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Robust IDA-PBC and PID-like Control for
Port-Controlled Hamiltonian Systems

Mutaz Ryalat and Dina Shona Laila and Mohamed M. Torbati

Abstract—Interconnection and damping assignment passivity
based control (IDA-PBC) is a method that has been developed to
(asymptotically) stabilize nonlinear systems formulated in port-
controlled Hamiltonian (PCH) structure. This method has gained
increasing popularity and has been successfully applied to a wide
range of dynamical systems. However, little is known about the
robustness of this method in response to the effects of uncertainty
which could result from disturbances, noises, and modeling
errors. This paper explores the possibility of extending the IDA-
PBC method by adopting a robustness perspective, with the aim
of maintaining (asymptotic) stability of the system in the presence
of such perturbations which exist in any realistic problem. We
propose constructive results on Robust IDA-PBC and PID-like
controllers for a class of PCH systems. The results extend some
existing methods and provide a new framework that allows the
implementation of integral action control to underactuated PCH
systems that are quite commonly found in practice. The results
are applied to a Quanser inertia wheel pendulum and illustrated
through numerical simulations.

Index Terms—Hamiltonian systems, passivity-based control,
integral control, adaptive control, robust control, input-to-state
stability, underactuated systems.

I. I NTRODUCTION

Control design methods for systems described by port-
controlled Hamiltonian (PCH) model have recently been in-
vestigated in several works (see [1] for a survey). Adopting
the PCH structure that geometrically describes a large class
of nonlinear models gives a number of advantages such as the
obvious relation between the dynamics and the energy of the
system, the energy conservative property that makes the model
marginally stable to start with, and the coupling between the
non-damping and the damping elements. However, this mod-
eling approach results in exclusion of important ingredients
of the system’s dynamics such as the frictions. Hence, relying
only on the pure PCH model, often results in a controller that
works very well in simulation, but needs further adjustmentin
implementation [1], [2].

Besides the issue of modeling, complexity of systems
and demand for control accuracy have made control design
problems more challenging. System’s perturbations such as,
measurement noise, disturbances and model uncertainties are
common problems that affect the performance of the control
systems in industrial applications [2]. This motivates the
establishment of the robust control paradigm, with the adaptive
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and integral control among the main approaches. Broadly
speaking, the integral action control is the most popular
approach to deal with such effects and PID controller still
dominates in practice.

The interconnection and damping assignment passivity-
based control (IDA-PBC), introduced in [3], is a physically
inspired control design method that invokes the principlesof
energy shaping and dissipation and formulated for systems
described by PCH models. The main objective of this method
is to stabilize the dynamical system by rendering the closed-
loop systempassive (by shaping its energy) with a desired
storage function (which is a proper Lyapunov function) [4].
Furthermore, the system can be asymptotically stabilized if it
can be rendered strictly (output) passive by means of damp-
ing injection [5]. While IDA-PBC controller is theoretically
proven to asymptotically stabilize classes of PCH systems;
in real applications, the effect of disturbances, uncertain-
ties or reference signal may deteriorate the performance of
the control system [6], and the closed-loop system is more
likely to suffer from steady-state errors or even instability.
Apparently, when it comes to parametric uncertainties, the
real-time implementation of control system requires a real-
time and reasonably accurate estimate of these uncertainties.
Thus, the main objective of this paper is to investigate the
robust stabilization ofperturbed PCH systems to encounter
the effects of system’s uncertainties.

Some solutions to deal with the robustness issue of PCH
systems have been recently reported in [1], [6], [7]. In this
paper, extension of results from [6], [7] for fully-actuated PCH
mechanical systems are proposed. In Section III-A, we extend
the robust PI controller of mechanical system proposed in [7]
to the robust PID-like controller that provides a more general
framework. In Section III-B, inspired by the work of [6] and
with a particular change of coordinates [7], we show that the
integral action control can be incorporated to improve the ro-
bustness of IDA-PBC controller for PCH mechanical systems.
Section III-C provides the most important contribution of the
work reported in this paper, i.e. the integral control scheme
for underactuated mechanical systems within PCH structure
which has not been investigated in earlier literature. As we
will discuss later, while often found in applications (see for
instance the survey paper [8]), the system being underactuated
significantly complicates the inclusion of the integral control.
For this, we first introduce a technique to modify the struc-
ture of the model of the underactuated system, which then
allows the implementation of the integral IDA controllers on
the separable underactuated PCH systems, i.e PCH systems
with constant inertia matrix. The robustness of the separable
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PCH mechanical systems under the presence of matched and
unmatched time-varying disturbances is discussed in Section
III-D. We show that using a certain change of coordinates
a new method to characterize the property of system with
disturbances such that the well-known input-to-state stability
(ISS) property is satisfied. This method provides a simpler
controller design than the one proposed in [7] on one hand. On
the other hand, it provides a framework to apply this method to
underactuated PCH systems. Furthermore, we also show that
in some conditions asymptotic stability property of the closed-
loop system can also be achieved. Subsection III-E describes
the design of a novel adaptive controller for uncertain PCH
systems. Extension of all previous results to the case of non-
separable PCH system i.e. a system with non-constant inertia
matrix is presented in Section IV. This results in more complex
design as we need to take into account the derivative of the
inertia matricesM,Md. Finally, the results are validated in
Section V where we apply our various proposed methods to
robustly control an inertia wheel pendulum (IWP) system.

II. PRELIMINARIES

The set of real and natural numbers (including 0) are
denoted respectively byR andN. Given an arbitrary matrixG,
we denote the transpose and the pseudo inverse ofG by G⊤

andG+, respectively.G⊥ denotes the full rank left annihilator
of G, i.e.G⊥G = 0. We denote ann×n identity matrix with
In. For a vectorx ∈ R

n and a matrixA ∈ R
n×n, we denote

the Euclidean norm as|x| and|A|, respectively and we denote
the weighted norm|x|A := x⊤Ax. For any continuous func-
tionH(i, j), we define the gradient∇iH(i, j) := ∂H(i, j)/∂i.
We use Young’s inequalityζη|y||z| ≤ ζ2

2 |y|2 + η2

2 |z|2 with
positive constantsζ and η. We use a standard stability and
passivity definitions for nonlinear systems [2]. Due to space
limit, the arguments of functions are often dropped whenever
they are clear from the context.

A. Port-Controlled Hamiltonian Systems

Consider a standard mechanical system whose dynamics are
represented in a Port-Controlled Hamiltonian (PCH) form:

[
q̇
ṗ

]

=

[
0 In

−In 0

] [
∇qH
∇pH

]

+

[
0

G(q)

]

u

y = G⊤(q)∇pH

(1)

where q, p ∈ R
n are the states,u and y ∈ R

m, m ≤ n,
are the input and output variables, respectively. Ifm = n the
system is calledfully-actuated, whereas ifm < n it is called
underactuated. The Hamiltonian function, which is the total
energy of the system, is defined as the sum of the kinetic
energy and the potential energy

H(q, p) = K(q, p) + V (q) =
1

2
p⊤M−1(q)p+ V (q), (2)

whereM(q) > 0 is the symmetric inertia matrix andV (q) is
the potential energy function. The PCH system is calledsepa-
rable if M is constant, or otherwise it is callednonseparable.
In PHC framework, the statesp andq are known as thepassive
outputs and thenon-passive outputs, respectively [6].

B. Review on IDA-PBC Design

We briefly review the general procedure of the IDA-PBC
design as has been proposed for instance in [1], [3], [9]. Given
a PCH system (1), by applying the IDA-PBC design we obtain
the following preserved PCH dynamics

[
q̇
ṗ

]

=

[
0 M−1Md

−MdM
−1 J2 −Rd

] [
∇qHd

∇pHd

]

yd = G⊤(q)∇pHd,

(3)

where
Hd =

1

2
p⊤M−1

d (q)p+ Vd(q) (4)

is the desired total energy with

qe = arg minHd(q) = arg minVd(q), i.e.

∇qVd(qe) = 0,∇2
qVd(qe) > 0,

(5)

andMd = M⊤
d > 0 is the desired inertia matrix,J2 = −J⊤

2

is a free parameter,Rd = GKvG
⊤ > 0 is the dissipation

(damping) matrix andqe is the equilibrium point to be
stabilized. The system (3) is equivalent to the PCH system
(1) with

uIDA = ues + udi, (6)

with the energy shaping controller

ues=(G⊤G)−1G⊤
(
∇qH−MdM

−1∇qHd+J2M
−1
d p

)

= G+
(
∇qH −MdM

−1∇qHd + J2M
−1
d p

)
,

(7)

and the damping injection (dissipation) controller

udi = −KvG
⊤∇pHd, Kv > 0. (8)

C. Review on Integral Control (IC) within PCH Framework

To improve control performance and robustness, particularly
with respect to steady state error and reference inputs, the
idea of applying integral action on thepassive outputs of
PCH systems has been proposed in [1]. It is well known that
the integral action has the effect of eliminating offset. Inthis
method the IC

v =

∫

yddt = −KiG
⊤

∫

∇pHd, (9)

with the integral gainKi = K⊤
i > 0, is added to the IDA-

PBC stabilized PCH system (3) to form an extended dynamical
system
[
q̇
ṗ

]

=

[
0 M−1Md

−MdM
−1 J2 −Rd

] [
∇qHd

∇pHd

]

+

[
0
G

]

v (10)

which can be written into an extended PCH form as




q̇
ṗ
v̇



 =





0 M−1Md 0
−MdM

−1 J2 −Rd GKi

0 −KiG
⊤ 0









∇qHdv

∇pHdv

∇vHdv



 (11)

where
Hdv = Hd +

1

2
v⊤K−1

i v. (12)

In reality, applying the IC only to the states which are the
passive outputs is often insufficient. In Section III, we present
the extension of this approach to more general classes of PCH
systems allowing the IC input on the states which are the non-
passive outputs.
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III. ROBUST CONTROL OFSEPARABLE HAMILTONIAN

SYSTEMS

Subsections III-A and III-B represent extensions to the
results in [6] and [7] which deal with the fully-actuated
mechanical systems. Then, subsection III-C extends the inte-
gral IDA-PBC results to deal with underactuated mechanical
systems.

A. PID-like Control for Separable PCH Systems

In [7], a PI controller has been proposed to reject constant
disturbance(s) for the case of a separable PCH system which
is assumed to have natural damping. On the contrary, here
we start with assuming that the systemdoes not have natural
damping and we introduce the damping to the system (1) by
means of a derivative controller, thus, we obtain the PID-like
controller. This assumption of no damping isconsistent with
the PCH model that we consider in this paper.

Remark 3.1: Note that we call the controller as PID-like
controller because it consists of the P, I and D terms. However,
this controller is a state feedback controller and not exactly
the same as the conventional PID controller which sits on the
feed-forward path of the system. This type of control has been
used for instance in [7].

Proposition 3.1: Consider the separable (and fully-actuated)
PCH system (1). Define the state transformation

xq = q; xp = p+MGxv (13)

to realize the closed-loop system in the new variablesx :=
[xq xp xv] as





ẋq

ẋp

ẋv



 =





0 In −GKi

−In −Kd 0
KiG

⊤ 0 0









∇xq
Hx

∇xp
Hx

∇xv
Hx



 , (14)

with the Hamiltonian function

Hx =
1

2
x⊤
p M

−1xp +
1

2
x⊤
v K

−1
i xv + V (xq). (15)

Then, the PID-like controller

u = −Mẋv −Kdxv −KdM
−1p

= −MKiG
⊤∇xq

V (xq)
︸ ︷︷ ︸

Proportional

−KdKiG
⊤

∫

∇xq
V (xq)dt

︸ ︷︷ ︸

Integral

−KdM
−1p

︸ ︷︷ ︸

Derivative

, (q̇ = M−1p)

(16)

whereKi = K⊤
i > 0, Kd = K⊤

d > 0, is an asymptotically
stabilizing controller for the system. �

Proof of Proposition 3.1: Consider the Hamiltonian function
(15) as a candidate Lyapunov function for the system (14).
BecauseM is constant, then∇xq

Hx = ∇xq
V . Its derivative

along the trajectories of the system is

Ḣx = x⊤
p M

−1ẋp + x⊤
v K

−1
i ẋv +∇V ⊤

xq
(xq)ẋq

= −x⊤
p M

−1∇Vxq
− x⊤

p M
−1KdM

−1xp

+ x⊤
v K

−1
i (KiG

⊤∇Vxq
) +∇V ⊤

xq
(x⊤

p M
−1 −Gxv)

= −x⊤
p M

−1KdM
−1xp,

which is negative semi-definite. By invoking LaSalle’s invari-
ance principle [2], one can prove that the largest invariantset
contained inΩ = {x{q,p,v} : Ḣx = −x⊤

p M
−1KdM

−1xp =
0 | xp = 0} is the equilibrium pointxe = (xqe, 0, 0) =
(qe, 0, 0), thus it is asymptotically stable (see the proof of
Proposition 3.2). The PID-like controller (16) is found by
equating (1) and (14) and applying the coordinate transfor-
mation (13), that is

ṗ ≡ ẋp −Mẋv

−∇qH +Gu = −∇xq
Hx −Kd∇xp

Hx −Mẋv.

Notice that with (13) we have∇qH = ∇xq
Hx and∇xp

Hx =
M−1(p+Mxv), thus, we obtain (16). �

Remark 3.2: The PCH structure of the original model (1)
has been preserved in the augmented system (14). This can
be shown from i) the coincidence of the state equations of
both models (they are matched) ii) the preservation of the
Hamiltonian and the PCH structure [7] of the model, i.e.
the positive definiteness of the interconnection matrix. This
preservation in the closed-loop system ensures asymptotic
stability of the system as shown in the Proof of Proposition 3.1,
and robustness property is provided through the introduction
of the integral action.

B. Integral IDA-PBC for Separable PCH Systems

In Section III-A, a PID-like controller has been proposed
for both asymptotically stabilizing and robustifying the fully-
actuated PCH system. In this section, we assume that the
stabilization problem has been solved using IDA-PBC method
and we need to introduce an integral action to solve the
robustness issue. As discussed in Section II-C, a method
to include the IC for passive outputs has existed. However
for non-passive outputs, it is difficult to add the IC action
while preserving the PCH structure and stability properties
simultaneously.

In [10] a method that involves canonical transformation
of coordinates and solving a set of PDEs was proposed.
Coordinate transformation was also used in [11] to deal with
the robust control of non-passive outputs with unmatched
disturbances. An initial result towards applying IC on non-
passive outputs of PCH systems has been recently proposed
in [6]. In this method the IC is added to the PCH model that
has already been stabilized using a PBC method, exploiting
a state transformation that preserves the PCH structure of the
open-loop system. However, this method requires solving a
set of algebraic equations that account for defining the state
transformation which makes it quite complicated.

Inspired by the work of [6], [7], [11], we present a simpler
method to include the IC for non-passive outputs of PCH
system assuming a stabilizing controller has already been
obtained and we are dealing with steady-state error. The main
idea is to use the change of coordinates as in Section III-A
and [7] to obtain the IC, while preserving the structure and
stability properties of the original PCH model.

Consider the closed-loop PCH system (10) with equilibrium
satisfying (5) whenv = 0. Since throughout the IDA-PBC
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design procedures,J2 is set to 0 as bothM and Md are
constants [12], the system can be rewritten as
[
q̇
ṗ

]

=

[
0 M−1Md

−MdM
−1 −Rd

] [
∇qHd

∇pHd

]

+

[
0
G

]

v, (17)

Proposition 3.2: Consider the separable PCH system (1).
Assume a stabilizing IDA-PBC controller (6) has already been
obtained with the desired Hamiltonian (4) and the desired PCH
dynamics take the form (17). Defining the state transformation
(13) to realize the augmented closed-loop PCH system




ẋq

ẋp

ẋv



=





0 M−1Md −GKi

−MdM
−1 −Rd 0

KiG
⊤ 0 0









∇xq
Hx

∇xp
Hx

∇xv
Hx



 (18)

with

Hx =
1

2
x⊤
p M

−1
d xp +

1

2
x⊤
v K

−1
i xv + V (xq). (19)

Asymptotic stability of the equilibrium pointxe =
(xqe, 0, 0) = (qe, 0, 0) is preserved with the IC

v = −RdM
−1
d MGxv

ẋv = KiG
⊤∇xq

Hx.
(20)

Furthermore, the total control input with integral action takes
the form

u = uIDA + v + up (21)

where up = −MKiG
⊤∇xq

V (xq) is an additional control
term that appears through the procedure of finding the closed-
loop controller. �

Proof of Proposition 3.2: The proof can be established
following the same procedures as in the proof of Proposition
3.1. Furthermore, in view of (5), (13) and (19), we obtain
Ḣx = −x⊤

p M
−1
d RdM

−1
d xp ≤ 0, i.e the system is stable.

LaSalle’s invariance principle is then used to prove that the
largest invariant set contained inΩ = {x{q,p,v} : Ḣx =
−x⊤

p M
−1
d RdM

−1
d xp = 0 | xp = 0} is the equilibrium point

xe = (qe, 0, 0), thus it is asymptotically stable. Notice that
for the system to maintaiṅHx = 0 condition, the trajectory
must be confined toxp = 0. Using the system closed-loop
dynamics (18) we show that

xp ≡ 0 =⇒ ẋp ≡ 0 =⇒ ∇xq
Hx = 0.

For PCH systems, the gradient of the potential energy function
vanishes (∇xq

Hx = ∇xq
V (xq) = 0) if the system converges

to its equilibrium pointqe (see (5), Section IV in [13] and
Lemma 4.2. in [14]). Thus,

∇xq
Hx ≡ 0 =⇒ xq = qe andxv = 0.

Hence, the system can maintaiṅHx = 0 only at the equilib-
rium point xe = (qe, 0, 0), which proves that this equilibrium
is asymptotically stable. The controller is obtained by matching
the momenta of (17) and (18), that is

ṗ = −MdM
−1∇qHd −Rd∇pHd + v

≡ ẋp −MGẋv

= −MdM
−1∇xq

Hx −Rd∇xp
Hx −MGẋv.

(22)

Solving (22), we get (20) and (21). �

Remark 3.3: The IC laws (16) and (20) obtained in the PID-
like and IIDA methods, respectively, are very similar, except
that there is the termM−1

d M in the one constructed using
IIDA. This is due to the different interconnection matrices
used for the design; the original interconnection matrix inthe
case of PID-like and the desired one in the case of IIDA.
Also, the total control inputu of IIDA includes an additional
proportional control termup.

C. IC for Underactuated PCH Mechanical Systems

In Subsections III-A and III-B, we have discussed the con-
struction of controllers for separable PCH systems, requiring
the input matrixG to be full rank. This condition makes the
application to underactuated systems in whichG is non full
rank, not straightforward, whereas these systems are often
found in practice, either by design or due to faults. In this
section, a more general result, the design of IC action for
underactuated mechanical systems is proposed.

While PCH models allow some extensions in the system
coordinates, such as adding integral action, two main proper-
ties must be ensured when these extensions are added to the
model:

a. Preserving the PCH structure matrix (consult [15] for
detailed formulation). The extension must not break the
skew-symmetry of the interconnection matrix and the
positive definiteness of the dissipation matrix.

b. Preserving the passivity and (asymptotic) stability of the
closed-loop system.

Due to these constraints, all existing IC schemes within PCH
framework were limited to fully-actuated mechanical systems,
imposing the following conditions:

(i) The input matrixG is full rank.
(ii) G = G⊤, or sometimesKi = K⊤

i is used instead.

In fact, Condition (i) is not necessary because the PCH
structure can still be preserved even if the system is under-
actuated. This can be proved for instance using the Schur’s
complement [16], by showing the positive definiteness of the
interconnection and dissipation matrices even ifrank(G) =
m < n. Moreover, the formalism of IDA-PBC for underactu-
ated mechanical systems also shows that the PCH structure is
preserved even whenG is not invertible [12].

Unfortunately, stability cannot be easily verified if the
integral action is added to the underactuated PCH mechanical
systems, because Condition (ii) is not satisfied. This can be
illustrated in the following case. A simple calculation of
the derivative of the Hamiltonian function (19) along the
trajectories of the system gives

Ḣx = −x⊤
p M

−1
d RdM

−1
d xp −M−1

d xpGxv +M−1
d xpG

⊤xv.

If G = G⊤ like in the case of fully-actuated PCH system,
the last two terms are equal except with opposite signs, thus
cancel out each other. Hence,

Ḣx = −x⊤
p M

−1
d RdM

−1
d xp ≤ 0,

which proves the stability ofxe. For underactuated mechanical
systems, sinceG ∈ R

n×m 6= G⊤ ∈ R
m×n, we cannot
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draw any conclusion about the stability of the system. A
similar illustration can also be shown for the IC presented in
Section II-C. Therefore, modification is needed to deal with
underactuated systems, as discussed next.

1) Integral control on passive outputs: Here, we present
results for underactuated PCH systems withn = 2, m = 1.
Recall the desired closed-loop PCH system (11). For under-
actuated systems, the matrixG can be defined as

G =

[
g1
g2

]
(
G⊤ =

[
g1 g2

])
. (23)

Depending on how the input acts on the states, we may have
either

G1 =

[
g1
0

]
(
G⊤

1 =
[
g1 0

])
,

if the first passive output receives the direct action from the
input, or

G2 =

[
0
g2

]
(
G⊤

2 =
[
0 g2

])
,

if the second passive output receives the direct action from
the input. Instead, and without loss of generality, for the
augmented system we define a new matrixG as

G =

[
g1 0
0 g2

]

,

(

G⊤ =

[
g1 0
0 g2

])

(24)

thus, we have eitherg2 = 0 corresponding toG1, or g1 = 0
corresponding toG2.

Remark 3.4: Notice thatG = G⊤. When eitherg1 or g2 is
zero, exclusively, replacingG with G in (11) neither breaks the
PCH structure (the dynamics) nor changes the contribution of
the augmented state to the system. This is due to the fact that
rank(G) = rank(G). For example, usingG1 in the extended
state equation, we have

v̇ = −KiG
⊤∇pHdv

= −Ki

[
g1 0

]
[
∇p1

Hdv

∇p2
Hdv

]

= −Kig1∇p1
Hdv,

and usingG1, we also obtain

v̇ = −KiG
⊤
1 ∇pHdv

= −Ki

[
g1 0
0 0

] [
∇p1

Hdv

∇p2
Hdv

]

=

[
−Kig1∇p1

Hdv

0

]

.

As the last column is zero, this shows that the same result is
obtained in both cases, and the PCH dynamics are preserved.
The same case also applies to (G2,G2). Hence, with this
substitution we obtain

Ḣdv = −p⊤M−1
d RdM

−1
d p ≤ 0,

which proves the stability of the system.
Remark 3.5: Note that the replacement ofG with G, is not

meant to change the input matrix of the original PCH system,
but it is applied to the augmented system to proceed with the
design procedures.

Proposition 3.3: Replacing theG in the PCH model (11)
with G to obtain




q̇
ṗ
v̇



 =





0 M−1Md 0
−MdM

−1 J2 −Rd GKi

0 −KiG
⊤ 0









∇qHdv

∇pHdv

∇vHdv



 , (25)

allows for the integral action to be applied to underactuated
mechanical systems. �

Proof of Proposition 3.3 is established in Remark 3.4. �

2) Integral control on non-passive outputs: In Subsection
III-C1 we have considered IC on passive outputs. However in
the context of PCH mechanical systems, non-passive outputs,
usually being the states representing displacement or positions,
are often the outputs of interest. In this subsection we will
present the method of introducing the integral action on non-
passive outputs for underactuated systems. The construction of
this IC for non-passive outputs follows closely the procedures
as in Section III-B, with the replacement of matrixG by G.

Introducing the IC action to the non-passive outputs, in the
same way as how it was done to the passive outputs, yields
the closed-loop PCH system (note: compare this with (25)):




q̇
ṗ
v̇



 =





0 M−1Md 0
−MdM

−1 J2 −Rd GKi

−KiG
⊤ 0 0









∇qHdv

∇pHdv

∇vHdv



 . (26)

However, this way destroys the PCH structure of the system
(the system is no more Hamiltonian), which is obvious from
the unsymmetrical interconnection matrix.

Another option is to write the augmented system as




q̇
ṗ
v̇



 =





0 M−1Md GKi

−MdM
−1 J2 −Rd 0

−KiG
⊤ 0 0









∇qHdv

∇pHdv

∇vHdv



 , (27)

which preserves the PCH structure. However, with this form,
the IC action is not included in the control law, i.e. the IC
term is not attainable from the augmented system. To solve
this, the integral action is admitted by means of coordinates
transformation as stated in the following proposition.

Proposition 3.4: Consider the separable PCH system (1)
with G non-full rank. Assume a stabilizing IDA-PBC con-
troller (6) is already obtained with the desired (closed-loop)
energy function (4) and the desired PCH dynamics take the
form (17). We employ the state transformation (13) to realize
the augmented closed-loop PCH system




ẋq

ẋp

ẋv



=





0 M−1Md −GKi

−MdM
−1 −Rd 0

KiG
⊤ 0 0









∇xq
Hx

∇xp
Hx

∇xv
Hx



 , (28)

with the Hamiltonian function (19) and replacingG with
G. Then, asymptotic stability of the equilibrium pointxe =
(qe, 0, 0) is preserved with the IC

v = −G+RdM
−1
d MGxv

ẋv = KiG
⊤∇xq

Hx.
(29)

Furthermore, the total control input takes the form

u = uIDA + v + up (30)

where up = −G+MKiGẋv is an additional control term
which appears through the procedure of finding the feedback
controller. �

Proof of Proposition 3.4 is established following the same
procedures as in the proof of Proposition 3.2 and involving
Remark 3.4. �

In Section V, we will show by example, how this IC action
eliminates the steady-state error.
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D. ISS for Separable PCH Systems using IDA-PBC method

Here, we show our results for the input-to-state stability
(ISS) control for separable PCH mechanical systems with
time-varying disturbances employing IDA-PBC method to
obtain the stabilizing controller. The theory of input-to-state
stability (ISS) introduced in [17] is an extension of Lyapunov
stability theory to deal with systems with inputs. ISS combines
the Lyapunov stability notion and thebounded-input-bounded-
output (BIBO) stability notion [18]. ISS is a central tool in
nonlinear systems analysis that studies the influence of inputs
and disturbances on the system and the robustness of the
system with respect to such inputs. Here, we use the definition
of ISS as stated in [18, Section 3.3] and [19, Remark 2.4].

First, we will show our results for the fully-actuated me-
chanical systems, and then we show some extensions to deal
with the under-actuation case. Consider the PCH system

[
q̇
ṗ

]

=

[
0 In

−In 0

] [
∇qH
∇pH

]

+

[
0
G

]

u+

[
d1
d2

]

. (31)

The objective is to provide a control method to deal with
systems subject to matched,d2, and unmatched,d1, time-
varying bounded disturbances. We first discuss the case of
matched disturbance and then we give a general method to
deal with both types of disturbances.

1) ISS for time-varying matched disturbance: Interestingly,
the system (31) subject to matched disturbanced2 (d1 = 0) is
naturally ISS using the IC proposed in Proposition 3.2 with
the PCH form (18) rewritten (to include the disturbance) as:





ẋq

ẋp

ẋv



=





0 M−1Md −GKi

−MdM
−1 −Rd 0

KiG
⊤ 0 0









∇xq
Hx

∇xp
Hx

∇xv
Hx



+





0
d2
0



. (32)

This can be proven by taking

Hx =
1

2
x⊤
p M

−1
d xp +

1

2
x⊤
v K

−1
i xv + V (xq) (33)

as the candidate of the ISS-Lyapunov function. The Lyapunov
derivative along the trajectories of (32) is computed as

Ḣx = x⊤
p M

−1
d ẋp + x⊤

v K
−1
i ẋv +∇V ⊤(xq)ẋq

= −x⊤
p M

−1
d RdM

−1
d xp + x⊤

p M
−1
d d2

≤ −λmin(Rd)|M
−1
d xp|

2 + x⊤
p M

−1
d d2

whereλmin(Rd) is the smallest non-zero eigenvalue ofRd.
Using the Young’s inequality [7], rewritten as−ζ|y|2 +

η|y||z| ≤ − ζ
2 |y|

2 + η2

2ζ |z|
2, this yields

Ḣx ≤ −
λmin(Rd)

2
|M−1

d xp|
2 +

1

2λmin(Rd)
|d2|

2

≤ −α(|xp|) + σ(|d2|),

(34)

with α, σ ∈ K∞. By invoking LaSalle’s invariance principle,
one can prove that the closed-loop PCH system is ISS w.r.t
the matched disturbance (see the proof of Proposition 3.5).

2) ISS for time-varying matched and unmatched distur-
bances: Here we show the general case when both matched
and unmatched disturbances are present. A method to deal
with this situation has been recently reported in [7]. Un-
fortunately, this method results in a complicated closed-loop
system, due to the complex augmented PCH structure and
the complex controller. Furthermore, asymptotic stability has
not been achieved unlessd1 = 0 and d2 is constant i.e.
only matched and time invariant disturbances. The following
proposition shows our new approach, providing simpler ISS
control design method as well as achieving asymptotic stability
even in the presence of time-varying matched and unmatched
disturbances.

Proposition 3.5: Consider the separable PCH system (31)
with time-varying bounded disturbancesd1, d2 and the control
law

Gu =(∇qH −MdM
−1∇xq

Hx −RdM
−1
d p

−RdM
−1
d MGxv−ρ

∣
∣∇xq

V (xq)
∣
∣
2
∇xp

Hx−MGẋv)

ẋv = KiG
T∇xq

Hx. (35)

There exist a constantρ > 0, such that using the state
transformation (13) to realize the augmented closed-loop PCH
system




ẋq

ẋp

ẋv



=





0 M−1Md −GKi

−MdM
−1 −Rd − ρ

∣
∣∇xq

V (xq)
∣
∣
2

0
KiG

⊤ 0 0





×





∇xq
Hx

∇xp
Hx

∇xv
Hx



+





d1
d2
0



 , (36)

with the desired Hamiltonian function (33), the perturbed
closed-loop system (36) is ISS with respect to the disturbances
d1 and d2. Moreover, the function (33) is the ISS-Lyapunov
function for the system (36). �

Proof of Proposition 3.5: Consider the desired Hamiltonian
function (33) as a candidate ISS-Lyapunov function. Its time-
derivative along the trajectories of (36) along with (13) isgiven
by

Ḣx = x⊤
p M

−1
d ẋp + x⊤

v K
−1
i ẋv +∇xq

V (xq)
⊤ẋq

= −x⊤
p M

−1
d RdM

−1
d xp + x⊤

p M
−1
d d2

− x⊤
p M

−1
d ρ

∣
∣∇xq

V
∣
∣
2
M−1

d xp +∇xq
V ⊤d1

≤ −λmin(Rd)|M
−1
d xp|

2 + x⊤
p M

−1
d d2

− ρ|x⊤
p M

−1
d ∇xq

V ⊤|2 +∇xq
V ⊤d1.

(37)

Applying the Young’s inequality, where the first two terms in
the inequality (37) are treated as in (34), and using

∇xq
V ⊤d1 ≤

1

2
|∇xq

V ⊤|2 +
1

2
|d1|

2,

gives

Ḣx ≤ −
λmin(Rd)

2
|M−1

d xp|
2 +

1

2λmin(Rd)
|d2|

2

−
1

2
ρ|x⊤

p M
−1
d ∇xq

V ⊤|2 +
1

2
|d1|

2

−
1

2
ρ|x⊤

p M
−1
d ∇xq

V ⊤|2 +
1

2
|∇xq

V ⊤|2.

(38)
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Choosing a sufficiently largeρ, the term1
2ρ|x

⊤
p M

−1
d ∇xq

V ⊤|2

dominates12 |∇xq
V ⊤|2. Thus, we have

Ḣx ≤ −α(|xq, xp|) + σ(|d|), (39)

with α, σ ∈ K∞. As (39) is only negative semidefinite w.r.t.
x, we invoke LaSalle’s invariance principle to complete the
proof. Ford = 0, Ḣx = 0 implies that

−
λmin(Rd)

2
|M−1

d xp|
2 −

1

2
ρ|x⊤

p M
−1
d ∇xq

V ⊤|2 = 0

−
1

2
|M−1

d xp|
2(λmin(Rd) + ρ|∇xq

V ⊤|2) = 0.

(40)

Because the terms inside the brackets are always positive, the
only possible solutions for (40) is|M−1

d xp|
2 = 0. This implies

xp ≡ 0 =⇒ ẋp ≡ 0 =⇒ ∇xq
Hx = 0.

Invoking similar arguments to those in the proof of Propo-
sition 3.2, we obtain

∇xq
Hx ≡ 0 =⇒ xq = qe andxv = 0.

Now, from (38) and the fact theHx function is positive
definite, proper and has an isolated minimum (5) as a con-
sequence of using IDA-PBC method, all conditions of the
ISS property (see [18, Section 3.3] and [19, Remark 2.4])
are satisfied, which proves that the closed-loop PCH system
is ISS w.r.t the matched and unmatched disturbances.

Remark 3.6: Proposition 3.5 can be extended to apply
to underactuated PCH mechanical systems by replacing the
matrix G in (36) with G as in (24), in a similar way as the
results in Section III-C.

E. Adaptive IDA-PBC control for separable PCH systems

The implementation of the IDA-PBC controller (6) requires
the exact knowledge of the system’s parameters, essentially
the inertia matrixM and the potential energy functionV .
Neglecting parameter uncertainties may deteriorate the stabil-
ity and/or the transient behavior of the control system. This
motivates the establishment of an adaptive scheme to estimate
the uncertainties.

A common occurrence of uncertainties in PCH models is
the uncertainty in the potential energy function, thus in the
gradient of this function. The linearly parameterized gradient
of the potential energy function can then be written as

∇qV (q) = F (q)θ, (41)

where the matrix functionF (q) is known and the vectorθ
contains the unknown, but constant parameters. Notice that
in the IDA-PBC method thedesired potential energy function
Vd(q) (the second term in (4)) containsV (q) in its terms.
Therefore, the gradient of this function can be written as

∇qVd(q) = ∇qV (q) + S(q) = F (q)θ + S(q), (42)

whereS(q) is known. To deal with the class of PCH systems
with this type of uncertainty, we propose two adaptive-IDA-
PBC control methods. In the first method, the integral action
is applied on the passive outputs, while in the second method
is applied on the non-passive outputs and includes a change
of coordinates.

1) Integral control on passive outputs:
Proposition 3.6: Consider the separable PCH system (1).

The potential energy functionV (q) of the system contains
uncertainties, hence its gradient can be represented as in (41).
Define the augmented closed-loop PCH system as




q̇
ṗ
˙̂
θ



 =





0 M−1Md 0
−MdM

−1 −Rd QF (q)
0 −(QF (q))⊤ 0









∇qHd

∇pHd

∇θ̃Hd



 ,

(43)
whereθ̂ is the estimate ofθ, θ̃ = θ̂− θ is the estimation error,
Q = (In −MdM

−1) and

Hd =
1

2
p⊤M−1

d p+
1

2
|θ̃|2 + Vd(q) (44)

is the desired Hamiltonian function. Then, the controller

Gu = F θ̂ −MdM
−1F θ̂ −MdM

−1S −RdM
−1
d p, (45)

with the update law

˙̂
θ = −(QF )⊤∇pHd, (46)

stabilizes the system at the equilibrium(qe, 0, θ). �

Proof of Proposition 3.6: Consider the desired Hamiltonian
function (44) as a candidate Lyapunov function. Its time
derivative along the trajectories of (43) satisfies

Ḣd = p⊤M−1
d ṗ+ θ̃⊤

˙̃
θ +∇qV

⊤
d q̇

= p⊤M−1
d (−MdM

−1∇qVd−Rd∇pHd+QF∇θ̃Hd)

− θ̃⊤(F⊤Q⊤∇pHd)+∇qV
⊤
d (M−1Md∇pHd)

= −p⊤M−1∇qVd−p⊤M−1
d RdM

−1
d p+p⊤M−1

d QFθ̃

− θ̃⊤F⊤Q⊤M−1
d p+∇qV

⊤
d M−1p

= −p⊤M−1∇qVd+(p⊤M−1∇qVd)
⊤+p⊤M−1

d QFθ̃

− (p⊤M−1
d QFθ̃)⊤ − p⊤M−1

d RdM
−1
d p

= −p⊤M−1
d RdM

−1
d p ≤ −|M−1

d p|2Rd
≤ 0.

(47)

Notice that from (47), we haveḢd = 0 =⇒ p = 0.
Furthermore,p ≡ 0 =⇒ ṗ ≡ 0. Thus, under the dynamics
(43) yields:

ṗ = −MdM
−1∇qVd −Rd∇pHd +QF (q)∇θ̃Hd

= −MdM
−1(Fθ + S(q))−RdM

−1
d p+QFθ̃

= −MdM
−1(Fθ + S) + (In −MdM

−1)F (θ̂ − θ) (48)

= −MdM
−1Fθ +MdM

−1Fθ −MdM
−1S −MdM

−1F θ̂

+ F θ̂ − Fθ = 0

= −MdM
−1S −MdM

−1F θ̂ + F θ̂ − Fθ = 0.

From (44) and (47),p ∈ L2 ∩ L∞ andq, θ̃ ∈ L∞. Therefore,
the zero momentum (velocity) may guarantee boundedθ̃ and
consequently the convergence of the position states to their
desired values but with steady-state errors. That is, the smallest
θ̃ =⇒ θ̂ ≈ θ. Now, from (48) this implies thatF θ̂ + S ≈ 0.
SinceF θ̂+S = ∇qHd = 0, using similar arguments as in the
proof of Proposition 3.2, we have

∇qHd ≡ 0 =⇒ q = qe.

This shows that some asymptotic properties of the proposed
design method can be concluded. �
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2) Integral control on non-passive outputs: Another
method to design an adaptive controller is by applying the
integral action on the non-passive outputs. Thus, we obtain
the following closed-loop PCH model:





q̇
ṗ
˙̂
θ



 =





0 M−1Md U
−MdM

−1 −Rd 0
−U 0 0









∇qHd

∇pHd

∇θ̃Hd



 . (49)

WhereU is a constant matrix. Two problems arise from this

method; 1) the update law˙̂θ = −U∇qHd = −U(F (q)θ +
S(q)), is a function of the unknownθ, and 2) the integral
action is unattainable from the closed-loop system. To solve
these problems we propose a change of coordinates similar to
those proposed in the previous sections, aiming at asymptoti-
cally stabilizing the uncertain system (1) at the the equilibrium
point (qe, 0, θ).

Proposition 3.7: Consider the separable PCH system (1).
The potential energy functionV (q) of the system contains
uncertainties, hence its gradient can be represented as in (41).
Define the state transformation

xq = q; xp = p− U θ̃; xθ̃ = θ̃, (50)

to realize the augmented closed-loop PCH system




ẋq

ẋp

ẋ
θ̂



 =





0 M−1Md M−1U
−MdM

−1 −Rd Λ
−M−1U −Λ −Υ









∇xq
Hx

∇xp
Hx

∇x
θ̃
Hx



 .

(51)
whereθ̂ is the estimate ofθ, θ̃ = θ̂− θ is the estimation error,
Rd,Υ > 0,

Λ = F (q)−MdM
−1F (q)−RdM

−1
d U

Υ = M−1UF (q) + ΛM−1
d U

and

Hx =
1

2
x⊤
p M

−1
d xp +

1

2
|θ̃|2 + V (xq), (52)

is the desired Hamiltonian function. Then, the controller

Gu = F (q)θ̂−MdM
−1F (q)θ̂−MdM

−1S(q)−RdM
−1
d p+U

˙̂
θ,

(53)
with the update law

ẋ
θ̂
=

˙̂
θ = −M−1UF (q)θ̂ −M−1US(q)− ΛM−1

d p, (54)

asymptotically stabilizes the system at the equilibrium
(qe, 0, θ). �

Proof of Proposition 3.7: The proof is established by (i)
verifying the coincidence of the position and momenta states
of system (1) with their corresponding states in (51). (ii)
Showing that the expression of the update lawẋ

θ̂
doesn’t

depend onθ. (iii) Showing that the proposed method achieves
asymptotic stability.

(i) For the position statesq, we have

ẋq = M−1Md∇xp
Hx +M−1U∇x

θ̃
Hx

= M−1MdM
−1
d xp +M−1U θ̃

= M−1(p− U θ̃) +M−1U θ̃ = M−1p ≡ q̇,

and for the momentap,

ṗ ≡ ẋp + U
˙̂
θ (

˙̃
θ =

˙̂
θ asθ is constant)

Gu−∇qH = −MdM
−1∇xq

Hx −Rd∇xp
Hx + Λ∇x

θ̃
Hx

+ U
˙̂
θ

Gu− Fθ = −MdM
−1(Fθ + S)−RdM

−1
d (p− U θ̃)

+ (F −MdM
−1F −RdM

−1
d U)θ̃ + U

˙̂
θ.

Using (̃θ = θ̂ − θ) and solving, we obtain (53).
(ii) The update law is given by

ẋ
θ̂
= −M−1U∇xq

Hx − Λ∇xp
Hx −Υ∇x

θ̃
Hx

= −M−1U(Fθ + S)− ΛM−1
d (p− U θ̃)

− (M−1UF + ΛM−1
d U)θ̃ (55)

= −M−1U(Fθ + S)− ΛM−1
d p+ ΛM−1

d U θ̃ −M−1UF θ̃

− ΛM−1
d U θ̃

= −M−1UFθ −M−1US − ΛM−1
d p−M−1UF θ̃.

Substituting (̃θ = θ̂ − θ) in the last row in (55), yields

ẋ
θ̂
= −M−1UFθ −M−1US − ΛM−1

d p−M−1UF θ̂

+M−1UFθ.

Canceling like terms but with opposite signs, we obtain (54).
(iii) Consider the function (52), whose time-derivative along

the trajectories of (51) along with (50) is

Ḣx = (∇xp
Hx)

⊤ẋp + (∇x
θ̃
Hx)

⊤ẋ
θ̂
+ (∇xq

Hx)
⊤ẋq

= ∇xp
H⊤

x (−MdM
−1∇xq

Hx −Rd∇xp
Hx + Λ∇x

θ̃
Hx)

+∇x
θ̃
H⊤

x (−M−1U∇xq
Hx − Λ∇xp

Hx −Υ∇x
θ̃
Hx)

+∇xq
H⊤

x (M−1Md∇xp
Hx +M−1U∇x

θ̃
Hx) (55)

= −∇xp
H⊤

x MdM
−1∇xq

Hx −∇xp
H⊤

x Rd∇xp
Hx

+∇xp
H⊤

x Λ∇x
θ̃
Hx −∇x

θ̃
H⊤

x M−1U∇xq
Hx

−∇x
θ̃
H⊤

x Λ∇xp
Hx −∇x

θ̃
H⊤

x Υ∇x
θ̃
Hx

+∇xq
H⊤

x M−1Md∇xp
Hx +∇xq

H⊤
x M−1U∇x

θ̃
Hx.

Taking the transpose of the terms∇xq
H⊤

x M−1Md∇xp
Hx,

∇x
θ̃
H⊤

x Λ∇xp
Hx and∇xq

H⊤
x M−1U∇x

θ̃
Hx and rearranging,

yields

Ḣx = −∇xp
H⊤

x MdM
−1∇xq

Hx + (∇xp
H⊤

x MdM
−1∇xq

Hx)
⊤

+∇xp
H⊤

x Λ∇x
θ̃
Hx − (∇xp

H⊤
x Λ∇x

θ̃
Hx)

⊤

−∇x
θ̃
H⊤

x Υ∇x
θ̃
Hx −∇x

θ̃
H⊤

x M−1U∇xq
Hx (56)

−∇xp
H⊤

x Rd∇xp
Hx + (−∇x

θ̃
H⊤

x M−1U∇xq
Hx)

⊤

= −∇xp
H⊤

x Rd∇xp
Hx −∇x

θ̃
H⊤

x Υ∇x
θ̃
Hx

≤ −|∇xp
Hx|

2
Rd

− |∇x
θ̃
Hx|

2
Υ.

Thus, the system (51) has a stable equilibrium at(qe, 0, θ) with
xp, xθ̃ ∈ L2∩L∞. The convergence of the states is established
invoking the following practical corollary of Barbalat’s lemma
[20]:

Corollary 3.1: Consider a functionφ : R≥0 → R and
suppose thatφ(t) ∈ L2 ∩ L∞ and φ̇(t) ∈ L∞. Then
limt→∞ φ(t) = 0. �
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Applying Corollary 3.1, implies the convergence of statesxp

andxθ̃ to zero (xp, xθ̃ → 0 ast → ∞). Moreover,θ̃ = 0 =⇒

θ̂ = θ. Finally, the convergence of the statesxq to their desired
states is established as follows:
xp, xθ̃ ≡ 0 =⇒ ẋp,

˙̂
θ ≡ 0. Thus, under the dynamics of

(51) yields:

ẋp = −MdM
−1∇xq

Hx −Rd∇xp
Hx + Λ∇x

θ̃
Hx = 0

= −MdM
−1∇xq

Hx −RdM
−1
d xp

︸ ︷︷ ︸

=0

+ Λθ̃
︸︷︷︸

=0

= 0

= −MdM
−1∇xq

Hx = 0.

(57)

This implies∇xq
Hx = 0. Invoking similar arguments to those

in the proof of Proposition 3.2, we obtain

∇xq
Hx ≡ 0 =⇒ xq = qe.

Since all trajectories converge to their desired values, we
can conclude that the closed-loop system (51) has anasymp-
totically stable equilibrium at(qe, 0, θ). �

IV. ROBUST CONTROL OFNON-SEPARABLE

HAMILTONIAN SYSTEMS

In this section, we extend our results in Section III to
deal with non-separable PCH systems. In this case, asM
and Md are functions ofq, their derivatives need to be
taken into account in the construction of the control law.
Fortunately, our approaches do not require significant changes
in the interconnection matrices (thus the augmented closed-
loop PCH models) which have been constructed from their
separable counterparts (in [7] significant changes applied).
As expected, more complicated control laws are obtained as
a consequence. Before we state the results, we show some
necessary differentiations that are used throughout the proof
of results. Similar to (13), we start with defining

xp = p+ P

P = M(xq)Gxv.
(58)

The derivative is obviously

ẋp = ṗ+ Ṗ, (59)

while ẋp and ṗ are obtained directly from their corresponding
PCH models. The terṁP is calculated as

Ṗ = ṀGxv +MGẋv,

ṀGxv =
n∑

i=1

(∇qiMGxv)(e
⊤
i ẋq).

(60)

Second, given non-constantM(xq) andMd(xq), the derivative
of the Hamiltonian function

Hx =
1

2
x⊤
p M

−1
d (xq)xp +

1

2
x⊤
v K

−1
i xv + V (xq), (61)

becomes

Ḣx = (∇xp
Hx)

⊤ẋp + (∇xv
Hx)

⊤ẋv + (∇xq
Hx)

⊤ẋq

= x⊤
p M

−1
d ẋp + x⊤

v K
−1
i ẋv

+

(

∇xq
V ⊤
x +

1

2

n∑

i=1

eix
⊤
p ∇qiM

−1
d xp

)

ẋq,

(62)

where the derivative ofMd is now taken into account.

A. Integral IDA-PBC for non-separable PCH systems

Proposition 4.1: Consider the non-separable PCH system
(1). Assume a stabilizing IDA-PBC controller (6) has already
been obtained with the desired (closed-loop) energy function
(4) and the desired PCH dynamics take the form
[
q̇
ṗ

]

=

[
0 M−1Md(q)

−MdM
−1(q) J2 −Rd

] [
∇qHd

∇pHd

]

+

[
0
G

]

v. (63)

Defining the state transformation (13) to realize the augmented
closed-loop PCH system




ẋq

ẋp

ẋv



=





0 M−1Md(xq) −GKi

−MdM
−1(xq) J2 −Rd 0

KiG
⊤ 0 0









∇xq
Hx

∇xp
Hx

∇xv
Hx





(64)
with the Hamiltonian function (61), asymptotic stability of the
equilibrium pointxe = (qe, 0, 0) is preserved with the IC

Gv = −
1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d MGxv

−
1

2
MdM

−1
n∑

i=1

eix
⊤
v GM∇qiM

−1
d p

−
1

2
MdM

−1
n∑

i=1

eix
⊤
v GM∇qiM

−1
d MGxv

−

n∑

i=1

(
∂M

∂xqi

Gxv

)

(e⊤i ẋq)

+ (J2 −Rd)M
−1
d MGxv −MGẋv

(65)

and ẋv = KiG
⊤∇xq

Hx. �

Proof of Proposition 4.1: The proof can be established
following the same procedures as in the proof of Proposition
3.2. The time derivative of the Hamiltonian function (61) along
the trajectories of the system is

Ḣx = ∇xp
H⊤

x ẋp +∇xv
H⊤

x ẋv +∇xq
H⊤

x ẋq

= −∇xp
H⊤

x MdM
−1∇xq

Hx +∇xp
H⊤

x (J2 −Rd)∇xp
Hx

+∇xv
H⊤

x KiG
⊤∇xq

Hx +∇xq
H⊤

x M−1Md∇xp
Hx

−∇xq
H⊤

x GKi∇xv
Hx.

Taking a transpose of certain terms (to cancel out similar terms
with different signs) and rearranging:

Ḣx=−∇xp
H⊤

x MdM
−1∇xq

Hx+
(
∇xp

H⊤
x MdM

−1∇xq
Hx

)⊤

+∇xv
H⊤

x KiG
⊤∇xq

Hx −
(
∇xv

H⊤
x KiG

⊤∇xq
Hx

)⊤

+∇xp
H⊤

x J2∇xp
Hx −∇xp

H⊤
x Rd∇xp

Hx

= ∇xp
H⊤

x J2∇xp
Hx −∇xp

H⊤
x Rd∇xp

Hx

= −x⊤
p M

−1
d RdM

−1
d xp ≤ 0.

Notice that becauseJ2 = −J⊤
2 , the term(∇xp

Hx)
⊤J2∇xp

Hx

is equal to zero. Furthermore, asymptotic stability is concluded
by applying LaSalle’s invariance principle:

−x⊤
p M

−1
d RdM

−1
d xp = 0 =⇒ xp = ẋp ≡ 0

=⇒ Md(xq)M
−1(xq)∇xq

Hx = 0.
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GivenM(xq),Md(xq) > 0, then we have∇xq
Hx = 0 which

is only true if the system converges to its equilibrium point
qe. Thus,

∇xq
Hx ≡ 0 =⇒ xq = qe andxv = 0,

which proves that this equilibrium isasymptotically stable.
The controller is obtained by matching the momenta of (63)
and (64) along with the change of coordinates (13) and its
time derivative (59), we get

ṗ = −MdM
−1∇qHd + J2∇pHd −Rd∇pHd +Gv

≡ ẋp − Ṗ

= −MdM
−1∇xq

Hx + (J2 −Rd)∇xp
Hx − Ṗ.

(66)

Rearranging the terms,

Gv −
1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p−MdM

−1∇qVd

+ (J2 −Rd)M
−1
d p ≡ −

1

2
MdM

−1
n∑

i=1

eix
⊤
p ∇qiM

−1
d xp

−MdM
−1∇qVd + (J2 −Rd)M

−1
d xp − Ṗ. (67)

Now, Substituting (58) and (60) in (67 ) and computing we
obtain

Gv −
1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p−MdM

−1∇qVd

+ (J2 −Rd)M
−1
d p ≡ −

1

2
MdM

−1(p⊤∇qM
−1
d p)

−
1

2
MdM

−1
n∑

i=1

eip
⊤(∇qiM

−1
d )MGxv

−
1

2
MdM

−1
n∑

i=1

eix
⊤
v GM(∇qiM

−1
d )p (68)

−
1

2
MdM

−1
n∑

i=1

eix
⊤
v GM(∇qiM

−1
d )MGxv

−MdM
−1∇qVd + (J2 −Rd)(M

−1
d p+M−1

d MGxv)

−

n∑

i=1

(
∂M

∂xqi

Gxv

)

(e⊤i ẋq)−MGẋv.

Canceling the similar terms on the left-hand side and right-
hand side of (68), we get the control law (65) and thus the
proof is completed. �

B. ISS for non-separable PCH systems using IDA-PBC
method

The case of time-varying matched disturbance is treated
following the same procedures of its separable counterparts,
and taking into account the derivatives ofM andMd. Here,
we present the general case of time-varying matched and
unmatched disturbances.

Proposition 4.2: Consider the non-separable PCH system
(31) with time-varying bounded disturbancesd1, d2 and the

control law

Gu = ∇qH −MdM
−1∇xq

Hx + (J2 −Rd)M
−1
d p

+ (J2 −Rd)M
−1
d MGxv + ρT 2∇xp

Hx

−

n∑

i=1

(∇qiMGxv)(e
⊤
i M

−1Md∇xp
Hx) (69)

+

n∑

i=1

(∇qiMGxv)(e
⊤
i GKi∇xv

Hx)−MGẋv

ẋv = KiG
T∇xq

Hx,

with T =

∣
∣
∣
∣
∇xp

H⊤
x

n∑

i=1

∇qMGxv +∇xq
H⊤

x

∣
∣
∣
∣
. There exist a

constantρ > 0, such that using the state transformation (13)
to realize the augmented closed-loop PCH system




ẋq

ẋp

ẋv



=





0 M−1Md −GKi

−MdM
−1 J2 −Rd + ρT 2 0

KiG
⊤ 0 0









∇xq
Hx

∇xp
Hx

∇xv
Hx





+







d1

d2+
n∑

i=1

∇qiMGxv(e
⊤
i d1)

0







(70)

and the desired Hamiltonian function (61), the perturbed
closed-loop system (70) is ISS with respect to the disturbances
d1 and d2. Moreover, the function (61) is the ISS-Lyapunov
function for the system (70). �

Proof of Proposition 4.2: Consider the desired Hamiltonian
function (61) as a candidate ISS-Lyapunov function. Its time-
derivative along the trajectories of (70) along with (13) isgiven
by

Ḣx = (∇xp
Hx)

⊤ẋp + (∇xv
Hx)

⊤ẋv + (∇xq
Hx)

⊤ẋq

= −∇xp
H⊤

x MdM
−1∇xq

Hx +∇xp
H⊤

x (J2 −Rd)∇xp
Hx

+∇xp
H⊤

x ρT∇xp
Hx +∇xp

H⊤
x d2

+∇xp
H⊤

x

n∑

i=1

(∇qiMGxv)(e
⊤
i d1)

+∇xv
H⊤

x KiG
⊤∇xq

Hx +∇xq
H⊤

x M−1Md∇xp
Hx

−∇xq
H⊤

x GKi∇xv
Hx +∇xq

H⊤
x d1

= −x⊤
p M

−1
d RdM

−1
d xp + x⊤

p M
−1
d d2

− x⊤
p M

−1
d ρT 2M−1

d xp + Td1

≤ −λmin(Rd)|M
−1
d xp|

2 + x⊤
p M

−1
d d2

− ρ|x⊤
p M

−1
d T |2 + Td1. (71)

Applying the Young’s inequality, where the first two terms in
the inequality (71) are treated as in (34), and using

Td1 ≤
1

2
|T |2 +

1

2
|d1|

2,

gives

Ḣx ≤ −
λmin(Rd)

2
|M−1

d xp|
2 +

1

2λmin(Rd)
|d2|

2

−
1

2
ρ|x⊤

p M
−1
d T |2 +

1

2
|d1|

2

−
1

2
ρ|x⊤

p M
−1
d T |2 +

1

2
|T |2.

(72)
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Choosing a sufficiently largeρ, the term 1
2ρ|x

⊤
p M

−1
d T |2

dominates12 |T |
2. Thus, we have

Ḣx ≤ −α(|xq, xp|) + σ(|d|), (73)

with α, σ ∈ K∞. As (73) is only negative semidefinite
with respect to.x, we invoke LaSalle’s invariance principle
to complete the proof. Ford = 0, Ḣx = 0 implies that

−
λmin(Rd)

2
|M−1

d xp|
2 −

1

2
ρ|x⊤

p M
−1
d T |2 = 0

−
1

2
|M−1

d xp|
2(λmin(Rd) + ρ|T |2) = 0.

(74)

Because the terms inside the brackets are always positive, the
only possible solution for (74) is|M−1

d xp|
2 = 0. This implies

xp ≡ 0 =⇒ ẋp ≡ 0 =⇒ ∇xq
Hx = 0. Invoking similar

arguments to those in the proof of Proposition 3.2, we obtain

∇xq
Hx ≡ 0 =⇒ xq = qe andxv = 0.

Now, from (72) and the fact theHx function is positive defi-
nite, proper and has an isolated minimum (5) as a consequence
of using IDA-PBC method, all conditions of the ISS property
(see [18, Section 3.3] and [19, Remark 2.4]) are satisfied,
which proves that the closed-loop PCH system is ISS with
respect to the matched and unmatched disturbances.

C. Adaptive IDA-PBC control for non-separable PCH systems

The case of integral control on passive outputs is treated
following the same procedures of its separable counterparts,
and taking into account the derivatives ofM andMd. Here,
we present the case of non-passive outputs, which is usually
the case of interest.

Proposition 4.3: Consider the nonseparable PCH system (1).
The potential energy functionV (q) of the system contains
uncertainties, hence its gradient can be represented as in (41).
Define the state transformation

xq = q; xp = p− U θ̃; xθ̃ = θ̃, (75)

to realize the augmented closed-loop PCH system




ẋq

ẋp

ẋ
θ̂



=





0 M−1Md M−1U
−MdM

−1 −Rd Λ
−M−1U −Λ −Υ









∇xq
Hx

∇xp
Hx

∇x
θ̃
Hx



, (76)

whereθ̂ is the estimate ofθ, θ̃ = θ̂− θ is the estimation error,
Rd,Υ > 0,

Λ = F (q)−MdM
−1F (q) + (J2 −Rd)M

−1
d U

−MdM
−1

n∑

i=1

eip
⊤∇qiM

−1
d U (77)

+
1

2
MdM

−1
n∑

i=1

ei(U θ̃)
⊤∇qiM

−1
d U

Υ = F (q)M−1
d U − (J2 −Rd)(M

−1
d U)2

−
1

2
M−1U

n∑

i=1

eip
⊤∇qiM

−1
d U (78)

and
Hx =

1

2
x⊤
p M

−1
d xp +

1

2
|θ̃|2 + V (xq), (79)

is the desired Hamiltonian function. Then, the controller

Gu = F (q)θ̂ −MdM
−1(F (q)θ̂ + S(q)) + (J2 −Rd)M

−1
d p

+
1

2

n∑

i=1

eip
⊤∇qiM

−1p (80)

−
1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p+ U

˙̂
θ,

with the update law

ẋ
θ̂
= −M−1U(F (q)θ̂ + S(q)) + (M−1 −M−1

d )F (q)p

+
1

2
M−1U

n∑

i=1

eip
⊤∇qiM

−1
d p, (81)

asymptotically stabilizes the system at the equilibrium
(qe, 0, θ). �

Proof of Proposition 4.3:
Following the same procedures as in the proof of Proposition
3.7; the time derivative of the Hamiltonian function (79) along
the trajectories of the system is obtained as

Ḣx = −∇xp
H⊤

x (J2 −Rd)∇xp
Hx −∇x

θ̃
H⊤

x Υ∇x
θ̃
Hx

≤ −|∇xp
Hx|

2
Rd

− |∇x
θ̃
Hx|

2
Υ,

where the term(∇xp
Hx)

⊤J2∇xp
Hx is equal to zero because

J2 = −J⊤
2 . Thus, the system (76) has a stable equilibrium

at (qe, 0, θ) with xp, xθ̃ ∈ L2 ∩ L∞. By applying Corollary
3.1, we can conclude the convergence of statesxp andxθ̃ to
zero (xp, xθ̃ → 0 as t → ∞). Moreover,θ̃ = 0 =⇒ θ̂ = θ.
The convergence of the statesxq to their desired equilibrium
is established as follows:

xp, xθ̃ ≡ 0 =⇒ ẋp,
˙̂
θ ≡ 0.

Thus, under the dynamics of (76) yields:

ẋp = −MdM
−1∇xq

Hx + (J2 −Rd)∇xp
Hx + Λ∇x

θ̃
Hx = 0

= −MdM
−1






∇xq

Vx +
1

2
x⊤
p (∇xq

M−1
d )xp

︸ ︷︷ ︸

=0







+ (J2 −Rd)M
−1
d xp

︸ ︷︷ ︸

=0

+ Λθ̃
︸︷︷︸

=0

= 0 (82)

= −MdM
−1∇xq

Vx = 0.

This implies∇xq
Vx = 0. Invoking similar arguments to those

in the proof of Proposition 3.2, we obtain

∇xq
Vx ≡ 0 =⇒ xq = qe.

Since all trajectories converge to their desired values, wecan
conclude that the closed-loop system (51) has anasymptoti-
cally stable equilibrium at(qe, 0, θ).
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The controller is obtained by matching the momenta of (1)
and (76), that is

ṗ ≡ ẋp + U
˙̂
θ

Gu−∇qH = −MdM
−1∇xq

Hx + (J2 −Rd)∇xp
Hx

+ Λ∇x
θ̃
Hx + U

˙̂
θ

Gu− Fθ −
1

2

n∑

i=1

eip
⊤∇qiM

−1p = −MdM
−1(Fθ + S)

−
1

2
MdM

−1
n∑

i=1

eix
⊤
p ∇qiM

−1
d xp

+ (J2 −Rd)M
−1
d xp + Λθ̃ + U

˙̂
θ. (83)

Substitutingxp = p− U θ̃ and (77) in (83) yields:

Gu = Fθ +
1

2

n∑

i=1

eip
⊤∇qiM

−1p−MdM
−1(Fθ + S)

−
1

2
MdM

−1
n∑

i=1

eip
⊤∇qiM

−1
d p

+MdM
−1

n∑

i=1

eip
⊤∇qiM

−1
d U θ̃

−
1

2
MdM

−1
n∑

i=1

eiU θ̃
⊤∇qiM

−1
d U θ̃

+
(

F −MdM
−1F + (J2 −Rd)M

−1
d U

−MdM
−1

n∑

i=1

eip
⊤∇qiM

−1
d U

+
1

2
MdM

−1
n∑

i=1

eiU θ̃
⊤∇qiM

−1
d U

)

θ̃

+ (J2 −Rd)M
−1
d p− (J2 −Rd)M

−1
d U θ̃ + U

˙̂
θ.

Using θ̃ = θ̂ − θ and canceling like terms but with opposite
signs, we obtain the controller (80). Finally, the update law is
computed as:

ẋ
θ̂
= −M−1U∇xq

Hx − Λ∇xp
Hx −Υ∇x

θ̃
Hx

= −M−1U(Fθ + S)−
1

2
M−1U

n∑

i=1

eix
⊤
p ∇qiM

−1
d xp

− ΛM−1
d xp −Υθ̃. (84)

Substitutingxp = p − U θ̃, (77) and (78) in (84) , and using
θ̃ = θ̂ − θ then canceling like terms but with opposite signs,
we obtain the update law (81). Hence, it completes the proof.
�

V. A PPLICATION: THE INERTIA WHEEL PENDULUM

We use the Quanser IWP module [21], whose simplified
free body diagram of the mechanical part is shown in Figure
1. It consists of an unactuated planar inverted pendulum with
an actuated symmetric disk/wheel attached to its end, which
is free to rotate about an axis parallel to the axis of rotation
of the pendulum. The system has two degrees-of-freedom; the
angular position of the pendulumq1 and the angular position

of the wheelq2. Only the wheel is actuated by a motor, hence
the system is underactuated. The dynamic equations of the

2qu

x

y

l

1cl ,p pm I

,w wm I

1q

Fig. 1: The Inertia Wheel Pendulum.

IWP system can be written in a PCH form (1) withn = 2,
m = 1 and

M =

[
k1 k2
k2 k2

]

, G = e2 =

[
0
1

]

, and (85)

V (q1) = k3 (1 + cos(q1)) , (86)

where, the control inputu is the motor torque,k1 = mpl
2
c1
+

mwl
2+Ip+Iw, k2 = Iw andk3 = g(mplc1+mwl). The values

of the model parameters are as follows [21]):mp = 0.2164,
mw = 0.085, l = 0.2346, lc1 = 0.1173, Ip = 2.233 × 10−4,
Iw = 2.495× 10−5, andg = 9.81.

A. IDA-PBC Stabilizing Controller

To start with, a stabilizing controller is obtained using IDA-
PBC design procedures proposed in [9]. The main objective is
to provide a continuous control law to swing up the pendulum
by spinning the wheel and to stabilize it at its upward position
q = (0, q2) for anyq2 ∈ [0, 2π]. By fixing Md to be a constant
matrix of the form

Md = ∆

[
m1 m2

m2 m3

]

= ∆




m1

(
k2

k1

)

m1 + ε
(

k2

k1

)

m1 + ε m3



 ,

(87)
where ε > 0, ∆ = k1k2 − k22 and havingG⊥ = [1 0], the
desired Hamiltonian (4) is obtained as

Hd =
1

2
p⊤M−1

d p+ Vd(q), (88)

Vd(q) = −k3γ1 cos(q1) +
1

2
Kp(εk1γ1q1 + q2)

2, (89)

with γ1 = 1
k2(m2−m1)

and Kp > 0 the gain of the energy
shaping controller which is calculated as

ues = γ2 sin(q1) +Kpγ3(εk1γ1q1 + q2), (90)

with γ2 = −k3γ1(m2k2 − m3k2), γ3 = −εk1γ1(m2k2 −
m3k2)− (−m2k2 +m3k1). The damping injection controller
is

udi = −Kv

∆

∆d

(−m2p1 +m1p2), (91)

with ∆d = det(Md) = ∆2(m1m3 − m2
2) and Kv > 0 the

damping injection controller gain.
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B. Integral Action Controller

We apply the procedure given in Proposition 3.4 to design
the integral controller for the IWP system. GivenG =
[
0 1

]⊤
, then the matrixG is defined as

G =

[
0 0
0 1

]

.

The IC on the non-passive output is then calculated as

v = KvKi

∆

∆d

(m2k1 −m1k2)xv,

ẋv = Kp(εk1γ1q1 + q2)
(92)

and the extra termup = −Kik2Kp(εk1γ1q1 + q2).

C. ISS Controller

Following the ISS controller design presented in Subsec-
tion III-D, in particular Proposition 3.5, the control input is
obtained as

u=uIDA−
ρ∆

∆d

(
β1(m3p1−m2p2)−β2(m2p1−m1p2)

)

−
ρ∆

∆d

(
β1(m3k2 −m2k2)−β2(m2k2 −m1k2)

)
xv

−KiKvk2
∆

∆d

(m2+m1)xv−Kik2Kp(εk1γ1q1+q2),

(93)

with the update law

ẋv = KiKp(εk1γ1q1 + q2), (94)

and

β1 = Kp(εk1γ1q1 + q2) (k3γ1 sin(q1)

+Kpεk1γ1(εk1γ1q1 + q2))

β2 = K2
p(εk1γ1q1 + q2)

2.

D. Adaptive-IDA-PBC Controller

Following the discussion in Subsection III-E, here we show
the design of an adaptive controller to compensate for the
uncertainty in the potential energy functionV (q). Consider
the potential energy function of IWP system (86), the gradient
of this function is

∇qV = −k3 sin(q1), (95)

which can be linearly parametrized as (41), withF (q1) =
− sin(q1) and θ = k3 the uncertain term. Thus, the energy
shaping controller (90) is rewritten as

ues=−θγ1(m2k2−m3k2) sin(q1)+Kpγ3(εk1γ1q1+q2). (96)

Thus, the overall adaptive-IDA control input is obtained as

u = −θ̂γ1(m2k2 −m3k2) sin(q1) +Kpγ3(εk1γ1q1 + q2)

−Kv

∆

∆d

(−m2p1 +m1p2) (97)

˙̂
θ = −

∆

∆d

(k2m1 − k2m2 − 1)(−m3p1 +m2p2)θ̂ sin(q1).

E. Simulations

In this section, the integral, ISS and adaptive IDA controllers
designed for the IWP system are implemented in a MAT-
LAB/SIMULINK environment to evaluate the performance of
the control system. In all simulations, the initial condition
[q0, p0] = [π, 0, 0, 0] for the system is used.

1) Integral IDA-PBC simulations: Here, we show simula-
tions for a tracking control problem where the pendulum is
required to track a sinusoidal reference signalq1r . A constant
force disturbance of1N is also injected into the dynamic
of q1. We implement the integral IDA-PBC controller with
the parametersm1 = 0.4, m3 = 5, ǫ = 1, Kp = 0.5,
Kv = 1×10−5 andKi = 1.2. The simulation results in Figure
2 show that without integral action, the system subject to
external disturbance exhibits a large steady-state error,which
can be observed particularly in the trajectory ofq2. With
integral action, the trajectories track their desired references
despite the presence of the constant disturbance, bringingthe
trajectories to converge smoothly to their desired values.In
Figure 3 we show the trajectory ofq2 comparing it to the case
of no disturbance as the reference.
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Fig. 2: State trajectories and control input of the IWP system
for the tracking and disturbance rejection control problem.
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Fig. 3: Angle of the wheelq2 for the tracking and disturbance
rejection control problem.

2) ISS simulations: The ISS control law described above
have been implemented on the IWP system for bothmatched
andunmatched disturbances cases with the design parameters
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m1 = 0.4, m3 = 5, ǫ = 1, Kp = 1.1, andKv = 5.6× 10−5.
The disturbance vector is selected asd = λ tanh(ṗ).

We first consider the robust control problem of the IWP
system havingmatched disturbances. Figures 4 and 5 show the
behaviour of the system subject to small (λ = 0.5) and large
(λ = 1) disturbances where theISS controller parameters have
been chosen asKi = 1 and ρ = 0.1 × 10−12. As expected,
we can see that all states (signals) converge to their respective
desired equilibrium values with high performance.
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Fig. 4: State trajectories of the IWP system formatched
disturbance control problem.
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Fig. 5: Control input, update law and disturbance inputs of the
IWP for matched disturbance control problem.

For the case ofunmatched disturbances, we have selected
two different sets of controller’s parameters (Kp = 1.1, Kv =
5.6 × 10−5, Ki1 = 1.5, ρ1 = 0.09 × 10−12) and (Kp =
0.4, Kv = 5.6 × 10−5, Ki2 = 1.5, ρ2 = 0.09 × 10−11),
in response to two different disturbance gains (λ = 60) and
(λ = 90), respectively. The simulation results are shown
in Figures 6 and 7. Again, we can see the convergence of
all states to their desired values with reasonable transients.
These figures also shows that for relatively high disturbances
(λ = 90), we have selected a large value ofρ2 to enlarge
the domain of attraction and thus the system is ultimately
bounded. This follows the proof of Proposition 3.5. Notice
that we have also decreased the proportional gainKp to make

sure that the maximum torque does not exceed the actuator
limit.
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Fig. 6: State trajectories of the IWP system forunmatched
disturbance control problem.
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Fig. 7: Control input, update law and disturbance input of the
IWP for unmatched disturbance control problem.

3) Adaptive IDA-PBC simulations: For the adaptive control
method, we have selected the parameters and gains of the
controller asm1 = 0.2, m3 = 10, ǫ = 1, Kp = 4.5, and
Kv = 2.2×10−4. Furthermore, we have adjusted the uncertain
term θ = k3 as θ = ϑ + ζ, with ζ is a fixed estimate. This
enables us to compare this method with the non-adaptive one.
Given the value ofθ = g(mplc1 + mwl), we have selected
ζ = θ/2 for this case.

Figures 8 and 9 show a comparative plot of the system’s
response with the adaptive IDA controller and the non-adaptive
IDA-PBC controller. As shown, without adaptation law the
uncertainty inV (q) results in a relatively large steady state
error and unacceptable transients. In contrast, adding the
proposed adaptive law, the trajectories of the IWP system
converge to their desired states with excellent performance.
Figure 9 shows the convergence of the estimateθ̂ to the true
valueθ.

VI. CONCLUSION

In this paper, we have presented several control designs
to deal with several robustness-related issues within PCH
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framework. In particular, IDA-PBC method along with a
dynamic state-feedback controller that involves integralaction
is used to improve the robustness of the closed-loop system.
First, we have presented several results on IC for a class of
PCH systems, extending the results of [6], [7]. Second, we
have provided a general framework that allows the use of
integral action for underactuated mechanical systems. This
work is the first that discusses the incorporation of IC for
underactuated mechanical system within PCH framework. The
matched and unmatched disturbance rejection problems are
proved using the integral action controller with a particular
change of coordinates that involves adding some damping
terms. These results ensure that the ISS property is satisfied
and can prove, for perturbations that satisfy some conditions,
that asymptotic stability of the desired equilibrium can bealso
achieved. An initial adaptive framework to deal with paramet-
ric uncertainties in PCH models, in particular uncertainties in
the potential energy function, has been also presented.

Application to an inertia wheel pendulum which is an
underactuated system has been presented, and the effectiveness
of the proposed controllers has been shown through numeri-
cal simulations. The simulation results demonstrate that the
system is robust with respect to different perturbations, pre-
serving the PCH structure, retaining the (asymptotic) stability
with high performance. While only one example is presented
as illustration, other PCH systems belong to class (see for
instance [8]) are possible systems to apply our results.
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