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Nonlinear models of the cochlea are best implemented in the time domain, but their computational

demands usually limit the duration of the simulations that can reasonably be performed. This letter

presents a modified state space method and its application to an example nonlinear one-

dimensional transmission-line cochlear model. The sparsity pattern of the individual matrices for

this alternative formulation allows the use of significantly faster numerical algorithms. Combined

with a more efficient implementation of the saturating nonlinearity, the computational speed of

this modified state space method is more than 40 times faster than that of the original formulation.
VC 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1121/1.4921550]
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I. INTRODUCTION

Active nonlinearity is an essential feature of cochlear

mechanics that is generally best modelled in the time domain.

A range of time domain numerical methods have been pro-

posed and applied to a number of models over the years

(Diependaal et al., 1987; Elliott et al., 2007). One widely

adopted two-stage strategy (Diependaal et al., 1987) first sol-

ves the model boundary value problem using the finite differ-

ence approximation, in order to compute the pressure

difference, and then uses numerical integration techniques to

solve the remaining initial value problem. More recently, a

state space matrix formulation has been proposed in Elliott

et al. (2007), which has also been applied in several studies

such as Liu and Neely (2010), Sisto et al. (2010), Rapson

et al. (2012), and Ayat et al. (2014). It expresses the model

states as a single set of coupled first-order ordinary differential

equations (ODEs), the time domain solution of which can

then be obtained using well-established ODE solvers. An extra

benefit of this approach is that it allows rigorous inspection of

the stability of linearized models, which, for instance, facili-

tates the study of spontaneous otoacoustic emissions (Ku

et al., 2009). The relation between the state space formulation

and Diependaal’s method has previously been discussed in

Rapson et al. (2012).

Despite the advantages of time domain solutions, they are

usually very computationally challenging and memory

demanding, because a sufficient spatial and time domain reso-

lution is required to ensure simulation accuracy. Taking the

standard state space method as an example, it is typically

thousands of times slower than real time when implemented in

the time domain on a desktop computer. A hybrid direct-

iterative solver was developed in Bertaccini and Sisto (2011)

to accelerate the simulation of a nonlinear feed-forward model

within the standard state space framework. This letter proposes

a modified state space (MSS) method for the time domain sim-

ulation of nonlinear one-dimensional (1D) transmission-line

cochlear models. Numerical efficiency of this MSS is com-

pared with both the standard state space (SS) and Diependaal’s

method, and it is found to be more than 40 times more efficient

than the SS and marginally faster than Diependaal’s method.

II. THE EXAMPLE COCHLEAR MODEL

The example model adopted here for comparison of algo-

rithm complexity is that reported in Ku et al. (2009), which is

a nonlinear adaptation to the linear active model originally

proposed by Neely and Kim (1986) for a cat cochlea, but with

parameters re-tuned to match human cochlear physiology.

The micromechanics of this model is represented by an array

of 500 discrete elements, with the first one modelling the mid-

dle ear, the last one the helicotrema and the remaining 498

elements modelling the cochlear partition, as shown in Fig. 4

of Elliott et al. (2007). The cochlear partition elements are

modelled as two degree-of-freedom (DOF) lumped-parameter

oscillators [Fig. 1 of Elliott et al. (2007)], coupled solely by

the cochlear fluid. The saturating active mechanism is simu-

lated by placing a compressive nonlinearity, a first-order

Boltzmann function, before the active impedance in the

micromechanical feedback loop, so that the input to the

Boltzmann function is the difference between the displace-

ments of the two masses of each oscillator. The dimensionless

factor, c, which regulates the strength of the active feedbacka)Electronic mail: sp2g12@soton.ac.uk
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force, is then determined as the absolute value of the ratio of

the output and input of the Boltzmann function, as shown in

Eq. (8) of Ku et al. (2009). A two-port network model of the

ear canal and middle ear, based on the model of Kringlebotn

(1988) and programmed by Ku (2008), is also included. A

thorough description of the model and its parameter values

can be found in Ku (2008).

III. MODIFIED STATE SPACE FORMULATION

The original state space formulation proposed by Elliott

et al. (2007) used the finite difference approximation for the

1D wave propagation inside the cochlea, Eq. (1), and state

space formulation for the element micromechanics, Eqs. (2)

and (3), so that the final fluid-coupled state space equation

can be derived as Eq. (4),

FpðtÞ � €wðtÞ ¼ qðtÞ; (1)

_xðtÞ ¼ AExðtÞ þ BEpðtÞ; (2)

_wðtÞ ¼ CExðtÞ; (3)

_xðtÞ ¼ AxðtÞ þ BqðtÞ; (4)

where F is the second-order finite difference matrix, represent-

ing the coupling between the cochlear partition acceleration

vector €wðtÞ and fluid pressure difference vector p(t); q(t) is

the stapes acceleration vector, the only nonzero entry of

which is the first one; x(t) is the complete state vector;

A¼ [I�BEF�1CE]�1AE is the system matrix; and B¼ [I

�BEF
�1

CE]�1
BEF

�1 is the input matrix. Complete deriva-

tions and definitions of these matrices can be found in Elliott

et al. (2007). An alternative method for deriving the final state

space equation, with much better computational efficiency, is

to first combine Eqs. (2) and (3) to eliminate variable _xðtÞ,
and then combine the result with Eq. (1) to eliminate depend-

ence on €wðtÞ,

€wðtÞ ¼ CE _xðtÞ ¼ CE½AExðtÞ þ BEpðtÞ�; (5)

€wðtÞ ¼ FpðtÞ � qðtÞ: (6)

Equating the right hand side of Eqs. (5) and (6) leads to the

pressure difference vector as

pðtÞ ¼ ðF� CEBEÞ�1½CEAExðtÞ þ qðtÞ�: (7)

Substituting Eq. (7) back into Eq. (2), the modified state

space equation is obtained as

_xðtÞ ¼ A0xðtÞ þ B0qðtÞ; (8)

where the new system matrix becomes A0 ¼AE

þBE(F�CEBE)�1
CEAE; and new input matrix is B0

¼BE(F�CEBE)�1. This new set of state space matrices A0,
B0 can be shown to be analytically identical to the original

ones A, B, using the Woodbury matrix identity for the inverse

of a sum of matrices (Henderson and Searle, 1981). Applying

this identity to the original system matrix A, we have

A ¼ ½I� BEF�1CE��1
AE

¼ ½Iþ BEðF� CEBEÞ�1
CE�AE ¼ A0: (9)

Similarly, for the original input matrix B, we have

B ¼ ½I� BEF�1CE��1
BEF�1

¼ ½I� BEF�1CE��1
BEF�1CEC�1

E

¼ ½I� BEF�1CE��1½I� ðI� BEF�1CEÞ�C�1
E

¼ ½I� BEF�1CE��1
C�1

E � C�1
E

¼ ½Iþ BEðF� CEBEÞ�1
CE�C�1

E � C�1
E

¼ BEðF� CEBEÞ�1 ¼ B0: (10)

IV. NUMERICAL ADAVANTAGE OF THE MODIFIED
STATE SPACE METHOD

As shown in Eqs. (10), (21)–(23) of Elliott et al. (2007), F

is a tri-diagonal matrix (i.e., having nontrivial elements only

on the diagonal, first sub-diagonal and first super-diagonal),

AE, BE, and CE are block diagonal matrices (in which the

diagonal elements are square matrices of any size and

off-diagonal elements are zero). It is therefore expected that

considerable memory and calculation savings can be achieved

by employing sparse matrix storage and computation methods,

especially when several hundred micro-elements are used. The

sparsity patterns of the state space matrices are shown in Fig.

FIG. 1. (Color online) Sparsity patterns, sizes, nnz, and matrix densities of state

space matrices. Only the first 20� 20 elements of each matrix are displayed for

better visualization of their internal patterns. (a) F, 500� 500, nnz¼ 1498, d
� 0.599%; (b) AE, 1996� 1996, nnz¼ 4985, d� 0.125%; (c) BE, 1996� 500,

nnz¼ 500, d� 0.0501%; (d) CE, 500� 1996, nnz¼ 500, d � 0.0501%; (e)

I�BEF�1CE, 1996� 1996, nnz¼ 251496, d � 6.31%; (f) F�CEBE,

500� 500, nnz¼ 1498, d� 0.599%; (g) A or A0, 1996� 1996, nnz¼ 1 000 490,

d� 25.1%; and (h) B or B0, 1996� 500, and nnz¼ 250 000, d� 25.05%.
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1, where the upper two rows show the individual matrices and

the bottom two rows both those inverted and the final matrices

in the state space formulation. Each square represents the

structure of a matrix and each dot denotes a nonzero element

at the corresponding location. Only the first 20� 20 elements

of each matrix are depicted for better visualization of their in-

ternal patterns. The size of each matrix for a 500-element

model, the number of nonzero entries (nnz) and sparse matrix

density, d, defined as the ratio of nnz to the total number of

entries, are also given in the figure caption. It can be seen that

more than 99% of the matrices AE, BE, CE, F, and F�CEBE

are empty, whereas this number reduces to about 75% for the

final set of state space matrices A and B. In MATLAB, sparse

algorithms (Gilbert et al., 1992) can be employed when these

matrices are defined to be sparse and the resultant sparse state

space method is about twice as efficient as the original formu-

lation. The modified state space formulation, however, can be

arranged to be even faster with sparse algorithms, because the

intermediate matrix F�CEBE is tri-diagonal and the calcula-

tion of the pressure difference vector p(t) in Eq. (7) is identical

to solving a sparse tri-diagonal linear system of the form

Ax¼ b. There exist very rapid algorithms for computing the

solution of such linear system using either iterative or direct

methods. Direct solvers based upon sparse matrix factorization

are preferable in this case due to the dimension of the model

and the nature of matrix F�CEBE. In MATLAB, the matrix left

divide operator, mldivde or backslash (\), encapsulates a host

of algorithms for solving sparse linear systems and invokes the

most suitable one according to the sparsity pattern of involved

matrices (Davis, 2006). One solver is specifically designed for

tri-diagonal systems, and direct use of this algorithm leads to a

speed improvement of at least 20 times compared to the origi-

nal formulation. But since the tri-diagonal matrix, F�CEBE,

is fixed during the entire simulation, the speed of solving this

linear system can be further increased by performing a sparse

LU decomposition beforehand. Essentially, this converts the

tri-diagonal system into a combination of a lower and an upper

triangular system which can be easily solved using forward

and backward substitution. According to (Davis, 2004), this

decomposition for the matrix F�CEBE takes the form of

F� CEBE ¼ RP�1LUQ�1; (11)

ðF� CEBEÞ�1 ¼ QU�1L�1PR�1; (12)

where L is a lower triangular matrix, U is an upper triangular

matrix, P and Q are row and column permutation matrices

used to reduce the fill-in problem during the actual factoriza-

tion process, and R is a diagonal row scaling matrix which

can lead to a sparser and more stable factorization. Thus, in

addition to using sparse matrix multiplication, the modified

state space equation is implemented as the following:

_xðtÞ ¼AExðtÞ þ �BfU�1½L�1ð�CAExðtÞÞ�g þ �qðtÞ; (13)

where �B ¼ BEQ; �C ¼ PR�1CE; and �qðtÞ ¼ BEðF
�CEBEÞ�1

qðtÞ, all of which can be computed before calling

the ODE solver. Such computational advantages are not pos-

sible with the original state space method, as its intermediate

matrix, I�BEF�1CE contains significantly more nonzero

entries (more than 167 times) and is of larger size (about 16

times) than those of F�CEBE. The reduction of sparsity

mainly results from F
�1, which is a completely full matrix.

V. INCLUSION OF NONLINEARITY IN THE STATE
SPACE EQUATIONS

Only the active feedback force needs to be compressed

with stimulus level, so the matrix AE can be decomposed into

a time-invariant passive part, AEpas
and a time-varying active

part, AEact
(c), which consists of all the components that are

functions of c. One way of implementing the level-dependent

nonlinearity in the time domain is to update AEact
(c) every

time c changes. This involves several modifications to a

1996� 1996 matrix for every time step when using the ODE

solver and can be extremely time-consuming. By observing

that each individual block matrix inside AEact
(c) only contains

nonzero entries on its first row, which also have a common

factor c, an equivalent implementation is to scale all the com-

ponents of the state vector for each cochlear partition element

by a factor c(n, t), which is given by

c n; tð Þ ¼
�
�
�
�

f xd n; tð Þ½ �
xd n; tð Þ

�
�
�
�
; (14)

where n is the element index; xd(n, t) is the relative displace-

ment between the BM and TM; and f(x) is the Boltzmann

function. The active part of the state space equation,

AEact
(c)x(t), can now be written as AEfull

xscaledðtÞ, where

AEfull
¼ AEact

(c¼ 1), is a constant matrix, xscaledðtÞ
¼ cðtÞ � xðtÞ, cðtÞ is a column vector including all of the

scaling factors, c(n, t), arranged in the same order as are the

elements of the complete state vector x(t) and the symbol �
denotes element-by-element multiplication of the two col-

umn vectors c(t) and x(t). Therefore, the final fluid-coupled

state space equation for the nonlinear cochlear model is real-

ized as the following:

_xðtÞ ¼ AEpas
xðtÞþAEfull

xscaledðtÞ þ �qðtÞ
þ �BfU�1½L�1ð�CðAEpas

xðtÞ þ AEfull
xscaledðtÞÞÞ�g:

(15)

This method is considerably more effective than the first

one, as none of the state space matrices is changed

during the numerical integration. The original SS method

for the nonlinear model is implemented in a similar way

for comparison of numerical efficiency.

VI. RESULTS

This section presents a comparison of the computational

efficiency of four time domain numerical algorithms: the SS,

sparse state space (SSS), modified state space (MSS), and

Diependaal’s two-stage method after extending it to allow two

DOF micromechanics following the Appendix of Diependaal

et al. (1987). All of these were programmed and simulated in

MATLAB R2015a using a desktop computer with a 3.40 GHz,

quad-core Intel Core i5-3570 processor and 4 GB DDR3

RAM. The final component of all four algorithms is numerical

integration. We implemented an explicit adaptive solver,

which is a modified version of the MATLAB ode45 function,
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removing unnecessary functionalities such as event function,

mass matrix and non-negative solutions. The relative error tol-

erance was set as 10–5 in all experiments, whereas the absolute

error tolerance was determined individually for each stimulus

to be one order of magnitude lower than the corresponding

scale of the model displacement response. This reflects the

flexibility of the adaptive solver, which can solve the model

with the required accuracy and without unnecessary effort.

The effect of the stimulus spectrum and level on program run-

time was investigated by using white noise and sinusoids hav-

ing frequencies of 2, 4, 8, 12, and 16 kHz, each of which was

sampled at 100 kHz, and had a duration of 30 ms with a 10 ms

half-Hanning window onset ramp and levels varying from 30

to 100 dB sound pressure level (SPL) in step of 10 dB.

For each stimulus, the simulation time gradually rises

with increasing input level and frequency for sinusoidal

stimuli. But the speedup factor, defined as the ratio of the SS

simulation time to that of any other method, is roughly con-

stant across most stimulus types and levels, as shown in Fig.

2 for the MSS. Similarly, the speedup factor is found to be

relatively independent of the number of microelements in

the model (not shown). Table I shows the average runtime

across different signal levels and frequencies of sinusoidal

excitations for each type of stimulus and algorithm. The

overall average runtime of all stimuli are taken as the final

metric for comparison of the computational efficiency of

each method and the overall speedup factor is shown in the

last row of Table I. It can be seen that the sparse algorithms

alone are able reduce the runtime by almost a half, but

the MSS yields a speed improvement of more than a factor

of 40 and is also about 40% quicker than the two-stage

method.

VII. CONCLUSIONS

The main contribution of this paper is the description of

the modified state space method, which has been applied here

to the nonlinear and active cochlear model developed in Ku

et al. (2009). Although analytically identical to the original

state space equation, the sparsity pattern of the constituting

matrix of this alternative formulation offers the opportunity for

considerably more efficient numerical algorithms, producing a

speedup factor of more than 40. Its computational efficiency is

on a similar scale to that of the Diependaal’s method. The

approach presented here can be readily applied to various other

1D cochlear models, such as the nonlinear and active ones

based on an array of one DOF lumped-parameter oscillators

(Sisto et al., 2010).
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FIG. 2. (Color online) Dependence of speedup factor for the modified state

space method on stimulus SPL for white noise and sinusoidal stimuli with

frequencies of 2, 4, 8, 12, and 16 kHz.

TABLE I. Comparison of average run-time in seconds, used by four algo-

rithms to solve the nonlinear 1D cochlear model with 500 discrete elements in

response to white noise and sinusoidal stimuli with frequencies of 2, 4, 8, 12,

and 16 kHz, each of which was sampled at 100 kHz, had a duration of 30 ms

with a 10 ms half-Hanning window onset ramp and levels varying from 30 to

100 dB SPL in step of 10 dB. SS: original dense state space; SSS: sparse state

space; MSS: modified state space; two-stage: Diependaal’s method.

SS SSS MSS Two-stage

Sinusoids 777.02 427.50 18.80 25.52

White noise 630.54 361.85 15.52 22.27

Average runtime 703.78 394.68 17.16 23.90

Speedup factor 1 1.78 41.01 29.45
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