Extracting Attributed Verification and Debunking Reports from Social Media: MediaEval-2015 Trust and Credibility Analysis of Image and Video

Stuart E. Middleton
University of Southampton IT Innovation Centre
sem@it-innovation.soton.ac.uk @stuart_e_middle @IT_Innov @RevealEU
www.it-innovation.soton.ac.uk
UoS-ITI Team

Overview

- Problem Statement
- Approach
- Results
- Discussion
- Suggestions for Verification Challenge 2016
Problem Statement

Verification of Images and Videos for Breaking News

- Breaking News Timescales
 - Minutes not hours - its old news after a couple of hours
 - Journalists need to verify copy and get it published before their rivals do

- Journalistic Manual Verification Procedures for User Generated Content (UGC)
 - Check content provenance - original post? location? timestamp? similar posts? website? ...
 - Check author / source - attributed or author? known (un)reliable? popular? reputation? post history? ...
 - Check content credibility - right image metadata? right location? right people? right weather? ...
 - Phone the author up - triangulate facts, quiz author to check genuine, get authorization to publish

- Automate the Simpler Verification Steps
 - Empowering journalists
 - Increases the volume of contextual content that can be considered
 - Focus humans on the more complex & subjective cross-checking tasks
 - Contact content authors via phone and ask them difficult questions
 - Does human behaviour 'look right' in a video?
 - Cross-reference buildings / landmarks in image backgrounds to Google StreetView / image databases
 - ... see the VerificationHandbook » http://verificationhandbook.com/
Attribute evidence to trusted or untrusted sources

- **Hypothesis**
 - The 'wisdom of the crowd' is not really wisdom at all when it comes to verifying suspicious content
 - It is better to rank evidence according to the most trusted & credible sources like journalists do

- **Semi-automated approach**
 - Manually create a list of trusted sources
 - Tweets » NLP » Extract fake & genuine claims & attribution to sources » Evidence
 - Evidence » Cross-check all content for image / video » Fake/real decision based on best evidence

- **Trustworthiness hierarchy for tweeted claims about images & videos**
 - Claim = statement that its a fake image / video or its genuine
 - Claim authored by trusted source ✅ ✅ ✅
 - Claim authored by untrusted source ✗ ✗ ✗
 - Claim attributed to trusted source ✅ ✅
 - Claim attributed to untrusted source ✗ ✗
 - Unattributed claim ✅
Approach

Regex patterns

Named Entity Patterns

@ (NNP|NN)
(NNP|NN)
(NNP|NN) (NNP|NN)
(NNP|NN)

e.g.
CNN
BBC News
@bbcnews

Attribution Patterns

<NE> *{0,3} <IMAGE> ...
<NE> *{0,2} <RELEASE> *{0,4} <IMAGE> ...
... <IMAGE> *{0,6} <FROM> *{0,1} <NE>
... <FROM> *{0,1} <NE>
... <IMAGE> *{0,1} <NE>
... <RT> <SEP>{0,1} <NE>

e.g.
FBI has released prime suspect photos ...
... pic - BBC News
... image released via CNN
... RT: BBC News

Faked Patterns

... *{0,2} <FAKED> ...
... <REAL> ? ...
... <NEGATIVE> *{0,1} <REAL> ...

e.g.
... what a fake! ...
... is it real? ...
... thats not real ...

Genuine Patterns

... <IMAGE> *{0,2} <REAL> ...
... <REAL> *{0,2} <IMAGE> ...
... <IS> *{0,1} <REAL> ...
... <NEGATIVE> *{0,1} <FAKE> ...

e.g.
... this image is totally genuine ...
... its real ...

Key

<NE> = named entity (e.g. trusted source)
<IMAGE> = image variants(e.g. pic, image, video)
<FROM> = from variants(e.g. via, from, attributed)
<REAL> = real variants (e.g. real, genuine)
<NEGATIVE> = negative variants (e.g. not, isn’t)
<RT> = RT variants (e.g. RT, MT)
<SEP> = separator variants (e.g. : - =)
<IS> = is | its | thats
Results

Fake & Real Tweet Classifier

<table>
<thead>
<tr>
<th></th>
<th>fake classification</th>
<th>real classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>faked & genuine patterns</td>
<td>1.0</td>
<td>0.03</td>
</tr>
<tr>
<td>faked & genuine & attribution patterns</td>
<td>1.0</td>
<td>0.03</td>
</tr>
<tr>
<td>faked & genuine & attribution patterns & cross-check</td>
<td>1.0</td>
<td>0.72</td>
</tr>
</tbody>
</table>

Fake & Real Image Classifier

<table>
<thead>
<tr>
<th></th>
<th>fake classification</th>
<th>real classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>faked & genuine & attribution patterns & cross-check</td>
<td>1.0</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Results

Fake & Real Tweet Classifier

<table>
<thead>
<tr>
<th></th>
<th>fake classification</th>
<th>real classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>faked & genuine patterns</td>
<td>1.0</td>
<td>0.03</td>
</tr>
<tr>
<td>faked & genuine & attribution patterns</td>
<td>1.0</td>
<td>0.03</td>
</tr>
<tr>
<td>faked & genuine & attribution patterns & cross-check</td>
<td>1.0</td>
<td>0.72</td>
</tr>
</tbody>
</table>

No mistakes classifying fakes in testset

Low false positives important for end users like journalists

Fake & Real Image Classifier

<table>
<thead>
<tr>
<th></th>
<th>fake classification</th>
<th>real classification</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>R</td>
</tr>
<tr>
<td>faked & genuine & attribution patterns & cross-check</td>
<td>1.0</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Fake & Real Tweet Classifier

<table>
<thead>
<tr>
<th>fake classification</th>
<th>real classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>P R F1</td>
<td>P R F1</td>
</tr>
<tr>
<td>faked & genuine patterns</td>
<td></td>
</tr>
<tr>
<td>1.0 0.03 0.06</td>
<td>0.75 0.001 0.003</td>
</tr>
<tr>
<td>faked & genuine & attribution patterns</td>
<td></td>
</tr>
<tr>
<td>1.0 0.03 0.06</td>
<td>0.43 0.03 0.06</td>
</tr>
<tr>
<td>faked & genuine & attribution patterns & cross-check</td>
<td></td>
</tr>
<tr>
<td>1.0 0.72 0.83</td>
<td>0.74 0.74 0.74</td>
</tr>
</tbody>
</table>

Performance looks good when averaged on whole dataset

Fake & Real Image Classifier

<table>
<thead>
<tr>
<th>fake classification</th>
<th>real classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>P R F1</td>
<td>P R F1</td>
</tr>
<tr>
<td>faked & genuine & attribution patterns & cross-check</td>
<td></td>
</tr>
<tr>
<td>1.0 0.04 0.09</td>
<td>0.62 0.23 0.33</td>
</tr>
</tbody>
</table>

Not good for all images though
Better classifying real images than fake ones
Application to our journalism use case

- Classifying tweets in isolation (fake and real) is of limited value
 - High precision (89%+) but low recall (1%)
- Cross-check tweets then ranking by trustworthiness
 - No false positives for fake classification using testset
 - High precision (94%+) with average recall (43%+) looking across events in devset and testset
 - Typically viral images & videos will have 100's of tweets before journalists become aware of them so a recall of 20% is probably OK in this context
- Image classifiers
 - Fake image classifier » High precision (96-100%) but low recall (4-10%)
 - Real image classifier » High precision (62-95%) but low recall (19-23%)
- Classification explained in ways journalists understand & therefore trust
 - Image X claimed verified by Tweet Y attributing to trusted entity Z
 - We can alert journalists to trustworthy reports of verification and/or debunking
- Our approach does not replace manual verification techniques
 - Someone still needs to actually verify the content!
Focus on image classification not Tweet classification

- The long term aim is to classify the images & videos NOT the tweets about them
 - Suggestion » Score image classification results as well as tweet classification results
- End users usually wants to know if its real, not if its fake
 - Classifying something as fake is usually a means to an end (e.g. to allow filtering)
 - Suggestion » Score results for fake classification & real classification

Improve the Tweet datasets to avoid bias to a single event

- Suggest using leave one event out cross validation when computing P/R/F1
- Suggest removing tweet repetition
 - Some events (e.g. Syrian Boy) contain many duplicate tweets with a different author
 - A classifier might only work well on 1 or 2 text styles BUT score highly as they are repeated a lot
- Suggest evenly balancing number of tweets per event type to avoid bias
 - Devset - Hurricane Sandy event has about 84% of the tweets
 - Testset - Syrian Boy event has about 47% of the tweets
Many thanks for your attention!

Any questions?

Stuart E. Middleton
University of Southampton IT Innovation Centre

e-mail: sem@it-innovation.soton.ac.uk
web: www.it-innovation.soton.ac.uk
twitter:@stuart_e_middle, @IT_Innov, @RevealEU