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Abstract

Cross-classified multilevel models deal with data pertaining to two different non-
hierarchical classifications. It is unclear how much interpenetration is needed for a
cross-classified multilevel model to work well and to reliably estimate the two higher-
level effects. The paper investigates this question and the properties of cross-classified
multilevel logistic models under various survey conditions. The effects of different
membership allocation schemes, total sample sizes, group sizes, number of groups,
overall rates of response, and the variance partitioning coefficient on the properties of
the estimators and the power of the Wald test are considered. The work is motivated by
an application to separate area and interviewer effects on survey nonresponse which
are often confounded. The results indicate that limited interviewer dispersion (around
3 areas per interviewer) provides sufficient interpenetration for good estimator
properties. Further dispersion yields only very small or negligible gains in the
properties. Interviewer dispersion also acts as a moderating factor on the effect of the
other simulation factors (sample size, the ratio of interviewers to areas, the overall
probability, and the variance values) on the properties of the estimators and test
statistics. The results also indicate that a higher number of interviewers for a set

number of areas and a set total sample size improves these properties.
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1. Introduction

In face-to-face surveys interviewers play a crucial role in gaining responses from
sample members (Blom et al., 2010; Durrant & Steele, 2009; Durrant et al., 2010;
Campanelli & O'Muircheartaigh, 1999; Hox & De Leeuw, 2002; Pickery & Loosveldt,
2002; Pickery et al., 2001; Haunberger, 2010). Interviewer characteristics found
significant explaining the response include age (Blom et al., 2010; Hox & De Leeuw,
2002), gender (Hox & De Leeuw, 2002; Hansen, 2006), interviewer education (Durrant
et al., 2010; Haunberger, 2010), pay grade and years of experience (Durrant et al.,
2010; Hox & De Leeuw, 2002; Hansen, 2006), and attitudes regarding the persuasion
of reluctant respondents (Blom et al., 2010; Durrant et al., 2010). Area effects on non-
response may arise due to environmental factors, such as physical accessibility and
urbanicity (Haunberger, 2010), as well as similarities in sociodemographic,
socioeconomic and cultural characteristics of households, and perception of privacy,
crime and safety. To some extent area effects may therefore be considered to be
aggregated household effects. In fact, studies by Campanelli and O'Muircheartaigh
(1999) and Durrant et al. (2010) show that area random effects are not significant after
controlling for fixed household-level effects in a cross-classified model. Significant
area affects in the literature include an indicator of urbanicity/rurality (Blom et al.,
2010; Durrant et al., 2010), region (Haunberger, 2010), and the proportion of non-
white race population in the area (Campanelli et al., 2007).

Since interviewers usually work in a restricted geographical area any interviewer
effect identified could simply reflect area differences in the geographic propensity to
cooperate in survey requests. Therefore, a particular estimation problem pertains to
the identifiability of area and interviewer variation. In a random experiment an
interpenetrated sample design would be employed, where each sampled case is
allocated randomly to interviewers irrespective of their area. This is considered the
gold standard for separating interviewer effects from area effects for face-to-face
surveys, but is not implemented in survey practice owing to restrictions in field
administration capabilities and survey costs (Schnell & Kreuter, 2005; Campanelli, &
O'Muircheartaigh, 1999). A compromise which is achievable in a real survey setting is
partial interpenetration. Partial interpenetration exists where interviewers are not fully
nested within areas, as one interviewer may work in more than one area, and sampling

cases in one area may be designated to more than one interviewer. In the case of



partial interpenetration a cross-classified multilevel model specification which
considers both interviewer and area random terms has been suggested to distinguish
between the two sources of variation (Von Sanden, 2004). Although a range of papers
have used such models to distinguish between area and interviewer effects (Campanelli
& O'Muircheartaigh, 1999; Durrant et al., 2010; Schnell & Kreuter, 2005), it is unclear
how much interpenetration may be needed for a cross-classified multilevel model to
work well and to reliably estimate interviewer and area effects. In particular, in
circumstances of small sample sizes and low degrees of interpenetration in the
dispersion of interviewers across areas, problems of biased estimates and low power
for significance tests may arise. Some previous studies (Maas & Hox, 2005; Moineddin
et al., 2007; Paccagnella, 2011; Rodriguez & Goldman, 1995; Theall et al., 2011) have
looked at the properties of estimators and the power of significance tests for two-level
models. However, questions regarding how well cross-classified multilevel model
parameters can be estimated have not yet been explored.

This study examines the implications of various practical limitations in the
assignment of cases from different areas to interviewers within a range of scenarios
through a simulation study. These different scenarios include different total sample
sizes, group sizes (interviewer caseload), number of groups (number of interviewers),
overall rates of response, and the percentage variance attributable to area and
interviewer effects. Interviewer-area classifications are restricted to possible
interviewer work allocations, and selected values for the other factors represent
realistic values, making the simulation results relevant to survey practice. The
implications are assessed in terms of bias, confidence interval coverage, correlation of
the two variance estimators and power of significance tests. The study also examines
the smallest interviewer pool and the most geographically-restrictive and cost-
effective interviewer case allocation required for acceptable levels of bias and power
for typical survey scenarios. By suggesting minimal sample sizes and interviewer
dispersal patterns to guide survey design and administration, and by shedding light on
the accuracy and precision of the estimates and the power of their tests of significance
in multilevel modelling, this study contributes to different areas of research: study
design and parameter estimation (Paccagnella, 2011).

Although the factor conditions and the application considered here are specific
to survey design and the exploration of interviewer effects on nonresponse, the same

problem of identifiability may arise in other settings. For example, other survey design
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applications may consider the variation in the response to questionnaire items
attributable to interviewers, with the aim of quantifying any interviewer influence on
responses (measurement error).

The remainder of the paper is structured as follows. First a review of multilevel
models and their mathematical properties are presented, followed by an explanation of
the use of multilevel models for the analysis of interviewer effects on nonresponse.
Then a review of previous work exploring the properties of cross-classified and two-
level hierarchical models is given. Section 3 presents the details of the design of the
simulation study and the analysis carried out. Next, results are presented, followed by

a discussion and conclusions.

2. The Multilevel Cross-Classified Model
2.1. Model Specification

The independent errors assumption in standard regression analysis is often not valid
for social science data. Individual observations which pertain to a common higher-level
grouping - such as school, family, neighbourhood or work organisation - may have
similarities arising from the common context which give rise to dependency amongst
their observations. Multilevel modelling allows for an extension of the error term
included in standard regression analysis to be able to adjust for such dependencies
(Goldstein, 2011). Consequently, multilevel models allow the variation in the outcome
variable to be partitioned into various sources, these being both individual and group
sources. Group similarities are considered as substantively interesting rather than as a
model assumption infringement which needs to be accounted for, thus allowing the
exploration of significant individual and group influences as well as any possible
interactions between these two factors on the individual-level outcome of interest. As
well as allowing for a detailed analysis of predictors defined at the cluster-level (also
called contextual effects) through the inclusion of a higher-level random effect and
contextual or aggregate fixed effects, multilevel models allow for the inclusion of data
at the individual level. This helps avoid loss of information at the individual level, a
smaller sample size, and the risk of ecological fallacy from analysing aggregated data.
Such models do not assume that all contextual effects are included through observable

predictors as in a contextual analysis, and avoid restricting inference to the groups



sampled in the data and the inclusion of a large number of dummy variables as in a
fixed effects model. Multilevel models also offer more flexibility than other methods to
correctly account for a complex structure.

The general form of a logistic multilevel model for purely hierarchical data with

two levels is:

1_7Tij
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Here m;; is the probability of individual i in cluster j taking on a value of 1 for the y
variable, where y is a dummy variable indicating whether a person experienced an
event or has a particular characteristic. B, represents the overall intercept in the linear
relationship between the log-odds of y and the predictor variables included in the

model, X;;, and is the log-odds for an individual pertaining to the reference categories

jis
of the categorical variables, having a value of 0 on continuous variables and belonging
to the average higher-level group (a group with a value of O for the higher-level
random effect u;). The vector B; contains the coefficients for each explanatory variable
in the model when all other predictor variables are controlled for. These coefficients
are also known as the cluster-specific effects of the explanatory variables, since they
represent the effect of a unit increase in the covariate on the log-odds that the

individual has a value of 1 on the outcome variable y, for a constant value of u; and
therefore within the same higher-level group j. The vector X;; represents the predictor
variables which may be defined at the individual or cluster level. The predictor
variables may also include interaction effects or cross-level interaction effects. The u;
represent the random effects for the higher level classification units, which are
assumed to follow a normal distribution with mean 0 and variances ¢2.

Besides purely hierarchical structures, multilevel models can also deal with data
pertaining to two different non-hierarchical classifications (cross-classifications)
(Fielding & Goldstein, 2006). The general form of such a cross-classified multilevel
logistic model is:

log <17_T%> = Bo+ BT Xijsy + Ui+ v, (2)
i(Js)
Here 7 is the probability of individual i in clusters j and s taking on a value of 1 for

the y variable. The parameters u; and v, represent the random effects for each higher-



level classification, which are assumed to follow a normal distribution with variances ¢

and o2.

2.2. Review of Properties of Cross-classified Models
For the case of cross-classified multilevel models, sample-size requirements and the
level of interpenetration required between the two cross-classified higher level
classifications necessary for accurate parameter estimation have not yet been
considered. What is currently available is a software package which produces power
calculations for various sample sizes, data structures and random effects sizes -
MLPowSim (Browne and Golalizadeh, 2009). This package is limited to power
calculations, and does not have the capability of providing the other properties
considered in the current paper. For cross-classified models the estimation is carried
out in R using the Imer function. The most flexible template for cross-classified data in
MLPowSim enables the user to specify the total sample size, the number of higher-
level groups, the probabilities of sampled cases pertaining to each higher-level
combination, and the expected variances. The MLPowSim manual includes an example
with exam attainment at age sixteen - a continuous variable - chosen as the outcome
variable, where each student is associated with both a primary and secondary school.
For this particular application, results show that sampling additional cases (students)
from new higher-level groups (schools) results in greater power increases than
sampling additional cases from higher-level groups already included in the sample.
Also, adding further cases per higher-level grouping only benefits power calculations

up to a threshold number of cases.

A number of papers exist (Rodriguez & Goldman, 1995; Paccagnella, 2011; Moineddin
et al., 2007; Theall et al., 2011; Maas & Hox, 2005) that assess the impact of various
factors, including sample size and outcome probability, on the properties of two-level
hierarchical model estimates - for both continuous and binary outcome variables -
through simulation studies. By definition two-level models do not include data
pertaining to two classifications, and therefore the impact of interpenetration on model
estimates cannot be reviewed in these studies. The results of these studies will be
presented in the discussion section when reviewing this paper’s results for cross-

classified models.



2.3. Estimating Area and Interviewer Effects
The analysis of interviewer effects has become a popular application of multilevel
methods (Von Sanden, 2004). Sample cases are nested within interviewers. However,
interviewers generally work in a limited geographic area, and to the extent that people
from certain areas are more or less likely to cooperate, significant interviewer effects
may simply indicate area effects. Moreover, there may also be area effects on
nonresponse, arising due to similarities in socio-economic and cultural characteristics,
in the perception of privacy, crime and safety, as well as in environmental factors such
as physical accessibility and urbanicity across geographic boundaries (Haunberger,
2010). One approach to estimate interviewer effects in the past has been to simply
ignore area effects (Pickery & Loosveldt, 2002; Haunberger, 2010; Blom et al., 2010)
which clearly could yield misleading results and may overstate the effect of
interviewers. Few studies have attempted to disentangle interviewer and area effects by
specifying a cross-classified multilevel model for multistage cluster sample design
data (Campanelli & O'Muircheartaigh, 1999; Durrant et al., 2010). This model
specification prevents confounding only when the data is partially interpenetrated,
which means that interviewers are not fully nested within areas, with interviewers
working in more than one primary sampling unit (PSU), and cases in one PSU
designated to more than one interviewer. In this particular application of sample units
within interviewers operating within sampling areas, the higher-level variance is

divided into two parts - the interviewer-level variance and the area-level variance.

3. Design of the Simulation Study

First, the process by which the data in the simulation study is generated is presented.
Then, the cross-classified multilevel logistic regression model which is fitted to the
simulated data is presented. The various simulation scenarios and the design factor
values considered are then specified. Finally, the measures used to assess the
properties of the estimators and test statistics, including the rationale for considering
each measure and the equations used for their calculation, as well as model

diagnostics, are presented.



3.1. Data Generating Procedure
In this simulation study the focus is on the random parameter estimates, and therefore
only an overall intercept g, is included as a fixed effect. Its value is determined after
considering the overall probability of the outcome for the mean area and the mean

interviewer, m, by using the following formula:

Bo=log—. (3

This value is fixed for all cases. Then, a cluster-specific random effect for each
interviewer and area is generated separately from a normal distribution of mean 0 and
variances o; and o respectively. The log-odds of each case, 7,5, are computed by
adding the overall intercept value to the simulated random effects. These values are
then converted to probabilities using the equation:

exp(Mi(js))

1+ exp(Migjs))

Values of the dependent variable Y; ), a dichotomous outcome - with O signifying

Di(js) = €))

nonresponse and 1 signifying response to the survey request - for each case, are
generated from a Bernoulli distribution with probability p; ;.

For scenarios which vary only in the interviewer case allocation the same set of
1000 cluster-specific random effects is used. This strategy underlies the fact that while
interviewers are assumed to come from an infinite population, the allocation of
workload from different areas to specific interviewers is limited to a finite number of
possibilities. Based on the usual design of a 2-stage clustered household survey, areas
would not normally be expected to be adjacent. Hence, areas are assumed to be

independent in the design of this simulation study.

3.2. Estimation of the Multilevel Cross-Classified Model
The following multilevel cross-classified model is then fitted to the simulated data to
identify interviewer and area random effects (without covariates for simplicity):
logit(pi¢js)) = Miggs) =Bo+uj+ vs,  (5)
where the interviewer-specific residuals u; are distributed N(O, 02) and the area-
specific residuals v, are distributed N(0, 62). The analyses of the simulated datasets are
carried out using STATA Version 12 calling MLwiN Version 2.25 through the ‘runmlwin’
command (Leckie & Charlton, 2011). Models are fitted using the Markov Chain Monte



Carlo (MCMC) estimation method with default priors, and, depending on the rate of
convergence, a burn-in length of between 5,000 and 10,000 and between 200,000
and 500,000 iterations. Initial values for parameters are obtained by making use of the

second order penalised quasi-likelihood (PQL) estimation method.

3.3. Simulation Scenarios
To explore the properties of estimators, a simulation experiment is carried out using a
factorial design. The simulated scenarios vary in the following factors: overall sample
size (N), number of interviewers and areas ( N/ and N4), and by consequence number
of cases per interviewer and per area, level of cross-classification between interviewer
and area allocations, higher-level variance, and overall probability of the outcome
variable (m).

The choice of the values for the various factors reflects realistic representations
of general household survey scenarios. N4 in this simulation study will not be altered
for a specific N. The initial numbers chosen for N, N4, and N! are based on the values
obtained from a real survey and slightly adapted to obtain numbers which are easily
divisible to obtain balanced designs. The main design, which will be referred to as the
baseline scenario design, includes 120 areas consisting of 48 cases per area allocated
to 240 interviewers who each have a workload of 24, totalling 5760 cases, with the
area variance ¢2=0.3, interviewer variance ¢2=0.3 and an overall probability = =0.8.
The impact of different interviewer-area classifications - varying in terms of the
number of areas each interviewer works in (and consequently the number of
interviewers per area) and the overlap of interviewers working in neighbouring areas -
on the properties of the estimators and test statistic for the baseline scenario factors is
analysed. The number of areas each interviewer works in will be allowed to vary from 1
to 6.

For illustration, the diagrams show the area-interviewer allocations for the first
6 areas. The areas are considered as sequential numbers in a circle, with the final area
- area 120 - neighbouring the first area - area 1. Each box represents an area and the
numbers within each box represent the interviewers working within that area (numbers
from 1 to 240). The simplest case - Case 1 - is where two interviewers work in each
area, with each interviewer working only in one area (Diagram 1). In this case, there is

no overlap in neighbouring areas with respect to the interviewers working within them.



This in fact represents a purely hierarchical model, with individuals nested in
interviewers which in turn are nested in areas. For scenarios with an equal number of
interviewers and areas these two variables are confounded.

[Diagrams 1-3 about here]

Next, an interviewer can work in two areas, with four interviewers working in
each area (Diagram 2). Three possible scenarios exist. The most overlap occurs for the
scenario which allocates the same set of four interviewers to work in two neighbouring
areas (Case 2A). Alternatively, groups of three interviewers are repeated in two
neighbouring areas with a fourth interviewer varying in the two areas (Case 2B). Thirdly,
pairs of interviewers are always allocated together, with each particular pair never

occurring twice with another pair (Case 2C).

Similar allocation patterns are considered for schemes where the interviewer
works in three or more areas (diagrams not presented). The same basic principle of
decreased overlap as one moves from the allocation A to subsequent allocations
applies. For cases where interviewers work in three areas and each area includes six
different interviewers, seven different allocation possibilities are considered. With
interviewers working in more areas, less variations of overlap are considered, and this
is simply due to the feasibility of such allocation schemes in practice. Three allocation
schemes are considered for situations when each interviewer works in four, five and six
areas, and cases within each area are allocated to eight, ten and twelve different
interviewers respectively.

Due to computer power limitations and dependencies between factors - such
that for a fixed sample size a change in the number of clusters (interviewers or areas)
also changes the number of cases per cluster and the level of cross-classification
between the two higher-level classifications, it was impossible to consider all factor
combinations. Only one simulation factor at a time is changed, keeping all other
factors constant. Table 1 outlines the baseline values as well as the other values
considered for each factor in the simulation study.

[TABLE 1 about here]

The analysis for the initial baseline scenario design, containing 5760 cases,

highlights a need to consider a smaller N. New datasets, amounting to one half and
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one fourth of the original baseline scenario caseload (2880 cases from 60 areas
allocated to 120 interviewers and 1440 cases from 30 areas allocated to 60
interviewers) are also generated. For the baseline scenario there are twice as many
interviewers as there are areas, N'=2N4. Another alternative considered is to have an
equal number of interviewers and areas, N'=N4, that is, 120 interviewers for 120 areas
for N=5760. For this data structure only six interviewer-area allocation schemes are
considered, varying from the most geographically restrictive case where one
interviewer works only in one area, to the most sparse where each interviewer works in
six areas. In this case, variations in the amount of overlap in the groups of interviewers
allocated to each area are not attempted, and the allocation schemes always allow the
same group of interviewers to work together in neighbouring areas. These allocation
schemes shown in Diagram 3, denoted as Case a, where a represents the number of
areas each interviewer works in, are therefore comparable to the allocation schemes

Case 2A outlined above.

3.4. Evaluation: Properties of the Estimators and Test Statistics
The models are assessed in terms of the following properties: the correlation of the
two variance estimators, the percentage relative bias, the mean squared error, the
confidence interval coverage, and the power of tests. The covariance between the area
and interviewer variance estimators is a quality measure in itself. For easier

interpretation the correlation p for each dataset is calculated using the formula

1000 1000 A ) )

cov; au,a,,
1000 2 corr; Uu"’” ~ 1000 Z \/

)

var; au)var (52)

‘Good’ estimators are expected to show no substantial correlation. High
negative correlation values indicate problems with the identifiability of the two variance
parameter estimates. In such cases the model may correctly estimate the total higher-
level variance, which is the sum of the interviewer and area variances, but incorrectly
apportion the variance to the two higher-level classifications, producing biased
estimates for the individual random parameters. One estimate would be over-
estimated, and the other estimate would be under-estimated, resulting in a negative
correlation. Negative correlation values of -0.1 or higher will be considered

problematic. Browne et al. (2001) make reference to this problem, and refer to it as the
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collinearity of random terms, and identify “poor mixing properties and high negative
cross—chain correlations” (p.14) as good identifiers of this problem.

The percentage relative bias of the parameter is calculated to determine the
accuracy of the parameter estimators. We only consider estimated percentage relative
bias values above 3% as substantial. Standard error accuracy is assessed using the
coverage method (Maas & Hox, 2005), where coverage of the true parameter value
within the 95% Wald confidence interval of the parameter estimate for each simulated
dataset is recorded separately. The coverage rate is recorded for all simulation
scenarios and compared with the nominal rate of 95%. The null hypothesis, specifying
the true parameter value to be zero, is tested for both variance parameters of each
simulated dataset by using the Wald test. The power of a test indicates the probability
that the null hypothesis is correctly rejected. Maas and Hox (2005) explain that basing
the testing of significance for variance parameters using the asymptotic standard error
is not ideal. Such a test is based on normality assumptions. Testing of the null
hypothesis, which specifies the random parameter to be equal to zero, lies on the
boundary of the permissible parameter space, since variances can only be positive. The
standard likelihood theory no longer holds at this boundary. However, this practice is
widely used and justifies its use in this simulation study. In calculating the power for
the variance parameters the p-values are halved, since variances cannot be negative,

and therefore the alternative hypothesis is one-sided (Snijders & Bosker, 1999).

3.5. Diagnostics
Results may be affected by convergence issues or inappropriate starting values. To
identify the appropriate burn-in length and to avoid undue influence from the starting
values different burn-in lengths are explored for each scenario for a sample of the
simulated datasets (Gelman et al., 2004). Similarly, the Brooks-Draper and Raftery-
Lewis diagnostics (Browne, 2012) are checked to identify the length of chain required
for accurate point estimates and 95% credible intervals. As a further check, these
diagnostics, obtained and saved for each model run, are inspected for convergence.
For each scenario a visual inspection of some of the trace plots of the parameters is

also carried out.
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4. Results

To remind the reader of what has been outlined in the design section, the baseline
scenario design has the following properties: 120 areas (48 cases per area) allocated to
240 interviewers (24 cases per interviewer), totalling 5760 cases, 62=0.3, ¢2=0.3 and
m=0.8. Generally one or two factors from the following: 62 and o2, @, N and the ratio of
interviewers to areas (dependent on N! and N4), are changed for every new scenario.
For every specific set of factor values different interviewer allocation schemes are
specified, giving rise to more scenarios. The impact (or lack of effect) of these factors
on the properties of the estimator are reviewed. General patterns are documented and

any possible interactions between factors highlighted.

The properties for the overall intercept g, showed relatively stable results across
different factor values. Under all simulation scenarios the test for g, obtains a power of
1. Accurate intercept estimates B, are obtained even for small N and very
geographically-restrictive interviewer allocation schemes. The Wald coverage rates are
close to the 95% nominal rates across all scenarios. Consequently, the analysis of the
impact of various factor changes for the above-mentioned properties will be restricted
to the random parameters. These patterns for each property across factors will now be

summarised.

4.1. Power of Test
For the baseline scenario design the power of the Wald test at the 5% significance level
is equal to the optimal value of 1 for all interviewer case allocation possibilities for
both random parameters except for the test for 2 for the least sparse interviewer

allocation (Case 1) which yields a power of 0.91 (Table 2, Columns 1 & 2).

[TABLE 2 about here]

Interviewer dispersion is the factor which shows the greatest impact on power.
For scenarios with one interviewer per area allocation scheme power is observed to
decrease to 0 for certain scenarios (Table 2, Row 1), as expected given the exact
collinearity between areas and interviews, whereas the lowest power observed for two
interviewers per area allocation schemes is 0.67 (Table 2, Row 2). There is a threshold,

which varies for different factor value combinations, beyond which further dispersion
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does not yield power gains. On the other hand, reduced interviewer overlap for a
constant number of areas per interviewer does not improve the power (Table 3). Here
overlap refers to the extent that the group of interviewers working in neighbouring
areas are the same, such that Case 2A has greater overlap than Case 2C. (Complete

results for Table 3 can be found in the online Appendix Table Al.)
[TABLE 3 about here]

Tables 2 and 3 show that for scenarios with smaller N, but keeping constant all
other factors, lower power is obtained for the allocation schemes with the least
interviewer dispersion (number of areas an interviewer works in). Therefore, sparser
interviewer allocation schemes are required to obtain similar high levels of power for
scenarios with a smaller N. The effect of sample size reduction on power is greater for
N'=N4 scenarios (Table 2, Columns 1-6) compared with N'=2N4 scenarios (Table 2,
Columns 7-12).

When only the overall probability varies, with other factors kept constant at their
baseline values, for Case 1 scenarios more extreme overall probabilities result in lower
power for the random parameters o2 and o2 (online Appendix Table A2). Extreme
overall probabilities seem to have a greater impact on the power of tests for random
effects parameters which have a smaller number of higher-level units in the sample, i.e.
the area random parameter ¢2? compared to the interviewer random parameter o2

(online Appendix Table A2).

The number of higher-level units as well as interviewer dispersion moderate the
effect of a lower variance on the power of the test for the random parameter, such that
the only difference in power across different variances is observed for Case 1 for the
area variance parameter (online Appendix Table A3) Increasing the area variance while
maintaining constant the interviewer variance results in higher power. Interestingly, for
Case 1 for a specific value of the area variance higher power for the test of the area

parameter is obtained when the interviewer variance is smaller.

For N'=2N4 scenarios, where substantial differences can be noticed for the
power of the tests for the random parameters, the power for the area parameter o2 is
consistently lower than that for the interviewer parameter o2 (Table 2). No difference is

observed for N'=N4 scenarios. These results indicate that the number of higher-level
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units moderates the effect of a lower intra cluster correlation (ICC) on the power of the

tests for the random parameters.

The ratio of interviewers to areas also influences the power for the random
parameters. Scenarios having N! = N4 require more interviewer dispersion than
equivalent N'=2N4 scenarios to obtain the same power for the random parameters
(Table 2).

4.2. Correlation between Random Parameter Estimators
Interviewer dispersion highly influences p between the two variance estimators. High
negative correlations (greater than 0.4 and up to a maximum of 0.91) are obtained for
all scenarios when interviewers are working in only one area (Tables 4 and 5, Row 1).
This correlation is reduced to less than -0.2 once interviewers work in two areas
(Tables 4 and 5, Row 2).
[TABLES 4 and 5 about here]

No effect of sample size on p is observed for allocation schemes which allocate
interviewers to at least two areas (Table 4). For Case 1 (Table 4, Row 1) the correlation
varies across N, a mainly for N/=N4 scenarios Therefore, the effect of N on p is
moderated by the number of higher-level units, or an unequal ratio of the two higher-
level units, as well as the interviewer dispersion.

Scenarios with equal numbers of areas and interviewers obtain higher negative
correlations than scenarios with twice the number of interviewers to areas (Table 4).
This difference may be explained in terms of improved identifiability of the variance
decomposition for scenarios with higher number of clusters, or alternatively an
unequal number of clusters for the two classifications.

The negative correlation increases, monotonically but not linearly, with
increasing overall probabilities (Table 5). For allocation schemes with at least three
areas per interviewer the effect of overall probability on p is marginally lower.

Higher area variance values result in lower negative correlations for the more
restrictive interviewer allocation schemes, whilst no trend is identified when varying

the interviewer variance (online Appendix Table A4). These results suggest that the

15



number of higher-level units associated with a variance parameter moderates the
effect of the variance on p.

Lower negative correlation is obtained for the two areas per interviewer
allocation schemes which have less overlap (Table 5, Rows 2 and 3). There seems to be
no effect for interviewer overlap for more dispersed interviewer allocation schemes.
This result indicates that the impact of interviewer overlap is moderated by the

interviewer dispersion, that is, the number of areas an interviewer works in.

4.3. Percentage Relative Bias of Parameter Estimators
In most scenarios with N=5760, the relative percentage biases for the variance
parameter estimators are around 1-3% once interviewers are allocated work in at least
two areas (Table 6). The bias is much higher for interviewer allocation schemes which
restrict the interviewer to working in one area (Case 1). The biases for Cases 2-6
fluctuate around within the range specified above, failing to show any systematic
reduction with further dispersion and less interviewer overlap. For interviewer case
allocation schemes in which interviewers are working in at least two areas, the area
random parameter g2 bias is almost always greater than the interviewer random
parameter ¢2 bias (Table 6, Columns 1-6, Rows 2-6). This again confirms the

importance of group size for the accuracy of parameter estimators.
[TABLE 6 about here]

As expected, greater biases for the o2 and o2 estimators are observed for
smaller N, with the scenario including 1440 cases with N/ = N4 obtaining biases
between 5-13% for all allocation schemes (Table 6, Columns 9 and 12). Scenarios with
N'=N4 (Table 6, Columns 7-12) generally obtain higher biases for both variance
parameter estimators than N'=2N4 scenarios (Table 6, Columns 1-6). This trend is
observable for the interviewer parameter g2 estimator. This trend is what would be
expected due to the greater number of interviewers in the N'=2N4 scenarios compared
to the N'=N4 scenarios. On the other hand, for the area parameter ¢2? estimator -
where N4 =120 in both the N/=N4 and N!=2 N4 scenarios - this pattern is less
consistent for the 5760 and 2880 sample size scenarios. However, with a total sample

size of 1440 the N'=N4 scenario yields consistently higher biases than the N'=2N4
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scenarios. These results may support the hypothesis that having more interviewers
estimates the interviewer variance better and hence also the area variance. No clear
trend for the change in bias by interviewer overlap, interviewer dispersion beyond two
areas per interviewer, overall probability and by variances is observed (online Appendix
Tables A5 and A6).

4.4, Wald Confidence Interval Coverage
The Wald confidence interval coverage rates are close to 95% nominal rate - between
94-96% - in most scenarios. However, there are some cases of under-coverage (lowest
observed rate is 87%) as well as very few cases of over-coverage (highest observed rate
is 100%) for scenarios where each interviewer works only in one area. Slightly lower
coverage rates are observed for smaller N in most scenarios for both ¢2 and o2 (Table
7). (Complete results for Table 7 can be found in the online Appendix Table A7.) Only
the scenarios with the smallest sample size of N=1440 consistently obtain non-
accurate coverage rates across all interviewer case allocation schemes. However, these
rates do not fall below 89% once each interviewer is allocated work in at least two areas.
Coverage rates closer to the 95% nominal rate for the o2 parameter are noticeable for
the N'=2N4 scenarios compared to the N'=N4 scenarios for N=5760 (Tables 7 & 8).
This improvement in the confidence interval coverage rate with an increase in the
number of interviewers from 120 interviewers to 240 interviewers no longer occurs for

smaller N.
[TABLES 7 and 8 about here]

Some factors considered in this study do not seem to influence coverage rates.
There does not seem to be a consistent pattern in the coverage rates by the overall
probability or by the higher-level variances. Neither do the results show any evidence

of the extent of interviewer overlap influencing coverage rates.

5. Discussion of Results

As expected, the results show worse quality estimators for smaller N. It is important to

consider that in this study it is not possible to clearly distinguish between the effects
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of decreases in N and decreases in N4 and N/, since halving the N also reduces the
number of higher-level units by half. Bias has been found to increase with decreases in
N, particularly when halving N from 2880 to 1440 for the N'=N4 scenarios. This is
similar to the result obtained by Paccagnella (2011) who shows that the improvements
in the estimators’ accuracy with sample expansions decrease as N increases. Similarly
to Moineddin et al. (2007), there is some evidence in this study of lower coverage rates
for smaller N, noticeable for the 1440 sample size scenario compared to the 5760 and
2880 sample size scenarios. Power also decreases for smaller total sample sizes,
though this effect is moderated by interviewer dispersion. The opposite trend can be
observed for the correlation between the two random parameter estimators, with the
one area per interviewer allocation scheme showing a decrease in the negative
correlation with decreasing N. This trend is more pronounced in the N'=N4 scenario
than the N'=2N4. However, this trend is negligible for both these scenarios once

interviewers are working in at least two areas each.

The above-mentioned results on the relationship between N and the various
properties show that reductions in N can be moderated to some extent by interviewer
dispersion. However, small N - 1440 cases - are to be avoided as even with sparse
interviewer allocation schemes they do not achieve acceptable levels of accuracy,
precision and power. On the other hand, large and medium sized samples, including
N'=2N4 scenarios, obtain good estimates once interviewers work in at least three
areas. The comparison of the N'=2N4 with the N'=N4 scenarios indicates that overall
it is expected that a higher number of clusters as opposed to a higher cluster size for a
constant N yields better estimates. In this paper, the N does not increase as the
number of groups is increased. Instead, the number of groups is altered for a set N.

Lower negative correlation between the two higher-level random effects, higher power
for the Wald test for 62, lower standards errors for o2 and lower relative percentage

bias for o2 are observed for the N'=2N4 compared with the N/=N4 scenarios for some
of the least sparse interviewer allocation schemes, and especially for smaller N. The
improvement in the accuracy and precision of EE for the smallest sample size scenario
and the higher power for the Wald test for 62 may be indicating that besides the effect
of the number of clusters (which for the area classification remains unchanged), the

ratio of higher classification units may also affect the quality of estimates with a ratio
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unequal to one performing better. This result suggests that a larger N/ should be
working within a set N4 for best quality estimates. These results are consistent with
previous simulation studies (Maas and Hox, 2005; Paccagnella, 2011; Mok, 1995) for
two-level hierarchical models which emphasise the importance of a higher number of
clusters, as opposed to a larger cluster size, for the quality of estimates from
multilevel models. In this study lower power of the Wald test for the random
parameters and higher correlation between the two random parameter estimators are
found for more extreme overall probabilities for some restrictive interviewer case
allocation schemes. Both this study and Moineddin et al. (2007) suggest that estimates
of lower quality are obtained for extreme values, with Moineddin et al. (2007)
investigating the lower end of the spectrum and this study investigating the higher end.
The effect of the overall probability on negative correlation between the two random
parameter estimators is only observed up to interviewer allocation 3A, whilst the effect
on the power of the Wald test is restricted to just the most restrictive interviewer case
allocation - Case 1. Therefore, some of the effects of the overall probability on the
quality of estimates can be avoided during the survey administration by assigning work

to interviewers in at least three areas.

In this study the size effect and direction of the effect of ICC on the quality of
the estimates seems to vary for different properties. Higher ICC values seem to
decrease the negative p, although this is no longer noticeable for higher-level effects

with a large number of clusters in the sample. In fact, lower negative p are observed

for higher area variances o L up until interviewer allocation Case 3A, but no consistent

change is observed for higher interviewer variances g2 in scenarios with double the
number of interviewers to areas. Similarly, the ICC is found to have a positive
relationship with the power of the Wald test for the most restrictive interviewer case
allocation, Case 1, but again for the other higher-level classification with twice the
number of clusters this effect is not observed. In contrast, precision seems to decrease
for higher variances. Similarly to Maas and Hox (2005) and Paccagnella (2011), in this
study no clear pattern for the change in the percentage relative mean bias of the
variance parameter estimators by ICC is observed. Contrary to the results reported by
Moineddin et al. (2007), in this study no evidence of the effect of ICC on the
confidence interval coverage rates has been found. Similar to the effect of overall
probability on the quality of estimates, these results indicate that generally once each
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interviewer is allocated cases in two, and sometimes, three different areas, small ICC
values will not be detrimental to the quality of the estimates. It is important to consider

that in this study very small variances are not being investigated.

Interviewer dispersion, which refers to the number of areas each interviewer
works in, only improves the quality of estimates up to a point. The power of the Wald
test at the 5% significance level for the baseline scenario design is close to the optimal
value of 1 for all interviewer case allocation schemes. For scenarios with smaller N, but
keeping constant all other factors, sparser interviewer allocation schemes are required
to obtain high power. Improvements in power are observed when increasing the
number of areas per interviewer from one to two for N=2880 and N=1440, and from
two to three for N=1440. Further dispersion only yields very small gains. The
correlation between the two parameter estimators is reduced to the chosen threshold
of -0.1 once interviewers are allocated to two areas for N'=2N4 scenarios, and three
areas for N'=N4 scenarios. Decreases in the relative percentage bias are substantial
when comparing the Case 2 to the Case 1 allocation scheme. However, no systematic
trend in bias reduction is observed for Case 3-Case 6. Confidence interval coverage
rates show problems of over- and under-coverage for different scenarios with the
Case 1 allocation scheme, but are close to the 95% nominal rate for all other allocation

schemes.

No consistent relationship between bias, confidence interval coverage rates and
power of the Wald test with the extent of interviewer overlap is found. The only impact
of interviewer overlap was restricted to the p values for 2 areas per interviewer
allocation schemes, with less overlap resulting in lower negative p. Consequently for
the scenarios considered in this study, once all interviewers work in at least three areas,
there is no benefit in aiming for less interviewer overlap. This result indicates that
complicating interviewer case assignments by sending interviewers farther away from
their area of residence in an attempt to avoid having the same interviewers working in

the same neighbouring areas is not necessary to obtain quality estimates.
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6. Conclusions and Implications for Survey Design

The simulations in this paper offer new insight into the performance of the advanced
multilevel models for realistic survey design conditions. This paper is the first work
investigating the properties for cross-classified models under different survey design
conditions. This paper has identified trends in the properties of the estimators and test

statistics across a range of values for the simulation factors considered.

This paper indicates that, as expected, purely hierarchical data is subject to
substantial biases, high negative correlations between the two random parameter
estimates, under and over coverage of the Wald confidence interval, and low power of
the Wald test. Interpenetration of the higher-level groups at the design stage is
required to allow for the two higher-level effects to be disentangled when estimating
these effects using multilevel cross-classified models. For the scenarios considered in
this paper limited overlap of the higher-level groups (of around 3 areas per interviewer
for medium or large sample sizes) has been shown to provide sufficient
interpenetration for good properties. Further dispersion yields only very small or
negligible improvements in the properties. Overlap of the higher-level groups also acts
as a mediating factor on the effect of the other simulation factors (sample size, the
ratio of interviewers to areas, the overall probability, and the variance values) on the
properties of the estimators and test statistic. Reductions in total sample size can be
moderated to some extent by interviewer dispersion. However, small N - 1440 cases -
are to be avoided as even with sparse interviewer allocation schemes they do not
achieve acceptable levels of accuracy, precision and power. Importantly, the results
also show that once interviewers work in at least three areas complicating interviewer
case assignments by sending interviewers farther away from their area of residence in
an attempt to avoid having the same interviewers working in the same neighbouring
areas does not improve the quality of estimates. Consequently, study designs should
focus on allowing some interpenetration between the two higher-level groups, whilst
avoiding increasing survey costs or complicating logistics by disregarding the extent of
overlap of higher-level units from the same classification group. Moreover, these
results shed a positive light on the validity of findings presented in existing empirical
studies analysing interviewer and area effects on nonresponse through cross-classified
multilevel analysis (O'Muircheartaigh, C. and Campanelli, P., 1999; Pickery et al. 2001,
Durrant et al.,, 2010; Vassallo et al.,, 2015). This study has shown that limited

21



interpenetration is sufficient to disentangle interviewer from area effects. The results
also suggest that for a fixed total sample size, a higher number of clusters as opposed
to a higher cluster size yields better estimates. Moreover, the ratio of higher
classification units may also affect the quality of estimates with a ratio unequal to one

performing better.

It is acknowledged that the results from this paper are restricted to the factor
values chosen and the scenarios considered. The results cannot necessarily be
extrapolated to very different survey design conditions with certainty. Further research
investigating different simulation factor values and data structures should be carried
out to corroborate and extend existing evidence on the performance of these models.
One particular area of further research should focus on the examination of these
properties for very small higher-level variances. Another area for further research is

the investigation of scenarios with residual correlation between areas.

The paper considers the properties of variance estimators only. The data is
generated from models including an overall intercept and random effects. No
explanatory variables are considered. Other simulation papers reviewed earlier indicate
that the worst estimator and test statistic properties are observed for the variance
estimators. Consequently, the focus on the random effects is justified, as these
parameters are the ones most susceptible to influence by changes in simulation factors.
Moreover, scenarios achieving acceptable properties for the variance parameters can
be assumed to also provide acceptable properties for fixed effect parameters. In future
work the inclusion of fixed effects, especially cross-level interaction effects and

contextual effects, should be considered.

This work created the procedure and R and STATA codes that can be used
independently of this research project to investigate the performance of multilevel
cross—classified logistic models for existing data structures, or to inform the design of
future studies with similar designs. A future project may focus on creating an online
platform, similar to the MLPowSim tool (Browne & Golalizadeh, 2009), for other users
to be able to specify their data structure and run the simulation for their own specific

application.
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Tables and Diagrams

Table 1: Factor Values for Baseline and Other Scenarios

Factor Baseline Other
Number of cases per interviewer 24 48

Number of interviewers 240 30, 60, 120
Overall sample size 5760 1440, 2880
Overall propensity to respond 0.8 0.7,0.9
Area variance 0.3 0.2,0.4
Interviewer variance 0.3 0.2,0.4

Table 2: Power of Wald Test at the 95% Confidence Level by Sample Size, Ratio of

Interviewers to Areas and Interviewer Allocation (1A)

N'=2N4 N'=NA
Sample Size
5760 2880 1440 5760 2880 1440
IA | 62 o2 o2 ¢2 c2 c2 c2 c2 c2 c2 o3 c2

0.91 1.00 063 092 030 0.58 0.07 0.08 0.01 0.01 0.00 0.00
1.00 1.00 096 098 0.77 081 1.00 1.00 097 0.98 0.67 0.68
1.00 1.00 1.00 1.00 091 0.89 1.00 1.00 0.99 0.96 0.73 0.64
1.00 1.00 1.00 1.00 0.88 0.8 1.00 1.00 1.00 1.00 0.85 0.85
1.00 1.00 1.00 1.00 091 0.89 1.00 1.00 1.00 1.00 0.88 0.88
6 |1.00 1.00 100 1.00 092 0.88 1.00 1.00 1.00 1.00 0.91 0.88

vl W IN B

Constant factor values: 62=0.3, ¢2=0.3, m=0.8

N!'=2N4: N'=240 and N4=120 for N=5760; N'=120 and N4=60 for N=2880, N'=60 and N4=30 for
N=1440; N'=N4: N'=120 and N4=120 for N=5760; N'=60 and N4=60 for N=2880, N'=30 and N4=30
for N=1440
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Table 3: Power of Wald Test at the 5% Significance Level by Sample Size and

Interviewer Allocation

Sample Size

5760 2880 1440

1A c2 62 o2 ¢’ o2 ¢

1 0.91 1.00 0.63 0.92 0.30 0.58
2A 1.00 1.00 0.96 0.98 0.77 0.81
2B 1.00 1.00 0.99 0.99 0.78 0.83
2C 1.00 1.00 0.99 1.00 0.79 0.84
3A 1.00 1.00 1.00 1.00 0.91 0.89
4A 1.00 1.00 1.00 1.00 0.88 0.86
S5A 1.00 1.00 1.00 1.00 0.91 0.89
6A 1.00 1.00 1.00 1.00 0.92 0.88
6B 1.00 1.00 1.00 1.00 0.91 0.90
6C 1.00 1.00 1.00 1.00 0.91 0.89

Constant factor values: 62=0.3, 62=0.3, m1=0.8, NI=2NA
NI'=240 & NA=120 for N=5760; N'=120 & NA=60 for N=2880, N'=60 & NA=30 for N=1440

Table 4: p by Sample Size, Ratio of Interviewers to Areas and Interviewer

Allocation
N'=2NA NI=NA
Sample Size
1A 5760 2880 1440 5760 2880 1440
1 -0.45 -0.46 -0.40 -0.91 -0.83 -0.69
2 -0.09 -0.11 -0.09 -0.19 -0.17 -0.15
3 -0.03 -0.02 0.04 -0.13 -0.12 -0.11
4 0.01 0.01 0.00 -0.04 -0.04 -0.03
5 0.02 0.02 0.03 -0.02 -0.01 -0.01
6 0.03 0.03 0.03 0.00 0.00 0.01

Constant factor values: 62=0.3, 63=0.3, m=0.8, N'=2N4
N'=240 and N4=120 for N=5760; N'=120 and N4=60 for N=2880, N'=60 and N4=30 for N=1440

Table 5: p by Overall Probability and Interviewer Allocation

Overall Probability

1A 0.7 0.8 0.9

1 -0.43 -0.45 -0.50
2A -0.08 -0.09 -0.12
2C -0.04 -0.05 -0.10
3A -0.01 -0.03 -0.04

Constant factor values: N=5760, N'=240, N4=120, ¢2=0.3, 63=0.3, N/=2N4
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Table 6: Relative Percentage Bias by Sample Size, Ratio of Interviewers to Areas
and Interviewer Allocation

N'=2NA N'=N4
Sample Size
1A 5760 2880 1440 5760 2880 1440 5760 2880 1440 5760 2880 1440
1| -3.2 -6.7 -5.3 6.8 11.2 19.8 2.3 4.4 12.5 3.6 56 11.3
2 2.0 2.6 4.8 1.3 1.9 2.4 3.6 4.0 10.8 1.5 5.0 9.0
3 2.4 4.2 6.1 0.1 1.2 1.1 1.6 3.1 10.5 1.0 4.3 5.3
4 1.7 3.3 5.0 0.7 1.3 1.8 1.7 1.5 9.8 1.9 4.2 9.7
5 1.7 2.4 7.2 1.0 1.5 3.4 2.0 2.6 8.6 1.4 4.9 8.3
6 1.1 3.1 7.4 0.7 1.8 2.4 1.6 3.8 10.3 1.9 3.0 6.7
Constant factor values: 62=0.3, 62=0.3, m=0.8
=2N4: N'=240 and N4=120 for N=5760; N'=120 and N4=60 for N=2880, N'=60 and N4=30 for
N—1440, NI'=N4: N'=120 and N4=120 for N=5760; N'=60 and N4=60 for N=2880, N'=30 and N4=30
for N=1440

Table 7: Wald 95% Confidence Interval Coverage by Sample Size and Interviewer

Allocation for N'=

2NA Scenarios

Sample Size
5760 2880 1440
IA oy oq oy oq oy oq
1 91.4 93.8 90.1 93.6 87.7 91.0
2A 94.5 95.0 92.9 93.5 91.2 91.1
2B 96.0 92.4 94.0 94.1 92.9 91.8
2C 95.1 94.1 93.3 92.8 92.6 91.0
3A 93.8 94.7 92.8 94.3 93.7 92.5
3B 95.0 94.0 94.1 94.3 92.7 92.7
3C 94.6 93.4 94.1 93.8 92.8 89.9
4A 95.2 94.5 94.5 93.0 92.9 91.2
5A 95.2 94.8 94.8 93.6 94.1 92.7
6A 95.1 95.1 93.6 94.6 93.5 91.5
Constant factor values: 62=0.3, 62=0.3, 1=0.8, N'=2NA
=240 and NA=120 for N=5760; N!=120 and N*=60 for N=2880, N'=60 and NA=30 for N=1440
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Table 8: Wald 95% Confidence Interval Coverage by Sample Size and Interviewer

Allocation for N'=NA Scenarios

Sample Size
5760 2880 1440
1A c> W c2 o2 c?> o2
1 99.7 99.7 100 99.9 99.7 99.7
2 96.0 93.4 93.3 94.3 92.0 91.3
3 94.7 93.7 94.9 94.4 92.5 89.2
4 95.4 94.0 93.5 94.3 94.1 93.1
5 95.4 94.2 94.2 95.2 92.5 93.0
6 95.2 94.2 93.1 94.4 93.6 91.8

Constant factor values: 62=0.3, 62=0.3, 1=0.8, NI=NA
N'=120 and N2=120 for N=5760; N'=60 and NA=60 for N=2880, N!=30 and NA=30 for N=1440
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Diagram 1

Case 1
Area Interviewers
1 1 2
2 3 4
3 5 6
4 7 8
5 9 10
6 11 12
Diagram 2
Case 2A
Area Interviewers
1 1 2 3 4
2 1 2 3 4
3 5 6 7 8
4 5 6 7 8
5 9 10 11 12
6 9 10 11 12
Case 2B
Area Interviewers
1 [240 1 2 3|
2 | 1 2 3 4]
3 |4 5 6 7|
4 |5 6 7 8|
5 |8 9 10 11 |
6 |9 10 11 12|
Case 2C
Area Interviewers
1 [239 240 1 2 |
2 1 2 3 4|
3 13 4 5 6|
4 |5 6 7 8|
5 |7 8 9 10|
6 | 9 10 11 12 ]




Diagram 3

Case 1: N'=N4

Area Interviewers

1 1

2 2

3 3

4 4

5 5

6 6
Case 2: N!=N4

Area Interviewers

1 1 2

2 1 2

3 3 4

4 3 4
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Case 3: N'=N4

Area Interviewers

1 1 2 3

2 1 2 3

3 1 2 3

4 4 5 6

5 4 5 6

6 4 5 6
Case 4: N'=N4

Area Interviewers

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 1 2 3 4

5 5 6

6 5 6
Case 5: N'=N4

Area Interviewers

1 1 2 3 4 5

2 1 2 3 4 5

3 1 2 3 4 5
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5 1 2 3 4 5
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Online Appendix

Appendix Table Al: Power of Wald Test at the 95% Confidence Level by Sample

Size and Interviewer Allocation

Sample Size
5760 2880 1440
1A o2 o2 o2 ¢’ o2 c2
1 0.91 1.00 0.63 0.92 0.30 0.58
2A 1.00 1.00 0.96 0.98 0.77 0.81
2B 1.00 1.00 0.99 0.99 0.78 0.83
2C 1.00 1.00 0.99 1.00 0.79 0.84
3A 1.00 1.00 1.00 1.00 0.91 0.89
3B 1.00 1.00 1.00 1.00 0.85 0.86
3C 1.00 1.00 0.99 0.99 0.85 0.84
3D 1.00 1.00 1.00 0.99 0.86 0.86
3E 1.00 1.00 1.00 0.99 0.85 0.84
3F 1.00 1.00 1.00 1.00 0.87 0.86
3H 1.00 1.00 1.00 1.00 0.87 0.85
4A 1.00 1.00 1.00 1.00 0.88 0.86
4B 1.00 1.00 1.00 1.00 0.88 0.86
4C 1.00 1.00 1.00 1.00 0.89 0.88
5A 1.00 1.00 1.00 1.00 0.91 0.89
5B 1.00 1.00 1.00 1.00 0.89 0.90
5C 1.00 1.00 1.00 1.00 0.91 0.87
6A 1.00 1.00 1.00 1.00 0.92 0.88
6B 1.00 1.00 1.00 1.00 0.91 0.90
6C 1.00 1.00 1.00 1.00 0.91 0.89

Constant factor values: 62=0.3, 62=0.3, m=0.8, NI=2NA

N'=240 & NA=120 for N=5760; N'=120 & NA=60 for N=2880, N'=60 & N#=30 for N=1440

Appendix Table A2: Power of Wald Test at the 95% Confidence Level by Overall

Probability and Interviewer Allocation

Overall Probability

0.7 0.8 0.9
IA c2 o2 o2 o2 c2 c2
1 0.96 1.00 0.91 1.00 0.80 0.95
2A 1.00 1.00 1.00 1.00 1.00 0.99
2C 1.00 1.00 1.00 1.00 1.00 0.99
3A-6C 1.00 1.00 1.00 1.00 1.00 1.00

Constant factor values: N=5760, N'=240, NA=120, 02=0.3, 62=0.3, NI=2N4
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Appendix Table A3: Power of Wald Test at the 95% Confidence Level by Area and
Interviewer Variance and Interviewer Allocation

62=0.3, 62=0.2, 62=0.4, 62=0.3, 62=0.4, 62=0.3, 62=0.2,
62=0.3 62=0.2 62=0.4 62=0.4 62=0.3 62=0.2 62=0.3

1A o2 o2 o2 o2 o2 o2 o2 o2 o2 o2 o2 o2 o2 o2
1 0.91 1 0.82 1 0.96 1 0.84 1 0.99 1 0.99 1 0.68 1

The first two columns represent the medium scenario design (N=5760, N'=240, NA=120, ¢2=0.3, 62=0.3,
1=0.8, N'=2N4). The other columns represent scenarios maintaining the same factors as the medium
scenario design except for the area and interviewer variances which are specified above.

Appendix Table A4: p by Area and Interviewer Variance and Interviewer Allocation

corr(a, a2)

1A ¢2=0.3 62=0.2 ¢2=0.4 ¢2=0.3 ¢2=0.4 ¢2=0.3 62=0.2
¢2=0.3 62=0.2 62=0.4 ¢2=0.4 ¢2=0.3 62=0.2 ¢2=0.3
1 -0.45 -0.51 -0.42 -0.48 -0.37 -0.27 -0.53
2A -0.09 -0.12 -0.07 -0.09 -0.07 -0.09 -0.11
2C -0.05 -0.10 -0.03 -0.05 -0.03 -0.06 -0.08
3A -0.03 -0.04 -0.01 -0.02 -0.01 -0.02 -0.04

The first p column represents the medium scenario design.
Constant factor values: N=5760, N'=240, NA=120, 1=0.8, NI=2N4

Appendix Table A5: Relative Percentage Bias by Scenarios Varying in the Area and

Interviewer Variances

¢2=0.3, 62=0.2, ¢2=0.4, ¢2=0.3, ¢2=0.4, ¢2=0.3, 62=0.2,
¢2=0.3 62=0.2 ¢2=0.4 ¢2=0.4 ¢2=0.3 62=0.2 ¢2=0.3
IA| o2 of o o of of o} of of o o o oF o}

1 —3.24 6.80 —-5.93 9.54 —-2.00 5.57 —4.72 755 —-0.3¢ 274 0.02 2.66 —-10.8 7.82
2A 2.02 1.32 1.82 0.58 3.27 0.37 2.21 1.24 2.73 0.94 2.30 —-0.24 —-0.84 141
2C 2.42 —-0.5¢ 2.32 —0.0€ 1.39 0.93 1.98 0.61 2.50 0.65 230 -1.29 0.09 0.94
34 2.35 0.13 2.64 1.17 1091 0.94 1.72 0.08 1.76 1.50 1.76 -1.75 0.26 0.92
3E 1.78 0.12 1.59 —1.44 2.66 0.75 1.98 0.87 2.79 —0.60 2.08 0.41 -0.22 1.05
3H 1.86 —0.6€ 2.44 1.20 2.09 0.61 1.15 0.67 2.07 —0.22 3.04 —-1.84 —-0.54 1.13
4A 1.73 0.72 1.63 0.26 217 2.01 3.04 0.65 2.30 0.46 1.54 —-0.25 0.64 0.61
4C 1.29 0.57 1.26 —0.14 2.03 0.73 1.09 0.71 1.59 1.86 2.19 0.73 0.18 0.81
54 1.73 0.96 0.91 0.03 2.71 1.96 1.78 0.34 2.55 0.40 2.89 —0.69 0.16 0.45
5C 2.29 -0.21 1.11 —0.92 2.64 1.25 2.15 1.12 2.53 0.52 1.97 —0.67 0.20 -0.23
64 1.08 0.74 1.92 —0.07 2.40 0.40 1.66 —-0.29 1.88 0.72 250 —0.68 1.57 -0.20
6C 1.69 0.21 1.76 —0.25 2.72 1.56 2.17 0.79 2.58 0.24 2.06 —-1.24 0.69 0.62

The first two bias columns represent the medium scenario design (N=5760, N'=240, NA=120, ¢2=0.3,
02=0.3, m1=0.8, NI=2NA). The other columns represent scenarios maintaining the same factors as the
medium scenario design except for the area and interviewer variances which are specified above.
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Appendix Table A6: Percentage Relative Bias Mean Estimate by Overall

Probabilities
o2 o2

1A m=0.7 m=0.8 m=0.9 m=0.7 m=0.8 m™=0.9
1 -3.34 -3.24 -4.42 5.41 6.80 6.87
2A 2.11 2.02 1.71 1.01 1.32 -0.40
2C 1.33 2.42 0.37 0.86 -0.56 0.30
3A 1.38 2.35 1.56 0.72 0.13 -0.48
3E 1.95 1.78 0.87 0.14 0.12 -0.35
3H 1.92 1.86 0.56 1.00 -0.66 0.16
4A 1.46 1.73 1.34 0.94 0.72 -0.50
4C 3.00 1.29 1.03 0.65 0.57 -0.88
5A 2.05 1.73 1.84 1.48 0.96 0.68
5C 2.34 2.29 2.12 0.69 -0.21 0.40
6A 0.52 1.08 1.19 1.00 0.74 -0.47
6C 1.30 1.69 0.68 1.47 0.21 0.68

The columns highlighted in orange represent the medium scenario design (N=5760, N'=240, NA=120,
02=0.3, 62=0.3, m=0.8, NI=2NA). The cells highlighted in red show increases in the absolute bias, while
cells highlighted in yellow show decreases in absolute bias, compared with the medium scenario design
(orange). The other scenarios maintain the same factors as the medium scenario design except for the
overall probability as specified above.
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Table A7: Wald 95% Confidence Interval Coverage by Sample Size and Interviewer

Allocation for N'=2NA Scenarios

Sample Size

5760 2880 1440

1A oy oy oy oq os o2

1 91.4 93.8 90.1 93.6 87.7 91.0
2A 94.5 95.0 92.9 93.5 91.2 91.1
2B 96.0 92.4 94.0 94.1 92.9 91.8
2C 95.1 94.1 93.3 92.8 92.6 91.0
3A 93.8 94.7 92.8 94.3 93.7 92.5
3B 95.0 94.0 94.1 94.3 92.7 92.7
3C 94.6 93.4 94.1 93.8 92.8 89.9
3D 95.9 93.4 93.0 94.1 92.7 91.5
3E 94.6 95.0 93.7 94.4 92.4 91.1
3F 94.8 93.6 95.0 95.6 93.3 92.0
3H 93.9 94.0 94.1 93.1 93.4 91.2
4A 95.2 94.5 94.5 93.0 92.9 91.2
4B 94.4 95.6 94.0 93.5 92.3 91.3
4C 94.1 95.0 94.5 95.5 92.7 92.6
5A 95.2 94.8 94.8 93.6 94.1 92.7
5B 95.2 94.7 94.3 93.8 93.1 93.6
5C 95.5 94.8 94.1 94.9 92.9 91.8
6A 95.1 95.1 93.6 94.6 93.5 91.5
6B 96.0 93.9 93.9 94.0 93.5 92.0
6C 94.9 95.2 94.9 94.5 93.7 92.5

Constant factor values: 62=0.3, 63=0.3, m=0.8, NI=2N4

N'=240 and NA=120 for N=5760; N!'=120 and N2=60 for N=2880, N'=60 and N2A=30 for N=1440
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