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~ Qutline ~

® Introduction to Bragg gratings.
— Fundamentals.
— History.
® Application areas of Bragg gratings.
— Dispersion-free gratings for add-drop filtering in high-speed
systems.

— Gratings for optical code division multiple access (O-CDMA)
systems.

— Short gratings for dispersion management in high-speed systems.
® Future trends.
¢ Summary.
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~ Bragg grating fundamentals ~

® What is a Bragg grating?.

— A periodic or almost periodic structure consisting of a variation of
for example the refractive index along the length of a waveguide.
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~ Bragg grating fundamentals ~

® What is a Bragg grating?.

— A small reflection (Fresnel reflection) from each low-high (high-low)
refractive index transition.
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~ Bragg grating fundamentals ~

® What does it do?.
— Coupling of a forward propagating core-mode to a backward
propagating core-mode.
— Acts as a band-rejection filter passing all wavelengths that are not
IS resonance with the grating and reflecting wavelengths that
satisfies the Bragg condition.

Reflection
Transmission
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~ Bragg grating fundamentals ~

® parameters related to a Bragg grating.

— Strong overall reflection is achieved when each of the reflected
contributions add in-phase (phase coherence/matching).

2z

/B =k- Ner = 1
o=p0-A (phase of the propagating wave)

‘ng (Propagation constant)

For each of the reflected contribution to add in phase
o=m-2rx (m positive integer)

U

Adg-M=2-ng4 -A (Bragg condition)
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~ Bragg grating fundamentals ~

® parameters related to a Bragg grating.
— N4~ 1.455 in silica.

— “Short” period grating to operate in lowest order mode (m=1) with
Bragg wavelength A; ~ 1550nm, A~500nm.

— Typical index changes, 6n ~ 10-°—-10-3.
— Typical lengths, 1cm — 10cm, some types ~1m.
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~ Bragg grating history ~

® 1978: First observation of photo-induced fibre Bragg grating.
— Discovered by a coincidence.
— Fibre was exposed to 514.5nm light.
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K.O.Hill et al., Appl. Phys. Lett., 32, p. 647, 1978.
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~ Bragg grating history ~

® 1989: First demonstration of Bragg grating inscription of a
wavelength different to the writing-beam wavelength.

— Initial grating demonstrations was believed to be a two-photon
process (based on work done by Lam and Garside in 1980-81).

— UV-light at 257nm was used.
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G.Meltz et al., Optics Lett., 14, p. 823, 1989.
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~ Bragg grating history ~

® 1993: First demonstration of practical Bragg grating inscription.
— Phase-masks makes for stable and repeatable grating inscription.
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K.O. Hill et al., Appl. Phys. Lett., 62, p. 1035, 1993.
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~ Historical background ~

1995: Kenneth O. Hill is awarded the Principal Manning Award
(Canadian innovative excellence).

1996: Kenneth O. Hill is awarded the John Tyndall Award from the
IEEE/OSA for his pioneering contributions to fibre-optic technology.

2002: Kenneth O. Hill is together with B.K. Garside, G. Meltz and W. W,
Morey awarded the Rank Prize for Opto-electronics for the invention
and development of practical Fibre Bragg Gratings.

Kenneth O. Hill on right
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~ Bragg grating design ~
® Pparameters that can be altered or controlled in a Bragg grating.

A(z) Refractiveindex amplitude modulation.
@#(z) Grating phase.
n. (z) Effectiverefractiveindex.

A(z) Grating period/pitch.

E...(v)=T(V)E,(v)

T(v) Grating transfer function
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~ Grating applications ~

® Applications of Bragg gratings in systems.

— Telecommunications systems.
« Transmitter-sources/Source-stabilisation.
« Multiplexing/de-multiplexing (add-drop filtering) at high bit-rates.
» Gain-equalisation.
» Dispersion-management.
» Encryption.
* Header-recognition.

— Sensing systems.
* Temperature and strain monitoring.

* *
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¢ Application of Bragg gratings
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~ Bragg grating design ~

® Fourier theory can give a good first approximation to the
spectral response of a Bragg grating.

— Wave-vector response
F(x) = 1 T A(z)e'dz
21 =

Coupling Constant Reflection Coefficient

-30 -20 -10 8] 10 20 30
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~ Bragg grating design ~

® Single-channel.
— Uniform grating.

Reflection [dB]

-40 4
-45

1545.4

T T
1545.5

' 154:5.6 ' 154:5.7 ' 154':5.8 ' 1545.9
Wavelength [nm]

A(z) Constant.
6#(z) Not controlled.
N (z) Constant.

A(z) Constant.
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~ Bragg grating design ~

® Single-channel design using Fourier theory.
— Bragg grating with square spectral response (square filter).

ﬁ
30 20 -10 0 10 20 30
6|
o 2 60}
S 5
= 4}
5 & 40}
o 7]
£2 @
> 'E" 20
% i
Sop (14
£
-2 . 0 it ) .
0 2 4 .8 8 10 0 10 20 30 40 50 60
Grating position, cm

Frequency, GHz
H.Storgy et al., Optics Lett., 22, p. 784, 1997.
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~ Bragg grating design ~

® Single-channel.
— Apodised grating.

Reflection [dB]

Refractive index modulation

0 |_ 154‘:9.6I154|9.8I155|0.0I155|0.2I155|0.4I155|0.6I155|0.8I155|1.0
Grating position ° Wavelength [nm]

A(z) Tapered.

€(z) Not controlled.

ng (z) Constant.
A(z) Constant.
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~ Bragg grating design ~

® Fourier theory can only be used for the precise design of
gratings when the reflectivity is low (<50%).

— Grating strength

K-Ly <1

® When kxlg <=1 (higher reflectivity) Fourier theory can no
longer prowde an accurate design tool. Inverse-scattering
(backward design) techniques become necessary.

® Layer-peeling inverse-scattering techniques can add
functionality to a given design.

— The grating response is inverted in the time-domain.

— Based on causality.

— Layer-by-layer building of the Bragg grating with full phase-control.
— Directional design — asymmetric designs.
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® Increase in data-traffic requires more bandwidth
— 100GHz, 50GHz, 25GHz,.... DWDM grids become necessary.
— Keyword: Maintenance of channel integrity.

~ Application of Bragg gratings ~

1550nm transmission window 100GHz grid spacing
A ~ 5THz bandwidth (EDFA) N
dB dB
Wavelength/Frequency Wavelength/Frequency
A 50GHz grid spacing A 25GHz grid spacing
| 'l | . OIST I [ [ E—
Wavelength/Frequency Wavelength/Frequency
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® Apodised Bragg gratings.
— High bandwidth utilisation.
* Uniform reflection in the stop-band (AR<0.5dB).
» Large sidelobe suppression (Rqigeiopes <-30dB).
 Sufficient “drop” function (>30dB).

~ Add-drop gratings ~
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® Out-of-band dispersion from “standard” gratings.
— Operating near a bandgap.

~ Dispersion from Bragg gratings ~

YY

!
Transmission [dB]

\ A /

N
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Grating position ' Wavelength [nm]

— Affects adjacent channels and can impose a limitation to the
number of channels passing the grating.

— Proportional to grating-strength (kL).
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® In-band dispersion from “standard” gratings.

— Induced by the apodisation-process of the grating.
» Different penetration into the grating as a function of detuning.

~ Dispersion from Bragg gratings ~
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— Affects channels to be dropped and added.

— Proportional to grating-length (L), the longer the grating the higher
the dispersion for constant «.
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® In-band dispersion.
— Added term to the BWU.
» 1) Reflection-bandwidth.
o 2) Transmission-bandwidth.
» 3) Dispersion-limited bandwidth.
— Dispersion-limited bandwidth is bit-rate dependant.

~ Dispersion from Bragg gratings ~

— Tolerable dispersion in systems
o 2.5Ghit/s ~ 15000ps/nm (~1000km)
* 10Ghit/s ~ 1000ps/nm (~60km)
e 40Gbit/s ~ 70ps/nm (~4km)
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~ Dispersion-free gratings ~

® Index profile designed from layer-peeling inverse-scattering.
— Directional design.
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R.Feced et al., J. Quantum Electron., 35, p. 1105, 1999.
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~ Dispersion-free gratings ~

® Only positive index-modulation is used.

— When there is a change in sign of the index-modulation a discrete
phase-shift of = is inserted.

Theoretical profile Experimental profile
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~ Dispersion-free gratings ~

® Dispersion-free gratings vs standard apodised gratings in a
10Ghit/s NRZ system.
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M.lbsen et al., OFC’2000, PD21, 2000.
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~ Dispersion-free gratings ~

® Dispersion-free gratings vs standard apodised gratings in a
40Gbit/s RZ system (100GHz grid).
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M.lbsen et al., ECOC’2001, Th.B.2.1, 2001.
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~ OCDMA applications ~

® Pulse encoding/decoding using superstructured gratings.
— Multiple users having same carrier frequency but a unique code/key.

— Principle: A short pulse is spread in time in accordance with the
refractive index profile of an encoding grating. A correctly decoded
pulse is detected as the autocorrelation function of the code.

5(t) h(t) ® 5(t) h(-t) ® [h(t) ® &(1)]

J\ Circulatorm Circulatorj\‘\‘
()

O
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»
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Ny e

Encoder Decoder
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~ OCDMA applications ~

® Pulse encoding/decoding using super-structured gratings.
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~ OCDMA applications ~

® Pulse encoding/decoding using super-structured gratings.
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~ Dispersion management ~

® Channel-by-channel dispersion optimisation.
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L 1
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~ Dispersion-slope compensation ~

® Broadband Bragg gratings for pure third-order dispersion
compensation.

[ BWU2066 3000- Design profile
— -1dB bw=3nm. 20001 Mirecton
— -30dB bw=4.5nm.

-1000+
-2000+
-3000

® R=75%.

3000, Experimental profile
2500
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a—D:—ZOps/nmz.
oA
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Coupling coefficient «, [m™]

. . o 1 2 3 a4 5 & 1 8
— Uniform grating pitch!!. Grating position [mm]
® Only positive index-modulation is used.

M.Ibsen and R. Feced, OFC’'2002, PD paper FA7, 2002.
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~ Dispersion-slope compensation ~

® Broadband Bragg gratings for pure third-order dispersion
compensation.

Measured responses

SRR
o o o
TR [N W S S 1

Reflection [dB]
2
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Wavelength [nm]

M.Ibsen and R. Feced, OFC’'2002, PD paper FA7, 2002.
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~ Bragg grating trends ~

® There has been a growing demand for devices which can be
tuned or re-configured.

— Full C-band coverage of filters and possibly between bands, L-band
to C-band forexample.

— Tunable transmitter lasers.
— Dynamic dispersion equalisers.
— Completely re-configurable devices.

® Multiple functionally from Bragg gratings.
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~ Tunable grating devices ~

® Electrically re-configurable OCDMA encoder/decoder.

Variab!e 5 mm chip

Potentiometers —
To DC W ’
+ve _ ‘
Terminw _ ‘»§>‘

T
e
@ > Wolfram
Uniform Fibre Wires

Bragg Grating

M.R. Mokhtar et al., OFC’2002, paper ThGG54
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