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Abstract 

 

Tide gates form a temporal barrier to fish migration, closing during the flood tide and opening during 

the ebb, primarily for flood prevention and land reclamation.  Their impact on downstream adult 

migration of the critically endangered European eel, Anguilla anguilla, is unknown.  The River 

Stiffkey, UK, has three top-hung tide gates (one counterbalanced, two not) through which it 

discharges into the North Sea.  Adult eels of silver appearance (n = 118) were caught between 0.5 to 

6.0 km upstream from the tide gates in Autumn 2011 and implanted with 23 mm half-duplex passive 

integrated transponder (PIT) tags.  Tagged individuals were detected by PIT antennae located near 

the tide gates.  Of the eels tagged, 80 were detected actively migrating downstream to the gates.  

Escapement past the gates was 98.3%.  Speed of migration was slower near the gates than for an 

unimpeded upstream reach, and was positively and negatively related to mean degree of gate 

opening and mean light intensity, respectively.  When the largest gate was modified through 

installation of an orifice intended to improve upstream passage of sea trout and juvenile eels, 

downstream migration was more rapid when it was operating.  However, video analysis revealed 

that eels did not pass through the orifice, meaning that faster migration may have been a result of 

the gates being open on more occasions when eels initially approached them, or the lower tides and 

upstream saline intrusion that occurred during these periods.  Top-hung tide gates in the River 

Stiffkey delayed eel migration, potentially increasing the risk of predation and energy expenditure 

immediately prior to a 5000 - 6000 km migration to spawning grounds in the Sargasso Sea.   

 

Keywords: silver eel, tide gate, escapement, passage efficiency, delay 
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1. Introduction 

 

European eel, Anguilla anguilla, recruitment has decreased by more than 90% since the early 1980s 

(Dekker 2003; ICES 2012) leaving the species endangered (Freyhof and Kottelat 2008) and 

populations below sustainable conservation limits (Bult and Dekker 2007).  A number of factors have 

been attributed to the decline, including variation in oceanic currents which reduce the rate of 

return (Baltazar-Soares et al. 2014) and food availability (Friedland et al. 2007) for leptocephali, and 

alter adult spawning location (Friedland et al. 2007); over harvest (Moriarty and Dekker 1997); 

pollution (Knights 1997; Robinet and Feunteun 2002); parasitism (Feunteun 2002), and impeded 

migration between essential habitats (Bruijs and Durif 2009; Laffaille et al. 2007; Winter et al. 2006).  

In an attempt to reverse this decline, the EU Eel Recovery Plan (2007) (Council Regulation No: 

1100/2007/EC) requires that all Member States develop strategies to meet silver eel biomass 

escapement targets of 40% relative to that expected in the absence of anthropogenic impacts (EC 

2007). 

 

To date, eel escapement research has focused on: (1) assessing the barrier effects of structures on 

upstream migration of juveniles (Knights and White 1998; Piper et al. 2012), and (2) the impact of 

hydropower installations and success or failure of screening for downstream migrating adults (Calles 

et al. 2013; Calles et al. 2010; Pedersen et al. 2012; Russon et al. 2010).  Intermittent barriers 

created by weirs, ramps, culverts, and tide gates, which are considerably more abundant than large 

structures such as dams (Lucas et al. 2009), have received less attention. 

 

Tide gates temporally obstruct migrating fish by closing under hydraulic pressure on the flood tide, 

and opening during the ebb (Giannico and Souder 2005).  Environmental conditions related to open 

gates, such as abrupt changes in salinity (Zaugg et al. 1985) and temperature (Berggren and Filardo 

1993; Boyd and Tucker 1998; Jonsson 1991), accelerating water velocities (Haro et al. 1998; Russon 

and Kemp 2011a), continuous overhead cover created by associated culverts (Kemp et al. 2005a), 

and a lack of tidal cues (Russell et al. 1998) may cause stress and obstruct migration of some fish 

species.  Although tide gates are used worldwide and are known to restrict fish species abundance 

and richness (Boys et al. 2012; Pollard and Hannan 1994), there has been little consideration of their 

impacts on the movement of diadromous fish, including eels.  There are some exceptions.  For 

example, fish passage is lower at gated culverts when compared to un-gated ones (for diadromous 

juvenile galaxiids, Doehring et al. 2011).  Specifically regarding eels, tidal structures, such as 

manually operated intertidal sluices, have been related to increased entrainment loss of 
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downstream migrating adult eels at an abstraction intake (Piper et al. 2013), while modifications to 

gates by maintaining connectivity through an aperture that remains open during the flood tide 

appear to enhance upstream abundance of glass eels (Mouton et al. 2011).  The current lack of 

understanding of the impacts of tide gates on fish migration, including that for downstream moving 

eels, remains an area that requires further attention.   

 

To date, the impact of tide gates on diadromous fish migrations are largely based on assumption or 

qualitative observation.  Where fish passage is thought to be sufficiently restricted, top-hung tide 

gates may be replaced with side-hung or self-regulating designs, or modified with counterbalances, 

retarders, orifices, or slots, all of which extend the period of connectivity between upstream and 

downstream.  The ability of these modifications to improve diadromous fish passage at tide gates, as 

well as their impact on important non-target species and life stages, has not been fully quantified 

elsewhere. 

 

This study assessed the impact of top-hung tide gates on the escapement and delay of actively 

migrating adult European eels, and the influence of an orifice modification, installed to assist the 

upstream movement of adult sea trout and juvenile eels past the gates.  PIT telemetry was used to: 

(1) determine eel escapement past the top-hung tide gate structure, (2) quantify delay by measuring 

speed through unimpeded (control) and tide gate (treatment) reaches, whilst (3) assessing the 

influence of environmental variables and the orifice modification in the River Stiffkey, UK.   

 

2. Materials and methods 

 

2.1. Study site 

 

Fed by a 141 km2 catchment, the River Stiffkey, North Norfolk, UK (52° 57' N; 0° 57' E; Fig. 1) is sited 

on a chalk aquifer with a mean (± SD) daily flow (measured at Little Walsingham, 12.6 km upstream 

from the tide gates, over the study period from 23 September to 10 December 2011) of 0.09 (± 0.02) 

m3 s-1.  From its source at Swanton Novers the river flows north for 33 km through the Stiffkey Valley 

Site of Special Scientific Interest before discharging via tide gates into the Blakeney Channel and the 

North Sea.  Tide Gate 1 (Fig. 2) is a top-hung design (width = 3.0 m, height = 2.1 m) opening at the 

seaward end of a corrugated metal pipe culvert (diameter = 2.9 m, length = 25.8 m).  Located at the 

end of the main river channel, it discharges the majority of the river’s flow (Fig. 1).  A weight at the 

top counterbalances the gate, extending the aperture of opening and time it remains open.  Tide 
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Gate 2 (Fig. 3) comprises of a pair of top-hung gates (width = 1.5 m, height = 1.6 m), each located at 

the seaward end of a smooth concrete pipe culvert (diameter = 1.2 m, length = 25.8 m).   Gates 1 

and 2 opened for 7.89 ± 1.00 h (mean ± SD) each tidal cycle at a median angle of 3.5o (range = 0.7 - 

29.8 o) and 6.4o (0.7 - 22.9 o), respectively.  When the tide gates are closed, the carrier channel, 

which terminates 2.7 km inland from the tide gates, increases the storage capacity and so reduces 

probability of flooding (Fig. 1).  In May 2010, the Environment Agency installed an orifice fish pass 

half way up Gate 1 (Fig. 2) (width = 0.5 m, height = 0.3 m), which comprised of a bottom hinged door 

that closed at a predetermined tide height under the control of a float.  This modification was 

intended to aid the upstream movement of adult sea trout and juvenile eels past the gates by 

extending the period of connectivity between the estuary and river whilst maintaining flood 

protection and minimising saline intrusion upstream by closing at high tide.   

 

 

 

Fig. 1 The lower reaches of the River Stiffkey, North Norfolk (UK), showing direction of water flow (→) through 

Tide Gates 1 and 2.  Six PIT loops (PLs, ▬) define limits of a control reach (A) containing no structures 

(between PLs 1 and 2), and a treatment reach (B) containing the tide gates (between PLs 2 and 4 or 6, 

dependent on the gate of exit) 
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Fig. 2 Left: The counterbalanced top-hung Tide Gate 1 in the River Stiffkey, North Norfolk (UK).  Right: An 

orifice fish pass installed in Gate 1 

 

 

 

 

 

Fig. 3 Tide Gate 2 on the River Stiffkey, North Norfolk (UK), consisting of two top-hung non-counterbalanced 

gates 



  

 

7 

2.2. Fish capture and telemetry 

 

The River Stiffkey maintains an established eel population (Pawson 2008).  The seaward spawning 

migration of European eels predominantly occurs during the autumn (Tesch 2003).  Therefore, adult 

eels were caught between July and December 2011 by a combination of electrofishing and trapping 

(fyke nets) in the River Stiffkey from Buxton Conservation (52° 57' 9.76'' N; 0° 57' 20.85'' E, 0.5 km 

upstream from the tide gates) to Warham (52° 56' 12.84'' N; 0° 54' 1.40'' E, 6.0 km upstream from 

the tide gates).  Adult eels were considered migratory if they exhibited the following characteristics 

when compared to resident yellow eels: (1) white-silver ventral and black dorsal surfaces distinctly 

separated along the lateral line; (2) large eye diameter to total length (TL) ratio; (3) large pectoral fin 

length to TL ratio; and (4) darkened pectoral fins (Tesch 2003).  

 

Eels were anaesthetised with MS-222 (300 mg L-1; buffered to pH 7.0 with NaHCO3), measured and 

weighed (n = 118, TL [mean ± SD] = 384.1 ± 63.5 mm, mass [mean ± SD] = 113.8 ± 84.4 g), and 

implanted with a half-duplex passive integrated transponder (PIT) tag (Wyre Micro Design, 

Lancashire, UK; 2.0 mm diameter, 23.0 mm length, 0.61 g mass) via a ventral incision, in compliance 

with UK Home Office regulations under the Animals (Scientific Procedures) Act 1986.  Mean (± SD) 

tag length was 6.1% (± 0.9%) of TL, and mass was 0.6% (± 0.2%) of eel mass.  Eels recovered from 

anaesthesia in aerated water for a maximum of 30 minutes prior to release near the site of capture. 

 

A separate sample of eels (10 silver eels, TL = 356.0 ± 20.1 mm, mass = 79.8 ± 18.1 g; 10 yellow eels, 

TL = 332.9 ± 18.9 mm, mass = 62.3 ± 14.9 g) were implanted with PIT tags and retained in an in-

stream container receiving natural flow for 7 to 14 days to quantify tag retention and survival.  Eels 

were fed daily with mealworm.  Mean (± SD) PIT tag length was 6.7% (± 0.4%) of TL and mass was 

0.7% (± 0.2%) of eel mass with 100% tag retention and survival.   

 

Six half-duplex PIT Loops (PLs) (2.5 mm2 cross sectional area insulated wire consisting of 50 strands 

of 0.25 mm diameter copper wire) were constructed on wooden frames (height = 1.8 m, width = 2.5 

- 4.8 m) and installed in the lower reaches of the River Stiffkey (Fig. 1).  Each PL was connected to a 

dynamic tuning unit (Wyre Micro Design, Model: DTU), PIT reader (Wyre Micro Design) and external 

data logger (Anticyclone Systems Ltd, Surrey, UK, Model: AntiLog RS232) and powered by a 110ah 

12v battery.  PLs 3 - 6 operated continuously from 5 July to 10 December 2011, with the exception of 

PLs 5 and 6 which operated from 30 September to 6 October and 10 October to 10 December 2011.  

PLs 1 and 2 operated from 27 October and 19 September 2011 to 10 December 2011, respectively.  
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The detection range and efficiency of all PLs were tested at different stages of the tidal cycle 

throughout the study.  Range (maximum distance of detection) was assessed by individually passing 

three tags oriented parallel and at 45o to the direction of flow towards the centre, left, and right of 

the PL and measuring the distance between the PL and the farthest position detection occurred.  

Range varied from 10 to 50 cm.  Efficiency (percentage of tags within range of the PL detected) was 

quantified by passing three tags, each oriented parallel and at 45o to the direction of flow, vertically 

and horizontally, through each PL at 20 cm intervals to cover its area.  PIT tags oriented parallel (90o 

to the PL) and at 45o to the direction of flow were passed through PLs at speeds of 0.6 to 2.9 m s-1, to 

replicate the optimal (Palstra et al. 2008) and burst swimming speeds of adult eels (Blaxter and 

Dickson 1959).  Tags tested at lower (0.6 - 1.6 m s-1) and higher speeds (1.6 -2.9 m s-1) returned 

similar PL detection efficiencies of 100% (90o), and 86.5% and 85.7% (45o), respectively (Table 1).  

Efficiency for 90o oriented tags was 98 - 100% when the tide gates were open.  Efficiency for 45o 

oriented tags was 100% for the majority of the time the gates were open, decreasing to 71-93% 

immediately after the gates opened before rapidly returning to 100%. 

 

 

Table 1 Detection range and efficiency for 6 PIT loops (PLs) in the lower River Stiffkey (UK) tested with tags 

oriented at 90
o
 and 45

o
 to each PL across their area and at speeds 1 (0.6 - 1.6 m s

-1
) and 2 (1.6 -2.9 m s

-1
).  

Ranges are reported in parentheses 

 

PL Number Tag Orientation (
o
) Range (cm) Detection Efficiency 

   

Area 
 

Speed 1 Speed 2 

1 90 50 98  (93-100) 100 100 

 
45 45 100  100 100 

2 90 50 100  100 100 

 
45 45 100  100 100 

3 90 35 100  100 100 

 
45 30 86 (71-100) 83 73 

4 90 35 100 
 

100 100 

 
45 10 90 (76-100) 78 85 

5 90 40 100  100 100 

 
45 40 100  100 100 

6 90 45 100  100 100 

 
45 45 100  100 100 
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2.3. Environmental variables 

 

Water temperature, conductivity, water pressure and barometric pressure (Solinst, Georgetown, 

Ontario, Canada; Model LTC Levelogger Junior 3001 and Barologger Gold 3001) were logged at 5 

minute intervals immediately upstream and downstream of Gate 1 from September to December 

2011.  From these measurements, water depth and salinity were calculated (Fofonoff and Millard 

1983).  Opening angles of Gates 1 and 2 were logged at 2 minute intervals over the same period via 

tri-axial static acceleration loggers (Onset, Bourne, Massachusetts, USA; Model UA-004-64), and 

calibrated weekly using a tape measure.  Light intensity (Onset, Bourne, Massachusetts, USA; Model 

UA-002-64) and river discharge were recorded at 15 minute intervals at the tide gates and the 

Environment Agency gauging station at Little Walsingham (12.6 km upstream from the tide gates), 

respectively.  Light intensity was 0 lux at night (between the hours of sunset and sunrise) and > 0 lux 

during the day. 

 

2.4. Video data 

 

To assess the influence of the orifice installed in Gate 1 on the downstream migration of adult eels, 

the orifice was set to either ‘operational’, or ‘non-operational’ on alternate days throughout the 

study period.  When operational, the orifice functioned as intended, remaining open at low water, 

and closing on average (± SD) 14.8 (± 8.0) min after the closure of Gate 1 during the flood tide.  

When non-operational, the orifice door was manually clamped shut for the entire duration of each 

tidal cycle.   

 

During periods of operation, the orifice was monitored by two infrared (IR) submersible cameras 

with integrated IR LEDs (Sony, Model: IR 37CSHR-IR 25m).  The cameras were mounted at either side 

of the orifice, perpendicular to the flow, to (1) observe the entire entry area, and (2) emit an IR light 

source from behind any fish using the orifice so that passage could also be viewed at night.  The 

cameras operated throughout the study period, with the exception of the night of 25 November 

2011, during which 1 tagged eel passed Gate 1.  Video footage was recorded to a digital video 

recorder powered by a 110ah 12v battery and downloaded at weekly intervals.  Footage recorded 

between the time of last eel detection at PL3 and first detection at PL4 was then manually reviewed 

to identify any orifice passage events.  

  



  

 

10 

2.5. Data analyses 

 

2.5.1. Escapement  

 

Eel escapement was assessed between 10 October and 10 December 2011 when PLs 2 to 6 were 

operational.  Escapement was calculated as the number of fish detected at PLs 4 and 6 (downstream 

of the gates) as a percentage of those detected at PL 2 (upstream of the gates).  

 

2.5.2. Delay 

 

The study site was divided into two reaches for analysis: (1) control reach A in which water control 

structures were absent (length = 55 m), and (2) treatment reach B which included the carrier 

channel and the tide gates (for fish exiting via Gate 1: length of reach = 85 m; Gate 2: length = 290 m) 

(Fig. 1).  The speed of migration was calculated for each reach as the quotient of the distance (m) 

separating upstream and downstream PLs and duration (s) between first detection at each.  Data 

from 27 October 2011 onwards were square root transformed to comply with the assumption of 

normality (Kolmogorov-Smirnov test:  P > 0.05).  Eels were categorised based on their exit route as 

those that either initially passed Gate 1 or 2.  A one-way repeated-measures ANOVA was used to 

compare speed of migration between reaches for the two groups.  Independent t-tests were used to 

compare speed of migration through each reach between exit routes (Gate 1 or Gate 2). 

 

Mean discharge (Qfish), water temperature (Tempfish), gate angle (Anglefish) and light intensity 

(Lightfish) during passage through reaches A and B were calculated for individual fish.  Although 

confounding data could not be transformed to comply with the assumption of normality 

(Kolmogorov-Smirnov test:  P < 0.05), repeated-measures ANOVAs, which are robust to such 

deviations when sample sizes are equal (Harwell et al., 1992), were used to compare Qfish, Tempfish, 

Anglefish and Lightfish between reaches within exit route groups to identify any temporal differences 

in these variables experienced by eels.  Where data were normally distributed, or parametric 

analysis was used, data were reported as means (± SD). 

 

Multiple linear regression models were developed to explore the overall relationships between 

speed of migration and environmental variables (Qfish, Tempfish, Anglefish and Lightfish) in reaches A 

and B (n = 32) from 27 October to 10 December 2011 when all 6 PLs were functional.  A Kolmogorov-

Smirnov test indicated that standardised residuals were normally distributed (P > 0.05).  To increase 
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statistical power, an additional multiple linear regression model was used to explore the relationship 

between these variables for fish migrating through reach B between 10 October and December 2011 

(n = 58) when PLs 2 to 6 were functional.  Raw data were square root transformed to provide 

normally distributed standardised residuals (Kolmogorov-Smirnov test, P > 0.05).  Date/time and TL 

had no independent relationship with speed and were thus omitted from further analysis.  

Regression analyses were reported as unstandardised B coefficients and 95% confidence intervals 

(CI) with variance (R2) indicated as percentages. 

 

As data could not be transformed to meet the assumption of normality (Kolmogorov-Smirnov test:  P 

< 0.05), Mann-Whitney (U) tests were used to assess the relationship (including effect size, r) 

between exit route (Gate 1 or Gate 2), gate position (open or closed), time of day (day or night), or 

status of orifice operation (operational or non-operational) when fish entered treatment reach B on 

the speed of migration through that reach (n = 58).  Chi-square (X2) was used to explore the 

relationship between gate position when eels entered reach B (open or closed) and route of exit 

(Gate 1 or Gate 2) and status of orifice operation (operational or non-operational).  Spearman’s rho 

(rs) was used to assess the relationship between (1) speed of migration between release and PL2 

with distance and release date, and (2) gate angle at passage (detection at PLs 4 or 6) and duration 

of migration through the respective culvert (time between detection at PLs 3 or 5 and 4 or 6).   

 

Mann-Whitney tests were used to compare the association between status of orifice operation 

(operational or non-operational) when fish entered reach B and Qfish, Tempfish, Anglefish, Lightfish and 

mean upstream depth (UDepthfish),  downstream depth (DDepthfish),  upstream salinity (USalinityfish), 

and  downstream salinity (DSalinityfish) calculated for individual fish.  Where data were not normally 

distributed and non-parametric analyses were used, results were reported as medians with ranges in 

parentheses. 

 

The number of approaches immediately upstream of the gates and culverts (detection at PLs 3 and 

5) was calculated.  Each approach was defined as detection at PL3 or PL5 with an interval of > 5 min 

apart.  A Wilcoxon signed-rank (T) test was used to compare downstream and upstream migration 

duration through the culverts for fish that re-entered the river. 
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2.5.3. Environmental data 

 

2.5.3.1. Tide gates 

 

Water temperature and salinity measurements collected over the entire duration of the study 

period were compared using Mann-Whitney tests to explore their relationship with tide gate 

position (open or closed).   

 

2.5.3.2. Orifice status 

 

When the gates were closed, Mann-Whitney tests were used to compare water temperature, 

salinity and difference in depth (ΔDepth) between upstream and downstream for each orifice status 

(operational or non-operational), as well as to compare gate angle and upstream depth between 

each orifice status when the gates were open. 

 

3. Results 

 

3.1. Escapement 

 

Of the 118 PIT tagged eels released, 67.8% (n = 80) were detected at PL 2, 65 m upstream of Gate 1.  

Of these, 59 eels reached PL 2 between 10 October and 10 December 2011 when PLs 2 to 6 were 

operational, 58 of which were detected at PLs 4 and 6 downstream of the tide gates by December 

2011, giving a total escapement of 98.3% for those that approached the tide gates.  More eels exited 

the river for the first time via Gate 1 (75.9%, n = 44) than Gate 2 (24.1%, n = 14).  Nine eels re-

entered the river once via Gate 1 (15.5%), predominately during the ebb tide, on average (± SD) 1.92 

(± 1.39) h after the gates opened.  No eels re-entered through Gate 2.  Almost half of those that re-

entered finally exited through Gate 2 (n = 4) rather than Gate 1 (n = 5), with a total of 69.0% of eels 

(n = 40) finally exiting via Gate 1 and 31.0% (n = 18) via Gate 2.  Eels were less likely to re-enter the 

river if they exited for the first time through Gate 2 (n = 1) but there was no difference in TL (U = 

159.00, r = -0.16, P > 0.05) between those that re-entered and those that did not.  All eels that re-

entered the river remained downstream of PL2. 

 



  

 

13 

3.2. Delay 

 

The median duration and speed of migration of eels from the release locations (0.5 to 3.1 km 

upstream from the tide gates) to PL2 was 1.3 (0.1 - 69.3) days and 0.004 (0.0001 - 0.06) m s-1, 

respectively.   Speed of migration between these two points was related to distance of the release 

site from PL2 (rs = -0.37, P < 0.01) and release date (rs = 0.69, P < 0.001). 

 

For the 32 eels detected while PL1 was functional, speed of migration was faster through the control 

(A) than the treatment (B) reach regardless of exit route (Fig. 4; Table 2).  Speed of migration 

through reach A did not differ between eels that departed through Gate 1 or 2 (t30 = -0.12, P > 0.05), 

although those that escaped through Gate 1 did migrate more rapidly through reach B (t29.4 = 2.34, P 

< 0.05).  When including eels (n = 58) that migrated earlier in the season (when PL1 was out of 

operation), median speed of migration (Gate 1: 0.04 [0.0001 - 0.37] m s-1; Gate 2: 0.03 [0.0002 - 0.07] 

m s-1) through reach B was not dependant on exit route (U = 265.00, r = -0.10, P > 0.05).  Median 

duration of passage through reach B was 0.67 [0.06 - 406.61] h and 3.13 [1.24 - 360.32] h for eels (n 

= 58) that exited via Gates 1 and 2, respectively. 

 

 

 

 

Fig. 4 Mean ± SE speed of migration of 32 adult European eels through a control reach with no structure (A) 

and a treatment reach with tide gates (B) in the lower River Stiffkey (UK) between
 
October and December 2011.  

Eels exited the system via Tide Gate 1 (■) or Tide Gate 2 (□) 
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Table 2 Mean ± SD duration, speed of migration, Tempfish, Qfish, Lightfish, and Anglefish for 32 PIT tagged adult 

European eels migrating downstream in the River Stiffkey (UK) through a control reach with no structures (A) 

and a treatment reach (B) where eels can exit the system via Tide Gate 1 or Tide Gate 2, with results of 

repeated-measures ANOVAs comparing reaches A and B 

 

 

 
Exit Route 

Reach  Repeated Measures ANOVA 

A B  F df error P 

Duration (h) Gate 1 1.11 ± 4.65 66.24 ± 141.76      

 Gate 2 0.07 ± 0.05 53.34 ± 125.16      

Speed (m s
-1

) Gate 1 0.32 ± 0.23 0.12 ± 0.13  21.67 1 23 0.000
**

 

 Gate 2 0.29 ± 0.13 0.03 ± 0.02  43.84 1 7 0.000
**

 

Tempfish (
o
C) Gate 1 10.43 ± 2.05 10.06 ± 1.99  6.95 1 23 0.015

*
 

 
Gate 2 10.81 ± 1.78 10.53 ± 1.75  0.78 1 7 0.406 

Qfish (m
3
 s

-1
) Gate 1 0.11 ± 0.03 0.10 ± 0.03  4.32 1 23 0.049

*
 

 
Gate 2 0.12 ± 0.06 0.12 ± 0.05  2.65 1 7 1.148 

Lightfish (lux) Gate 1 72.23 ± 353.83 291.87 ± 499.24  2.77 1 23 0.110 

 Gate 2 0.00 ± 0.00 253.18 ± 473.08  2.29 1 7 0.174 

Anglefish (
o
) Gate 1 8.07 ± 9.02 9.64 ± 7.90  4.98 1 23 0.036

*
 

 Gate 2 1.29 ± 2.80 5.04 ± 2.64  5.41 1 7 0.053 
  *

P < 0.05 
**

P < 0.001 

 

 

Tempfish, Qfish, and Anglefish were greater in reach A than B for fish exiting via Gate 1 but not Gate 2 

(Table 2).  There was no variation in Lightfish between reaches A and B for either route of exit.  

 

Overall, Qfish, Tempfish, Lightfish and Anglefish explained 24.1% and 57.0% of the variation in speed of 

migration through reaches A and B, respectively.  The regression for reach A returned no significant 

correlates.  Anglefish (B = 0.007, CI = 0.002 – 0.012, P < 0.01) had the most significant relationship 

with speed of migration through reach B followed by Lightfish (B = 0.000, CI = 0.000 – 0.000, P < 0.01).  

In the regression model for 58 eels, Qfish, Tempfish, Lightfish and Anglefish accounted for 60.5% of the 

variability in speed of migration, with Lightfish being the most significant correlate (B = -0.007, CI = -

0.010 – -0.005, P < 0.001) followed by Anglefish (B = 0.065, CI = 0.030 – 0.100, P < 0.001) and Tempfish 

(B = -0.155, CI = -0.292 – -0.019, P < 0.05). 

 

Median speed of migration through reach B was faster if the gates were open when eels entered the 

reach (n = 28, 0.12 [0.0001 - 0.37] m s-1) than when closed (n = 30, 0.01 [0.0001 - 0.23] m s-1) (U = 

227.50, r = -0.39, P < 0.01).  If Gate 1 was open when entering reach B (detection at PL 2), eels were 



  

 

15 

more likely to exit through this route (89.3% versus 63.3% when closed, X2
1 = 5.33, P < 0.05).  All fish 

entered both reaches, and passed through the gates (detection at PLs 4 and 6), at night (0 lux).  Eels 

passed the gates predominately during the onset of the ebb tide, a median of 39.7 (0.3 - 449.8) min 

after the gates opened.  Duration of migration through the culverts (median = 74 s, range = 24 - 1381 

s) was negatively related to gate angle at passage (median = 16.8o, range = 2.1 - 27.8o) (rs = -0.36, P < 

0.01).  

 

Eels migrated faster through reach B when the orifice was operational (n = 28, 0.07 [0.0001 - 0.37] m 

s-1) compared to non-operational (n = 30, 0.01 [0.0001 - 0.33] m s-1) (U = 231.00, r = -0.39, P < 0.01) 

(Fig. 5).  However, video analysis revealed that eels did not pass through the orifice.  Status of orifice 

operation was not associated with differences in Qfish, Tempfish, Anglefish, or UDepthfish (Fig. 6a), but 

was related to lower USalinityfish (Fig. 6b), which was likely a result of lower DDepthfish (i.e. lower 

tides) (Fig. 6c), and DSalinityfish (Fig. 6d) when the orifice was operational.  Lightfish was also lower 

when the orifice was open at entry to reach B (Table 3) and the number of cases where Gate 1 was 

open when eels entered reach B was higher (X2
1 = 5.56, P < 0.05).  

 

 

 

 

Fig. 5 Speed of migration of 58 adult European eels through the lower River Stiffkey (UK) when an orifice in 

Tide Gate 1 was non-operational or operational.  The box plots illustrate the median (horizontal line), 

interquartile range (boxes) and overall range up to 1.5 times the interquartile range (whiskers).  Outliers > 1.5 

times the interquartile range are not depicted 
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Fig. 6 (a) UDepthfish, (b) USalinityfish, (c) DDepthfish, and (d) DSalinityfish for 58 adult European eels through the 

lower River Stiffkey (UK) when an orifice in Tide Gate 1 was non-operational or operational.  The box plots 

illustrate the median (horizontal line), interquartile range (boxes) and overall range up to 1.5 times the 

interquartile range (whiskers).  Outliers > 1.5 times the interquartile range are not depicted 

 

Table 3 Mann-Whitney statistical comparisons of Qfish, Tempfish, Anglefish, UDepthfish, DDepthfish, USalinityfish, 

DSalinityfish, and Lightfish for status of orifice operation (operational vs non-operational) during the passage of 

58 adult European eels through reach B containing tide gates 

 

 Mann-Whitney 

 U r P 

Qfish 350.00 -0.14 0.276 

Tempfish 338.00 -0.17 0.202 

Anglefish 384.00 -0.07 0.575 

UDepthfish 275.00 -0.17 0.209 

DDepthfish 218.00 -0.31 0.023
*
 

USalinityfish 231.00 -0.28 0.041
*
 

DSalinityfish 238.00 -0.29 0.034
*
 

Lightfish 302.00 -0.30 0.022
*
 

            *
P < 0.05 
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Fifteen eels (25.9%) explored the area upstream of one gate (detection at PL 3 or 5) before passing 

through the other (detection at PL 6 or 4, respectively).  Twenty-two eels (37.9%) made more than 

one approach to the culverts (detection at PL3 or PL5, mean ± SD number of approaches = 4.0 ± 2.9) 

and the majority (89.7%, n = 52) remained in the area downstream from PL2 after entering reach B 

and prior to passage.  Of the eels migrating (n = 58), 74.1% passed through reach B during the same 

period as one or more other tagged individuals, with a maximum of 7 being present at any one time.  

Eels that re-entered the river after first passage through the gates (15.5%, n = 9) took a median of 

2.0 (1.0 - 22.1) days to pass downstream of the tide gates for the final time.  There was no variation 

in the duration of passage through the culvert between movement downstream or upstream (T = 17, 

r = -0.15, P > 0.05). 

 

3.3. Environmental data 

 

3.3.1. Tide gates 

 

Assessment of the relationship between the tide gates and environmental variables alone showed 

that upstream and downstream median temperatures (Table 4) were marginally higher when the 

gates were closed than when open over the full duration of the study (Table 5; Fig. 7a).   The median 

temperature upstream and downstream of the gates was different when closed, but similar when 

open (Table 5). 
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Table 4 Median water temperature, salinity and depth upstream and downstream of Tide Gate 1 when open and closed, or during periods of gate closure when the orifice 

was operational and non-operational, from 23 September to 30 November 2011, with ranges in parentheses  

 

 

 Location Status Temperature (
o
C) Salinity Depth (cm) 

Gate Upstream Open 10.76 (6.28 - 16.95) 0.54 (0.37 - 13.80) 98.10 (94.78 - 158.36) 

  Closed 11.12 (6.48 - 17.14) 7.92 (0.33 - 13.38) 128.80 (96.03 - 159.63) 

 Downstream Open 10.77 (5.96 - 17.15) 0.90 (0.37 - 32.64) 100.12 (95.80 - 163.33) 

  Closed 11.60 (5.92 - 18.76) 28.84 (0.41 - 34.70) 211.95 (98.94 - 444.86) 

Orifice Upstream Operational 11.21 (6.88 - 16.95) 0.53 (0.37 - 13.50) 97.95 (94.85 - 158.07) 

(Gate Open)  Non-operational 10.61 (6.28 - 16.95) 0.54 (0.37 - 13.80) 98.21 (94.78 - 158.36) 

 Downstream Operational 11.21 (6.88 - 16.96) 0.86 (0.40 - 31.84) 100.11 (95.88 - 161.91) 

  Non-operational 10.62 (5.96 - 17.15) 0.95 (0.37 - 32.64) 100.19 (95.80 - 163.33) 

Orifice Upstream Operational 11.45 (7.02 - 17.08) 7.89 (0.37 - 12.92) 129.29 (96.58 - 158.07) 

(Gate Closed)  Non-operational 11.02 (6.48 - 17.14) 7.94 (0.33 - 13.38)  128.51 (96.42 - 159.63) 

 Downstream Operational 11.74 (6.99 - 18.63) 28.54 (0.41 - 34.70) 211.15 (99.58 - 372.48) 

  Non-operational 11.48 (5.92 - 18.76) 29.02 (0.45 - 33.83) 212.41 (100.41 - 444.86) 
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Table 5 Mann-Whitney statistical comparisons of water temperature, salinity and depth over the entire period of eel movement during the study (23 September to 30 

November 2011) upstream (US) and downstream (DS) of Tide Gate 1 when open and closed, or during periods of gate closure when the orifice was operational and non-

operational  

 

 

 
Comparison 

Status or 
Location 

Temperature Salinity Depth 

U r P U r P U r P 

Gate 
US vs DS 

Open 70796947.00 0.00 0.627 35194139.50 -0.44 0.000
**

 42474802.00 -0.35 0.000
**

 

 Closed 20892517.50 -0.10 0.000
**

 5992891.50 -0.65 0.000
**

 2537395.50 -0.78 0.000
**

 

 
Open vs Closed 

US 954959441.50 -0.06 0.000
**

 416226210.00 -0.50 0.000
**

 144048659.50 -0.72 0.000
**

 

 DS 845468032.50 -0.15 0.000
**

 207504262.50 -0.67 0.000
**

 16694109.00 -0.82 0.000
**

 

Orifice 

Operational vs  
Non-operational 

Open (US) 360502753.00 -0.09 0.000
**

 382073083.50 -0.05 0.000
**

 376628644.50 -0.05 0.000
**

 

 

Open (DS) 361374699.00 -0.09 0.000
**

 391558228.50 -0.03 0.000
**

 373744887.50 -0.06 0.000
**

 

Closed (US) 126194307.00 -0.04 0.000
**

 132395311.50 0.00 0.600 5274885.50 -0.03 0.004
*
 

Closed (DS) 128059556.50 -0.03 0.000
**

 126837062.50 -0.04 0.000
**

 5501755.50 0.00 0.930 
         *   

P < 0.01
 

         **
P < 0.001 
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Fig. 7 (a) Water temperature and (b) salinity downstream (■) and upstream (□) of Tide Gate 1 in the River 

Stiffkey (UK) when the gate was open and closed from 23 September to 30 November 2011.  Outliers > 1.5 

times the interquartile range are not depicted 

 

 

Upstream and downstream median salinity (Table 4) was substantially higher when the gates were 

closed than when open for the duration of the study (Table 5; Fig. 7b).  Median salinity was slightly 

different between upstream and downstream when the gates were open, but considerably higher 

downstream when closed (Table 5). 

 

3.3.2. Orifice status 

 

Status of orifice operation (operational or non-operational) did not influence upstream median 

salinity over the period of study when the gates were closed (Table 4; Table 5) and was not 

associated with variation in median ΔDepth (Table 6) even though downstream median salinity was 

higher when the orifice was non-operational.  Median upstream water temperature also varied with 

status of orifice operation which likely resulted from differences in downstream temperature (Table 

4; Table 5).  When the gates were open, the median angle of Gate 1 (Table 6) and upstream depth 

(Table 4; Table 5) were marginally higher when the orifice was non-operational. 
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Table 6 Mann-Whitney statistical comparisons of opening angle of Tide Gate 1 and difference in water depth 

between upstream and downstream (ΔDepth) when the gate was closed, measured over the entire period of 

eel movement during the study (23 September to 30 November 2011) 

 

 Status Median (Range) U r P 

Gate Angle (
o
) Operational 3.50 (0.65 - 29.50) 279652651.00 -0.26 0.000

*
 

 Non-operational 3.51 (0.65 - 29.50)    

ΔDepth (cm) Operational 81.96 (-1.09 - 244.56) 135721224.50 -0.01 0.053 

 Non-operational 83.36 (-0.80 - 306.92)    
*
P < 0.001 

 

 

4. Discussion 

 

Despite the severe decline in European eel abundance over recent decades, little is known of how 

tide gates and other coastal infrastructure might impede their migration.  In this study, escapement 

past tide gates in a small English stream was high (98.3%), but delay was substantial when compared 

to an unimpeded control reach, with speed of migration past Gates 1 and 2 being 2.7 and 9.7 times 

slower, respectively.  An orifice fish pass installed to increase fluvial connectivity through the gates 

was associated with decreased delay, even though eels were not observed to pass directly through 

it.  

 

As few studies have attempted to quantify the impact of estuarine infrastructure on seaward 

migrating adult eels, there is limited opportunity to compare results.  In one exception, high (100%) 

escapement was observed for acoustic and PIT tagged silver eels that approached a complex of 

intertidal structures, which included tide gates, on the River Stour, UK (Piper et al. 2013).  Further 

comparisons at present must be based on structures, such as undershot sluices at dams, which 

impose similar conditions to those encountered at the open top-hung tide gates of interest in this 

study, thus providing analogous scenarios.  Based on the information available, efficiencies are 

highly variable.  For example, on the River Ätran (Sweden), 15% of radio tagged silver eels passed 

Ätrafors hydroelectric plant via bottom fed spill gates (Calles et al. 2010).  Of interest, 74% of fish 

that eventually passed the dam via the turbines had first approached the spill gates, only to then 

reject this route of passage (see below discussion of avoidance behaviour).  Conversely, at the Baigts 

hydroelectric facility in the Gave de Pau river (France), 76% of downstream moving radio and PIT 

tagged silver eels that explored alternate routes to the turbines (e.g. sluices, flap gates, and 
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bypasses) subsequently passed via these structures (Travade et al. 2010).  Travade et al. (2010) and 

others (e.g. Breteler et al. 2007; Jansen et al. 2007) suggest that eels tend to escape via the route of 

dominant flow, an observation supported by the current study in which most eels (75.9%) exited 

through Gate 1 which discharged the highest volume.   

 

Amphidromous behaviour has previously been observed for yellow eel, where mature adults migrate 

regularly between rivers and estuaries to feed (Thibault et al. 2007).  Although a number of eels (n = 

9) re-entered the River Stiffkey after initially passing through the gates, these individuals exhibited 

physiological features reflecting their preparedness for marine migration (Tesch 2003), and all eels 

subsequently passed downstream through the gates ≥15 days prior to termination of the study 

without returning upstream.   

 

Tide gates have previously been shown to delay actively seaward migrating species (Wright et al. 

2014, for juvenile sea trout, Salmo trutta), but their influence on the downstream migration of adult 

European eel has not previously been reported.  The role of behavioural avoidance is likely to be 

important in understanding the causes of delay at tide gates.  While tide gates physically block 

migrating fish when closed, the narrow apertures through which water is discharged when open, 

and culvert entrances, may create a hydrodynamic barrier in the form of a rapid acceleration of flow 

which acts as a repellent (Pacific salmonid smolts: Enders et al. 2009; Kemp et al. 2005b, silver 

European eels: Piper et al. in prep.).  Indeed, eels have been observed to exhibit non-passive 

exploratory behaviour at other riverine structures (silver American eels, Anguilla rostrata: Brown et 

al. 2009; Haro and Castro-Santos 2000, silver European eels: Behrmann-Godel and Eckmann 2003; 

Travade et al. 2010) during which they may reject an area approached, to either approach again, or 

find an alternative route (e.g. Brown et al. 2009).  In this study, three key pieces of evidence suggest 

delay was at least in part a result of avoidance and exploration of conditions experienced at the tide 

gates.  First, more than one third of eels (37.9%) made more than one approach to the culverts, and 

a quarter (24.2%) approached the area upstream of one gate prior to exiting through another.  

Second, a positive relationship was observed between mean degree of gate opening and speed of 

migration through the treatment reach, which was the second most significant relationship after 

light.  Third, a negative relationship between the degree of gate opening at the time fish passed and 

duration of culvert passage suggests a behavioural element of avoidance contributing towards delay, 

although this could to some extent also be explained by lower water velocities within the culvert 

when the gate aperture was smaller.  Avoidance may not have been solely induced by hydrodynamic 

stimuli.  For example, continuous overhead cover, such as that associated with the culverts 
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themselves, is also known to induce avoidance in other fish species (e.g. Kemp et al. 2005a for Pacific 

salmonids; Greenberg et al. 2012 for juvenile sea trout), indicating the potential for multiple factors 

associated with complex river infrastructure to have confounding influences.  

 

The downstream migration of eels is commonly considered to be predominantly nocturnal (e.g. 

Aarestrup et al. 2008, 2010; Boubée and Williams 2006) and partially triggered by low temperatures 

(Vøllestad et al. 1986).  In the present study, delay was elevated when temperatures were high, and 

eels passed the control reach and the gates only during periods of darkness.   Greater delay was 

associated with increased light levels, suggesting that eels failing to pass the gates at night may have 

subsequently been inactive during the day (Davidsen et al. 2011). 

 

Delayed migration could be detrimental.  During the silvering process, the alimentary tract 

degenerates (Pankhurst and Sorensen 1984) and eels cease feeding (Olivereau and Olivereau 1997).  

Thus successful migration is based on efficient utilisation of finite energy reserves.  Delay extends 

the migratory period, while avoidance and exploration uses energy that might be otherwise 

allocated to gamete development (Van den Thillart and Dufour 2009) or the 5000 to 6000 km 

oceanic migration to spawning grounds in the Sargasso Sea (Tesch 2003).  The impact of delay, 

acting through increased energetic expense, may be exacerbated for those eels already 

compromised through infection with the invasive parasite Anguillicoloides crassus (Höglund et al. 

1992) which may be present in up to 90% of the eel population in most European systems (Lefebvre 

and Crivelli 2004).  Further, due to accumulation of fish delayed at structures, the potential for 

parasite disease transfer is also enhanced (Garcia de Leaniz 2008), as is the risk of predation by 

species such as cormorants, Phalacrocorax carbo, (Jepsen et al. 2010; Keller 1995) and otters, Lutra 

lutra, (Jenkins and Harper 1980) both of which are known to frequent the study site.  

 

Delay was lower when the orifice was operational.  Eels did not pass through the orifice, which was 

situated half way up the gate, supporting the results of other studies which report eels to be 

principally benthic oriented during freshwater migration (Jonsson 1991; Tesch 2003) exhibiting a 

preference for undershot pathways (Gosset et al. 2005; Russon and Kemp 2011a; Russon and Kemp 

2011b).  Reduced delay when the orifice was operational may have been due to the gates being 

open on more occasions when eels initially approached them, or the lower upstream salinity that 

may have resulted from the lower tides that occurred during these periods, as diadromous fish may 

need to adapt to abrupt salinity gradients (e.g. salmonid smolts: Otto 1971).  However, there is 

currently little evidence to suggest eels suffer adverse physiological consequences in response to 
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encountering stark transitions in salinity (Chan et al. 1967; Maetz and Skadhauge 1968; Rankin 

2008). 

 

This study demonstrated that, although tide gates did not impact escapement, migratory delay was 

considerable.  This may be costly in terms of energetic expenditure and predation risk.  Tide gates 

are common throughout the range of the European eel in regions where large areas of land have 

been reclaimed for agricultural and other anthropogenic purposes.  Coastal infrastructure required 

to manage water levels will become increasingly important as sea levels and flood risk rise (Nicholls 

et al. 1999).  Mitigation of the environmental impact of coastal infrastructure must be integrated as 

part of a wider design and planning process, which includes finding engineering solutions to protect 

migratory fish, such as the critically endangered European eel.  Tide gate modifications designed to 

reduce migratory delay by increasing temporal longitudinal fluvial connectivity by opening wider for 

longer, whilst not compromising continued integrity of the tidal barrier, will provide a useful first 

step in the much needed development of sustainable infrastructure in the future.    
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