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Nonlinear models of the cochlea are best implemented in the time domain, but their computational
demands usually limit the duration of the simulations that can reasonably be performed. This letter
presents a modified state space method and its application to an example nonlinear one-
dimensional transmission-line cochlear model. The sparsity pattern of the individual matrices for
this alternative formulation allows the use of significantly faster numerical algorithms. Combined
with a more efficient implementation of the saturating nonlinearity, the computational speed of
this modified state space method is more than 40 times faster than that of the original formulation.
© 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative
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I. INTRODUCTION

Active nonlinearity is an essential feature of cochlear
mechanics that is generally best modelled in the time domain.
A range of time domain numerical methods have been pro-
posed and applied to a number of models over the years
(Diependaal et al., 1987; Elliott et al., 2007). One widely
adopted two-stage strategy (Diependaal et al., 1987) first sol-
ves the model boundary value problem using the finite differ-
ence approximation, in order to compute the pressure
difference, and then uses numerical integration techniques to
solve the remaining initial value problem. More recently, a
state space matrix formulation has been proposed in Elliott
et al. (2007), which has also been applied in several studies
such as Liu and Neely (2010), Sisto et al. (2010), Rapson
et al. (2012), and Ayat et al. (2014). It expresses the model
states as a single set of coupled first-order ordinary differential
equations (ODEs), the time domain solution of which can
then be obtained using well-established ODE solvers. An extra
benefit of this approach is that it allows rigorous inspection of
the stability of linearized models, which, for instance, facili-
tates the study of spontaneous otoacoustic emissions (Ku
et al., 2009). The relation between the state space formulation
and Diependaal’s method has previously been discussed in
Rapson et al. (2012).

Despite the advantages of time domain solutions, they are
usually very computationally challenging and memory
demanding, because a sufficient spatial and time domain reso-
lution is required to ensure simulation accuracy. Taking the
standard state space method as an example, it is typically

®Electronic mail: sp2g12@soton.ac.uk

J. Acoust. Soc. Am. 137 (6), June 2015

0001-4966/2015/137(6)/3559/4/$30.00

Pages: 3559-3562

thousands of times slower than real time when implemented in
the time domain on a desktop computer. A hybrid direct-
iterative solver was developed in Bertaccini and Sisto (2011)
to accelerate the simulation of a nonlinear feed-forward model
within the standard state space framework. This letter proposes
a modified state space (MSS) method for the time domain sim-
ulation of nonlinear one-dimensional (1D) transmission-line
cochlear models. Numerical efficiency of this MSS is com-
pared with both the standard state space (SS) and Diependaal’s
method, and it is found to be more than 40 times more efficient
than the SS and marginally faster than Diependaal’s method.

Il. THE EXAMPLE COCHLEAR MODEL

The example model adopted here for comparison of algo-
rithm complexity is that reported in Ku et al. (2009), which is
a nonlinear adaptation to the linear active model originally
proposed by Neely and Kim (1986) for a cat cochlea, but with
parameters re-tuned to match human cochlear physiology.
The micromechanics of this model is represented by an array
of 500 discrete elements, with the first one modelling the mid-
dle ear, the last one the helicotrema and the remaining 498
elements modelling the cochlear partition, as shown in Fig. 4
of Elliott et al. (2007). The cochlear partition elements are
modelled as two degree-of-freedom (DOF) lumped-parameter
oscillators [Fig. 1 of Elliott et al. (2007)], coupled solely by
the cochlear fluid. The saturating active mechanism is simu-
lated by placing a compressive nonlinearity, a first-order
Boltzmann function, before the active impedance in the
micromechanical feedback loop, so that the input to the
Boltzmann function is the difference between the displace-
ments of the two masses of each oscillator. The dimensionless
factor, y, which regulates the strength of the active feedback
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force, is then determined as the absolute value of the ratio of
the output and input of the Boltzmann function, as shown in
Eq. (8) of Ku et al. (2009). A two-port network model of the
ear canal and middle ear, based on the model of Kringlebotn
(1988) and programmed by Ku (2008), is also included. A
thorough description of the model and its parameter values
can be found in Ku (2008).

lll. MODIFIED STATE SPACE FORMULATION

The original state space formulation proposed by Elliott
et al. (2007) used the finite difference approximation for the
1D wave propagation inside the cochlea, Eq. (1), and state
space formulation for the element micromechanics, Egs. (2)
and (3), so that the final fluid-coupled state space equation
can be derived as Eq. (4),

Fp(1) —w(1) = q(0), (1
X(r) = Apx(r) + Bep(1), ()
w(r) = Cex(1), 3)
x(1) = Ax(1) + Bq(1), 4)

where F is the second-order finite difference matrix, represent-
ing the coupling between the cochlear partition acceleration
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FIG. 1. (Color online) Sparsity patterns, sizes, nnz, and matrix densities of state
space matrices. Only the first 20 x 20 elements of each matrix are displayed for
better visualization of their internal patterns. (a) F, 500 x 500, nnz = 1498, ¢
= 0.599%; (b) Ag, 1996 x 1996, nnz = 4985, 6 ~ 0.125%; (c) B, 1996 x 500,
nnz = 500, J~0.0501%; (d) Cg, 500 x 1996, nnz =500, ¢ ~ 0.0501%; (e)
I-B,F 'Cp 1996 1996, nnz=251496, § ~ 631%; (f) F—CyBp,
500 x 500, nnz = 1498, § ~ 0.599%; (g) A or A’, 1996 x 1996, nnz = 1 000490,
0~225.1%; and (h) B or B, 1996 x 500, and nnz = 250 000, 6 & 25.05%.
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vector w () and fluid pressure difference vector p(¢); q(?) is
the stapes acceleration vector, the only nonzero entry of
which is the first one; x(f) is the complete state vector;
A=[I-BzF 'Cz]'A; is the system matrix; and B=[I
—BgF 'Ci] 'BgF ! is the input matrix. Complete deriva-
tions and definitions of these matrices can be found in Elliott
et al. (2007). An alternative method for deriving the final state
space equation, with much better computational efficiency, is
to first combine Egs. (2) and (3) to eliminate variable x(¢),
and then combine the result with Eq. (1) to eliminate depend-
ence on W (1),

w(t) = Cgx(r) = Cp[Apx(t) + Bep(r)], (5)

w(r) =Fp(1) — q(1). (6)
Equating the right hand side of Eqgs. (5) and (6) leads to the
pressure difference vector as

p(1) = (F — CeBg) ' [CeAEX(r) + q(1)]. (7)

Substituting Eq. (7) back into Eq. (2), the modified state
space equation is obtained as

x(1) = A'x(1) + B'q(1), ®
where the new system matrix becomes A'=Ag
+Bg(F — CBr) 'CrAp; and new input matrix is B’
=Bg(F — CEBE)”. This new set of state space matrices A/,
B’ can be shown to be analytically identical to the original
ones A, B, using the Woodbury matrix identity for the inverse
of a sum of matrices (Henderson and Searle, 1981). Applying
this identity to the original system matrix A, we have

A=[1-BF'Cs 'Ag

= [+ Bg(F — CgBg) 'Ce]Ap = A, )

Similarly, for the original input matrix B, we have

B =[I—BzF 'Cs] 'BzF !

1 —BeF'Cg] 'BeF ' CCy!
I —BeF'Cg] '[I — (1 — BzF'Cp)|C}!
I—BF'Cyl 'C! - ¢!

1+ Bg(F — CzBg) 'CC! — Cf!
=By(F—CsBg) ' =B (10)

IV. NUMERICAL ADAVANTAGE OF THE MODIFIED
STATE SPACE METHOD

As shown in Egs. (10), (21)—(23) of Elliott et al. (2007), F
is a tri-diagonal matrix (i.e., having nontrivial elements only
on the diagonal, first sub-diagonal and first super-diagonal),
Apr, Bg, and Cp are block diagonal matrices (in which the
diagonal elements are square matrices of any size and
off-diagonal elements are zero). It is therefore expected that
considerable memory and calculation savings can be achieved
by employing sparse matrix storage and computation methods,
especially when several hundred micro-elements are used. The
sparsity patterns of the state space matrices are shown in Fig.
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1, where the upper two rows show the individual matrices and
the bottom two rows both those inverted and the final matrices
in the state space formulation. Each square represents the
structure of a matrix and each dot denotes a nonzero element
at the corresponding location. Only the first 20 x 20 elements
of each matrix are depicted for better visualization of their in-
ternal patterns. The size of each matrix for a 500-element
model, the number of nonzero entries (nnz) and sparse matrix
density, J, defined as the ratio of nnz to the total number of
entries, are also given in the figure caption. It can be seen that
more than 99% of the matrices Ag, B, Cg, F, and F — CzBg
are empty, whereas this number reduces to about 75% for the
final set of state space matrices A and B. In MATLAB, sparse
algorithms (Gilbert et al., 1992) can be employed when these
matrices are defined to be sparse and the resultant sparse state
space method is about twice as efficient as the original formu-
lation. The modified state space formulation, however, can be
arranged to be even faster with sparse algorithms, because the
intermediate matrix F — C;By; is tri-diagonal and the calcula-
tion of the pressure difference vector p(¢) in Eq. (7) is identical
to solving a sparse tri-diagonal linear system of the form
Ax=0>b. There exist very rapid algorithms for computing the
solution of such linear system using either iterative or direct
methods. Direct solvers based upon sparse matrix factorization
are preferable in this case due to the dimension of the model
and the nature of matrix F — CgBg. In MATLAB, the matrix left
divide operator, mldivde or backslash (\), encapsulates a host
of algorithms for solving sparse linear systems and invokes the
most suitable one according to the sparsity pattern of involved
matrices (Davis, 2006). One solver is specifically designed for
tri-diagonal systems, and direct use of this algorithm leads to a
speed improvement of at least 20 times compared to the origi-
nal formulation. But since the tri-diagonal matrix, F — CzBp,
is fixed during the entire simulation, the speed of solving this
linear system can be further increased by performing a sparse
LU decomposition beforehand. Essentially, this converts the
tri-diagonal system into a combination of a lower and an upper
triangular system which can be easily solved using forward
and backward substitution. According to (Davis, 2004), this
decomposition for the matrix F — C;By; takes the form of

F — CzBz = RP'LUQ !, (11)
(F—CgBg) ' =QU'L'PR ™, (12)

where L is a lower triangular matrix, U is an upper triangular
matrix, P and Q are row and column permutation matrices
used to reduce the fill-in problem during the actual factoriza-
tion process, and R is a diagonal row scaling matrix which
can lead to a sparser and more stable factorization. Thus, in
addition to using sparse matrix multiplication, the modified
state space equation is implemented as the following:

X(1) =Apx(r) + B{U'L™(CAx(0)]} +a(r),  (13)

where B =B;Q,C=PR'Cg, and q(t) =Bg(F
—CgBg) " (1), all of which can be computed before calling
the ODE solver. Such computational advantages are not pos-
sible with the original state space method, as its intermediate
matrix, I —BgF~'Cg contains significantly more nonzero
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entries (more than 167 times) and is of larger size (about 16
times) than those of F — CgBg. The reduction of sparsity
mainly results from F~!, which is a completely full matrix.

V. INCLUSION OF NONLINEARITY IN THE STATE
SPACE EQUATIONS

Only the active feedback force needs to be compressed
with stimulus level, so the matrix Az can be decomposed into
a time-invariant passive part, Ag,, and a time-varying active
part, Ag, (y), which consists of all the components that are
functions of y. One way of implementing the level-dependent
nonlinearity in the time domain is to update Ag,(y) every
time 7 changes. This involves several modifications to a
1996 x 1996 matrix for every time step when using the ODE
solver and can be extremely time-consuming. By observing
that each individual block matrix inside Ag, () only contains
nonzero entries on its first row, which also have a common
factor y, an equivalent implementation is to scale all the com-
ponents of the state vector for each cochlear partition element
by a factor y(n, f), which is given by

Xa(n,t) (14

y(n, 1) =

where 7 is the element index; x,(n, t) is the relative displace-
ment between the BM and TM; and f(x) is the Boltzmann
function. The active part of the state space equation,
Ag, ()X(?), can now be written as Ag,, Xscaled(?), Where
Ag, =Ap,(y=1), is a constant matrix, Xscaled(?)
=v(r) ©x(1), y(¢) is a column vector including all of the
scaling factors, y(n, f), arranged in the same order as are the
elements of the complete state vector x(f) and the symbol ©
denotes element-by-element multiplication of the two col-
umn vectors y(¢) and x(¢). Therefore, the final fluid-coupled
state space equation for the nonlinear cochlear model is real-
ized as the following:

X(1) = Ap, X(1)+Ag, Xscatea (1) + G (1)
+ B{UT' L™ (C(Ag, X(1) + g, Xscatea()))]}-
(15)

This method is considerably more effective than the first
one, as none of the state space matrices is changed
during the numerical integration. The original SS method
for the nonlinear model is implemented in a similar way
for comparison of numerical efficiency.

VI. RESULTS

This section presents a comparison of the computational
efficiency of four time domain numerical algorithms: the SS,
sparse state space (SSS), modified state space (MSS), and
Diependaal’s two-stage method after extending it to allow two
DOF micromechanics following the Appendix of Diependaal
et al. (1987). All of these were programmed and simulated in
MATLAB R2015a using a desktop computer with a 3.40 GHz,
quad-core Intel Core i5-3570 processor and 4 GB DDR3
RAM. The final component of all four algorithms is numerical
integration. We implemented an explicit adaptive solver,
which is a modified version of the MaTLAB ode45 function,
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FIG. 2. (Color online) Dependence of speedup factor for the modified state
space method on stimulus SPL for white noise and sinusoidal stimuli with
frequencies of 2, 4, 8, 12, and 16 kHz.

removing unnecessary functionalities such as event function,
mass matrix and non-negative solutions. The relative error tol-
erance was set as 107 in all experiments, whereas the absolute
error tolerance was determined individually for each stimulus
to be one order of magnitude lower than the corresponding
scale of the model displacement response. This reflects the
flexibility of the adaptive solver, which can solve the model
with the required accuracy and without unnecessary effort.
The effect of the stimulus spectrum and level on program run-
time was investigated by using white noise and sinusoids hav-
ing frequencies of 2, 4, 8, 12, and 16 kHz, each of which was
sampled at 100 kHz, and had a duration of 30 ms with a 10 ms
half-Hanning window onset ramp and levels varying from 30
to 100 dB sound pressure level (SPL) in step of 10 dB.

For each stimulus, the simulation time gradually rises
with increasing input level and frequency for sinusoidal
stimuli. But the speedup factor, defined as the ratio of the SS
simulation time to that of any other method, is roughly con-
stant across most stimulus types and levels, as shown in Fig.
2 for the MSS. Similarly, the speedup factor is found to be
relatively independent of the number of microelements in
the model (not shown). Table I shows the average runtime
across different signal levels and frequencies of sinusoidal
excitations for each type of stimulus and algorithm. The
overall average runtime of all stimuli are taken as the final

TABLE 1. Comparison of average run-time in seconds, used by four algo-
rithms to solve the nonlinear 1D cochlear model with 500 discrete elements in
response to white noise and sinusoidal stimuli with frequencies of 2, 4, 8, 12,
and 16 kHz, each of which was sampled at 100kHz, had a duration of 30 ms
with a 10 ms half-Hanning window onset ramp and levels varying from 30 to
100dB SPL in step of 10dB. SS: original dense state space; SSS: sparse state
space; MSS: modified state space; two-stage: Diependaal’s method.

SS SSS MSS Two-stage
Sinusoids 777.02 427.50 18.80 25.52
White noise 630.54 361.85 15.52 22.27
Average runtime 703.78 394.68 17.16 23.90
Speedup factor 1 1.78 41.01 29.45
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metric for comparison of the computational efficiency of
each method and the overall speedup factor is shown in the
last row of Table I. It can be seen that the sparse algorithms
alone are able reduce the runtime by almost a half, but
the MSS yields a speed improvement of more than a factor
of 40 and is also about 40% quicker than the two-stage
method.

Vil. CONCLUSIONS

The main contribution of this paper is the description of
the modified state space method, which has been applied here
to the nonlinear and active cochlear model developed in Ku
et al. (2009). Although analytically identical to the original
state space equation, the sparsity pattern of the constituting
matrix of this alternative formulation offers the opportunity for
considerably more efficient numerical algorithms, producing a
speedup factor of more than 40. Its computational efficiency is
on a similar scale to that of the Diependaal’s method. The
approach presented here can be readily applied to various other
1D cochlear models, such as the nonlinear and active ones
based on an array of one DOF lumped-parameter oscillators
(Sisto et al., 2010).
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