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Robust IDA-PBC and PID-like Control for
Port-Controlled Hamiltonian Systems

Mutaz Ryalat and Dina Shona Laila and Mohamed M. Torbati

Abstract—Interconnection and damping assignment passivity and integral control among the main approaches. Broadly
based control (IDA-PBC) is a method that has been developed to speaking, the integral action control is the most popular

(asymptotically) stabilize nonlinear systems formulated in port- - g5r55ch to deal with such effects and PID controller still
controlled Hamiltonian (PCH) structure. This method has gained . . .
dominates in practice.

increasing popularity and has been successfully applied to a wide X . . . ..
range of dynamical systems. However, little is known about the ~ The interconnection and damping assignment passivity-

robustness of this method in response to the effects of unceitay ~ based control (IDA-PBC), introduced in][3], is a physically
which could result from disturbances, noises, and modeling inspired control design method that invokes the princigies
errors. This paper explores the possibility of extending the IDA- energy shaping and dissipation and formulated for systems
PBC method by adopting a robustness perspective, with the aim f . - .

of maintaining (asymptotic) stability of the system in the presence _descrlbed_ _by PCH model.s. The main ob]ectlve_of this method
of such perturbations which exist in any realistic problem. We i to stabilize the dynamical system by rendering the closed
propose constructive results on Robust IDA-PBC and PID-like loop systempassive (by shaping its energy) with a desired
controllers for a class of PCH systems. The results extend somestorage function (which is a proper Lyapunov function) [4].
existing methods and provide a new framework that allows the Furthermore, the system can be asymptotically stabilizéd |

implementation of integral action control to underactuated PCH b dered strictl tout ive b fd
systems that are quite commonly found in practice. The results can be rendered strictly (output) passive by means of damp-

are applied to a Quanser inertia wheel pendulum and illustrated iNg injection [5]. While IDA-PBC controller is theoreticall
through numerical simulations. proven to asymptotically stabilize classes of PCH systems;
Index Terms—Hamiltonian systems, passivity-based control, i_n real applicationg, the effect of.disturbances, uncertai
integral control, adaptive control, robust control, input-to-state  ties or reference signal may deteriorate the performance of
stability, underactuated systems. the control system_[6], and the closed-loop system is more
likely to suffer from steady-state errors or even instapili
Apparently, when it comes to parametric uncertainties, the
i ) real-time implementation of control system requires a-real
Control design methods for systems described by POffi e and reasonably accurate estimate of these unceetinti
cont_rolled Hamlltonlan (PCH) model have recently been Mrhus, the main objective of this paper is to investigate the
vestigated in several works (se€ [1] for a survey). AdOptIrWJbust stabilization ofperturbed PCH systems to encounter
the PCH structure that geometrically describes a larges clqﬁe effects of system's uncertainties.
of nonlinear models gives a number of advantages such as thgOme solutions to deal with the robustness issue of PCH
obvious relation between the dynamics and the energy of tems have been recently reported(in [L], [8], [7]. In this
system, the energy conservative property that makes theim per, extension of results from [6]] [7] for fully-actudteCH
marginally. stable to start Wit.h, and the coupling betwegm thechanical systems are proposed. In Secfionlll-A, we exten
non-damping and the damping elements. However, this MQfa opst Pl controller of mechanical system proposed]in [7
eling approach results in exclusion of important ingretien, y,e yopust PID-like controller that provides a more gaher
of the system’s dynamics such as the frictions. Hence,rrglyiframework_ In Sectiofi TIEB, inspired by the work dfl[6] and
only on the pure PCH model, often results in a controller thgf, 5 harticular change of coordinatés [7], we show that the
yvorks very vyell in simulation, but needs further adjustmiant integral action control can be incorporated to improve the
implementation([1], [[2]. _ , bustness of IDA-PBC controller for PCH mechanical systems.
Besides the issue of modeling, complexity of systemgy i TI-G provides the most important contribution bét
and demand for control accuracy hfj“’e made control desigh, yenorted in this paper, i.e. the integral control schem
problems more challenging. System’s perturbations such g5\ njeractuated mechanical systems within PCH structure
measurement noise, disturbances and model uncertaimées, g +, has not been investigated in earlier literature. As we
common problems that affect the performance of the contigl yiscuss later, while often found in applications (see f
systems in industrial applications] [2]. 'Th|s motivates the <tance the survey papél [8]), the system being underactua
establishment of the robust control paradigm, with the &ap o nificantly complicates the inclusion of the integral troh
Mutaz Ryalat, Dina Shona Laila and Mohamed Torbati are with th':Or this, we first introduce a technique to modify the struc-
School of Engineering Sciences, Faculty of EngineeringtaacEnvironment, ture of the model of the underactuated system, which then
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PCH mechanical systems under the presence of matched Bndreview on IDA-PBC Design

unmatched time-varying disturbances is discussed in @ecti \we priefly review the general procedure of the IDA-PBC
(D] We show that using a certain change of coordinatQfesign as has been proposed for instancelin[[L], [3], [9]eGiv

a new method to characterize the property of system wiffipcH systen{{1), by applying the IDA-PBC design we obtain
disturbances such that the well-known input-to-stateil#iab e following preserved PCH dynamics

(ISS) property is satisfied. This method provides a simpler

: -1

controller design than the one proposedin [7] on one hand. On m = [ 0 . M Md} {qud]
the other hand, it provides a framework to apply this metlood t p —MaM J2— Ra] [VpHa 3)
underactuated PCH systems. Furthermore, we also show that Yd = GT(q)VpHd,
in some conditions asymptotic stability property of theseld- \yhere
loop system can also be achieved. Subsecfion]lll-E describe H 1 Tl

X ) : =- +V, 4
the design of a novel adaptive controller for uncertain PCH 4= 9P Ha ()p + Valg) “)
systems. Extension of all previous results to the case of nds the desired total energy with
separable PCH system i.e. a system with non-constantanerti — arg minA. — arg minv. .
matrix is presented in SectiénllV. This results in more campl de g al9) 9 a(q), be. (5)

design as we need to take into account the derivative of the VoValge) = O’ngd(%) >0,
inertia matricesM, M. Finally, the results are validated inand M, = MJ > 0 is the desired inertia matrixfy, = —.J,
Section[Y where we apply our various proposed methods 0 a free parametetkR, = GK,G' > 0 is the dissipation
robustly control an inertia wheel pendulum (IWP) system. (damping) matrix andg. is the equilibrium point to be
stabilized. The systeni](3) is equivalent to the PCH system
Il. PRELIMINARIES @ with

The set of real and natural numbers (including 0) are UIDA = Ues F Udis (6)
denoted respectively by andN. Given an arbitrary matrixz, with the energy shaping controller
we denote the transpose and the pseudo inverse oy G ™ o T = 1
andGT, respectivelyG denotes the full rank left annihilator ues=(G' G) G (Vg H-MaM ™'V g Ha+Jo My ' p)
of G, i.e. GG = 0. We denote am x n identity matrix with =GV (VH — MgM ™'V Hy + J2 M 'p),
I,. For a vectorz € R™ and a matrixA € R"*", we denote anq the damping injection (dissipation) controller
the Euclidean norm gg| and|A|, respectively and we denote -
the weighted normjz| , := 2 Az. For any continuous func- ugi = —KyG 'V Hy, K, >0 (8
tion H (i, j), we define the gradient; H (i, j) := 0H (i,5)/0:. ) o
We use Young's inequalitynlyl||z| < %\ZJP + §|Z|2 with C- Review on Integral Control (IC) within PCH Framework
positive constantg andn. We use a standard stability and To improve control performance and robustness, partigular
passivity definitions for nonlinear systems [2]. Due to spacvith respect to steady state error and reference inputs, the
limit, the arguments of functions are often dropped wheneviglea of applying integral action on thgassive outputs of
they are clear from the context. PCH systems has been proposed_in [1]. It is well known that
the integral action has the effect of eliminating offsetttis
method the IC

@)

A. Port-Controlled Hamiltonian Systems

Consider a standard mechanical system whose dynamics are v = /yddt = -K,G" / VpHyg, 9)

represented in a Port-Controlled Hamiltonian (PCH) form:
with the integral gaink; = K,” > 0, is added to the IDA-

m = [ 0 In} {VCIH} 4 { 0 } m PBC stabilized PCH systerl(3) to form an extended dynamical
Bl = O] [VpH] © [G(9) (1) system

y=G"(V,H g 0 MM, [V Hg] | [0
whereq, p € R" are the statesy andy € R™, m < n, L')] - {—MdM‘1 Jo —Rd] [V,,Hd_ B {G} v (10)

are the input and output variables, respectivelynl= n the
system is calledully-actuated, whereas ifm < n it is called

which can be written into an extended PCH form as

underactuated. The Hamiltonian function, which is the total q 0 . MMy 0 Vot
energy of the system, is defined as the sum of the kinetic || = —MaM J2 — R# GKi|| VpHay (11)
energy and the potential energy 0 —KG 0 JLVeHay
1 where 1
H(q,p) = K(g,p) + V(g) = 5p" M~ (@)p + V(a), (2) Hay = Ha+ 50T K; M. (12)
where M(q) > 0 is the symmetric inertia matrix and(q) is In reality, applying the IC only to the states which are the

the potential energy function. The PCH system is callgmh- passive outputs is often insufficient. In Sectignllll, we present
rable if M is constant, or otherwise it is callednseparable. the extension of this approach to more general classes of PCH
In PHC framework, the statgsandq are known as thpassive systems allowing the IC input on the states which are the non-
outputs and thenon-passive outputs respectively([B]. passive outputs.
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[1l. ROBUST CONTROL OF SEPARABLE HAMILTONIAN

SYSTEMS

which is negative semi-definite. By invoking LaSalle’s iriva
ance principle([2], one can prove that the largest invarsat

Subsectiond TIFA and_TIEB represent extensions to thgontained inQ = {wrg .y « Hy = *_‘E;MfleMflxp =
results in [6] and [[7] which deal with the fully-actuated? | Z» = 0} is the equilibrium pointz, = (z4,0,0) =
mechanical systems. Then, subsecfion1II-C extends tiee intde-0;0), thus it is asymptotically stable (see the proof of
gral IDA-PBC results to deal with underactuated mechanicBlOPOosition[3.R). The PID-like controllef (16) is found by

systems.

A. PID-like Control for Separable PCH Systems

In [[7], a PI controller has been proposed to reject constant

equating [(I1) and[{14) and applying the coordinate transfor-
mation [I3), that is

p=a, — Mz,
~V¢H +Gu= -V, Hy — K4V, Hy — Mi,.

disturbance(s) for the case of a separable PCH system which

is assumed to have natural damping. On the contrary, héY

we start with assuming that the systelwes not have natural

gtice that with [(IB) we hav®’ ,H = V., H, andV, H, =
M~Y(p+ Mu,), thus, we obtain[{16). [

damping and we introduce the damping to the sysf@m (1) byRemark 3.2 The PC_:H structure of the original modél (1)
means of a derivative controller, thus, we obtain the Pkg-li "as been preserved in the augmented sysfein (14). This can

controller. This assumption of no dampingdsnsistent with
the PCH model that we consider in this paper.

be shown from i) the coincidence of the state equations of
both models (they are matched) ii) the preservation of the

Remark 3.1: Note that we call the controller as PID-likeHamiltonian and the PCH structurel [7] of the model, i.e.

controller because it consists of the P, | and D terms. Howewv!

the positive definiteness of the interconnection matrixisTh

this controller is a state feedback controller and not dyacPreservation in the closed-loop system ensures asymptotic
the same as the conventional PID controller which sits on tfEDility of the system as shown in the Proof of Propos(iidh 3

feed-forward path of the system. This type of control hasbe

used for instance ir_[7].

gnd robustness property is provided through the introdocti
of the integral action.

Proposition 3.1: Consider the separable (and fully-actuated)

PCH system[{1). Define the state transformation

Tg = 4g; Tp=p+ MGz, (13)

to realize the closed-loop system in the new variahbles=
[zq zp x,] @S

i 0 I, -GK;| [V.H,
ip| = | ~I, —Kq 0 Ve, He|, (14)
i, KGT 0 0 Ve, H,

with the Hamiltonian function
1 1
H, = 51-;M*1xp +-a) K 'e, +V(z,).  (15)
Then, the PID-like controller
uw=—Mi, — Kqz, — KqM 'p

~MK,G'V,V (zq) — KdKiGT/ Vi, V(zg)dt

Proportional (16)
Integral

— KqM™'p,
———
Derivative

whereK; = K, > 0, K, = K] > 0, is an asymptotically
stabilizing controller for the system. [

Proof of Proposition[3.1: Consider the Hamiltonian function

B. Integral IDA-PBC for Separable PCH Systems

In Section[[-A, a PID-like controller has been proposed
for both asymptotically stabilizing and robustifying thaly-
actuated PCH system. In this section, we assume that the
stabilization problem has been solved using IDA-PBC method
and we need to introduce an integral action to solve the
robustness issue. As discussed in Secfion] Il-C, a method
to include the IC for passive outputs has existed. However
for non-passive outputs, it is difficult to add the IC action
while preserving the PCH structure and stability propesrtie
simultaneously.

In [10] a method that involves canonical transformation
of coordinates and solving a set of PDEs was proposed.
Coordinate transformation was also used(inl [11] to deal with
the robust control of non-passive outputs with unmatched
disturbances. An initial result towards applying IC on non-
passive outputs of PCH systems has been recently proposed
in [6]. In this method the IC is added to the PCH model that
has already been stabilized using a PBC method, exploiting
a state transformation that preserves the PCH structureeof t
open-loop system. However, this method requires solving a
set of algebraic equations that account for defining thee stat
transformation which makes it quite complicated.

Inspired by the work of([6],[[7],[[11], we present a simpler

(13) as a candidate Lyapunov function for the system (14}eihod to include the IC for non-passive outputs of PCH

BecauseM is constant, therv, H, = V, V. Its derivative
along the trajectories of the system is

Hy =) M~ Vi + 2 K iy + YV, (2)i
=z, M'VV,, —ax, M'K4M ™ 'x,
+x) K W(KGTVV,) + VYV, (2] M~ = Gry)

Tar-1 ~1
=z, M~ KqM™ "y,

system assuming a stabilizing controller has already been
obtained and we are dealing with steady-state error. Tha mai
idea is to use the change of coordinates as in SeEfion]Ill-A
and [7] to obtain the IC, while preserving the structure and
stability properties of the original PCH model.

Consider the closed-loop PCH systém](10) with equilibrium
satisfying [b) whenv = 0. Since throughout the IDA-PBC
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design procedures/; is set to0 as both M and M, are Remark 3.3: The IC laws[(16) and(20) obtained in the PID-

constants[[12], the system can be rewritten as like and IIDA methods, respectively, are very similar, eptce
. —1 . .
il 0 MM, v, Hy s 0 . an ':rg;th_rer:g is tge tirn%d S_Jﬁm thte_ (ine constrtgcted uts_lng
ol = =M _Ry V,Hy al v . This is due to the different interconnection matrices

used for the design; the original interconnection matrixhie

- . . ase of PID-like and the desired one in the case of IIDA.
Proposition 32: Consider the separable PCH systdin ag\lso, the total control input: of IIDA includes an additional

Assume a stabilizing IDA-PBC controlldr](6) has alreadyrbee .

obtained with the desired Hamiltonidd (4) and the desireH Pd)roportlonal control term,.

dynamics take the forni (17). Defining the state transforomati

(13) to realize the augmented closed-loop PCH system  C. IC for Underactuated PCH Mechanical Systems

iy 0 M~'My; —GK;| [V, H, In SubsectionETlI-A an@1I-B, we have discussed the con-

iy |=|—MgM~! —Ry 0 Ve, Hy | (18) struction of controllers for separable PCH systems, réuyir

T K,GT 0 0 Ve, Hy the input matrixG to be full rank. This condition makes the
with application to underactuated systems in whighs non full

rank, not straightforward, whereas these systems are often

H, = leMflw + lmTKflxv +V(z,). (19) found in practice, either by design or due to faults. In this
PAE A o ! section, a more general result, the design of IC action for
Asymptotic stability of the equilibrium pointz. = underactuated mechanical systems is proposed.
(%4e,0,0) = (¢e, 0,0) is preserved with the IC While PCH models allow some extensions in the system
_ -1 coordinates, such as adding integral action, two main prope
v=—-RqM; MGz, : .
) T (20) ties must be ensured when these extensions are added to the
&y = KG Vg, Hy. model:
Furthermore, the total control input with integral actiakes a. Preserving the PCH structure matrix (consult [15] for
the form detailed formulation). The extension must not break the
U=UIDA+V+Up (21) skew-symmetry of the interconnection matrix and the
where u, — fMKZ-GTquV(xq) is an additional control positive definiteness of the dissipation matrix.

term that appears through the procedure of finding the closed b. Preserving the passivity and (asymptotic) stabilityhef t
closed-loop system.
loop controller.

Proof of Proposition [3:2: The proof can be establishegPue to these constraints, all existing IC schemes within PCH

following the same procedures as in the proof of Propositidfgmework were limited to fully-actuated mechanical sysie
Bd. Furthermore, in view of {5)[{13) anf{19), we obtaif"P0sing the following conditions:

H, = —a]M;'R4M; "z, < 0, i.e the system is stable. (i) The input matrixG is full rank.
LaSalle’s invariance principle is then used to prove that th (i) G =G, or sometimess; = K, is used instead.
largest invariant set contained @ = {z(,,.,)} : H: = In fact, Condition (i) is not necessary because the PCH

—a) M7 'RgMy "z, = 0|z, = 0} is the equilibrium point structure can still be preserved even if the system is under-
re = (¢e,0,0), thus it is asymptotically stable. Notice thatactuated. This can be proved for instance using the Schur's
for the system to maintait/, = 0 condition, the trajectory complement([16], by showing the positive definiteness of the
must be confined ta;, = 0. Using the system closed-loopinterconnection and dissipation matrices evendfik(G) =
dynamics [(IB) we show that m < n. Moreover, the formalism of IDA-PBC for underactu-
ated mechanical systems also shows that the PCH structure is
preserved even whef is not invertible [12].

For PCH systems, the gradient of the potential energy fancti Unfortunately, stability cannot be easily verified if the
vanishes V., H, = V., V(z,) = 0) if the system converges integral action is added to the underactuated PCH mecHanica
to its equilibrium pointg. (see [(b), Section IV in[[13] and systems, because Condition (ii) is not satisfied. This can be
Lemma 4.2. in[[14]). Thus, illustrated in the following case. A simple calculation of
the derivative of the Hamiltonian function _{19) along the
trajectories of the system gives

=0 = 1,=0 = V, H,=0.

Ve, He =0 = 24 =g, andz, = 0.

Hence, the system can maintath, = 0 only at the equilib-
rium pointz. = (¢, 0, 0), which proves that this equilibrium
is asymptotically stable. The controller is obtained by matchingf G = G'7 like in the case of fully-actuated PCH system,

H, = —x) My 'RyMy v, — My ' 2,Gz, + My '2,G 2,

the momenta of[(17) and_([L8), that is the last two terms are equal except with opposite signs, thus
b= fMdM’lqud — RgV,Hy+v cancel out each other. Hence,
=i, - MGi, (22) H, = —x) My 'RqyMy; 'z, <0,

_ -1 _ _ .
= —MyM™"Va, Hy — RVo, He — MGy which proves the stability of.. For underactuated mechanical
Solving [22), we get({20) and_(1). m  systems, sinces € R™™ #£ GT ¢ R™*" we cannot
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draw any conclusion about the stability of the system. Allows for the integral action to be applied to underactiiate

similar illustration can also be shown for the IC presented mechanical systems. [ ]
Section[1I-=C. Therefore, modification is needed to deal witRroof of Proposition [3.3is established in Remafk3.4. m
underactuated systems, as discussed next. 2) Integral control on non-passive outputs. In Subsection

1) Integral control on passive outputs. Here, we present [II=CIlwe have considered IC on passive outputs. However in
results for underactuated PCH systems with- 2, m = 1. the context of PCH mechanical systems, non-passive outputs
Recall the desired closed-loop PCH systéml (11). For undesually being the states representing displacement otiqusi

actuated systems, the matxix can be defined as are often the outputs of interest. In this subsection we will
present the method of introducing the integral action on-non
G= {gl} (GT =0 9]). (23) passive outputs for underactuated systems. The consinuati
92 this IC for non-passive outputs follows closely the progedu
Depending on how the input acts on the states, we may hay&in Sectiof TII=B, with the replacement of matcx by G.
either - Introducing the IC action to the non-passive outputs, in the
G, = %1 (GT = [gl 0]) , same way as how it was done to the passive outputs, yields
Lo the closed-loop PCH system (note: compare this vith (25)):
:1; :)TE f(l)rrst passive output receives the direct action from th 0 MM, 0 V,Ha
) 0 pl = —]\411]\4_1 Jo—Rg GK; vadv . (26)
Gz=|,| (G2 =[0 o), 0 _KiGT 0 o | |V,

if the second passive output receives the direct action fro om | Hamiltoni hich is obvi ;
the input. Instead, and without loss of generality, for th € system 1S no more Hami qman), Which 1S obvious from
e unsymmetrical interconnection matrix.

waever, this way destroys the PCH structure of the system
. . t

augmented system we define a new maftias L .

9 y g Another option is to write the augmented system as

G= {901 0} , (gT = {‘{; OD @4 i 0 MMy GK] [V,Ha
g2 92 pl=|-MsM=* Jy—Ry 0 | |V,Ha!|, (27)
thus, we have eitheg, = 0 corresponding td=, or g1 = 0 0 —K;GT 0 0 Vo Hay

corresponding td. which preserves the PCH structure. However, with this form,

. ; _ T : :
zelrj)entggllfsﬁ}ell\:/mr:;;;zifg V;Itﬁ g. ixvg%l; r?(l—:‘tirt]r?glb(r)ééq;sltshe the IC action is not included in the control law, i.e. the IC
' . term is not attainable from the augmented system. To solve

PCH structure (the dynamics) nor changes the contribution Ri the integral action is admitted by means of coordmate
the augmented state to the system. This is due to the fact tba?’ 9 y

= : . ransformation as stated in the following proposition.
rank(G) = rank(G). For example, usingr, in the extended Proposition 3.4: Consider the separable PCH systdm (1)
state equation, we have

with G non-full rank. Assume a stabilizing IDA-PBC con-

b= —K;G"V,Hy, troller (6) is already obtained with the desired (closeoBlp
Vo, Hao energy function[(4) and the desired PCH dynamics take the
=—K;i[gn 0] [VledJ = —Kig1Vyp, Hav, form (7). We employ the state transformatiénl(13) to realiz
and usingG,, we also obtai; the augmented closed-loop PCH system
V= —K-QIVpHd 3:Cq 0 -1 MMy ~GK; Va,Ha
¢ v &p | =|—MgM —Ry 0 Ve, Hy |, (28)
— K, |:gl O:| |:Vp1Hdv:| _ [_Kiglvledv] jﬁv K,Lg—r 0 0 VxUHz
10 0| |Vy,Ha, 0 '

with the Hamiltonian function[{19) and replacing with
As the last column is zero, this shows that the same resultgs Then, asymptotic stability of the equilibrium point =
obtained in both cases, and the PCH dynamics are preserygg,0,0) is preserved with the IC

The same case also applies t6>(Gs). Hence, with this v —G*Rde‘lMg:zv

substitution we obtain (29)
. S ) iy = K;G'V,, H,.
Hyy=—p My RqM; p <O, .
Furthermore, the total control input takes the form
which proves the stability of the system.

Remark 3.5: Note that the replacement 6f with G, is not U=uUrpa + v+ Up (30)
meant to change the input matrix of the original PCH systemyhere u, = —Gt*MK;Gi, is an additional control term
but it is applied to the augmented system to proceed with tighich appears through the procedure of finding the feedback
design procedures. controller. L

Proposition 3.3: Replacing theG in the PCH model[(11) Proof of Proposition [3:2 is established following the same
with G to obtain procedures as in the proof of Proposition]3.2 and involving

g 0 M~'My; 0 |[VyHa Remark3.4. [ ]
pl = |-MyM~' Jy— Ry GK;||V,Ha |, (25) In Sectior Y, we will show by example, how this IC action

o 0 ~K,GT 0 ||V,Ha, eliminates the steady-state error.
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D. I1SSfor Separable PCH Systems using IDA-PBC method 2) ISS for time-varying matched and unmatched distur-
_ __bances: Here we show the general case when both matched
Here, we show our results for the input-to-state stability,y nmatched disturbances are present. A method to deal
(ISS) control for separable PCH mechanical systems Wiifly, this situation has been recently reported fii [7]. Un-
time-varying disturbances employing IDA-PBC method tg, . nately, this method results in a complicated closgabl
obtain the stabilizing controller. The theory of inputdtate system, due to the complex augmented PCH structure and

stability (ISS) introduced in [17] is an extension of Lyapun the complex controller. Furthermore, asymptotic stabitias
stability theory to deal with systems with inputs. ISS conasi not been achieved unles = 0 and d, is constant i.e.

the Lyapunov stability notion and tfmunded-input-bounded- o matched and time invariant disturbances. The follgwin
outpl_Jt (BIBO) stability no'qon [18]. IS_S is a.central toollln proposition shows our new approach, providing simpler 1SS
nonlmgar systems analysis that studies the influence ‘Dmnpcontrol design method as well as achieving asymptotic kttabi
and disturbances on the system and the robustness of dj&y i, the presence of time-varying matched and unmatched
system with respect to such inputs. Here, we use the deﬁn'“&isturbances.

of ISS as stated in_[18, Section 3.3] andl[19, Remark 2.4]. Proposition 3.5: Consider the separable PCH systdm] (31)

First, we will show our results for the fully-actuated meyyth time-varying bounded disturbancés, d; and the control
chanical systems, and then we show some extensions to gl

with the under-actuation case. Consider the PCH system
Gu =(VqH — MgM~ 'V, H, — RyM; 'p
v _ 2 .
H B [Oz ﬂ @Z} " {3] “r m SNEY — RaMy ' MGay—p |,V (2)|* Vi, Hi~MGi,)
P " P 2 iy = K,GTV, H,. (35)

The objective is to provide a control method to deal withnere exist a constanp > 0, such that using the state

systems subject to matchedy, and unmatchedd,, time-  transformation[{Z3) to realize the augmented closed-lddgl P
varying bounded disturbances. We first discuss the caseggftem

matched disturbance and then we give a general method to

deal with both types of disturbances. ?q 0 M~ My ) —GK;
1) ISSfor time-varying matched disturbance: Interestingly, p | =|=MgM~" —Rq—p|Va,V(z)| 0
the system[(31) subject to matched disturbaiicéd; = 0) is Lo KGT 0 0
naturally ISS using the IC proposed in Proposition]3.2 with Ve, Hy dy
the PCH form[(IB) rewritten (to include the disturbance) as: X | Vg, Hy | + |d2], (36)
Ve, Hy 0
. -1
iZ B _MfM_l M_é\jd —Gg(i g:ﬁgz N ;2 (32 with the desired Hamiltonian functiod (83), the perturbed

closed-loop systen (B6) is ISS with respect to the disturesn
d; and d,. Moreover, the function[(33) is the I1SS-Lyapunov
function for the systen (36). [ ]
Proof of Proposition [3.3: Consider the desired Hamiltonian
1+ 1+ function [33) as a candidate 1SS-Lyapunov function. Itsetim
Hy = 9% My xp + 5% Ky + V() (33)  derivative along the trajectories 6f(36) along w[thl(13yigen
by
as the candidate of the ISS-Lyapunov function. The Lyapunov
derivative along the trajectories ¢f {32) is computed as

Ty K,GT 0 0 ||V, Hy 0

This can be proven by taking

Hy =a) My ay,+a) K iy + Vo, Vizg) g
= —x, My 'RgM  wy + x) My dy

Hy = a) My a4 2 K iy + YV (2 2 M|V VI M e, + Y, VTd (37)
o Tarlpoayl. o Tl g ’
- 71’;) Md Rd]vjd Tp + $P Md d2 S _)\min(Rd”Md_l'rpF + x;Md_ldQ
—1 2 T —1
< Amin(Ra)| My a2 + 2] M3 dy — play M7V, VT2 4+, V' d;.

where Amln(Rd) is the smallest non-zero eigenva|ue E& Applylng the Young'S inequality, where the first tWO terms in
Using the Young's inequality[[7], rewritten as-(|y> + the inequality[(3F) are treated as [n)34), and using

< —$1yl2 + 21212, this yields 1 1
77|y||2‘ — 2‘y| + 2(|Z| ! y quVle S i‘quvTP + §|d1|27

. Amin(Ra) |, — 1 ives
e LCE Ry wew 7 P
min d ( ) H < )\min(Rd) M_l 2 1 d 2
< —a(fo, )+ (lda]), <o MLl oy !
. . . . . . 1 1
with «, o € K. By invoking LaSalle’s invariance principle, — §p\x;Md_1V%VT|2 + §|d1|2 (38)

one can prove that the closed-loop PCH system is ISS w.r.t 1 1
the matched disturbance (see the proof of Propodifion 3.5). - ip\:v;Md‘lV%VTF + §|V%VT|2.
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Choosing a sufficiently large, the termi p|z] M 'V, VT2 1) Integral control on passive outputs:
dominates} |V, V' T|%. Thus, we have Proposition 3.6: Consider the separable PCH systdr (1).
The potential energy functio(¢) of the system contains

Hy < —af|zg, p|) + o(|d]), (39) uncertainties, hence its gradient can be represented Edljn (
with o, o € K. As (39) is only negative semidefinite w.r.t.Define the augmented closed-loop PCH system as
x, we invoke LaSalle’s invariance principle to complete the [ 0 M~1M, 0 V,Hqi
proof. Ford = 0, H, = 0 implies that Pl = | —M;M~1 —Ry QF(q)| |V,Ha| ,
,#\Md—lm — Spla] MV, VT2 = (QFla) o
1 . (40)  \whered is the estimate of,, § = § — 4 is the estimation error,
_§|Md xp| ()\mzn(Rd) +p\quV | ) =0. Q — (In _ MdM—l) and

Because the terms inside the brackets are always poshige, t
only possible solutions fof (#0) {8/, ' z,|?> = 0. This implies
=0 = 1,=0 = V, H, =0. is the desired Hamiltonian function. Then, the controller
Invoking similar arguments to those in the proof of Propo- R 1A _1 1
sition[3.2. we obtain Gu=F0—- MM "F0—MyM™"S—RsM; " p, (45)
with the update law

1 B 1,~
H,; = ipTMd Ly + 5\19|2 + Va(q) (44)

Ve, He =0 = 24 = ¢qe andz, = 0.

_ T

Now, from (38) and the fact thé7, function is positive (QF) " VyHa, (46)
definite, proper and has an isolated minimurh (5) as a costabilizes the system at the equilibriui@., 0, 9). [
sequence of using IDA-PBC method, all conditions of thBroof of Proposition [3.6: Consider the desired Hamiltonian
ISS property (seel [18, Section 3.3] arid [19, Remark 2.4pnction [44) as a candidate Lyapunov function. Its time
are satisfied, which proves that the closed-loop PCH systél@rivative along the trajectories d¢f (43) satisfies
is ISS w.r.t the matched and unmatched disturbances. . pTMY ST A T.

Remark 3.6: Proposition[3b6 can be extended to apply Ha = Md p+0 ?Jrqud q
to underactuated PCH mechanical systems by replacing thes p' My ' (=MaM ™'V Va— RaV,Ha+QFV;Hy)
matrix G in (368) with G as in [24), in a similar way as the — 0T (FTQTV,Hy)+V V] (M~ MyV,Hy)

results in Sectiof 1M1-C. — MY Vi pTMfleMd*lp—kaMd*lQFé

AT T T 71
E. Adaptive IDA-PBC control for separable PCH systems —0 QM PV Vd p

Tar-1 Tas-1 T Tv-10md
The implementation of the IDA-PBC controlidt (6) requires M= qude( M=V gVa) +p My QF0
the exact knowledge of the system’s parameters, essgntiall — (p' My 'QF0)" —p" M RyMy'p
the inertia matrix}// and the potential energy functiol. =-—p'M;'R;M;'p < _|M§1P|§?d <0.
Neglecting parameter uncertainties may deteriorate digilst . .
ity and/or the transient behavior of the control system.sThj Notice that from [(477), we havél; = 0 = p = 0.
motivates the establishment of an adaptive scheme to dsti &Lgthermore,p =0 = p=0. Thus, under the dynamics
the uncertainties. ) yields:
A common occurrence of uncertainties in PCH models js= — MM~ 'V,V, — RV, Hy + QF (q)VH,
the uncertainty in the potential energy function, thus ie th 1 -1 5
gradient of this function. The linearly parameterized ggatl ~MaM™(F0 + 5(g)) = RaMy "p + QFO

(47)

of the potential energy function can then be written as = —MM~ Y (FO+S)+ (I, — MygM~")F(6—0) (48)
-1 —1 1 1A
VqV(q) = F(q)0, X _M(f‘M FO+ MgM~— F0 — MgM~™'S — MgM~"F0

+F0—F0=0

where the matrix functionF'(¢) is known and the vectof . C1a .
contains the unknown, but constant parameters. Notice that ~MgM™S = MagM™ F0+ F0 — F0 = 0.
in the IDA-PBC method thelesired potential energy function grom [43) and[([d7)p € L2 N Lo andq, 6 € Loo. Therefore,
Va(q) (the second term in({4)) containig(g) in its terms. the zero momentum (velocity) may guarantee boun@ieshd
Therefore, the gradient of this function can be written as  consequently the convergence of the position states to thei
_ _ desired values but with steady-state errors. That is, tfalest
VaVala) = VoV(9) +5(0) = F(@)f + S(0), (42) 6 — 6~ 6. Now, from [48) this implies that'd + S = 0.
whereS(q) is known. To deal with the class of PCH systemSince F + S = V,H, = 0, using similar arguments as in the
with this type of uncertainty, we propose two adaptive-IDAproof of Propositio_3]2, we have
PBC control methods. In the first method, the integral action
is applied on the passive outputs, while in the second method
is applied on the non-passive outputs and includes a chariges shows that some asymptotic properties of the proposed
of coordinates. design method can be concluded. [ |

ViHi =0 = ¢ = qe.
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2) Integral control on non-passive outputs: Another and for the momenta,
method to design an adaptive controller is by applying the

integral action on the non-passive outputs. Thus, we obtain p=d,+UO (6=0ashis constant

the following closed-loop PCH model: Gu—V,H = —MdM*quHm — R4V, Hy + AV, H,
q 0 MMy U] [V, Hqy +Ub
Pl =|-MaM~'  —Rq 0| |V,Hq (49) Gu— FO = —MyM~(F0 + S) — RqaM; *(p — U8)
0 —-U 0 0 Ve'Hd

4 (F = MM ~YF — RgM7'U)0 + U0.

Wherel{ is a constant matrix. Two problems arise from this _ '

method; 1) the update law = — UV, Hy = —U(F(q)f + YSiNg € =0 —06) and solving, we obtair (33).

S(q)), is a function of the unknowm, and 2) the integral (i) The update law is given by

action is unattainable from the closed-loop sy_stem. T(_)es_ol%A _ _M—luva H, — AV, H, — YV, H,

these problems we propose a change of coordinates similar fo . ! ’ . ~

those proposed in the previous sections, aiming at asymptot — —MTU(FE + 5) - AMfl (p —Ub)

cally stabilizing the uncertain systefd (1) at the the efiilim — (M7'UF + AM;'U)0 (55)

point (g, 0, 6). _ = M UFO+ S) — AM;'p+ AM;'UO — M~ UFG
Proposition 3.7: Consider the separable PCH systdr (1). AM-11/d

The potential energy functio(¢) of the system contains —AM;Uo ~

uncertainties, hence its gradient can be represented @din ( = —M 'UF0 — M~'US — AM;'p — M~'UF0.

Define the state transformation S ) ) )
Substituting ¢ = 6 — 0) in the last row in[(Bb), yields

=4q; = — ué; s = ~7 50 N
Tam @ P *o OO MUE - MUS — AMTp— M UFG
to realize the augmented closed-loop PCH system + M~ UFe.
aq 0 MMy M~'U| [V, H, Canceling like terms but with opposite signs, we obt&if (54)
Ip| = ~MgM~! —Rq A Vo, Hy | (iii) Consider the function(32), whose time-derivativerd
Lg -M~'u —A -T Vo, Hy the trajectories of {31) along with (b0) is
whered is the estimate of, § = 6 — ¢ is the estimation error, H, = (Vy, H,) iy + (Vo Hy) T35+ (Vo Hy) T34
Ry, Y >0, =V, H (-MqM ™'V Hy — RgVy Hy + AV, H,)
A= F(q) — MgqM~'F(q) — RgM;'U + Vo, H (~-M'UN o Hy — AV, Hy — YV, Hy)
T = M~'UF(q) + AM; U + Vo, H (M~ MgV Hy + MUV, H,y)  (55)
and =-V, H MqM~'V, H, —V, H RV, H,
1 _ 1 -~ T _ Tas—1
Hy = Sy My ™y + 101 +V (g), (52) + Vo, Hy AVasHo = Vg Hy MZUNV 2, He

— Vo H AV Hy — Vo H YV, H,

is the desired Hamiltonian function. Then, the controller n VIqHTM_lMdepHx n vquTM—luv%.Hm.

. N —1 A —1 1 X & xT
Gu = F(q)e—MdM F(Q)Q—MdM S(Q)_Rde P—H/{G, Taking the transpose Of the terquH;M_lMdepr,
, (33) V.. HI AV, H,andV, H M~'UV, H, and rearranging,
with the update law g » a g
yields
.i’é = é = —M—1L[F(q>é - M‘HjS(q) — [\]\4{;1])7 (54) Hz — _VIPHIMdM_lva;qHa: + (vaH;MdM_lvquI>T

asymptotically stabilizes the system at the equilibrium + Vo, Hy AV, Hy — (Vo H AV, H,)

(e, 0,0). u — Vo, H YV, Hy — Vo, H MUV, H,  (56)
Prolof. of Propo_sm_on [3.1: The proo.flls established by (i) V. HI RV, H, + (~V.. H M~'UV, H,)"
verifying the coincidence of the position and momenta state g r o a

of system [(l) with their corresponding states [in](51). (i) = ~Vu, Hy RaVy, Hy = Vo Hy TV Hy

Showing that the expression of the update lay doesn't < —|Va,Holh, = |V, Hol3

depend ord. (iii) Showing that the proposed method achieves . .
asymptotic stability. Thus, the systeni (51) has a stable eqwllbrlur(‘q@,tg 0) W|th
(i) For the position stateg, we have xp, 5 € L2N L. The convergence of the states is established
invoking the following practical corollary of Barbalat'srhma
iq=M""MyVy Hy + MUV, H, [20]:
_ M_lMdexp L MUb Corollary 3.1: Consider a functionp : R>o — R and

N - o B ) suppose thatp(t) € Lo N Lo and ¢(t) € L. Then
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Applying Corollary[3.1, implies the convergence of statgs A. Integral IDA-PBC for non-separable PCH systems

and.; 0 zero (p, w5 — 0 ast — oc). Moreover,§ =0 = prynodition 4.1: Consider the non-separable PCH system
6 = 6. Finally, the convergence gf the statesto their desired ) Assume a stabilizing IDA-PBC controlldfl (6) has alngad
states Is _estabhsheq as fi)llows. _ been obtained with the desired (closed-loop) energy fancti
Ty, 15 =0 = &,0 = 0. Thus, under the dynamics of gy ang the desired PCH dynamics take the form
(51) yields:
Lo 1 B B ql 0 M='M4(q)] [V Ha] , [0
Ty = MdM vquac RdvaH'r + AV~’I‘0“HT =0 |:p:| - |:_Mdz\/[_1(q) J2 _ Rd vad + aQ V. (63)
=—MsM "'V, H, — RgMj 'z, + A0 =0
—_— 7 (57) ' Defining the state transformatidn{13) to realize the augeten

=0 closed-loop PCH system

= —MdM_lquHm = 0

. _1 .
This impliesV,., H, = 0. Invoking similar arguments to those |4 v 1\2—1( ) MJ M%xq) _Gg{’ g%gﬂ’
in the proof of Propositiofi 32, we obtain Tp 7|~ Tq 27 M zp e
P positiof 3} . K:GT 0 0 ||v. H,
Ve, He =0 = 14 = ge. 64)

Since all trajectories converge to their desired values, v\\’/veIth the Hamiltonian functiorl{81), asymptotic stability the

can conclude that the closed-loop systém (51) haasgmp- equilibrium pointz, = (¢.,0,0) is preserved with the IC

totically stable equilibrium atq., 0, 9). [ | n
Y q ‘e ) Gv = —%MdM*1 > e VM MG,
IV. RoBUST CONTROL OFNON-SEPARABLE i=1
n
. . HAMILTONIAN SYSTEMS . 3 lMdM_lzeixIGMtiMd_lp
In this section, we extend our results in Sectlod Il to 2 =
deal with non-separable PCH systems. In this case)Mas 1 n (65)
and M, are functions ofg, their derivatives need to be - —MdM‘lzeixIGMtiMd*lMva
taken into account in the construction of the control law. 2 i=1
Fortunately, our approaches do not require significant gbsin " OM .
in the interconnection matrices (thus the augmented closed -> (aGva) (e; &)
loop PCH models) which have been constructed from their =1 ’
separable counterparts (ifil [7] significant changes applied + (Jo — R))M; ' MGz, — MGi,
As expected, more complicated control laws are obtained éalg . = K, GTV% H,. .

a consequence. Before we state the results, we show sqgne . .
. o roof of Proposition [4.1: The proof can be established
necessary differentiations that are used throughout tbefprfollowing the Eame procedures az in the proof of Proposition
of results. Similar to[(13), we start with definin . L e .
[T3), 9 [B.2. The time derivative of the Hamiltonian functién(619rad

rp,=p+P the trajectories of the system is
P = M(zq)G (58)

he deri . . bvi _| ta o Hz:vIpH;rip"FkuH::i’v'i‘vqugi‘q

The derivative is obviously . N, H] MMV, Hy + Vo, H (Jy — Ra)Va, H,
ip=p+P, (59) + Vo H KiG 'V, Hy + YV, HI M~ MV, H,
while i, andp are obtained directly from their corresponding — quHJGKNxUHx.
PCH models. The terr® is calculated as Taki . ¢ certain t " | out simitans
S . aking a transpose of certain terms (to cancel out simitange
P = MGz, + MGy, with different signs) and rearranging:
- = : (60)
MGz, = Z(tiMva)(e;rxq). H,=—V, H MMV, Hy+(Ve HT MMV, Hw)‘r
i—=1 P q Pz q
T T T T T
Second, given non-constahf(z,) andM,(z,), the derivative + Vo, H, KiG' Vo, Hy — (Vo Hy KiG'V Hy)
of the Hamiltonian function + V., H oV, H, —V, H RV, H,
1 1 _ T T
H, = im;Md_l(a:q)xp + ixZKi_le +V(zq), (61) = Va, Hy JoVa, Hy = Vo, Hy RV, Hy
T -1 -1
=—x, M, RqM <0.

becomes Tp Ma fdMa T =

H, = (prHr)Tip + (Vo Hy) &y + (quHz)T:bq Notice that becausé, = —J, , the term(V,, H,) " JoV,, H,

is equal to zero. Furthermore, asymptotic stability is doded
(62) by applying LaSalle’s invariance principle:

1 n

T T -1 .

+ (quVI +§Ze¢xp VoM, x,,) Tg, —ay M7 'RgM 2, =0 = 2, =i, =0
i=1

— o Tas—1; T 1,
=z, My i, +x, K] &y

where the derivative of\/; is now taken into account. = Md(xq)M‘l(mq)quHr =0.
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Given M (z4), M4(z4) > 0, then we havev, H, = 0 which control law

is only true if the system converges to its equilibrium point
y 4 9 q P Gu =V H — MgM~'V, H, + (Jo — Rg) My 'p

ge. Thus,

+ (J2 — Rg)M; ' MGz, + pT°V, H,

Ve, Hy =0 = 24 =q.andz, =0, n

=Y (V. MGay)(e] M~ MV, H,) (69)
which proves that this equilibrium issymptotically stable. i=1
The controller is obtained by matching the momentalof (63) n
and [64) along with the change of coordinatgs] (13) and its +Y (V4 MGzy)(e] GK,V,, H,) — MGi,
time derivative [(5P), we get =1

iy, = K,G"V, H,,
p=—MgM 'VyHy+ JoV,Hy — RV, Hy + Gov

=i, P (66) With T' = ‘V%HJ > V¢MGz, +V, H.]|. There exist a
i=1
= —MM "'V, H, + (J2 — Rq)V,, H, — P. constantp > 0, such that using the state transformatibnl (13)
to realize the augmented closed-loop PCH system
Rearranging the terms, . 71
i 0 M—'My;  —GK;| [V, H,
1 1 n T 1 . :i'p = —,1\4(1]\4'_1 Ja —Rd+pT2 0 Vszm
Gv — §MdM Z ep Vo My p— MgM™"V,Vq iy K,GT 0 0 Ve, H,
=t 1 n dl
+(Jo— Re)My'p = —5MaM Y e Vo M, + |dot > Vo, MGy (e d) (70)
=1 =1
— MgM 'V, Vy + (Jo — Ra) M 'z, — P. (67) 0

o _ ) and the desired Hamiltonian functioh {61), the perturbed
Now, Substituting[(58) and_(60) in_ (57 ) and computing We|osed-loop systenfi{70) is ISS with respect to the disturban

obtain d, and d,. Moreover, the function(61) is the ISS-Lyapunov
1 n function for the systenl(70). (]
Gv — §MdM_1 Z eip' Vo, My 'p — MgM 'V, Vy Proof of Proposition [4.2: Consider the desired Hamiltonian
i=1 function [61) as a candidate ISS-Lyapunov function. Itsetim
1 C X . .
4 (Jo— Ry)M;lp = 7§MdM71(pTqud—1p) g§r|vat|ve along the trajectories 6f(70) along wlthl(13yigen
1 = .
- §MdM_1 Z eipT(tiMdil)Mva H, = (vsza:)Tj;;D + (kuHw)Ti‘v + (quHw)T‘i‘q
i=1 =V, H MyM ™'V Hy + Vo, H] (J; = Rq)V,, Hy
1 n
— SMaM™ Y e GM(V, My p (68) + Vo, H, pTV o Hy + Vo H do
=1 n
T T
1 " + vmpHr (V%MGIE»U)(G,L dl)
— 5MdM—1 > ey GM(Vy, My MGz, ;
i=1 + Vo, H K;G'V, Hy + VY, H MMV, H,

- MdM_vaVd + (JQ - Rd)(Mle"‘ MJlMva) _ va: HTGK,LV;E Hzp + vaj Hle

-2 (aMGw) (e ig) = MGy, =~y My RaMy vy + 2, My ds
- :E;—Md_lpTsz_lxp +Tdy
Canceling the similar terms on the left-hand side and right- < —Xin(Ra)| M z,)? +x;M;1d2

hand side of[(68), we get the control lajy [65) and thus the pla] M7VT|? + Tdj. (71)
proof is completed. n P

Applying the Young's inequality, where the first two terms in
the inequality [(711) are treated as [n{34), and using
B. ISS for non-separable PCH systems using |IDA-PBC

method Tdy < %\TF + %|d1\2,
The case of time-varying matched disturbance is treatgibes
following the same procedures of its separable countexpart Amin(Ra) 1
and taking into account the derivatives bf and M,. Here, H, < =22 My ) + ﬁ\dQIQ
we present the general case of time-varying matched and 1 1 min(Fa)
unmatched disturbances. - §p\x;Md_lT|2 + 5 ldaf? (72)

Proposition 4.2: Consider the non-separable PCH system 1 1
@1) with time-varying bounded disturbancés, d, and the — ip\:z:ZMd‘lTF + §|T\2.
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Choosing a sufficiently largep, the term %p|x;Md_1T|2 is the desired Hamiltonian function. Then, the controller
dominates;|T'|?. Thus, we have
Gu = F(q)0 — MgM~"(F(q)0 + S(q)) + (J2 — Ra) M 'p

H, < —al|zg, zp)) + o(|d]), (73) L
with a, 0 € Ko. As (73) is only negative semidefinite +§ZeipTVq,,M71p (80)
with respect to.z, we invoke LaSalle’s invariance principle i=1
to complete the proof. Fof = 0, H,, = 0 implies that 1 e _ A
P P P — MM e Vo, My p+ U,
/\min(Rd) 2 i=1

1
—Em My Yy = S play My TP = 0

. o , (74)

with the update law

Because the terms inside the brackets are always postiee, t ;= —M "U(F(q)0 + S(q)) + (M~ — M) F(q)p

only possible solution fol{74) igV/; 'z, |? = 0. This implies 1 n
2, =0 = &, =0 = V, H, = 0. Invoking similar + EM”Z/{ZeT:pTtiMd_lp, (81)
arguments to those in the proof of Proposition 3.2, we obtain i=1

Ve, Hy =0 = x4 = q. andz, = 0. asymptotically stabilizes the system at the equilibrium

Now, from [72) and the fact thér, function is positive defi- (4, 0,0). N u
nite, proper and has an isolated minimuh (5) as a consequeR&ROf of Proposition [4.3: _ -
of using IDA-PBC method, all conditions of the ISS properglow'”g the same procedures as in the proof of Proposition
(see [[18, Section 3.3] and 19, Remark 2.4]) are satisfiesrZ: the time derivative of the Hamiltonian functidn (799
which proves that the closed-loop PCH system is 1SS withe trajectories of the system is obtained as
respect to the matched and unmatched disturbances. .

Hy, ==V, H, (Js— Rg)Vay, Hy — V,,H YV, H,
C. Adaptive IDA-PBC control for non-separable PCH systems < =V, Hol, — |V, Hol¥,

The case of integral control on passive outputs is treated - .
following the same procedures of its separable countexpathere the term{(V, H.)"J,V,, H, is equal to zero because

and taking into account the derivatives &f and M. Here, /2 = —J5 . Thus, the systeni(V6) has a stable equilibrium
we present the case of non-passive outputs, which is usudfy(de,0,0) with z,, x5 € L5 N Lo. By applying Corollary
the case of interest. , we can conclude the convergence of stateandz; to

Proposition 4.3: Consider the nonseparable PCH systgim (13€r0 {,, z; — 0 ast — oo). Moreover,f =0 = 0 = 0.
The potential energy functiofi’ (¢) of the system contains The convergence of the states to their desired equilibrium
uncertainties, hence its gradient can be represented @dljn (is established as follows:

Define the state transformation .
Tp, w5 =0 = :bp,é =0.

Tq =G a?p:p—l/lé; xgzé, (75)
to realize the augmented closed-loop PCH system Thus, under the dynamics df (76) yields:
i 0 M~'My; M~U| [V, H, ) .
Gp|=|-MaM™'  —Ry A ||V H.|, (76) Fp="MiM"Va Hot (J2— Ra)Vae, Hy + AV Hy =0
i MU A =Y ||V, H,
whered is the estimate o, § = 6 — @ is the estimation error, = —MaM " | V, Vo + §$;(quMd_1)$p
Rd; T > 0, =0
A=F(q) — MqM~F(q) + (Jo — Ra)M;'U + (Jo — Ry)Mj 'z, + A =0 (82)
n %/_/
=0
— MM ep TV, MU 77 =0
d ;e P ¥e®y Y A A
1 = ~
+ 3 aM! Z ei(UO) TV, MU This impliesV,_V, = 0. Invoking similar arguments to those
i=1 in the proof of Proposition 312, we obtain
T = F(g)M;'U — (Jo — Ra) (M U)?
1 n Ve, Vo =0 = 14 = ¢e.
- MU ep Vo, My U (78) !

=1 Since all trajectories converge to their desired valuescare

and 1 1. conclude that the closed-loop systeml(51) hasasymptoti-
H, = §x;Md_1xp + 5|0|2 + V(zy), (79) cally stable equilibrium atg., 0, 6).
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The controller is obtained by matching the momenta bf (bf the wheelg,. Only the wheel is actuated by a motor, hence
and [76), that is the system is underactuated. The dynamic equations of the

D=y + Ué
Gu—V, H =—-MyM 'V, H, + (Jo — Rq)V,, H
+ AV, Hy + U

1 n
Gu—F— 5 S eip Vo MTlp = — MM (FO+ S)

i=1
1 v T —1 S — \
— 5 MaM > ey Vo, My ', Fig. 1: The Inertia Wheel Pendulum.
=1 . IWP system can be written in a PCH forfil (1) with= 2,
+ (Jo — Ra)Mj ' x, + AO + UO. (83) ;=1 and
Substitutingz,, = p — U6 and [7T) in [8B) yields: M= {zl IZQ] =y m _and (85)
n 2 2
1
Gu =Ff+ 5 > ep VoM p— MyMH(FO+ S)
L V(g1) = ks (1 + cos(q1)), (86)
-1 T -1
B §MdM Zezp Vo My p where, the control input. is the motor torquek; = m,[2, +
=t Mul2+ T+ 1y, ko = I, andks = g(myle, +m.,l). The values
+ MM ZeipTVq.Md’lZ/lé of the model parameters are as follows![21});, = 0.2164,
P ' My = 0.085, | = 0.2346, I, = 0.1173, I, = 2.233 x 1074,

] n ) ) I, =2.495 x 107°, andg = 9.81.
— 5 MaM! > etdf "V, My Ub
=1

n (F MaM~=1F + (Jy — Ra)M; U A. IDA-PBC Sabilizing Controller

To start with, a stabilizing controller is obtained usingAiD

~ MMt Z eipTti Md‘lu PBC d(_asign proc.edures proposed.ih [9]. The main objective is
Py to provide a continuous control law to swing up the pendulum
1 n 3 3 by spinning the wheel and to stabilize it at its upward poaiti
+ §MdM‘1 ZeiueTquMd—lu)e q = (0,¢) for anyq, € [0, 2n]. By fixing M, to be a constant
i=1 _ matrix of the form
+ (Jo — Ry)M7 p — (Jo — Rg) MU0 + UG.

) Sz d) a P (2 a)My M A my e A mi (Z’;’)ml—i—a
Using § = # — # and canceling like terms but with opposite "¢ — = |my ms| (m) my +e ms ’
signs, we obtain the controlldr (80). Finally, the update is k 7
computed as: wheree > 0, A = kiky — k2 and havingG+ = [1 0], the

- M~ 1Z/IV —AV,, ’I‘V%Hw desired Hamiltonian{4) is obtained as

1 1 _
= —MTUFO+S) - 5M*luz ciy Vo My ', Hy= 50" My 'p+ Valo) (88)
=1

— AM a, — 6. (84) 1 ,

V. = —kgvy; cos + —K,(ck + , 89
Substitutingz,, = p — U0, (Z7) and [[7B) in[(84) , and using (4) 37 cos(@) 2 plehima +4z) (69)
0 = 0 — 0 then canceling like terms but with opposite SigNSith Ny = 1 and K, > 0 the gain of the energy
we obtain the update lai{B1). Hence, it completes the progﬁapmg co]r;tr(glllérmwhlch is calculated as
]
Ues = Y2 8in(q1) + Kpys(ekimar + g2), (90)
V. APPLICATION: THE INERTIA WHEEL PENDULUM
We use the Quanser IWP module [21], whose smphﬁe"éf'th Y2 = —hsm(maks = mska), 13 = —ckiyi(maks —

free body diagram of the mechanical part is shown in F|gure3k2) (=maks +msky). The damping injection controller

[@. It consists of an unactuated planar inverted pendulurn wit

an actuated symmetric disk/wheel attached to its end, which ug = — Ky
is free to rotate about an axis parallel to the axis of rotatio

of the pendulum. The system has two degrees-of-freedom; thith A, = det(M,) = A%(mymz — m3) and K, > 0 the
angular position of the pendulum and the angular position damping injection controller gain.

A
I(_m2p1 + mips), (91)
d
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B. Integral Action Controller E. Smulations
We apply the procedure given in Proposit[on] 3.4 to design In this section, the integral, ISS and adaptive IDA conéndl
the integral controller for the IWP system. GiveR = designed for the IWP system are implemented in a MAT-
[o 1]T, then the matrixG is defined as LAB/SIMULINK environment to evaluate the performance of
the control system. In all simulations, the initial conaliti
G — {0 0} _ [q0, po] = [r,0,0,0] for the system is used.
0 1 1) Integral IDA-PBC simulations: Here, we show simula-

The IC on the non-passive output is then calculated as tions for a tracking control problem where the pendulum is
required to track a sinusoidal reference sigpal A constant

v = KvKiA(mZkl — k) To, force distu_rbance ofi N is.also injected into the dynamic
Ay (92) of ¢q;. We implement the integral IDA-PBC controller with
&y = Kp(ekimiqi + q2) the parametersn; = 0.4, ms3 = 5, ¢ = 1, K, = 0.5,

K, =1x107% andK; = 1.2. The simulation results in Figure
[@ show that without integral action, the system subject to
external disturbance exhibits a large steady-state emuch
C. 1SS Controller can be observed particularly in the trajectory @f With
integral action, the trajectories track their desired nexiees
espite the presence of the constant disturbance, bririgang
trajectories to converge smoothly to their desired valles.
Figure[3 we show the trajectory g@f comparing it to the case
of no disturbance as the reference.

and the extra termy, = — K;ko K, (ek1v1q1 + q2).

Following the ISS controller design presented in Subse
tion [MI-D] in particular Propositio_3]5, the control inpis
obtained as

A
U=Urpa —27 (B1(map1 —maps)—PBa(mapr —mip2))

_ % (Bu(msks — maka)—Ba(maks — miks))z,  (93)

A
— KiKvk/'QKd(m2+m1)xv_Kik?Kp(Ekl’yl(h'i'qZ)a

NoIC
—— With IC

with the update law - e

Ty = KiKp(ekimiqr + q2), (94) g

|
°
S
p, (kg.m%rad.s %)
|

and

P
S =3
g
g
2

B = Kp(ekimiqr + gz) (k3y1sin(q1)
+Kpekivi(ekima + ¢2))
By = Kg(ekfhfh +q2)°.

H
[
£z
;6
)

Integral state (x »

Control effort (N.m)
L o

~
o

!
o

1 2 3 4 5 6 0 1 2 3
Time (sec) Time (sec)

D. Adaptive-IDA-PBC Controller Fig. 2: State trajectories and control input of the IWP system
Following the discussion in SubsectionIll-E, here we shof@r the tracking and disturbance rejection control problem

the design of an adaptive controller to compensate for the

uncertainty in the potential energy functidn(q). Consider

5 6

1000

the potential energy function of IWP systen](86), the gradien [~ -Reference
of this function is 800f A
ith IC
VqV = —k3 Sin((h), (95) 600y Steady-State Error
T 400l +
which can be linearly parametrized ds1(41), wit{q;) = g oo P

—sin(q;) and § = k3 the uncertain term. Thus, the energy
shaping controller (30) is rewritten as

Ues =—0v1 (maka—msks) sin(g HKpy3(eki71q1+q2). (96)

Thus, the overall adaptive-IDA control input is obtained as 0 ! ? Tmese) ° °

u= _é%(msz — mgke) sin(q1) + Kpys(ek1v1q1 + q2) Fig. 3: Angle of the whee{, for the tracking and disturbance
A rejection control problem.
— Ky——(=map1 +mipz) . . .
AAd 2) ISS simulations: The ISS control law described above
0 — — = (kamy — kama — 1)(—mgpy + m2p2)ésin(q1). have been |mplc_amented on the IWP_ system for bogiched
AV andunmatched disturbances cases with the design parameters
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my; =04, mg=5¢e=1,K,=11,andK, = 5.6 x 107°. sure that the maximum torque does not exceed the actuator
The disturbance vector is selecteddas: A tanh(p). limit.

We first consider the robust control problem of the IWP
system havingnatched disturbances. Figurés$ 4 apd 5 show th: -
behaviour of the system subject to small€ 0.5) and large 2
(A = 1) disturbances where th8S controller parameters have g !

—\=60 —\=60
A=90 A=90

been chosen a&; = 1 andp = 0.1 x 1072, As expected,
we can see that all states (signals) converge to their régpec |
desired equilibrium values with high performance. 100

—A=05 — =05
s A=1.0 800 A=1.0

I
8
8
p, (kgm?rad.s™)
|
p, (kgm?rads™)

q, (rad)
N
q, (rad)
n
5
S

8 10 2

~400 0 2 4 6 4 6 10
Time (sec) Time (sec)
ol -60!
> —os sz —=s| Fig. 6: State trajectories of the IWP system fmmmatched
0.04 A=1.0 A=1.0

disturbance control problem.

— =60
1.5 A=90

: 0.1 -
0 1f .
-0.06 o1 05
0 A -
—0.1 -0.2
o -0 2 4 6 8 10 0 2 4 6 8 10
Time (sec) Time (sec) -0.5 3

Fig. 4: State trajectories of the IWP system fowmatched s , RV
disturbance control problem. - 10

0.4

oW
a 3
S

p, (kg.m?rad.s )
°
S

2
W
BN
o 8
g 8

Integral state (x
=
5
8

Control effort (N.m)
@
3

——A=60
A=90

11)

H
@
> >
i
ol vd

o

—A=0.5
A=1.0

N
=1
1S}

!
N - VS

|
o

Unmatched disturbance (d
:

-0.5

Control effort (N.m)
°

o &
Integral state (x )
PO

o B &
g 8 &

717: o . 0 2 [ (Sec)s 8 10 o 2 “ (Sec)a 8 10
o o Fig. 7: Control input, update law and disturbance input @f th
. ood el - os 28l IWP for unmatched disturbance control problem.
S o o 3) Adaptive IDA-PBC simulations: For the adaptive control

method, we have selected the parameters and gains of the
I R controller asm; = 0.2, ms = 10, ¢ = 1, K, = 4.5, and
NI [0 — 9.2 10~ 4. Furthermore, we have adjusted the uncertain
- term = k3 asd = 9 + ¢, with ¢ is a fixed estimate. This
enables us to compare this method with the non-adaptive one.

Fig. 5: Control input, update law and disturbance inputshef t Given the value o = g(m,l, + m.l), we have selected

IWP for matched disturbance control problem. ¢ = 0/2 for this case. _ ,
For the case ofinmatched disturbances, we have selected 19uresi8 andl9 show a comparative plot of the system's

two different sets of controller's parameters,(= 1.1, K, = response with the adaptive IDA con.troller and the_non—adapt
5.6 x 1075, Kiy = 1.5, py = 0.09 x 10712) and (K, = IDA-PB_C cqntroller. As sh_own, Wlth_out adaptation law the
04, Ky = 5.6 x 1075, Ky = 1.5, pp = 0.09 x 10~11), uncertainty inV (g) results in a relatively large steady _state
in response to two different disturbance gains= 60) and error and unacpeptable transw;nts. .In contrast, adding the
(A = 90), respectively. The simulation results are showRroPosed adaptive law, the trajectories of the IWP system
in FiguresI® and]7. Again, we can see the convergence S¥Verge to their desired states with exce'IIeAnt performanc
all states to their desired values with reasonable tratssier 19Ure[9 shows the convergence of the estintate the true

These figures also shows that for relatively high disturbanc’a/ue?-
(A = 90), we have selected a large value @f to enlarge

the domain of attraction and thus the system is ultimately VI. CONCLUSION

bounded. This follows the proof of Propositibn13.5. Notice In this paper, we have presented several control designs
that we have also decreased the proportional ggjrio make to deal with several robustness-related issues within PCH

I I
o o 9o
o o o
s ® S

|

I
1)
N

0 % 2 10

o

Matched disturbance (
o
] !
Matched disturbance (d ,,)

2

6 4 6
Time (sec) Time (sec)
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Fig. 8: State trajectories of the IWP system for the adaptivg)

control problem.
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Fig. 9: Control input and update law (estimate) of the Wial
system for the adaptive control problem.

[14]
framework. In particular, IDA-PBC method along with a
dynamic state-feedback controller that involves integiion (15
is used to improve the robustness of the closed-loop system.
First, we have presented several results on IC for a class of
PCH systems, extending the results lof [6], [7]. Second, W)
have provided a general framework that allows the use of
integral action for underactuated mechanical systemss THi’]
work is the first that discusses the incorporation of IC for
underactuated mechanical system within PCH framework. Te]
matched and unmatched disturbance rejection problems are
proved using the integral action controller with a partul [19]
change of coordinates that involves adding some damping
terms. These results ensure that the ISS property is sdtis?ze]
and can prove, for perturbations that satisfy some comitio
that asymptotic stability of the desired equilibrium canatso
achieved. An initial adaptive framework to deal with par&me
ric uncertainties in PCH models, in particular uncertaitin
the potential energy function, has been also presented.

Application to an inertia wheel pendulum which is an
underactuated system has been presented, and the effestve
of the proposed controllers has been shown through numeri-
cal simulations. The simulation results demonstrate that t
system is robust with respect to different perturbations; p
serving the PCH structure, retaining the (asymptotic)ibtab
with high performance. While only one example is presented
as illustration, other PCH systems belong to class (see for
instance|[8]) are possible systems to apply our results.

(21]
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