
Accepted Manuscript

Title: Antibody modulation: Limiting the efficacy of
therapeutic antibodies

Author: Andrew T. Vaughana Mark S. Cragga Stephen A.
Beersa

PII: S1043-6618(15)00136-X
DOI: http://dx.doi.org/doi:10.1016/j.phrs.2015.07.003
Reference: YPHRS 2865

To appear in: Pharmacological Research

Received date: 8-7-2015
Revised date: 9-7-2015
Accepted date: 9-7-2015

Please cite this article as: Vaughana Andrew T, Cragga Mark S, Beersa
Stephen A.Antibody modulation: Limiting the efficacy of therapeutic
antibodies.Pharmacological Research http://dx.doi.org/10.1016/j.phrs.2015.07.003

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.phrs.2015.07.003
http://dx.doi.org/10.1016/j.phrs.2015.07.003


1 
 

 

Title: Antibody modulation: limiting the efficacy of therapeutic antibodies 

 

Author(s): Andrew T. Vaughan1,2, Mark S. Cragg1, Stephen A. Beers1 

 

Institution: 1Antibody and Vaccine Group, Cancer Sciences Unit and 2 Department 

of Molecular Microbiology, Clinical and Experimental Sciences Unit; Faculty of 

Medicine, University of Southampton, UK 

 

Address correspondence to: Mark S. Cragg or Stephen A. Beers, Antibody and 

Vaccine Group, Faculty of Medicine, University of Southampton, MP88, Tremona 

Road, SO16 6YD 

E mail: msc@soton.ac.uk or sab:soton.ac.uk; Fax: (+44) 02380 704061 

 

Graphical abstract 

fx1 

 

  



2 
 

Abstract 

 

Monoclonal antibodies (mAb) have revolutionised the way in which we treat disease. 

From cancer to autoimmunity, antibody therapy has been responsible for some of 

the most impressive clinical responses observed in the last 2 decades.  A key 

component of this success has been their generally low levels of toxicity, and unique 

mechanisms of action. These two facets have allowed them to a) be integrated 

rapidly into clinical practice in combination with conventional radio- and chemo-

therapies and b) to avoid the resistance mechanisms typically observed with 

classical small molecule drugs, such as upregulation of drug efflux transporters, 

dysregulation of apoptosis and mutations in key target enzymes/pathways.  

 

Although success with mAb therapies has been impressive, they are also subject to 

their own resistance mechanisms. In this perspective we discuss the various ways in 

which mAb therapeutics can be inhibited, concentrating mainly on the ways in which 

they can be removed from the target cell surface - a process called modulation. This 

can be achieved either in a cis-fashion on a single cell or in trans, precipitated by 

engagement with a second phagocytic cell. The evidence for each of these 

processes will be discussed, in addition to possible therapeutic strategies that might 

be employed to inhibit or reverse them. 

Abbreviations: Fc gamma receptor, FcR; monoclonal antibody, mAb 

 

Key Words: Antibodies, Fc gamma receptor, FcγRIIB, Modulation, Shaving, 

Immunotherapy, CD20, Tumour Resistance 
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Introduction 

 

The large scale use of antibodies as potential therapeutics first became a reality in 

1975 when Kohler and Milstein described how to generate monoclonal antibodies 

(mAb) [1]. This technical advancement, for which the inventors were awarded the 

Nobel prize for medicine in 1984, allowed an infinite supply of a single mAb 

specificity to be produced for the first time, thereby facilitating the careful 

development and controlled production required for translation into human 

therapeutics.  The intervening decades have not been without challenges: the issue 

of immunogenicity of the original murine antibodies, and the unexpected toxicity of 

some antibody specificities have represented significant setbacks in the field but 

these have now largely been overcome through antibody engineering (chimerisation, 

humanisation, phage display), the development of mice expressing human antibody 

genes and more rigorous pre-clinical testing and careful trial management (reviewed 

in [2] and [3]).  

In particular, several mAb have clearly demonstrated the potential benefits of mAb 

therapeutics. The anti-CD20 mAb rituximab was the first to be approved for use in 

oncology and heralded in a new era in the treatment of B cell malignancies [4], 

improving response rates and overall survival in combination with chemotherapy and 

significantly raising the bar for new therapies. It has more recently also made 

significant inroads into autoimmune disorders, revealing perhaps surprising efficacy 

in diseases not previously associated with B cell dysfunction [5]. Its success has 

been to the extent that frequently clinical data is now assessed as being from either 

the pre- or post-rituximab era. In autoimmunity, the anti-tumour necrosis factor (TNF) 
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α mAb infliximab has had a similar impact. Approved first for Crohn's disease in 

1998, it has since been approved for ankylosing spondylitis, psoriatic arthritis, 

rheumatoid arthritis [6], and ulcerative colitis. Like rituximab, it has gone on to be 

administered to millions of patients. However, as well as illustrating the success of 

mAb therapeutics these two reagents also illustrate a new phenomenon – that of 

antibody resistance.  

 

As detailed above, mAb function very differently to conventional small molecule 

therapeutics. They work through a variety of potential effector mechanisms 

(reviewed previously [7]). In essence, they bind to their specific target molecule and 

in doing so may block the interaction with the natural ligand (as in the case of 

infliximab – it binds TNF - preventing it from binding to its receptor), modulate target 

molecule signalling (as in the case of Herceptin by preventing Her-2neu 

dimerization), and/or engage the effector systems of the immune system. These 

latter may be serum proteins such as complement or cellular effectors such as NK 

cells and macrophages which are engaged through key receptors on the cell surface 

known as Fc receptors which bind the Fc region of the antibody. 

 

As discussed elsewhere and in keeping with the fact that most therapeutic mAb are 

of the IgG class, Fc receptors and particularly Fc gamma receptors (FcγR), are 

pivotal for the activity of the majority of therapeutic mAb. FcγR represent a family of 

evolutionary related receptors which in mammals may be broadly subdivided with 

regards to their affinity for IgG and downstream signalling effects (reviewed in  [8]). 

Humans and mice have a single, high affinity FcγR, capable of binding monomeric 
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IgG, with the remainder all low-medium affinity, only binding multimeric IgG in the 

form of soluble or cell-bound immune complexes. The majority of FcγR are activatory 

receptors and have a positive signalling function, engendered through their 

association with the common FcR gamma chain, which contains an immunoreceptor 

tyrosine-based activation motif (ITAM). However, in both mouse and man there is a 

single inhibitory FcγR, FcγRIIB (CD32B) which has an immunoreceptor tyrosine-

based inhibitory motif (ITIM) and serves to reduce intracellular signalling arising from 

activatory FcγR and other stimulatory receptors via the recruitment of SHIP [9].  

 

Using anti-CD20 mAb as a model, we and others have tried to identify the key roles 

that FcγR play in mAb effector function [7]  and how resistance might be elicited 

[10,11] (Figure 1). Based on in vitro functional differences CD20 mAb can be 

classified as type I (rituximab-like) or type II (tositumomab-like) [7]. Type I display a 

potent ability to activate complement through enhanced recruitment of C1q [12] due 

to the efficient clustering of antibody Fc regions [13]; an activity directly linked to their 

ability to redistribute CD20 to lipid raft microdomains of the plasma membrane. In 

contrast, type II anti-CD20 mAb do not display either of these properties but instead 

evoke strong homotypic adhesion [14] and a non-apoptotic form of lysosomal cell 

death [14-17]. In addition, we observed that type I anti-CD20 mAb undergo more 

rapid internalization from the cell surface, in contrast to type II mAb [18-20]. Below 

we discuss the various ways in which the study of these two different types of mAb 

have elucidated a number of mechanisms of mAb resistance, before discussing how 

they may be overcome. 
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Antigenic modulation: Antibody internalisation 

Historically, CD20 was considered to be an ideal target for mAb therapy due to its 

high expression on malignant cells, its B cell lineage restriction, absence from 

antibody-producing plasma cells and stem cells, and apparent lack of antigenic 

modulation [21,22]. Whilst the first three properties hold true, it is now appreciated 

that antigenic modulation of CD20 occurs in some circumstances.  

Using transgenic mice expressing human CD20 on the surface of the B cell 

population, we demonstrated that type II anti-CD20 mAb consistently outperformed 

type I mAb in mediating B cell depletion in vivo [23]. Both the extent and duration of 

depletion was greater in animals treated with the type II mAb and was independent 

of differential complement activation [23] and programmed cell death [18] mediated 

by type I and II mAb.  Instead, type I anti-CD20 mAb were internalised and degraded 

in transgenic mouse B cells in vivo as well as primary and malignant human B cells 

treated in vitro, in contrast to the type II mAb [18]. Internalisation was associated with 

a reduction in both antibody half-life [23] and phagocytosis of opsonised cells [24] by 

effectors (Figure 1), suggesting that internalisation of type I anti-CD20 mAb-ligated 

CD20 leads to reduced therapeutic efficacy and increased consumption of mAb from 

the serum. 

 

Mechanisms of internalisation 

The mechanism of internalisation of type I anti-CD20 mAb was investigated by Lim 

et al. who demonstrated that the rate was slower in response to ligation by a F(ab’)2 

fragment of rituximab, suggesting a potential role for Fc receptor engagement [19]. 
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Internalisation occurred in purified B cells which express only the inhibitory FcγRIIB 

and engaging FcγRIIB with a specific blocking mAb inhibited the process. 

Furthermore, there was a negative correlation between the cell surface expression of 

FcγRIIB and the proportion of rituximab remaining on the cell surface after in vitro 

culture [19]. We also demonstrated that the ITIM of FcγRIIB was phosphorylated in 

response to rituximab, indicating that a direct interaction between the Fc domain of 

the mAb and the Fc-binding domain of the FcγR augmented internalisation. 

 

Type I anti-CD20 mAb and FcγRIIB may interact in either of two ways; engaging 

adjacent cells in trans, or on the surface of a single cell in cis. By repeating our 

experiments under conditions in which direct cell-cell interaction was unlikely, Lim et 

al. demonstrated that a cis interaction between type I anti-CD20 mAb and FcγRIIB 

was required to augment internalisation [19], a process termed antibody bipolar 

bridging. Finally, we demonstrated reduced survival after rituximab treatment in 

patients with mantle cell lymphoma whose tumours expressed high levels of 

FcγRIIB, after treatment with rituximab-containing immunochemotherapy [19], 

compared to those expressing low levels. This same observation was also made 

later in patients with follicular lymphoma treated with rituximab monotherapy [25], 

supporting the assertion that internalisation may reduce the therapeutic efficacy of 

type I anti-CD20 mAb therapy when used clinically. 

 

Interaction between type I anti-CD20 mAb:CD20 and FcγRIIB expressed in cis is 

analogous to the interaction between FcγRIIB and immune complexes formed by 

antibody-coated antigen. Upon antibody bound-antigen binding to its cognate B cell 
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receptor (BCR), the immune complex binds to FcγRIIB in cis via the Fc domain of 

the bound antibody, bringing the inhibitory FcγR and the BCR into close proximity in 

the plasma membrane; an interaction that inhibits BCR activation and is believed to 

act as a negative feedback loop for antigen-specific B cell responses [26].  In 

addition to inhibiting BCR activation, binding of immune complex in the form of heat 

aggregated IgG has been shown to induce rapid internalisation of the B2 isoform of 

FcγRIIB that is dependent on the presence of a complete ITIM sequence in the 

cytoplasmic domain [27,28]. These data suggested that the interaction between type 

I anti-CD20 mAb and FcγRIIB may bring FcγRIIB and CD20 into close proximity in 

the plasma membrane, augmenting internalisation of the trimeric complex via 

phosphorylation of the FcγRIIB ITIM, analogous to the response with immune 

complex. However, investigations by Vaughan et al. demonstrated that a truncated 

mutant form of FcγRIIB lacking the entire cytoplasmic domain was able to augment 

internalisation of type I anti-CD20 mAb-ligated CD20 as effectively as the wild type 

receptor [29]. This suggested that unlike the interaction between FcγRIIB and 

immune complex, internalisation of antibody-ligated CD20 was not mediated via 

FcγR-dependent signal transduction, implying that the role of FcγRIIB was restricted 

to physical/structural interactions. 

 

Role of lipid rafts 

Interestingly, type I anti-CD20 mAb are not unique in their ability to interact with 

FcγRIIB. In fact, many mAb targeting antigens on B cells interact with FcγRIIB in cis 

in direct proportion to the amount of mAb bound to the cell surface, including mAb to 

MHC II, CD40 and CD38 [20]. However, in the majority of cases these interactions 
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fail to alter the rate of internalisation of the mAb-ligated receptor, with only anti-CD38 

and anti-CD19 mAb significantly affected [20]. 

 

In an attempt to further elucidate the mechanism of antigenic modulation, we have 

investigated the role that lipid rafts may play in FcγRIIB-augmented internalisation of 

mAb-ligated CD20. Type I anti-CD20 mAb mediate redistribution of CD20 to lipid 

rafts [30,31] in contrast to type II anti-CD20 mAb [12] and many other mAb directed 

to B cell surface receptors. Furthermore, FcγRIIB also redistributes to lipid rafts upon 

crosslinking with the BCR [32-34]. Redistribution to lipid rafts and subsequent 

endocytosis is a well-recognised pathway of internalisation for many receptor:ligand 

complexes and viruses [35]. We speculated that the interaction between FcγRIIB 

and rituximab in lipid rafts may be required for augmenting internalisation [29], 

explaining why the rate of internalisation of type II anti-CD20 mAb and mAb directed 

to other receptors remain largely unchanged, despite phosphorylation of FcγRIIB. 

To investigate the role of lipid rafts, we transfected human myeloma cells with 

mutant versions of CD20 unable to redistribute to lipid rafts [14,31]. In the absence of 

FcγRIIB, cells expressing these mutant forms of CD20 demonstrated slower 

internalisation of type I anti-CD20 mAb than cells expressing wild type CD20 

suggesting that redistribution of CD20 to rafts is important for internalisation 

(unpublished observations).  However, internalisation was augmented when cells 

were co-transfected with FcγRIIB, suggesting that FcγRIIB was able to compensate 

for the mutation by acting to chaperone mutant CD20 into lipid rafts. To investigate 

this possibility we prepared a transmembrane mutant form of FcγRIIB based on a 

similar mutation made in the transmembrane domain of FcγRIIA [36] that is unable to 

redistribute to rafts. This mutant form of FcγRIIB also augmented internalisation of 
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CD20, suggesting that its role in the process may be independent of its ability to 

enter lipid rafts (unpublished observations). 

It is still unclear how the interaction between FcγRIIB and type I anti-CD20 mAb 

augments internalisation of CD20. A prerequisite for endocytosis is the formation of 

membrane curvature that allows the budding of endocytic vesicles. Recently, 

Stachowiak et al. demonstrated that steric confinement of highly crowded protein 

within regions of artificial lipid membranes is enough to drive membrane puckering 

and lipid tubule formation in the membrane [37], observing that puckering increases 

with protein concentration. We have observed punctate staining of CD20 that co-

localises with FcγRIIB upon ligation with type I anti-CD20 mAb, in contrast to diffuse 

staining observed with the non-redistributing type II mAb [18-20,29]. The high density 

redistribution of CD20 and FcγRIIB induced by type I anti-CD20 mAb-ligation 

resembles the high density staining observed in the artificial membranes generated 

by Stachowiak et al. [37] and may therefore be sufficient to trigger membrane 

puckering and subsequent endocytosis. The function of FcγRIIB in this process may 

be to form high affinity interactions with the mAb-ligated receptor, promoting high 

density clustering within the membrane, necessary for membrane distortion. This 

does not fully explain why type II anti-CD20 mAb do not augment internalisation of 

CD20, which also interact with FcγRIIB expressed in cis. However, the crystal 

structure of the type II mAb GA101 (obinituzumab) indicates that type II antibodies 

bind CD20 in a different orientation to type I anti-CD20 mAb [38]. This difference 

may alter the affinity or density with which type I and II mAb interact with FcγR in cis. 

Although type II mAb interact with and phosphorylate FcγRIIB, the level of activation 

is much less [20].  The altered elbow angle of type II anti-CD20 mAb may not be 

sufficient to drive the clustering required to elicit membrane puckering and 
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subsequent endocytosis. This, coupled with the inability of type II mAb to induce 

redistribution of CD20 to lipid raft domains may result in type II mAb and mAb 

directed to other protein targets, remaining on the cell surface. 

 

Antigenic modulation: Antibody shaving 

An alternative explanation for the phenomenon of antibody resistance is antibody 

shaving or trogocytosis. The shaving reaction was first implicated in resistance to 

mAb treatment in studies with rituximab in CLL patients by the group of Ron Taylor 

[39]. They proposed this mechanism to help explain the clinical observation that after 

initial infusions of rituximab, circulating CLL cells were reduced in number and then 

replaced by CD20 low/negative CLL cells which persisted in the face of ongoing mAb 

administrations [40].  

 

In the shaving reaction antibody and antigen complexes are nibbled or plucked 

(shaved) from the target cell surface in an FcγR-dependent reaction by monocytes or 

macrophages [39]. Although originally postulated to be mediated by FcγRI, shaving 

has since been demonstrated to be possible with any, and all, FcγR and seems 

simply to require productive contact between antigen-antibody complexes and FcγR 

expressing effector cells. Indeed in one mouse model system the inhibitory FcγRIIB 

was also demonstrated to mediate shaving [41]. It is noteworthy that these data 

regarding FcγR usage were obtained using an intraperitoneal tumour mouse model 

where previously complement had been demonstrated to play a role [42]. It is 

therefore possible that complement receptors which are expressed on monocytes 
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and macrophages, and themselves able to mediate phagocytosis [43,44] may have 

been active in this system making delineation of the role of FcγR difficult. 

Taylor and colleagues proposed that the shaving process occurred when effector cell 

populations become saturated and exhausted (reviewed in [45]). Shaving is 

proposed to leave the cells viable but refractory to clearance by subsequent effector 

functions as they are no longer coated with mAb.  Although the depletion of 

complement components [40] and activation of NK cells [46] has been demonstrated 

after rituximab administration no formal demonstration of reduction in capacity or 

exhaustion for monocytes or macrophages has been evidenced to date. It is 

interesting to question whether even in the presence of heavy leukaemic or other 

tumour burdens saturation of the reticulo-endothelial system is possible given its 

huge capacity for cellular uptake and clearance. Indeed under normal homeostatic 

conditions phagocytic cells of the liver and spleen have been calculated to clear 2 

million red blood cells per second [47]. 

 

Shaving, albeit not so-called at the time, was first demonstrated by Griffin and 

colleagues who observed that capped antigen-antibody complexes could be 

internalised by monocytes/macrophages without engulfing or destroying the 

opsonised cells [48]. They had previously shown that antigen-antibody capping 

prevented phagocytic uptake of opsonised cells. They showed in a series of elegant 

studies that the capping process effectively sequestered antibody to one half of the 

target cell which was brought into intimate contact with the effector cell plasma 

membrane. This process left the membrane-distal portion of the target cell denuded 

of opsonising antibody thereby preventing the zipper mechanism of phagocytic 
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uptake they had previously outlined [49]. Although these data provide good evidence 

for the ability of antibodies to mediate such a process it should be noted that these 

early studies were carried out with polyclonal antibodies rather than monoclonals. It 

is likely that the use of polyclonal Ab raised against highly expressed receptors such 

as the B cell receptor and their consequent ability to induce extensive hyper cross-

linking produce an exaggerated effect when compared to mAb such as rituximab 

which recognise more discreet antigens and have been demonstrated to produce 

smaller caps [19] rather than the hemisphere sized caps produced in these early 

studies. Despite this caveat, several laboratories have shown similar findings with a 

variety of other mAb (trastuzumab, cetuximab and T101, [50]; epratuzumab, [51]; 

daclizumab, [52]; CD22/CD20 bispecific, [53] and CD3/Trop-2 bispecific, [54]), 

demonstrating that shaving does indeed occur on target cells.  

The questions that remain regarding shaving are as follows: firstly, whether and to 

what extent this phenomenon impacts mAb efficacy in patients and secondly which 

mechanism of resistance, internalisation or shaving, is dominant in limiting 

responses to rituximab. The first question is important in order to help establish the 

rules by which one can predict and therefore rationally design mAb specific to 

antigens on different cell types whilst avoid shaving and potential escape. Secondly, 

for CD20 therapy it is important to understand which of the two resistance 

mechanisms dominate as each has been proposed to require very different clinical 

strategies to reduce or overcome their impact. 

In the case of internalisation we have proposed the use of non-internalising type II 

CD20 mAb such as obinutuzumab or the concurrent administration of mAb which 

reduce or negate the internalisation process of type I mAb like rituximab (discussed 

below). Alternatively, in order to overcome the detrimental impact of antigen loss 
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through shaving Taylor and colleagues have proposed that repeated low dose 

antibody administration, sufficient to clear cells but not, they suggest to saturate the 

effector populations, will enhance responses in CLL [55] and potentially to other 

direct targeting mAb [45].  

 

Taylor and colleagues in [45] themselves concede that in contrast to their own pilot 

and phase I/II trials [56,57], “the results of a dose escalation trial for CLL indicated a 

higher level of efficacy for single agent rituximab at (higher) weekly doses of 2250 

mg/m2” [58]. Further, the recent randomised Phase II NCRI Attenuated dose 

Rituximab with ChemoTherapy In CLL (ARCTIC) trial of low dose rituximab in 

previously untreated CLL closed the low rituximab arm early as it was inferior to 

standard FCR [59]. It should be noted that although this would suggest that shaving 

is not limiting efficacy in this setting and low dose rituximab regimes are not likely to 

augment responses in CLL these data are confounded by the addition of 

mitoxantrone. 

 

These results do however highlight the larger question regarding the CD20 

low/negative cells observed; are these deletion-resistant circulating cells as Taylor 

and colleagues propose or are they cells in circulation/transit which have shaved and 

escaped initial encounters with effector cells but which will eventually be cleared? 

Taylor and colleagues proposed that shaving was a secondary and separate 

mechanism only evoked when effectors were saturated or exhausted leading to 

resistant circulating cells. However, evidence in support of the latter contention, that 

these are cells in the process of being cleared, comes from a study by Boross et al. 

[41] where they showed that, “RTX-induced trogocytosis of CD20 is dependent on 
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RTX concentration and correlates with the therapeutic effect of CD20, confirming 

that the two processes are intimately related.” Our own unpublished data also 

support the latter statement as we only observe shaving in the presence of 

phagocytic activity in vivo and in vitro. Indeed, if we artificially saturate murine or 

human macrophages in vitro using latex beads we see a saturation-dependent loss 

in shaving which corresponds with a reduction in phagocytosis. Interestingly, and as 

demonstrated by Pedersen et al., both type I and II CD20 mAb mediate shaving 

equally [60] and we have confirmed this in unpublished mouse and human studies. 

Despite this similar propensity to shave, type II mAb outperform type I in mediating 

cellular clearance in vitro and in mouse models in a manner that can instead be 

explained by their lack of propensity to internalise [18,24]. Further to this the type II 

mAb obinituzumab has recently been trialled head to head with rituximab in CLL 

patients in combination with chlorambucil (CLL11, [61]) and found to nearly double 

progression free survival (albeit with a higher dosing schedule for obinituzumab). 

Taken together, these data support that internalisation rather than shaving limits the 

efficacy of type I anti-CD20 mAb. 

 

Other interactions between therapeutic mAb and inhibitory FcγRIIB that limit 

therapeutic efficacy 

In addition to reduced therapeutic efficacy mediated by the loss of opsonised antigen 

from the surface of a target cell via internalisation or shaving, there are additional 

interactions between therapeutic mAb and FcγRIIB that may increase resistance to 

depletion. These effects are mediated via interaction between FcγRIIB and 

therapeutic mAb in cis or trans and are discussed below (Figure 1). 
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Cis effects 

It is clear that mAb targeting specific cell-surface receptors on FcγRIIB–expressing 

cells can, and do, interact with FcγRIIB in cis [20,62]. The consequences of this 

interaction are both target and mAb specific. Firstly, cis interaction between mAb and 

FcγRIIB can compete with other FcγR expressed in trans leading to a potential 

reduction in downstream FcγR-dependent immune effector mechanisms. This was 

demonstrated by Cassard et al. using an in vivo model in which mice were 

challenged with a metastatic melanoma cell line transfected with FcγRIIB. Survival of 

mice challenged with these cells was reduced after treatment with a direct tumour 

targeting therapeutic antibody, compared to mice challenged with the untransfected 

FcγRIIB-ve cells. This effect was independent of the FcγRIIB cytoplasmic domain 

and resulted in lower antibody-dependent cellular cytotoxicity in vitro [62]. We would 

predict that cis interactions between FcγRIIB and therapeutic mAb would also likely 

compete with activatory FcγR expressed in trans on professional phagocytic cells, 

reducing antibody-dependent phagocytosis of cellular targets and thereby clinical 

efficacy. Further, if the opsonised target acts as an adjuvant to boost the immune 

response via engagement of activatory FcγR, reduced uptake of opsonised cells by 

professional antigen presenting cells could also result in reduced antigen-specific 

responses directed against tumour specific antigens. 

Interactions between therapeutic mAb and FcγRIIB expressed in cis may also 

compete with complement proteins for binding to the Fc domain of antibodies. Type I 

anti-CD20 mAb efficiently fix complement, activating the classical complement 

cascade [12]. Although this activity is largely considered dispensable for the 

therapeutic effects of the antibodies in vivo [23], Wang et al. have demonstrated that 
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complement components C1q and C3 inhibit the ability of type I anti-CD20 mAb to 

activate NK cells via FcγRIII expressed in trans, resulting in reduced ADCC [63]. 

This effect is presumably due to competition between complement and FcγR for 

binding to the Fc domain of the therapeutic mAb. Although not shown 

experimentally, a similar effect might occur between complement and FcγRIIB 

expressed in cis, in which the two proteins may compete for binding to the Fc of the 

therapeutic mAb. Therefore, with mAb for which complement activation is 

therapeutically important, cis interactions with FcγRIIB may be detrimental. 

 

Trans effects 

We have demonstrated that mAb targeting B cell surface receptor proteins are 

capable of binding to FcγRIIB expressed in cis and trans [20]. Trans interaction with 

FcγRIIB expressed on professional phagocytic cells lowers the therapeutic efficacy 

of direct targeting mAb [64,65], presumably due to competition for Fc binding sites 

with activatory FcγR on the phagocytes and inhibition of cellular activation via the 

downstream inhibitory effects of FcγRIIB engagement. The ratio of activatory FcγR 

to inhibitory FcγRIIB engaged by a therapeutic mAb is termed the 

activatory:inhibitory ratio [65,66], and is determined by cellular FcγR expression and 

the mAb IgG subtype. In mice, mouse IgG1 has a higher affinity for the inhibitory 

FcγR than mouse IgG2a [66], and thus has a lower activatory:inhibitory ratio and 

reduced therapeutic efficacy [24]. The deleterious effect of trans engagement 

between therapeutic mAb and FcγRIIB and the importance of activatory:inhibitory 

ratio was demonstrated by Nimmerjahn et al. using mice challenged with a 

metastatic melanoma cell line. Treatment of mice with the IgG2a subtype of a direct 
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tumour targeting mAb, which has an activatory:inhibitory ratio of 70 dramatically 

reduced the number of lung metastases to almost zero, compared to untreated mice. 

Conversely, treatment of mice with the IgG1 subtype resulted in no reduction in lung 

metastases due to the lower activatory:inhibitory ratio (0.1). However, in mice in 

which the gene encoding FcγRIIB had been deleted so that mAb could only engage 

activatory FcγR, the therapeutic efficacy of the IgG1 subtype was substantially 

augmented [65]. Thus, the degree of trans engagement between direct targeting 

mAb and FcγRIIB may have a direct effect on the outcome of therapy. This may be 

relevant in the treatment of various human malignancies, including malignant 

melanoma in which FcγRIIB expression is expressed on up to 40% of metastatic 

tumours [67]. Such ectopic expression of FcγRIIB on the tumour cells themselves (or 

on non-haematopoietic cells associated with it) could compete for mAb binding with 

activatory FcγR expressed on effector cells at the tumour site, lowering the 

activatory:inhibitory ratio of therapeutic mAb and reducing clinical efficacy. 

 

Future strategies to reverse mAb resistance mechanisms 

Co-administration of FcγRIIB blocking mAb and anti-CD20 mAb for the treatment of 

B cell malignancies 

Concentrating on anti-CD20 mAb, we have highlighted the diverse range of 

mechanisms through which therapeutic mAb can interact with FcγRIIB to result in 

reduced efficacy. Remarkably, the majority of these inhibitory mechanisms can 

potentially be abrogated using a single strategy; blocking FcγRIIB. Roghanian et al. 

recently co-treated mice expressing human CD20 and FcγRIIB with both rituximab 

and an FcγRIIB-specific blocking mAb, 6G11[68]. As expected, treatment of cells 
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with the FcγRIIB-blocking mAb reduced the rate of internalisation of mAb-ligated 

CD20 from the surface of B cells in vitro and this corresponded with an enhanced 

depletion of B cells in vivo. Furthermore, we observed a similar augmentation of B 

cell depletion when rituximab was combined with an N297Q mutant form of 6G11 

unable to bind FcγR by its Fc domain [68]. This suggested that the enhanced 

therapy seen was, at least in part, due to the inhibition of rituximab-mediated 

internalisation by preventing bipolar antibody bridging with FcγRIIB.  

 

In addition to inhibiting internalisation, blocking bipolar antibody bridging should 

promote interaction between direct targeting mAb and FcγR expressed in trans. Use 

of an FcγRIIB-blocking mAb such as 6G11 would also be expected to prevent trans 

interactions between direct targeting mAb and FcγRIIB on phagocytic cells and 

tumour cells, thereby enhancing the activatory:inhibitory ratio of the antibody, further 

enhancing therapeutic efficacy. 

 

With such a variety of effector mechanisms potentially augmented by co-

administration of 6G11, it will be exciting to see how this mAb performs in up-coming 

clinical trials [69]. If successful, co-treatment with blocking anti-FcγRIIB mAb may be 

applicable to many other direct targeting antibody therapeutics, and possibly some 

agonistic mAb. For example, for mAb which have been chosen for their ability to 

activate cell-surface receptors, blocking the interaction with FcγRIIB may augment 

activation due to the tendency of the inhibitory receptor to otherwise terminate 

downstream signalling pathways [70]. Paradoxically however, cross-linking by 

FcγRIIB expressed in trans has been demonstrated to be essential for the agonistic 
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activity of certain mAb such as anti-CD40 [71,72]. Therefore, blocking FcγRIIB in this 

context may actually be detrimental and so the use of this approach would need to 

be evaluated for each agonistic antibody depending on its mechanism of action. 

 

Conclusions 

In summary, it is clear that mAb have begun to revolutionise medical intervention, 

particularly in oncology, and this trend is set to continue [73]. Since the approval of 

rituximab in 1997, a plethora of other mAb have followed and become embedded 

into clinical practice. A completely different therapeutic modality to conventional 

chemotherapy, it is unsurprising that its resistance mechanisms also vary. Here we 

have outlined the way in which internalisation, shaving and other FcγRIIB-mediated 

mechanisms can reduce mAb efficacy, particularly for anti-CD20 mAb. If in the 

coming years effective strategies to overcome each of these issues are realised, 

even more impressive clinical responses with mAb therapeutics will be provided. 
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Figure legends 

Figure 1. Potential means of mAb resistance. Two key modes of mAb resistance 

have been proposed; internalisation/modulation or “shaving”.  In the former, a cell 

intrinsic process occurs whereby mAb binds to the target antigen (e.g. CD20) and its 

Fc is engaged by the inhibitory FcRIIB, precipitating internalisation of the tripartite 

complex. In contrast, shaving is performed by a secondary phagocytic cell. Under 

certain conditions, such as target cell saturation, the activatory FcR rather than 

mediating phagocytosis of the target cell, rip a portion of the cell membrane 

containing the target antigen and antibody from the target cell, stripping it of mAb 

and antigen. 
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