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Nonlinear optics: introduction
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Photoinduced SHG in Optical Fibres

(Osterberg and Margulis, Opt. Lett. 11, 516 (1986))
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® M.C. Farries, P.St.J. Russell, M.E. Fermann and D.N. Payne (1987)
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PHOTOREFRACTIVE EFFECT

Photogalvanic Effect Coherent

in Media Photogalvanic Effect
Without inversion Symmetry
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COHERENT PHOTOCHHENT (centrosymmetrc meia)
Dianov, Kazansky and Stepanov, 1989
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MODULATION OF ANGULAR DISTRIBUTION OF PHOTOELECTRONS
(COHERENT PHOTOCURRENT):

® rubidium atoms
Y.Y. Yin, C. Chen, D.S. Elliot and A.V. Smith
Phys. Rev. Lett., v.69, 2353 (1992)

® Sb-Cs photocathodes

N.B. Baranova, A.N. Chudinov, A.A. Shulginov and B. Ya. Zel’dovich
Opt. Lett., v.16, 1346 (1997)

® AlGaAs/GaAs superlattices; bulk GaAs
E. Dupont, P.B. Corkum, H.C. Liu, M. Buchanan and Z.R. Wasilevski
Phys. Rev. Lett., v.74, 3596 (1995);
R. Atanasov, A. Hache, J.L.P. Hughes, H.M. van Dreil and J.E. Sipe
Phys. Rev. Lett., v.76, 1703 (1996)

® silica glass
E.M. Dianov, P.G. Kazansky and D. Yu. Stepanov
Sov. J. Quantum. Electron., v.19, 575 (1989)




MODULATION OF CROSS SECTION OF IONIZATION
(COHERENT PHOTOCONDUCTIVITY):[

® xenon gas
J.C. Miller, R.N. Compton, M.G. Payne and W.R. Garrett
Phys. Rev. Lett., v.45, 114 (1980)

@® HCI molecular beam
S.M. Park, S.P. Lu and R.J. Gordon
J. Chem. Phys., v.94, 8622 (1991)

® mercury vapor
E. Dupont, P.B. Corkum, H.C. Liu, M. Buchanan and Z.R. Wasilevski
Phys. Rev. Lett., v.74, 3596 (1995)

® media without inversion symmetry, w + w - 2w
R.J. Glauber
Quantum Optics (1969)




~ COHERENT PHOTOCONDUCTIVITY (non-centrosymmetric media)
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Electrically stimulated light-induced SHG in glass

(P.G. Kazansky and V. Pruneri, Phys. Rev. Lett. 78, 2956 (1997))
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The observed phenomenon represents the.first

evidence of coherent photoconductivity in solid

state materials!




Femtosecond Direct-writing:
The Principle

Tight focusing of laser
(A =850 nm, at =150 fs)
Into glass

High intensity leading to
multi-photon absorption

Structural changes In
matter confined to focal
volume due to short
pulse duration — 3-D

Photosensitivity not Intensity ~ 10 W/cm?

required Temperature ~ 106 K

-ve or +ve index Pressure ~ 10° bar
changes




Classification of direcly-written
structures

# Type 1: smooth positive index change (waveguides, couplers, etc.)

# Type 2: birefringent features, anisotropic reflection and negative index
change (embedded microreflectors, Fresnel zone plates, etc.)

3 Type 3: voids embedded into glass (photonic crystals, data storage)

100lm NN
N
K. M. Dauvis et al., Opt. E. N. Glezer & E. Mazur,
Lett., 21, 1729 (1996). Appl. Phys. Lett., 71, 882 (1997).

The transition intensity threshold between one kind of structure to the
other depends on the processed material, laser’s pulse duration and
wavelength.



Application of refractive index changes

Optical memory

K. Hirao et al., New Glass, 16, 15 (2001).

Waveguides

J.Qiuetal.,, OPlusE, 74, 10 (2001).

K. M. Davis et al., Opt. Lett., 21, 1729 (1996).
K. Miura et al., Appl. Phys. Lett., 74, 10 (1999).



Experimental set up

A2 plate
3-D [ Sample Laser parameters:
stage Dichroic A =850 nm
Ll 50x mirror | _ ND filter f = 250 kHz

Objective ||~ shutter TFWHM_: 150 fs
,, | Amplified Eue = 1.1 10 1.3
_<I-;;¥<_::_ Ti: Sapph”'e

Whlte light
E source

Objective: 50x
NA=0.55

CCD 3-D stage:
camera 100 nm position

accuracy




Anisotropic phenomena during
femtosecond direct writing

Blue luminescence pattern
Is elongated along laser polarization



Silica: Microscope images of anisotropic reflection

|:> Unpolarized white light

|:> Reflected blue light

tE Direct-write polarization

period =7 pm
pulse energy = 0.9 uJ

E




Anisotropic phenomena

Anisotropic light scattering Anisotropic reflection
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P. G. Kazansky et al., /
Phys. Rev. Lett., 82, 2199 (1999). «—°***** -
-
Blue luminescence pattern is J. D. Mills, et al.,
elongated along laser polarization. Appl. Phys. Lett,, 81, 196 (2002).

Reflection occurs only in direction
parallel to laser polarization.




Embedded micro-reflectors

Reflection (a. u.)
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400 600 800 1000 1200
Wavelength (nm)

Peak at A=460 nm

white: unpolarized white light
blue: blue reflection
k,: incident direct-write laser

silica plate

Micro-
reflector

Period A~150 nm assuming A=\A/2n

Birefringent?




Anisotropic reflection vs birefringence

Polished down to structure

1.1 wJ/pulse

0.4 uJ/pulse

llluminated and [o]= s
viewed from s :|_1 ENEER ) umt
above :

llluminated from
behind, viewed
from the front.
Sample between
cross-polarizers

Threshold for onset of reflection
AND birefringence ~0.5 uJ/pulse



Birefringence & efficiency

Structures directly-written in silica above a certain threshold
(= > 0.5 puJ) show uniaxial birefringence

pulse

R=1mm
f=2.4cm
A=632.8 nm

N =70
=1.3 ud

E

pulse

e

between
Cross polarizers




Fresnel zone plates (FZP)

Focusing element consisting
of a series of alternate concentric zones

m: integer number
of mth zone

f: focal length

A: wavelength

e Amplitude Fresnel zone plates
e Phase Fresnel zone plates



Focusing Properties

Beam scope

Interferometric
filter

I:—lg

Logo D FZP Objective aCCD

picture Polarizer

camera Wl/62: 18 Mm



Change of refractive index

1.5 rad
|An|=5x10-3

Index change Is negative



Self-organized form birefringence
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Other materials

e Birefringent?
Soda-lime glass NO
Nanocrystal NO
BKY NoO
Sapphire UL

Ge-doped silica

Fused silica

Sol-gel silica

direction only

Reflection?
No
NoO
NoO
Small

Reddish/Bluish

Blue

Reddish

Direct-write performed under identical conditions 1.1 uJ/pulse




Fresnel zone plate in cross polarizers:
Evidence of stress-induced birefringence

Fresnel Galaxy (K2B)

.

-

-

Side-view: stress birefringence in surrounding glass



Experiment

Fabrication system Microscope image

Lens Aperture

Mirror

ND A2 ES
o/

ND: Neutral density filter
A/2: Polarizing plate
ES: Electric shutter
OL: Objective lens

Focal point

Conditions

wavelength : 800 nm

pulse duration : 150 fs

repetition rate : 200 kHz

pulse energy 1.0 pud

objective :x100 (NA=0.95)
polarization : vertical direction

Sample
Piezo stage



Induced structural change

Cross-sectional
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Magnification: x10000 Magnification: x10000
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Self-organized nanostructure
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Interference between light and
electron plasma wave

Dispersion relations and energy conservation

Hot plasma
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Theoretical dependence of grating period
on electron temperature and concentration

Pulse energy (pJ)
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Evidence of self-organization




SEM images of tracks written in silica




Gratings and .. nano-tornado”in silica
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Photonic "nano-tornado” and ... chariot of fire”

"...And it came to pass, as they still went on, and talked, that, behold, there
appeared a chariot of fire, and horses of fire, and parted them both asunder;
and Elijah went up by a whirlwind into heaven." |l Kings 2:11



Vortices: from macro to nano-scale

Myrtle Beadh Ternader 7/6/01




Light “fingerprint” and “nano-tornado”:
The smallest embedded structures
ever created by light




Spirals, Spirals, everywhere....

There are many spiral forms in nature, both on
Earth and in space. Spirals occur in physical forms
such as DNA and the shell formation of mollusks
such as the conch. They also occur in wind patterns,
including hurricanes and tornadoes. They are present
in air and flame forms known as vortexes and whorls.
And they occur in the way things fall in the
atmosphere, from leaves to aircraft. In the human
body, the spiral pattern of the heart's bioelectric
Impulses causes the chambers to beat with a spiral
pulsing rhythm. Brain waves, comprised of neuron
impulses, seem to flow along the neurons and down
the spinal cord in a spiral pattern. We see spiral
forms omnipresent throughout the visible and
invisible universe, in galaxies, accretion disks around
black holes, coalescing interstellar clouds and many
other forms of matter and energy. Finally, spiral
patterns in glass irradiated by ultrashort light pulses
are some of the smallest ever created in nature.




Conclusions

« The smallest embedded structures ever created by
light are observed in the experiments on
femtosecond direct writing

« The phenomenon is interpreted in terms of
Interference between light and electron plasma
wave, resulting in periodic structural changes in
glass
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