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 Built in calibration, ‘thermal referencing’

 Variable IR transmission in situations
where mechanical solutions are
undesirable

* Image from pyroelectric detectors requires
modulation

IR Spatial Light Modulators?
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Desiderata!

— Polarisation insensitive
— Copes with low F number beams, to F#1

High on state transmission (>95%)
_ow power consumption
High off state attenuation

_arge aperture (to 1cm?)

— Full 8-14um band
— Fast — but slow OK for many applications.

Difficult to satisfy simultaneously!
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For a semiconductor, carrier based

device we need:

» A stronger absorption mechanism than the
free-carrier Drude-Zener

* A way to maintain large carrier densities at
low power cost

* Hence a long lifetime
* Infrared transparency
 Availability!
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7 Choice of Material

 Why Ge
— Indirect bandgap — long intrinsic lifetime
— IR transparent 1.8—18 um
— Available in high purity (use in Nuc. Det.)
— High carrier mobility
— Availability + cost + ease of fabrication

— p-type Ge has Ih-hh interband transitions in
required spectral range




el

The principle
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? Absorption spectra
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Optical modulator




it
-~ Optical Modulator in action

Off state
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Basic structure

eledrical cantact electrical cantact
Note: \
The IR has to traverse N '

The doped regions.

input
infrarec
racliation

m oclulatefl/
infrarecl

\ racliation

ele drical cantact electrical cantact

Optimise:

* Doping levels

» Width of p, i, and n regions etc
*Processing

- .
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Design Criteria

state (diode electrically off)
Ton=To€Xp(-A) = Ty exp -(N,"x,*0y,)

OPTICAL OFF state (diode electrically on)
To=To€Xp(-A) = To exp (n,"0y,)

[n,=_J c,(x)dx]
Where T_,=1 for 100% transmission

A is the absorption

0, is hole absorption cross-section (5.33x10-®cm?)

N, is the doping density for holes (/cm?)

n, is the area carrier density when forward biased (p+i region)

X, is the thickness of the p layer 12
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Design Criteria

:max T,, ——minimum N “X;

:min Ty — — maximum n,
Uniform current injection requires high
doping density (N,)

ABSORPTION vs UNIFORMITY trade-off!

13
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Lifetime requirement

We had o, =5.33x10-16cm?

t
And TOff=TO eXp (np* Gh) [np=oj Cp(X)dX]
Lets assume a uniform hole density
And a 1mm thick device

And require T _=0.01 (ie, 1%)
Then we need np=8.64*1015/cm2
Or Np=8.64*1016/cm3

14
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“@De3|gn Criteria: required lifetime
Rough analytical estimates:
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Ton (on state transimission, %)
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Design Criteria: Doping

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

- ON state: 95% transmission
requires an area doping
density of ~1x10'4 /cm?
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~  Lateral Current Flow Problem

Voltage drop due to
sideways current flow

28

+V, Anode

The problem also occurs on the
N side, but is less severe

-V, Cathode

Device
Centre

P

Very little injection

occurs near the
centre
i
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Mobility (cm2/Vs)

Carrier Mobillity in Ge
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We require high mobility for uniform current distribution!
Carrier-carrier scattering degrades mobility above ~ 115 /cm3

1019
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4”0 Drive voltage issues — intrinsic
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Simulations: ‘standard’ Ge

10uS lifetime, typical of ‘standard’ material
1078 /cm?3 acceptors P side, 10'4/cm?
5*1078 /cm?® donors N side, 5*10'4/cm?
Gaussian profile

Axisymmetric

50um wide metal ring electrodes
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=) Hole concentration at 0.6 Volts
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REMINDER!
We needed ~
Np=8.64*1016/cm3
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Hole Area Concentration

Central Hole Area Concentration as a fuction of Voltage
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Transmission (%)
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Transmission (%)

Transmission through Diode vs Horizontal Distance
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g Avoid Copper!

Copper has an EXTREMELY high SRH cross section!

Copper diffuses very rapidly through germanium

Tiny concentrations, ~10'%/cm3, severely shorten the lifetime.
Nuclear Detector is satisfactory, with lifetimes ~6mS

So we assume 2.5mS, allowing some processing loss

Avoidance of copper contamination is CRUCIAL

25
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'{'{( ,(Ie concentration at 0.4 Volts
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“CJ) Hole concentration at 0.5 Volts

0
100
200

300

REMINDER!
We needed ~
N,=8.64"1 076/cm3

=

Microns
h
=
=

600
700
a00

Interesting..........

300

1000

0 400 Fi1]1] 1200 1600 2000 2400
Microns

27



&7 .
) Hole concentration at 0.6 Volts
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Hole Area Concentration

Central Hole Area Concentration as a function of Voltage

(1e15/cm”2)
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Central Transmission through PiN Diode

(2.5 ms Tnand Tp)
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Transmission (%)

Transmission through Diode vs Horizontal Distance
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BUT...

 There are issues...as always
— Surface Recombination Velocity
— Auger Recombination
— Shockley-Read-Hall (SRH) Recombination
— Photon transitions (indirect band gap)
— Impact ionisation (high E.Field only)
— Tunneling (not possible)
— Many-body effects on diffusivity

32
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)What IS Surface Recombination?

@ <— ® ® Conduction band

|E’/ «— — Surface states ]

b‘o 5 6 60066 0006 o Valence band

Carriers diffuse to the surface
- A And ‘Kkill’ the effective lifetime.
S
5 | g 50 For Ge
2, ~ s$=1-100cm/s
3 P Lirci } surface recombination velocity
::” ____________________________________________
x=10
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~ What is SRH Recombination

* Trap could be due to
presence of foreign

? atoms such as Cu, Ni, Au
j% Fy or a structural defect in
l crystal
* The ultra-pure material is
trap-assisted essential free of this
recombination

« But the heavily doped
regions are damaged....

34
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““Concentration Dependent SRH

* No literature available on CONSRH in Ge, pure
guess values!!

_ _ __ TAUNO
n~ T+N/(NSRHN)

* Quite Pessimistic values assumed, a factor of
1/10,000 i.e. from 10mS to 1 uS at highest
concentration!

* The effect only operates over a very small
volume of the device

35
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“AWhat is Auger Recombination?

* Three particle effect
m/dt=— y,nd,

."JHI IHl".

Y

* Y3=1.1e-31 cm®/s

Y Ey + Some theoretical estimates
A:ger lower (better)

recombination  But not that well established
at densities relevant to us.
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> Conclusions

« Some device modeling still needed for
optimization

* Process simulation now more important
* Alloyed contacts may be used for fabrication?

» Lifetime preservation in processing
absolutely crucial

 The Auger parameter is a concern
 But it does look possible
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