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ABSTRACT
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Special Issue, No. 75, pp. 912-916. Coconut Creek (Florida), ISSN 0749-0208.

Rip currents are a major hazard on beaches worldwide. Although in-situ measurements of rips can be made in the 
field, it is generally safer and more cost effective to employ remote sensing methods, such as coastal video 
imaging systems. However, there is no universal, fully-automated method capable of detecting rips in imagery. In 
this paper we discuss the benefits of image manipulation, such as filtering, prior to rip detection attempts. 
Furthermore, we present a new approach to detect rip channels that utilizes synthetic imagery. The creation of a 
synthetic image involves the partitioning of the ‘parent’ image into key areas, such as sand bars, channels, 
shoreline and offshore. Then, pixels in each partition are replaced with the respective dominant color trends 
observed in the parent image. Using synthetic imagery increased the accuracy of rip detection from 81% to 92%. 
Synthetics reduce ‘noise’ inherent in surfzone imagery and is another step towards an automated approach for rip 
current detection.
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INTRODUCTION
Rip currents (rips) are seaward-orientated, jet-like flows 

originating in the surfzone (Short, 1985). They generally occur 
in channels incised into sand bars (Shepard et al., 1941; Bowen, 
1969). Despite numerous field campaigns, studies have been 
unable to relate rip behaviour solely to the incident wave field, 
due to factors such as nonlinearity, time-lags, and the largely 
unknown effects of antecedent bathymetry (e.g., Holman et al.,
2006; Huntley and Short, 1992; Short, 1985). The inability to 
linearly link forcing and response of rip channels has resulted in 
a somewhat site-specific understanding on the key controls on 
rips. The main cause for this knowledge gap is the lack of 
adequate, long-term field data at multiple sites with different 
forcing. Field experimentation in the surfzone is difficult, 
expensive, and often dangerous. Therefore, remote sensing 
provides an attractive alternative. 

Video imaging has been used to remotely sense the nearshore 
for about 25 years. Lippmann and Holman (1989) first realised 
the utility of time-lapse imagery in identifying the position of 
offshore sand bars, using areas of high light intensity generated 
by waves breaking over the bar. The development of bespoke 
coastal imaging methods such as Argus (Holman and Stanley, 
2007), allows extraction of quantitative data from images. Such 
information includes bar position (Lippmann and Holman, 1989), 

wave period and nearshore bathymetry (Ranasinghe et al., 2004; 
Stockdon and Holman, 2000), wave incidence angle (Lippmann 
and Holman, 1991), and alongshore rip channel locations 
(Ranasinghe et al., 1999). 

Video imaging has been used to detect and measure rip 
channel parameters, such as quantity and alongshore location 
(e.g., Ranasinghe et al., 1999). These techniques were used to 
extract datasets of up to 4 years (e.g., Holman et al., 2006); 
timescales that would be unfeasible to measure in-situ. A major 
limiting factor on the length of rip datasets that can be generated 
is that all attempts thus far required various degrees of manual 
input (Bogle et al., 2000; Gallop et al., 2009; Holman et al.,
2006; Quartel, 2009; Ranasinghe et al., 1999; Turner et al., 2007; 
Whyte et al., 2005). The majority of research using video 
images uses the raw image products (snapshot, timex, daytime, 
etc.) output from the cameras, which can often be inherently 
‘noisy’, hindering robust rip channel detections.

Therefore, this research aims to investigate the merits of image 
manipulation, prior to the extraction of data from imagery. In 
particular, we consider the benefits of spatial filtering, and the 
use of synthetic images as it may provide an intermediate step 
overcoming previous problems with automated rip detection. 

Image-Based Rip Detection
The favoured approach to date for automatic rip detection has 

been to use pixel intensity minima as indicative of rip channel 
location, because deeper channels appear as darker areas 
between the higher intensity wave breaking zones over shoals. It 
is also common to average the intensity values in the cross-shore 
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direction. All values between the shoreline and the edge of the 
breaking region are averaged at each alongshore position, to 
compute one alongshore intensity profile (Ranasinghe et al., 
1999). This method is appropriate for simple scenarios, where 
rip channels are orientated in shore-normal directions. It is 
inappropriate for complex bathymetries (Holman et al., 2006) 
such as the common cases where rip channels cut across the 
surfzone diagonally to form acute angles with the shoreline. 

The intensity profiles generated have typically been subject to 
visual classification in order to ascertain rip locations (e.g.,
Bogle et al., 2000). This is due to the resultant image intensity 
profiles containing a degree of ‘noise’ or ‘fouling’ that can act to 
obscure the main features. In this context, noise refers to 
artefacts introduced to the image during processing. Fouling 
refers to anything undesirably captured by the camera, such as 
rain drops and fog. Noise can be present in the image for a 
variety of reasons, such as environmental factors (i.e. sensor 
temperature) during image acquisition (Russ, 2007). 

Analogue signals of the natural world are continuos (Bovik, 
2005) and therefore need to be quantized to produce digital 
images before computer processing. In the literature pertaining 
to image-based rip detection and surfzone studies, pixel values 
know as intensities are usually quantized into 256 discrete levels 
[0-255]. This quantization process introduces a uniform noise to 
the digital image (Gonzalez and Woods, 2008). A common 
approach to reduce such noise in the field of image processing is 
to filter the image, yet this is rarely discussed in literature 
pertaining to image-based rip detection, or surfzone studies. 

Image Filtering & Manipulation
To our knowledge, simple single-image filtering of nearshore 

images has not been widely used before, because the prevalent 
image type used for analysis is the so called timex image, which 
represents the time-mean of intensity in all frames collected at 2 
Hz over a 10-minute period (Holman and Stanley, 2007). This 
constitutes a form of  average filtering during the image 
acquisition stage; however, the resultant image may still include 
background noise or erroneous data. One such example is 
raindrops on the lens covering, which would appear in the 
rectified image, giving a false intensity signature for the pixel(s) 
concerned. Studies using video images tend to reject imagery 
where raindrops are visible on the lense for this reason. Holman 
et al. (2013) described how consecutive images in a time series 
can be used to create a running-average estimate (cBathy). 
cBathy uses wave celerity to estimate bathymetry, and the use of 
this running-average filter has been successful in removing 
fouling from subsequent images, such as rain drops or sun glare. 
Despite the assumption that a timex image is already prefiltered, 
it still contains noisy signals, representative of a very dynamic 
surfzone. Furthermore, inclement weather still appears as 
fouling in the imagery. Therefore, there is a need to pre-filter the 
image before processing, rather than relying on filtering the 
signal that is extracted as a result of processing.

METHODS
In this study we use images from Tairua beach in New 

Zealand, to investigate the benefit of simple spatial filtering, as 
well as the use of synthetic images for rip channel detection.

Field Site
Tairua beach, is located on the Coromandel Peninsula of New 

Zealand’s North Island. This site was chosen because it exhibits 
a range of surfzone morphologies. Tairua is a 1,200 m-long 
embayment confined by a rocky promontory in the north, and an 
extinct volcano in the south (Figure 1). The beach faces east and 
receives medium energy (Hs = 1.5 m; Tm = 10 s) waves from the 
South Pacific (Almar et al., 2008). The beach generally exhibits 
an intermediate state (Masselink and Short, 1993), and is 
comprised of medium-coarse (D50 §� ���� PP�� VDQGV� �YDQ� GH�
Lageweg et al., 2013). The tidal regime is predominantly 
microtidal, with a range varying between 1.2 m (neap) and 2.0 m 
(spring) (van de Lageweg et al., 2013). The beach is monitored 
under the New Zealand National Institute of Water and 
Atmospheric Research (NIWA) Cam-Era scheme, which has 
collected images here since 1999. The camera is mounted at the 
southern end of the beach, at a height of 68 m above mean sea 
level (van de Lageweg et al., 2013).

Figure 1. Map of Tairua study site (black box), including the location of 
the Cam-Era monitoring station (black circle).

Image Filtering 
The first stage to create a synthetic image is filtering the 

parent image. A common approach to filtering is the use of high-
and low-pass filters. These operate in the frequency domain of 
the image, akin to Fourier transforms. High frequency noise is 
introduced to imagery by sharp intensity transitions, such as 
edges observed at the shoreline. These high frequency signals 
can be smoothed using a lowpass filter, attenuating the high 
frequency components and therefore blurring the image 
(Gonzalez and Woods, 2008).

In simple cases, where only a few raindrops have fouled the 
image, spatial filtering can remove the effect of this noise. When 
the fouled image is rectified, the previously small element of 
noise (the rain drop), is projected across a wide area (e.g., Figure 
2a), as a result of the transformation between image co-ordinates 
[u, v] and real-world co-ordinates [x, y, z]. A Gaussian lowpass 
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ILOWHU��PDVN� ����[�����ı� �����LV�DSSOLHG�WR�WKH�UHFWLILHG�LPDJH�
(Figure 2b). Subsequently, pixel intensities from the same 
transect of pixels in each image are extracted (Figure 2c). The 
maximum gradient in intensity profile is used as an estimation of 
the onset of wave breaking. In the unfiltered image, large errors 
are evident in the detected location of wave breaking (Figure 2d) 
wherever rain fouls the lens. In contrast, the errors do not exist 
in the profile extracted from filtered imagery. 

This example highlights the benefits to be gained from image 
manipulation prior to processing, such as the removal of small 
patches of lens fouling. As these sharp intensity transitions are 
often expected to represent the very feature we wish to 
investigate, such as the edge of a rip channel, filtering can 
smooth these features yielding more accurate results.

Figure 2. (a) Rectified timex image of Tairua beach, New Zealand. Rain 
drop fouling is evident in the region of the blue transect line. (b) Filtered 
version of (a) with red transect line. (c) Intensity profiles for both 
transect lines, with the maxima marked by horizontal lines. (d) Onset of 
wave breaking detected alongshore using intensity maxima transects, as 
per (c).

Synthetic Image Creation
Having filtered the parent image, the next stage is to segment 

it into distinct zones: beach, rip channels, breaking waves, and 
offshore. Rip channels and breaking waves form the surfzone. 
The offshore boundary of the surfzone is the limit of wave 
breaking which is defined by the first significant increase in the 
pixel intensity gradient (Bogle et al., 2000). The landward 
boundary of the surfzone is determine by the shoreline. This is 
detected using segmentation based on 3-banded k-means
clustering (Wang and Adelson, 1994). This method identifies the 
beach by the dominance of the red pigmentation in the RGB 

signature. The surfzone must then be separated into rip channels 
and wave breaking regions. This is done by thresholding the 
extreme intensity values, and using the mid-point as a cut-off. 

The image is now composed of 4 distinct zones (Figure 3b). 
All pixel values for each individual zone are collated, and used 
to create zone-specific histograms of red, green and blue 
pigments (Figure 3c-f). For each zone, the pixels are replaced 
with synthetic pixels. These synthetic pixels are generated from 
the normal distribution created in the previous stage. The pixel 
value is random, but weighted towards the higher probability 
occurrences from the distribution curve.

In order to estimate the utility of synthetic imagery for 
improved methods of automated rip detection, this study applies 
the rip detection method proposed by Ranasinghe et al. (1999) 
to both the original rectified imagery, and the corresponding 
synthetic image. The original image is manually digitized in a 
similar method to that described by Whyte et al. (2005) as a 
benchmark to assess the accuracy of the rip detection algorithm. 
The errors of such digitisation are documented in Holman et al.
(2006), who report that two users digitising rips on average 
recorded the same number of rips in the imagery per day, but the 
recorded location of rips was more variable between digitizers.
For the purposes of this study, the more consistent rip number 
parameter is used. The images selected are a random selection of 
80 images from the archive.  

RESULTS
Both image types produce a statistically significant (at 95%) 

correlation in the quantity of rips. Correlation in the original 
imagery (R = 0.28, P = 0.013) is poorer than that in the synthetic 
detections (R = 0.47, P = 1.2x10-5). The correlation in synthetic 
imagery was statistically significant at 99%. Correlation alone is 
not a good measure of agreement; therefore, the error in each 
method has been presented here.

The user-digitized number of rips in each image varies
between 1 and 4 (Figure 4). A nominal ‘acceptable error’ 
threshold  of ±1 detected rip is plotted onto Figure 4. In total, the 
original imagery produces correct detections 34% of the time, 
compared to 41% in the synthetic imagery. The detections lay 
inside of the ±1 error threshold 81% of the time in the original 
imagery, compared to 92% of the time in the synthetic imagery, 
resulting in total error (> ± 1) in 19% of the original image 
detections, and 8% of the synthetic detections.

Of the detections that were incorrect in the original imagery 
(66%), 38% were under-predictions, compared to 62% over-
predictions. The opposite is true of the synthetic imagery (59% 
incorrect), whereby 64% of erroneous detections were under-
predictions and 36% were over-predictions. 

In the original imagery, in all 4 scenarios (1 - 4 digitized rips), 
the standard deviations in the detection lie outside of the ±1 
error threshold (Figure 4a), whereas only one scenario (4 rips)
contains standard deviations outside this threshold in the 
synthetic imagery. Interestingly, both methods produce an 
under-estimation of comparable magnitude in the 4 rip scenario.

DISCUSSION
In this paper we have shown that simple image filtering can 

reduce small-scale fouling and noise in imagery. Previously, the 
signal extracted from the raw image would generally be filtered, 
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as opposed to filtering the image first. This is important as the 
extracted signal through a set of pixels is generally 1-directional 
and does not take account of neighbouring pixels and trends. 
The filtering of an image, rather than extracted signal, uses 2-
dimensional filters and local pixel statistics to remove noise 
(Lee, 1980). This filtered image is then ready for quantitative 
analysis, or here, the creation of a synthetic image. We have also 
shown that the use of synthetic imagery as opposed to original 
images improves rip detection using the method outlined by 
Ranasinghe et al. (1999). The total error in detections with 
synthetics is halved when compared to original imagery. 

The reported limitations of the Ranasinghe et al. (1999) 
method (Holman et al., 2006; Turner et al., 2007) were clear in 
the results, as detections on both the original and synthetic 
images produced considerable scatter. This is likely the result of 
the complex rip channel morphologies at Tairua, where rips 
orientated shore-normally are a minority occurrence. That said, 
there are significantly fewer rips detected in the synthetic 
imagery (n = 203), compared to the original imagery (n = 242), 
which infers that the synthetic images provide a dataset with 
much less unrelated extraneous noise.

The method used for rip detection oversimplifies the 
morphology qualitatively observed in the imagery, and therefore, 
it is expected that any results obtained via this method would 
under predict the occurrence of rip channels. Despite the 
oversimplification inherent in the method, detections based on 
the original imagery still produces over-estimation of rip number 
41% of the time, which is perhaps indicative of the amount of 
noise the original image contains. In comparison, the synthetic 
imagery produces under-estimation (as would be expected using 

this method) on 38% of detections. 
The work of Bogle (2000) used the same approach as 

Ranasinghe et al. (1999) on Tairua, but ultimately resorted to 
visual selection of intensity minima. This is presumably because 
the complex patterns observed in imagery made automation via 
the use of thresholds (such as in our approach using original 
imagery) unviable. The use of a simplified synthetic-type image 
may aid steps towards an automated approach to rip detection. 
We have shown here, for the same study site that the 
simplification of the imagery via the creation of a synthetic 
image, increases the number of correct detections, and also the 
number of predictions correct to within ± 1 rip. This new 
intermediate step may help overcome the documented 
limitations of current attempts to automatically detect rip 
channels in imagery.

CONCLUSIONS
This research investigated the effect of image manipulation, in 

the form of image filtering and synthetic image creation, on 
automated rip channel detection in surfzone imagery. Simple 
filtering methods were able to reduce the effects of small scale 
fouling and noise on image intensity signals. The use of 
synthetic imagery increased rip detections within the acceptable 
error threshold from 81% correct to 92%. Rip channel detection
using synthetic imagery reduced the total number of detections 
by 16%, showing a reduction of extraneous noise inherent with 
the original image. A systematic underprediction was observed 
in the detection of rips using synthetic imagery, which is 
consistent with the detection method selected. This paper 
provides proof of concept for image manipulation prior to 

Figure 3. (a) An original rectified image from Tairua beach. (b) The parent image (a) has been segmented into the offshore region, the beach, and then 
within the surfzone into areas of wave breaking, and deeper channeled areas. (c-e) The pixel values from the original image (a) for each zone identified 
in (b) have been extracted, and presented in terms of their red, green, and blue pixel values. The zones in (b) are then filled with pixels randomly 
selected from the corresponding pixel value distribution curve in (c-f). The resulting image is the synthetic image, with each zone now exhibiting the 
dominant colour trend observed in the parent image.
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processing, in order to aid automated surfzone feature detection.  
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Figure 4.  The user-digitized number of rips in each image obtained by digitization compared to the error in the number of rips detected in the 
corresponding original image (a) and synthetic image (b). Positive and negative numbers represent over- and under-predictions, respectively. Each 
prediction is represented as a scatter point. The data is binned by the user-digitized number of rips, with the mean (red line), the 1.96 standard error of 
the mean for each class (red bar), and the standard deviation (blue bar).


