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Abstract —  Chalcogenide phase-change media provide a uniquely flexible platform for both
nanostructured and optically-rewritable all-dielectric metamaterials. Non-volatile, laser-induced phase
transitions enable resonance switching in nanostructured chalcogenide meta-surfaces and allow for
reversible direct-writing of arbitrary meta-devices in chalcogenide thin films, including dynamically re-
focusable, chromatically correctable and super-oscillatory lenses, and near-infrared-resonant photonic
metamaterials.

I. INTRODUCTION

The metamaterial paradigm allows us to control and tailor the optical response of materials to achieve
otherwise unattainable properties and unprecedented functionalities in novel ‘metadevices’ [1]. To mitigate the
substantial ohmic losses suffered by plasmonic materials, which compromise many applications, research
attention has turned recently to all-dielectric metamaterials [2]-[3]. At the same time, reconfigurable
metamaterials have attracted considerable interest for their ability to offer adaptive and dynamically controllable
optical properties ‘on demand’ [4]-[5]. Phase-change media offer the possibility to realize reconfigurable all-
dielectric metamaterials because their phase state can be reversibly switched through thermal cycling in non-
volatile fashion, leading to large changes in optical and electrical properties [6]-[8]. Here, we demonstrate
dielectric metamaterials formed both via nanostructuring of chalcogenide thin films (Fig. 1a), wherein optically-
induced phase changes can be employed to switch the resonant optical response characteristics, and via direct,
reversible laser-writing into the phase-change medium (Fig. 1b), paving the way for the engineering of compact
reconfigurable optoelectronic metadevices. The latter, unlike existing reconfigurable materials which retain their
basic structure during reconfiguration, can be erased and re-written at will to introduce completely different
optical structures as required.

Fig. 1. Nanostructured and laser-rewritable phase change meta-devices: (a) Optically switchable nano-grating spectral
filter fabricated in thin film GST [oblique incidence scanning electron microscope image and inset cross-sectional image].
(b) Artistic impression of the direct-write system, showing one meta-surface optical element being erased and another being
written with sub-micron spatial resolution into a GST film using femtosecond laser pulses.
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Il. METHODS, RESULTS AND DISCUSSION

Our work employs sputtered nanoscale thin films (30 — 250 nm) of the chalcogenide phase-change medium
Ge,Sh,Tes (GST). In the first instance, films are structured by focused ion beam milling with meta-surface, non-
diffractive, sub-wavelength grating patterns that present high-quality near-infrared transmission resonances at
wavelengths dependent on the nano-grating period (Fig. 2a). The GST film can be converted from its as-
deposited amorphous phase to the crystalline state by optically-induced heating, to a temperature above its glass-
transition point T4 but below its melting point Ty, using a continuous wave excitation at a wavelength of 532 nm
and intensity ~3 mW/um’. In consequence, the structure’s transmission stop-band is spectrally red-shifted by as
much as 150 nm, bringing about high-contrast changes in reflection and transmission in the spectral range around
the resonance (Fig. 2b). With appropriate selection of pulsed laser excitation parameters (to momentarily bring
the GST to a temperature >T,), phase-change meta-surface spectral filters of this kind may be reversibly and
repeatedly switched in the manner of the functional chalcogenide thin film in rewritable optical discs.
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Fig. 2. GST nano-grating spectral filters: (a) Transmission spectra for nano-gratings, such as illustrated in
Fig. 1a, with a range of structural periods [as labelled] fabricated in as-deposited amorphous phase GST
films. (b) Transmission spectra for the amorphous and optically-switched crystalline phases of an 800 nm
period GST nano-grating filter.

We also employ GST thin films as a ‘canvas’ for femtosecond-laser-written meta-surface structures. Patterns
are formed sub-micron pixel-by-pixel using trains of low-energy (0.28 nJ) 730 nm femtosecond pulses incident
on the GST canvas via a microscope objective lens (Fig. 1b). Individual pulses only deliver sufficient energy to
partially convert the chalcogenide from its amorphous to its crystalline state, and thus the size and contrast of any
given crystallized mark can be precisely controlled by changing the number of pulses and/or pulse energy
applied. Single, high-energy (0.95nJ) femtosecond pulses can be employed to selectively melt and rapidly quench
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Fig. 3 Laser-re-writable phase-change meta-devices: (a) Microscope image of a dual Fresnel zone-plate laser-written in a
GST thin film, which forms a pair of focal spots [under 730 nm plane wave illumination] as shown inset. (b) Reflection
image of the same sample, optically reconfigured as a single Fresnel zone-plate (the other being erased), correspondingly
producing a single focal spot as shown inset. (c) Microscope image of non-diffracting metamaterial grating. (d) Reflection
spectrum of the metamaterial showing a clear resonance (dotted red line), compared to unstructured GST.
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crystalline marks, returning them to the amorphous state. The application of this optical direct-write/erase
technique to the production of reconfigurable optical elements is illustrated in Figs. 3a and 3b. Figure 3a shows a
dual Fresnel zone-plate pattern with 50 um focal length written point-by-point into a GST film in binary phase-
state contrast (dark grey = fully amorphous; light grey = fully crystalline). A plane wave incident on the zone-
plate is focused to a pair of bright focal points as shown inset. The pattern is then reconfigured to remove the
right hand zone-plate without altering the left hand one. The resulting pattern and corresponding single focal spot
are shown in Fig 3b. We can also use the same technology to write non-diffracting metamaterials for the IR, as
shown in Fig 3c. The reflection spectrum of the metamaterial (Fig 3d) shows a clear resonance at 2.2 um which is
not present in the unstructured GST spectrum.

I11. CONCLUSION

We present two approaches to the realization of non-volatile, optically reconfigurable, all-dielectric
metadevices using chalcogenide phase-change media: Optically-induced transitions between amorphous and
crystalline states in nanostructured chalcogenide thin films provide high-contrast switchable spectral filtering
functionality at near-infrared wavelengths selected by design geometry. Direct laser writing into chalcogenide
thin films using carefully controlled femtosecond doses of laser energy to incrementally crystallize sub-micron
domains of the medium (and to erase crystalline marks) allows for the creation of arbitrary, re-writable planar
optical elements and all-dielectric metamaterials.
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