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Abstract
This work is motivated by an application to separate area and interviewer effects on
survey nonresponse which are often confounded. The study aims to provide practical
recommendations for future study designs by identifying the smallest total sample
sizes and the most geographically-restrictive and cost-effective interviewer allocations
required to adequately distinguish between the interviewer and area effects. It is
unclear how much interpenetration is needed for a cross-classified multilevel model to
work well and to reliably estimate the two higher-level effects. This paper investigates

the properties of cross-classified multilevel models under various survey conditions.

Key words: cross-classification, interpenetration, interviewer effects, area effects,

multilevel models.



1. Introduction

In face-to-face surveys researchers are often interested in the effect of interviewers on
survey estimates or survey processes. One such relationship of interest is the effect of
interviewers on nonresponse (Blom et al., 2010; Durrant & Steele, 2009; Durrant et al.,
2010; Campanelli & O'Muircheartaigh, 1999; Pickery & Loosveldt, 2002; Pickery et al.,
2001; Haunberger, 2010). Since interviewers usually work in a restricted geographical
area any interviewer effect identified could simply reflect area differences in the
geographic propensity to cooperate in survey requests. Therefore, a particular
estimation problem pertains to the identifiability of area and interviewer variation. In a
random experiment an interpenetrated sample design would be employed, where each
sampled case is allocated randomly to interviewers irrespective of their area. This is
considered the gold standard for separating interviewer effects from area effects for
face-to-face surveys, but is not implemented in survey practice owing to restrictions in
field administration capabilities and survey costs (Schnell & Kreuter, 2005; Campanelli,
& O'Muircheartaigh, 1999). A compromise which is achievable in a real survey setting is
partial interpenetration. Partial interpenetration exists where interviewers are not fully
nested within areas, as one interviewer may work in more than one area, and sampling
cases in one area may be designated to more than one interviewer. In the case of
partial interpenetration a cross-classified multilevel model specification which
considers both interviewer and area random terms has been suggested to distinguish
between the two sources of variation (Von Sanden, 2004). Although a range of papers
have used such models to distinguish between area and interviewer effects (Campanelli
& O'Muircheartaigh, 1999; Durrant et al., 2010; Schnell & Kreuter, 2005), it is unclear
how much interpenetration may be needed for a cross-classified multilevel model to
work well and to reliably estimate interviewer and area effects. In particular, in
circumstances of small sample sizes and low degrees of interpenetration in the
dispersion of interviewers across areas, problems of biased estimates and low power
for significance tests may arise. Some previous studies (Maas & Hox, 2005; Moineddin
et al., 2007; Paccagnella, 2011; Rodriguez & Goldman, 1995; Theall et al., 2011) have
looked at the properties of estimators and the power of significance tests for two-level
models. However, questions regarding how well cross-classified multilevel model

parameters can be estimated have not yet been explored.



This study examines the implications of various practical limitations in the
assignment of cases from different areas to interviewers within a range of scenarios
through a simulation study. These different scenarios include different total sample
sizes, group sizes (interviewer caseload), number of groups (number of interviewers),
overall rates of response, and the percentage variance attributable to area and
interviewer effects. Interviewer-area classifications are restricted to possible
interviewer work allocations, and selected values for the other factors represent
realistic values, making the simulation results relevant to survey practice. The
implications are assessed in terms of bias, standard error, confidence interval coverage,
correlation of the two variance estimators and power of significance tests. The study
also examines the smallest interviewer pool and the most geographically-restrictive
and cost-effective interviewer case allocation required for acceptable levels of bias and
power for typical survey scenarios. By suggesting minimal sample sizes and interviewer
dispersal patterns to guide survey design and administration, and by shedding light on
the accuracy and precision of the estimates and the power of their tests of significance
in multilevel modelling, this study contributes to different areas of research: study
design and parameter estimation (Paccagnella, 2011).

Although the factor conditions and the application considered here are specific
to survey design and the exploration of interviewer effects on nonresponse, the same
problem of identifiability may arise in other settings. For example, other survey design
applications may consider the variation in the response to questionnaire items
attributable to interviewers, with the aim of quantifying any interviewer influence on
responses (measurement error). Other applications with similar design issues can also
be envisaged. For example, health studies may be investigating the influence of
community physiotherapists in the rehabilitation of patients having undergone
orthopaedic surgery. While each patient is associated with their respective
physiotherapist, the hospital at which the surgery was undergone must also be taken
into account in evaluating their health outcome. Travelling distances and monetary
restrictions will mean that individual physiotherapists are assigned home visits to
patients within the same local health authority, which matches a specific hospital.
Within practical limitations, with a greater geographical spread of cases allocated to
each physiotherapist, each physiotherapist will be treating patients from different
hospitals, allowing for accurate estimates of the effect of the post-op services on



rehabilitation to be produced. This study can shed light on the amount of cross-
classification between hospitals and physiotherapists required for adequate estimates.
The remainder of the paper is structured as follows. First a review of multilevel
models and their mathematical properties are presented, followed by an explanation of
the use of multilevel models for the analysis of interviewer effects on nonresponse.
Then a review of previous work exploring the properties of cross-classified and two-
level hierarchical models is given. Section 3 presents the details of the design of the
simulation study and the analysis carried out. Next results are presented, followed by a

discussion and conclusions.

2. The Multilevel Cross-Classified Model
2.1. Model Specification

The independent errors assumption in standard regression analysis is often not valid
for social science data. Individual observations which pertain to some kind of common
higher-level grouping - such as school, family, neighbourhood or work organisation -
may have similarities arising from the common context which give rise to dependency
amongst their observations. Multilevel modelling allows for an extension of the error
term included in standard regression analysis to be able to adjust for such
dependencies (Goldstein, 2011). Consequently, multilevel models allow the variation
in the outcome variable to be partitioned into various sources, these being both
individual and group sources. Group similarities are considered as substantively
interesting rather than as a model assumption infringement which needs to be
accounted for, thus allowing the exploration of significant individual and group
influences as well as any possible interactions between these two factors on the
individual-level outcome of interest. As well as allowing for a detailed analysis of
predictors defined at the cluster-level (also called contextual effects) through the
inclusion of a higher-level random effect and contextual or aggregate fixed effects,
multilevel models allow for the inclusion of data at the individual level. This helps
avoid loss of information at the individual level, a smaller sample size, and the risk of
ecological fallacy from analysing aggregated data. Such models do not assume that all
contextual effects are included through observable predictors as in a contextual
analysis, and avoid restricting inference to the groups sampled in the data and the



inclusion of a large number of dummy variables as in a fixed effects model. Multilevel
models also offer more flexibility than other methods to correctly account for the
complex structure of the social world.

The general form of a logistic multilevel model for purely hierarchical data with

two levels is:
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Here m;; is the probability of individual i in cluster j taking on a value of 1 for the y
variable, where y is a dummy variable indicating whether a person experienced an
event or has a particular characteristic. B, represents the overall intercept in the linear
relationship between the log-odds of y and the predictor variables included in the

model, X;;, and is the log-odds for an individual pertaining to the reference categories

jis
of the categorical variables, having a value of 0 on continuous variables and belonging
to the average higher-level group (a group with a value of O for the higher-level
random effect u;). The vector B; contains the coefficients for each explanatory variable
in the model when all other predictor variables are controlled for. These coefficients
are also known as the cluster-specific effects of the explanatory variables, since they
represent the effect of a unit increase in the covariate on the log-odds that the

individual has a value of 1 on the outcome variable y, for a constant value of u; and
therefore within the same higher-level group j. The vector X;; represents the predictor
variables which may be defined at the individual or cluster level. The predictor
variables may also include interaction effects or cross-level interaction effects. The u;
represent the random effects for the higher level classification units, which are
assumed to follow a normal distribution with mean 0 and variances ¢2.

Besides purely hierarchical structures, multilevel models can also deal with data
pertaining to two different non-hierarchical classifications (cross-classifications)
(Fielding & Goldstein, 2006). The general form of such a cross-classified multilevel
logistic model is:

log <17_T%> = Bo+ BT Xijsy + Ui+ v, (2)
i(Js)
Here m;(;5)is the probability of individual i in clusters j and s taking on a value of 1 for

the y variableThe parameters u; and v represent the random effects for each higher-



level classification, which are assumed to follow a normal distribution with variances ¢

and o2.

2.2. Review of Properties of Cross-classified Models
For the case of cross-classified multilevel models, sample-size requirements and the
level of interpenetration required between the two cross-classified higher level
classifications necessary for accurate parameter estimation have not yet been
considered. What is currently available is a software package which produces power
calculations for various sample sizes, data structures and random effects sizes -
MLPowSim (Browne and Golalizadeh, 2009). For cross-classified models the estimation
is carried out in R using the /mer function. The most flexible template for cross-
classified data in MLPowSim enables the user to specify the total sample size, the
number of higher-level groups, the probabilities of sampled cases pertaining to each
higher-level combination, and the expected variances. The MLPowSim manual includes
an example with exam attainment at age sixteen - a continuous variable - chosen as
the outcome variable, where each student is associated with both a primary and
secondary school. For this particular application, results show that sampling additional
cases (students) from new higher-level groups (schools) results in greater power
increases than sampling additional cases from higher-level groups already included in
the sample. Also, adding further cases per higher-level grouping only benefits power

calculations up to a threshold number of cases.

A number of papers exist (Rodriguez & Goldman, 1995; Paccagnella, 2011; Moineddin
et al., 2007; Theall et al., 2011; Maas & Hox, 2005) that assess the impact of various
factors, including sample size and outcome probability, on the properties of two-level
hierarchical model estimates - for both continuous and binary outcome variables -
through simulation studies. By definition two-level models do not include data
pertaining to two classifications, and therefore the impact of interpenetration on model
estimates cannot be reviewed in these studies. The results of these studies will be
presented in the discussion section when reviewing this paper’s results for cross-

classified models.

2.3. Estimating Area and Interviewer Effects

The analysis of interviewer effects has become a popular application of multilevel
methods (Von Sanden, 2004). Sample cases are nested within interviewers. However,
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interviewers generally work in a limited geographic area, and to the extent that people
from certain areas are more or less likely to cooperate, significant interviewer effects
may simply indicate area effects. Moreover, there may also be area effects on
nonresponse, arising due to similarities in socio-economic and cultural characteristics,
in the perception of privacy, crime and safety, as well as in environmental factors such
as physical accessibility and urbanicity across geographic boundaries (Haunberger,
2010). One approach to estimate interviewer effects in the past has been to simply
ignore area effects (Pickery & Loosveldt, 2002; Haunberger, 2010; Blom et al., 2010)
which clearly could yield misleading results and may overstate the effect of
interviewers. Few studies have attempted to disentangle interviewer and area effects by
specifying a cross-classified multilevel model for multistage cluster sample design
data (Campanelli & O'Muircheartaigh, 1999; Durrant et al., 2010). This model
specification prevents confounding only when the data is partially interpenetrated,
which means that interviewers are not fully nested within areas, with interviewers
working in more than one primary sampling unit (PSU), and cases in one PSU
designated to more than one interviewer. In this particular application of sample units
within interviewers operating within sampling areas, the higher-level variance is

divided into two parts - the interviewer-level variance and the area-level variance.

3. Design of the Simulation Study

First in this section the process by which the data in the simulation study is generated
is presented. Then, the cross-classified multilevel logistic regression model which is
fitted to the simulated data is presented. The various simulation scenarios and the
design factor values considered are then specified. Finally, the measures used to
assess the properties of the estimators and test statistics, including the rationale for

considering each measure and the equations used for their calculation, are presented.

3.1. Data Generating Procedure
In this simulation study the focus is on the random parameter estimates, and therefore
only an overall intercept 3, is included as a fixed effect. Its value is determined after
considering the overall probability of the outcome for the mean area and the mean

interviewer, m, by using the following formula:

Bo = log (3)
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This value is fixed for all cases. Then a cluster-specific random effect for each
interviewer and area is generated separately from a normal distribution of mean 0 and
variances o; and o respectively. The log-odds of each case, 7,5, are computed by
adding the overall intercept value to the simulated random effects. These values are
then converted to probabilities using the equation:
eXP(m(js))
1+ exp(Migjs))

Values of the dependent variable Y; ), a dichotomous outcome - with O signifying

Pi(js) = 4)

nonresponse and 1 signifying response to the survey request - for each case, are
generated from a Bernoulli distribution with probability p;js).

For scenarios which vary only in the interviewer case allocation the same set of
1000 cluster-specific random effects is used. This strategy underlies the fact that while
interviewers are assumed to come from an infinite population, the allocation of
workload from different areas to specific interviewers is limited to a finite number of

possibilities.

3.2. Estimation of the Multilevel Cross-classified Model
The following multilevel cross-classified model is then fitted to the simulated data to
identify interviewer and area random effects (without covariates for simplicity):
logit(pi¢js)) = Migsy =Bo+uj+ vs,  (5)

where the interviewer-specific residuals u; are distributed N(0, ¢7) and the area-
specific residuals v, are distributed N(0, 62). The analyses of the simulated datasets are
carried out using STATA Version 12 calling MLwiN Version 2.25 through the ‘runmlwin’
command (Leckie & Charlton, 2011). Models are fitted using the Markov Chain Monte
Carlo (MCMC) estimation method with default priors, a burn-in length of 10,000 and
200,000 iterations. Initial values for parameters are obtained by making use of the

second order penalised quasi-likelihood (PQL) estimation method.

3.3. Simulation Scenarios
To explore the properties of estimators, a simulation experiment is carried out using a
factorial design. The simulated scenarios vary in the following factors: overall sample
size (N), number of interviewers and areas ( N/ and N4), and by consequence number

of cases per interviewer and per area, level of cross-classification between interviewer



and area allocations, higher-level variance, and overall probability of the outcome
variable ().

The choice of the values for the various factors reflects realistic representations
of general household survey scenarios. N4 in this simulation study will not be altered
for a specific N. The initial numbers chosen for N, N4, and N! are based on the values
obtained from a real survey and slightly adapted to obtain numbers which are easily
divisible to obtain balanced designs. The main design, which will be referred to as the
baseline scenario design, includes 120 areas consisting of 48 cases per area allocated
to 240 interviewers who each have a workload of 24, totalling 5760 cases, with the
area variance ¢2=0.3, interviewer variance ¢2=0.3 and an overall probability = =0.8.
The impact of different interviewer-area classifications - varying in terms of the
number of areas each interviewer works in (and consequently the number of
interviewers per area) and the overlap of interviewers working in neighbouring areas -
on the properties of the estimators and test statistic for the baseline scenario factors is
analysed. The number of areas each interviewer works in will be allowed to vary from 1
to 6.

For illustration, the diagrams show the area-interviewer allocations for the first
6 areas. The areas are considered as sequential numbers in a circle, with the final area
- area 120 - neighbouring the first area - area 1. Each box represents an area and the
numbers within each box represent the interviewers working within that area (numbers
from 1 to 240). The simplest case - CASE 1 - is where two interviewers work in each
area, with each interviewer working only in one area (Diagram 1). In this case, there is
no overlap in neighbouring areas with respect to the interviewers working within them.
This in fact represents a purely hierarchical model, with individuals nested in
interviewers which in turn are nested in areas.

Next, an interviewer can work in two areas, with four interviewers working in
each area (Diagram 2). Three possible scenarios exist. The most overlap occurs for the
scenario which allocates the same set of four interviewers to work in two neighbouring
areas (CASE 2A). Alternatively, groups of three interviewers are repeated in two
neighbouring areas with a fourth interviewer varying in the two areas (CASE 2B). Thirdly,
pairs of interviewers are always allocated together, with each particular pair never

occurring twice with another pair (CASE 2C).



Similar allocation patterns are considered for schemes where the interviewer
works in three or more areas (diagrams not presented). The same basic principle of
decreased overlap as one moves from the allocation A to subsequent allocations
applies. For cases where interviewers work in three areas and each area includes six
different interviewers, seven different allocation possibilities are considered. With
interviewers working in more areas, less variations of overlap are considered, and this
is simply due to the feasibility of such allocation schemes in practice. Three allocation
schemes are considered for situations when each interviewer works in four, five and six
areas, and cases within each area are allocated to eight, ten and twelve different
interviewers respectively.

Due to computer power limitations and dependencies between factors - such
that for a fixed sample size a change in the number of clusters (interviewers or areas)
also changes the number of cases per cluster and the level of cross-classification
between the two higher-level classifications, it was impossible to consider all factor
combinations. Only one simulation factor at a time is changed, keeping all other
factors constant. Table 1 outlines the baseline values as well as the other values
considered for each factor in the simulation study.

The analysis for the initial baseline scenario design, containing 5760 cases,
highlights a need to consider a smaller N. New datasets, amounting to one half and
one fourth of the original baseline scenario caseload (2880 cases from 60 areas
allocated to 120 interviewers and 1440 cases from 30 areas allocated to 60
interviewers) are also generated. For the baseline scenario there are twice as many
interviewers as there are areas, N'=2N4. Another alternative considered is to have an
equal number of interviewers and areas, N'=N4, that is, 120 interviewers for 120 areas
for N=5760. For this data structure only six interviewer-area allocation schemes are
considered, varying from the most geographically restrictive case where one
interviewer works only in one area, to the most sparse where each interviewer works in
six areas. In this case, variations in the amount of overlap in the groups of interviewers
allocated to each area are not attempted, and the allocation schemes always allow the
same group of interviewers to work together in neighbouring areas. These allocation
schemes shown in Diagram 3, denoted as CASE a, where a represents the number of
areas each interviewer works in, are therefore comparable to the allocation schemes
CASE 2A outlined above.
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3.4. Evaluation: Properties of the Estimators and Test Statistics
The models are assessed in terms of the following properties: the correlation of the
two variance estimators, the percentage relative bias, the mean squared error, the
standard error, the confidence interval coverage, and the power of tests. The
covariance between the area and interviewer variance estimators is a quality measure
in itself. For easier interpretation the correlation p for each dataset is calculated using

the formula

1000 1000 " ) )

cov; cru,cr,,
1000 2 corr; a“'”" ~ 1000 Z

i= 1Jvar Uu)var( 2)

‘Good’ estimators are expected to show no substantial correlation. High

)

negative correlation values indicate problems with the identifiability of the two variance
parameter estimates. In such cases the model may correctly estimate the total higher-
level variance, which is the sum of the interviewer and area variances, but incorrectly
apportion the variance to the two higher-level classifications, producing biased
estimates for the individual random parameters. One estimate would be over-
estimated, and the other estimate would be under-estimated, resulting in a negative
correlation. Negative correlation values of -0.1 or higher will be considered
problematic. Browne et al. (2001) make reference to this problem, and refer to it as the
collinearity of random terms, and identify “poor mixing properties and high negative
cross—-chain correlations” (p.14) as good identifiers of this problem.

The percentage relative bias of the parameter is calculated to determine the
accuracy of the parameter estimators. The model estimates are expected to always
vary slightly from the true parameter value. Therefore, only percentage relative bias
values above 3% will be considered substantial. Standard error accuracy is assessed
using the coverage method (Maas & Hox, 2005), where coverage of the true parameter
value within the 95% Wald confidence interval of the parameter estimate for each
simulated dataset is recorded separately. The coverage rate is recorded for all
simulation scenarios and compared with the nominal rate of 95%. The mean standard
error for the parameter estimators gives an indication of the precision of the estimates

for the various survey conditions. The null hypothesis, specifying the true parameter
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value to be zero, is tested for both variance parameters of each simulated dataset by
using the Wald test. The power of a test indicates the probability that the null
hypothesis is correctly rejected. Maas and Hox (2005) explain that basing the testing
of significance for variance parameters using the asymptotic standard error is not ideal.
Such a test is based on normality assumptions. Testing of the null hypothesis, which
specifies the random parameter to be equal to zero, lies on the boundary of the
permissible parameter space, since variances can only be positive. The standard
likelihood theory no longer holds at this boundary. However, this practice is widely
used and justifies its use in this simulation study. In calculating the power for the
variance parameters the p-values are halved, since variances cannot be negative, and

therefore the alternative hypothesis is one-sided (Snijders & Bosker, 1999).

4. Results

To remind the reader of what has been outlined in the design section, the baseline
scenario design has the following properties: 120 areas (48 cases per area) allocated to
240 interviewers (24 cases per interviewer), totalling 5760 cases, 62=0.3, 02=0.3 and
m=0.8. Generally one or two factors from the following: 62 and o2, @, N and the ratio of
interviewers to areas (dependent on N’ and N4), are changed for every new scenario.
For every specific set of factor values different interviewer allocation schemes are
specified, giving rise to more scenarios. The impact (or lack of effect) of these factors
on the properties of the estimator are reviewed. General patterns are documented and

any possible interactions between factors highlighted.

The properties for the overall intercept g, showed relatively stable results across
different factor values. Under all simulation scenarios the test for g, obtains a power of
1. Accurate intercept estimates B, are obtained even for small N and very
geographically-restrictive interviewer allocation schemes. The highest absolute relative
percentage bias for the B, estimator is less than 0.6%. This slight deviation of the mean
estimate from the true parameter may simply reflect small sample bias rather than any
methodological bias. The Wald coverage rates are close to the 95% nominal rates
across all scenarios. Consequently, the analysis of the impact of various factor changes

for the above-mentioned properties will be restricted to the random parameters. On
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the other hand, the standard error of the fixed effect estimator shows some variation

across factors. These patterns for each property across factors will now be summarised.

4.1. Power of Test
For the baseline scenario design the power is higher than 0.9 for both random
parameters for all case allocation schemes (Table 2, Columns 1 & 2). The power of the
Wald test at the 5% significance level is close to the optimal value of 1 for all
interviewer case allocation possibilities for both random parameters except for the test
for g2 for the least sparse interviewer allocation (CASE 1) which yields a power of 0.91
(Table 2, Columns 1 & 2).

Interviewer dispersion is the factor which shows the greatest impact on the
power. For scenarios with one interviewer per area allocation scheme power is
observed to decrease to O for certain scenarios, whereas the lowest power observed for
two interviewers per area allocation schemes is 0.67. There is a threshold, which varies
for different factor value combinations, beyond which further dispersion does not yield
power gains. On the other hand, reduced interviewer overlap for a constant number of
areas per interviewer does not improve the power. Here overlap refers to the extent
that the group of interviewers working in neighbouring areas are the same, such that
CASE 2A has greater overlap than CASE 2C.

Table 2 shows that for scenarios with smaller N, but keeping constant all other
factors, lower power is obtained for the allocation schemes with the least interviewer
dispersion (number of areas an interviewer works in). Therefore, sparser interviewer
allocation schemes are required to obtain similar high levels of power for scenarios
with a smaller N. The effect of sample size reduction on power is greater for N'=N4
scenarios (Table 2, Columns 1-6) compared with N'=2N4 scenarios (Table 2, Columns
7-12).

When only the overall probability (=0.7, 0.8, 0.9) varies, with other factors kept
constant at their baseline values, for CASE 1 scenarios higher overall probabilities
result in lower power for the random parameters o2 and 2. High overall probabilities

seem to have a greater impact on the power of tests for random effects parameters
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which have a smaller number of higher-level units in the sample, i.e. the area random

parameter g2 compared to the interviewer random parameter o2.

The number of higher-level units as well as interviewer dispersion mediate the
effect of a lower variance on the power of the test for the random parameter, such that
the only difference in power across different variances is observed for the one area per
interviewer allocation for the area variance parameter. For the scenario with smaller
area variance (02=0.2) the power of the test for the area random parameter for the
most geographically restricted interviewer allocation (1 area per interviewer) is
substantially lower at 0.68 than the power for the baseline scenario design of 0.91.
Increasing the area variance o2 to 0.4 improves the power for the CASE 1 allocation
scheme from 0.91 to 0.99. On the other hand, for the scenario with smaller interviewer
variance (62=0.2), but keeping constant all other factors, the power of the test for the

interviewer random parameter for CASE 1 is 1.

For N'=2N4 scenarios, where substantial differences can be noticed for the
power of the tests for the random parameters, the power for the area parameter o2 is
consistently lower than that for the interviewer parameter ¢? (Table 2). No difference is
observed for N'=N4 scenarios. These results indicate that the number of higher-level
units mediates the effect of a lower intra cluster correlation (ICC) on the power of the

tests for the random parameters.

The ratio of interviewers to areas also influences the power for the random
parameters. Scenarios having N = N4 require more interviewer dispersion than
equivalent N'=2N4 scenarios to obtain the same power for the random parameters
(Table 2).

4.2. Correlation between Random Parameter Estimators
Interviewer dispersion highly influences p between the two variance estimators. High
negative correlations (greater than 0.4 and up to a maximum of 0.91) are obtained for
all scenarios when interviewers are working in only one area. This correlation is
reduced to less than -0.2 once interviewers work in two areas (Table 3).
No effect of sample size on p is observed for allocation schemes which allocate

interviewers to at least two areas (Table 3). For N'=2N4 scenarios p varies only from -
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0.45 and -0.46 for the 5760 and 1880 sample size scenarios to -0.40 for the 1440
sample size scenario for CASE 1. For N'=N4 scenarios when varying total sample size
but keeping other factors constant (62=0.3, ¢2=0.3, 7=0.8), p decreases from 0.91 to
-0.83 to -0.69 for the 5760 cases, 2880 cases and 1440 cases for CASE 1 (Table 3,
Columns 4-6, Row 1). For more sparse allocation schemes no substantial differences
can be observed for different N scenarios. Therefore, the effect of N on p is mediated
by the number of higher-level units, or an unequal ratio of the two higher-level units,
as well as the interviewer dispersion.

Scenarios with equal numbers of areas and interviewers obtain higher negative
correlations than scenarios with twice the number of interviewers to areas (Table 3).
This difference may be explained in terms of improved identifiability of the variance
decomposition for scenarios with higher number of clusters, or alternatively an
unequal number of clusters for the two classifications.

The negative correlation increases with increasing overall probabilities (Table 4).
The increase in p from scenarios with 7=0.8 to those with 7=0.9 is greater than the
increase from scenarios with 7=0.7 to those with 7=0.8, indicating that the effect of n
on p is monotonic but not linear. For allocation schemes with at least three areas per
interviewer the effect of overall probability on p is no longer present.

Higher area variance values result in lower negative correlations for the more
restrictive interviewer allocation schemes. No trend is identified when varying the
interviewer variance. These results suggest that the number of higher-level units
associated with a variance parameter mediates the effect of the variance on p. Lower
negative correlation is obtained for the two areas per interviewer allocation schemes
which have less overlap.

The effect of interviewer overlap is no longer present for more dispersed
interviewer allocation schemes. This result indicates that the impact of interviewer
overlap is mediated by the interviewer dispersion, that is, the number of areas an

interviewer works in.

4.3. Percentage Relative Bias of Parameter Estimators

In most scenarios with N=5760, the relative percentage biases for the variance

parameter estimators are around 1-3% once interviewers are allocated work in at least
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two areas (Table 5, Column 1). The bias is much higher for interviewer allocation
schemes which restrict the interviewer to working in one area (CASE 1). The biases for
CASE2-6 fluctuate around within the range specified above, failing to show any
systematic reduction with further dispersion and less interviewer overlap. For
interviewer case allocation schemes in which interviewers are working in at least two
areas, the area random parameter o2 bias is almost always greater than the interviewer
random parameter g2 bias (Table 5, Columns 1-6, Rows 2-6). This again confirms the

importance of group size for the accuracy of parameter estimators.

As expected, greater biases for the o2 and g2 estimators are observed for
smaller N, with the scenario including 1440 cases with N/ = N4 obtaining biases
between 5-13% for all allocation schemes (Table 5, Column 12). Scenarios with N'=N4
(Table 5, Columns 7-12) generally obtain higher biases for both variance parameter
estimators than N'=2N4 scenarios (Table 5, Columns 1-6). This trend is observable for
the interviewer parameter ¢? estimator. This trend is what would be expected due to
the greater number of interviewers in the N'=N4 scenarios compared to the N'=2N4
scenarios. On the other hand, for the area parameter ¢? estimator - where N4=120 in
both the N'=N4 and N'=2N4 scenarios - this pattern is less consistent for the 5760
and 2880 sample size scenarios. However, with a total sample size of 1440 the N'=N4
scenario yields consistently higher biases than the N'=2N4 scenarios. These results
may support the post-hoc hypothesis that having an unequal number of clusters
(interviewers and areas) also improves the quality of estimates, albeit not as strongly

as increasing the number of groups in each higher-level classification.

No clear trend for the change in bias by interviewer overlap, interviewer
dispersion beyond two areas per interviewer, overall probability and by variances is

observed.

In this study the percentage relative bias of the MCMC posterior median has also
been calculated. On the whole, the biases for the posterior mean and the posterior
median show similar trends as the factor change. One particular difference is the lower
bias obtained for the estimators based on the 50% percentile in comparison to the

estimators based on the mean for scenarios with smaller N and N'=NA4.

16



4.4. Wald Confidence Interval Coverage
The Wald confidence interval coverage rates are close to 95% nominal rate - between
94-96% - in most scenarios. However, there are some cases of under-coverage (lowest
observed rate is 87%) as well as very few cases of over-coverage (highest observed rate

is 100%) for scenarios where each interviewer works only in one area.

Slightly lower coverage rates are observed for smaller N in most scenarios for
both ¢ and 2. Only the scenarios with the smallest sample size of N=1440
consistently obtain non-accurate coverage rates across all interviewer case allocation
schemes. However, these rates do not fall below 89% once each interviewer is allocated
work in at least two areas. Coverage rates closer to the 95% nominal rate for the ¢?
parameter are noticeable for the N'=2N4 scenarios compared to the N'=N4 scenarios
for N=5760. This improvement in the confidence interval coverage rate with an
increase in the number of interviewers from 120 interviewers to 240 interviewers no

longer occurs for smaller N.

Some factors considered in this study do not seem to influence coverage rates.
There does not seem to be a consistent pattern in the coverage rates by the overall
probability or by the higher-level variances. Neither do the results show any evidence
of the extent of interviewer overlap influencing coverage rates. Unexpectedly, the
results do not provide any evidence that the MCMC credible quantiles perform
consistently better than the intervals based on asymptotic normality. This result may
reflect the fact that the values for the variances considered in the simulations are not
close enough to =zero. Had smaller variances been considered, possibly an
improvement in the coverage of the MCMC credible quantiles in comparison to the

Wald confidence interval may have been observed.

4.5. Standard Errors
The precision of both fixed effect and random effects estimators is affected by N
(Table 6). As expected, reducing the sample size to one fourth of the original N (from
5760 cases to 1440 cases) seems to approximately double the standard errors for all
estimators. For the N'=2N4 scenarios the o2 estimator obtains higher standard errors

than the interviewer variance estimator, thus highlighting the positive impact of a
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higher number of clusters on the precision of the estimator. As expected, there is no
substantial difference in the standard error of the two variance estimators for the

N'=N4 scenarios.

The standard errors of the variance estimators decrease with greater interviewer
dispersion, up to a threshold number of areas per interviewer, which varies by N and
the ratio of interviewers to areas (Table 6). Higher standard errors are obtained for
scenarios with N'=N4 compared to scenarios with N'=2N4. This result highlights the
increased precision for scenarios with unequal number of higher-level units for the
two higher-level classifications. Table 6 shows that the discrepancy in the standard
errors for N'=N4 scenarios compared to the N'=2N4 scenarios are more pronounced
for more geographically restricted interviewer allocations, indicating that to some
extent interviewer dispersion mediates the effect of the number of higher-level units

on the standard error of the estimator.

Interviewer overlap does not seem to affect the size of the standard errors. A
higher overall probability results in higher standard errors for all three parameter
estimators, with some increase from 7=0.7 to 7=0.8, and a much higher increase from
7=0.8 to 7=0.9, especially for the CASE 1 interviewer case allocation scheme. This
non-linear result is similar to the effect of overall probability on p, which shows that a
greater increase in p between the two estimators is observed for the extreme end of
the probability scale, when increasing the overall probability from 0.8 to 0.9. When the
value of the variance changes, the standard error changes in the same direction for the
respective variance estimator. The unchanged variance does not experience changes in

its estimator’s standard errors, once interviewers work in at least two areas.

5. Discussion of Results

In this section the findings above are discussed in their wider context, and
comparisons to findings in other studies are made. Initial implications for survey
designs are highlighted. As expected, the results show worse quality estimators for
smaller N. It is important to consider that in this study it is not possible to clearly
distinguish between the effects of decreases in N and decreases in N4 and N/, since

halving the N also reduces the number of higher-level units by half. Consequently, the
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results of halving the N while keeping the same N4 and N’ (by reducing the cluster
sizes) have not been assessed. Bias has been found to increase with decreases in N,
and this increase is consistent for all interviewer case allocation schemes considered in
the study. The greatest increase in bias with smaller N is observed for CASE 1.
Allocating each interviewer cases in two different areas reduces the effect of smaller N
on bias. However, sparser allocation schemes do not seem to mediate this effect
further. The increases in the biases are particularly pronounced when halving N from
2880 to 1440 for the N'=N4 scenarios. This is similar to the result obtained by
Paccagnella (2011) who shows that the improvements in the estimators’ accuracy with
sample expansions decrease as N increases. Similarly to Moineddin et al. (2007), there
is some evidence in this study of lower coverage rates for smaller N. The confidence
interval coverage rates are slightly lower for the 1440 sample size scenario compared
to the 5760 and 2880 sample size scenarios for all interviewer case allocation schemes.
Power also decreases for smaller total sample sizes. However, for the 2880 sample size
scenarios this decrease can only be noticed up to two areas per interviewer allocation
schemes for the N'=2N4 scenarios and three areas per interviewer allocation schemes
for the N'=N4 scenario. For the 1440 sample size scenarios the power values are lower
compared to the 2880 sample size scenario for all interviewer case allocation schemes,
and even for 6 areas per interviewer allocation schemes power ranges from 0.89 to
0.92. The opposite trend can be observed for the correlation between the two random
parameter estimators, with the one area per interviewer allocation scheme showing a
decrease in the negative correlation with decreasing N. This trend is more pronounced
in the N'=N4 scenario than the N'=2N4. However, this trend is negligible for both
these scenarios once interviewers are working in at least two areas each. Standard
errors of both the overall intercept and random parameter estimators seem to increase
monotonically with decreasing N. Interviewer dispersion does not mediate the effect of
decreasing N on standard errors. However, for a constant N the precision of variance
estimators improves with further interviewer dispersion - up to a limit of 3 areas per

interviewer - for N'=2N4 scenarios.

The above-mentioned results on the relationship between N and the various
properties show that reductions in N can be mediated to some extent by interviewer
dispersion. However, small N - 1440 cases - are to be avoided as even with sparse

interviewer allocation schemes they do not achieve acceptable levels of accuracy,
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precision and power. On the other hand, large and medium sized samples, including
N'=2N4 scenarios, obtain good estimates once interviewers work in at least three
areas. The percentage relative bias does not fall below 1%, even for the largest sample
considered (5760 cases). Estimators of higher-level parameters obtain bias values of
up to 3% even for large N and a large number of higher-level units (240 interviewers,
120 areas). This is similar to the results presented by Moineddin et al. (2007), where
for data with 100 groups of size 50, bias levels for random effects estimates are all

under 4%, but never reach 1% or lower.

The comparison of the N'=2N4 with the N'=N4 scenarios indicates that a higher
number of clusters as opposed to a higher cluster size for a constant N yields better
estimates. In this paper, the N does not increase as the number of groups is increased.
Instead, the number of groups is altered for a set N. Lower negative correlation

between the two higher-level random effects, higher power for the Wald test for o2,

lower standards errors for EE and lower relative percentage bias for 33 are observed for
the N/ =2 N4 compared with the N/ = N4 scenarios for some of the least sparse

interviewer allocation schemes, and especially for smaller N. The improvement in the

accuracy and precision ofEE for the smallest sample size scenario and the higher
power for the Wald test for 62 may be indicating that besides the effect of the number
of clusters (which for the area classification remains unchanged), the ratio of higher
classification units may also affect the quality of estimates with a ratio unequal to one
performing better. This result suggests that a larger N! should be working within a set

N4 for best quality estimates.

These results are consistent with previous simulation studies for two-level
hierarchical models which emphasise the importance of a higher number of clusters, as
opposed to a larger cluster size, for the quality of estimates from multilevel models.
Maas and Hox (2005) find that the coverage rates for variance parameters only
increase with increases in the number of groups, and show no change for increasing
group size. Paccagnella (2011) only documents a decrease in bias for the variance
components estimators with an increase in the number of groups, despite the fact that
both the group size and the number of groups are included as varying factors in their
simulation study. Mok (1995) looks specifically at comparing the bias for estimators

from 2-level models when simulating data with different designs, comprising different
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student (level 1) to school (level 2) ratios for various fixed N. Type a designs have a
ratio of students per school over number of schools greater than 1; Type b designs
have an equal ratio; and Type c¢ designs have a ratio of less than 1. Mok (1995)
concludes that for a fixed N, larger standard errors and larger mean squared errors are
obtained for Type a designs compared to Type b and c designs for the variance
estimator, but she finds no association between design type and bias for the random
intercept estimator. Moineddin et al. (2007) find that both the group size and the
number of groups affect the accuracy of random parameter estimates. Very small
group sizes of 5 give very high biases. However, for a scenario including 30 groups of
size 30 each, an increase to 50 groups leads to a larger decrease in bias compared to
an increase to a group size of 50. On the other hand, the number of groups is
positively related to the confidence interval coverage rates for both the random
intercept and the random slope parameters, whereas the group size is only
significantly related to the coverage rates for the random slope parameter. Rodriguez
and Goldman (1995) find both higher bias and inflated standard errors for variances of
higher-level classifications with small cluster sizes. In this study the implications of
small group sizes have not been explored since sampling very small numbers from a
sampling area is not common practice due to survey travelling costs and other
administrative expenses. While it is possible to envisage a few interviewers having a
very small caseload in very remote areas, the majority of interviewers are generally

assigned a bigger caseload.

In this study lower power of the Wald test for the random parameters and higher
correlation between the two random parameter estimators are found for higher overall
probabilities for some restrictive interviewer case allocation schemes. Higher standard
errors are obtained consistently for all estimators across all interviewer case allocation
schemes for higher overall probabilities. Moineddin et al. (2007) find that for 2-level
models lower prevalence rates of 0.1 result in higher bias and lower coverage rates
compared to higher overall probabilities. Moineddin et al. (2007) use the values 0.1,
0.34 and 0.45 for the overall probabilities. In this study the values 0.7, 0.8 and 0.9 are
included in the analysis. Both studies suggest that estimates of lower quality are
obtained for extreme values, with Moineddin et al. (2007) investigating the lower end
of the spectrum and this study investigating the higher end. For the scenarios

considered the negative correlation between the two random parameter estimators is
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reduced to less than 0.1 once the interviewers were allocated work in three areas.
Moreover, the effect of the overall probability on this correlation is only observed up to
interviewer allocation 3A. In the case of the effect of the overall probability on the
power of the Wald test, this is restricted to just the most restrictive interviewer case
allocation - CASE 1. Once interviewers work in two areas, no effect of the overall
probability on power is observed. Consequently, some of the effects of the overall
probability on the quality of estimates can be avoided during the survey administration

by assignhing work to interviewers in at least three areas.

There are mixed results in the literature on the effect of ICC on the quality of
parameter estimates. Random intercept estimators have been shown to differ
significantly by ICC values in Moineddin et al. (2007), showing higher bias for lower
ICC values. Moineddin et al. (2007) also observe a trend of higher coverage rates for
higher ICC values for the random intercept. On the other hand, Maas and Hox (2005)
and Paccagnella (2011) do not find a significant effect of the ICC value on the relative

bias or the Wald 95% confidence interval coverage rates for random parameters.

Similarly, in this study the size effect and direction of the effect of ICC on the
quality of the estimates seems to vary for different properties. Higher ICC values seem
to decrease the negative p, although this is no longer present for higher-level effects

with a large number of clusters in the sample. In fact, lower negative p are observed

2
for higher area variances o ,up until interviewer allocation CASE 3A, but no consistent

change is observed for higher interviewer variances g2 in scenarios with double the
number of interviewers to areas. Similarly, the ICC is found to have a positive
relationship with the power of the Wald test for the most restrictive interviewer case
allocation, CASE 1, but again for the other higher-level classification with twice the
number of clusters this effect is not observed. In contrast, precision seems to decrease
for higher variances. Similarly to Maas and Hox (2005) and Paccagnella (2011), in this
study no clear pattern for the change in the percentage relative mean bias of the
variance parameter estimators by ICC is observed. Contrary to the results reported by
Moineddin et al. (2007), in this study no evidence of the effect of ICC on the
confidence interval coverage rates has been found. Similar to the effect of overall
probability on the quality of estimates, these results indicate that generally once each

interviewer is allocated cases in two, and sometimes, three different areas, small ICC
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values will not be detrimental to the quality of the estimates. It is important to consider

that in this study very small variances are not being investigated.

Interviewer dispersion, which refers to the number of areas each interviewer
works in, only improves the quality of estimates up to a point. The power of the Wald
test at the 5% significance level for the baseline scenario design is close to the optimal
value of 1 for all interviewer case allocation schemes. For scenarios with smaller N, but
keeping constant all other factors, sparser interviewer allocation schemes are required
to obtain high power. Improvements in power are observed when increasing the
number of areas per interviewer from one to two for N=2880 and N=1440, and from
two to three for N=1440. Further dispersion only yields very small gains. The
correlation between the two parameter estimators is reduced to the chosen threshold
of -0.1 once interviewers are allocated to two areas for N'=2N4 scenarios, and three
areas for N! = N4 scenarios. More sparse allocation schemes do not result in
substantially lower p for the scenarios considered. Decreases in the relative percentage
bias are substantial when comparing the CASE 2 to the CASE 1 allocation scheme.
However, no systematic trend in bias reduction is observed for CASE 3-CASE 6.
Confidence interval coverage rates show problems of over- and under-coverage for
different scenarios with the CASE 1 allocation scheme, but are close to the 95%
nominal rate for all other allocation schemes. Standard errors for the variance
estimators decrease with greater interviewer dispersion up to a certain number of
areas per interviewer, which varies by N and ratio of interviewers to areas. For N'=2N4
scenarios substantial decreases in standard errors are only present up to CASE 2 for
N=5760, and CASE 3 for smaller N. N'=N4 scenarios show decreases in standard
errors up to CASE 4 for N=5760 and N=2880, and CASE 5 for N=1440.

No consistent relationship between bias, confidence interval coverage rates,
standard errors and power of the Wald test with the extent of interviewer overlap is
found. The only impact of interviewer overlap was restricted to the p values for 2 areas
per interviewer allocation schemes, with less overlap resulting in lower negative p.
Consequently for the scenarios considered in this study, once all interviewers work in
at least three areas, there is no benefit in aiming for less interviewer overlap. This
result indicates that complicating interviewer case assignments by sending interviewers

farther away from their area of residence in an attempt to avoid having the same

23



interviewers working in the same neighbouring areas is not necessary to obtain quality

estimates.

6. Conclusions and Implications for Survey Design

The simulations in this paper offer new insight into the performance of the advanced
multilevel models for realistic survey design conditions. This paper is the first work
investigating the properties for cross-classified models under different survey design
conditions. This paper has identified trends in the properties of the estimators and test

statistics across a range of values for the simulation factors considered.

This paper indicates that, as expected, purely hierarchical data is subject to
substantial biases, larger standard errors, high negative correlations between the two
random parameter estimates, under and over coverage of the Wald confidence interval,
and low power of the Wald test. Interpenetration of the higher-level groups at the
design stage is required to allow for the two higher-level effects to be disentangled
when estimating these effects using multilevel cross-classified models. For the
scenarios considered in this paper limited overlap of the higher-level groups (of
around 3 areas per interviewer for medium or large sample sizes) has been shown to
provide sufficient interpenetration for good properties. Further dispersion yields only
very small or negligible improvements in the properties. Overlap of the higher-level
groups also acts as a mediating factor on the effect of the other simulation factors
(sample size, the ratio of interviewers to areas, the overall probability, and the variance
values) on the properties of the estimators and test statistic. Reductions in total
sample size can be mediated to some extent by interviewer dispersion. However, small
N - 1440 cases - are to be avoided as even with sparse interviewer allocation schemes
they do not achieve acceptable levels of accuracy, precision and power. Importantly,
the results also show that once interviewers work in at least three areas complicating
interviewer case assignments by sending interviewers farther away from their area of
residence in an attempt to avoid having the same interviewers working in the same
neighbouring areas does not improve the quality of estimates. Consequently, study
designs should focus on allowing some interpenetration between the two higher-level
groups, whilst avoiding increasing survey costs or complicating logistics by
disregarding the extent of overlap of higher-level units from the same classification
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group. The results also suggest that for a fixed total sample size, a higher number of
clusters as opposed to a higher cluster size yields better estimates. Moreover, the ratio
of higher classification units may also affect the quality of estimates with a ratio

unequal to one performing better.

It is acknowledged that the results from this paper are restricted to the factor
values chosen and the scenarios considered. The results cannot necessarily be
extrapolated to very different survey design conditions with certainty. Further research
investigating different simulation factor values and data structures should be carried
out to corroborate and extend existing evidence on the performance of these models.
One particular area of further research should focus on the examination of these
properties for very small higher-level variances. Although the factor conditions and the
application considered here are specific to survey design and the exploration of
interviewer effects on nonresponse, the same problem of identifiability may arise in
other settings, such as in the investigation of the influence of community
physiotherapists and the influence of the hospitals in the rehabilitation of patients

having undergone orthopaedic surgery.

The paper considers the properties of variance estimators only. The data is
generated from models including an overall intercept and random effects. No
explanatory variables are considered. Other simulation papers reviewed earlier indicate
that the worst estimator and test statistic properties are observed for the variance
estimators. Consequently, the focus on the random effects is justified, as these
parameters are the ones most susceptible to influence by changes in simulation factors.
Moreover, scenarios achieving acceptable properties for the variance parameters can
be assumed to also provide acceptable properties for fixed effect parameters. In future
work the inclusion of fixed effects, especially cross-level interaction effects and

contextual effects, should be considered.

This work created the procedure and R and STATA code that can be used
independently of this research project to investigate the performance of multilevel
cross—classified logistic models for existing data structures, or to inform the design of
future studies with similar designs. A future project may focus on creating an online

platform, similar to the MLPowSim tool (Browne & Golalizadeh, 2009), for other users
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to be able to specify their data structure and run the simulation for their own specific

application.
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Tables and Diagrams

Table 1: Factor Values for Baseline and Other Scenarios

Factor Baseline Other
Number of cases per interviewer 24 48

Number of interviewers 240 30, 60, 120
Overall sample size 5760 1440, 2880
Overall propensity to respond 0.8 0.7,0.9
Area variance 0.3 0.2,0.4
Interviewer variance 0.3 0.2,0.4

Table 2: Power of Wald Test at the 95% Confidence Level by Sample Size, Ratio of

Interviewers to Areas and Interviewer Allocation (1A)

NI=2NA

Sample Size

N'=NA
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5760 2880 1440 5760 2880 1440

IA | o2 c2 o2 62 c2 ¢’ o2 c2 o2 c2 c2 c2

1 /091 100 063 092 030 0.58 0.07 0.08 0.01 0.01 0.00 0.00
2 | 100 1.00 096 098 0.77 0.81 1.00 1.00 0.97 0.98 0.67 0.68
3 |1.00 1.00 1.00 1.00 091 0.89 1.00 1.00 0.99 096 0.73 0.64
4 (100 1.00 100 100 0.88 0.8 1.00 1.00 100 1.00 0.85 0.85
5 |1.00 1.00 1.00 1.00 091 0.89 100 100 1.00 1.00 0.88 0.88
6 /100 1.00 1.00 100 092 088 100 1.00 1.00 1.00 0.91 0.88

Constant factor values: 62=0.3, 62=0.3, m=0.8

NI'=2N4: N'=240 and N4=120 for N=5760; N'=120 and N4=60 for N=2880, N'=60 and N4=30 for
N=1440; N'=N4: N'=120 and N4=120 for N=5760; N'=60 and N4=60 for N=2880, N'=30 and N4=30

for N=1440

Table 3: p by Sample Size, Ratio of Interviewers to Areas and Interviewer

Allocation
N'=2NA N'=N4
Sample Size
1A 5760 2880 1440 5760 2880 1440
1 -0.45 -0.46 -0.40 -0.91 -0.83 -0.69
2 -0.09 -0.11 -0.09 -0.19 -0.17 -0.15
3 -0.03 -0.02 0.04 -0.13 -0.12 -0.11
4 0.01 0.01 0.00 -0.04 -0.04 -0.03
5 0.02 0.02 0.03 -0.02 -0.01 -0.01
6 0.03 0.03 0.03 0.00 0.00 0.01

Constant factor values: 62=0.3, 63=0.3, m=0.8, N'=2N4
N'=240 and N4=120 for N=5760; N'=120 and N4=60 for N=2880, N'=60 and N4=30 for N=1440

Table 4: p by Overall Probability and Interviewer Allocation

1A

Overall Probability
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0.7

0.8

0.9

1
2A
2C
3A

-0.43
-0.08
-0.04
-0.01

-0.
-0.
-0.
-0.

45
09
05
03

-0.50
-0.12
-0.10
-0.04

Constant factor values: N=5760, N'=240, N4=120, 02=0.3, 62=0.3, N/=2N4

Table 5: Relative Percentage Bias by Sample Size, Ratio of Interviewers to Areas
and Interviewer Allocation

N'=2NA N'=N4
Sample Size
1A 5760 2880 1440 5760 2880 1440 5760 2880 1440 5760 2880 1440
1| -3.2 -6.7 -5.3 6.8 11.2 19.8 2.3 4.4 12.5 3.6 56 11.3
2 2.0 2.6 4.8 1.3 1.9 2.4 3.6 4.0 10.8 1.5 5.0 9.0
3 2.4 4.2 6.1 0.1 1.2 1.1 1.6 3.1 10.5 1.0 4.3 5.3
4 1.7 3.3 5.0 0.7 1.3 1.8 1.7 1.5 9.8 1.9 4.2 9.7
5 1.7 2.4 7.2 1.0 1.5 3.4 2.0 2.6 8.6 1.4 4.9 8.3
6 1.1 3.1 7.4 0.7 1.8 2.4 1.6 3.8 10.3 1.9 3.0 6.7

Constant factor values: ¢2=0.3, ¢3=0.3, m=0.8
N!=2N4: N'=240 and N4=120 for N=5760; N'=120 and N“=60 for N=2880, N'=60 and N4=30 for

N=1440; N'=N4: N'=120 and N4=120 for N=5760; N'=60 and N4=60 for N=2880, N'=30 and N4=30
for N=1440

Table 6: Standard Errors by Sample Size, Interviewer Allocation and Ratio of

Interviewers to Areas

N!=2N4 scenarios
Sample Size
5760 2880 1440
o2 o’ o2 o2 o2 o2

1 0.094 0.085 0.148 0.143 0.191 0.184
2 0.070 0.063 0.104 0.094 0.153 0.134
3 0.067 0.060 0.097 0.087 0.140 0.123
4 0.065 0.059 0.095 0.085 0.143 0.126
5 0.064 0.058 0.093 0.084 0.143 0.125
6 0.064 0.059 0.092 0.084 0.142 0.123

N!=2NA4 scenarios
1 0.252 0.252 0.273 0.273 0.318 0.317
2 0.077 0.076 0.111 0.112 0.171 0.169
3 0.073 0.075 0.107 0.112 0.165 0.167
4 0.067 0.067 0.096 0.098 0.153 0.153
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5 0.065 0.065 0.095 0.096 0.147 0.147
6| 0.064 0.064 0.095 0.094 0.147 0.144

Constant factor values: 62=0.3, ¢2=0.3, m=0.8

NI'=2N4: N'=240 and N4=120 for N=5760; N'=120 and N4=60 for N=2880, N'=60 and N4=30 for
N=1440; N'=N4: N'=120 and N4=120 for N=5760; N'=60 and N4=60 for N=2880, N'=30 and N4=30
for N=1440

Diagram 1
CASE 1
Area Interviewers
1 1 2
2 3 4
3 5 6
4 7 8
5 9 10
6 11 12
Diagram 2
CASE 2A
Area Interviewers
1 1 2 3 4
2 1 2 3 4
3 5 6 7 8
4 5 6 7 8
5 9 10 11 12
6 9 10 11 12
CASE 2B
Area Interviewers
1 (240 1 2 3|
2 |1 2 3 4 |
3 |4 5 6 7|
4 |5 6 7 8|
5 | 8 9 10 11|
6 |9 10 11 12 |
CASE 2C
Area Interviewers
1 239 240 1 2 |
2 |1 2 3 4 |
3 |3 4 5 6|
4 |5 6 7 8|
5 |7 8 9 10|
6 |9 10 11 12|
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Diagram 3

CASE 1: N'=NA4

Area Interviewers

1 1

2 2

3 3

4 4

5 5

6 6
CASE 2: N'=NA4

Area Interviewers

1 1 2

2 1 2

3 3 4

4 3 4

5 5 6

6 5 6
CASE 3: N'=N4

Area Interviewers

1 1 2 3

2 1 2 3

3 1 2 3

4 4 5 6

5 4 5 6

6 4 5 6
CASE 4: N'=N4

Area Interviewers

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

5 5 6

6 5 6
CASE 5: N'=N4

Area Interviewers

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5

4 1 2 3 4 5

5 1 2 3 4 5

6 6 10 |
CASE 6: N'=N4

Area | Interviewers
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