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Abstract—The performance of space shift keying (SSK) is
known to be dominated by the minimum Euclidean distance
(MED) in the received SSK constellation. In this paper, we
propose a method of enhancing the MED in the received SSK
constellation and improving both the attainable performance and
the power efficiency by means of symbol scaling at the transmit-
ter. To this aim, we formulate a pair of optimization problems,
one for maximizing the MED subject to a specific transmit power
constraint and one for minimizing the transmit power subject to a
MED threshold. As these problems are NP-hard, we re-formulate
their optimization using semidefinite relaxations, which results
in convex problem formulations that can be efficiently solved
using standard approaches. Moreover, we design pre-scaling
techniques for imperfect channel state information (CSI) at the
transmitter, where the existing approaches are inapplicable. Our
results show that the proposed schemes substantially improve
the power efficiency of SSK systems with respect to state-of-the-
art techniques by offering an improved performance for specific
transmit power requirements or, equivalently, a transmit power
reduction for a given MED threshold.

Index Terms—Space shift keying, constellation shaping,
multiple-input-single-output, pre-scaling, imperfect CSI.

I. INTRODUCTION

SPACE shift keying (SSK) along with its dual-domain
adaptation, namely spatial modulation (SM) have been

shown to offer a low complexity alternative to spatial multi-
plexing, where only a subset (down to one) of radio frequency
(RF) chains are required for transmission [1]–[3]. Early work
has focused on the design of receiver algorithms for minimi-
zing the bit error rates (BERs) of SM at a low complexity
[1], [2], [4]–[8]. Matched filtering is shown to be a low-
complexity technique for detecting the antenna index used for
SM [1]. A maximum likelihood (ML) detector is introduced in
[2] for reducing the complexity of classic spatial multiplexing
ML detectors. Reduced-space sphere detection has also been
conceived for SM in [5] for further complexity reduction.
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In addition to receive-side processing, recent contributions
have also proposed constellation shaping for SSK and SM [9]–
[14]. Specifically, in [9] the transmit diversity of coded SM
is analyzed for different spatial constellations, which repre-
sent the legitimate sets of activated transmit antennas (TAs).
Furthermore, [10] discusses symbol constellation optimiza-
tion for minimizing the BER. However, spatial- and symbol-
constellation shaping are discussed separately in [9], [10]. A
number of constellation shaping schemes [11]–[14] have also
been proposed for SSK, where the information is only carried
in the spatial domain, namely by the activated antenna index
(AI). Other comparable signal processing strategies include
the design of both robust and non-robust precoders for pre-
processing aided SM, in which all the antennas are used
at the transmitter, and the receiver only detects the signals
gleaned from a single antenna [15], [16]. Additionally, the
energy-efficient scheme developed in [17] improves upon the
conventional Hamming code-aided SSK [18] by determining
the optimal a priori symbol probabilities and by providing
a criterion for bit mapping based on the Huffman coding
algorithm. This technique allows for a variable number of
RF chains as a way of enhancing the Hamming distance of
the transmit symbols in order to improve performance, but it
does not modify the amplitude nor does it alter the phase of
the transmitted signals [17]. Instead, conceiving beneficial pre-
scaling strategies for traditional SSK transmission constitute
the focus of this work, where only a single RF-chain is
required at the transmitter.

Closely related literature has focused on shaping the re-
ceived SSK and SM constellations by means of symbol pre-
scaling at the transmitter, aiming for maximizing the minimum
Euclidean distance (MED) in the received SSK and SM
constellations [19]–[21]. The constellation shaping approach
of [19], [20] aims for fitting the receive SM constellation to
one of the existing optimal constellation formats in terms of
its minimum distance, say to quadrature amplitude modulation
(QAM). Due to the strict constellation fitting requirement
imposed on both the amplitude and phase, this pre-scaling
relies on the inversion of the channel coefficients. In the
case of ill-conditioned channels, this substantially increases
the power required by the transmit constellation. Therefore,
scaling factors must be employed for normalizing the transmit
power, which however reduces the received signal-to-noise
ratio (SNR). This problem has been alleviated in [21], where
a constellation shaping scheme based on phase-only scaling
is proposed. Still, the constellation shaping used in the above
schemes is limited in the sense that it only applies to multiple-
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input single-output (MISO) systems where a single symbol is
received for each transmission and thus both the characteriza-
tion and shaping of the receive SM constellation is simple.

The designs developed in [22], [23] propose the uneven
allocation of the transmission power in SSK and GSSK sys-
tems for the sake of minimizing the error rates. However, the
attainable performance improvements of [22], [23] are limited
due to the restriction of solely considering the amplitude
variations in the transmit signals. The design of a pre-scaling
codebook dependent on the long-term CSI is proposed in
[24] for improving the performance attained in correlated
fading channels. Constellation randomization (CR) proposed
in [25] relies on a transmit pre-scaling (TPS) scheme where
a number D of randomly generated complex TPS factors are
calculated off-line, which are known to both the transmitter
and receiver. The transmitter then selects that particular set of
TPS factors, which yielded the specific receive constellation
having the maximum achievable MED. The scheme was
proven to considerably improve the transmit diversity of SM,
while it is readily applicable to SSK transmission as well.
Furthermore, the optimization problems considered in this
paper were independently studied in [26], published after the
submission of this work, where a pair of iterative algorithms
was introduced to find the pre-scaling factors. However, the
iterative algorithms proposed in [26] require obtaining the
solution of multiple convex optimization problems before
reaching convergence and are not designed to cope with
imperfect CSI.

To further improve upon the above-mentioned approaches,
in this paper we optimize the TPS vectors using convex opti-
mization strategies. We formulate the relevant problems of a)
MED maximization under specific transmit power constraints
and b) transmit power minimization under a MED threshold.
Since these optimization problems can be shown to be NP-
hard, we re-formulate them by using semidefinite relaxation
(SDR), which yields convex objective functions as well as
optimization constraints, and therefore optimization problems
that are readily solvable using standard schemes [27]. This
enhances the approach introduced in [25], where the set of
candidate pre-scaling factors are generated without considering
the channel characteristics, while it reduces the computational
complexity of [26], where a convex optimization problem
must be solved per iteration. Moreover, since none of the
above-mentioned TPS designs consider the impact of having
imperfect CSI at the transmitter, we further extend these
designs to improve their robustness to CSI acquisition errors.
These robust designs allow our TPS strategies to guarantee
that the system performance requirements are satisfied in
the presence of imperfect CSI at the transmitter. Our results
show that the proposed optimization problems offer further
improved power efficiency and robustness to imperfect CSI
with respect to the SSK and SSK using the constellation
randomization schemes developed in [20], [25].

For clarity, we summarize the contributions of this paper as
follows:

1) We formulate the optimal TPS problems of i) maximi-
zing the performance of SSK transmission under specific
transmit power constraints and ii) reducing the transmis-

sion power for a given MED threshold. Subsequently, we
propose semidefinite relaxations of the above optimiza-
tion problems to facilitate the application of efficient
convex solvers and improve the power efficiency of SSK
transmission.

2) We render our TPS techniques resilient to imperfect CSI
at the transmitter by designing optimization problems
that offer improved robustness to CSI estimation errors.
This constitutes an enhancement over existing pre-
scaling strategies, where the performance requirements
specified at the receivers are not guaranteed under the
presence of imperfect CSI.

In the following, vectors (matrices) are denoted by boldface
lower (upper) case letters. The superscripts (·)T and (·)H
denote transpose and conjugate transpose respectively. The
notation Tr(·) designates the trace of a matrix and diag(x)
represents the diagonal matrix with its diagonal elements taken
from vector x. E [·] denotes the expectation while ‖·‖ refers
to the Euclidean norm. Moreover, | · | denotes the cardinality
of a set and rank(·) is the rank of a matrix.

II. TRANSMIT PRE-SCALING FOR SPACE SHIFT KEYING

Consider a multiple-input multiple-output (MIMO) link,
where the transmitter and receiver are equipped with Nt and
Nr antennas respectively. We focus our attention on the single
RF chain SSK approach, where the transmit vector is in the all-
but-one zero form sk = [0, . . . , 1, . . . , 0]T , where 1 is the k-th
element of sk and k represents the index of the activated TA
(the index of the non-zero element in sk) conveying log2(Nt)
bits in the spatial domain. Clearly, since sk is an all-zero
vector apart from a single element, there is no inter-antenna
interference.

For the per-antenna TPS approach, which is the focus of this
paper, the signal fed to each TA is scaled by a complex-valued
coefficient ak, k ∈ 1, . . . , Nt, which we aim to design in this
work. These pre-scaling coefficients must be compliant with
the average power constraint of E

[
aka

H
k

]
≤ Pt. In this work

we consider a flat independent fading channel model varying
from one realization to the other. Defining the MIMO channel
vector as H with elements hm,n representing the complex
channel coefficient between the n-th TA to the m-th receive
antenna (RA), the received symbol vector can be written as

y = HAsk + w, (1)

where w ∼ CN (0, σ2I) is the additive white Gaussian noise
(AWGN) component at the receiver, with CN (µ, σ2) denoting
the circularly symmetric complex Gaussian distribution with
mean µ and variance σ2. Furthermore, A = diag(a) is the
TPS matrix with a = [a1, a2, . . . , aNt ]. The diagonal structure
of A guarantees having a transmit vector t = Ask with a
single non-zero element, so that the single-RF-chain benefit
of SSK is preserved. We note that the pre-scaling coefficients
are designed depending on the channel coefficients and not
on the input bits, which is in contrast to conventional SM
transmission [2].
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Fig. 1. Block diagram of SSK transceiver with pre-scaling and ML detection

At the receiver, the joint maximum likelihood (ML) detec-
tion of the TA index is achieved by the minimization of

k̂ = argmin
k
||y − ẏk||2

= argmin
k
||y −HÃsk||2, (2)

where ẏk is the k-th constellation point in the received SSK
constellation and Ã refers to the TPS matrix estimated at the
receiver. Note that, since the channel coefficients are estimated
at the receiver for detection [1], [2], [4], [5], the pre-scaling
designs of the following sections can be used both in the
transmitter and in the receiver for deriving the same TPS
matrix independently. Therefore no feed forwarding of the
TPS vector a from the transmitter to the receiver is required.
Indeed, when the channel coefficients are perfectly known both
at the transmitter and receiver, they select the same TPS vector
a independently, as per the optimization problems shown in the
following. In other words, the transmitter must be aware of the
TPS factors before transmission either via forwarding from the
receiver or by their direct computation based on the available
CSI. By exploiting the specific structure of the transmit vector,
(2) can be further simplified to

k̂ = argmin
k
‖y − hkak‖2 , (3)

where hk denotes the k-th column of the matrix H. It is widely
recognized that the performance of the detection as formulated
above is dominated by the MED between the adjacent cons-
tellation points ẏi, ẏj in the received SSK constellation [28],
[29], which is formulated as:

dmin = min
i,j
||ẏi − ẏj ||2, i 6= j

= min
m,k
||hkak − hmam||2, m 6= k. (4)

In the following we propose a TPS strategy for maximizing
the above MED for a given transmit power budget considering
perfect CSI availability. We then explore the related problem
where the above expression is used as a constraint for minimi-
zing the transmit power [30], and further modify both designs
for enhancing their robustness against imperfect CSI.

A. Pre-Scaling Problem Formulation

1) MED Maximization: Constellation shaping TPS
schemes conceived for SSK aim for maximizing the MED in
order to improve the likelihood of correct detection. Note that

this objective differs from that of precoding in conventional
MIMO transmission, where the availability of multiple active
antennas is exploited to convey several data symbols across a
number of active antennas [31]. Specifically, the optimal TPS
vector aopt can be found by solving the optimization problem

P0 : maximize
a

min
m,k

m 6=k

(
‖hkak − hmam‖2

)
(5)

subject to Tr
(
aaH

)
≤ (PtNt).

Here, k,m ∈ 1, . . . Nt, represent the index of the active
antenna at the transmitter, a ∈ CNt×1 is the variable to
optimize, and Pt denotes the transmit power budget. Note that
in SSK only a single antenna is active at any symbol-instant.
Therefore, the constraint in the second line of (5) guarantees
an average transmission power Pt. The above optimization
problem is equivalent to maximizing an auxiliary variable d
representing the MED according to

P1 : maximize
a

d (6)

subject to ‖hkak − hmam‖2 ≥ d, ∀ m 6= k

Tr
(
aaH

)
≤ (PtNt).

2) Power Minimization: A problem related to the above
one involves the minimization of the transmit power subject
to a predefined MED threshold d. This is found according to
the optimization of:

P2 : minimize
a

‖a‖2 (7)

subject to ‖hkak − hmam‖2 ≥ d, ∀ m 6= k.

It can be seen that in the above formulations the quadratic
constraints that represent the MED are not convex with respect
to a [27]. This therefore makes finding the optimal solution
of the problems P1 and P2 computationally challenging.

III. PRE-SCALING USING SEMIDEFINITE RELAXATION

The above optimization problems constitute nonconvex
quadratically constrained quadratic programs, which have been
shown to be NP-hard in general [27], [32]–[34]. This motivates
the conception of a more efficient approach. In the following
we explore the semidefinite relaxation (SDR) of the above
problems in order to facilitate the employment of efficient
solvers [32]. Hence, we first determine the number of constra-
ints in the second line of P1 and P2. In particular, the number
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of non-identical constraints is given by

Nc =

Nt∑
t=1

(Nt − t) = Nt (Nt − 1) /2, (8)

where we have used the fact that for any xi, xj , i 6= j, the
operation ‖xi − xj‖ is equivalent to ‖xj − xi‖, which makes
it unnecessary to analyze the symmetrical terms.

Next we focus our attention on the reformulation of the
optimization constraints. For simplicity, let us commence with
the case of Nr = 1, so that we have hk = hk. At this
point we would like to point out that the MED constraints
resemble the ones conventionally employed for establishing a
minimum distance between the nodes in the sensor network
location problem [27], [35]. In accordance with the above, the
jth constraint in P2, c(j), can be reformulated as [35]

c(j) = Tr(CjaaH) = Tr

((
e(j)

mj

kj

)H
e(j)

mj

kj
aaH

)
, (9)

where the constraints vectors e(j)
mj

kj
have two non-zero entries

in the indices kj ,mj , which are given by

e(j)
mj

kj
=
[
0, . . . , hkj , . . . ,−hmj , . . . , 0

]
. (10)

Here, kj ,mj ∈ 1, . . . Nt, represent the indices of the transmit
antennas considered in the j-th constraint.

For Nr > 1, the left-hand side of the optimization constra-
ints can be decomposed as

‖hkak − hmam‖2 =

Nr∑
t=1

∥∥h(k,t)ak − h(m,t)am∥∥2 , (11)

where h(k,t) denotes the t-th entry of hk. This allows us to re-
formulate the optimization constraints as a linear combination
of the constraints derived in (9), yielding:

c(j) =

Nr∑
t=1

Tr
(
Cj,taaH

)
= Tr

(
aaH

Nr∑
t=1

Cj,t

)
= Tr

(
aaHC′j

)
. (12)

Here, Cj,t, t ∈ 1, . . . Nr, represents the constraint matrix for
the t-th receive antenna as shown in the right-hand side of (9)

Cj,t =
(
e(j)

(mj ,t)

(kj ,t)

)H
e(j)

(mj ,t)

(kj ,t)
, (13)

with

e(j)
(mj ,t)

(kj ,t)
=
[
0, . . . , h(kj ,t), . . . ,−h(mj ,t), . . . , 0

]
, (14)

and we have defined the j-th constraint matrix as

C′j ,
Nr∑
t=1

Cj,t. (15)

Note that the constraint matrices C′j are sparse by definition,
an aspect that will be considered in the robust design to be
introduced in Sec. IV. Overall, the above representation allows
us to re-formulate the optimization problems P1 and P2 as
shown in the following.

A. MED Maximization

Based on the above and noting that ‖a‖2 = Tr
(
aaH

)
, P1

can be reformulated as

P1 : maximize
X

d

subject to Tr
(
C′jX

)
≥ d, j = 1, . . . Nc,

Tr (X) ≤ (PtNt)

X � 0, rank (X) = 1, (16)

where X , aaH and X � 0 denotes that X is a positive
semidefinite matrix. This is a problem equivalent to (6) that
yields the same solutions, and it is also NP-hard. However,
the non-convex rank constraint rank (X) = 1 can be dropped
to obtain a convex semidefinite approximation to P1 [34].
Accordingly, we have the following SDR formulation

P ′1 : maximize
X

d

subject to Tr
(
C′jX

)
≥ d, j = 1, . . . , Nc,

Tr (X) ≤ (PtNt)

X � 0. (17)

The above is a standard convex optimization problem that can
be efficiently solved using standard approaches [32].

B. Power Minimization

For the case of power minimization, a similar approach can
be employed to reformulate the original problem P2 to

P2 : minimize
X

Tr (X)

subject to Tr
(
C′jX

)
≥ d, j = 1, . . . , Nc,

X � 0, rank (X) = 1. (18)

By dropping the rank constraint, the resultant SDR formulation
can be expressed as

P ′2 : minimize
X

Tr (X)

subject to Tr
(
C′jX

)
≥ d, j = 1, . . . , Nc,

X � 0. (19)

C. Effect of the Optimization on the Received Constellation

Fig. 2 shows the received constellation both with and with-
out TPS for the illustrative example of a (4×1) MISO system.
In this figure, the TPS scenario refers to the proposed pre-
scaling using the optimization P ′2 and the different constella-
tion symbols are represented with distinct geometrical figures.
The convex optimization problems formulated throughout this
paper have been implemented and solved with the aid of the
standard toolbox conceived for disciplined convex program-
ming CVX [36]. This figure shows that there is a substantial
enhancement in both the MED and transmit power between
the two constellations of Fig. 2. It can be seen that the random
distribution of the receive constellation points for conventional
SSK has been re-shaped into a more regular constellation
that roughly resembles a QAM constellation. Despite this
improvement in the MED, the solution to P2 is not strictly
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Fig. 2. Example of received constellation both with and without TPS for a (4× 1) MISO system.

optimal due to the removal of the rank constraint, which
motivates the study of this effect in the following section.

D. Analyzing the Impact of the Problem Relaxation

It is widely recognized that the solution retrieved by the
convex solver Xs with SDR is only optimal only when
we have rank(Xs) = 1 [27]. In this case the pre-scaling
vectors, as, can simply be obtained by using the principal
component of the optimal solution Xs of problems P ′1 and
P ′2, hence guaranteeing Xs = aopta

H
opt, where aopt refers to

the optimal TPS vector. In the case where the solver does
not return a rank-1 solution, randomization techniques can be
employed for promoting the appearance of close-to-optimal
low-rank solutions and for obtaining the pre-scaling vectors
[32]. Here, we utilize the approach of [32]. Let the eigen-
decomposition of the solution retrieved by the solver Xs be
defined as Xs = UΣUH , where U is the (Nt ×Nt)-element
square matrix whose i-th column is the eigenvector ui of
Xs and Σ is the diagonal matrix with the eigenvalues of
Xs on its diagonal. We construct the candidate pre-scaling
vectors as as = cUΣ1/2v, where the elements vi of v are
independent random variables vi = ejθi , uniformly distributed
on the unit circle of the complex plane with θi being inde-
pendent and uniformly distributed in (0, 2π] [32]. The scaling
constant c is selected for ensuring that the original problem
constraints are satisfied [32]. Note that the employment of
principal component selection or randomization techniques
when rank(Xs) 6= 1 implies that As , asa

H
s 6= aopta

H
opt,

which in turn penalizes the value of the objective function.
An ideal characterization of the effects of the above degra-

dation should be based on comparing the values of the objec-
tive function obtained by the proposed relaxations P ′1,P ′2 after
randomization with the ones of the original optimal problems
P1,P2. However, since the original problems are NP-hard,
determining the optimal solution is practically infeasible in
most cases. Following [32], [37], [38], we exploit the fact that
the SDR problems provide a readily computable bound of the
true solutions. For instance, if f?1 and f

′?
1 are the values of

the objective functions for the MED maximization problems
P1 and P ′1 respectively, using the solutions returned by the
solver, then f?1 ≤ f

′?
1 holds, i.e. the semidefinite relaxation

TABLE I
MEAN (µ) AND STANDARD DEVIATION (σ) OF F1 WITH Pt = 1.

Nt/Nr SSK-SDR SSK-CR SSK

µ σ µ σ µ σ

2/1 1 0 1.27 0.39 6.35 21.1

4/2 1.4 0.37 1.96 0.55 4.66 9.8

4/3 1.31 0.32 1.8 0.43 3.03 2.61

offers an upper bound of the original optimization problem’s
true solution. Based on the above and following [32], [37],
[38], we define a relevant figure of merit F as

F{1,2} =
f

′?
{1,2}

fs{1,2}
. (20)

Here, f
′?
{1,2} represents the value of the objective function in

P ′{1,2} when the solution returned by the solver Xs is used,
whereas fs{1,2} denotes the value of the same function after
randomization or principal component selection, i.e. by using
As = asa

H
s . The same metric can also be applied to both

conventional SSK and to CR-aided SSK (SSK-CR) [25] to
determine the proximity to an optimal solution.

Both the mean and standard deviation of F1 found for the
proposed scheme using optimization P ′1, termed as SSK-SDR,
for conventional SSK, and for SSK-CR with D = 20 candidate
scaling vectors are shown in Table I for different number of
transmit and receive antennas. The number D of candidate
factors refers to the size of the set of random TPS vectors
considered by the SSK-CR scheme [25]. In this case, fs1 and
f

′?
1 represent the MED in the received SSK constellation and,

for a fair comparison, the average transmission power is set
to Pt = 1 for all techniques. Note that in this case we have
F1 ≥ 1, since the MED for the considered strategies obtained
by using As = asa

H
s is always smaller than or equal to the

bound computed with the solution retrieved by the solver Xs.
The results show that both the mean and standard deviation
of the figure of merit F are considerably reduced when the
proposed pre-scaling is used, i.e. the solutions achieved by
the relaxation advocated are closer to the optimal solution of
P1 than the ones obtained for conventional SSK and SSK-CR.
Specifically, the results of Table I allow us to conclude that the
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MED loss imposed by the relaxation procedure is usually in
the range of 2−3 dB for a 4×2 MIMO system. This is because
the distance of the solution obtained after relaxation from the
optimal solution f?1 is always smaller than the distance from
its upper bound f

′?
1 [32]. In fact, for the case of Nt = 2 and

Nr = 1, it can be seen that the proposed relaxation always
finds the optimal solution of the original problem P1, since
the relaxed problem P ′1 always obtains rank-1 solutions. This
is a direct consequence of the Shapiro-Barvinok-Pataki result,
which states that the solution obtained by relaxing the original
problem satisfies rank(X) ≤ 1 when Nc ≤ 2, i.e., under these
conditions the relaxation is tight and the optimal solution can
be efficiently found [27], [39]–[41].

IV. ROBUST DESIGN: WORST-CASE ROBUSTNESS TO
IMPERFECT CSI

The acquisition of perfect CSI is generally infeasible due
to the presence of noise or finite quantization [31], an aspect
not considered in the pre-scaling designs developed in [19]–
[21], [25] and Sec. III. As a consequence, the performance of
TPS techniques may be dramatically affected, since the actual
received constellation symbols will be different from the ones
estimated at the transmitter. For this reason, in this section we
conceive robust designs to guarantee the target performance
of the system under imperfect CSI conditions. In particular,
we concentrate on the design of schemes based on preserving
the required performance for the worst case of a bounded
CSI error. This illustrative criterion has been selected due to
the practicality of considering a given CSI acquisition error,
above which the system’s performance is no longer guaranteed
[42]. With this objective, we model the estimated channel
between the transmit antennas and the m-th receive antenna
with imperfect CSI as [31]

h̃m =
√

1− τ2hm + τqm, (21)

where h̃m ∈ CNt×1 denotes the imperfect CSI estimate
available at the transmitter and qm ∼ CN (0, I). Here, τ is
a parameter that determines the quality of the instantaneous
acquired CSI ranging from perfect CSI (τ = 0) to the
unavailability of the instantaneous CSI (τ = 1).

Clearly, following (13) and (14), the non-availability of
perfect CSI should impact the definition of the constraint
matrices C′j in (15) in order to meet the performance target
at the receiver. To account for this, in this paper we exploit
the principles behind robust beamforming designs to ensure
that the target performance of the system is preserved [42]. In
particular, we express the j-th constraint matrix of the robust
pre-scaling design as [43]

Cj =

Nr∑
t=1

(
C̃j,t + ∆j,t

)
= C̃′j + ∆j , (22)

where the CSI uncertainty per receive antenna is modeled
via an error matrix ∆j,t with a bounded Frobenius norm
‖∆j,t‖F ≤ εj,t. For ease of notation and without loss of
generality, in the following we consider ∆j ,

∑Nr

t=1 ∆j,t and
‖∆j‖F ≤ εj . The constant that upper-bounds the Frobenius

norm of the error εj establishes the target performance depen-
ding on the accuracy of the available CSI, i.e. the parameter
τ in (21). Moreover, C̃j,t corresponds to the j-th constraint
matrix for the t-th receive antenna and, similarly to (13)–(14),
it is given by

C̃j,t =
(
ẽ(j)

(mj ,t)

(kj ,t)

)H
ẽ(j)

(mj ,t)

(kj ,t)
, (23)

where ẽ(j)
(mj ,t)

(kj ,t)
can be expressed as

ẽ(j)
(mj ,t)

(kj ,t)
=
[
0, . . . , h̃(kj ,t), . . . ,−h̃(mj ,t), . . . , 0

]
. (24)

At this point we note that the sparse structure of C̃′j must be
incorporated into the definition of the error constraint matrix
∆j . Intuitively, this is because the CSI estimation errors can
only affect the non-zero entries of the j-th constraint matrix
C̃′j . To account for this we define

Cj =
{
C ∈ CNt×Nt

∣∣C{r,c} = 0 ∀ (r 6= kj ,mj

∧ c 6= kj ,mj)} (25)

as the set of sparse matrices with non-zero entries determined
by kj and mj , which correspond to the indices of the transmit
antennas involved in the j-th constraint, as detailed in Sec.
III. In the above expression, C{r,c} denotes the (r, c)-th entry
of the matrix C and ∧ represents the logical function “and”.
Clearly, we have C̃′j ∈ Cj and ∆j ∈ Cj . In the following we
concentrate on obtaining robust convex formulations of the
relevant problems considered in this paper.

A. MED Maximization

Following a procedure similar to the one used for deriving
P ′1, the NP-hard robust pre-scaling optimization problem that
maximizes the MED at reception subject to a total power
constraint can be expressed as

P̃1 : maximize
X

d

subject to min
‖∆j‖F≤εj

{
Tr
((

C̃′j + ∆j

)
X
)}
≥ d,

C̃′j + ∆j � 0, ∆j ∈ Cj , j = 1, . . . , Nc.

Tr (X) ≤ (PtNt) ,

X � 0, rank (X) = 1. (26)

Here, we note that the constraint matrices of the optimization
problem (26), C̃′j +∆j , differ from those of the conventional
problem defined in (16). Specifically, the constraints consider
the worst-case scenario in which the Euclidean distance of
the received symbols is minimized for the matrices ∆j ∈ Cj
satisfying ‖∆j‖F ≤ εj . Additionally, the fact that the matrices
C′j + ∆j are positive semidefinite, which follows from their
definition in (22)–(24), has also been considered, since it
generally leads to better solutions [42], [43]. Since we are
interested in finding a robust optimization problem that can
be efficiently solved by applying standard convex optimization
techniques, the following theorem provides a SDR version of
P̃1.

Theorem 1: Let X , aaH , where a represents the
pre-scaling vectors to be optimized. Moreover, let C̃′j , j ∈
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1, . . . , Nc, be as defined in (22)–(24), while εj , j ∈ 1, . . . , Nc,
and d be predetermined constants. Then, a SDR version of P̃1

in (26) is given by

P̃ ′1 : maximize
X,Bj

d

s.t.− εj ‖Bj −X‖F − Tr
(
C̃′j (Bj −X)

)
≥ d,

Bj � 0, Bj ∈ Bj , j = 1, . . . , Nc,

X � 0, Tr (X) ≤ (PtNt) , (27)

where the optimization variables Bj , j ∈ 1, . . . , Nc, are
the Lagrangian multipliers of the inner optimization problem
contained in P̃1, while Bj is the set of matrices satisfying
Bj =

{
Bj ∈ CNt×Nt

∣∣Bj,{r,c} = X{r,c} if C̃′j,{r,c} = 0
}

, as
detailed in Appendix A. Finally, the non-convex constraint of
rank (X) = 1 has been dropped.

Proof: The proof is given in Appendix A. �
The robust optimization problem P̃ ′1 can be solved with the

aid of standard convex techniques and it facilitates the design
of pre-scaling vectors robust to imperfect CSI conditions, as
shown in Sec. VI.

B. Power Minimization

A similar procedure to the one detailed in Appendix A
can be followed to obtain a relaxed robust version of the
optimization problem that minimizes the transmission power
subject to satisfying the performance thresholds P2, which can
be expressed as

P̃ ′2 : minimize
X,Bj

Tr (X)

s.t.− εj ‖Bj −X‖F − Tr
(
C̃′j (Bj −X)

)
≥ d,

Bj � 0, Bj ∈ Bj , j = 1, . . . , Nc,

X � 0. (28)

At this point we remark that the original application of SDR
to SSK developed in Sec. III facilitates the design of TPS
schemes exhibiting robustness against imperfect CSI. We also
note that with respect to the existing robust designs found in
the literature, such as the downlink beamforming schemes of
[42], [44], the constraint matrices C̃ ′j of the proposed designs
(27) and (28) depend on the actual channel realization and not
on its second-order statistics [42]. This is because we use the
instantaneous MED at the receiver as a performance metric
instead of the conventional average SNR, an approach that
is particularly suited to SSK transmission that substantially
modifies the definition of the relevant constraint matrices [19]–
[21], [42], [44].

V. ATTAINABLE TRANSMIT DIVERSITY AND
PERFORMANCE TRENDS

While the transmit diversity order of the single-RF SSK
is known to be one [9], the proposed TPS introduces an
amplitude-phase diversity in the transmission, which is an
explicit benefit of the optimization of the TPS factors and
that of the positions of the constellation symbols in the receive
SSK constellation. Accordingly, it was shown in [21], [25] that

the attainable transmit diversity order depends on the average
MED improvement of the pre-scaling as

G ,
E [do]

E [minm,k ||Hsk −Hsm||2]
, (29)

where do is the MED obtained with the aid of the proposed
optimization problems P ′1 and P ′2. Intuitively, the above ex-
pression exploits that the diversity order directly depends on
the pairwise error probability (PEP) and that, simultaneously,
the largest PEP is determined by the MED between the
received symbols [21], [25], [28], [29]. The derivation of the
explicit connection is still an open problem [21], [25]. It is
clear that for the case of P ′1 this depends on the transmit power
budget and for P ′2 it is determined by the MED threshold.
Additionally, SSK systems associated with Nr uncorrelated
RAs have been shown to experience a transmit diversity order
of one and receive diversity order of Nr. Accordingly, since
the proposed scheme attains a transmit diversity order of G,
the total diversity order becomes δ = NrG. The resultant
probability of error Pe follows the high-SNR trend formulated
as

Pe = αγ−NrG, (30)

where γ is the average SNR defined as SNR = Pt/σ
2, and α

is an arbitrary coefficient. In the following we show that the
above provides a close approximation to the performance of
SSK-SDR in the high-SNR region.

VI. SIMULATION RESULTS

To evaluate the benefits of the proposed technique, this
section presents numerical results based on Monte Carlo
simulations of conventional SSK without scaling (termed as
SSK in the figures), SSK using the constellation randomization
of [25] with D = 20 candidate scaling vectors, termed as
SSK-CR, the iterative algorithms developed in [26], and the
proposed SSK using SDR optimization, namely SSK-SDR.
In this section we maintain the nomenclature of [26] for
coherence, i.e. the algorithm employed to solve P1 is referred
to as the SSK maximum minimum distance (SSK-MMD)
regime, whereas P2 is solved via the so-called SSK guaranteed
Euclidean distance (SSK-GED) algorithm. Throughout this
section the convergence of the above SSK-MMD and SSK-
GED algorithms is deemed to be achieved when the Euclidean
norm of the error between the input and the output of the con-
vex optimization problem performed every iteration satisfies
ξ ≤ 10−3. The performance of the systems constructed with
the aid of the non-relaxed optimization problems is not shown
due to their intractable computational complexity. The channel
impulse response follows H ∈ CNr×Nt ∼ CN (0, INr ⊗ INt)
and is assumed to be perfectly known at the transmitter and the
receiver unless otherwise stated. In the previous expression, ⊗
denotes the Kronecker product. Without loss of generality, for
the conventional techniques and for the case of problem P ′1
of the proposed scheme we assume that the average transmit
power is restricted to Pt ≤ 1, unless stated otherwise. MIMO
systems having four TAs are considered, albeit the benefits of
the proposed technique can also be extended to the SM-aided
large-scale multi-user systems of [45], [46].
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Fig. 3. BER vs. SNR for a (4× 2) MIMO system.

TABLE II
AVERAGE COMPUTATIONAL TIME EMPLOYED TO COMPUTE THE TRANSMIT

PRE-SCALING FACTORS WITH OPTIMIZATION-BASED ALGORITHMS.

Nt/Nr SSK-MMD SSK-SDR

µ σ µ σ

4/2 3.85 sec. 3.9 sec. 0.24 sec. 0.025 sec.

4/3 4.67 sec. 3.74 sec. 0.23 sec. 0.022 sec.

First, we characterize the BER performance upon increasing
the transmit SNR for a (4×2)-element MIMO system in Fig. 3.
In this case, the comparison involves the MED maximization
problem P ′1 upon varying the noise power. It can be seen
in Fig. 3 that while SSK-CR improves the conventional SSK
transmission by the TPS operation, the proposed scheme
further enhances the attainable performance by the proposed
optimization. Simultaneously, it can be seen that the SSK-
MMD algorithm of [26] offers a slight improvement over the
proposed SSK-SDR in the scenario considered. However, we
note that this is achieved at the cost of a significantly higher
computational complexity, since multiple convex optimization
problems must be solved, before convergence is achieved. This
is explicitly shown in Table II, where both the average and the
standard deviation of the computational time required to obtain
the transmit pre-scaling factors are portrayed for 104 channel
realizations. These results indicate that SSK-SDR is capable
of offering a similar performance at a computational time
up to 20 times shorter than that required by the SSK-MMD
algorithm [26]. Indeed, it can be observed that the proposed
SSK-SDR scheme offers a significantly smaller variation in
the computational time required for solving the optimization
problems under different channel conditions. Additionally, Fig.
3 portrays the high diversity order provided by SSK-SDR
thanks to the enhanced MED. This is evidenced by the higher
slope of the theoretical BER curve obtained by using (30),
which closely matches the simulation results for sufficiently
high SNR values in line with the definition of the diversity
gain [47].

Similar trends can be observed in Fig. 4, where the (4×3)-
element MIMO system is examined. In this particular case,
the performance of both SSK-MMD and SSK-SDR is almost
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Fig. 4. BER vs. SNR for a (4× 3) MIMO system.
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Fig. 5. Empirical CDF of transmission power for (4×2) and (4×3) MIMO
systems.

indistinguishable. This entails that the proposed SSK-SDR
strategy provides the best performance-complexity trade-off,
since the SSK-MMD algorithm is significantly more complex
as detailed in Table II.

Fig. 5 shows the cumulative distribution function (CDF)
of the transmit power for problem P ′2 and SSK-GED in the
above two scenarios of Fig. 3 and 4, for different values
of the MED thresholds d. It can be seen that the (4 × 3)-
element MIMO system has a smaller spread in the transmit
power values necessitated for guaranteeing the required MED
threshold, and this spread tends to increase upon increasing the
MED thresholds d. It is also shown that SSK-GED generally
requires less transmission power than SSK-SDR to satisfy a
given MED threshold, as further analyzed in the following. It
should be noted that the transmit power spread results from the
fact that the MED threshold has to be satisfied under different
channel conditions, which imposes a transmit power variation.

Fig. 6 illustrates the average transmit power in Watts re-
quired for increasing MED thresholds using SSK, SSK-CR,
SSK-GED and the power minimization problems P ′2 and P̃ ′2
for the (4×2) and (4×3)-element MIMO systems of Fig. 3 and
4. To prevent repetition, in the following we focus our attention
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Fig. 6. Average transmission power vs MED thresholds for (a) (4× 2) and
(b) (4× 3) MIMO systems.

on the power minimization problem for clarity, although it is
clear that the MED maximization problem requires a similar
solution [42]. The imperfect CSI is modeled using (21) and
we have εj = ε = 2τ = 0.02 ∀j ∈ 1, . . . Nc, for the
robust optimization problem P̃ ′2. The value of ε has been
fixed similarly to [43] for illustrative purposes and without
loss of generality. For the cases of SSK and SSK-CR, the
scaling vector is multiplied by an appropriate factor in order
to increase the separation between the estimated received cons-
tellation symbols and to guarantee that the MED constraint is
satisfied with the aid of the available CSI estimate (not the true
channel). Accordingly, in Fig. 6 we plot the estimated transmit
power required to satisfy the MED thresholds at reception.
However, we remark that the actual received symbols are
different from the ones estimated at the transmitter due to
the effect of the imperfect CSI. As a result, achieving the true
MED attained by the non-robust designs in the presence of
imperfect CSI cannot be guaranteed. By contrast, the robust
schemes are able to guarantee that the MED thresholds are
satisfied, as detailed in Sec. IV. For practical reasons and
without loss of generality, the transmitter has a maximum
transmission power of 20 Watts for a given channel realization
and we treat the solutions having higher power requirements
as being infeasible. This constraint is realistic due to the
technical limitations of the power amplifiers and it only takes
effect for certain badly conditioned channels, since usually the
transmission power is considerably lower, as shown in Fig. 6.

The results of Fig. 6 show that the proposed strategies are
able to outperform SSK-CR while, simultaneously, SSK-GED
is able to provide better solutions in the considered scenarios.
At this point we remark that the SSK-GED approach is,
however, significantly more complex than the proposed SSK-
SDR. The enhancements offered by the pre-scaling techniques
are a direct consequence of the solutions being closer to the
optimal ones, as detailed in Sec. III-D. In this case, this allows
us to reduce the transmission power required satisfy a given
MED threshold when compared with SSK-CR. Specifically,
transmit power savings as significant as 2 Watts for d = 3
in a (4 × 2) system w.r.t. SSK-CR can be achieved, while a
similar trend can also be observed in the (4 × 3) scenario.
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Fig. 7. Probability of feasibility vs MED thresholds for (a) (4× 2) and (b)
(4× 3) MIMO systems.

We can therefore conclude that the benefits of the pre-scaling
designs become more pronounced for high MED thresholds.
Moreover, similarly to [43], [48], the results of this figure show
the increase in the transmit power necessary to compensate for
the CSI uncertainty at the transmitter. In this particular case
it can be seen that, in spite of the required transmit power
increase, the insightful design offered by the robust SSK-
SDR design philosophy still improves upon SSK-CR, where
the set of candidate scaling factors is randomly designed. By
doing this, the robust SSK-SDR design guarantees that the
performance thresholds specified at the receiver are satisfied,
while this is not achieved by SSK, SSK-CR, SSK-GED, SSK-
SDR and other TPS approaches in the literature [19]–[21],
[25], [26].

The above observation can be explicitly seen in Fig. 7(a)
and (b), where the probability of feasibility is represented for
increasing values of the MED thresholds for the (4× 2) and
(4× 3) MIMO systems, respectively. The feasibility probabi-
lity is defined as Prob(MED ≥ d), provided that the average
transmission power required does not exceed 20 Watts for a
given channel realization. The remaining cases are considered
as infeasible solutions. The same simulation parameters have
been used to obtain the results of this figure as in Fig. 6. By
analyzing the results of Fig. 7 it can be concluded that the
proposed robust strategy offers the highest reliability, since
the probability of outage is reduced w.r.t. the non-robust
alternatives that do not account for the presence of CSI errors.

A more refined picture of the systems’ behaviour considered
in this paper under imperfect CSI conditions is shown in Fig.
8, which represents the empirical probability density function
(PDF) of the MED at the receiver in a (4× 2) MIMO system
in the presence of imperfect CSI by considering the same
channel model and conditions as those used in Fig. 6. The
target MED at the receiver has been set to d = 1 and it is
denoted by the red bar in the figures. Note that the red bars
are only shown for illustrative purposes and do not represent
the PDF over that range. The results of this figure show that the
proposed robust SSK-SDR design is capable of guaranteeing
the MED thresholds to be exceeded at the receiver. This is in
contrast with the pre-scaling designs introduced in [19]–[21],
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Fig. 8. Empirical PDF of the MED of a (4×2) MIMO system under imperfect
CSI conditions with τ = 0.01 and d = 1 for (a) SSK, (b) SSK-CR, (c) SSK-
GED, (d) SSK-SDR, and (e) robust SSK-SDR.

[25], [26], where achieving the system performance required
cannot be guaranteed, as depicted in Fig. 8(a), (b), (c) and
(d) for the conventional SSK, SSK-CR, SSK-GED, SSK-
SDR and designs, respectively. Identical conclusions can be
extracted for the (4 × 3) MIMO system not shown in this
paper for brevity. Accordingly, our robust technique enables
the application of TPS with MED guarantees in the case of
imperfect CSI, which cannot be achieved by the previous
approaches. Moreover, the benefits of the proposed robust
design can be clearly seen upon comparing Fig. 8(b) and (d).
In particular, it can be seen that the robust technique requires
less transmission power than SSK-CR, as shown in Fig. 6
and, simultaneously, the MEDs at the receiver are significantly
enhanced. This improvement comes at the cost of an increased
variance in the MED at the receiver w.r.t. the SSK-GED
and SSK-SDR designs characterized in 8(c) and (d), which,
however, have a higher outage probability due to ignoring the
impact of inaccurate CSI [48].

VII. CONCLUSIONS

A TPS vector design based on convex optimization has been
proposed for SSK systems. A pair of distinct optimization
problems has been introduced, namely MED maximization
under transmit power budget constraints and transmit power
minimization under a MED constraint. By invoking SDR, a
close-to-optimal TPS has been designed for improving the
power efficiency of SSK systems with respect to existing
approaches by offering an enhanced performance for a given
transmit power budget, or equivalently, a reduced transmit
power for achieving a given MED. Moreover, a robust design

has been developed that is capable of guaranteeing the received
MED target in the presence of CSI errors at the transmitter,
hence enabling the use of TPS strategies, when realistic
imperfect CSI is available.

Future work can be carried out by applying the above
methodology to SM, by additionally taking into account the
classically modulated symbols in the structure of the constraint
matrices. The employment of other robust design criteria and
the combination with other strategies such as those in [17]
also constitute promising subjects for our future study.

APPENDIX A. PROOF OF THEOREM 1

The proof of the theorem is based on exploiting the re-
semblance between the optimization constraints of P̃1 and
the robust beamforming designs developed in [43], [49], and
on reformulating the optimization constraints with the aid of
the Lagrange dual function [43], [44], [48]. Specifically, we
commence by reformulating the optimization constraints in the
second line of (26), which constitute the optimal solution of
the optimization problem for a given value of the optimization
variable X

minimize
∆j∈Cj

Tr
((

C̃′j + ∆j

)
X
)
− d

subject to C̃′j + ∆j � 0, ‖∆j‖2F ≤ εj , j = 1, . . . , Nc.
(31)

This is a convex optimization problem associated with the
Lagrange dual function given by [34]

g (λj ,Bj) = inf
∆j

{L (∆j , λj ,Bj)} = inf
∆j

{
Tr
((

C̃′j + ∆j

)
X
)

−d+ λj

(
‖∆j‖2F − ε

2
j

)
− Tr

((
C̃′j + ∆j

)
Bj

)}
,

(32)

where inf {·} denotes the infimum of a function,
L (∆j , λj ,Bj) is the Lagrangian, while λj and Bj are
dual variables [34]. The infimum of the Lagrangian in (32)
can be obtained by finding the point satisfying

∂L (∆j , λj ,Bj)

∂∆j
= 0, (33)

which is achieved for [43], [50]

∆j =
BH
j −XH

2λj
. (34)

Here, we remark that the particular structure of ∆j ∈ Cj
detailed in Sec. IV has to be considered, when defining the
dual variable Bj [44]. This is required for preserving the
sparsity that arises in the constraint matrices of the proposed
optimization problem C̃′j . With this objective, we define the
set Tj that indexes the non-zero entries of the j-th constraint
matrix as

Tj = {{kj ,mj} , {kj , kj} , {mj , kj} , {mj ,mj}} . (35)

In these indices represented as {a, b}, a refers to the row and
b corresponds to the column of the indexed matrix. Moreover,
let Qj =

{
{r, c}

∣∣r, c ∈ 1, . . . , Nt
}

denote the set containing
all the indices of an (Nt × Nt)-element matrix and Sj =
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Qj − Tj . Note that Sj indexes the zero-valued entries of the
j-th constraint matrix C̃′j . Following the above argument, the
following relationship must hold to preserve the structure of
∆j ∈ Cj

Bj |Sj = X|Sj , (36)

where X|Sj denotes the entries of the matrix X determined
by Sj . This guarantees that we have ∆j ∈ Cj , since B|Sj −
X|Sj = 0. For notational convenience, we define Bj as the set
of matrices satisfying (36). Considering this and substituting
(34) into (32), the Lagrange dual problem can be reformulated
as [34]

max.
Bj ,λj

−

(
Tr
(
C̃′j (Bj −X)

)
+
‖Bj −X‖2F

4λj
+ λjε

2
j + d

)
subject to Bj � 0, Bj ∈ Bj , λj ≥ 0. (37)

At this point, we remark that (37) is an equivalent formulation
of the optimization constraints in (31) because strong duality
holds, i.e. the duality gap is zero and the bound provided by
the Lagrange dual problem is tight [34]. This is because the
(weaker) Slater condition that entails strong duality holds, if
there exists a solution satisfying C̃′j +∆j � 0 and ‖∆j‖F <
εj . Since C̃′j is positive semidefinite by definition, the above
condition is always satisfied and therefore there is no duality
gap [34]. This entails that P̃1 can be rewritten as

P̃1 : maximize
X,Bj

d

s.t. max
Bj∈Bj

−
(
Tr
(
C̃′j (Bj −X)

)
+ εj ‖Bj −X‖F + d

)
≥ 0

Bj � 0, j = 1, . . . , Nc,

X � 0, Tr (X) <= (PtNt) , rank (X) = 1,
(38)

where the dual problem that determines the constraints in the
second line of (38) has been already maximized w.r.t. λj .
Finally, Theorem 1 is obtained by noting that the constra-
ints determined by the maximum function are immediately
satisfied for any feasible Bj ∈ Bj and by dropping the rank
constraint, which completes the proof. �
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