to as heterogeneous cellular networks (HCN) [2]–[7], typically 47

contain regularly deployed macro-cells and embedded femto- 48

cells as well as pico-cells [8]–[10] that are served by macro- 49

cell BSs (MBS) and small-cell BSs (SBS), respectively. The 50

aim of these flexibly deployed low-power SBSs is to eliminate 51

the coverage holes and to increase the capacity in hot-spots. 52

There is evidence that the MUs’ downloading of video on- 53

demand files is the main reason for the growth of data traffic 54

over cellular networks [11]. According to the prediction of 55

Cisco on mobile data traffic, the mobile video streaming traffic 56

will occupy 72% percentage of the overall mobile data traffic 57

by 2019. Often, there are numerous repetitive downloading re- 58

quests of popular contents, such as online blockbusters, leading 59

to redundant data streaming. The redundancy of data transmis- 60

sions can be reduced by locally storing popular data, known as 61

caching, into the local SBSs, effectively forming a local cloud 62

caching system (LCCS). The LCCS brings the content closer 63

to the MUs and alleviates redundant data transmissions via 64

redirecting the downloading requests to local SBSs. Also, the 65

SBSs are willing to cache files into their buffers as long as they 66

can, since caching is capable of significantly reducing the tele- 67

traffic load on their back-haul channels, which are expensive. 68

In [12], the authors study the caching strategies of delay- 69

tolerant vehicular networks, where the data subscribers and 70

“helpers” are always moving and the links between them are 71

opportunistic. By proposing an efficient algorithm to carefully 72

allocate the network resources to mobile data, the decision is 73

made as to which content should use the erasure coding, as well 74

as conceiving the coding policy for each mobile data. In [13], 75

optimal cache replacement policies are investigated. The cache 76

replacement process takes place after the data caching process 77

has been completed, and determines which particular data item 78

should be deleted from the cache, when the available storage 79

space is insufficient for accommodating an item to be cached. 80

0090-6778 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Since the HCN structure has been widely adopted in current81

cellular networks and will prevail in near-future networks,82

we are interested in the SBS-based LCCS in the context of83

HCNs. In contrast to the vehicular networks discussed in [12],84

[14], where the mobility and the opportunistic communication85

contact are important issues, in the context of HCNs, the BSs86

are always fixed, and the MUs are assumed to be moving87

at a low speed. Thus, we ignore the mobility issues in the88

HCNs and assume that each MU is associated with a fixed89

BS during file-downloading. At the time of writing, there are90

already technical reports highlighting the advantages of caching91

in HCNs [15]–[17]. Based on these reports, the LCCS with92

SBS caching for HCNs is capable of efficiently 1) reducing the93

transmission latency due to short distance between the SBSs94

and the MUs, 2) offloading redundant data streams from MBSs,95

and 3) alleviating heavy burdens on the back-haul channels96

of the SBSs. Therefore, SBS-based caching will bring about97

significant breakthroughs for future HCNs.98

The concept of caching is common in wireline networks99

and computer systems. However, research on efficient caching100

design for wireless cellular networks relying on small cells is101

still in its infancy [11], [18]. Usually, data caching consists of102

two phases: data placement and data transmission. During the103

data placement phase, data is cached into local SBSs in order104

to form an LCCS. In the data transmission phase, MUs request105

data from the LCCS. The focus of wireless caching research is106

mainly on the optimization of data placement for ensuring that107

the downloading latency is minimized. The caching optimiza-108

tion is a non-trivial problem. This is due to the massive scale of109

video contents to be stored in the limited memory of the SBSs.110

The survey papers [11], [18] report on a range of attractive111

caching architectures conceived for future cellular networks.112

In [19], a caching scheme is proposed for a device-to-device113

(D2D) based cellular network on the MUs’ caching of popular114

data. In this scheme, the D2D cluster size was optimized for115

reducing the downloading delay. In [20], [21], the authors116

propose a caching scheme for wireless sensor networks, where117

the protocol model of [22] is adopted. In [23], a femto-caching118

scheme is proposed for a cellular network combined with SBSs,119

where the data placement at the SBSs is optimized in a cen-120

tralized manner for reducing the transmission delay imposed.121

However, [23] considers an idealized system, where neither the122

interference nor the impact of wireless channels is taken into123

account. The associations between the MUs and the SBSs are124

pre-determined without considering the specific channel con-125

ditions encountered. Furthermore, this centralized optimization126

method assumes that the MBS has perfect knowledge of all the127

channel state information (CSI) between the MUs and SBSs,128

which is impractical.129

Against this background, in this paper, we consider dis-130

tributed caching solutions for HCNs operating under more131

practical considerations. Our contributions consist of two parts.132

133

1) In the first part, we propose distributed caching algorithms134

for enhancing the downloading performance via belief135

propagation (BP) [24]. The BP algorithm is capable of136

decomposing a global optimization problem into multi-137

ple sub-problems, thereby offering an efficient distribu-138

tive approach of solving the global optimization problem 139

[25]–[27]. As the BP method has been widely adopted 140

for distributively solving resource allocation in cellular 141

networks, we arrange file placement via BP algorithms by 142

viewing files as a type of resource. 143

2) In the second part, we analyze the average caching perfor- 144

mance based on stochastic geometry theory [28], [29]. We 145

are interested in optimizing the average performance of a 146

set of HCNs, where the channels exhibit Rayleigh fading 147

and the distributions of network nodes obey a Poisson 148

point process (PPP) [30]. 149

Specifically, our contributions in the first part are follows. 150151

1) We commence by deriving the delay as our optimization 152

objective function (OF) and formulate the problem as 153

optimizing the file placement. 154

2) We develop a framework for modeling the associated 155

factor graph based on the topology of the network. A 156

distributed BP algorithm is proposed based on the factor 157

graph, which allows the file placement to be optimized in 158

a distributed manner between the MUs and SBSs. 159

3) We prove that a fixed point exists in the proposed BP 160

algorithm and show that the BP algorithm is capable of 161

converging to this fixed point under certain conditions. 162

4) To reduce the communication complexity, we propose a 163

heuristic BP algorithm. 164

Our contributions in the second part are follows. 165166

1) By following the stochastic geometry framework, we 167

model the MUs and SBSs in the HCN as different ties 168

of a PPP. Furthermore, we develop the average degree 169

distribution of the factor graph in the BP algorithm. 170

2) A random caching scheme is proposed, where each SBS 171

will cache a file with a pre-determined probability. We 172

can characterize the average downloading performance by 173

outage probability (OP) and develop a tight upper bound 174

of the OP expression with a closed form under the random 175

caching scheme. 176

3) Based on the upper bound derived, we further improve 177

the OP performance of random caching by optimizing the 178

probabilities for caching different files. 179

In the simulations, we first investigate the average degree 180

distribution of the factor graph, as well as the OP and the delay 181

of the random caching schemes, in conjunction with various 182

PPP parameters and power settings. It is shown that both the 183

degree distribution and our upper bound analysis match well 184

with the results of Monte-Carlo simulations. Furthermore, the 185

optimization based on the upper bound provides both a better 186

OP and a better delay than the benchmarks. Then we evaluate 187

the distributed BP algorithm in our HCNs having a fixed num- 188

ber of BSs and MUs. It is shown that the proposed distributed 189

BP algorithm has a near-optimal performance, approaching that 190

of the exhaustive search method. The heuristic BP also offers a 191

relatively good performance, despite its significantly reduced 192

communication complexity. 193

The rest of this paper is organized as follows. We describe 194

the system model in Section II and present the distributed file 195

downloading problem relying on caching in Section III. We 196



LI et al.: DISTRIBUTED CACHING FOR DATA DISSEMINATION IN THE DOWNLINK OF HCNs 3

then propose a distributed BP algorithm in Section IV, where197

the proof of existence for a fixed point is also presented. In198

Section V, a heuristic BP algorithm is proposed for reduc-199

ing the associated communication complexity. Our stochastic200

geometry based analysis is detailed in Section VI, where the201

average degree distribution of the factor graph and the OP202

of the random caching scheme are developed. Our simulation203

results are summarized in Section VII, while our conclusions204

are provided in Section VIII.205

II. SYSTEM MODEL206

Let us consider an HCN consisting of a single MBS and K207

SBSs illuminating both femto-cells and pico-cells, while sup-208

porting J MUs randomly located in the network. Let us denote209

by B0 the MBS and by BBB = {B1,B2, · · · ,BK} the set of the210

SBSs, where Bk, k ∈ KKK = {1, 2, · · · , K}, represents the k-th211

SBS. Furthermore, denote by UUU = {U1,U2, · · · UJ} the set of212

the MUs, where Uj, j ∈ JJJ = {1, 2, · · · , J}, represents the j-th213

MU. The MBS B0 caches files into the memories of the SBSs214

during off-peak time via back-haul channels. Once the caching215

process is completed, the MBSs and SBSs are ready to act upon216

the downloading requests of the MUs.217

We assume that a dedicated frequency band of bandwidth W218

is allocated to the downlink channels spanning from the SBSs219

to the MUs for file-dissemination. For reasons of careful load220

balancing, we consider the “SBS-first” constraint, where each221

MU will try to download data from its adjacent SBSs, unless the222

required files cannot be found in these SBSs. In this case, the223

MU will turn to the MBS for retrieving the required files. For224

the sake of simplicity, we assume that the MBS will support a225

fixed download rate, denoted by C0, for the MUs in the channels226

which are orthogonal to those spanning from the SBSs to MUs.227

In order to satisfy the “SBS-first” constraint for offloading228

data from the MBS, some incentives may be provided for229

the MUs. For example, downloading from the SBSs is much230

cheaper than from the MBS. Here, we assume that the down-231

load rate C0 supported by the MBS is never higher than the low-232

est download rate supported by the SBSs. This limit imposed on233

the download rate from the MBS will not only encourage the234

MUs to download from the SBSs first, but also effectively con-235

trol the data traffic of the MBS imposed by file downloading.236

Denote by Pk the transmission power of the k-th SBS, and by237

σ 2 the noise power at each MU. The path-loss between Bk and238

the MU Uj is modeled as d−α
k,j , where dk,j is the distance between239

Bk and Uj, and α is the path-loss exponent. The random channel240

between Bk and Uj is Rayleigh fading, whose coefficient hk,j241

has the average power of one. We assume that all the downlink242

channels spanning from the SBSs to the MUs are independent243

and identically distributed (i.i.d.).244

Suppose that each file is split into multiple chunks and each245

chunk can be downloaded by an MU in a short time slot. Due to246

the short downloading time of a chunk, we assume furthermore247

that the probability of having two MUs streaming a chunk at248

the same time (or within a relative delay of a few seconds)249

from the same SBS is basically zero [20]. Hence, neither direct250

multicasting by exploiting the broadcast nature of the wireless251

medium nor network coding is considered. Furthermore, we252

focus our attention on the saturated scenario, where the SBSs 253

keep transmitting data to the MUs [31]. Hence, each MU is 254

subject to the interference imposed by all the other SBSs in 255

BBB, when downloading files from its associated SBS. Given a 256

channel realization hj = [h1,j, · · · , hK,j], the channel capacity 257

between Bk and Uj can be calculated based on the signal-to- 258

interference-plus-noise ratio (SINR) as 259

Ck,j = W log

⎛⎜⎝1 + h2
k,jd

−α
k,j Pk∑

q∈KKK\{k}
h2

q,jd
−α
q,j Pq + σ 2

⎞⎟⎠ . (1)

Due to the ‘SBS-first’ constraint, we have C0 ≤ Ck,j, ∀ k ∈ 260

KKK, j ∈ JJJ . 261

Denote by FFF the library or set of files, which consists of 262

Q popular files to be requested frequently by the MUs. The 263

popularity distribution among the set FFF is represented by PPP = 264

{p1, p2, · · · , pQ}, where the MUs make independent requests of 265

the f -th file, f = 1, · · · , Q, with the probability of pf . Without 266

any loss of generality, all these files have the same size of 267

M bits. We assume that B0 has a sufficiently large memory 268

and hence accommodates the entire library of files, while the 269

storage of each SBS is limited to G files, where we have G < Q. 270

Without a loss of generality, we assume that Q/G is an 271

integer. The Q files in FFF are divided into N = Q/G file groups 272

(FG), with each FG containing G files. The f -th file, ∀ f ∈ 273

{(n − 1)G + 1, · · · , nG}, is included in the n-th FG, n ∈ NNN = 274

{1, · · · , N}. We denote by Fn the n-th FG, and by PFn the prob- 275

ability that the MUs request a file in Fn. Based on PPP , we have 276

PFn =
nG∑

f =(n−1)G+1

pf . (2)

File caching is then carried out on the basis of FG, i.e., each 277

SBS caches one of the N FGs. 278

III. DISTRIBUTED FILE DOWNLOADING 279

RELYING ON CACHING 280

The caching-based distributed file downloading protocol 281

consists of two stages. The first stage, or file placement stage, 282

includes file content broadcasting and caching. In this stage, 283

B0 broadcasts the FGs to the SBSs via the back-haul during 284

off-peak periods. At the same time, the SBSs listen to the 285

broadcasting from B0, and cache the FGs needed. The second 286

stage, or file downloading stage, includes MU-SBS associations 287

and file content transmissions. In this stage, each MU makes 288

decisions as to which SBSs it should be associated with, and 289

then starts to download files from the associated SBSs. When 290

the requested files are not found in the adjacent SBSs, the MUs 291

will turn to the MBS for these files. 292

A. File Placement Matrix 293

For assigning the N FGs to the K SBSs, we set up a file 294

placement matrix � of size K × N. The entry λk,n ∈ {0, 1} 295

in � indicates whether Fn is cached by Bk or not. We have 296

λk,n = 1 if Fn is cached by Bk, while λk,n = 0 otherwise. The 297
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k-th row of � indicates which FG is cached by Bk, and the298

n-th column indicates which BS caches Fn. The number of the299

SBSs which cache Fn can be calculated as
∑

k∈KKK λk,n. Since300

each SBS caches one FG, we have
∑

n∈NNN λk,n = 1.301

B. MU-SBS Association302

Denote by HHH(j) the subscript set of the specific SBSs, which303

are capable of providing a sufficiently high SINR for the MU304

Uj. The SBSs in HHH(j) are the candidates for Uj to be potentially305

associated with. By setting an SINR threshold δ, Bk will be306

included in HHH(j) if and only if307

h2
k,jd

−α
k,j Pk∑

q∈KKK\{k}
h2

q,jd
−α
q,j Pq + σ 2

≥ δ. (3)

When requesting a file in Fn, Uj first communicates with308

one of the SBSs in HHH(j) which caches Fn. It is possible that309

more than one SBS in HHH(j) caches Fn. In this case, Uj will310

associates with the optimal SBS, which imposes the minimum311

downloading delay.312

It is clear that the downloading delay is inversely propor-313

tional to the downlink transmission rate. According to the file314

request assumption stipulated in the previous section, there is315

only a single MU connected to an SBS at each time. Thus,316

the maximum transmission rate from Bh to Uj, ∀ h ∈ HHH(j), is317

the channel capacity between them, i.e., Ch,j. When Uj tries318

to download a file in Fn, it follows the maximum-capacity319

association criterion. Hence, Uj associates with Bĥ such that320

ĥ = arg max
h∈HHH(j)

{
λh,nCh,j

}
. (4)

When none of the SBSs in HHH(j) caches Fn, i.e., we have321

λh,n = 0, ∀ h ∈ HHH(j), Uj will associate with the MBS for the322

requested file.323

C. Optimization Problem Formulation324

We now optimize the matrix � for minimizing the average325

delay of downloading a file. Only when the optimal � has been326

determined will the file-placement stage commence, where327

the files are placed according this optimal matrix. Once the328

MU-SBS associations have been determined, we can optimize329

the matrix � for minimizing the average delay of downloading330

a file. First, given the channel coefficients and the specific331

location of Uj, the delay of downloading a file in Fn by Uj can332

be calculated as333

Dj,n =
{

M
maxh∈HHH(j){λh,nCh,j} , ∃λh,n �= 0, ∀ h ∈ HHH(j)
M
C0

, otherwise.
(5)

Based on the request probability of each FG, the delay for Uj to334

download a file from FFF can be written as Dj =∑n∈NNN PFn Dj,n.335

Thus, the average delay for each MU can be calculated as336

D = 1

J

∑
j∈JJJ

Dj. (6)

By setting D as the OF, let us hence formulate the delay 337

optimization problem as follows: 338

minimize D

s.t.
∑
n∈NNN

λk,n = 1, ∀ k ∈ KKK,

� ∈ {0, 1}K×N . (7)

The optimization problem in (7) is an integer programming 339

problem, which is NP-complete. In [14], [23], similar optimiza- 340

tion problems have been solved by sub-optimal solutions, such 341

as the classic greedy algorithm (GA). However, the existing 342

solutions are typically based on centralized optimization. As 343

we can see from (6), a centralized minimization of D at B0 344

requires the global CSI between BBB and UUU , which is impractical. 345

Hence, we will dispense with this assumption and optimize � 346

in a distributed manner at a low complexity. 347

IV. DISTRIBUTED BELIEF PROPAGATION ALGORITHM 348

In this section, we propose a distributed algorithm based 349

on BP for solving the optimization problem of (7) as follows: 350

1) We first develop a factor graph for describing the message 351

passing in the BP algorithm. 2) Then we map the resultant 352

factor graph to the network for the sake of facilitating the 353

distributed BP optimization. 3) This solved by solving our 354

optimization problem by proposing a distributed BP algorithm. 355

4) Finally, the proof of existence for a fixed point of conver- 356

gence in the BP algorithm is presented. 357

A. Factor Graph Model 358

In our BP algorithm, the factor graph has to be first es- 359

tablished based on the underlying network as a standard bi- 360

partite graphical representation of a mathematical relationship 361

between the local delay functions and file allocation variables. 362

Then the BP algorithm is implemented by iteratively passing 363

messages between the local functions and their related vari- 364

ables. Our optimization problem is thus solved by the proposed 365

BP algorithm based on the factor graph. 366

Based on the topology of the HCN, we develop a factor graph 367

model GGG = (VVV,EEE), where VVV is the vertex set, and EEE is the edge 368

set. The vertex setVVV consists of factor nodes and variable nodes. 369

Each factor node is related to an MU and each variable node 370

is related to an SBS. To simplify the notations, we denote by 371

j ∈ JJJ the j-th factor node and denote by k ∈ KKK the k-th variable 372

node. Hence, the vertex set VVV is composed of JJJ and KKK, i.e., 373

VVV = {JJJ ,KKK}. 374

As mentioned in the previous section, Bk will be a candidate 375

for Uj to potentially associate with, but only if the received 376

SINR at Uj from Bk is no less than the threshold δ. Corre- 377

spondingly, in our factor graph, an edge in the edge set EEE 378

connecting Uj and Bk, denoted by (j, k), exists if the received 379

SINR at Uj from Bk is no less than δ. The node k is named 380

as a neighboring node of j, if there is an edge (j, k). Actually, 381
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Fig. 1. Factor graph extracted from an HCN composed of 5 SBSs and 10 MUs.
The edge between an SBS and an MU means that the SBS can provide a
sufficiently high SINR for the MU. For instance, B1 can provide a sufficiently
high SINR for U2 as well as U4. At the same time, U3 can receive a sufficiently
high SINR from both B2 and B3.

HHH(j) defined previously represents the set of the neighboring382

nodes of the factor node j. Furthermore, denote by HHH(k) the set383

of neighboring node for the variable node k. Fig. 1 illustrates a384

factor graph extracted from an HCN with 5 SBSs and 10 MUs.385

Take B1 in the factor graph for example. The edges exist386

between B1 and U2 as well as U4, which means that B1 can387

provide a sufficient large SINR for both U2 and U4.388

The distributed BP algorithm is based on the factor graph389

GGG. The factor nodes in JJJ represent the local utility functions390

generated from the decomposition results of the global utility391

function, which will be discussed later in this subsection. The392

variable nodes in KKK represent the variables to be optimized,393

i.e., the entries of �. The factor nodes and variable nodes are394

connected by edges in EEE , indicating the message flows in the BP395

algorithm. That is, messages are only passing between a node396

and its neighbors. We now illustrate the optimization problem397

on the factor graph.398

1) Factor Nodes: According to Eq. (7), the OF can be399

decomposed into J local contributions as D1, · · · , DJ . These400

local contributions are calculated based on Eq. (5). Since the401

BP algorithm solves maximization problems, we define a series402

of utility functions as F � −D and Fj � −Dj. Then our opti-403

mization problem can be rewritten as404

max
�

F(�), F = 1

J

∑
j∈J

Fj. (8)

We use the j-th factor node to represent the j-th local utility405

function Fj, which is related to Uj. Hence, the maximization of406

F can be achieved by maximizing Fj at Uj, ∀ j ∈ JJJ .407

2) Variable Nodes: Each variable node is related to an SBS.408

Here, we use the k-th variable node to represent the k-th row of409

�, denoted by λk, which is related to Bk. The location of ‘1’410

in λk indicates which specific FG is stored by Bk. Note that the411

first constraint in (7) means that each SBS only stores a single412

FG. Given this constraint, λk has N possible values according413

to N different locations of ‘1’. We denote by λ
[1]
k , · · · , λ

[N]
k the414

N values of λk. When we have λk = λ
[n]
k , this implies that the415

FG Fn is stored by Bk. Take N = 2 for example, where λk =416

λ
[1]
k = [1 0] indicates that the FG F1 is stored in the SBS Bk,417

while λk = λ
[2]
k = [0 1] indicates that F2 is stored in Bk. The418

variables λk, k = 1, · · · , K, are the parameters to be optimized419

for maximizing F in (8). For simplicity, we use the matrix � to420

represent the set of the variables λk in the factor graph.421

B. Distributed Belief Propagation 422

In standard BP, the variables are optimized by estimating 423

their marginal probability distributions [32]. Note that the util- 424

ity function F is a function of the file placement matrix �. We 425

define the probability mass function (PMF) p(�) of � based on 426

the utility function F(�) as 427

p(�) � 1

Z
exp (μF(�)) , (9)

where μ is a positive number and Z is the normalization 428

factor. According to [32], the result of large deviations shows 429

that when μ → ∞, p(�) concentrates around the maxima of 430

F(�), i.e., limμ→∞ E(�) = arg max
�

F(�), where E(�) is the 431

expectation of �. Once we obtain E(�), we can have a good 432

estimate of the specific � which maximizes F(�). 433

In our distributed BP, the maximization of F can be decom- 434

posed into J maximization operations on Fj at Uj, j = 1, · · · , J. 435

Correspondingly, the estimation of � is decomposed into J es- 436

timations of its subsets �j at Uj, where �j = {λh,∀ h ∈ HHH(j)}. 437

The PMF of �j is written as pj(�j) = 1
Zj

exp(μFj(�j)), where 438

Zj is the normalization factor. Since all the variables are inde- 439

pendent, the estimation of �j at Uj can be further decomposed 440

into the estimation of each individual λh via calculating its PMF 441

pj(λh), which is the marginal PMF of pj(�j) with respect to 442

the variable λh. Hence we have pj(λh) = E∼λh(pj(�j)), where 443

E∼λh(·) represents the expectation over the elements in �j, 444

except for λh. The PMF pj(λh) is viewed as the message, which 445

is iteratively updated between Uj and Bh, ∀ h ∈ HHH(j). The PMF 446

pj(λh) consists of N probabilities estimated by Uj, i.e., Pr(λh = 447

λ
[1]
h ), · · · , Pr(λh = λ

[N]
h ), where Pr(λh = λ

[n]
h ) represents the 448

probability that Fn is stored by Bh. 449

Without a loss of generality, we assume that the edge (j, k) 450

does exist in the factor graph. We represent the iteration index 451

by t and denote by p(t)
k→j(λk) and p(t)

j→k(λk) the belief messages 452

emanated from Bk to Uj and from Uj to Bk during the t-th 453

iteration, respectively. The steps describing the distributed BP 454

are as follows. 455

1) Initialization: At the variable nodes, set t = 1 and let 456

p(1)
k→j(λk) to be the initial distribution of λk, e.g., the a priori 457

popularity distribution PPP . 458

2) Variable Node Update: During the t-th iteration, each 459

SBS Bk updates the message p(t)
k→j(λk) to be sent to Uj based on 460

the messages gleaned from Bk’s neighboring MUs other than 461

Uj in the previous iteration. This includes the calculations of N 462

probabilities. Given λk = λ
[n]
k , ∀ n ∈ NNN , we have 463

p(t)
k→j

(
λ

[n]
k

)
= 1

Zk

∏
h̄∈HHH(k)\{j}

p(t−1)
h̄→k

(
λ

[n]
k

)
, (10)

where Zk is the normalization factor so that we have 464∑
n∈NNN p(t)

k→j(λ
[n]
k ) = 1. 465

3) Factor Node Update: In the t-th iteration, Uj updates the 466

N probabilities of the message p(t)
j→k(λk) to be sent to Bk, which 467

is based on the messages received from Uj’s neighboring SBSs, 468

except for Bk. The messages updated at the factor nodes are 469
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calculated according to the marginal PMF. Given λk = λ
[n]
k ,470

∀ n ∈ NNN , we have471

p(t)
j→k

(
λ

[n]
k

)
= E∼λk

(
exp

(
μFj

(
λ

[n]
k , {λh, ∀ h ∈ HHH(j) \ {k}}

)))

=
∑

h∈HHH(j)\{k}

λ
[N]
h∑

λh=λ
[1]
h

⎛⎝ ∏
q∈HHH(j)\{k}

p(t)
q→j(λq)·

exp
(
μFj

(
λ

[n]
k , {λh, ∀ h ∈ HHH(j) \ {k}}

))⎞⎠. (11)

4) Final Solution: Let us assume that there are t = T iter-472

ations in the distributed BP algorithm. After T iterations, the473

probability that Fn is stored by Bk can be obtained by474

Pr
(
λk = λ

[n]
k

)
= 1

Zk

∏
h̄∈HHH(k)

p(T)
h̄→k

(
λ

[n]
k

)
. (12)

Based on (12), the decision as to which file should be stored475

by Bk can be made by choosing the specific file that has the476

maximum a posteriori probability Pr(λk = λ
[n]
k ), ∀ n ∈ NNN .477

C. Convergence to a Fixed Point478

Let us now investigate the existence of a fixed point of479

convergence in our distributed BP algorithm. The essence of480

the distributed BP algorithm is to keep updating the PMF pj(λk)481

before reaching its final estimate. Based on (10) and (11), the482

evolution of pj(λk) during the t-th iteration can be obtained483

from the PMFs in the (t − 1)-th iteration as484

p(t)
k→j(λk) = 1

Zk

∏
h̄∈HHH(k)\{j}

∑
h∈HHH(h̄)\{k}

λ
[N]
h∑

λh=λ
[1]
h⎛⎝exp

(
μFh̄(�h̄)

) ·
∏

q∈HHH(h̄)\{k}
p(t−1)

q→h̄ (λq)

⎞⎠ . (13)

We view the PMF p(t)
k→j(λk) as a probability vector of length485

N. We define the probability vector set MMM(t) �
{

p(t)
k→j(λk)

}
for486

all k ∈ KKK as well as j ∈ JJJ , and define the message mapping487

function � : RN×KJ → R
N×KJ based on (13) so that MMM(t) =488

�(MMM(t−1)). Then we have the following lemma.489

Lemma 1: The message mapping function � is a continuous490

mapping.491

Proof: Please refer to Appendix A.492

Given Lemma 1, we have the following theorem.493

Theorem 1: A fixed point of convergence exists for the494

proposed distributed BP algorithm.495

Proof: Please refer to Appendix B.496

The question of convergence to the fixed point is, unfortu-497

nately, not well understood in general [24]. Generally, if the498

factor graph contains no cycles, the belief propagation can be499

shown to converge to a fixed solution point in a finite number 500

of iterations. The performance, including the optimality and the 501

convergence rate, of the BP crucially depends on the choice 502

of the objective function, as well as the scale, the sparsity and 503

the number of cycles in the underlying factor graph. As such, 504

the theoretical analysis of the BP algorithm’s optimality and 505

convergence rate remains an open challenge. 506

V. A HEURISTIC BP WITH REDUCED COMPLEXITY 507

In the context of the BP algorithm, the message pj(λk) 508

exchanged between Uj and Bk in each iteration, includes N 509

probability values, which are real numbers. Hence, the com- 510

munication overhead of the message passing is relatively high. 511

Hence, we propose a heuristic BP (HBP) algorithm for reducing 512

the communication overhead imposed. The rationale behind the 513

term “heuristic BP” is that we still follow the classic concept of 514

belief propagation, but use a different format of the beliefs from 515

the conventional one. 516

Assuming that the edge (j, k) exists, in the t-th iteration of 517

the HBP, instead of forwarding the N probabilities stored in 518

p(t)
j→k(λk) to Bk, Uj randomly selects an FG according to these 519

N probabilities. Then the integer index n(t)
j→k of the FG selected 520

will be forwarded to the SBS Bk. 521

At the SBS side, the SBS Bk receives |HHH(k)| integers, i.e., 522

n(t)
h̄→k, ∀ h̄ ∈ HHH(k), from its neighboring MUs, where | · | de- 523

notes the cardinality of a set. Based on n(t)
h̄→k, the SBS Bk infers 524

the number of those MUs, which indicate that Fn should be 525

stored in the SBS Bk, for n = 1, · · · , N. Let us assume now that 526

in the t-th iteration, there are J(t)
k,n MUs specifically indicating 527

that Fn should be stored in Bk, where we have
∑

n∈NNN J(t)
k,n = 528

|HHH(k)|. We can view
J(t)

k,n
|HHH(k)| as the probability that the specific 529

FG Fn is stored by the SBS Bk. 530

In this case, the probability p(t)
k→j(λ

[n]
k ) in (10) will be recal- 531

culated as 532

p(t)
k→j

(
λ

[n]
k

)
=
⎧⎨⎩

J(t−1)
k,n −1

|HHH(k)|−1 , if n = n(t−1)
j→k ,

J(t−1)
k,n

|HHH(k)|−1 , if n �= n(t−1)
j→k .

(14)

Note that in (14), the information n(t−1)
j→k transmitted from the 533

MU Uj to the SBS Bk is excluded when calculating p(t)
k→j(λ

[n]
k ), 534

for the sake of ensuring that only uncorrelated information is 535

exchanged throughout the HBP. 536

At the MU side, it is clear that the MU Uj has to obtain 537

p(t)
k→j(λ

[n]
k ) for the sake of updating the output information. 538

However, there is no need for the SBS Bk to transmit the 539

N probabilities p(t)
k→j(λ

[n]
k ) to each of its neighboring MUs. 540

Alternatively, Bk broadcasts the N integers, J(t)
k,1, · · · , J(t)

k,N to 541

the neighboring MUs for reducing the transmission overhead. 542

After receiving the N integers from the SBS Bk, the MU Uj 543

calculates p(t)
k→j(λ

[n]
k ) in (14). 544

Based on the above discussions, the HBP algorithm can be 545

summarized as follows. 546
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1) Initialization: At the variable nodes, we set t = 1. The547

SBS Bk randomly generates |HHH(k)| independent integers,548

n1, · · · , n|HHH(k)|, according to the popularity distribution PPP .549

These integers are viewed as the indexes of the FGs. We then550

set J(1)
n,k to be the number of the integers that are equal to n.551

2) Variable Node Update: In the t-th iteration, Bk updates552

and broadcasts the N integers J(t)
n,k, for n = 1, · · · , N, to the553

neighboring MUs. The resulting calculations performed on554

these N integers J(t)
n,k are based on the integers n(t−1)

h̄→k , ∀ h̄ ∈555

HHH(k), received from the neighboring MUs during the last iter-556

ation. Specifically, the n-th integer J(t)
n,k is obtained by counting557

the number of n(t−1)
h̄→k that are equal to n.558

3) Factor Node Update: The MU Uj first calculates the559

probabilities p(t)
h→j(λ

[n]
k ), ∀ h ∈ HHH(j) according to Eq. (14) based560

on the integers gleaned from the SBS Bh. Then based on561

p(t)
h→j(λ

[n]
k ), ∀ h ∈ HHH(j) \ {k}, Uj calculates p(t)

j→k(λ
[n]
k ) according562

to Eq. (11). After obtaining the N probabilities p(t)
j→k(λ

[n]
k ),563

n = 1, · · · , N, Uj randomly chooses an FG according to these564

N probabilities and sends the index n(t)
j→k of the FG to the565

SBS Bk.566

4) Final Solution: After T iterations, the SBS Bk makes the567

decision that the FG Fn̂ should be stored for ensuring that568

n̂ = arg max
n∈NNN

J(T)
k,n . (15)

The overhead of the HBP is significantly lower than that569

of the original BP introduced in the previous section. From570

a communication complexity perspective, in each iteration of571

the HBP, an SBS Bk broadcasts N integers, while an MU Uj572

transmits |HHH(j)| integers. On the other hand, in the original573

BP, Bk transmits N|HHH(k)| real numbers, while Uj transmits574

N|HHH(j)| real numbers for each iteration. From a computational575

complexity perspective, in a single iteration of the HBP, the576

computational complexity is on the order of O(N) at the SBS577

Bk, and O(|H(j)|N|H(j)|) at the MU Uj. On the other hand, in578

the original BP, the computational complexity is O(N|H(k)|2)579

at Bk, and O(|H(j)|N|H(j)|) at Uj for each iteration.580

VI. PERFORMANCE ANALYSIS BASED581

ON STOCHASTIC GEOMETRY582

In this section, we analyze both the average degree dis-583

tribution of the factor graph and the average downloading584

performance based on stochastic geometry theory. We model585

the distribution of the MUs as a PPP �U having the intensity586

of λU , and that of the SBSs as an independent PPP �B with the587

intensity λB [31], [33]. For simplicity, we assume that all the588

SBSs have the same transmission power P. In the following,589

both the degree distribution and the downloading performance590

are averaged over both the channels’ fading coefficients and591

over the PPP distributions of the nodes.592

A. Average Degree Distributions of the Factor Graph593

Let us now investigate the degree distribution of the factor594

graph averaged over PPP. Note that the degree of a factor node j595

is defined as the number of its neighboring variable nodes, given 596

by the cardinality |HHH(j)|, while the degree of a variable node k 597

is defined as the number of its neighboring factor nodes, i.e., 598

|HHH(k)|. Then we have the following theorem. 599

Theorem 2: The factor nodes in the factor graph have the 600

average degree 601

ζU = 2πλBZ(λB, P, α, δ), (16)

and the variable nodes have the average degree 602

ζB = 2πλUZ(λB, P, α, δ), (17)

where we have 603

Z(λB, P, α, δ)

=
∫ ∞

0
exp

{
−2λBπ

α
δ

2
α B

(
2

α
, 1− 2

α

)
r2− δσ 2

P
rα

}
rdr (18)

and the Beta function B(x, y) = ∫ 1
0 tx−1(1 − t)y−1dt. 604

Proof: Please refer to Appendix C. 605

When neglecting the noise, we have the following corollary 606

based on Theorem 2. 607

Corollary 1: When neglecting the noise, Z(λB, P, α, δ) in 608

(18) can be rewritten as 609

Z(λB, P, α, δ) = α

4πλBB
(

2
α
, 1 − 2

α

)
δ

2
α

. (19)

Then we can simplify the average degree of the factor nodes in 610

Eq. (16) to 611

ζU = α

2δ
2
α B
(

2
α
, 1 − 2

α

) , (20)

and the average degree of the variable nodes in Eq. (17) to 612

ζB = λUα

2λBδ
2
α B
(

2
α
, 1 − 2

α

) . (21)

Proof: Please refer to Appendix D. 613

Equations (20) and (21) can be seen as approximations of 614

(16) and (17), respectively, when the effects of the noise are 615

neglected. These approximations are significantly accurate for 616

the HCN, since the interference effects are dominant due to the 617

dense deployments of the SBSs. 618

From (20), we can see that ζU is only related to δ and α, 619

but is independent of λU , P and λB. In other words, the factor 620

node degree has no relation with the intensities of the MUs and 621

SBSs or with the power of the SBSs. The intuitive reason is that 622

although increasing both the PPP intensities and the power of 623

the SBSs can increase the total signal power, the interference 624

also increases at the same time, which keeps the degree ζU 625

of the factor nodes constant. Similarly, observe from (21) 626

that ζB is independent of the power P, i.e., increasing the 627

transmission power of the SBSs will not influence the average 628

degree distribution of the factor graph. 629
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Remark 1: We observe that B
(

2
α
, 1 − 2

α

)
= π when α = 4.630

Thus, we have closed-form expressions for ζU and ζB in (20)631

and (21), respectively, when α = 4.632

B. Downloading Performance of Random Caching633

Since the performance of BP based caching remains diffi-634

cult for mathematical analysis in closed form, we propose a635

random caching scheme and analyze its performance based on636

stochastic geometry theory. The random caching is realized by637

randomly picking out 	Fn · K (0 ≤ 	Fn ≤ 1) SBSs from the638

entire set of K SBSs for caching the FG Fn.639

To evaluate the downloading performance, we first define640

an outage Qn as the event of an MU’s failing to find the FG641

Fn in its neighboring SBSs. The following theorem states an642

upper bound of the OP of Qn. As mentioned before, since the643

interference is the dominant factor predetermining the network644

performance, we ignore the noise effects in the following645

performance analysis to simplify our derivations.646

Theorem 3: The OP for downloading a file in Fn can be647

upper-bounded by648

Pr(Qn) ≤ C(δ, α)
(
1 − 	Fn

)+ A(δ, α)	Fn

C(δ, α)
(
1 − 	Fn

)+ A(δ, α)	Fn + 	Fn

, (22)

where we have C(δ, α) � 2
α
δ

2
α B
(

2
α
, 1 − 2

α

)
, A(δ, α) �649

2δ
α−2 2F1

(
1, 1 − 2

α
; 2 − 2

α
;−δ

)
, and 2F1 represents the650

hypergeometric function.651

Proof: Please refer to Appendix E.652

When the path-loss exponent α = 4, we have C(δ, 4) =
√

δ
2 π653

and A(δ, 4) = δ2F1

(
1, 1

2 ; 3
2 ,−δ

)
. It becomes clear from (22)654

that Pr(Qn) is only related to δ and 	Fn , where a higher δ655

leads to a higher Pr(Qn). This is because a larger δ will reduce656

the number of possibly eligible serving SBSs, resulting in an657

increase of OP. We can see that a higher 	Fn leads to a lower658

Pr(Qn).659

Let us define the averaged OP Q over all the files. Based on660

the file popularity, the OP of Q can be upper-bounded by661

Pr(Q) =
∑
n∈NNN

PFn Pr(Qn)

≤
∑
n∈NNN

PFn

(
C(δ, α)

(
1 − 	Fn

)+ A(δ, α)	Fn

)
C(δ, α)

(
1 − 	Fn

)+ A(δ, α)	Fn + 	Fn

. (23)

The average delay D̄ of each MU can be obtained based on the662

average OP, i.e.,663

D̄ = (1 − Pr(Q)) D̄s + Pr(Q)
M

C0
, (24)

where D̄s is the average delay of downloading from the SBSs.664

The delay D̄ can be seen as the average value of D in Eq. (6)665

over both the PPP and the channel fading. Note that D̄s is666

usually challenging to calculate and does not have a closed form667

in the PPP analysis.668

Next, we optimize 	Fn for improving the downloading per- 669

formance. Since we do not have a closed-form expression for D̄, 670

we minimize the upper bound of Pr(Q) in (23), i.e., 671

max{	Fn}
∑
n∈NNN

PFn	Fn

	Fn (A(δ, α) − C(δ, α) + 1) + C(δ, α)
,

s.t.
∑
n∈NNN

	Fn = 1,

	Fn ≥ 0. (25)

By relying on the classic Lagrangian multiplier, we arrive at the 672

optimal solution as 673

	

Fn

= max

⎧⎨⎩
√

PFn
ξ

− C(δ, α)

A(δ, α) − C(δ, α) + 1
, 0

⎫⎬⎭ , (26)

where ξ =
(∑n∗

q=1
√

PFq

)2

(n∗C(δ,αs)+A(δ,αs)−C(δ,αs)+1)2 , and n∗ satisfies the 674

constraint that 	Fn ≥ 0. 675

VII. SIMULATION RESULTS 676

In this section, we first focus on the HCNs associated with 677

PPP distributed nodes, where we investigate the average degree 678

distribution of the factor graph and the performance of the 679

random caching scheme. Then we consider an HCN supporting 680

a fixed number of nodes. We investigate the delay optimized 681

by the BP algorithm and compare it to other benchmarks, 682

including both the random caching and the optimal scheme 683

using exhaustive search. 684

Note that the physical layer parameters in our simulations, 685

such as the path-loss exponent, noise power, transmit power 686

of the SBSs, and the intensity of the SBSs, are chosen to be 687

practical and in line with the values set by 3GPP standards. 688

For instance, the transmit power of an SBS is typically 2 Watt 689

in 3GPP. The unit of power, such as noise power and transmit 690

power, is the classic Watt. The intensities of the SBSs and MUs 691

are expressed in terms of the numbers of the nodes per square 692

kilometer. Unless specified otherwise, we set the path loss to 693

α = 4, the number of files to Q = 100, transmit power to P = 2, 694

and the noise power to σ 2 = 10−10. All the simulations are 695

executed with MATLAB. Also, we consider the performance 696

averaged over a thousand network cases, where the locations 697

of network nodes are uniformly distributed in each case, and 698

randomly changed from case to case. 699

A. Average Degree Distributions of Factor Graph 700

We compare our Monte-Carlo simulations and analytical 701

results in the HCNs at various transmission powers and node 702

densities. Fig. 2 shows the average degree of the factor nodes 703

with different transmission power P, SBSs’ intensity λB, and 704

MUs’ intensity λU . We can see that for a given δ, the degree 705

ζU remains unaffected by the specific choice of P, λB, and 706

λU . Observe that our analytical results are consistent with the 707

simulations. Similarly, Fig. 3 shows the average degree of 708
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Fig. 2. Average degree of factor nodes ζU vs. δ for different SBS and MU
intensities of λB and λU , and for transmit powers of P = 2 and 4.

Fig. 3. Average degree of variable nodes ζB vs. δ for different SBS and MU
intensities of λB and λU , and for transmit powers of P = 2 and 4.

the variable nodes of different powers and node intensities,709

demonstrating that the results are independent of the power P,710

but depend on the densities λB and λU . We can also see that the711

analytical results match well with the simulation results.712

B. Average Downloading Performance of Random Caching713

Let us now evaluate the average downloading performance of714

the random caching scheme supporting PPP distributed nodes.715

The file distribution PPP = {p1, · · · , pQ} is modeled by the Zipf716

distribution [34], which can be expressed as717

pf = 1/f s∑Q
q=1 1/qs

, for f = 1, · · · , Q, (27)

where the exponent 0 < s ≤ 1 is a real number, and it charac-718

terizes the popularity of files. Explicitly, a larger s corresponds719

to a higher content reuse, i.e., the most popular files account for720

the majority of requests. Note that PFn can be obtained based721

on pf via Eq. (2).722

Fig. 4. Outage probabilities Pr(Qn) · PFn for individual FGs Fn under the
file popularity based random caching (FPRC) and optimized random caching
(ORC) schemes.

For the simulation results of this subsection, we assume that 723

each SBS caches G = 5 files, hence there are N = Q/G = 20 724

FGs. We commence by considering the OP. In our optimized 725

random caching (ORC), we set 	Fn as in (26). For comparison, 726

we also consider another random caching scheme from [19] as 727

our the benchmark, namely, the file popularity based random 728

caching (FPRC). In the FPRC, 	Fn is chosen to be consistent 729

with the file popularity, i.e., we have 	Fn = PFn . 730

Fig. 4 shows the OPs Pr(Qn) · PFn for individual FGs under 731

both the ORC and the FPRC schemes, where we have δ = 0.03 732

and s = 0.5. The conditional OP Pr(Qn) (given a file in Fn 733

is requested) is calculated from Eq. (22), while the request 734

probability PFn of Fn is calculated from Eq. (2). The FGs are 735

arranged in descending order of popularity, i.e., the first FG 736

has the highest popularity, while the last one has the lowest 737

popularity. We can see from the figure that compared to the 738

FPRC, FGs having a higher popularity have a lower OP, while 739

the ones with lower popularity have higher OPs in the ORC. For 740

example, the OP for the most popular FG is around 0.054 in the 741

ORC in contrast to 0.099 in the FPRC, while the probability of 742

the least popular FG is 0.27 in the ORC in contrast to 0.25 in 743

the FPRC. This is because the ORC is reminiscent of the classic 744

water-filling, allocating more SBSs for caching the higher 745

popular FGs for ensuring the minimization of the average OP. 746

Let us now investigate the average OP Pr(Q). Figs. 5 and 747

6 show Pr(Q) for different δ and s values, respectively. In Fig. 5, 748

we fix s = 0.5, while in Fig. 6, we fix δ = 0.03. The dashed 749

lines with different marks are based on the simulations asso- 750

ciated with various power and densities, while the solid lines 751

represent the analytical upper bounds of Eq. (23). We can see 752

that the average OP is independent of both the power P and 753

densities λB and λU . The ORC scheme has a lower average 754

OP than the FPRC. Furthermore, as expected, a higher SINR 755

threshold δ leads to a higher OP, as shown in Fig. 5. At the 756

same time, it is interesting to observe from Fig. 6 that a larger 757

s, representing more imbalanced downloading requests on the 758

different files, can dramatically reduce the OP. We can see that 759

the upper bounds evaluated from Eq. (23) match the simulations 760

quite accurately. 761
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Fig. 5. Average outage probabilities Pr(Q) vs. δ under the FPRC and ORC
schemes for different SBS and MU intensities λB and λU , and for transmit
powers P = 2 and 4.

Fig. 6. Average outage probabilities Pr(Q) vs. the Zipf parameter s under the
FPRC and ORC schemes for different SBS and MU intensities λB and λU , and
for transmit powers P = 2 and 4.

Next, we consider the average delay D̄ in Eq. (24), where762

we assume an SINR threshold of δ = 0.03, a bandwidth of763

W = 107 Hz, and a file size of M = 109 bits. Since C0 should764

be always less than the maximum possible downloading rate765

provided by the SBSs, we assume C0 = W log(1 + δ). For766

δ = 0.03, C0 becomes 4.26 × 105 bits/sec. Fig. 7 illustrates the767

average downloading delay associated with different s values.768

We can see that the ORC scheme always outperforms the FPRC769

scheme, and that their performance gap becomes larger upon770

increasing s. Again, the observed performance does not depend771

on the powers and intensities of the nodes.772

C. Delay Performance of Distributed BP Algorithms773

Let us now study the delay performance of distributed BP-774

based optimizations. We consider HCNs having fixed numbers775

of SBSs and MUs, where the locations of these nodes are time-776

variant. We first consider a small network, in which the optimal777

solution is found with the aid of an exhaustive search. This will778

Fig. 7. Average downloading delay D̄ vs. the Zipf parameter s under the FPRC
and ORC schemes for different SBS and MU intensities λB and λU , and for
transmit powers P = 2 and 4.

Fig. 8. Average downloading delay D̄ vs. the Zipf parameter s under various
schemes in the first scenario.

allow us to characterize the performance disparity between the 779

proposed BP algorithm and the optimal search-based solution. 780

Then we focus our attention on a larger network to show the 781

robustness of our BP algorithms. In both scenarios, we set the 782

SINR threshold to δ = 0.1, the transmission power to P = 2, 783

the bandwidth to W = 107 Hz, and the file size to M = 109 bits. 784

Similar to the previous subsection, we assume that the rate 785

provided by the MBS as C0 = W log(1 + δ). For δ = 0.1, we 786

have C0 as 1.3 × 106 bits/sec. 787

In the first scenario, the nodes are arranged in a 0.6 × 0.6 km2 788

area using 8 SBSs and 4 MUs. We assume that each SBS caches 789

G = 25 files, and there are N = Q/G = 4 FGs. Fig. 8 shows 790

the average delay performance under various schemes, where 791

‘HBP’ is the heuristic BP algorithm proposed in Section V, 792

‘BP’ is the original BP algorithm proposed in Section IV, 793

and ‘Optimal’ is the optimal scheme relying on an exhaustive 794

search. We can see from Fig. 8 that the original BP approaches 795

the optimal scheme within a small delay margin. The proposed 796

HBP performs slightly worse than the original BP, with a 797
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Fig. 9. Average downloading delay D̄ vs. the Zipf parameter s under various
schemes in the second scenario.

relatively modest delay degradation of around 5% or798

20 seconds, while it outperforms the ORC scheme by about799

10% or 40 seconds gain. The FPRC performs the worst among800

all the caching schemes, exhibiting a substantial delay gap801

between the FPRC scheme and the ORC scheme.802

In the second scenario, the nodes are arranged in a803

1.5 × 1.5 km2 area with 50 SBSs and 25 MUs. We consider804

two cases, namely Case1 and Case2. In Case1, we assume that805

each SBS caches G = 20 files and there are N = Q/G = 5 FGs,806

while in Case2, we assume that each SBS caches G = 10 files807

and that we have N = Q/G = 10. Fig. 9 shows the average808

delay performance under various schemes. It is clear from809

Fig. 9 that in both cases the BP algorithm performs the best,810

while the FPRC performs the worst. The HBP exhibits a tiny811

delay increase of around 3% performance loss compared to the812

original BP, although it dramatically reduces the communica-813

tion complexity during the optimization process.814

Note also in Fig. 9 that the ORC suffers from a 5% perfor-815

mance loss compared to the HBP, but it is much less complex816

than the HBP and BP. The optimization in ORC is based on817

the statistical information available about both of channels and818

the locations of the nodes, while both the BP and the HBP819

exploit the relevant instantaneous information at a relatively820

high communication complexity. In this sense, the ORC con-821

stitutes an efficient caching scheme. Furthermore, we can see822

from Fig. 9 that there is a tradeoff between the storage and823

delay, i.e., a larger storage at each SBS in Case1 leads to a lower824

downloading delays compared to Case2.825

In the above BP simulations, we set the maximum number826

of iterations to T = 15. Table I shows the average number827

of iterations under different s values for the two scenarios.828

We can see that the HBP relies on more iterations than the829

BP. Nevertheless, the overall communication complexity of the830

HBP is still lower than that of the BP, as we have discussed831

in Section V. Explicitly, for each iteration of the HBP, Bk832

broadcasts N integers and Uj transmits |HHH(j)| integers. By833

contrast, in the original BP, Bk transmits N|HHH(k)| real numbers834

and Uj transmits N|HHH(j)| real numbers.835

TABLE I
THE AVERAGE NUMBER OF ITERATIONS UNDER DIFFERENT s

Fig. 10. Average downloading delay D̄ vs. the Zipf parameter s under various
schemes in the large scale network.

D. Delay Performance in a Large Scale Network 836

Finally, we consider a large-scale network associated with 837

Q = 1000 files, 50 SBSs, and 100 MUs within an area of 838

5 × 5 km2. Furthermore, we consider a lower connection prob- 839

ability to the SBSs by setting δ = 0.2. By assuming that each 840

SBS is capable of caching 20 files, we have overall 50 file 841

groups. Fig. 10 shows the average delay performance. We can 842

see from the figure that both BP algorithms perform better 843

than the random caching schemes. Particularly, the HBP has 844

a roughly 1% performance loss compared to the original BP, 845

which imposes however a much reduced communication com- 846

plexity. This implies that our BP algorithms are robust in large- 847

scale networks associated with a large number of files and 848

network nodes. 849

Further comparing Figs. 8, 9, and 10, it is interesting to 850

observe that the gap between our BP and HBP algorithms 851

becomes smaller when the network scale becomes larger. More 852

particularly in Fig. 10, the performance of these two schemes 853

almost overlaps. This indicate that in large scale networks, we 854

may consider to use the HBP rather than BP to obtain a good 855

performance at a much reduced complexity. 856

VIII. CONCLUSION 857

In this paper, we designed distributed caching optimization 858

algorithms with the aid of BP for minimizing the downloading 859

latency in HCNs. Specifically, a distributed BP algorithm was 860
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proposed based on the factor graph according to the network861

structure. We demonstrated that a fixed point of convergence862

exists for the distributed BP algorithm. Furthermore, we pro-863

posed a modified heuristic BP algorithm for further reducing864

the complexity. To have a better understanding of the average865

network performance under varying numbers and locations of866

the network nodes, we involved stochastic geometry theory867

in our performance analysis. Specifically, we developed the868

average degree distribution of the factor graph, as well as an869

upper bound of the OP for random caching schemes. The per-870

formance of the random caching was also optimized based on871

the upper bound derived. Simulations showed that the proposed872

distributed BP algorithm approaches the optimal performance873

of the exhaustive search within a small margin, while the mod-874

ified BP offers a good performance at a very low complexity.875

Additionally, the average performance obtained by stochastic876

geometry analysis matches well with our Monte-Carlo simula-877

tions, and the optimization based on the upper bound derived878

provides a better performance than the benchmark of [19].879

APPENDIX A880

PROOF OF LEMMA 1881

To simplify the notation in the proof, we assume that882

HHH(j) = KKK, ∀ j ∈ JJJ and HHH(k) = JJJ , ∀ k ∈ KKK. Consider a pair of883

probability vector sets MMM(t−1) =
{

p(t−1)
k→j (λk)

}
and M̃MM(t−1) =884 {

p̃(t−1)
k→j (λk)

}
. Then we have the supremum norm885 ∣∣∣∣∣∣� (MMM(t−1)
)

− �
(
M̃MM(t−1)

)∣∣∣∣∣∣
sup

= max
k,j,n

∣∣∣p(t)
k→j

(
λ

[n]
k

)
− p̃(t)

k→j

(
λ

[n]
k

)∣∣∣
= max

k,j,n

∣∣∣∣∣∣∣
∏

i∈JJJ \{j}

∑
h∈KKK\{k}

λ
[N]
h∑

λh=λ
[1]
h

⎛⎝exp (μFi(�i))

⎛⎝ ∏
q∈KKK\{k}

p(t−1)
q→i (λq) −

∏
q∈KKK\{k}

p̃(t−1)
q→i (λq)

⎞⎠⎞⎠
∣∣∣∣∣∣∣

(a)≤ max
j

∏
i∈JJJ \{j}

∑
h∈KKK\{k}

λ
[N]
h∑

λh=λ
[1]
h∣∣∣∣∣∣

∏
q∈KKK\{k}

p(t−1)
q→i (λq) −

∏
q∈KKK\{k}

p̃(t−1)
q→i (λq)

∣∣∣∣∣∣
(b)≤ (K − 1)NK−1 max

j∏
i∈JJJ \{j}

max
q∈KKK\{k},n

∣∣∣p(t−1)
q→i

(
λ[n]

q

)
− p̃(t−1)

q→i

(
λ[n]

q

)∣∣∣
≤ (K − 1)NK−1 max

j,q∈KKK\{k},n

∣∣∣p(t−1)
q→i

(
λ[n]

q

)
−p̃(t−1)

q→i

(
λ[n]

q

)∣∣∣J−1

≤ (K − 1)NK−1 max
j,k,n

∣∣∣p(t−1)
k→i

(
λ

[n]
k

)
− p̃(t−1)

k→i

(
λ

[n]
k

)∣∣∣
= (K − 1)NK−1

∣∣∣∣∣∣MMM(t−1) −M̃MM(t−1)
∣∣∣∣∣∣

sup
. (28)

The inequality (a) in (28) is derived by exploiting the 886

following two facts: 1) 0 < exp(μFi(�)) ≤ 1, since Fi(�) is 887

non-positive and μ is positive, and 2)
∑

s |xs| ≤ |∑s(xs)| for 888

arbitrary xs. The inequality (b) in (28) can be obtained from: 889

1) the following lemma, and 2) the fact that
∑

h∈KKK\{k}
∑λ

[N]
h

λh=λ
[1]
h

890

has to carry out the additions of NK−1 items. 891

Lemma 2: Given 0≤a1, · · · , aK ≤1 and 0≤ ã1, · · · , ãK ≤1, 892

we have 893

max
k∈KKK

∣∣∣∣∣∣
∏

q∈KKK\{k}
aq−

∏
q∈KKK\{k}

ãq

∣∣∣∣∣∣≤(K−1) max
q∈KKK\{k}

|aq−ãq|. (29)

Proof: Please refer to Appendix F. 894

From (28), we can infer that � is a continuous mapping, since 895

the coefficient (K − 1)NK−1 is a constant, and this completes 896

the proof. � 897

APPENDIX B 898

PROOF OF THEOREM 1 899

LetSSS be the collection of the message setMMM(t). The mapping 900

function � maps SSS to SSS with the aid of the function �. 901

According to Lemma 1, � is continuous since � is continuous. 902

Furthermore, it is clear that the set SSS is convex, closed and 903

bounded. Based on Schauder’s fixed point theorem, � has a 904

fixed point. This completes the proof. � 905

APPENDIX C 906

PROOF OF THEOREM 2 907

A. The Average Degree of Factor Nodes 908

Without a loss of generality, we carry out the analysis for a 909

typical MU located at the origin and assume that the potential 910

serving SBSs are located at the point xB. The fading (power) 911

is denoted by hxB , which is assumed to be exponentially dis- 912

tributed, i.e., we have hxB ∼ exp(1). The path-loss function is 913

given by ‖xB‖−α , where ‖ · ‖ denotes the Euclidian distance. 914

The average degree of a factor node in the factor graph is 915

equivalent to the number of SBSs that can provide a high enough 916

SINR (≥ δ) for the typical MU, which can be formulated as 917

NB =
∫
R2

λB Pr (ρ(xB) ≥ δ) dxB, (30)

where ρ(xB) represents the SINR at the typical MU received 918

from the SBSs located at xB. 919

We first focus on the probability Pr(ρ(xB) ≥ δ) in (30) as 920

follows. 921

Pr (ρ(xB) ≥ δ) = Pr

⎛⎜⎝ PhxB‖xB‖−α∑
xk∈�B

Phxk‖xk‖−α + σ 2
≥ δ

⎞⎟⎠
= Pr

(
hxB ≥ δ(I + σ 2)

P‖xB‖−α

)
= EI (exp(−sI)) exp(−sσ 2), (31)
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where xk denotes the location of an interfering SBS, I �
∑

xk∈�B

922

Phxk‖xk‖−α represents the aggregate interference, and s =923
δ‖xB‖α

P . The last step is due to the exponential distribution of924

hxB . Then, we derive EI(exp(−sI)) in (31) as925

EI (exp(−sI))

(a)= E�B

⎛⎝ ∏
xk∈�B

∫ ∞

0
exp

(−sPhxk‖xk‖−α
)

exp
(−hxk

)
dhxk

⎞⎠
(b)= exp

(
−λB

∫
R2

(
1 − 1

1 + sP‖xk‖−α

)
dxk

)

= exp

(
−2πλB

1

α
(sP)

2
α B

(
2

α
, 1 − 2

α

))
, (32)

where (a) is based on the independence of channel fading,926

and (b) follows from E

(∏
x

u(x)

)
= exp(−λ

∫
R2(1 − u(x))dx),927

where x ∈ � and � is an PPP in R
2 with the intensity λ [30].928

Based on the derivation above, the average degree of the929

typical MU can be calculated as930

NB = λB

∫
R2

exp

(
−2π

λB

α
δ

2
α B

(
2

α
, 1 − 2

α

)
‖xB‖2− δσ 2

P
‖xB‖α

)
dxB

= 2πλB

∫ ∞

0
exp

(
−2π

λB

α
δ

2
α B

(
2

α
, 1− 2

α

)
r2− δσ 2

P
rα

)
rdr.

(33)

B. The Average Degree of Variable Nodes931

In this subsection, we consider a typical SBS which is932

located at the origin, and assume that an MU is located at the933

point xU . The average degree of a variable node in the factor934

graph is equivalent to the number of MUs that can receive at a935

high enough SINR (≥ δ) from the typical SBS, which can be936

formulated as937

NU =
∫
R2

λU Pr (ρ(xU) ≥ δ) dxU, (34)

where ρ(xU) represents the received SINR at the MU located at938

xU from the typical SBS, i.e.,939

Pr (ρ(xU) ≥ δ)

= Pr

⎛⎜⎝ PhxU ‖xU‖−α∑
xk∈�B

Phxk‖xk − xU‖−α + σ 2
≥ δ

⎞⎟⎠ , (35)

where xk denotes the location of an interfering SBS.940

Since the PPP is a stationary process, the distribution of 941

‖xk − xU‖ is independent of the value of xU , i.e., we have 942

p(‖xk − xU‖) = p(‖xk‖), where p(·) represents the probability 943

density function. Then, we have similar results to Eq. (31). That 944

is, we have 945

Pr (ρ(xU) > δ) = EI (exp(−sI)) exp(−sσ 2), (36)

where s = δ‖xU‖α

P . Then we arrive at 946

NU =2πλU

∫ ∞

0
exp

(
−2π

λB

α
δ

2
α B

(
2

α
, 1− 2

α

)
r2− δσ 2

P
rα

)
rdr.

(37)

By combining Eqs. (37) and (33), we complete the proof. � 947

APPENDIX D 948

PROOF OF COROLLARY 1 949

When ignoring the noise, we have 950

Z(λB, P, α, δ)

=
∫ ∞

0
exp

(
−2πλB

α
δ

2
α B

(
2

α
, 1 − 2

α

)
r2
)

rdr

= 1

2

∫ ∞

0
exp

(
−λB

2π

α
δ

2
α B

(
2

α
, 1 − 2

α

)
t

)
dt

= 1

2λB
2π
α

δ
2
α B
(

2
α
, 1 − 2

α

) = α

4πλBB
(

2
α
, 1 − 2

α

)
δ

2
α

. (38)

By substituting the above expression into (17) and (16), we 951

obtain (20) and (21) respectively. This completes the proof. � 952

APPENDIX E 953

PROOF OF THEOREM 3 954

We conduct the analysis for a typical MU that is located at 955

the origin. We assume that when downloading a file in Fn, the 956

MU will always associate with its nearest SBS, which caches 957

Fn. Note that the OP derived under this assumption is an upper 958

bound for the exact OP. This is because the MU will associate 959

with the second-nearest SBS if it can provide a higher received 960

SINR than that provided by the nearest SBS. Therefore, in 961

some cases, the nearest SBS cannot provide a higher enough 962

SINR (≥ δ), while the second-nearest SBS can. According to 963

our assumption, we will neglect these cases, which leads to a 964

higher OP. 965

Let us denote by z the distance between the typical MU and 966

the nearest SBS that caches Fn. The location of the nearest SBS 967

caching Fn is denoted by xZ . The fading (power) for an SBS 968

located at xB, ∀ xB ∈ �B, is denoted by hxB , which is assumed 969

to be exponentially distributed, i.e., hxB ∼ exp(1). The path-loss 970

function for a given point xB is ‖xB‖−α . 971

When random caching is adopted, the distribution of the 972

SBSs that cache Fn can be modeled as an PPP with the intensity 973

of 	FnλB. The event that the typical MU can download a file in 974

Fn from an SBS means that the received SINR from the nearest 975
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SBS which caches Fn is no less than the threshold δ. Let us976

denote by ρ(xZ) the received SINR at the typical MU from977

the nearest SBS. Then the average probability that the MU can978

download the file from an SBS is979

Pr (ρ(xZ) ≥ δ)

=
∫ ∞

0
Pr

⎛⎜⎝ hxZ z−α∑
xk∈�B\{xZ}

hxk‖xk‖−α
≥ δ

∣∣∣∣∣∣∣ z
⎞⎟⎠ fZ(z)dz

=
∫ ∞

0
Pr

⎛⎜⎜⎜⎜⎝hxZ ≥
δ

( ∑
xk∈�B\{xZ}

hxk‖xk‖−α

)
z−α

∣∣∣∣∣∣∣∣∣∣
z

⎞⎟⎟⎟⎟⎠
· 2π	FnλBz exp

(
−π	FnλBz2

)
dz

=
∫ ∞

0
EI
(
exp(−zαδI)

)
2π	FnλBz exp

(
−π	FnλBz2

)
dz,

(39)

where we have I �
∑

xk∈�B\{xZ}
hxk‖xk‖−α , and the PDF of z, i.e.,980

fZ(z), is derived by the null probability of a Poisson process981

with the intensity of 	FnλB. Note that the interference I con-982

sists of I1 and I2, where I1 is emanating from the SBSs caching983

the FGs Fq, ∀ q ∈ NNN , q �= n, while I2 is from the SBSs caching984

Fn excluding xZ . The SBSs contributing to I1, denoted by �n̄,985

have the intensity (1 − 	Fn)λB, while those contributing to I2,986

denoted by �n, have the intensity 	FnλB. Correspondingly, the987

calculation of EI(exp(−zαδI)) will be split into the product of988

two expectations over I1 and I2. The expectation over I1 directly989

follows (32), i.e., we have990

EI1

(
exp(−zαδI1)

) = exp
(
−π

(
1 − 	Fn

)
λBC(δ, α)z2

)
, (40)

where C(δ, α) has been defined as 2
α
δ

2
α B
(

2
α
, 1 − 2

α

)
. The991

expectation over I2 has to take into account z as the distance992

from the nearest interfering SBS, i.e., we obtain993

EI2

(
exp(−zαδI2)

)
= exp

(
−	FnλB2π

∫ ∞

z

(
1 − 1

1 + zαδr−α

)
rdr

)

(a)= exp

(
−	FnλBπδ

2
α z2 2

α

∫ ∞

δ−1

x
2
α
−1

1 + x
dx

)

(b)= exp

(
−	FnλBπδz2 2

α − 2
2F1

(
1, 1 − 2

α
; 2 − 2

α
;−δ

))
,

(41)

where (a) defines x � δ−1z−αrα , and 2F1(·) in (b) is994

the hypergeometric function. Since we have defined995

A(δ, α) = 2δ
α−2 2F1

(
1, 1 − 2

α
; 2 − 2

α
;−δ

)
, by substituting (40) 996

and (41) into (39), we have 997

Pr (ρ(xZ) ≥ δ) =
∫ ∞

0
exp

(
−π

(
1 − 	Fn

)
λBC(δ, α)z2

)
exp

(
−π	FnλBz2A(δ, α)

)
2π	FnλBz exp

(
−π	FnλBz2

)
dz

= 	Fn

C(δ, α)
(
1 − 	Fn

)+ A(δ, α)	Fn + 	Fn

. (42)

It is clear that Pr(Qn) = 1 − Pr(ρ(z) ≥ δ). This completes the 998

proof. � 999

APPENDIX F 1000

PROOF OF LEMMA 2 1001

Without loss of generality, we assume k = 1. Then (29) 1002

becomes 1003∣∣∣∣∣∣
K∏

q=2

aq −
K∏

q=2

ãq

∣∣∣∣∣∣ ≤ (K − 1) max
q∈{2,··· ,K} |aq − ãq|. (43)

Again, without loss of generality, we assume 1004

|a2 − ã2| ≥ · · · ≥ |aK − ãK |. (44)

First, we prove that |aK−1aK − ãK−1ãK | ≤ 2|aK−1 − ãK−1|, 1005

under the condition of |aK−1 − ãK−1| ≥ |aK − ãK |. To prove 1006

this, we discuss the following possible cases. 1007

1) When aK−1 ≥ ãK−1 and aK ≥ ãK: We have aK ≤ 1008

aK−1 − ãK−1 + ãK . Then 1009

|aK−1aK − ãK−1ãK |
≤ |aK−1(aK−1 − ãK−1 + ãK) − ãK−1ãK |
= |(aK−1 + ãK)(aK−1 − ãK−1)|
≤ 2|aK−1 − ãK−1|. (45)

2) When aK−1 ≥ ãK−1, aK ≤ ãK, and aK−1aK ≥ ãK−1ãK: 1010

We have 1011

|aK−1aK −ãK−1ãK | ≤ |aK−1ãK − ãK−1ãK |
= |aK−1−ãK−1|ãK ≤|aK−1−ãK−1|. (46)

3) When aK−1 ≥ ãK−1, aK ≤ ãK, and aK−1aK ≤ ãK−1ãK: 1012

We have 1013

|ãK−1ãK −aK−1aK | ≤ |aK−1ãK − aK−1aK |
= |aK − ãK |aK−1 ≤ |aK−1 − ãK−1|. (47)

4) When aK−1 ≤ ãK−1, aK ≥ ãK, and aK−1aK ≥ ãK−1ãK: 1014

We have 1015

|aK−1aK −ãK−1ãK | ≤ |ãK−1aK − ãK−1ãK |
= |aK − ãK |ãK−1 ≤ |aK−1 − ãK−1|. (48)
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5) When aK−1 ≤ ãK−1, aK ≥ ãK, and aK−1aK ≤ ãK−1ãK:1016

We have1017

|ãK−1ãK −aK−1aK |≤ |ãK−1aK − aK−1aK |
= |aK−1−ãK−1|aK ≤|aK−1−ãK−1|. (49)

6) When aK−1 ≤ ãK−1, aK ≤ ãK: We have aK ≥ ãK +1018

aK−1 − ãK−1. Then1019

|ãK−1ãK − aK−1aK | ≤ |ãK−1ãK − aK−1(ãK + aK−1 − ãK−1)|
= |(aK−1 + ãK)(ãK−1 − aK−1)|
≤ 2|aK−1 − ãK−1|. (50)

From the above discussions, we can see that |aK−1aK −1020

ãK−1ãK | ≤ 2|aK−1 − ãK−1|.1021

Second, as there is |aK−1aK − ãK−1ãK | ≤ 2|aK−1 − ãK−1|,1022

we have |aK−1aK − ãK−1ãK | ≤ 2|aK−2 − ãK−2|. With this1023

condition, we can prove that |aK−2aK−1aK − ãK−2ãK−1ãK | ≤1024

3|aK−2 − ãK−2| by following the similar steps above. By doing1025

this iteratively, we have1026 ∣∣∣∣∣∣
K∏

q=2

aq −
K∏

q=2

ãq

∣∣∣∣∣∣ ≤ (K − 1)|a2 − ã2|. (51)

This completes the proof. �1027
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