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An investigation into the scattering of landing gear noise sources by a lifting wing is
presented. A two-dimensional test case is used in the investigation. The noise sources
are represented by a monopole, which is located at the approximate position of a landing
gear underneath a wing geometry. A linearized Euler equation solver is used to simulate
the scattering of the monopole by the wing. The effect of a non-uniform flowfield due to
circulation induced by a lifting wing is quantified as the difference in acoustic scattering
over uniform and non-uniform base flows. The results show that increasing the angle of
attack, or increasing the Mach number, leads to a small increase in the sound pressure
level towards the ground. However, the observed increase is relatively small. A boundary
element method solver is then used to investigate the same problem, and existing uniform
and non-uniform flow boundary element formulations are evaluated to see which more
accurately predicts the effect of flow. The results show that the uniform flow boundary
element formulation is more accurate in predicting the effect of flow than the non-uniform
flow approximation for this particular problem, and that the extra computational effort
required for the non-uniform flow approximation does not yield a more accurate result.

Nomenclature

Symbols

a airfoil chord length
b boundary angle function
c speed of sound
F monopole forcing region function
f acoustic frequency
G Green’s function
H

(1)
n Hankel function of the first kind of order n

i complex unit
k acoustic wavenumber
M Mach number
n normal vector
n normal
p pressure
Q monopole strength parameter
r distance between two points
S monopole source function
S surface
T Taylor-transformed time

t time
u velocity vector
v velocity mangitude
X Taylor-transformed position vector
x position vector
y position vector

Greek Symbols

α angle of attack
β monopole forcing region parameter
δ delta function
ε monopole amplitude parameter
θ observer angle
κ modified acoustic wavenumber
λ acoustic wavelength
ρ density
Φa time-dependent acoustic potential
φa time-harmonic acoustic potential
φf flow potential
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ω angular frequency

Subscripts

0 mean flow variable
s monopole source
ref reference
rms root mean square

Superscripts

′ acoustic variable

∼ Lorentz-transformed variable
∧ Taylor-transformed variable
− Taylor-transformed Helmholtz variable
I incident
S scattered

Abbreviations

BEM boundary element method
LEE linearized Euler equations
SPL sound pressure level

I. Introduction

Increasingly stringent noise regulations are being introduced in the vicinity of airports in an effort to
reduce the environmental impact of the aviation industry. Aircraft manufacturers are required to design

their aircraft to ensure that these regulations are met. The European Commission has set a target to reduce
perceived noise emissions from aircraft by 65% by the year 2050 relative to a new aircraft in 2000.1

There are two types of noise from aircraft: engine noise and airframe noise. A lot of work has been done
since the 1970’s on high-bypass turbofan engines and as a result modern engines produce less noise than
older designs, to the extent that engine noise on approach is now comparable to airframe noise.2 During
approach, an aircraft will have landing gears and high-lift devices such as flaps and slats deployed, and these
are all major contributors to airframe noise.2

The aim of the work presented here was to investigate the scattering of landing gear noise from the
underside of a lifting wing with a uniform and non-uniform base flow, and to compare two boundary element
method flow formulations that approximate these effects. The investigation was conducted in two dimensions
and at a single acoustic frequency as a proof-of-concept. In the future it will be extended to three dimensions,
and the effect of frequency on the scattering will be investigated.

A lifting wing induces circulation in a flow, and it was an objective of the investigation to see if and how
the circulation affects the scattering of landing gear noise sources. A high-order linearized Euler equation
(LEE) solver3 was used to compute the scattered sound field around a NACA-0012 airfoil, using a monopole
source located at the approximate location of a landing gear. This was computed at various angles of attack
and Mach numbers, over both uniform and non-uniform inviscid base flows. This enabled the effect of the
non-uniform flowfield due to the circulation induced by the lifting wing to be quantified.

Boundary element method (BEM) solvers for acoustic problems offer certain advantages over domain
solvers, primarily a decrease in time required to set up the problem due to the comparative ease of meshing,
and the ability to compute the solution in a domain of infinite size. Boundary element methods are more
suited to problems in the absence of flow, due to boundary integral formulations relying on the use of Green’s
functions. However, boundary element formulations that approximate uniform flow4 and non-uniform flow5,6

effects do exist in the literature. Another aim of the present investigation was to determine which of these
approximations is more suitable for simulation of installation effects of landing gears under lifting wings, and
boundary element simulations using these two flow approximations were conducted to this end.

II. Numerical Methods

A NACA-0012 airfoil was chosen as the scattering body for all numerical simulations. The symmetrical
airfoil is non-lifting at zero angle of attack. The airfoil was set as acoustically rigid in all simulations.

Landing gear directivity is almost omnidirectional when small-scale parts that create high frequency noise
are removed.2 As such, a single monopole source was used to model a simplified landing gear. Given the
airfoil chord length a, the source was positioned at (+a/2,−a/2) from the leading edge. The airfoil geometry
and source location can be seen in Figure 1. A chord length of a = 5 m was chosen to reflect the size of wing
found on smaller commercial airliners. A frequency f = 325 Hz was chosen for this investigation so that the
source was representative of a large-scale landing gear component. This choice of chord length and frequency
gave a non-dimensional Helmholtz number of ka = 30, where k = 2πf/c0 is the acoustic wavenumber with
the speed of sound c0 = 340.2 m/s.
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The sound pressure level (SPL) was computed for both LEE and BEM solvers at 360 points on a circle of
radius a centered on the source. The θ = 0◦ observer position was located in the negative x-direction from
the source, with θ increasing in an anti-clockwise direction. These observer locations can be seen in Figure 1.
The SPL was computed using SPL = 20 log10(prms/pref), with the reference pressure pref = 2.0× 10−5 Pa.

The circulation around a lifting wing increases as angle of attack α and free stream Mach number M0

is increased. To investigate the effect that this has on the acoustic scattering of a monopole, the following
simulations were performed:

• A Mach number of M0 = 0.2 was fixed, and α was varied in the range 0◦ ≤ α ≤ 8◦.

• An angle of attack of α = 5◦ was fixed, and M0 was varied in the range 0.1 ≤M0 ≤ 0.3.

In the simulations, the airfoil and source positions remained fixed, and the angle of attack was varied by
changing the free stream Mach vector, as shown in Figure 1. This allowed the same mesh to be used for all
of the LEE simulations. The range of Mach numbers investigated covered speeds that are representative of
a small commercial airliner on approach.

These simulations were conducted with the LEE solver with uniform and non-uniform base flows, and
using the BEM solver with both uniform and non-uniform flow approximations. Inviscid non-uniform base
flows are required for both the LEE and the non-uniform flow BEM formulation, and this also enables the
results from both solvers to be compared. The inviscid flow assumption is approximately valid at all values
0◦ ≤ α ≤ 8◦, as it has been shown that the flow remains attached to the airfoil at these angles of attack.7
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Figure 1. NACA-0012 airfoil geometry, monopole source location, and observer locations.

A. Linearized Euler equation solver

The linearized Euler equations are given by

∂ρ′

∂t
+∇ · (ρ0u′ + u0ρ

′) = 0,

∂u′

∂t
+ (u0 · ∇)u′ + (u′ · ∇)u0 +

1

ρ0

(
∇p′ − ρ′

ρ0
∇p0

)
= 0.

(1)

Here p is pressure, ρ is density, and u is a velocity vector. The acoustic variables with superscript ′ are
functions of position vector x = (x, y), and time t. The mean flow variables with subscript 0 are functions
of position only, as the flow is assumed to be steady. The solid walls were treated with a slip-wall boundary
condition.

A monopole source at a single frequency is implemented in a similar manner to Bailly and Juvé,8 by
adding a source term to the right hand side of Eq. (1). This term is given by

S(x, y, t) = εω sin(ωt)F (x, y), (2)
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with
F (x, y) = exp

(
−β
[
(x− xs)2 + (y − ys)2

])
. (3)

Here ω = 2πf is the angular frequency with f the frequency of the acoustic wave, ε is the amplitude of the
monopole, and β controls the width of the monopole forcing region.

The linearized Euler equations are solved using the solver SotonLEE. SotonLEE is a multi-block solver
for structured grids that uses a fourth-order compact spatial discretization scheme9,10 with a sixth-order
compact filtering scheme,11 and a fourth-order low dispersion and dissipation Runge-Kutta explicit temporal
scheme.12 Non-reflecting optimized zonal transverse characteristic boundary conditions are used on the edges
of the computational domain to prevent acoustic reflections that would contaminate the acoustic solution.13

A structured quadrilateral mesh was created around the NACA-0012 airfoil geometry. The mesh consisted
of 1.84 × 105 nodes in 97 blocks. The topology of the mesh is shown in Figure 2. This mesh was extended
to a length of 10a in all directions around the airfoil for the base flow solution, to ensure that the pressure
far field boundaries were far enough away from the airfoil to allow for an accurate flow solution. The flow
mesh consisted of 6.83 × 105 nodes in 140 blocks. The flow mesh in the region surrounding the airfoil was
identical to the acoustic mesh shown in Figure 2, so that each required flow solution was known at all
nodes of the acoustic mesh for the LEE solver. These two meshes were used for all acoustic and mean flow
computations, with the flow angle of attack being specified in the pressure far field boundary conditions in the
flow computation. The LEE solver is parallelized, and each acoustic solution was computed in approximately
15 minutes using 16 Intel Xeon cores at 2.6 GHz.

To compute the SPL at the observer locations, prms was obtained by sampling the time varying pressure
at each observer at a rate of 25 samples per period for 10 periods. Initial simulations of a monopole in
the free field showed that the radius of the monopole forcing region should be less than λ/10, where λ is
the acoustic wavelength. This ensured that accurate convective amplification effects were observed when
the computed SPL was compared to an analytical solution. The average maximum distance between mesh
nodes was 0.04 m, which ensured that the acoustic solution was accurately resolved with at least 10 points
per wavelength upstream at the highest Mach number under investigation. The mesh was further refined
in the source region with a node spacing of 0.02 m to ensure that the forcing region covered 4 to 5 nodes
radially.

Studies showed that the amplitude parameter ε is dependent on several factors, including the mesh and
forcing region radius. For each of the simulations, ε was scaled so that the source strength was nominally
the same between the LEE and BEM simulations with uniform flow. For the uniform LEE mean flowfield a
uniform mean flow was specified everywhere in the domain, except at nodes on the boundary where x ≥ 0.3a.
The point x = 0.3a is the point of maximum thickness of a four-digit NACA airfoil. At these nodes, which
coincided with the solid surface, the flow was specified to be tangential to the surface. This ensured that
the acoustic LEE simulation remained stable at the trailing edge, and prevented the production of spurious
noise.

Figure 2. Topology of the NACA-0012 airfoil domain mesh for use with the LEE solver.
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B. Boundary element methods

The boundary element method is formulated in the frequency domain. The wave equation of linear acoustics
can be written in terms of the time-dependent acoustic potential Φa(x, t) as

∂2Φa(x, t)

∂t2
− c20∇2Φa(x, t) = 0, (4)

where c0 is the speed of sound.
Under the assumption that the solution is time-harmonic such that Φa(x, t) = φa(x)e−iωt, the wave

equation can be reduced to the Helmholtz equation

∇2φa(x) + k2φa(x) = 0, (5)

where k = ω/c0 is the acoustic wavenumber. The boundary condition for acoustically rigid surfaces is given
by

∂φa(x)

∂n
= ∇φa(x) · n = 0, (6)

where n is the normal vector to the boundary at x. Together, Eq. (5) and Eq. (6) may be solved to compute
the sound field interior or exterior to any given boundary S.

The total acoustic field can be written as the sum of incident and scattered fields as φa(x) = φIa(x)+φSa (x).
The Helmholtz equation can be reformulated to give a boundary integral equation

b(x)φa(x) =

∫
S

[
G(x,y)

∂φa(y)

∂n
− ∂G(x,y)

∂n
φa(y)

]
dS + φIa(x), (7)

which is valid on the surface S, with b(x) = 1/2 provided the boundary is smooth at x.
For a monopole source at xs with strength Q, the incident potential is given by φIa(x) = QG(x,xs). This

corresponds to adding a delta function δ(x − xs) to the right hand side of Eq. (5) as a source term. The
Green’s function in 2-D is given by

G(x,y) =
i

4
H

(1)
0 (kr), (8)

where H
(1)
0 is the Hankel function of the first kind of order 0, and the radius r = ‖x− y‖.

Equation (7) can then be solved using the boundary condition given by Eq. (6) to obtain the unknowns
φa(y) on the boundary. Once these are known, the acoustic potential in the domain is computed using

φa(x) =

∫
S

[
G(x,y)

∂φa(y)

∂n
− ∂G(x,y)

∂n
φa(y)

]
dS + φIa(x). (9)

The complex-valued acoustic pressure p(x) is related to the acoustic potential φa(x) by

p(x) = iωρ0φa(x). (10)

Given that the solution is time-harmonic, prms(x) is given by |p(x)|/
√

2.
The solution to the boundary integral equation given by Eq. (7) with the boundary condition given by

Eq. (6), along with the computation of the acoustic pressure in the domain using Eq. (9), is conducted
using the open-source solver ABEMFULL.a ABEMFULL solves the boundary integral equations using the
collocation method. The uniform and non-uniform flow formulations detailed below were implemented into
the BEM solver for evaluation.

For all BEM simulations, the monopole strength was set as Q = 1. The airfoil boundary was discretized
with 120 boundary elements, which ensured at least 10 elements per wavelength and that the curvature of
the leading edge was accurately represented. An acoustic BEM solution is less computationally demanding
than an equivalent solution using the LEE solver. This is due to the BEM being a frequency domain method
with no need to advance the solution in time, as well as unknowns needing to be computed at far fewer
spatial points. Each BEM solution was obtained in less than one second on a single core of an Intel Core i7
processor at 3.4 GHz, compared to the LEE solver discussed above that computed an equivalent solution in
around 15 minutes on 16 Intel Xeon cores at 2.6 GHz.

aAvailable from: http://www.boundary-element-method.com/
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C. Uniform flow BEM approximation

Both flow BEM approximations begin with the convected wave equation written in terms of the time-
dependent acoustic potential Φa(x, t)(

∂

∂t
+∇φf (x) · ∇

)2

Φa(x, t)− c20∇2Φa(x, t) = 0. (11)

Here φf (x) is the flow potential at x. This is solved with the boundary condition for acoustically rigid
surfaces

∂Φa(x, t)

∂n
= 0. (12)

With the assumption that the solution is time-harmonic with Φa(x, t) = φa(x)e−iωt, the convected wave
equation given in Eq. (11) is reduced to the convected Helmholtz equation

k2φa(x) + 2i
k

c0
∇φf (x) · ∇φa(x)− 1

c20
(∇φf (x) · ∇)

2
φa(x) +∇2φa(x) = 0. (13)

Here the second and third terms are the convective terms.
With the assumption of uniform flow aligned with the x-axis everywhere, this can be simplified further

using ∇φf (x) = v0, and ∇φa(x) = ∂φa(x)/∂x for the convective terms. This gives

k2φa(x) + 2ikM0
∂φa(x)

∂x
+

[
(1−M2

0 )
∂2φa(x)

∂x2
+
∂2φa(x)

∂y2

]
= 0, (14)

where M0 = v0/c0 is the Mach number. This convected Helmholtz equation can then be reduced to a regular
Helmholtz equation

∇2
x̃φ̃a(x̃) + k̃2φ̃a(x̃) = 0, (15)

using the Lorentz-type transform

x = (x, y)→ x̃ = (x̃, y), where x̃ =
x√

1−M2
0

,

t→ t̃, t̃ =
√

1−M2
0 t+

1√
1−M2

0

M0

c0
x,

ω → ω̃, ω̃ =
ω√

1−M2
0

,

k → k̃, k̃ =
k√

1−M2
0

,

φa(x)→ φ̃a(x̃)e−iκx̃, κ =
kM0√
1−M2

0

,

∇ =

(
∂

∂x
,
∂

∂y

)
→ ∇x̃ =

(
∂

∂x̃
,
∂

∂y

)
.

(16)

The boundary condition becomes
∂φ̃a(x̃)

∂ñ
= 0. (17)

The solution φ̃a(x̃) is found in the transformed domain using the BEM technique outlined previously,
where the x-coordinates of the boundary and source are modified using the transform given by Eqs. (16).
Following the discussion by Papamoschou and Mayoral,4 the source strength is modified in the transformed
domain using

Q̃ =
Q

ikρ0c0(1−M2
0 )
. (18)

Once φ̃a(x̃) is known, φa(x) may be found using φa(x) = φ̃a(x̃)e−iκx̃. The time-harmonic acoustic
pressure is then given by

p(x) = ρ0c0

(
ik −M0

∂

∂x

)
φa(x). (19)

For further details of the derivation, see Papamoschou and Mayoral.4
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D. Non-uniform flow BEM approximation

The non-uniform flow BEM approximation is valid under the assumptions of steady, low Mach number,
irrotational, and inviscid flow. The derivation of the approximation begins, as for the uniform flow approx-
imation, with the convected wave equation written in terms of the time-dependent acoustic potential as in
Eq. (11), together with the boundary condition given by Eq. (12) for acoustically rigid surfaces.

The flow potential satisfies the Laplace equation

∇2φf (x) = 0, (20)

and can be solved with the impermeability condition

∂φf (x)

∂n
= 0. (21)

Solutions of the Laplace equation at various angles of attack and Mach numbers were obtained by im-
plementing a solver based on panel methods, as described by Houghton and Carpenter.14 The boundary
discretization used for the panel solver was the same as that for the BEM solver.

To derive the non-uniform flow BEM approximation, a source term δ(x− xs) is added to the right hand
side of Eq. (11). Using the transform given by Taylor5

x = (x, y)→ X = (X,Y ), where (X,Y ) = (x, y),

t→ T, T = t+ φf (x)/c20,

Φa(x, t)→ Φ̂a(X, T ),

∇ =

(
∂

∂x
,
∂

∂y

)
→ ∇X =

(
∂

∂X
,
∂

∂Y

)
,

(22)

and neglecting O(M2
0 ) terms, the convected wave equation given in Eq. (11), with the additional source term

described above, can be reduced to an ordinary wave equation

∂2Φ̂a(X, T )

∂T 2
− c20∇2

XΦ̂a(X, T ) = δ(X− xs)e
iωφf (xs)/c

2
0e−iωT . (23)

Under the transform, the boundary condition for acoustically rigid surfaces given in Eq. (12) becomes

∂Φ̂a(X, T )

∂n
= 0. (24)

Assuming that the acoustic potential is time-harmonic with Φ̂a(X, T ) = φ̂a(X)e−iωT , Eq. (23) can further
be reduced to a Helmholtz equation

∇2
X φ̂a(X) + k2φ̂a(X) = −δ(X− xs)e

iωφf (xs)/c
2
0 . (25)

Setting φ̄a(X) = φ̂a(X)e−iωφf (xs)/c
2
0 yields a Helmholtz equation that can be solved by the BEM technique

described previously
∇2
X φ̄a(X) + k2φ̄a(X) = −δ(X− xs), (26)

with the boundary condition
∂φ̄a(X)

∂n
= 0. (27)

The acoustic pressure is given in terms of the time-harmonic acoustic potential by

p(x) = −ρ0
(
− iωφ̄a(x) +∇φf (x) · ∇φ̄a(x)

)
e[iω(φf (xs)−φf (x))/c

2
0]. (28)

It can be seen that the acoustic pressure at a point x is only modified by ∇φf (x) = u(x) at that point,
while the flow potential at the point x and the source point xs modify the phase. For further details of the
derivation, see Taylor5 and Agarwal and Dowling.6

The LEE can be solved to compute acoustic propagation through fully non-uniform flowfields. In contrast,
the BEM uses Green’s functions to compute acoustic pressure at a point. Therefore, the BEM cannot
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accurately account for propagation through a non-uniform flow. The uniform and non-uniform flow BEM
formulations approximate the effects of flow on the acoustic pressure at any given observer point. For this
investigation, acoustic propagation through non-uniform flows was evaluated using the LEE solver. The
uniform and non-uniform flow BEM formulations were then evaluated against results from the LEE solver
in order to determine which BEM flow formulation is a more accurate approximation for the observed
non-uniform flow effects.

III. Results

A. The effect of circulation on acoustic scattering

The effect that non-uniform flow due to circulation around a lifting wing has on acoustic scattering was
investigated using the LEE solver, which can account for acoustic propagation through a non-uniform flow.
The effect was quantified for each angle of attack and Mach number by conducting a simulation over a uniform
and a non-uniform base flow, and computing the difference between them using SPLLEE

non-uniform − SPLLEE
uniform

at each observer location.
It was described previously that the monopole source amplitude parameter ε was scaled so that the source

strength was nominally the same between LEE and BEM simulations with a uniform flow. Figures 3 and 4
show examples of this matching of source strengths at α = 5◦, with a comparison between LEE and BEM
solvers with a uniform mean flowfield at M0 = 0.2 and 0.3 respectively. It can be seen that both methods
are in good agreement, particularly in the 0◦ ≤ θ ≤ 180◦ region, which is a region of particular interest for
the scattering of landing gear noise to the ground. Similar agreement is also seen for the other angles of
attack and Mach numbers, the plots of which are not presented here for brevity.

Figure 5 shows an example of an inviscid non-uniform flow solution at M0 = 0.2 and α = 5◦. Figures
6 and 7 show examples of acoustic simulations at α = 5◦ over M0 = 0.2 uniform and non-uniform base
flows respectively. In both figures, convective amplification can be seen upstream with a compression of the
acoustic wavelength, and downstream with a dilation of the wavelength. It should also be noted that these
figures show the whole of the acoustic domain, and no reflections from the edge of the domain can be seen
due to the use of the non-reflecting boundary conditions.

A comparison between Figures 6 and 7 shows that there is only a small effect due to the non-uniform flow
at this Mach number and angle of attack. The scattering over non-uniform flow is close to that over uniform
flow in the 0◦ ≤ θ ≤ 180◦ region, with a slightly larger difference in the shadow region. This is most likely
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Figure 3. Comparison of SPL (dB) as computed
by LEE and BEM solvers for the scattering of a
monopole at 325 Hz by a NACA-0012 airfoil at
α = 5◦ over a uniform flow with M0 = 0.2.
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Figure 5. Flow velocity (m/s) and streamlines for a NACA-0012 airfoil at α = 5◦ in an inviscid non-uniform
flow with M0 = 0.2. Input flowfield for the LEE solver.

Figure 6. Acoustic pressure (Pa) for the scatter-
ing of a monopole at 325 Hz by a NACA-0012 air-
foil at α = 5◦ over an inviscid uniform flow with
M0 = 0.2. Computed using the LEE solver.

Figure 7. Acoustic pressure (Pa) for the scat-
tering of a monopole at 325 Hz by a NACA-0012
airfoil at α = 5◦ over an inviscid non-uniform flow
with M0 = 0.2. Computed using the LEE solver.

due to diffractions around the leading and trailing edges, where there are large changes in flow velocities.
The effect of varying the angle of attack on the difference in SPL between uniform and non-uniform base

flows can be seen in Figure 8. It can be seen that increasing the angle of attack from 0◦ through to 8◦

slightly increases the sound pressure level in the 60◦ ≤ θ ≤ 120◦ region. This region is the primary region of
interest for aircraft noise, as it is the region where sound is radiated towards the ground plane. The results
presented in Figure 8 suggest that circulation, which increases as angle of attack increases, does have an
effect on acoustic scattering, albeit relatively small. In this case, the largest increase in SPL when the angle
of attack was increased from 0◦ to 8◦ was 1.18 dB at θ = 82◦.

This trend is further supported by Figure 9, which shows the effect of Mach number on the computed
difference. Here the angle of attack was fixed and the Mach number increased, which again leads to an increase
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between non-uniform and uniform base flows.
Scattering of a monopole at 325 Hz by a NACA-
0012 airfoil at α = 5◦ and varying M0.

in circulation around the wing. A similar upward trend is seen in the 60◦ ≤ θ ≤ 120◦ region, although the
increase in SPL at the higher Mach numbers is still less than 1 dB. Outside of the 60◦ ≤ θ ≤ 120◦ region,
varying α or M0 leads to small shifts in the position of directional lobes as seen in Figure 3, which gives
large differences in the regions where the lobes intersect.

The acoustic scattering of a monopole by a lifting wing has been investigated using the LEE solver, which
can account for propagation through non-uniform flows. The effect of non-uniform flow caused by circulation
around the lifting wing was quantified by computing the difference in SPL between uniform and non-uniform
base flows at various angles of attack and Mach numbers. It was shown that increasing the angle of attack
from 0◦ to 8◦ or Mach number from 0.1 to 0.3, both of which increases circulation, leads to a relatively small
increase in SPL of at most 1.18 dB in the 60◦ ≤ θ ≤ 120◦ region. Results from BEM simulations using both
flow formulations will now be compared to results from the LEE solver in order to evaluate the BEM flow
formulations and determine which one is more accurate.

B. Evaluation of boundary element method flow approximations

To evaluate the uniform4 and non-uniform5,6 flow BEM formulations, the same simulations were conducted
with the BEM solver as were done in the previous section. The uniform flow formulation uses the Lorentz-
type transform given in Eqs. (16) to reduce a convected wave equation as given by Eq. (11) to an ordinary
Helmholtz equation, which can then be solved with regular BEM methods. It is assumed that the flow
is uniform everywhere, and not modified by the scattering body. The non-uniform flow formulation uses
the Taylor transform given in Eqs. (22) to also reduce Eq. (11) to an ordinary Helmholtz equation suitable
for solution with regular BEM methods. For this formulation a potential flow is assumed, which can be
computed through the solution of the Laplace equation given in Eq. (20).

It has already been shown in Figures 3 and 4 that having matched source strengths for the LEE and BEM
simulations, the uniform flow BEM approximation is very close to that seen from the LEE solver, although
slightly over-predicted in the shadow region and at some locations in the upstream direction. Figure 10
shows an example of the sound field computed with the uniform flow BEM approximation at α = 5◦ and
M0 = 0.2. Convective amplification effects can be observed, as they were for the previous equivalent LEE
simulation shown in Figure 6.

Simulations using both flow approximations at the various Mach numbers and angles of attack were then
conducted, and the results were compared to results from the LEE solver so that the formulations could
be analyzed. The non-uniform flow approximation is derived by neglecting terms of O(M2

0 ), and the effect
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of Mach number on the accuracy of the formulation was of particular interest. An example of a potential
flow solution for use with the non-uniform flow BEM formulation is shown in Figure 11. This example is at
M0 = 0.2 and α = 5◦.

The difference in scattering between the uniform flow BEM formulation and the non-uniform flow LEE
solution at M0 = 0.2 with varying α is shown in Figure 12. The non-uniform LEE solution fully accounts
for acoustic propagation through a non-uniform flow. It can be seen that in the 60◦ ≤ θ ≤ 120◦ region the
difference between the solvers is less than 1 dB.

Similarly, the difference in scattering between the non-uniform flow BEM formulation and the non-
uniform flow LEE solution at M0 = 0.2 with varying α is shown in Figure 13. Immediately it can be seen
that the difference between the solvers is much greater, with the highest difference for each angle of attack
being greater than 2 dB in the 60◦ ≤ θ ≤ 120◦ region.

In both Figures 12 and 13, a downward trend in the computed difference in SPL with increasing angle of
attack can be seen. This can be attributed to the slight increase in SPL seen in the non-uniform flow LEE
simulations when the angle of attack is increased, as seen above in Figure 8.

Varying Mach number has a more pronounced effect on the difference between methods than varying the
angle of attack. Figure 14 shows the difference in scattering between the uniform flow BEM formulation and
non-uniform flow LEE solution when the Mach number is varied and the angle of attack fixed at α = 5◦.
The difference between methods increases throughout the 60◦ ≤ θ ≤ 120◦ region as the Mach number is
increased.

Similarly, Figure 15 shows the difference in scattering between the non-uniform flow BEM formulation
and non-uniform flow LEE solution when varying Mach number with α = 5◦. The non-uniform flow BEM
formulation overpredicts the LEE solution in the 60◦ ≤ θ ≤ 120◦ region at every Mach number. It can be
seen that by M0 = 0.2 the maximum difference between methods is already over 4 dB, and by M0 = 0.3 this
difference is increased to over 9 dB. The non-uniform flow BEM approximation does not capture the SPL
decrease in the 60◦ ≤ θ ≤ 120◦ region beneath the lifting wing at higher Mach numbers that is observed in
Figure 4. This error at the higher Mach numbers under investigation can be attributed to neglecting O(M2

0 )
terms in the derivation of the non-uniform flow BEM formulation.

As has been been described before, the uniform flow BEM approximation is generally in good agreement
with the results from the LEE solver over a uniform base flow for the Mach numbers and angles of attack
investigated here. It was also shown in the preceding section that non-uniform flow due to circulation around
a lifting wing only changes the observed SPL by a relatively small amount, and so the uniform flow BEM
approximation is also generally in good agreement with the results from the LEE solver over a non-uniform
base flow. The non-uniform flow BEM approximation was shown to be less accurate for this particular
investigation than the uniform flow BEM approximation, especially when the Mach number is increased. In
conclusion, the uniform flow BEM approximation is a better approximation to the effects of non-uniform
flow for the particular case under investigation here.

Figure 10. Acoustic pressure (Pa) for the scatter-
ing of a monopole at 325 Hz by a NACA-0012 air-
foil at α = 5◦ over a uniform flow with M0 = 0.2.
Computed using the BEM solver.

Figure 11. Flow velocity (m/s) and streamlines
for a NACA-0012 airfoil at α = 5◦ in a potential
non-uniform flow with M0 = 0.2. Input flowfield
for the BEM solver.
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Figure 12. Difference in acoustic scattering (dB)
between uniform BEM and non-uniform LEE for-
mulations. Scattering of a monopole at 325 Hz by
a NACA-0012 airfoil at M0 = 0.2 and varying α.
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Figure 13. Difference in acoustic scattering (dB)
between non-uniform BEM and non-uniform LEE
formulations. Scattering of a monopole at 325 Hz
by a NACA-0012 airfoil at M0 = 0.2 and varying
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Figure 14. Difference in acoustic scattering (dB)
between uniform BEM and non-uniform LEE for-
mulations. Scattering of a monopole at 325 Hz by
a NACA-0012 airfoil at α = 5◦ and varying M0.
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Figure 15. Difference in acoustic scattering (dB)
between non-uniform BEM and non-uniform LEE
formulations. Scattering of a monopole at 325 Hz
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IV. Conclusion

An investigation into the scattering of an acoustic monopole by a lifting wing has been presented. The
investigation was conducted using a two-dimensional test case. The monopole was located in the approximate
position of a landing gear. Simulations were conducted at a single frequency using LEE and BEM solvers,
with various angles of attack and Mach numbers investigated.

One of the aims of the investigation was to determine if non-uniform flow caused by circulation around a
lifting wing has an effect on the scattering of landing gear noise sources. By comparing the acoustic scattering
from the LEE solver over uniform and non-uniform base flows, it was seen that either increasing the angle
of attack from 0◦ to 8◦ or increasing the Mach number from 0.1 to 0.3, both of which increase circulation,
slightly increases the SPL in the 60◦ ≤ θ ≤ 120◦ region directly below the source. It is important to note
that the maximum increase of SPL in this region was at most 1.18 dB, and thus the effect is relatively small
for this geometry and over the range of Mach numbers and angles of attack investigated.

The other aim of the investigation was to determine which of two flow approximations for the BEM
was more suitable for the problem under consideration. It was shown that the uniform flow approximation
is more accurate than the non-uniform flow approximation for this particular problem. This is due to the
non-uniform flow approximation neglecting O(M2

0 ) terms in its derivation. Given that non-uniform flow
caused by circulation around a lifting wing only has a very minor impact on the acoustic scattering, it was
concluded that for this investigation the uniform flow BEM approximation could suitably predict the flow
effects.

The next step in this investigation is to extend the simulations into three dimensions to ensure that any
additional effects that might occur due to three-dimensional spherical propagation are accounted for. A
range of frequencies will be investigated to see if the trends seen here are dependent on frequency. More
realistic geometries, in particular multi-element high-lift geometries, will be investigated. The streamlines
beneath the single-element airfoil investigated here only deviate slightly from the free stream. It is of
interest to investigate how streamlines that are further distorted by a high-lift configuration modify the
acoustic scattering of the landing gear sources.
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