
Accepted Manuscript

A hybrid exact algorithm for complete set partitioning

Tomasz Michalak, Talal Rahwan, Edith Elkind, Michael Wooldridge, Nicholas R. Jennings

PII: S0004-3702(15)00142-3
DOI: http://dx.doi.org/10.1016/j.artint.2015.09.006
Reference: ARTINT 2891

To appear in: Artificial Intelligence

Received date: 20 February 2015
Revised date: 14 August 2015
Accepted date: 18 September 2015

Please cite this article in press as: T. Michalak et al., A hybrid exact algorithm for complete set partitioning, Artificial Intelligence (2015),
http://dx.doi.org/10.1016/j.artint.2015.09.006

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing
this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is
published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.artint.2015.09.006

A Hybrid Exact Algorithm for Complete Set Partitioning

Tomasz Michalak1,2,†, Talal Rahwan3,†, Edith Elkind1, Michael Wooldridge1 and Nicholas R. Jennings4

1Department of Computer Science, University of Oxford, UK.
2Institute of Informatics, University of Warsaw, Poland.

3Masdar Institute of Science and Technology, UAE.
4School of Electronics and Computer Science, University of Southampton, UK.

Abstract

In the Complete Set Partitioning problem we are given a finite set of elements where every subset is associated with a

value, and the goal is to partition this set into disjoint subsets so as to maximise the sum of subset values. This abstract

problem captures the Coalition Structure Generation problem in cooperative games in characteristic function form, where

each subset, or coalition, of agents can make a profit when working together, and the goal is to partition the set of agents

into coalitions to maximise the total profit. It also captures the special case of the Winner Determination problem in

combinatorial auctions, where bidders place bids on every possible bundle of goods, and the goal is to find an allocation

of goods to bidders that maximises the profit of the auctioneer.

The main contribution of this article is an extensive theoretical analysis of the search space of the Complete Set

Partitioning problem, which reveals that two fundamentally different exact algorithms can be significantly improved

upon in terms of actual runtime. These are (1) a dynamic programming algorithm called “DP” [48, 36] and (2) a tree-

search algorithm called “IP” [32]. We start by drawing a link between DP and a certain graph describing the structure of

the search space. This link reveals that many of DP’s operations are in fact redundant. Consequently, we develop ODP—

an optimal version of DP that avoids all of its redundant operations. Since ODP and IP are based on different design

paradigms, each has its own strengths and weaknesses compared to the other. Thus, one has to trade off the advantages of

one algorithm for the advantages of the other. This raises the following question: Is this trade-off inevitable? To answer

this question, we develop a new representation of the search space, which links both algorithms, and allows for contrasting

the workings of the two. This reveals that ODP and IP can actually be combined, leading to the development of ODP-

IP—a hybrid algorithm that avoids the limitations of its constituent parts, while retaining and significantly improving

upon the advantages of each part.

We benchmark our algorithm against that of Björklund et al. [SIAM Journal of Computing, 2009], which runs in

O(2n) time given n agents. We observe that the algorithm of Björklund et al. relies on performing arithmetic operations

with very large integers, and assumes that any such operation has unit cost. In practice, however, working with large

integers on a modern PC is costly. Consequently, when implemented, our O(3n) algorithm outperforms that of Björklund

et al. by several orders of magnitude on every problem instance, making ours the fastest exact algorithm for complete set
partitioning to date in practice.

1. Introduction

The Complete Set Partitioning problem models the setting where every subset of a finite set is associated with a (positive

or negative) real value, and the goal is to partition the set into pairwise disjoint subsets so as to maximise the sum of the

subset values.1 This problem captures a number of important applications. For instance, early papers on its algorithmic

†Tomasz Michalak and Talal Rahwan contributed equally to this article.
1One can also consider the minimisation variant of this problem, where the goal is to minimise the sum of subset values; however, since we

allow both positive and negative subset values, these two variants of the problem are equivalent, so we focus of the maximisation problem.

Preprint submitted to Elsevier September 28, 2015

complexity were motivated by the structuring of corporate tax in the United States [20, 21, 22] (see Section 7 for details).

More recently, Complete Set Partitioning has been studied in the context of combinatorial auctions [36, 18], where there

are multiple different items for sale, each bidder can place a bid on every subset of items, and the auctioneer’s goal is to

allocate the items to the bidders (and charge each bidder what she bid for the set of items she received) so as to maximise

the total profit. It also plays an important role in the analysis of cooperation in multi-agent systems. Indeed, one of

the most important aspects of such systems is the agents’ ability to interact with one another in order to improve their

performance and compensate for each other’s deficiencies. One means of interaction that has been extensively studied

in the literature is to form a coalition, i.e., a group of agents that agree to coordinate their activities (and possibly agree

on how the reward from cooperation should be divided among them) in order to achieve a certain objective. The settings

where the total worth of a coalition is determined solely by the identities of its members (and not by other co-existing

coalitions) can be modeled by characteristic function games. In such games, we are given a set of agents, denoted by A,

and the value of every subset, or coalition, of agents is specified by a characteristic function v : 2A → R. To optimise

the social welfare, we need to find a partition of agents into coalitions (a coalition structure) that maximises the sum

of the values of the coalitions in the partition. A wide range of potential applications of coalition formation have been

considered in the literature. For instance, by forming coalitions, autonomous sensors can improve their surveillance

of certain areas [13], green-energy generators can reduce their uncertainty regarding their expected energy output [7],

cognitive radio networks can increase their throughput [16], and buyers can obtain cheaper prices through bulk purchasing

[19]; see the work of Sandholm et al. [38] and Rahwan et al. [35] for further examples.

In this article, our main goal is to improve our understanding of the complete set partitioning problem and to develop

exact algorithms for this problem. Observe that the input to the complete set partitioning problem is a list of 2n − 1
real values (where n is the size of the ground set), and every algorithm that is guaranteed to find an optimal solution on

every instance of this problem has to inspect all of these values. Thus, the running time of every exact algorithm is at

least exponential in n, and in some of the applications we have discussed (such as combinatorial auctions or multi-agent

systems) the value of n can be quite large. Therefore, an important goal is to design an algorithm that can find an optimal

partition as efficiently as possible, both in the worst case and on average (for realistic value distributions).

The main techniques used in exact algorithms for solving computationally hard problems are: (1) dynamic program-

ming, (2) tree search, (3) data preprocessing, and (4) local search [47]. With respect to our problem, we focus on two

exact algorithms, which are based on techniques (1) and (2), respectively. Specifically:

• DP: This algorithm was originally proposed by Yeh [48] to solve the complete set partitioning problem, and was

re-discovered by Rothkopf et al. [36], who used it to solve the winner determination problem in combinatorial

auctions. This algorithm is based on dynamic programming: to find an optimal partition of the set of agents A, we

start by computing an optimal partition of every subset C ⊆ A with |C| = 2, then use those to compute an optimal

partition of every C ⊆ A with |C| = 3, and so on, until an optimal partition of A is found.

• IP: This algorithm, which was proposed by Rahwan et al. [32] for the coalition structure generation problem, is

based on a representation of the search space that groups partitions into disjoint subspaces based on the sizes of

the subsets within each partition. With this representation, it is possible to compute upper and lower bounds on the

quality of the best solution in each subspace. By comparing the bounds for different subspaces, it is possible to

identify, and thus focus on, the promising subspaces. For every such subspace, the algorithm constructs multiple

search trees, where every node represents a subset, and every path (from a root node to a leaf node) represents a

partition. Every such tree is traversed in a depth-first manner. To speed up the search, IP applies a branch-and-

bound technique to identify and avoid branches that have no potential of containing an optimal solution.

The above two algorithms are based on fundamentally different design paradigms, so it is not surprising that they

exhibit quite different computational behaviour. More specifically, in what follows, we provide a comparison of these

algorithms from three different perspectives:

• Worst case performance: The time required to exhaustively enumerate all partitions of an n-element set is

Ω(nn/2) [38]. Such enumeration, however, involves repeating certain operations multiple times. As mentioned

2

earlier, DP avoids such repetition by storing partial solutions in memory, thereby lowering the required time to

O(3n). On the other hand, the techniques used by IP to speed up the search cannot ensure that the worst-case time

drops below nn/2. This is because the effectiveness of IP is strongly influenced by the proportion of the search

space that it identifies as being unpromising. This proportion, in turn, depends on the values of the subsets. It is

possible to define a class of problem instances for which IP searches the entire space exhaustively (e.g., one in

which every set {a1, . . . , as} with s ∈ {1, . . . , n} has a value of 1, and every other set has a value of 0).

• Average performance: When tested on popular value distributions, IP has been shown to be faster than DP, by

several orders of magnitude for some distributions [32]. This is because, in practice, IP is able to identify many

(if not the vast majority of) subspaces and/or branches of the search trees as being unpromising. DP, on the other

hand, is not capable of any such shortcuts.

• Returning solutions anytime: IP has the advantage of being an anytime algorithm: it returns a valid solution

very quickly, and then improves on the quality of its solution over time, while establishing progressively-better

guarantees on solution quality. DP, on the other hand, is not an anytime algorithm; it can only return a solution once

it has successfully terminated. Being anytime is important since the size of the search space grows exponentially

with the number of elements to be partitioned, and hence there might not always be sufficient time to run the

algorithm to completion. Moreover, being anytime makes the algorithm more robust against failure; if the execution

is stopped before the algorithm would normally have terminated, then it can still provide a solution that is better

than the initial one, and the quality of this solution improves over time.

The above comparison shows that each algorithm has its relative strengths and weaknesses compared to the other. In

other words, there is a trade-off between the advantages of one algorithm and the advantages of the other. This raises the

following question: Is this trade-off inevitable?
Against this background, the main contributions of this article are three-fold:

• Analysing the search space: We provide a theoretical analysis of the search space, which reveals how two funda-

mentally different exact algorithms can be combined and significantly improved upon in terms of actual runtime.

This, in turn, contributes towards a better understanding of the set partitioning problem itself, and a better under-

standing of the complementarities that evidently exist between two algorithm-design paradigms, namely Dynamic

Programming and Depth-First Search.

• Developing ODP: We draw a link between the workings of DP and the coalition structure graph—a graphical

representation of the search space due to Sandholm et al. [38], where every node represents a partition. This link

provides an intuitive interpretation of DP’s operations: the algorithm evaluates all the movements along the edges

of the aforementioned graph, and stores the most beneficial movements in a table. Then, starting from the node

where all items are in one set, DP makes a series of movements until it reaches an optimal node. This visualisation

suggests that certain movements are not needed to reach an optimal node. We formalise this observation and use it

to design our Optimal Dynamic Programming (ODP) algorithm, which performs only one third of DP’s operations,

without losing the guarantee of finding a best partition. ODP is optimal in that it avoids all redundant operations

without losing the guarantee of finding an optimal solution.

• Developing ODP-IP: As we will show, ODP and IP approach the optimisation problem in different ways. Nev-

ertheless, instead of viewing these as two alternative choices, we develop a new search-space representation that

draws a link between the two algorithms, and reveals the potential of combining them into a single, superior al-

gorithm. Building upon this analysis, we refine both algorithms, and use the refined versions as building blocks

to construct a hybrid approach, called ODP-IP. The ODP-IP algorithm runs its two constituent algorithms in par-

allel, and uses the information provided by ODP to speed up IP’s search. This approach results in an algorithm

that has the best features of its components: it runs in O(3n) just like ODP, and returns solutions anytime, with

3

progressively-better guarantees, just like IP. Better still, when tested on a wide variety of value distributions, ODP-

IP is empirically shown to significantly outperform both ODP and IP in all cases.2

Importantly, we benchmarked our algorithms against the primary alternative proposed in the literature, namely the

inclusion-exclusion algorithm of Björklund et al. [8], which is an exact dynamic-programming algorithm for set par-

titioning that is built around the inclusion-exclusion principle. From a theoretical perspective, this is the state-of-the-art

algorithm in terms of worst-case complexity; it runs in O(2n) time. However, when implementing it, we found that it

requires multiplying numbers that consist of hundreds of digits, which tends to be costly in practice. As a consequence,

in our tests the runtime of this algorithm grows at a rate of O(6n) rather than O(2n). For instance, given 15 agents, the

algorithm requires more than five months to terminate, while our algorithm for the worst-case problem instance takes

0.01 second (see Section 6.3 for more details). Thus, ours is the fastest exact algorithm for complete set partitioning
to date.

The open-source Java implementation of all the algorithms discussed or developed in this article (namely, IP, DP,

ODP, ODP-IP, as well as the inclusion-exclusion algorithm by Björklund et al. [8]) is publicly available at the following

link: https://github.com/trahwan/ODP-IP and InclusionExclusion.

The remainder of this article is structured as follows. Section 2 formalises the complete set partitioning problem. Sec-

tion 3 provides detailed descriptions of IP and DP. Section 4 presents ODP—our optimal version of DP, while Section 5

presents our hybrid algorithm, ODP-IP. The two new algorithms are then evaluated in Section 6. The related literature is

discussed in Section 7. Section 8 concludes the article and outlines future work. Appendix A provides a summary of the

main notation used throughout the article. Appendix C and Appendix D contain the omitted proofs, while Appendix E

discusses a certain aspect of ODP-IP in detail.

2. Preliminaries

In this section, we formally introduce the key definitions and notation used throughout the article. In what follows, we

use the language of cooperative game theory, i.e., we talk about the coalition structure generation problem rather than the

complete set partitioning problem. The reason for this is twofold. First, much of the recent work on this topic was done

within the multi-agent research community, which views this problem from the coalition structure generation perspective,

so adopting the language of cooperative games facilitates the comparison with prior work. The second reason is purely

linguistic: when speaking about coalition structure generation, we refer to subsets of agents as “coalitions”, and thus

avoid the overuse of the term “set”.

An instance of the Coalition Structure Generation problem is given by a finite set A = {a1, a2, . . . , an} and a

function v that assigns a real value to every non-empty subset of A. We refer to every non-empty subset of A as a

coalition. We denote by CA the set of coalitions over A, i.e., CA = {C : C ⊆ A,C �= ∅}; we have
∣∣CA∣∣ = 2n − 1. For

any two coalitions C1, C2 ∈ CA, we write C1 < C2 when C1 precedes C2 lexicographically, e.g., we write {a1, a3, a9} <
{a1, a4, a5} and {a4} < {a4, a5}.

An exhaustive partition of all the agents in a given set C ⊆ A into disjoint coalitions is called a coalition structure
over C. Formally, a coalition structure is defined as follows.

Definition 1. Given a subset C ⊆ A, a coalition structure over C is a collection of coalitions CS = {C1, . . . , C|CS |}
that satisfies the following conditions:

⋃|CS |
j=1 Cj = C, and for all i, j ∈ {1, . . . , |CS |} such that i �= j it holds that

Ci ∩ Cj = ∅.
For each C ⊆ A, we will denote by ΠC the set of all coalition structures over C. Furthermore, given a coalition

structure CS ∈ ΠC , we will refer to the sum of the values of all coalitions in CS as the value of CS , and denote it by

V (CS). Formally, V (CS) =
∑

C′∈CS v(C ′). We are now ready to state our optimisation problem formally.

2Note that ODP and IP can only use a single processor each, while ODP-IP uses two processors running in parallel. While this alone can make

ODP-IP twice as fast (assuming no overheads), our empirical evaluation shows that ODP-IP can be faster by one or two orders of magnitude, e.g.,

given 25 agents. This implies that the majority of the performance gain comes from the synergies between the two components, ODP and IP.

4

Definition 2. The coalition structure generation problem is to find an optimal coalition structure CS ∗ ∈ ΠA, i.e., an
(arbitrary) element of the set

argmax
CS∈ΠA

V (CS).

Given a coalition C ⊆ A, we denote by f(C) the value of an optimal partition of C, i.e., f(C) = V (CS), where

CS ∈ argmaxCS∈ΠC V (CS).
The coalition structure generation problem is computationally challenging, as the number of possible coalition struc-

tures over n players, which is known as the n-th Bell number Bn [6], satisfies αnn/2 ≤ Bn ≤ nn for some positive

constant α (see, e.g., the work of Sandholm et al. [38] for proofs of these bounds, and the book of de Bruijn [10] for

an asymptotically tight bound). Moreover, it is NP-hard to find an optimal coalition structure given oracle access to the

characteristic function [38].

Since every coalition structure represents a possible solution to the coalition structure generation problem, the terms

“coalition structure” and “solution” will be used interchangeably. Furthermore, the set of possible coalition structures

will often be referred to as the “search space”.

3. The IP Algorithm vs. the DP Algorithm

In this section we provide a detailed description of the main exact algorithms in the literature: (1) IP—the anytime,

depth-first search algorithm by Rahwan et al. [30], and (2) DP—the dynamic programming algorithm by Yeh [48].

3.1. The IP Algorithm
The IP algorithm is based on the integer partition-based representation [29] of the space of possible coalition structures.

This representation divides the space into disjoint subspaces that are each represented by an integer partition of n. Recall

that an integer partition of n is a multiset of positive integers, or parts, whose sum (with multiplicities) is equal to n [1].

We denote the set of all integer partitions of n by In. For instance, I4 = {{4}, {1, 3}, {2, 2}, {1, 1, 2}, {1, 1, 1, 1}}. In

the IP algorithm, every integer partition I ∈ In corresponds to a subspace ΠA
I ⊆ ΠA consisting of all coalition structures

in which the sizes of the coalitions match the parts of I . For instance, Π
{a1,a2,a3,a4}
{1,1,2} is the subspace consisting of all

coalition structures over {a1, a2, a3, a4} that contain two coalitions of size 1 and one coalition of size 2. A four-agent

example is shown in Figure 1.

{{a1,a2},{a3},{a4}} ,
{{a1,a3},{a2},{a4}} ,
{{a1,a4},{a2},{a3}} ,
{{a2,a3},{a1},{a4}} ,
{{a2,a4},{a1},{a3}} ,
{{a3,a4},{a1},{a2}}

{{a1,a2}, {a3,a4}} ,
{{a1,a3}, {a2,a4}} ,
{{a1,a4}, {a2,a3}}

{{a1, a2, a3, a4}}

=
=

{1,1,2}
{2,2}

{4} ={{a1}, {a2}, {a3}, {a4}}

{{a1,a2,a3},{a4}} ,
{{a1,a2,a4},{a3}} ,
{{a1,a3,a4},{a2}} ,
{{a2,a3,a4},{a1}}

{a1,a2,a3},
{a1,a2,a4},
{a1,a3,a4},
{a2,a3,a4}

31

{1,1,1,1}

{1,3} =

=

{a4}
{a3}
{a2}
{a1}

Figure 1: A four-agent example of the integer partition-based representation, where A = {a1, a2, a3, a4}.

Using this representation, it is possible to compute upper and lower bounds on the value of the best coalition structure

that can be found in each subspace. To this end, for every coalition size s ∈ {1, 2, . . . , n}, let CAs denote the set of all

possible coalitions of size s. Furthermore, let Max s and Avgs be the maximum and average values of the coalitions in

CAs , respectively. Rahwan et al. [32] prove that, by computing Avgs for all s ∈ {1, 2, . . . , n}, it is possible to compute

the average value of the coalition structures in each subspace ΠA
I , I ∈ In, as follows.

Theorem 3 (Rahwan et al. [32]). For every I ∈ In, let I(i) be the multiplicity of i in I . Then∑
CS∈ΠA

I
V (CS)∣∣ΠA

I

∣∣ =
∑
i∈I

I(i) · Avg i.

5

Since the value of the best coalition structure in ΠA
I is at least the average value of the coalition structures in ΠA

I ,

we obtain the following lower bound on the value of the best coalition structure in ΠA
I : LB I =

∑
i∈I I(i)Avg i. By

replacing Avg i with Max i in this expression, we obtain an upper bound UB I on the value of the best coalition structure

in ΠA
I : UB I =

∑
i∈I I(i)Max i. Using these bounds, the algorithm computes an upper bound UB∗ = maxI∈In UB I

and a lower bound LB∗ = maxI∈In LB I on the value of an optimal coalition structure CS ∗. Knowing UB∗ enables

us to bound the quality of CS ∗∗—the best coalition structure found by the algorithm at a given point in time; we set

β = UB∗/V (CS ∗∗).3 On the other hand, computing LB∗ is useful for identifying subspaces that have no potential

of containing an optimal coalition structure: these are subspaces ΠA
I with UB I < LB∗. These subspaces are pruned

from the search space. As for the remaining subspaces, the algorithm searches them one at a time. During this search,

if a solution is found whose value is greater than V (CS ∗∗), then the algorithm updates CS ∗∗ by setting it to the newly

found solution. If LB∗ < V (CS ∗∗), the algorithm also updates LB∗ by setting it to V (CS ∗∗), and repeats the attempt of

pruning unpromising subspaces, i.e., those whose upper bounds are smaller than the updated LB∗. The order in which

the subspaces are searched is always based on the upper bounds: out of all the remaining subspaces, the one with the

highest upper bound is searched first. Next, we explain how a subspace is searched.

The process of searching a subspace, say ΠA
I , where I = {i1, . . . , ik}, is carried out in a depth-first manner: the

algorithm iterates over the coalitions in CAi1 and, for every coalition C1 ∈ CAi1 that the algorithm encounters, it iterates

over the coalitions in CAi2 that do not overlap with C1. Similarly, for every coalition C2 ∈ CAi2 that the algorithm encounters,

it iterates over the coalitions in CAi3 that do not overlap with C1 ∪ C2, and so on. This process is repeated until the last

set, CAik , is reached. In this way, by the time the algorithm picks the last coalition Ck ∈ CAik , it has selected a combination

of k − 1 coalitions that, together with Ck, form a coalition structure in ΠA
I . The algorithm repeats this process so that,

eventually, every coalition structure in ΠA
I is examined. Here, it should be noted that a straightforward repetition of the

aforementioned process would not be efficient, because some of the coalition structures will be examined multiple times.

For instance, every coalition structure {C1, C2, C3} ∈ ΠA
{2,2,3} will be examined twice, once as {C1, C2, C3} and once

as {C2, C1, C3}, because in this example we have |C1| = |C2|. Rahwan et al. [32] explain how IP avoids such redundant

operations.

To speed up the search, IP applies a branch-and-bound technique at every depth d < k. Specifically, after fixing d
coalitions C1 ∈ CAi1 , . . . , Cd ∈ CAid , and before iterating over the relevant coalitions in CAid+1

, . . . , CAik , it checks whether

d∑
j=1

v(Cj) +

k∑
j=d+1

Max ij < V (CS ∗∗). (1)

Now, if inequality (1) holds, every coalition structure containing C1, . . . , Cd can be skipped during the search, because its

value cannot be greater than V (CS ∗∗)—the value of the best coalition structure found by the algorithm so far. Figure 2

provides an illustration of how IP searches ΠA
{1,3,4} given 8 agents.

As mentioned earlier, before IP can use the branch-and-bound technique, it needs to compute Max i and Avg i for all

i ∈ {1, . . . , n}. To do so, the algorithm iterates over the values of all coalitions, in order to compute the average and

maximum values for coalitions of every size. One way to perform this iteration is to first go through all coalitions of

size 1 (to compute Max 1 and Avg1), then through all coalitions of size 2 (to compute Max 2 and Avg2), then size 3 and so

on. However, to allow for certain subspaces to be searched during the iteration process, IP goes through the coalitions in

a different order. More specifically, it iterates over all coalitions of size s ∈ {1, . . . ,
n/2�} in lexicographic order, while

simultaneously iterating over all coalitions of size n − s in anti-lexicographic order.4 With this order, the i-th coalition

of size s and the i-th coalition of size n− s form a coalition structure in ΠA
{s,n−s}. By going through every such pair, IP

examines every coalition structure in ΠA
{s,n−s}. By the end of this process, every subspace ΠA

I with |I| = 2 is searched.

3This bound is meaningful only if the values of all coalitions are non-negative. However, it is only used to estimate the quality of the current

solution when the algorithm is terminated prematurely, and the algorithm works correctly even if the characteristic function can take negative

values.
4Such iteration can be carried out efficiently, e.g., using the techniques of Rahwan and Jennings [26].

6

. . .
. . .

Coalitions of
size 1, i.e.,

. . .
. . .

Coalitions of
size 3, i.e.,

Coalitions of
size 4, i.e.,

. . . .
. . .

Figure 2: An illustration of IP’s branch-and-bound technique when searching ΠA
{1,3,4}. Here, the algorithm recognises that the coalition structures

containing Cx or Cy, Ci cannot be optimal, and so IP does not proceed deeper into the search tree.

The IP algorithm runs in O(nn) time, and in the worst case it can end up constructing every possible coalition

structure. In practice, however, IP has been shown to run significantly faster than DP given popular coalition-value

distributions. Furthermore, the bound that IP generates, i.e., β = UB∗/V (CS ∗∗), has been shown to improve rapidly

during the search process, e.g., reaching 90% when less than a 10−9 fraction of the search space for 25 agents has been

searched (given certain value distributions).

3.2. The DP Algorithm

The DP algorithm is based on the following theorem.

Theorem 4 (Yeh [48]). Given a coalition C ⊆ A, the value of an optimal partition of C can be computed recursively as
follows:

f(C) =

{
v(C) if |C| = 1

max
{
v(C) , max{C′,C′′}∈ΠC

(
f(C ′) + f(C ′′)

)}
otherwise.

(2)

The pseudocode of DP is given in Algorithm 1. For every coalition C ⊆ A, the algorithm computes f(C) as well as

t(C)—a variable that provides an indication of the optimal partition of C. Once f(C) and t(C) are computed for every

C ⊆ A, an optimal coalition structure CS ∗ is computed recursively. A four-agent example is illustrated in Figure 3.

DP requires storing a total of 2n+1 values, namely f(C) and t(C) for every C ⊆ A. This memory requirement is not

burdensome since we are dealing with the complete set partitioning problem, and the input to this problem contains 2n

values already. In other words, we implicitly assume there is O(2n) available space.

The running time of DP has been shown to be O(3n) [48]. This is significantly less than Ω(nn/2)—the time required

to exhaustively enumerate all coalition structures. However, the disadvantage is that DP provides no interim solution

before completion, meaning that it is not possible to trade computation time for solution quality.

4. Improving the DP Algorithm

In this section, we present the first contribution of this article, which is an optimal version of DP. More specifically, in

Section 4.1 we demonstrate that there exists a strong link between the way DP works and the way nodes are connected

in a certain graph. Based on this link, we analyse in Section 4.2 the effect of avoiding certain operations of DP. Building

upon this analysis, we present in Section 4.3 our optimal dynamic programming (ODP) algorithm—a modified version

of DP that avoids all the redundant operations of DP, without losing the guarantee of finding an optimal solution.

7

f(C)t(C)The values that must be compared before setting t(C) and f(C)C
v ({a1}) = 30

v ({a2}) = 40

v ({a3}) = 25

v ({a4}) = 45

v ({a1,a2}) = 50 f ({a1}) + f ({a2}) = 70

v ({a1,a3}) = 60 f ({a1}) + f ({a3}) = 55

v ({a1,a4}) = 80 f ({a1}) + f ({a4}) = 75

v ({a2,a3}) = 55 f ({a2}) + f ({a3}) = 65

v ({a2,a4}) = 70 f ({a2}) + f ({a4}) = 85

v ({a3,a4}) = 80 f ({a3}) + f ({a4}) = 70

v ({a1,a2,a3}) = 90 f ({a1}) + f ({a2,a3}) = 95

f ({a2}) + f ({a1,a3}) = 100 f ({a3}) + f ({a1,a2}) = 95

v ({a1,a2,a4}) = 120 f ({a1}) + f ({a2,a4}) = 115

f ({a2}) + f ({a1,a4}) = 120 f ({a4}) + f ({a1,a2}) = 115

v ({a1,a3,a4}) = 100 f ({a1}) + f ({a3,a4}) = 110

f ({a3}) + f ({a1,a4}) = 105 f ({a4}) + f ({a1,a3}) = 105

v ({a2,a3,a4}) = 115 f ({a2}) + f ({a3,a4}) = 120

f ({a3}) + f ({a2,a4}) = 110 f ({a4}) + f ({a2,a3}) = 110

v ({a1,a2,a3,a4}) = 140 f ({a4}) + f ({a1,a2,a3}) = 145

f ({a1,a2}) + f ({a3,a4}) = 150 f ({a3}) + f ({a1,a2,a4}) = 145

f ({a1,a3}) + f ({a2,a4}) = 145 f ({a2}) + f ({a1,a3,a4}) = 150

f ({a1,a4}) + f ({a2,a3}) = 145 f ({a1}) + f ({a2,a3,a4}) = 150

{a1}

{a2}

{a3}

{a4}

{a1} {a2}

{a1,a3}

{a1,a4}

{a2} {a3}

{a2} {a4}

{a3,a4}

{a2} {a1,a3}

{a1,a2,a4}

{a1} {a3,a4}

{a2} {a3,a4}

{a1,a2} {a3,a4}

{a1}

{a2}

{a3}

{a4}

{a1,a2}

{a1,a3}

{a1,a4}

{a2,a3}

{a2,a4}

{a3,a4}

{a1,a2,a3}

{a1,a2,a4}

{a1,a3,a4}

{a2,a3,a4}

{a1,a2,a3,a4}

30

40

25

45

70

60

80

65

85

80

100

120

110

120

150

step 1

step 2

step 3

step 4

v ({a1,a3,a4}) = 100
v ({a2,a3,a4}) = 115
v ({a1,a2,a3,a4}) = 140

characteristic
function

step 5

v ({a2,a4}) = 70
v ({a3,a4}) = 80
v ({a1,a2,a3}) = 90
v ({a1,a2,a4}) = 120

v ({a1,a2}) = 50
v ({a1,a3}) = 60
v ({a1,a4}) = 80
v ({a2,a3}) = 55

v ({a1}) = 30
v ({a2}) = 40
v ({a3}) = 25
v ({a4}) = 45

Figure 3: A four-agent example of how DP computes t(C) and f(C) for every C ⊆ A.

8

ALGORITHM 1: The DP algorithm.

Input: v(C) for all C ⊆ A.

Output: an optimal coalition structure CS∗.

1 foreach C ⊆ A : |C| = 1 do // for every coalition of size 1

2 f(C)← v(C)
3 t(C)← {C}
4 foreach s = 2 to n do
5 foreach C ⊆ A : |C| = s do // for every coalition of size s

6 f(C)← v(C)
7 t(C)← {C} // start by considering the case where C is not split

8 foreach {C ′, C ′′} ∈ ΠC do // for every possible way of splitting C in two

9 if f(C) < f(C ′) + f(C ′′) then
10 f(C)← f(C ′) + f(C ′′) // to ensure that f(C) = max{C′,C′′}∈ΠC

(
f(C′) + f(C′′)

)

11 t(C)← {C ′, C ′′} // to ensure that t(C) ∈ argmax{C′,C′′}∈ΠC

(
f(C′) + f(C′′)

)

// the algorithm has computed t(C) and f(C) for every C ⊆ A; the remaining lines compute CS∗

12 CS∗ ← {A}
13 foreach C ∈ CS∗ do
14 if t(C) �= {C} then // i.e., if {C} is not an optimal partition of C

15 CS∗ ← (CS∗\{C}) ∪ t(C) // replace C with the two coalitions in t(C)

16 Go to line 13 and start with the new CS∗

17 return CS∗

4.1. The Link Between DP and the Coalition Structure Graph

To obtain a deeper understanding of how DP works, we consider the coalition structure graph [38]. In this undirected

graph, every node represents a coalition structure. These nodes are categorised into n levels, namely ΠA
1 , . . . ,Π

A
n , so

that level ΠA
i is composed of the nodes that represent coalition structures containing exactly i coalitions each. An edge

connects two coalition structures if and only if (1) they belong to two consecutive levels ΠA
i and ΠA

i−1, and (2) the

coalition structure in ΠA
i can be obtained from the one in ΠA

i−1 by splitting one coalition into two. Figure 4 shows a

four-agent example of the coalition structure graph. It also shows the values of all coalition structures based on the

characteristic function from Figure 3.

This graph enables us to visualise how DP works. To this end, observe that every movement upwards in the graph

(between adjacent nodes) corresponds to splitting one coalition into two (see Figure 4). Based on this observation, we

can divide the work of DP into three main tasks, which can all be seen on the graph.

1. Task 1: evaluate all the movements in the graph: For every coalition C with |C| ≥ 2, the algorithm evalu-
ates every partition {C ′, C ′′} ∈ ΠC by computing f(C ′) + f(C ′′) (see line 9 of the pseudocode). This can be

interpreted as evaluating every movement that involves splitting C in two. Since the algorithm does this for every

possible coalition of size s ≥ 2, all the movements in the graph are eventually evaluated.

2. Task 2: store the most beneficial movements: In lines 8–11, the algorithm determines, for every coalition C,

whether it is beneficial to make a movement that involves splitting C and, if so, what is the best such movement

(this decision is stored in t(C)). In terms of the coalition structure graph, this step can be interpreted as follows.

Setting t(C) = {C} means that, from any node representing a coalition structure CS � C, it is not beneficial to

make a movement that involves splitting C. On the other hand, setting t(C) = {C ′, C ′′} means that, from any

node representing CS � C, one of the most beneficial movements is to split C into C ′ and C ′′.

9

{a1},{a2},{a3},{a4}
V(CS) = 140

{a1},{a2, a3,a4} {a1,a2},{a3,a4} {a2},{a1,a3,a4} {a1,a3},{a2,a4} {a3},{a1,a2,a4} {a1,a4},{a2,a3} {a4},{a1,a2,a3}
V(CS) = 145 V(CS) = 130 V(CS) = 140 V(CS) = 130 V(CS) = 145 V(CS) = 135 V(CS) = 135

{a1,a2,a3,a4}
V(CS) = 140

{a1},{a2},{a3,a4} {a1,a2},{a3},{a4} {a1},{a3},{a2,a4} {a2},{a4},{a1,a3} {a1},{a4},{a2, a3} {a2},{a3},{a1,a4}
V(CS) = 150 V(CS) = 120 V(CS) = 125 V(CS) = 145 V(CS) = 130 V(CS) = 145

Figure 4: The coalition structure graph of four agents. The figure also shows the value of every coalition structure based on the characteristic

function from Figure 3.

3. Task 3: move upwards in the graph: This occurs in lines 12 to 16. Here, DP first initialises CS ∗ by setting

CS ∗ = {A}. This means that DP starts at the node that represents {A}, i.e., the bottom node in the graph. After

that, DP selects some coalition C ∈ CS ∗ with t(C) �= {C} (if such a coalition exists), and replaces it with t(C).
By doing this, DP makes a movement that involves splitting C into the two coalitions that are stored in t(C). This

process is repeated until t(C) = {C} for all C ∈ CS . In other words, DP keeps moving upwards in the graph

through a series of connected nodes—a “path”—until it reaches a node after which no movement is beneficial. For

instance, in our example from Figure 3, the way DP reached {{a1}, {a2}, {a3, a4}} can be visualised as a sequence

of movements through the dashed path in Figure 4, where the first movement involved splitting {a1, a2, a3, a4}
into {a1, a2} and {a3, a4}, and the second movement involved splitting {a1, a2} into {a1} and {a2}.

From this visualisation it is clear that, for every coalition structure CS with |CS | > 2, there are multiple paths that

start from the bottom node of the graph and end with the node that contains CS . For example, in Figure 4 one could

reach {{a1}, {a2}, {a3, a4}} through three different paths, which are highlighted using dotted, dashed, and bold edges,

respectively. Furthermore, if there are multiple paths that lead to the same optimal node, DP can reach this node through

any of those paths. Indeed, we have not specified in which order the algorithm goes through the possible splits of C
(line 8), and for every choice of {C ′, C ′′} from argmax{C′,C′′}∈ΠC

(
f(C ′)+ f(C ′′)

)
there exists an order that results in

t(C) being set to {C ′, C ′′}. For example, in Figure 3, t({a1, a2, a3, a4}) was set to {{a1, a2}, {a3, a4}} because this was

one of the movements evaluated to 150. However, t({a1, a2, a3, a4}) could have been set to {{a1}, {a2, a3, a4}} instead,

since this movement is also evaluated to 150. If that happened, DP would have found, based on t({a2, a3, a4}), that it is

beneficial to split {a2, a3, a4} into {a2} and {a3, a4}. As a result, the same optimal solution (i.e., {{a1}, {a2}, {a3, a4}})
would have been found, but through the dotted path rather than the dashed one.

4.2. Analysing the Effect of Avoiding Certain Operations in DP

We have shown that DP evaluates all the movements in the coalition structure graph, stores the best ones in the table t,
and then selects from t the movements that together form a path from the bottom node to an optimal node. We have

also shown that DP is indifferent among the paths that lead to the same optimal node. All of these observations raise

an important question: “what happens if DP is modified so that it only evaluates some of the movements in the graph?”
Suppose that for a certain coalition C the algorithm did not evaluate some movement that involves splitting C into

two coalitions, namely C1 and C2. That is, suppose that the term ΠC in line 8 of the pseudocode was replaced with

10

ΠC\ {{C1, C2}}. In this case, the movement stored in t(C) would be the best out of all the movements that DP has

evaluated (i.e., excluding the one in which C is split into C1 and C2). As a result, since DP always selects its movements

from the table t, whenever a coalition structure CS � C is reached, the movement to CS ′ = (CS\{C}) ∪ {C1, C2}
would no longer be an option. In other words, DP would ignore the existence of the edge that connects CS to CS ′,
evaluate the movements through the remaining edges, and decide on its path accordingly. This can be visualised on the

graph by removing the edge that connects CS to CS ′. Now, if CS ′ happened to be the only optimal solution in the graph,

and if the removed edge happened to be the only one leading to CS ′, then DP would no longer be able to find the optimal

solution. We formalise this observation in the remainder of this section.

Given two disjoint coalitions C1 and C2, let mC1,C2 denote the movement that corresponds to splitting C = C1 ∪C2

into C1 and C2. Observe that the movement mC1,C2 can be made through different edges in the coalition structure graph.

More precisely, it can be made through any edge that connects a coalition structure CS � C to the coalition structure

CS ′ = (CS\{C}) ∪ {C1, C2}. Further, letM denote the set of all possible movements in the coalition structure graph,

i.e., M = {mC1,C2 : C1, C2 ⊆ A,C1 ∩ C2 = ∅}. Now, given a coalition C ⊆ A, a subset of movements M ⊆ M and

two partitions π, π′ ∈ ΠC , we write π
M−→ π′ if and only if π′ can be reached from π via a single movement in M . That

is, we set

π
M−→ π′ iff π′ = (π\{C1 ∪ C2}) ∪ {C1, C2} for some mC1,C2 ∈M.

While
M−→ expresses the notion of reachability with respect to single movements from M , the following definition

generalises this notion to multiple movements.

Definition 5. Given a coalition C ⊆ A, a subset of movements M ⊆ M and two partitions π, π′ ∈ ΠC , we say that π′

is reachable from π via M , and write π
M� π′, if and only if π′ is either equal to π, or can be reached from π via one or

more movements in M . More formally,

π
M� π′ iff π = π′ or π

M−→ π′ or ∃{π1, . . . , πk} ⊆ ΠC : π
M−→ π1

M−→ . . .
M−→ πk

M−→ π′.

Given a coalition C ⊆ A and a partition π ∈ ΠC , let us denote by Rπ
M the set of all partitions that are reachable

from π via M , that is, Rπ
M = {π′ ∈ ΠC : π

M� π′}. Observe that every partition in Rπ
M is either equal to π or reachable

from π via at least one movement in M , in which case it must also be reachable from at least one of the partitions in

{π′ ∈ ΠC : π
M−→ π′}. Based on this observation, the set Rπ

M can be computed recursively as follows:

Rπ
M = {π} ∪

⋃
π′∈ΠC :π

M−→π′

Rπ′
M . (3)

Now, let us define fM (C) as the value of an optimal partition in R
{C}
M . More formally, fM (C) = max

π∈R{C}
M

V (π).

With this definition, we are ready to generalise Theorem 4 (the main theorem behind DP) by replacing f(C) and ΠC

with fM (C) and R
{C}
M , respectively.

Theorem 6. For every coalition C ⊆ A and for every subset of movements M ⊆M it holds that

fM (C) =

⎧⎨⎩ v(C) if |C| = 1

max
{
v(C) , max{C′,C′′}∈R{C}

M

(
fM (C ′) + fM (C ′′)

)}
otherwise.

(4)

For the proof of Theorem 6, see Appendix C.

Now, we can analyse the effect of replacing every f(C) and ΠC in DP with fM (C) and R
{C}
M , respectively. Let

us call the resulting algorithm DPM . Theorem 6 implies that DPM computes fM (C) recursively for every C ⊆ A.

When DPM terminates, it has computed fM (A)—the value of the best coalition structure reachable from {A} via M . To

identify this coalition structure, DPM uses the table t in the same way as DP does. This leads to the following corollary.

11

Corollary 7. For an arbitrary subset of movements M ⊆ M, the algorithm DPM outputs a coalition structure in
argmax

CS∈R{A}
M

V (CS).

Having analysed the effect of avoiding the evaluation of certain movements in the coalition structure graph, we will

now use this analysis to design an optimal version of DP.

4.3. The ODP Algorithm

In this section, we present our optimal dynamic programming (ODP) algorithm—a modified version of DP that avoids

all the redundant operations of DP, while maintaining the guarantee of finding an optimal solution. Of course, it would be

possible to avoid all redundant operations by simply considering all movements, and checking them one by one to identify

(and avoid) any movements that lead to an already-examined split. This, however, would require storing all movements,

rather than just the most promising ones, as is currently the case. Instead, ODP identifies the relevant movements a priori,
without any need for extra memory requirements, and without having to search for these relevant movements.

According to Corollary 7, given a subset of movements M , DPM finds an optimal coalition structure if and only if

R
{A}
M = ΠA. We will now identify a “small” set of movements M for which this is the case. Recall that, given two

coalitions C ′, C ′′ ∈ CA, we write C ′ < C ′′ if and only if C ′ precedes C ′′ lexicographically.5 Set

M∗ =
{
mC′,C′′ ∈M : C ′ ∪ C ′′ = A or C ′ < C ′′ < A \ (C ′ ∪ C ′′)

}
. (5)

It turns out that, to find an optimal partition, it suffices to consider the movements in M∗.

Theorem 8.
R

{A}
M∗ = ΠA. (6)

Proof. It suffices to prove that for every k ≥ 2, every coalition structure CS = {C1, . . . , Ck} is reachable from some

coalition structure CS ′ with |CS ′| = k − 1 via some movement in M∗. Assume without loss of generality that C1 <
· · · < Ck. We will show that CS is reachable from the coalition structure (CS\{C1, C2}) ∪ {C1 ∪ C2} via M∗. To this

end, it suffices to show that mC1,C2 ∈M∗.

First, suppose that k = 2. In this case, we have CS = {C1, C2}, and so C1∪C2 = A. This means that mC1,C2 ∈M∗.

Now, suppose that k > 2. In this case, since C1 < · · · < Ck, we obtain C1 < C2 < (C3 ∪ · · · ∪ Ck), and hence

C1 < C2 < A \ (C1 ∪ C2). Thus, mC1,C2 ∈M∗ in this case as well.

We are now ready to define our algorithm, which we call ODP.

Definition 9. ODP is the version of DP that only evaluates the movements in M∗, i.e., uses fM∗ instead of f . Formally,
ODP = DPM∗ .

Theorem 8 together with Corollary 7 imply that ODP finds an optimal partition of A. We will now analyse the running

time of this algorithm. First, we prove the following two important lemmas. The first lemma will be used in our

implementation of ODP (see lines 5 to 25 of Algorithm 3 in Appendix B), while the second lemma states that ODP does

not evaluate any redundant movements.

Lemma 10. For every coalition C ∈ CA such that {a1, a2} �⊆ C, the ODP algorithm does not evaluate any of the
possible ways of splitting C.

5We chose this particular ordering as it helps us prove Theorem 8. However, we do not imply that this is the only ordering that serves this

purpose.

12

Proof. Consider a coalition C ∈ CA such that {a1, a2} �⊆ C. We will prove that for all mC′,C′′ ∈ M such that

C ′ ∪ C ′′ = C it holds that mC′,C′′
/∈M∗.

We will deal with each of the following complementary cases separately:

• Case 1: a1 /∈ C. This means that a1 ∈ A \ (C ′ ∪C ′′). Therefore, we have C ′ ∪C ′′ �= A and A \ (C ′ ∪C ′′) < C ′.
Thus, mC′,C′′

/∈M∗ according to (5).

• Case 2: a1 ∈ C and a2 /∈ C. In this case, one of the two coalitions in {C ′, C ′′} contains neither a1 nor a2. Let this

coalition be C ′′. Now, since a2 ∈ A \ (C ′ ∪ C ′′), we have C ′ ∪ C ′′ �= A and A \ (C ′ ∪ C ′′) < C ′′. This implies

that mC′,C′′
/∈M∗ according to (5).

Lemma 11. For every coalition structure CS with |CS | ≥ 2, the ODP algorithm evaluates exactly one movement that
leads to CS .

Proof. Consider a coalition structure CS = {C1, . . . , Ck} with k ≥ 2. Without loss of generality, we can assume that

C1 < · · · < Ck. In our proof, we will distinguish between the following two cases:

• Case 1: k = 2. In this case, there is exactly one possible movement that leads to CS , which is mC1,C2 . Since

C1 ∪ C2 = A, we have mC1,C2 ∈M∗.

• Case 2: k > 2. In this case, we have C1 < C2 < A \ (C1 ∪ C2), so mC1,C2 ∈ M∗. It remains to show that

no other movement in M∗ leads to CS . To this end, observe that a movement mCi,Cj ∈ M leads to CS only

if Ci, Cj ∈ CS . We will show that if {i, j} �= {1, 2}, then mCi,Cj /∈ M∗. This is a direct consequence of the

following observations.

– If 1 /∈ {i, j}, then C1 ⊆ A \ (Ci ∪ Cj) and hence A \ (Ci ∪ Cj) < Ci. Therefore, mCi,Cj /∈M∗.

– If 1 ∈ {i, j} and 2 /∈ {i, j}, then C2 ⊆ A \ (Ci∪Cj) and either C2 < Ci (in which case A \ (Ci∪Cj) < Ci)

or C2 < Cj (in which case A \ (Ci ∪ Cj) < Cj). In either case, mCi,Cj /∈M∗.

We will now establish a one-to-one correspondence between movements in M∗ and partitions of A into two and three

parts.

Theorem 12. The number of movements in M∗ is equal to the number of coalition structures in ΠA
2 ∪ΠA

3 —levels 2 and
3 of the coalition structure graph. That is, ∣∣M∗∣∣ =

∣∣ΠA
2

∣∣ +
∣∣ΠA

3

∣∣.
Proof. Fix a coalition structure CS = {C1, . . . , Ck} with k > 1, and assume without loss of generality that C1 <
· · · < Ck. To establish a one-to-one correspondence between M∗ and ΠA

2 ∪ ΠA
3 , it is sufficient to make the following

observations.

• Every movement mC′,C′′ ∈ M∗ with C ′ ∪ C ′′ = A leads to exactly one coalition structure, namely {C ′, C ′′},
which is in ΠA

2 . Similarly, every coalition structure {C1, C2} ∈ ΠA
2 is reachable via exactly one movement in M∗,

namely mC1,C2 . Thus, there is a one-to-one correspondence between ΠA
2 and {mC′,C′′ ∈ M∗ : C ′ ∪ C ′′ = A}.

Therefore, ∣∣{mC′,C′′ ∈M∗ : C ′ ∪ C ′′ = A}∣∣ =
∣∣ΠA

2

∣∣. (7)

13

• Every movement mC′,C′′ ∈ M∗ with C ′ ∪ C ′′ ⊂ A leads to exactly one coalition structure in ΠA
3 , namely

{C ′, C ′′, A\ (C ′∪C ′′)}, as this is the only coalition structure in ΠA
3 that contains both C ′ and C ′′. Similarly, every

coalition structure {C1, C2, C3} ∈ ΠA
3 with C1 < C2 < C3 is reachable via exactly one movement in M∗, namely,

mC1,C2 . This means that there is a one-to-one correspondence between ΠA
3 and {mC′,C′′ ∈ M∗ : C ′ ∪ C ′′ ⊂ A},

and hence ∣∣{mC′,C′′ ∈M∗ : C ′ ∪ C ′′ ⊂ A}∣∣ =
∣∣ΠA

3

∣∣. (8)

Combining equations (7) and (8), we obtain the desired result.

We can use Theorem 12 to compute the size of M∗ (for the proof, see Appendix C).

Corollary 13. The number of movements in M is 1
2 (3

n + 1) − 2n, whereas the number of movements in M∗ is
1
2

(
3n−1 − 1

)
.

Corollary 13 shows that ODP evaluates roughly one third of the movements evaluated by DP.

More importantly, Theorem 12 can be used to show that it is not possible to evaluate fewer movements than those

evaluated by ODP and still be guaranteed to find an optimal solution.

Theorem 14. For every subset of movements M ⊆M such that |M | < |M∗| we have R
{A}
M �= ΠA.

Proof. Suppose that R
{A}
M = ΠA; we will argue that in this case M has to contain at least |ΠA

2 | + |ΠA
3 | = |M∗|

movements.

Consider an arbitrary coalition structure of size 2, say, CS 2 = {C1, C2}. The only way to reach CS 2 is to make the

movement mC1,C2 from {A}. Thus, since DPM reaches all coalition structures, we have mC1,C2 ∈M . Further, observe

that if {C1, C2} and {C ′
1, C

′
2} are two different coalition structures of size 2, then mC1,C2 �= mC′

1,C
′
2 .

Similarly, consider an arbitrary coalition structure of size 3, say, CS 3 = {C1, C2, C3}. If M contains none of

the movements mC1,C2 , mC1,C3 , mC2,C3 , then DPM cannot reach CS 3. Further, if {C1, C2, C3} and {C ′
1, C

′
2, C

′
3} are

two different coalition structures of size 3, then the sets {mC1,C2 ,mC1,C3 ,mC2,C3} and {mC′
1,C

′
2 ,mC′

1,C
′
3 ,mC′

2,C
′
3} are

disjoint. Indeed, the only coalition structure of size 3 that can be reached by a movement in the former set is {C1, C2, C3},
whereas the only coalition structure of size 3 that can be reached by a movement in the latter set is {C ′

1, C
′
2, C

′
3}.

Moreover, none of the movements in the set {mC1,C2 ,mC1,C3 ,mC2,C3} can be used to reach a coalition structure of size

2, as we have |C1|+ |C2| < n, |C1|+ |C3| < n, |C2|+ |C3| < n.

Now, if DPM can reach all coalition structures, then for each coalition structure of size 2 or 3 the set M contains a

movement that reaches this coalition structure, and we have argued that all these movements must be pairwise distinct. It

follows that if R
{A}
M = ΠA, then |M | ≥ |ΠA

2 |+ |ΠA
3 | = |M∗|, which is what we wanted to prove.

Appendix B provides the pseudocode of ODP, and shows how to avoid storing the table t, thus leading to a significant

reduction in memory requirements at the expense of a negligible increase in computation time.

5. The ODP-IP Algorithm

Having detailed the ODP algorithm, we will now show how to combine it with the IP algorithm. Our starting point is

the “vanilla” hybrid algorithm, which runs the two algorithms in parallel and terminates as soon as the faster of the two

returns an answer. Our main contribution here is to modify ODP and IP so that they can assist one another during this

process. Ideally, this should be done so that the two algorithms explore non-overlapping portions of the search space,

while dividing the labour in an ad hoc manner (rather than a priori) to reflect the actual strengths of the two algorithms.

For instance, if ODP happens to be twice as fast as IP on a given problem instance, then ODP must naturally end up

putting twice as much effort as IP. Another desirable property would be to have some meaningful information flow

between the two algorithms, rather than having each one working independently without acknowledging the presence of

the other. Here, the goal would be to have some synergy between the two, making the overall outcome greater than the

14

sum of its parts. The main challenge here stems from the fact that ODP and IP are based on entirely different design

paradigms.

Against this background, we present in Section 5.1 a new representation of the search space, which provides the

corner stone upon which our hybrid algorithm is built. Based on this, we show in Section 5.2 how to modify ODP such

that it searches subspaces of the integer partition graph—those same subspaces that IP was originally designed to explore.

After that, in Section 5.3 we show how to use the information provided by ODP to speed up IP’s depth-first search, while

in Section 5.4 we show how to modify IP so that it searches multiple subspaces simultaneously, building upon ODP’s

partial outcome. When combining the modified versions of ODP and IP, we obtain our hybrid algorithm, ODP-IP, a

summary of which is provided in Section 5.5.

5.1. The Link Between DP and IP

Given the differences between ODP and IP, in terms of both the search-space representation and the search techniques

that are being used, it is not trivial to determine how these two algorithms can be combined effectively, i.e., how to divide

the search effort between the two algorithm in a meaningful way. As a starting step, we will draw a link between IP and

DP (not ODP). In order to do so, we introduce yet another graph, which we call the integer partition graph. This is an

undirected graph where every node represents an integer partition, and two nodes representing integer partitions I and I ′

are connected by an edge if and only if there exist two parts i, j ∈ I such that I ′ = (I \ {i, j})� {i+ j} (here � denotes

the multiset union operation). A four-agent example is shown in Figure 5(A).

(B) Coalition Structure Graph

{a1},{a2},{a3,a4} {a3},{a4},{a1,a2} {a1},{a3},{a2,a4} {a2},{a4},{a1,a3} {a1},{a4},{a2,a3} {a2},{a3},{a1,a4}

{a1},{a2},{a3},{a4}

{a1},{a2,a3,a4} {a1,a2},{a3,a4} {a2},{a1,a3,a4} {a1,a3},{a2,a4} {a3},{a1,a2,a4} {a1,a4},{a2,a3} {a4},{a1,a2,a3}

{a1,a2,a3,a4}

{a1},{a2,a3,a4}

{a1},{a2},{a3,a4}

{{a2,a3,a4}, {a1}}
{{a1,a3,a4}, {a2}}
{{a1,a2,a4}, {a3}}
{{a1,a2,a3}, {a4}}

{{a2,a3,a4}, {a1}}

{{a3,a4}, {a1}, {a2}} , {{a2,a4}, {a1}, {a3}}
{{a2,a3}, {a1}, {a4}} , {{a1,a4}, {a2}, {a3}}
{{a1,a3}, {a2}, {a4}} , {{a1,a2}, {a3}, {a4}}

{{a1}, {a2}, {a3}, {a4}}

{{a1,a2}, {a3,a4}}
{{a1,a3}, {a2,a4}}
{{a1,a4}, {a2,a3}}

{{a1, a2, a3, a4}}(A) Integer Partition Graph

{4}

{3,1}

{1,1,1,1}

{{a3,a4}, {a1}, {a2}}

{2,2}

{2,1,1}

Figure 5: The integer partition graph (A) and the coalition structure graph (B) for four agents. A movement in (B) corresponds to a movement in

(A), and the removal of the dotted edges in (B) corresponds to the removal of the dotted edge in (A).

By looking at this graph, we can visualise the way DP searches the subspaces that are represented by different integer

partitions. To this end, recall that the operation of DP can be interpreted as the evaluation of movements in the coalition

structure graph. Furthermore, avoiding the evaluation of some of these movements can be interpreted as removing the

15

edges through which these movements are made. Importantly, these same operations can also be visualised on the integer

partition graph. Specifically, we make the following observations.

• By making a movement from a coalition structure CS to a coalition structure CS ′ in the coalition structure graph,

DP makes a movement from the integer partition I with CS ∈ ΠA
I to the integer partition I ′ with CS ′ ∈ ΠA

I′
in the integer partition graph. For example, the movement from {{a1}, {a2, a3, a4}} to {{a1}, {a2}, {a3, a4}} in

Figure 5(B) corresponds to the movement from ΠA
{1,3} to ΠA

{1,1,2} in Figure 5(A).

• Removing all edges of the coalition structure graph that correspond to splitting a coalition of size s into two

coalitions of sizes s′ and s′′ corresponds to removing every edge of the integer partition graph that connects an

integer partition I with s ∈ I to the integer partition I ′ = (I \ {s}) � {s′, s′′}. For instance, removing the dotted

edges in Figure 5(B) corresponds to removing the dotted edge that connects ΠA
{2,2} to ΠA

{2,1,1} in Figure 5(A). This

is because it is no longer possible to move from a coalition structure in ΠA
{2,2} to a coalition structure in ΠA

{2,1,1}.

This visualisation provides a link between DP and IP, since the latter deals with subspaces that are represented by

integer partitions. Building upon this, we show in the next section how to divide the search effort between ODP and IP.

5.2. Searching Subspaces Using ODP

We have shown that, for a given triple of positive integers s, s′, s′′ with s′ + s′′ = s, avoiding the evaluation of all
possible ways of splitting all coalitions of size s into two coalitions of sizes s′ and s′′ corresponds to removing edges

from the integer partition graph—the graph that links DP and IP. The problem with ODP is that it avoids the evaluation

of only some of the movements from coalitions of a given size. For instance, given n = 4 and s = 2, one can check

that ODP avoids evaluating the movements from {a1, a3}, {a1, a4}, {a2, a3}, {a2, a4} and {a3, a4}, but evaluates the

movement from {a1, a2}. Because of this single movement from a coalition of size 2, we cannot remove the dotted

edge from Figure 5(A). To circumvent this, we will now present a size-based version of ODP that, for any three sizes

s, s′, s′′ ∈ {1, . . . , n} such that s = s′ + s′′, evaluates either all or none of the movements in which a coalition of size s
is split into coalitions of sizes s′ and s′′. While the resulting version of DP still performs some redundant evaluations, we

will later see that its performance is very close to that of ODP.

Given two positive integers s′, s′′ ∈ Z
+, let M s′,s′′ ⊆ M be the set that consists of every movement in which a

coalition of size s′ + s′′ is split into two coalitions of sizes s′ and s′′. That is, M s′,s′′ = {mC′,C′′ ∈ M : |C ′| =
s′, |C ′′| = s′′}. Furthermore, let us define M∗∗ ⊆M as follows:

M∗∗ =

⎛⎝ ⋃
s′,s′′∈Z+:max{s′,s′′}≤n−s′−s′′

M s′,s′′

⎞⎠ ∪
⎛⎝ ⋃

s′,s′′∈Z+:s′+s′′=n

M s′,s′′

⎞⎠ . (9)

We will now show that, in order to find an optimal coalition structure, it suffices to evaluate all movements in M∗∗.

The proof of the following theorem is similar to that of Theorem 8, and can be found in Appendix D.

Theorem 15.
R

{A}
M∗∗ = ΠA. (10)

Theorem 15 shows that DPM∗∗ finds an optimal coalition structure. Furthermore, while it clearly performs some redun-

dant evaluations, we will now argue that its running time is very close to that of ODP.

We will first show that DPM∗∗ evaluates none of the movements from a coalition of size s, where s ∈ {⌊2n
3

⌋
+

1, . . . , n− 1}. The proof of the following lemma is similar to that of Lemma 10, and can be found in Appendix D.

Lemma 16. The DPM∗∗ algorithm does not evaluate any of the possible ways of splitting a coalition of size s, where
s ∈ {⌊2n

3

⌋
+ 1, . . . , n− 1}.

16

We can now provide an upper bound of the number of movements evaluated by DPM∗∗ (for the proof, see Appendix

D).

Theorem 17. The number of movements in M∗∗ is 1
23

n−1 + o(3n).

Theorem 17 means that DPM∗∗ is essentially just as fast as ODP.

Next, we show how to further modify DPM∗∗ so that it searches subspaces of the integer partition graph. To this end,

observe that DPM∗∗ works in three main steps:

• for s = 2, . . . ,
⌊
2n
3

⌋
, evaluate all mC′,C′′ ∈M∗∗ with |C ′|+ |C ′′| = s;

• for s = n, evaluate all mC′,C′′ ∈M∗∗ with |C ′|+ |C ′′| = s and compute t(A);

• make the best movements from {A} using the function getBestPartition(A, t(A)).

We modify DPM∗∗ by changing this sequence of operations as follows:

• initialise t(A)← {A} and fM∗∗(C)← v(C) for all C ⊆ A;

• for s = 2, . . . ,
⌊
2n
3

⌋
: (1) evaluate all mC′,C′′ ∈ M∗∗ with |C ′| + |C ′′| = s; (2) evaluate all mC′,C′′ ∈ M∗∗

with {|C ′|, |C ′′|} = {s, n − s}; (3) update t(A); (4) make the best movements from {A} using the function

getBestPartition(A, t(A)).

In what follows, we refer to the resulting algorithm as the size-based version of ODP, or sb-ODP; its pseudocode is

given in Algorithm 2. To understand the intuition behind these modifications, let us consider a 10-agent example, where

sb-ODP has just finished evaluating the movements mC′,C′′ ∈ M∗∗ such that |C ′| + |C ′′| ∈ {2, 3}. At this moment,

although some movements in M∗∗ have not yet been evaluated, sb-ODP can reach some subspaces in the integer partition
graph. This is illustrated in Figure 6(A), where every movement not evaluated by ODP has been removed from the

graph. As can be seen, some subspaces are reachable from ΠA
{10}—the bottom node in the graph. Consequently, based on

Corollary 7, the best coalition structure in those subspaces can easily be identified: simply repeat the process of splitting

the coalition(s) in {A} in the best way (out of all the ways that were evaluated by sb-ODP thus far) until no such splitting

is beneficial. Similarly, as soon as the movements mC′,C′′ ∈ M∗∗ with |C ′| + |C ′′| = 4 are evaluated, more edges are

added to the graph, and so more subspaces become reachable from the bottom subspace (see Figure 6(B)). Just as before,

the best coalition structure in all of those subspaces can easily be identified. By repeating this process for every size s,

sb-ODP gradually evaluates more and more subspaces, until it eventually searches the entire space.

We remark that, unlike DPM∗∗ , sb-ODP is an anytime algorithm: at any point in time CS ∗∗ stores the best coalition

structure identified so far, and the value of this coalition structure goes up as s increases. However, this improvement

comes at a price: while DPM∗∗ evaluates each movement at most once, sb-ODP evaluates some of the movements twice.

Specifically, a movement of the form mC′,C′′
with |C ′|+ |C ′′| = n, |C ′| ≤
2n3 �, |C ′′| ≤
2n3 �, |C ′| < |C ′′|, is evaluated

first for s = |C ′| and then for s = |C ′′|. Fortunately, the number of such movements is less than 2n−1 = o(3n), and all

other movements in M∗∗ are evaluated once. Thus, we obtain the following corollary.

Corollary 18. The sb-ODP algorithm performs 1
23

n−1 + o(3n) evaluations.

So far in this section, we have developed a size-based version of ODP, and shown how to modify it so that it searches

integer partition-based subspaces. This has the following important advantage: at any point in time during execution, the

part of the space that is yet to be searched can also be represented as the union of integer partition-based subspaces. As

a result, IP can focus on these subspaces, and avoid searching the ones that have been searched by ODP6. This division

of work (between ODP and IP) gives ODP-IP the ability to calibrate itself automatically so that the amount of search

6From now on, whenever we talk about ODP-IP, we mean the combination of IP and sb-ODP. However, for readability, we will write “ODP”

instead of “sb-ODP”.

17

{1,1,8} {1,2,7} {1,3,6} {2,2,6} {1,4,5} {2,3,5} {2,4,4} {3,3,4}

{1,9} {2,8} {3,7} {4,6} {5,5}

{10}

{1,1,1,1,1,1,1,1,1,1}

{1,1,1,1,1,1,1,1,2}

{1,1,1,1,1,1,1,3} {1,1,1,1,1,1,2,2}

{1,1,1,1,1,1,4} {1,1,1,1,1,2,3} {1,1,1,1,2,2,2}

{1,1,1,1,1,5} {1,1,1,1,2,4} {1,1,1,1,3,3} {1,1,1,2,2,3} {1,1,2,2,2,2}

{1,1,1,1,6} {1,1,1,2,5} {1,1,1,3,4} {1,1,2,2,4} {1,1,2,3,3} {1,2,2,2,3} {2,2,2,2,2}

{1,1,1,7} {1,1,2,6} {1,1,3,5} {1,2,2,5} {1,1,4,4} {1,2,3,4} {2,2,2,4} {1,3,3,3} {2,2,3,3}

Searched by ODP

Not yet searched

{1,1,8} {1,2,7} {1,3,6} {2,2,6} {1,4,5} {2,3,5} {2,4,4} {3,3,4}

{1,9} {2,8} {3,7} {4,6} {5,5}

{10}

{1,1,1,1,1,1,1,1,1,1}

{1,1,1,1,1,1,1,1,2}

{1,1,1,1,1,1,1,3} {1,1,1,1,1,1,2,2}

{1,1,1,1,1,1,4} {1,1,1,1,1,2,3} {1,1,1,1,2,2,2}

{1,1,1,1,1,5} {1,1,1,1,2,4} {1,1,1,1,3,3} {1,1,1,2,2,3} {1,1,2,2,2,2}

{1,1,1,1,6} {1,1,1,2,5} {1,1,1,3,4} {1,1,2,2,4} {1,1,2,3,3} {1,2,2,2,3} {2,2,2,2,2}

{1,1,1,7} {1,1,2,6} {1,1,3,5} {1,2,2,5} {1,1,4,4} {1,2,3,4} {2,2,2,4} {1,3,3,3} {2,2,3,3}

Searched by ODP

Not yet searched

(A)

(B)

Figure 6: Illustration of how sb-ODP gradually covers all subspaces given ten agents. Figure 6(A) illustrates the subspaces that are reachable when

sb-ODP finishes evaluating the movements mC,C′ ∈ M∗∗ with |C|+ |C′| ∈ {2, 3}. Figure 6(B) illustrates reachable subspaces with the evaluated

movements being mC,C′ ∈ M∗∗ for |C|+ |C′| ∈ {2, 3,4}.

18

ALGORITHM 2: The size-based version of ODP.

Input: v(C) for all C ⊆ A.

Output: CS∗∗—the best solution found at a given point in time.

1 t(A)← {A}; CS∗∗ ← {A} // initialisation

// First, initialise fM∗∗ (C) for every coalition, not just singletons

2 foreach C ⊆ A do
3 fM∗∗(C)← v(C)

// Second, compute fM∗∗ (C) for every coalition of size s = 2, . . . ,
⌊
2n
3

⌋

4 for s = 2 to
⌊
2n
3

⌋
do

5 foreach C ⊆ A : |C| = s do
6 foreach s′, s′′ ∈ Z

+ such that (s′ + s′′ = s) ∧ (max{s′, s′′} ≤ n− s′ − s′′) do
7 foreach {C ′, C ′′} ∈ ΠC : {|C ′|, |C ′′|} = {s′, s′′} do
8 if fM∗∗(C) < fM∗∗(C ′) + fM∗∗(C ′′) then
9 fM∗∗(C)← fM∗∗(C ′) + fM∗∗(C ′′)

// update fM∗∗(A) and t(A)

10 temp← t(A)

11 foreach {C ′, C ′′} ∈ ΠA
2 : {|C ′|, |C ′′|} = {s, n− s} do

12 if fM∗∗(A) < fM∗∗(C ′) + fM∗∗(C ′′) then
13 fM∗∗(A)← fM∗∗(C ′) + fM∗∗(C ′′)
14 temp← {C ′, C ′′}

// if t(A) was updated, then update CS∗∗

15 if temp �= t(A) then
16 CS∗∗ ← getBestPartition(A, t(A)) // see the pseudocode in Algorithm 4

17 return CS∗∗

19

assigned to each of its two constituent parts (ODP and IP) reflects the relative strength of that part with respect to the

problem instance at hand. This is particularly important since IP could be significantly faster than ODP in some cases,

while in some other cases it could be significantly slower (see Section 6 for more details).

Now that we have shown how IP and ODP can share the workload without duplicating each other’s efforts, in the fol-

lowing sections we show how to further enhance this combination. In particular, we will focus on how IP’s performance

can be improved by using the information that has been already computed by ODP.

5.3. Speeding up IP’s Depth-First Search
As mentioned in Section 3.1, every time IP reaches a certain depth d in the search tree of a subspace ΠA

I , it adds a

coalition Cd to a set of disjoint coalitions {C1, . . . , Cd−1}. After that, it determines whether it is worthwhile to go deeper

into the search tree. To do so, it checks whether inequality (1) holds. If not, then the set of all coalition structures in ΠA
I

that start with {C1, . . . , Cd−1} is considered promising, i.e., one of the coalition structures in this set could potentially

have a value greater than V (CS ∗∗)—the value of the best coalition structure found so far. In this case, IP goes deeper

into the search tree. However, we will now show how, with the help of ODP, some coalition structures can still be pruned

even if they are promising.

The basic idea is to modify IP so that, for any subset of agents C ⊆ A, it keeps track of the value of the best partition

of C that it has encountered so far. This is done using a table w, with an entry for every possible coalition. In more

detail, IP initially sets w(C) = v(C) for all C ⊆ A. After that, every time IP reaches a certain depth d, it performs the

following operation:

if w(
d⋃

i=1

Ci) <

d∑
i=1

v(Ci) then w(

d⋃
i=1

Ci)←
d∑

i=1

v(Ci). (11)

Since IP performs this operation every time it goes one step deeper into the search tree, the information in w is kept

up-to-date throughout the search. Now, to use this information, IP is modified so that, at depth d, it checks whether one

of the following inequalities holds:

w(
d⋃

j=1

Cj) >
d∑

j=1

v(Cj), (12)

w(Cd) > v(Cd). (13)

If (12) holds, then {C1, . . . , Cd} is not an optimal partition of C1 ∪ · · · ∪ Cd, and so there does not exist an optimal

coalition structure CS ∗ such that {C1, . . . , Cd} ⊆ CS ∗. Similarly, if (13) holds, then {Cd} is not an optimal partition of

Cd, and so there does not exist an optimal coalition structure CS ∗ such that Cd ∈ CS ∗. In either case, every coalition

structure containing {C1, . . . , Cd} can be skipped during the search. Note that this pruning occurs even if the set of all
coalition structures that contain {C1, . . . , Cd} is promising. This is because the pruning here occurs whenever an optimal

coalition structure cannot possibly appear among the coalition structures containing {C1, . . . , Cd}, even if one of these
coalition structures is indeed better than CS ∗∗—the best coalition structure found so far.

Now, knowing that ODP runs in parallel with IP, we can improve the above technique as follows. Instead of having

IP use the table w, and ODP use another table, i.e., fM∗∗ , we modify IP so that it uses the same table as ODP. Formally,

we replace w with fM∗∗ in (11), (12) and (13). This implicitly means that IP will make its decisions based not only on

the best partitions that it has encountered, but also on those encountered by ODP.

To better understand the effect that ODP has on the new branch-and-bound technique, let us consider an example

of 19 agents. With such a relatively small number of agents, ODP can compute optimal partitions of all coalitions of

size 9 or less in a very short time (e.g., less than 0.2 seconds on a standard desktop PC, see Section 6 for more details).

Now suppose that, after this short time, IP started searching the subspace ΠA
{2,2,2,2,1,1,3,3,3}. As mentioned earlier, IP

goes deeper into the search tree as long as it encounters promising coalition structures. For instance, suppose that the set

of all coalition structures containing {a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9} happens to be promising. With the new

branch-and-bound technique, and with the information now provided by ODP, this combination of coalitions would only

be reached by IP if all of the following conditions hold:

20

• {{a1, a2}} happens to be an optimal partition of {a1, a2};

• {{a3, a4}} happens to be an optimal partition of {a3, a4};

• {{a1, a2}, {a3, a4}} happens to be an optimal partition of {a1, . . . , a4};

• {{a5, a6}} happens to be an optimal partition of {a5, a6};

• {{a1, a2}, {a3, a4}, {a5, a6}} happens to be an optimal partition of {a1, . . . , a6};

• {{a7, a8}} happens to be an optimal partition of {a7, a8};

• {{a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}} happens to be an optimal partition of {a1, . . . , a8};

• {{a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9}} happens to be an optimal partition of {a1, . . . , a9}.

The probability of all these events happening simultaneously is extremely low for reasonable distributions of coali-

tional values, even if the set of all coalition structures containing {a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9} is promising.

This example clearly demonstrates the great potential of this new branch-and-bound technique for speeding up the search.

5.4. Searching Multiple Subspaces Simultaneously

In this section, we show how to modify IP so that it searches multiple subspaces simultaneously and thus avoids repeating

certain operations. After that, we show how IP can use this technique more effectively using the partial outcome of ODP.

For presentation clarity, we will postpone the formal description of this technique until after we have presented the basic

idea through an example of five subspaces.

Recall that IP searches each subspace in a depth-first manner. The crucial idea behind the modification we are going

to describe is that the first few levels of IP’s search tree for a given subspace ΠA
I can be exactly the same as those for

several other subspaces.7 For instance, the first two levels are exactly the same in the search trees of the subspaces

that are represented by the following ordered integer partitions: I1 = {2, 4, 4}, I2 = {2, 4, 1, 3}, I3 = {2, 4, 2, 2},
I4 = {2, 4, 1, 1, 2}, and I5 = {2, 4, 1, 1, 1, 1}. Searching any of those subspaces in a depth-first manner (as IP does)

involves constructing pairs of disjoint coalitions C1, C2 with |C1| = 2, |C2| = 4 (for more details, see Section 3.1). Now,

instead of repeating this process for every one of these five subspaces, we need only perform it once. More specifically,

for every pair C1, C2 with |C1| = 2, |C2| = 4, we can perform the following steps:

1. Compute the value of {C1, C2, A \ (C1 ∪ C2)}—the only coalition structure in ΠA
I1

that contains C1 and C2.

2. Find the best partition of A \ (C1 ∪C2) into two coalitions of sizes 1 and 3, and add those to {C1, C2}. This gives

the best coalition structure in ΠA
I2

that contains C1 and C2.

3. Find the best partition of A \ (C1 ∪C2) into two coalitions of sizes 2 and 2, and add those to {C1, C2}. This gives

the best coalition structure in ΠA
I3

that contains C1 and C2.

4. Find the best partition of A \ (C1 ∪ C2) into three coalitions of sizes 1, 1 and 2, and add those to {C1, C2}. This

gives the best coalition structure in ΠA
I4

that contains C1 and C2.

5. Compute the value of {C1, C2} ∪ai∈A\(C1∪C2) {{ai}}—the only coalition structure in ΠA
I5

that contains C1 and

C2.

6. Select the best out of the coalition structures that were found in the above five steps.

7Note that, for any given subspace ΠA
I , the shape of the search tree depends on the ordering of the integers in I , so we assume that for each I

this ordering has been fixed in advance. Thus, effectively, in this section we treat I as a list rather than a multi-set.

21

This procedure returns the best coalition structure containing C1 and C2 in the set ∪5
i=1Π

A
Ii

. By repeating this procedure

for every pair C1, C2 with |C1| = 2, |C2| = 4, we can find the best coalition structure in ∪5
i=1Π

A
Ii

.

Next, we will show how to significantly speed up the above technique using the information provided by ODP. To

this end, suppose that IP started searching ΠA
I1
, . . . ,ΠA

I5
after ODP has finished evaluating the movements mC,C′ ∈M∗∗

with |C| + |C ′| ∈ {2, 3, 4}. This means that, for all C ⊆ A with |C| ∈ {2, 3, 4}, ODP has computed fM∗∗(C). In

this case, for every pair C1, C2 with |C1| = 2, |C2| = 4, it is possible to find the value of the best coalition structure

containing C1 and C2 in ∪5
i=1Π

A
Ii

without having to examine the different partitions of A \ (C1 ∪C2) as in the above six

steps. Instead, we can now perform a single step, which is

1. Compute v(C1) + v(C1) + fM∗∗(A \ (C1 ∪ C2)).

This is because in this example A \ (C1 ∪C2) is a coalition of four agents, which means that ODP has already computed

fM∗∗(A \ (C1 ∪ C2)).
By repeating this step for every pair C1, C2 with |C1| = 2, |C2| = 4, we find a coalition structure

{C∗
1 , C

∗
2 , C

∗
3} ∈ argmax

CS∈ΠA
I1

v(C1) + v(C2) + fM∗∗(C3).

It remains to partition C∗
3 in the best way using the movements in M∗∗ (so far we only know the value of that par-

tition, which is fM∗∗(C∗
3); we do not yet know the partition itself). This can be done by simply replacing C∗

3 with

getBestPartition(C∗
3 , t(C

∗
3)), which partitions C∗

3 by making the best out of all the movements that ODP has evalu-

ated so far (see Algorithm 4). This process is illustrated in Figure 7(A), where IP searches ΠA
I1

, and the partitioning of

C∗
3 using getBestPartition is illustrated by the movements from ΠA

I1
to the other subspaces, i.e., ΠA

I2
, ΠA

I3
, ΠA

I4
, and

ΠA
I5

.

In general, the modified version of IP proceeds as follows. As before, it picks the next subspace ΠA
I to evaluate

based on its upper bound UB I . Next, it chooses an integer s in I8 such that ODP has already evaluated fM∗∗(C) for all

coalitions C with |C| = s. It then goes over all coalition structures in ΠA
I , and evaluates them: the coalitions that match

integers in I \ {s} are evaluated according to v, and the coalition that matches s is evaluated according to fM∗∗ . This has

the effect of simultaneously searching all subspaces that are reachable from ΠA
I by splitting s. The resulting coalition

structure can then be found using getBestPartition. To enhance readability, the details of this procedure are moved

to Appendix E.

So far, we have shown how multiple subspaces can be searched simultaneously by partitioning exactly one coalition.

However, one can partition multiple coalitions. This way, more subspaces can be searched simultaneously. For example,

while searching ΠA
I1

, if IP evaluates every {C1, C2, C3} ∈ ΠA
I1

as fM∗∗(C1) + fM∗∗(C2) + fM∗∗(C3), then the result

of this search will be a coalition structure CS ′ = {C ′
1, C

′
2, C

′
3} that maximises fM∗∗(C ′

1) + fM∗∗(C ′
2) + fM∗∗(C ′

3). By

replacing every coalition C ′ ∈ CS ′ with getBestPartition(C ′, t(C ′)), we end up with the best coalition structure in

all the subspaces that are reachable from ΠA
I1

. This is illustrated in Figure 7(B).

When searching multiple subspaces simultaneously, it is important to modify the branch-and-bound technique used

by IP. To this end, recall that when searching a single subspace ΠA
I , IP encounters a new combination of disjoint coalitions

every time it takes one step deeper into the search tree. For every such combination {C1, . . . , Cd}, IP computes an upper

bound on the value of every coalition structure CS ∈ ΠA
I such that {C1, . . . , Cd} ⊆ CS . If this upper bound happens

to be smaller than V (CS ∗∗)—the value of the best solution found so far—then the combination is deemed unpromising.

However, when searching multiple subspaces, e.g., ΠA
I1
, . . . ,ΠA

I5
, the computation of the upper bound must take into

consideration all of those subspaces. In our example, the upper bound must be on the value of every CS ∈ ΠA
I ∪· · ·∪ΠA

I5
with {C1, . . . , Cd} ⊆ CS . This makes it more difficult to discard branches of the search tree. Appendix E provides

more details on how to split multiple integers, and compares this approach with the one where only a single integer is

partitioned. We remark that in our experimental evaluation (Section 6) we always split a single integer.

8Recall that in this section I is treated as a list, so if I contains multiple copies of s, only one of them is selected.

22

(A)

(B)

Searched by ODP

Not yet searched

Searched by IP

{1,1,8} {1,2,7} {1,3,6} {2,2,6} {1,4,5} {2,3,5} {2,4,4} {3,3,4}

{1,9} {2,8} {3,7} {4,6} {5,5}

{10}

{1,1,1,1,1,1,1,1,1,1}

{1,1,1,1,1,1,1,1,2}

{1,1,1,1,1,1,1,3} {1,1,1,1,1,1,2,2}

{1,1,1,1,1,1,4} {1,1,1,1,1,2,3} {1,1,1,1,2,2,2}

{1,1,1,1,1,5} {2,4,1,1,1,1} {1,1,1,1,3,3} {1,1,1,2,2,3} {1,1,2,2,2,2}

{1,1,1,1,6} {1,1,1,2,5} {1,1,1,3,4} {2,4,1,1,2} {1,1,2,3,3} {1,2,2,2,3} {2,2,2,2,2}

{1,1,1,7} {1,1,2,6} {1,1,3,5} {1,2,2,5} {1,1,4,4} {2,4,1,3} {2,4,2,2} {1,3,3,3} {2,2,3,3}

Searched by ODP

Not yet searched

Searched by IP

{1,1,8} {1,2,7} {1,3,6} {2,2,6} {1,4,5} {2,3,5} {2,4,4} {3,3,4}

{1,9} {2,8} {3,7} {4,6} {5,5}

{10}

{1,1,1,1,1,1,1,1,1,1}

{1,1,1,1,1,1,1,1,2}

{1,1,1,1,1,1,1,3} {1,1,1,1,1,1,2,2}

{1,1,1,1,1,1,4} {1,1,1,1,1,2,3} {1,1,1,1,2,2,2}

{1,1,1,1,1,5} {1,1,1,1,2,4} {1,1,1,1,3,3} {1,1,1,2,2,3} {1,1,2,2,2,2}

{1,1,1,1,6} {1,1,1,2,5} {1,1,1,3,4} {1,1,2,2,4} {1,1,2,3,3} {1,2,2,2,3} {2,2,2,2,2}

{1,1,1,7} {1,1,2,6} {1,1,3,5} {1,2,2,5} {1,1,4,4} {1,2,3,4} {2,2,2,4} {1,3,3,3} {2,2,3,3}

Figure 7: IP searching multiple subspaces simultaneously after ODP has computed fM∗∗(C) for |C| ∈ {2, 3, 4}. In Figure 7(A), several subspaces

are searched simultaneously by splitting exactly one coalition. In Figure 7(B), more subspaces are searched simultaneously by splitting multiple
coalitions.

23

Finally, note that the original IP algorithm ignores the order of the coalitions within a coalition structure. For in-

stance, given a set of agents A = {a1, . . . , a10}, the coalition structures {{a1, a2}, {a3, a4, a5, a6}, {a7, a8, a9, a10}}
and {{a1, a2}, {a7, a8, a9, a10}, {a3, a4, a5, a6}} are considered to be the same, and so only one of the them is gen-

erated. However, when multiple subspaces are searched simultaneously, the order matters. For instance, consider the

example from Figure 7(A). Here, since a coalition of size 4 will be replaced with its optimal partition, IP will have to

evaluate every {C1, C2, C3} ∈ ΠA
{2,4,4} as v(C1)+v(C2)+fM∗∗(C3). As can be seen, v({a1, a2})+v({a3, a4, a5, a6})+

fM∗∗({a7, a8, a9, a10}) is different from v({a1, a2}) + v({a7, a8, a9, a10}) + fM∗∗({a3, a4, a5, a6}), and so both must

be calculated.

5.5. Summary and Complexity Analysis of ODP-IP
Below is a summary of the main modifications that we have made to ODP and IP to enable them to help each other when

running in parallel:

• Enable ODP to search subspaces of the integer partition graph: To do this, ODP uses fM∗∗ instead of fM∗ .

Further, for s = 2, . . . ,
⌊
2n
3

⌋
, the algorithm: (1) evaluates all mC′,C′′ ∈ M∗∗ with |C ′| + |C ′′| = s, (2) evaluates

all mC′,C′′ ∈M∗∗ with {|C ′|, |C ′′|} = {s, n− s}, (3) updates t(A), and (4) makes the best movements from {A}
using the function getBestPartition(A, t(A)). The pseudocode can be found in Algorithm 2.

• Speed up IP’s depth-first search: To do this, whenever a coalition Cd is added to a set of disjoint coalitions

C1, . . . , Cd−1, check whether {Cd} and {C1, . . . , Cd} are the best partitions of Cd and C1∪ · · ·∪Cd, respectively,

that have been encountered by IP and/or ODP so far. If not, skip every coalition structure containing C1, . . . , Cd.

• Enable IP to search multiple subspaces simultaneously: When searching a subspace ΠA
I , identify the integer

partitions that are reachable from I using the movements that have been evaluated by ODP thus far (e.g., see the

dashed edges in Figures 7(A) and 7(B)). Now, let I∗ ⊆ I be the integers in I that will be split to reach other integer

partitions (e.g, I∗ = {4} in Figure 7(A) and I∗ = {2, 4, 4} in Figure7(B)). Then, for every coalition structure

CS ∈ ΠA
I , evaluate every C ∈ CS to fM∗∗(C) if the size of C corresponds to an integer in I∗, otherwise evaluate

it to v(C). Finally, modify IP’s branch-and-bound technique so that the upper bounds reflect the subspaces whose

integer partitions are reachable from I by splitting the integers in I∗. The details of this modification can be found

in Appendix E.

We conclude this section with the following theorem, whose proof follows immediately from Corollary 18 and the

observation that ODP-IP terminates as soon as one of ODP and IP does.

Theorem 19. Given n agents, ODP-IP runs in O(3n) time.

Having presented ODP-IP, in the following section we evaluate both of our algorithms, namely ODP and ODP-IP.

6. Performance Evaluation

This section is divided into two parts: the first evaluates ODP, while the second evaluates ODP-IP.

6.1. Evaluating ODP
We know that DP evaluates 1

2 (3
n + 1)− 2n movements, while ODP evaluates 1

2

(
3n−1 − 1

)
movements (Corollary 13).

In other words, ODP evaluates roughly 33% of the movements evaluated by ODP. Furthermore, we know that the size-

based version of ODP (i.e., the version that is compatible with IP) evaluates 1
23

n−1 + o(3n) movements (Corollary 18),

i.e., in terms of performance it is more similar to ODP than to DP.

Figure 8 compares those numbers, with n running from 5 to 40. It shows that, as the number of agents increases,

the percentage of movements that are evaluated by the size-based version of ODP drops (compared to that of DP), and

converges at around 37%. This is very close to the optimal reduction in movements, which is 33%. The reason behind the

observed fluctuation is simply because the algorithm evaluates all splits of coalitions of size {1, 2, . . . ,
2n/3�}. Thus,

the number of performed operations is influenced by the shape of the function
2n/3�.

24

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

10

20

30

40

50

60

70

80

90

100

Number of agents

%

Number of movements with respect to DP (in %)

DP

size-based version of ODP

ODP

Figure 8: Percentage of movements evaluated by ODP and sb-ODP vs. DP

6.2. Evaluating ODP-IP

ODP-IP was developed in order to obtain the best features of ODP and IP, namely: (1) being anytime, (2) running in

O(3n) time, and (3) being on average as fast as (and hopefully faster than) the faster of the two algorithms, ODP and

IP. While our analysis in Section 5.1 showed that ODP-IP indeed has features (1) and (2), the following experiments are

meant to verify whether ODP-IP has feature (3). The algorithms were implemented in Java9, and tested on a PC equipped

with an Intel� CoreTM i7 processor (3.40GHz) and 12GB of RAM.

Observe that the number of operations performed by ODP is not influenced by the characteristic function at hand,

i.e., it depends solely on the number of agents. On the other hand, the number of operations performed by IP (and

consequently by ODP-IP) depends on the effectiveness of IP’s branch-and-bound technique, which in turn depends on

the characteristic function at hand. With this in mind, we compare the termination times of all three algorithms (ODP, IP,

and ODP-IP) given different value distributions. Specifically, we consider the following distributions.

1. Uniform, as studied by Larson and Sandholm [17]: for all C ∈ CA, v(C) ∼ U(a, b), where a = 0 and b = |C|.
2. Normal, as studied by Rahwan et al. [30]: for all C ∈ CA, v(C) ∼ N(μ, σ2), where μ = 10× |C| and σ = 0.1.

3. NDCS (Normally Distributed Coalition Structures), as proposed by Rahwan et al. [32]: for all C ∈ CA, v(C) ∼
N(μ, σ2), where μ = |C| and σ =

√|C|. The rationale behind developing NDCS came from the authors’

observation that, with Uniform and Normal distributions, a coalition structure is less likely to be optimal if it

contains more coalitions. In order to develop a test-bed that is free from this bias, the authors proposed NDCS and

proved it to be the only coalition-value distribution that results in normally-distributed coalition structure values.

As a result, under NDCS, all coalition structures are equally likely to be optimal.

4. Modified Uniform, as proposed by Service and Adams [40]: Every coalition’s value is first drawn from U(0, 10×
|C|), and then increased by a random number r ∼ U(0, 50) with probability 0.2.

9The open-source implementation is available at https://github.com/trahwan/ODP-IP and InclusionExclusion.

25

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Uniform

T
im

e
(s

ec
o

n
d

s,
lo

g
sc

al
e)

ODP

IP

ODP-IP*

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Normal

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

NDCS

T
im

e
(s

ec
o

n
d

s,
lo

g
sc

al
e)

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Agent-based Uniform

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Agent-based Normal

T
im

e
(s

ec
o

n
d

s,
lo

g
sc

al
e)

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Modified Uniform

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Modified Normal

T
im

e
(s

ec
o

n
d

s,
lo

g
sc

al
e)

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Exponential

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Beta

Number of agents

T
im

e
(s

ec
o

n
d

s,
lo

g
sc

al
e)

15 16 17 18 19 20 21 22 23 24 25

100
101
102
103
104

Gamma

Number of agents

Figure 9: Time performance of ODP-IP vs. ODP and IP.

26

0 20 40 60 80 100
0

20

40

60

80

100

Uniform

S
o

lu
ti

o
n

q
u

al
it

y
(x

1
0

0
)

B
o

u
n

d
q

u
al

it
y

(x
1

0
0

)

ODP-IP* solution quality

ODP-IP* bound quality 1
β

0 20 40 60 80 100
0

20

40

60

80

100

Normal

0 20 40 60 80 100
0

20

40

60

80

100
NDCS

S
o

lu
ti

o
n

q
u

al
it

y
(x

1
0

0
)

B
o

u
n

d
q

u
al

it
y

(x
1

0
0

)

0 20 40 60 80 100
0

20

40

60

80

100

Agent-based Uniform

0 20 40 60 80 100
0

20

40

60

80

100

Agent-based Normal

S
o

lu
ti

o
n

q
u

al
it

y
(x

1
0

0
)

B
o

u
n

d
q

u
al

it
y

(x
1

0
0

)

0 20 40 60 80 100
0

20

40

60

80

100
Modified Uniform

0 20 40 60 80 100
0

20

40

60

80

100
Modified Normal

S
o

lu
ti

o
n

q
u

al
it

y
(x

1
0

0
)

B
o

u
n

d
q

u
al

it
y

(x
1

0
0

)

0 20 40 60 80 100
0

20

40

60

80

100

Exponential

0 20 40 60 80 100
0

20

40

60

80

100
Beta

Time to completion (in %)

S
o

lu
ti

o
n

q
u

al
it

y
(x

1
0

0
)

B
o

u
n

d
q

u
al

it
y

(x
1

0
0

)

0 20 40 60 80 100
0

20

40

60

80

100
Gamma

Time to completion (in %)

Figure 10: Solution quality and bound quality of ODP-IP.

27

5. Modified Normal, proposed by Rahwan et al. [34] as a natural counterpart to the Modified Uniform distribution.

Under this distribution, each coalition’s value is first drawn from N(10 × |C| , 0.01), and then increased by a

random number r ∼ U(0, 50) with probability 0.2.

6. Exponential: for all C ∈ CA, v(C) ∼ |C| × Exp(λ), where λ = 1.

7. Beta: for all C ∈ CA, v(C) ∼ |C| × Beta(α, β), where α = β = 0.5.

8. Gamma: for all C ∈ CA, v(C) ∼ |C| ×Gamma(k, θ), where k = θ = 2.

9. Agent-based Uniform, as proposed by Rahwan et al. [34]: Under this distribution, each agent ai is assigned a

random “power” pi ∼ U(0, 10), reflecting its average performance over all coalitions. Then for every coalition

C � ai, the actual power of ai in C is determined as pCi ∼ U(0, 2pi), and a coalition’s value is computed as the

sum of the powers of its members. That is, for all C ∈ CA, v(C) =
∑

ai∈C pCi .

10. Agent-based Normal, proposed in this article. As the name suggests, it is similar to the Agent-based Uniform

distribution except that every agent’s average and actual powers are drawn from normal, rather than uniform,

distributions. Formally, for all ai ∈ A, pi ∼ N(10, 0.01) and for all ai and for all C ⊆ A such that ai ∈ C,

pCi ∼ N(pi, 0.01). Finally, for all C ∈ CA, v(C) =
∑

ai∈C pCi .

For each of the above distributions, we plotted the termination times of ODP, IP, and ODP-IP given different numbers

of agents (see Figure 9). Here, time is measured in seconds, and plotted on a log scale. For each distribution and each

number of agents, we took an average over multiple runs; the number of runs was chosen to ensure tht the error bars

are sufficiently small. As can be seen, for all the aforementioned distributions, ODP-IP is faster than the fastest of the

two other algorithms, by one or two orders of magnitude for some distributions. This illustrates that the modifications

introduced to IP and ODP (see Sections 5.2, 5.3, and 5.4) allow the two algorithms to help one another, leading to a

positive synergy when they join forces as in ODP-IP. Observe that these modifications involve the use of branch-and-

bound techniques, whose effectiveness depends heavily on the characteristic function at hand. Consequently, the resulting

synergistic effect varies from one value distribution to another. This applies both to the termination time (as we have seen

in Figure 9) and to the speed of improvement in the solution quality and established bounds during the runtime of ODP-IP

(as we will see in the following figures).

Next, we evaluate the anytime property of ODP-IP. The results in Figure 10 are shown for 25 agents. The x-axis in

the figures corresponds to the percentage of time that has elapsed, with 0% being the time when the algorithm starts, and

100% being the time when it terminates. For every percentage of time t%, we report the following:

• Solution quality: This is computed as the ratio between the value of the “current” best solution (found at t% of

the runtime) and the value of the optimal solution (found at 100%). Formally, the solution-quality plot represents

(V (CS∗∗)×100
V (CS∗))%.

• Bound quality: This is computed as the ratio between the value of the “current” best solution and the maximum

upper bound of all “remaining” subspaces (i.e., those that were not yet searched nor pruned).

With a few exceptions, the results show that if ODP-IP is interrupted before running to completion, it may still return

a solution with relatively high quality and good guarantees (i.e., bound quality). Specifically, in terms of the guarantees

that the algorithm places on its solution, we find that:

• with Agent-based Uniform and Modified Normal distributions, it takes a substantial percentage of the runtime until

the guarantees reach 80%;

• with NDCS, Modified Uniform, Exponential, and Gamma distributions, the guarantees exceed 80% (or 90% in the

NDCS case) after 10% of the runtime;

• with Normal, Agent-based Normal, Uniform, and Beta distributions, the guarantees exceed 99% after about 3% of

the runtime.

In terms of solution quality, our results show that:

28

• with the Modified Normal distribution, it takes a substantial percentage of the runtime for solution quality to reach

80%;

• with the Modified Uniform distribution, solution quality reaches 90% after 10% of the runtime;

• with all other distributions, solution quality reaches 95% (if not 100%) after 3% of the runtime.

Next, we evaluate the effectiveness of the two main optimisation techniques in ODP-IP. In particular, Technique 1

improves the branch-and-bound approach used by IP (Section 5.3), whereas Technique 2 enables IP to search multiple

subspaces simultaneously (Section 5.4). The results for 26 agents are shown in Table 1, where the shortest runtimes are

highlighted in bold.10 As can be seen, the effectiveness of each technique varies from one coalition-value distribution to

another. Moreover, due to the overhead of those techniques, for some distributions the performance can actually be slower

than simply running ODP and IP in parallel (see, e.g., the runtime for the agent-based distributions when Technique 1 is

deactivated). However, when both techniques are activated, it is faster to run ODP-IP (sometimes by nearly two orders of

magnitude, e.g., given the modified-normal distribution) than to run ODP or IP alone, or even run them both in parallel.

IP DP sb-ODP ODP ODP & IP ODP-IP w/o ODP-IP w/o ODP-IP

in parallel Technique 1 Technique 2

NDCS 1196 6127 3776 2206 1207 350 440 183
Uniform 76 6127 3776 2206 95 47 79 45
Normal 414 6127 3776 2206 442 142 322 127

Agent-based Uniform N/A 6127 3776 2206 2786 3851 1061 880
Agent-based Normal N/A 6127 3776 2206 2686 3737 1026 773

Modified Uniform 562 6127 3776 2206 419 304 17 31

Modified Normal 203 6127 3776 2206 263 56 4 3
Beta 54 6127 3776 2206 63 41 55 40

Gamma 437 6127 3776 2206 278 88 270 110

Exponential 346 6127 3776 2206 324 107 208 89
Sum over all

distributions N/A 61270 37760 22060 8563 8723 3482 2283

Table 1: Evaluating the effectiveness of two techniques of ODP-IP: Technique 1 improves the brand-and-bound of IP (Section 5.3), while Tech-

nique 2 enables IP to search multiple subspaces simultaneously (Section 5.4). The table shows runtime (in seconds) for 26 agents, taken for each

coalition-value distribution as an average over 100 runs (error bars were relatively small, and were omitted to enhance readability).

Finally, observe that we do not benchmark our algorithms against integer-programming solvers. This is because

Rahwan et al. [30] showed that even an industrial-strength solver such as ILOG’s CPLEX is not suited for complete set

partitioning, where matrices tend to be very dense. In particular, Rahwan et al. showed that CPLEX is much slower than

IP (let alone ODP-IP), and that it runs out of memory with about 18 agents.

6.3. Benchmarking Against the Inclusion-Exclusion Algorithm

In this section, we benchmark ODP-IP against the Inclusion-Exclusion algorithm of Björklund et al. [8]. As mentioned

in the introduction, this is theoretically the state-of-the-art set partitioning algorithm in terms of worst-case runtime; it

runs in time O(2n). In contrast, the running time of ODP-IP is O(3n). Thus, theoretically speaking, our algorithm should

be significantly slower when solving a worst-case problem instance. Our goal in this section is to verify whether this

happens in practice. Importantly, we test both algorithms on a worst-case problem instance, not on average instances.

10The run time of IP is not available for the agent-based distributions. This is because IP so ineffective with such distributions that its average

run-time will actually take months to be computed; see Figure 9.

29

Thus, when we say “in practice”, we do not mean “on average”. Instead, we mean measuring the runtime on a PC, to

account for any potential delays that were disregarded in the theoretical analysis.

We provide the pseudocode of the inclusion-exclusion algorithm in Appendix F, and provide the open-source Java

implementation at https://github.com/trahwan/ODP-IP and InclusionExclusion. Figure 11 depicts

the runtime of the algorithm on a log scale, given different numbers of agents. It also depicts the functions y = 2x and

y = 6x. As can be seen, the runtime growth rate resembles 6n, not 2n (we had to extrapolate the results beyond 11

agents, as the runtime became extremely slow). The reason behind this delay is that the algorithm encodes information

in extremely large numbers, which may contain hundreds, or even thousands of digits. To be more precise, for every

coalition value, v(C), the algorithm needs to use the following number: (nn)v(C). Furthermore, v(C) must be integer.

Therefore, even if we use 64-bit integers, we can only handle cases of up to 6 agents with coalition values restricted to

the set {0, 1, . . . , 6}. We have considered using Matlab, which is slower, but at least allows for much larger numbers,

compared to Java. However, the maximum number that can be represented in Matlab is 1.8 · 10308, which means that

we could handle at most 16 agents with coalition values restricted to the set {0, 1, . . . , 16}. Thus, in our implementation,

we used BigInteger—a Java class that allows for integers that are unbounded in length. However, the algorithm of

Bjorklund et al. needs to perform many operations with these large numbers, resulting in huge delays that are hidden by

the asymptotic analysis. As a result, even for 15 agents, the algorithm needs about 1.5 · 1010 milliseconds (more than

5 months) to terminate. This is despite the fact that, in order to speed up the algorithm, we restrict the experiment to

coalition values taken from the set {0, 1, . . . , 9}, which is obviously very restrictive (a larger range would increase the

number of required digits dramatically, resulting in a very significant slowdown). On the other hand, the runtime of ODP-

IP cannot possibly be slower than that of ODP, even on worst-case instances. The runtime of ODP (which depends solely

on the number of agents, and is not affected by any variations in coalition values, as long as these can be represented by

floating-point numbers) is only 0.01 seconds given 15 agents.

Figure 11: Runtime for the Inclusion-Exclusion algorithm of Björklund et al. [8] in milliseconds, on a log-scale, given different numbers of agents.

7. Related Work

The term “complete set partitioning problem” was introduced by Lin [20] for a special class of set partitioning problems.

The application that motivated this study was the structuring of corporate tax in the United States. In particular, several

30

states, such as Ohio, allowed any corporation to file its annual unemployment compensation payment either on a sub-

sidiary basis or by grouping subsidiaries into disjoint aggregations. The total unemployment compensation tax payment

depended on particular aggregations chosen by the parent corporation. To provide an exact solution to this optimisation

problem, Lin and Salkin [21, 22] developed an integer programming algorithm with branch search enumeration [12]

that runs in time O(2n
2/2). Yeh [48] later showed that this algorithm is substantially slower than DP. The DP algorithm

was later on re-discovered in the combinatorial-auctions literature, to solve the winner determination problem in cases

where every possible bundle of goods has a (possibly zero-valued) bid placed on it [36]. Sandholm [37] provided further

analysis of the complexity of this algorithm; in particular, he observed that its running time is polynomial in the size of

the input (i.e., the number of possible subsets of goods). However, in contrast with our work, this analysis did not expose

the redundant operations in DP.

The “complete” set partitioning problem differs from the “incomplete” version in terms of the input: in the complete

version, the input consists of the values of all possible subsets, whereas in the incomplete version some values are listed

explicitly, while others are assumed to be 0. Thus, the complete version usually involves tens of agents, with billions
and billions of possible partitions. On the other hand, the incomplete version could involve, say, thousands of agents,

and thousands of subsets. Thus, the complete version has a much larger, and much more structured, input. This is

a fundamental difference, rendering some techniques effective for one version, and ineffective for the other. Consider

CPLEX, for example. It is very effective on the incomplete version, but very quickly runs out of memory for the complete

version [32].

The rapid growth of the multi-agent systems research community in the 1990s led to renewed interest in the complete

set partitioning problem. In this literature, the problem was called the “coalition structure generation problem”, and

was studied in the context of partitioning agents into coalitions so as to maximise the social welfare. In this context,

a number of exact, anytime algorithms were proposed, with the focus being on establishing a bound on the quality of

their “interim” solutions (i.e., the solutions that the algorithms return during execution, not after completion). These

algorithms can be divided into two categories, based on the techniques they use:

• The first class of algorithms focuses on (1) proposing a criterion for dividing the search space into disjoint and

exhaustive subspaces, and (2) identifying a sequence in which these subspaces should be searched, so that the

worst-case bound on solution quality is guaranteed to improve after each subspace. We will denote the chosen

sequence of subspaces by S1, . . . , Sk, and the bound established after searching S1 ∪ · · · ∪ Si by βi. This bound is

based solely on comparing the coalition structures that have already been considered against those that are yet to

be considered (i.e., those in Si+1 ∪ · · · ∪ Sk), without paying attention to the actual coalition values at hand. This

makes such algorithms applicable in settings where only coalition structure values can be observed, not coalition
values. This also makes the bounds independent of the coalition-value distribution, meaning that such algorithms

can guarantee their bounds regardless of the distribution.

Any algorithm in this class can be extended (possibly in different directions) by specifying the technique(s) used to

search the subspaces. Such technique(s) can capitalise on the extra information accrued during the actual search,

which can be used, e.g., to avoid examining all solutions in a subspace, or to establish bounds other than, and

hopefully better than, βi, i = 1, . . . , k. The advantage of such an extension is that it can place guarantees on its

bounds; they cannot be worse than βi, i = 1, . . . , k.

The first algorithm in this class was put forward in the seminal article by Sandholm et al. [38], where the proposed

sequence was S1 = ΠA
1 ∪ ΠA

2 and Si = ΠA
n−i+2 for i = 2, . . . , n − 1. Two particularly interesting bounds

were β1 = n and β2 = �n/2�; the authors proved that S1 and S2 are the smallest subsets of solutions that one

can search to establish the tight bounds n and �n/2�, respectively (unless, of course, one uses extra information

obtained from the characteristic function at hand). An alternative algorithm was later suggested by Dang and

Jennings [9], who proposed a different sequence, along with a different set of bounds, compared to Sandholm et

al. This algorithm was able to establish certain bounds by going through a smaller number of solutions. Another

algorithm was proposed by Rahwan et al. [33]; it represents every Si as a union of integer partition-based subspaces.

Consequently, one can readily extend this algorithm by using IP (or ODP-IP) to search every Si.

31

All the algorithms in this class discussed so far are proposed for characteristic function games, where there are no

influences among co-existing coalitions. Rahwan et al. [31] proposed the first algorithm for the more general class

of partition function games (PFGs), i.e., games with externalities. In such games, the value of a coalition depends

on the coalition structure it appears in. Rahwan et al. focused on two sub-classes of partition function games: (1)

PFG+, where externalities are non-negative, and (2) PFG−, where externalities are non-positive. Each of these

two sub-classes is a generalisation of characteristic function games and, arguably, many realistic partition function

games are either PFG+ games or PFG− games. This algorithm was later on extended by Banerjee and Kraemer

[5] to settings where agents are grouped into categories, or “types”. Here, the authors assume that if two coalitions

C1 and C2 merge, then the externality imposed by this merge on a third coalition C3 is non-negative if the types of

the agents in C1 ∪C2 do not overlap with those of the agents in C3. Otherwise, the externality is non-positive. Let

us denote this class of games by PFGtype . Banerjee and Kraemer [5] argue that this class is intuitive, and maps to

a number of applications.

• The second class of anytime, exact algorithms focuses on finding, and recognising, an optimal coalition structure

as quickly as possible. The main techniques used here are (1) branch-and-bound, where the aim is to identify, and

thus avoid evaluating, unpromising combinations of coalitions, and (2) dynamic programming, where the aim is to

avoid evaluating any combination of coalitions more than once.

Arguably, the first algorithm in this class is IP, due to Rahwan et al. [30, 32], which uses branch-and-bound

techniques as described in Section 3.1. A distributed version of IP was later on proposed by Michalak et al. [23] as

the first distributed, exact algorithm for coalition structure generation.

Since the initial publication of ODP [28], an anytime version of the size-based version of ODP was proposed by

Service and Adams [41]. In this version, an initial stage is added, whereby, for each coalition C, the algorithm iden-

tifies and stores the subset of C that has the highest value. The authors showed how, using this extra information,

every time the algorithm finishes evaluating the splits of all coalitions of a certain size s, it can construct a coalition

structure whose value is guaranteed to be within a bound r from optimal, where r = max{i : i ∈ Z, s ≤ ⌊
n
i

⌋}.
The termination time of this modified ODP is almost identical to that of the original ODP (except for the time

required to run the added initial stage). This implies that the modified ODP algorithm is significantly slower than

ODP-IP for all coalition-value distributions mentioned in Section 6.2 (see the difference in termination time be-

tween ODP-IP and ODP in Figure 9). Moreover, the guarantees provided by Service and Adams’s modified ODP

do not exceed 50% until termination, while the guarantees provided by ODP-IP often exceed 80% (or even 99%)

after only 10% (or even 3%) of the termination time (see Figure 10). Finally, Service and Adams’s modified ODP

requires twice as much memory compared to ODP-IP, as it has to store the best subset of every coalition.

So far in this class, we focused on algorithms for characteristic function games. Next, we shift our attention

to partition function games. Recall that in the presence of externalities, a coalition may have different values

depending on the coalition structure it is embedded in. It is not difficult to show that in the most general case,

where externalities are arbitrary, it is impossible to place any bound on the solution quality without examining

every single coalition structure. However, for two common classes of partition function games, namely PFG+ and

PFG−, Rahwan et al. [32, 35] proved that it is possible to compute upper and lower bounds on the values of any

set of disjoint coalitions in linear time. These bounds can then be used to identify unpromising search directions

using techniques similar to those used in IP. Similarly, Banerjee and Kraemer [5] proposed an extension of IP to

handle externalities in PFGtype settings.

Another extension of ODP, which however is not anytime, is due to Voice et al. [46], who focus on the restricted

coalition formation model proposed by Myerson [24]. In this model, the space of feasible coalitions is restricted by a

graph G, where nodes represent agents and edges represent possibilities of collaboration; a coalition C is only feasible if

the agents in C induce a connected subgraph of G. A “feasible” coalition structure is then simply one where all coalition

are feasible. Recall that we have shown in Theorem 6 that, for any set of movements between coalition structures, if

DP only evaluates those movements, it will find the best coalition structure reachable using those movements. Voice et

32

al. focused on the set of movements between feasible coalition structures (i.e., restricted by G). This provides significant

speedups in computation when the graph is sparse.

In this article we focused on the classical representation of characteristic function games, where the value of every

coalition C ⊆ A is returned by a characteristic function v : 2A → R. However, one can also study the optimal

coalition structure generation problem for alternative representations, which are designed to efficiently capture situations

where the characteristic function has some structure. For instance, Ueda et al. [44] studied coalition structure generation

under the DCOP (Distributed Constraint Optimisation Problem) representation (where every agent has a set of actions

to choose from), while Bachrach et al. [4] and Bachrach et al. [3] studied it under the skill-game representation (where

every agent has a set of skills required to perform tasks). Ohta et al. [25] studied coalition structure generation under the

Marginal Contribution Nets representation of Ieong and Shoham [14], where synergies between agents are described by

a (possibly small) collection of weighted logical formulas. Furthermore, Ueda et al. [45] and Aziz and de Keijzer [2]

consideredd this problem under the agent-type representation (where agents are grouped into categories, or “types”). A

common denominator of all these works is that the proposed algorithms for the coalition structure generation problem

capitalise heavily on features of the underlying representation. As ODP-IP is a general-purpose algorithm, it is unlikely

to outperform these algorithms on problem instances where the alternative representation happens to compactly and

efficiently represent the game. In such settings, ODP-IP can serve as a common benchmark to evaluate the potential

speedups achieved by using specific representations.

While this article focuses on exact coalition structure generation algorithms, we mention a number of metaheuristic
algorithms, which do not guarantee that an optimal solution is ever found, nor do they provide any guarantees on the

quality of their solutions. However, such algorithms are usually fast, and can therefore be applied when the number of

agents is large. These include a greedy algorithm by Shehory and Kraus [42], a genetic algorithm by Sen and Dutta [39],

a simulated-annealing algorithm by Keinänen [15], and an algorithm by Di Mauro et al. [11] that combines a greedy

technique with another local-search technique.

8. Conclusions and Future Work

Our goal in this article was to provide extensive theoretical analysis of the search space of the Complete Set Partitioning

problem and to improve upon two fundamentally-different exact algorithms, namely DP and IP. We drew a link be-

tween the workings of DP and the coalition structure graph, which revealed that many of DP’s operations are redundant.

Building upon this observation, we developed ODP—an optimal version of DP that avoids all redundant operations.

Although ODP and IP are based on different design paradigms, we developed a new search-space representation

(namely, the integer partition graph) that exposes the possibility of having them combined into a single hybrid algorithm.

Building upon this, we modified, and improved upon, both DP and IP, and combined the modified versions into a new

algorithm called ODP-IP. Our analysis and empirical evaluation showed that ODP-IP possesses the strengths and avoids

the weaknesses of both DP and IP: it is anytime, runs in O(3n) time, and is faster than both algorithms for a wide variety

(10 in total) of value distributions considered in this article (with speedups reaching one or two orders of magnitude,

given 25 agents). The community can benefit from the open-source implementation, which is made publicly available.11

While the focus in this article was on settings where there are no influences (or externalities) among co-existing

coalitions, it would be interesting to see whether the underlying techniques of ODP-IP can be extended to settings with

externalities, and to identify conditions under which such an extension can be efficient (in the spirit of Rahwan et al.

[35]).

11The implementations used as part of this research (namely that of IP, DP, ODP, ODP-IP, and the inclusion-exclusion algorithm) are available

at the following link: https://github.com/trahwan/ODP-IP and InclusionExclusion.

33

9. Acknowledgments

Part of the research presented in this article was undertaken as part of the ORCHID Project, which is funded by EPSRC

(Engineering and Physical Sciences Research Council), grant EP/I011587/1. Tomasz Michalak and Michael Wooldridge

were supported by the European Research Council under Advanced Grant 291528 (“RACE”). Edith Elkind was partially

supported by the National Research Foundation (Singapore) under grant NRF-RF2009-08 and by the European Research

Council under Starting Grant 639945 (“ACCORD”). This article is a significantly revised and extended version of the

following papers: [28], [27], and [34]. More specifically:

• While the basic idea of ODP was presented in the short paper [28], it did not include Theorems 8, 12, and 14, which

are essential for proving the correctness of ODP. Furthermore, paper [28] did not include the optimal version of

DP, where all redundant operations are removed. The aforementioned theorems, as well as the optimal version of

DP, are presented for the first time in the current article.

• While the basic idea of combining ODP and IP was presented in paper [27], the combination therein involved

running ODP and IP in a sequential fashion. In more detail, ODP first computes the best partitions of all coalitions

up to a certain size, m ≤
2n/3�. After that, ODP stops running, and IP starts running to build on ODP’s results.

The problem was that the optimal value of m was very different from one coalition-value distribution to another,

and there was no way to know a priori how to optimally choose the value of m. Furthermore, the worst-case

complexity was greater than O(3n). Finally, there were cases where the hybrid performance was slower than that

of IP and/or ODP.

In the current article, ODP and IP run in parallel, thus eliminating the need for any parameters. Furthermore, our

new combination of algorithms runs in time O(3n). Finally, we propose a new method to speed up IP’s depth-first

search (see Section 5.3), and carefully select the subspaces that must be simultaneously searched (see Appendix

E). As a result, our hybrid is always faster than its constituent parts.

• While the idea of running ODP and IP in parallel has appeared in paper [34], it did not include the technique for

searching several subspaces simultaneously. Furthermore, the evaluation section was limited in that it did not show

how the bound and solution quality improves over the runtime of the algorithm.

References

[1] G. E. Andrews and K. Eriksson. Integer Partitions. Cambridge University Press, Cambridge, UK, 2004. ISBN 0521600901.

[2] H. Aziz and B. de Keijzer. Complexity of coalition structure generation. In Proceedings of the 10th International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2011), pages 191–198, 2011.

[3] Y. Bachrach, R. Meir, K. Jung, and P. Kohli. Coalitional structure generation in skill games. In Proceedings of the 24th AAAI
Conference on Artificial Intelligence (AAAI-2010), pages 703–708, 2010.

[4] Y. Bachrach, D. Parkes, and J. S. Rosenschein. Computing cooperative solution concepts in coalitional skill games. Artificial
Intelligence, 204:1–21, 2013.

[5] B. Banerjee and L. Kraemer. Coalition structure generation in multi-agent systems with mixed externalities. In Proceedings of
the 9th International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2010), pages 175–182, 2010.

[6] E. T. Bell. Exponential numbers. American Mathematical Monthly, 41:411–419, 1934.

[7] E. Y. Bitar, E. Baeyens, P. P. Khargonekar, K. Poolla, and P. Varaiya. Optimal sharing of quantity risk for a coalition of
wind power producers facing nodal prices. In Proceedings of the 31st IEEE American Control Conference (ACC-2012), pages
4438–4445, 2012.

[8] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-exclusion. SIAM Journal on Comput-
ing, 39(2):546–563, 2009. ISSN 0097-5397.

34

[9] V. D. Dang and N. R. Jennings. Generating coalition structures with finite bound from the optimal guarantees. In Proceedings
of the 3rd International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2004), pages 564–571,
2004.

[10] N. G. de Bruijn. Asymptotic Methods in Analysis. Dover, 1981.

[11] N. Di Mauro, T. M. A. Basile, S. Ferilli, and F. Esposito. Coalition structure generation with GRASP. In Proceedings of
the 14th International Conference on Artificial Intelligence: Methodology, Systems, and Applications (AIMSA-2010), pages
111–120, 2010.

[12] R. Garfinkel and G. Nemhauser. The set partitioning problem: Set covering problem with equality constraints. Operations
Research, 17(5):848–856, 1969.

[13] Z. Han and H. V. Poor. Coalition games with cooperative transmission: a cure for the curse of boundary nodes in selfish
packet-forwarding wireless networks. IEEE Transactions on Communications, 57(1):203–213, 2009.

[14] S. Ieong and Y. Shoham. Marginal contribution nets: a compact representation scheme for coalitional games. In Proceedings
of the 6th ACM Conference on Electronic Commerce (ACM EC-2005), pages 193–202, 2005.

[15] H. Keinänen. Simulated annealing for multi-agent coalition formation. In Proceedings of the 3rd KES International Symposium
on Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA-2009), pages 30–39, 2009.

[16] Z. Khan, J. Lehtomaki, M. Latva-Aho, and L. A. DaSilva. On selfish and altruistic coalition formation in cognitive radio
networks. In Proceedings of the 5th International Conference on Cognitive Radio Oriented Wireless Networks and Communi-
cations (CROWNCOM-2010), pages 1–5, 2010.

[17] K. Larson and T. Sandholm. Anytime coalition structure generation: an average case study. Journal of Experimental and
Theoretical Artificial Intelligence, 12(1):23–42, 2000.

[18] D. Lehmann, R. Müller, and T. Sandholm. The winner determination problem. In P. Cramton, Y. Shoham, and R. Steinberg,
editors, Combinatorial Auctions, pages 297–317. MIT Press, 2006.

[19] C. Li, K. Sycara, and A. Scheller-Wolf. Combinatorial coalition formation for multi-item group-buying with heterogeneous
customers. Decision Support Systems, 49(1):1–13, April 2010. ISSN 0167-9236. doi: 10.1016/j.dss.2009.12.002.

[20] C. H. Lin. Corporate tax structures and a special class of set partitioning problems. PhD thesis, Department of Operations
Research, Case Western Reserve University, 1975.

[21] C. H. Lin and H. M. Salkin. Aggregation of subsidiary firms for minimal unemployment compensation payments via integer
programming. Management Science, 25(4):405–408, 1979.

[22] C. H. Lin and H. M. Salkin. An efficient algorithm for the complete set partitioning problem. Discrete Applied Mathematics,
6:149–156, 1983.

[23] T. Michalak, J. Sroka, T. Rahwan, M. Wooldridge, P. McBurney, and N. R. Jennings. A distributed algorithm for anytime
coalition structure generation. In Proceedings of the 9th International Joint Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS-2010), pages 1007–1014, 2010.

[24] R. Myerson. Graphs and cooperation in games. Mathematics of Operations Research, 2(3):225–229, 1977.

[25] N. Ohta, V. Conitzer, R. Ichimura, Y. Sakurai, A. Iwasaki, and M. Yokoo. Coalition structure generation utilizing compact
characteristic function representations. In Proceedings of the 15th International Conference on Principles and Practice of
Constraint Programming (CP-2009), pages 623–638, 2009.

[26] T. Rahwan and N. R. Jennings. An algorithm for distributing coalitional value calculations among cooperative agents. Artificial
Intelligence, 171(8–9):535–567, 2007.

[27] T. Rahwan and N. R. Jennings. Coalition structure generation: Dynamic programming meets anytime optimisation. In Pro-
ceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI-2008), pages 156–161, 2008.

[28] T. Rahwan and N. R. Jennings. An improved dynamic programming algorithm for coalition structure generation. In Pro-
ceedings of the 7th International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2008), pages
1417–1420, 2008.

[29] T. Rahwan, S. D. Ramchurn, V. D. Dang, and N. R. Jennings. Near-optimal anytime coalition structure generation. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI-2007), pages 2365–2371, 2007.

35

[30] T. Rahwan, S. D. Ramchurn, A. Giovannucci, V. D. Dang, and N. R. Jennings. Anytime optimal coalition structure generation.
In Proceedings of the 22nd AAAI Conference on Artificial Intelligence (AAAI-2007), pages 1184–1190, 2007.

[31] T. Rahwan, T. Michalak, N. R. Jennings, M. Wooldridge, and P. McBurney. Coalition structure generation in multi-agent sys-
tems with positive and negative externalities. In Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI-2009), pages 257–263, 2009.

[32] T. Rahwan, S. D. Ramchurn, A. Giovannucci, and N. R. Jennings. An anytime algorithm for optimal coalition structure
generation. Journal of Artificial Intelligence Research (JAIR), 34:521–567, 2009.

[33] T. Rahwan, T. Michalak, and N. R. Jennings. Minimum search to establish worst-case guarantees in coalition structure gen-
eration. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pages 338–343,
2011.

[34] T. Rahwan, T. Michalak, and N. R. Jennings. A hybrid algorithm for coalition structure generation. In Proceedings of the 26th
AAAI Conference on Artificial Intelligence (AAAI-2012), 2012.

[35] T. Rahwan, T. Michalak, M. Wooldridge, and N. R. Jennings. Anytime coaliton structure generation in multi-agent systems
with positive or negative externalities. Artificial Intelligence, 186:95–122, 2012.

[36] M. H. Rothkopf, A. Pekec, and R. M. Harstad. Computationally manageable combinatorial auctions. Management Science, 44
(8):1131–1147, 1995.

[37] T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence, 135(1–2):1–54,
2002.

[38] T. Sandholm, K. Larson, M. Andersson, O. Shehory, and F. Tohmé. Coalition structure generation with worst case guarantees.
Artificial Intelligence, 111(1–2):209–238, 1999.

[39] S. Sen and P. Dutta. Searching for optimal coalition structures. In Proceedings of the 6th International Conference on Multi-
Agent Systems (ICMAS-2000), pages 286–292, 2000.

[40] T. C. Service and J. A. Adams. Approximate coalition structure generation. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence (AAAI-10), pages 854–859, 2010.

[41] T. C. Service and J.A. Adams. Constant factor approximation algorithms for coalition structure generation. Autonomous Agents
and Multi-Agent Systems, 23(1):1–17, 2011.

[42] O. Shehory and S. Kraus. Methods for task allocation via agent coalition formation. Artificial Intelligence, 101(1–2):165–200,
1998.

[43] R. P. Stanley. Enumerative Combinatorics, Vol. 1. Cambridge University Press, Cambridge, UK, 1997.

[44] S. Ueda, A. Iwasaki, M. Yokoo, M. C. Silaghi, K. Hirayama, and T. Matsui. Coalition structure generation based on distributed
constraint optimization. In Proceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI-2010), pages 197–203,
2010.

[45] S. Ueda, M. Kitaki, A. Iwasaki, and M. Yokoo. Concise characteristic function representations in coalitional games based on
agent types. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-2011), pages 393–399,
2011.

[46] T. Voice, S. D. Ramchurn, and N. R. Jennings. On coalition formation with sparse synergies. In Proceedings of the 11th
International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2012), pages 223–230, 2012.

[47] G. J. Woeginger. Exact algorithms for NP-hard problems: a survey. In M. Jünger, G. Reinelt, and G. Rinaldi, editors,
Combinatorial optimization - Eureka, you shrink!, pages 185–207. Springer-Verlag, New York, NY, USA, 2003.

[48] D. Yun Yeh. A dynamic programming approach to the complete set partitioning problem. BIT Numerical Mathematics, 26(4):
467–474, 1986.

36

Appendix A. Summary of Notation

A the set of agents

ai an agent in A

n the number of agents in A

CA
the set of all coalitions over A

CA
s the set of all size-s coalitions over A
C a coalition

CS a coalition structure

CS∗ an optimal coalition structure

CS∗∗ the best coalition structure found at a given point in time (i.e., the current best solution)

β the established bound on the quality of CS∗∗, i.e., an upper bound on
V (CS∗)
V (CS∗∗)

In the set of all integer partitions of n

I an integer partition, i.e., a multiset of integers

ΠA
the set of all coalition structures over A

ΠA
s the set of all coalition structures over A that consist of exactly s coalitions

ΠA
I

the set of all coalition structures over A in which coalition sizes match the parts in the integer
partition I

ΠC the set of all partitions of C

ΠC
s the set of all partitions of C that have exactly s parts

ΠC
I the set of all partitions of C in which set sizes match the parts in the integer partition I

Π the set of all possible partitions, i.e., Π = ∪C⊆AΠ
C

π a partition, i.e., a set of pairwise disjoint coalitions

V (CS) the value of the coalition structure CS

V (π) the value of the partition π

v(C) the value of the coalition C
Max s the maximum value among all coalitions of size s

Avgs the average value of all coalitions of size s

UB∗ an upper bound on the value of CS∗

UBI an upper bound on the value of the best coalition structure in ΠA
I

LB∗
a lower bound on the value of CS∗

LBI a lower bound on the value of the best coalition structure in ΠA
I

M the set of all possible movements in the coalition structure graph

M a subset of M
M∗ the subset of M that is evaluated by ODP

M∗∗ the subset of M that is evaluated by the size-based version of ODP

Ms′,s′′ the set of movements in M that correspond to splitting a coalition of size s′+s′′ into two coalitions
of sizes s′ and s′′, respectively

mC1,C2 the movement that corresponds to splitting C = C1 ∪ C2 into C1 and C2

Rπ
M the set of all partitions that are reachable from π via M

f(C) the value of an optimal partition of C

fM (C) the value of a partition with the highest value in R
{C}
M

37

Appendix B. Pseudocode of the ODP-IP Algorithm

Algorithm 3 provides the pseudocode of ODP, while Algorithm 4 provides the pseudocode of getBestPartition—the

function used in line 32 of Algorithm 3. Here, we use a hash table to access the characteristic function, where a coalition

C acts as the key to the entry containing v(C). While this is clearly the most efficient data structure, for large problem

instances the available memory might not be sufficient, in which case other data structures must be explored. However,

we did not consider any such alternatives in this article.

We remark that, to save memory, we avoid storing the table t, i.e., we only store fM∗(C) for all C ⊆ A, and then

recompute t on-the-fly (see Algorithm 4). Observe that we need to compute the value of t for at most 2n − 1 coalitions

during each execution of the algorithm, and, given the values of f(C ′) for all C ′ ⊆ C, we can compute t(C) in time

2|C|. Thus, this modification requires less than (2n − 1) × 2n additional operations, which is negligible compared to

O(3n)—the runtime of ODP. In return, the algorithm only needs to store the characteristic function, v, instead of storing

both v and t, resulting in 50% reduction in memory requirements compared to DP.

Appendix C. Proofs for Section 4

Theorem 6. For every coalition C ⊆ A and for every subset of movements M ⊆M it holds that

fM (C) =

⎧⎨⎩ v(C) if |C| = 1

max
{
v(C) , max{C′,C′′}∈R{C}

M

(
fM (C ′) + fM (C ′′)

)}
otherwise.

Proof. If |C| = 1, then no movement can be made from {C}. This means that R
{C}
M = {{C}} and hence fM (C) =

v(C).

Now, suppose that |C| > 1. Consider a partition {C ′, C ′′} ∈ ΠC and a set of movements M ⊆M. Abusing notation,

set

R
{C′}
M × R

{C′′}
M =

{
π1 ∪ π2 : π1 ∈ R

{C′}
M , π2 ∈ R

{C′′}
M

}
.

Observe that

R
{C′,C′′}
M = R

{C′}
M × R

{C′′}
M . (C.1)

Since {C} contains exactly one coalition, namely, C, every partition reachable from {C} via a single movement in

M contains exactly two coalitions. Conversely, every partition in R
{C}
M that contains exactly two coalitions is reachable

from {C} via at most one movement in M . Thus,{
π′ ∈ Π : {C} M−→ π′

}
=

{
{C ′, C ′′} ∈ R

{C}
M

}
. (C.2)

Hence, we have

R
{C}
M = {{C}} ∪ ⋃

π′∈Π:{C} M−→π′
Rπ′

M

= {{C}} ∪ ⋃
{C′,C′′}∈R{C}

M

R
{C′,C′′}
M

= {{C}} ∪ ⋃
{C′,C′′}∈R{C}

M

(
R

{C′}
M ×R

{C′′}
M

)
,

where the first equality is based on (3), the second equality is based on (C.2), and the last equality is based on (C.1).

38

ALGORITHM 3: The Optimal Dynamic Programming algorithm (ODP).

Input: v(C) for all C ⊆ A.

Output: an optimal coalition structure CS∗.

// First, compute fM∗ (C) for every singleton coalition

1 foreach C ⊆ A : |C| = 1 do
2 fM∗(C)← v(C)

// Second, compute fM∗ (C) for every coalition of size 2

3 foreach C ⊆ A : |C| = 2 do
4 fM∗(C)← v(C)

5 if fM∗({a1, a2}) < v({a1}) + v({a2}) then
6 fM∗({a1, a2})← v({a1}) + v({a2})
// Third, compute fM∗ (C) for every coalition of size s = 3, . . . , n− 1

7 for s = 3 to n− 1 do
8 foreach S ⊆ A \ {a1, a2} : |S| = s− 2 do // This is an efficient way of evaluating the splits of C into C′, C′′

such that: C′ < C′′ < A \ (C′ ∪ C′′). It only evaluates (some of) the splits of a coalition C that contains

both a1 and a2. Here, S denotes the C after removing a1 and a2 from it.

9 C ← S ∪ {a1, a2}// observe that |C| = s

10 fM∗(C)← v(C)

11 foreach {S′, S′′} ∈ (ΠS ∪ {∅, S}) do
12 j ← minai∈A\C i // aj is the ‘‘smallest’’ agent outside C

13 Aj ← {a3, . . . , aj−1}
14 if fM∗(C) < v(S′ ∪ {a1}) + v(S′′ ∪ {a2}) then
15 fM∗(C)← v(S′ ∪ {a1}) + v(S′′ ∪ {a2})
16 if fM∗(C) < v(S′ ∪ {a2}) + v(S′′ ∪ {a1}) then
17 fM∗(C)← v(S′ ∪ {a2}) + v(S′′ ∪ {a1})
18 if S′ ∩Aj �= ∅ then // to ensure that S′′ ∪ {a1, a2} < S′ < A \ C

19 if fM∗(C) < v(S′) + v(S′′ ∪ {a1, a2}) then
20 fM∗(C)← v(S′) + v(S′′ ∪ {a1, a2})
21 if S′′ ∩Aj �= ∅ then // to ensure that S′ ∪ {a1, a2} < S′′ < A \ C

22 if fM∗(C) < v(S′ ∪ {a1, a2}) + v(S′′) then
23 fM∗(C)← v(S′ ∪ {a1, a2}) + v(S′′)

24 foreach C ⊆ A : |C| = s, {a1, a2} �⊆ C do
25 fM∗(C)← v(C)

// Fourth, compute fM∗(A) and t(A)

26 fM∗(A)← v(A)
27 t(A)← {A}
28 foreach {C ′, C ′′} ∈ ΠA

2 do
29 if fM∗(A) < fM∗(C ′) + fM∗(C ′′) then
30 fM∗(A)← fM∗(C ′) + fM∗(C ′′)
31 t(A)← {C ′, C ′′}

// Finally, set CS∗ to be an optimal split of A

32 CS∗ ← getBestPartition(A, t(A)) // see the pseudocode in Algorithm 4

33 return CS∗

39

ALGORITHM 4: getBestPartition—a function used in ODP.

Input: C and t(C), where C ⊆ A. It is assumed that the table fM∗ has been computed.

Output: a best partition of C that is reachable via M∗, i.e., a best partition in R
{C}
M∗ .

// Check whether {C} is an optimal partition of C

1 if t(C) = {C} then
2 return {C}
3 else

// In this case, there are two coalitions in t(C), let us denote them as C1 and C2

4 π ← ∅ // initialisation

5 foreach Ci ∈ t(C) do // for each one of the two coalitions in t(C)

// First, compute t(Ci) (in lines 6 to 12)

6 if fM∗(Ci) = v(Ci) then // i.e., if {Ci} is an optimal partition of Ci

7 t(Ci)← {Ci}
8 else

// Identify two coalitions {C′
i, C

′′
i } ∈ ΠCi such that fM∗ (C′

i) + fM∗ (C′′
i) = fM∗ (Ci)

9 foreach {C ′
i, C

′′
i } ∈ ΠCi do

10 if fM∗(C ′
i) + fM∗(C ′′

i) = fM∗(Ci) then
11 t(Ci)← {C ′

i, C
′′
i }

12 break

// Having computed t(Ci), we now use it to compute an optimal partition of Ci, and then add that

partition to π

13 π ← π ∪ getBestPartition(Ci, t(Ci))

// Now, π is the union of the optimal partitions of C1 and C2

14 return π

Consequently, we obtain

fM (C) = max
π∈R{C}

M

V (π)

= max

{
v(C) , max{C′,C′′}∈R{C}

M

(
max

π∈
(
R

{C′}
M ×R

{C′′}
M

) V (π)
)}

= max

{
v(C) , max{C′,C′′}∈R{C}

M

(
max

π∈R{C′}
M

V (π) + max
π∈R{C′}

M

V (π)
)}

= max
{
v(C) , max{C′,C′′}∈R{C}

M

(
fM (C ′) + fM (C ′′)

)}
.

Corollary 13. The number of movements in M is 1
2 (3

n + 1) − 2n, whereas the number of movements in M∗ is
1
2

(
3n−1 − 1

)
.

Proof. For M, the argument is essentially provided by Yeh [48]; we reproduce it here for completeness. For each

coalition C of size k, 2 ≤ k ≤ n, there are 2k−1 − 1 ways of splitting C into two non-empty coalitions, so DP evaluates

2k−1 − 1 movements from C. Thus, the total number of movements evaluated by DP can be written as

n∑
k=2

(
n

k

)(
2k−1 − 1

)
=

n∑
k=0

(
n

k

)
2k−1 − 1

2
− n−

n∑
k=0

(
n

k

)
+ 1 + n.

Using the fact that

(1 + x)n =
n∑

k=0

(
n

k

)
xk

40

with x = 2 and x = 1, we conclude that DP evaluates 1
2 (3

n + 1)− 2n movements.

We will now consider M∗. By Theorem 12, we have∣∣M∗∣∣ =
∣∣ΠA

2

∣∣+ ∣∣ΠA
3

∣∣.
Now, recall that the number of ways to partition n elements into k parts—known as the Stirling number of the second

kind [43], and denoted by S(n, k)—is computed as follows:

S(n, k) =
1

k!

k−1∑
i=0

(−1)i
(
k

i

)
(k − i)n.

Thus, the number of movements that are evaluated by ODP is S(n, 2) + S(n, 3), which equals

1

2

(
3n−1 − 1

)
.

Appendix D. Proofs for Section 5

Theorem 15.

R
{A}
M∗∗ = ΠA. (10)

Proof. We will show that every coalition structure CS with |CS | ≥ 2 is reachable via M∗∗ from some other coalition

structure CS ′ with |CS ′| = |CS | − 1. To this end, assume without loss of generality that CS = {C1, . . . , Ck}, where

k ≥ 2 and |C1| ≤ · · · ≤ |Ck|. We will argue that mC1,C2 ∈ M∗∗, and hence CS can be reached from the coalition

structure (CS\{C1, C2}) ∪ {C1 ∪ C2} via M∗∗. Let s1 = |C1|, s2 = |C2|; by construction, we have mC1,C2 ∈M s1,s2 .

First, suppose that k = 2. In this case, we have CS = {C1, C2}, and so s1 + s2 = n. This means that M s1,s2 is a

subset of M∗∗ (see equation (9)).

Now, suppose that k > 2. We have |C1| ≤ |C2| ≤ |C3| ≤ n − |C1| − |C2|, so max{s1, s2} = s2 ≤ n − s1 − s2.

This means that M s1,s2 is a subset of M∗∗ in this case as well (again, see equation (9)).

Lemma 16. The DPM∗∗ algorithm does not evaluate any of the possible ways of splitting a coalition of size s, where
s ∈ {⌊2n

3

⌋
+ 1, . . . , n− 1}.

Proof. We will prove that for every s ∈ {⌊2n
3

⌋
+1, . . . , n− 1} and for all s′, s′′ ∈ Z

+ such that s′ + s′′ = s it holds that

�s/2� > n− s. (D.1)

This immediately implies our claim: since s′+s′′ = s, we have max{s′, s′′} ≥ �s/2� > n−s and hence M s′,s′′∩M∗∗ =
∅. Since the expression �s/2� + s is monotone in s, it suffices to prove equation (D.1) for the smallest value of s in

{⌊2n
3

⌋
+1, . . . , n− 1}, i.e., for s0 =

⌊
2n
3

⌋
+1. We have s0 >

2n
3 , so

⌈
s0
2

⌉ ≥ s0
2 > n

3 , and thus
⌈
s0
2

⌉
+ s0 >

n
3 +

2n
3 = n.

Rearranging, we obtain
⌈
s0
2

⌉
> n− s0, which is what we wanted to prove.

Theorem 17. The number of movements in M∗∗ is 1
23

n−1 + o(3n).

Proof. Let M̂ = {mC′,C′′
: C ′ ∪ C ′′ ⊂ A} ∩M∗∗, and consider the mapping α : M̂ → ΠA

3 given by

α(mC′,C′′
) = {C ′, C ′′, A \ (C ′ ∪ C ′′)}.

Note that by construction of M̂ , for each mC′,C′′ ∈ M̂ the set A \ (C ′ ∪ C ′′) is not empty, so α(mC′,C′′
) is indeed an

element of ΠA
3 , i.e., a partition of A into three non-empty parts.

41

To prove the theorem, we will show that (1) |M∗∗ \ M̂ | = o(3n) and (2) |M̂ | = 1
23

n−1 + o(3n). Taken together,

these claims show that

|M∗∗| = |M̂ |+ |M∗∗ \ M̂ | = 1

2
3n−1 + o(3n) + o(3n) =

1

2
3n−1 + o(3n),

which is what we want to prove.

The first of these claims is immediate: we have

|M∗∗ \ M̂ | = |{mC′,C′′
: C ′ ∪ C ′′ = A}| = 2n−1 − 1 = o(3n).

To prove the second claim, we will show that for almost all coalition structures in ΠA
3 their pre-image under α consists

of exactly one movement, and for the remaining coalition structures in ΠA
3 their pre-image under α contains at most 3

movements. To complete the proof, we then use the fact that

|ΠA
3 | = S(n, 3) =

1

2

(
3n−1 − 2n + 1

)
=

1

2
3n−1 + o(3n)

(see the proof of Corollary 13).

In more detail, consider a coalition structure CS = {C1, C2, C3} in ΠA
3 , let s1 = |C1|, s2 = |C2|, s3 = |C3|, and

assume without loss of generality that s1 ≤ s2 ≤ s3. If s2 < s3, then the only element of M̂ that is mapped to CS by

α is mC1,C2 : indeed, we have mC1,C3 �∈ M̂ , mC2,C3 �∈ M̂ . If s1 < s2 = s3, then there are two elements of M̂ that are

mapped to CS by α, namely, mC1,C2 and mC1,C3 . Finally, if s1 = s2 = s3, then there are three elements of M̂ that are

mapped to CS by α, namely, mC1,C2 , mC1,C3 , and mC2,C3 .

Let

X = {{C1, C2, C3} ∈ ΠA
3 : |C1| ≤ |C2| < |C3|},

Y = {{C1, C2, C3} ∈ ΠA
3 : |C1| < |C2| = |C3|},

Z = {{C1, C2, C3} ∈ ΠA
3 : |C1| = |C2| = |C3|},

and set x = |X|, y = |Y |, z = |Z|. Since every movement in M̂ is mapped to some coalition structure in ΠA
3 by α, the

argument above shows that |M̂ | = x+ 2y + 3z ≤ (x+ y + z) + 2(y + z) = |ΠA
3 |+ 2(y + z). We have observed that

|ΠA
3 | = S(n, 3) = 1

23
n−1 + o(3n). Thus, to complete the proof, it suffices to show that y + z = o(3n).

Note that every coalition structure {C1, C2, C3} ∈ Y ∪ Z has the property that |C1| ≤ |C2| = |C3|. To obtain such

a coalition structure, we can first choose the coalition C1, whose size is at most n/3, and then partition the remaining

elements into two sets of equal size. Equivalently, we can first choose which elements will appear in C2 ∪ C3, and then

partition the selected elements into two sets of equal size; note that the number of elements selected at the first step needs

to be even and cannot be less than 2
n3 �. It follows that

y + z ≤
�n
2
	∑

k=�n
3
	

(
n

2k

)(
2k

k

)

≤
�n
2
	∑

k=�n
3
	

(
n

2k

)
22k√
πk

(1 + o(1))

≤ 1√
π
n3 �

(1 + o(1))

�n
2
	∑

k=�n
3
	

(
n

2k

)
22k

≤ 1√
π
n3 �

(1 + o(1))
n∑

j=0

(
n

j

)
2j

=
3n√
π
n3 �

(1 + o(1)) = o(3n).

42

This completes the proof.

Appendix E. Analysing Different Methods of Searching Multiple Subspaces Simultaneously

This appendix provides further details on how IP can simultaneously search multiple subspaces using the information

provided by ODP.

Assume that ODP has already finished evaluating all movements mC,C′ ∈M∗∗ with |C|+ |C ′| ∈ {2, . . . , s∗}. Then,

for any given subspace ΠA
I with I = {i1, . . . , ik}, we modify IP so that, instead of searching for a coalition structure in

argmaxCS∈ΠA
I
V (CS), it performs the following steps:

1. Identify X ∗—the set of all integer partitions whose corresponding subsets have not yet been searched and are

reachable from ΠA
I using only the movements that have been evaluated by ODP so far. For instance, given

I = {2, 4, 4} and s∗ = 4, the set X ∗ consists of all integer partitions that are reachable through the dotted

edges in Figure 7(B).

2. Identify I∗—the set of integer(s) in I that will be split in order to reach (some of) the subspaces in X ∗. As men-

tioned in Section 5.4, one can choose either to split a single integer in I or to split multiple integers at once. We

will consider both cases. Specifically, if exactly one integer will be split, pick an integer s ∈ I so that splitting s
allows for reaching the largest number of integer partitions in X ∗, and set I∗ = {s}. On the other hand, if multiple

integers will be split, choose I∗ so that splitting the integers in I∗ allows for reaching all the integer partitions in
X ∗. The subset of X ∗ that is reachable by splitting the integer(s) in I∗ will be denoted by Y∗. For instance,

given I = {2, 4, 4} and s∗ = 4, if exactly one integer will be split, then we have I∗ = {4}, and Y∗ consists of the

integer partitions that are reachable through the dashed edges in Figure 7(A). On the other hand, if multiple integers

will be split, then we have I∗ = {2, 4, 4}, and Y∗ consists of the integer partitions that are reachable through the

dotted edges in Figure 7(B).

3. Change the order of the integers in I and in every I′ ∈ Y∗. To this end, let i∗j denote the j-th element in

I∗. Furthermore, for every i∗j ∈ I∗ and every I ′ ∈ Y∗, let S(I ′, i∗j) be the subset of I ′ that results from splitting

i∗j . Now, order the integers in I by putting the ones in I \ I∗ first, followed by i∗1, then i∗2, and so on until i∗|I∗|.
Similarly, for every I ′ ∈ Y∗, change the order of integers in I ′ by putting the ones in I ′ \ I∗ first, then those in

S(I ′, i∗1), then those in S(I ′, i∗2), and so on until S(I ′, i∗|I∗|).

4. Search ΠA
I , where every {C1, ...,Ck} ∈ ΠA

I is evaluated as follows:

|I\I∗|∑
j=1

v(Cj) +
k∑

j=|I\I∗|+1

fM∗∗(Cj). (E.1)

During this search, at every depth d, use the following modified branch-and-bound inequality:

min(d,|I\I∗|)∑
j=1

v(Cj) +

d∑
j=min(d,|I\I∗|)+1

fM∗∗(Cj) + UBd
I < V (CS ∗∗). (E.2)

where UBd
I is an upper bound computed as follows:

UBd
I = max

⎛⎝ k∑
j=d+1

Max i∗j , max
I′∈Y∗

k∑
j=d+1

∑
s∈S(I′,i∗j)

Max s

⎞⎠ .

The result of this search is a coalition structure {C∗
1 , . . . , C

∗
k} ∈ ΠA

I that maximises (E.1).

43

5. Replace every C∗
j such that j > |I \ I∗| with getBestPartition(C∗

j , t(C
∗
j)). The result is a coalition

structure in argmaxCS∈({ΠA
I }∪Y∗) V (CS).

At first glance, it may seem that partitioning multiple integers is better than partitioning a single integer, because the

former approach enables us to search more subspaces simultaneously. Surprisingly, however, it can actually be faster to

partition one integer only. We will now explain why this may be the case.

The difficulty with splitting multiple integers is that it may interfere with our branch-and-bound technique. Specifi-

cally, recall that when we search subspaces one by one, we prune branches of the search tree by checking inequality (1)

(reproduced below for convenience).

d∑
j=1

v(Cj) +

|I|∑
j=d+1

Max ij < V (CS ∗∗). (1)

In contrast, when searching multiple subspaces simultaneously, we use inequality (E.2), which holds less frequently than

(1), because the left-hand side in (E.2) is greater than that in (1). This increase (in the left-hand side) can be seen as the

price that must be paid in order to avoid searching every ΠA
I′ with I ′ ∈ Y∗ separately later on.

The problem, however, is that this price is often too large. To see why, let us analyse the two modifications that are

behind this increase.

• The first modification is when |I \ I∗| < d. In this case, every Cj with j ∈ {|I \ I∗|, . . . , d} is evaluated as

fM∗(Cj) rather than as v(Cj).

• The second modification is in the upper bound on the values of the coalitions that will be added to C1, . . . , Cd. In

particular, since every ΠA
I′ with I ′ ∈ Y∗ is searched simultaneously with ΠA

I , the upper bound in (E.2) becomes

UBd
I instead of

∑|I|
j=d+1Max ij .

A key point here is that Y∗ does not necessarily contain all the integer partitions that are reachable from I; it only

contains those representing subspaces that have not yet been searched. This important point is reflected in the second

modification, but not in the first one. More specifically, in the second modification, a new upper bound is used that only
takes into account ΠA

I as well as ΠA
I′ with I ′ ∈ Y∗. However, in the first modification, every Cj with j ∈ {|I \I∗|, . . . , d}

is evaluated as fM∗(Cj)—the value of the best partition of Cj in all the subspaces that are reachable from ΠA
I , including

those that have already been searched. In other words, this modification ignores the fact that certain subspaces have

already been searched.

Now, let us analyse the case where I∗ contains exactly one integer. To this end, observe that if d = |I|− 1, then there

is no need to determine whether {C1, . . . , Cd} is promising. Instead, one can straight away construct the only coalition

structure of size |I| containing C1, . . . , Cd—it suffices to put all the remaining agents in a coalition of their own. Thus,

whenever the branch-and-bound technique is used, we always have d < |I| − 1. This implies that, when I∗ contains

exactly one integer, we always have min(d, |I \ I∗|) = d. Consequently, inequality (E.2) can be written as follows:

d∑
j=1

v(Cj) + UBd
I < V (CS ∗∗).

This way, we get rid of the first modification, and only keep the second one, which takes into consideration only the

subspaces that have not yet been searched, and are reachable from ΠA
I .

Appendix F. Pseudocode of the Inclusion-Exclusion Algorithm

While Björklund et al. [8] provide a detailed description of their inclusion-exclusion algorithm, they do not include

pseudocode for it. We therefore provide pseudocode for their algorithm in this appendix. Note that the algorithm is

44

defined for situations where (1) the goal is to find the best partition containing at most k subsets, (2) there are k evaluation

functions, f1, . . . , fk, and (3) the value of the i-th subset is given by the i-th evaluation function, fi. In our setting, we

have k = n (since coalition structures are allowed to contain up to n coalitions) and fi = v for all i ∈ {1, . . . , k} (since

all coalitions are evaluated using the same function, v). Thus, the pseudocode below is for the case where k = n and

fi = v for all i ∈ {1, . . . , k}.

Pseudocode for the inclusion-exclusion algorithm.

Algorithm Inclusion-Exclusion(v,A)
1 B ← nn + 1
2 foreach S ⊆ A do // for every coalition

3 foreach c ∈ {1, . . . , n} do // for every color

4 f ′
c(S)← Bv(S)

5 optimalValue ← findMaxWeight(f ′
1, . . . , f

′
n)// see the pseudo code of findMaxWeight

6 foreach i ∈ {1, . . . , n} do // for every agent ai ∈ A

7 foreach c = 1 to n do // try to assign color c to ai, starting from color 1, then 2, etc. (order matters)

8 foreach S ⊆ A do // define function f̃ ′
c(S) for every coalition S

9 f̃ ′
c(S)← f ′

c(S) if ai ∈ S, and f̃ ′
c(S)← B0 otherwise.

10 foreach j ∈ {1, . . . , n} do // define function F ′
j for every color j

11 F ′
j ← f̃ ′

j if j = c, and F ′
j ← f ′

j otherwise.

12 valueAfterColoring ← findMaxWeight(F ′
1, . . . , F

′
n)// see the pseudo code of findMaxWeight

13 if valueAfterColoring = optimalValue then
14 color(i)← c// set c to be the color of ai

15 foreach S ⊆ A : ai ∈ S do
16 foreach j ∈ {1, . . . , n} \ {c} do // for every color j
= c

17 F ′
j(S)← B0

18 f ′ ← F ′ // Now, f ′ is updated to reflect that c is now the color of ai

19 break

20 foreach c ∈ {1, . . . , n} do // for every color c

21 Sc ← {ai ∈ A : color(i) = c}
22 return {S1, ..., Sn} // Some of these subsets may be empty.

45

Pseudocode of all procedures used by the inclusion-exclusion algorithm.

Procedure findMaxWeight(f1, . . . , fn)
1 t← pn(f1, . . . , fn); B ← nn + 1; r ← 0
2 while Br < t do
3 r ← r + 1

4 return r − 1 // this is simply �logB(t)	

Procedure pn(f1, . . . , fn)// sum of weighted partitions of A into n parts (some of which may be empty)

1 t← 0
2 foreach X ⊆ A do
3 t← t+ (−1)|X|bn(X, f1, . . . , fn)

4 return t

Procedure bn(X, f1, . . . , fn)// auxiliary function for computing pn

1 return g(1, n, n,X, f1, . . . , fn)// initial call of the recursive function g

Procedure g(s, t,m,X, f1, . . . , fn)// auxiliary function for computing bn(X)

1 if s = t then
2 return zeta(A \X,m, f1, dots, fn)

3 else
4 r ←
(s+ t)/2�; temp ← 0
5 foreach m0 = 0 to m do
6 m1 ← m−m0

7 temp← temp+ g(s, r,m0, X, f1, . . . , fn) ∗ g(r + 1, t,m1, X, f1, . . . , fn)

8 return temp

Procedure zeta(Y, �, f1, . . . , fn)// zeta-transform of f that only sums over subsets of size �

1 return z(n, Y, �, f1, . . . , fn)

Procedure z(i, Y, �, f1, . . . , fn)// auxiliary function for computing zeta(f, Y, �) using the fast Mobius transform

1 if i = 0 then
2 if |Y | = � then
3 return f(Y)

4 else
5 return 0

6 else
7 if i ∈ Y then
8 t← z(f, i− 1, Y, �) + z(f, i− 1, Y \ {i}, �)
9 else

10 t← z(f, i− 1, Y, �)

11 return t

46

