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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Davide Zilli

Citizen science is the involvement of amateur scientists in research for the purpose of
data collection and analysis. This practice, well known to different research domains,
has recently received renewed attention through the introduction of new and easy
means of communication, namely the internet and the advent of powerful “smart”
mobile phones, which facilitate the interaction between scientists and citizens. This is
appealing to the field of biodiversity monitoring, where traditional manual surveying
methods are slow and time consuming and rely on the expertise of the surveyor.

This thesis investigates a participatory bioacoustic approach that engages citizens and
their smartphones to map the presence of animal species. In particular, the focus is
placed on the detection of the New Forest cicada, a critically endangered insect that
emits a high pitched call, difficult to hear for humans but easily detected by their
mobile phones. To this end, a novel real-time acoustic cicada detector algorithm is
proposed, which efficiently extracts three frequency bands through a Goertzel filter,
and uses them as features for a hidden Markov model-based classifier. This algorithm
has permitted the development of a cross-platform mobile app that enables citizen
scientists to submit reports of the presence of the cicada. The effectiveness of this
approach was confirmed for both the detection algorithm, which achieves an F1 score
of 0.82 for the recognition of three acoustically similar insects in the New Forest; and
for the mobile system, which was used to submit over 11,000 reports in the first two
seasons of deployment, making it one of the largest citizen science projects of its kind.

However the algorithm, though very efficient and easily tuned to different micro-
phones, does not scale effectively to many-species classification. Therefore, an al-
ternative method is also proposed for broader insect recognition, which exploits the
strong frequency features and the repeating phrases that often occur in insects songs.
To express these, it extracts a set of modulation coefficients from the power spectrum
of the call, and represents them compactly by sampling them in the log-frequency
space, avoiding any bias towards the scale of the phrase. The algorithm reaches an F1
score of 0.72 for 28 species of UK Orthoptera over a small training set, and an F1 score
of 0.92 for the three insects recorded in the New Forest, though with higher com-
putational cost compared to the algorithm tailored to cicada detection. The mobile
app, downloaded by over 3,000 users, together with the two algorithms, demonstrate
the feasibility of real-time insect recognition on mobile devices and the potential of
engaging a large crowd for the monitoring of the natural environment.
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Chapter 1

Introduction

Historically, science has been a matter for a few qualified professionals who had the

education, tools, time and money to dedicate to pursuing further knowledge. How-

ever, as education has spread to a wider range of citizens, more people have gained

access to the tools that allow them to participate in scientific research. A notable ex-

ample is the collection of star observations by amateur astronomers, started in 1911

with the foundation of the American Association of Variable Star Observers (Saladyga,

2012b). The participation of a larger crowd in the scientific process has thereupon

favoured faster progress, as more data could be collected, analysed and evaluated in

a shorter time (Raddick et al., 2009). This process, often referred to as citizen science

due to the involvement of the general public in scientific research, has been widely

present for at least a century, but has received extraordinary interest in recent years.

This renewed interest may be mostly attributed to the introduction of novel methods of

communication and tools for sharing knowledge worldwide, in particular the internet

and the World Wide Web. These tools have been key to the development of citizen

science as they have enabled global real-time communication between people who

could discover communities of users with similar interests in order to share their

findings. This has also effectively eliminated many economical barriers, as anyone

with even sporadic access to the internet could participate in this effort.

Most recently, the uptake of powerful mobile phones has further facilitated this re-

newed interest for citizen science. Modern smartphone devices are equipped with

1



2 Chapter 1 Introduction

a range of different hardware sensors (such as a camera, microphone, accelerom-

eter, proximity sensor, compass, gyroscope and GPS) which, when combined with

high computational power and internet connectivity, produce an incredibly powerful,

environment-aware device (Lane et al., 2010). In addition to this, short-range wire-

less networking interfaces (Wi-Fi, Bluetooth, infrared) permit further enhancement

through the connection to other gadgets. This hardware, originally designed to add

simple user-experience improvements to standard mobile phones, such as the rotation

of the interface upon tilting the device, has allowed, in recent years, the development

of a range of highly varied applications.

These applications are often found not just in those fields for which these devices

were designed, such as social media and communications, but also in many other

areas, such as pervasive health care systems (De Jager et al., 2011), traffic monitoring

(Mohan et al., 2008; Raddick et al., 2009), environmental sensing (Mun et al., 2009)

and e-learning (Kukulska-Hulme and Traxler, 2005), to mention but a few. This use

was promoted by opening development through public APIs, and further facilitated

by “app markets”, such as the Apple’s “App Store”1 and “Google Play”2 (formerly

known as “Android Market”), where developers can share applications with users,

often making a profit from selling the software or additional services for a few pence

(Lane et al., 2010). The number of individuals in possession of such a device is steadily

increasing, providing a vast user-base (Sedghi, 2011) and most of these individuals

carry their devices with them wherever they go (Landrey, 2012).

This explosion of use has not been limited to first-world countries. In developing

nations, mobile phones are also widely used, and they often represent the main tool

with which people connect to the internet for communication and educational pur-

poses (Traxler and Kukulska-Julme, 2005; Kulkarni and Agrawal, 2008). There, the

dissemination of smartphones is not as high due to their cost and for this reason more

traditional feature phones are standard. However, basic sensors such as microphones

and low-resolution cameras may still be present on the device and, as cheap smart-

phones3 are becoming available on the market, more access to advanced functionality

will be available even in developing countries.
1Apple’s App Store at http://itunes.apple.com/gb/genre/ios/id36?mt=8
2Google Play at https://play.google.com/store
3As an example, Nokia, Alcatel, ZTE and Samsung offer smartphones with different operating sys-

tems for under £50 in the UK, as of the first quarter of 2015. Lowest-end Android tablets and laptops
(often called “netbooks”) are sold for a similar price.

http://itunes.apple.com/gb/genre/ios/id36?mt=8
https://play.google.com/store
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This potential has therefore had a great impact on the field of citizen science. Citizens

now find themselves equipped with very powerful sensors that allow them to perform

all sorts of data collection and processing tasks. This provides a highly favourable en-

vironment for both the scientist and the citizen, where the former has access to an un-

precedented amount of data, collected across a varied range of potentially thousands

of individuals, while the latter is exposed to scientific research without necessarily be-

ing part of an academic institution. This process of outsourcing a data collection task

to the general public falls under the wider umbrella of crowdsourcing (Howe, 2006);

a technique that makes use of the intelligence and work force of a large number of

generally untrained individuals (namely a crowd), as opposed to a restricted group of

highly skilled specialists, to accomplish a task (Brabham, 2008). In this context, citi-

zen science can be considered as the branch of crowdsourcing concerned with large

data collection and analysis tasks. According to Wiggins and Crowston (2011), citizen

science is different from any other form of participation in scientific research in that

it involves active engagement of the participants. On the contrary, projects such as

SETI@Home (Anderson and Cobb, 2002)—an effort to search for extraterrestrial intel-

ligence with computation distributed across millions of volunteers’ computers—only

request computational resources from its participants, but no active involvement.

Due to this requirement of participants’ active engagement, a clear challenge in crowd-

sourcing is the difficulty in motivating people’s involvement. Several studies analyse

the presence of intrinsic and extrinsic motivations for people to undertake such tasks

(Rogstadius et al., 2011; Kaufmann et al., 2011). Monetary reward is often an option as

demonstrated in successful crowdsourcing experiments such as the DARPA Red Bal-

loon Challenge (Tang et al., 2011) and the Tag Challenge 2012 (Rahwan et al., 2012). The

former was a $40,000 challenge posed by the US Defence Advanced Research Projects

Agency (DARPA) in 2009 to celebrate the 40th anniversary of the internet. The aim was

to prove how modern social media could assist in finding 10 floating balloons scat-

tered in undisclosed locations around the US. The MIT-based winning team achieved

the target in less than nine hours, devising an incentive mechanism with which ev-

ery participant who found a balloon would be rewarded $1000, the recruiter of that

participant half the amount, and so forth up the recruitment tree. The Tag challenge

2012 was a competition in which participants were encouraged to locate five suspects
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walking around five known cities with easily-identifiable clothing, given only a pic-

ture of each suspect. This simulated law-enforcement exercise posed the challenge

of coordinating different people around the world (as no one could be in all of the

cities at the same time) in a time-constrained task, motivated by a $5000 reward. The

winning team had a similar strategy to that devised for the Red Balloon Challenge, in

which each person who verifiably identified a suspect was rewarded $500. In addition,

each identifier’s referer was awarded $100 and the first 2000 recruits conferred their

recruiter a further $1 prize. The lack of a scientific target to these synthetic challenges

make their nature a matter of pure crowdsourcing, rather than citizen science, as their

only character of scientific interest is the strategy used by different teams to solve the

task.

However, while social media have played an important role in the evolution of crowd-

sourcing and citizen science and have offered the possibility for the introduction of

novel applications, these techniques have been around in more traditional forms for

decades. One eminent example is found in the field of biodiversity monitoring. A

long lasting tradition of bird watching and systematic reporting dates back to 1900

when an event called the Christmas Bird Count was initiated by Frank Chapman (Sil-

vertown, 2009). In a 24 hour period, teams of volunteers would each gather to report

the sighting of birds in a 15 mile radius. This data, collected over more than one hun-

dred years and now digitally stored and freely available online, has since been used

to compile statistics about the population dynamics of different species.

Such conservation biology tasks represent an ideal application of crowdsourcing. The

task can be challenging for small groups of employed specialists, who can only cover a

limited territory, but becomes easier if a large part of the population is involved in the

effort. However, detecting the presence of some species may not be trivial, especially

if these are small, nocturnal, elusive or in general difficult to spot at sight. Moreover,

expertise may be required to identify the exact species of the specimen observed, to

then report the observation accurately.

To overcome these challenges, one approach to detecting the location of animal species

is to rely on the sound they make (Baptista and Gaunt, 1997). Under certain circum-

stances, in fact, many species emit a unique and characteristic sound, for example
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when they are in danger or when attracting a desirable mate, allowing for very pre-

cise identification of the species. Growing interest in this discipline, often referred

to as ecoacoustics as a branch of bioacoustics, has been particularly shown by commu-

nities concerned with animals that emit very distinctive sounds, such as bats, birds

and insects (Chesmore, 2004; Riede, 1998; Parsons and Jones, 2000). For example,

bats use an ultrasonic system of echolocation of great intensity (≈ 130 dB, louder

than the maximum noise level permitted in a night club), despite humans being un-

able to hear it. Although it is necessary to use a specialist device to aid detection of

their ultrasounds, bats can be more easily identified by this signal than by eyesight.

An existing project on participatory bat monitoring presents the possibility of using

a smartphone-enhanced bat detector to geo-tag and centrally collect observations of

these mammals (Jones et al., 2009). Nevertheless, this approach still requires the pur-

chase of supplementary hardware, i.e. the ultrasonic detector itself. This, however, is

not the case when studying other animals such as birds and insects, as their call can

often be heard by humans—and/or their smartphones—without the aid of a supple-

mentary device (research by Gogala and Trilar (2004) show that certain insects are in

fact more easily recognised by their call than by their morphology). From the appli-

cation developer’s perspective, a large number of users are available without being

required to purchase any other hardware or enforced to carry an additional gadget.

The microphone records sound that can be processed and elaborated to provide im-

mediate feedback to the user, while geo-tagged data can be sent over the internet to be

collected on a wider scale and to allow for further processing of the samples. More-

over, the automation of this process can decrease the level of expertise required from

the user, as the task is delegated to an algorithm or jointly executed by the interaction

of the user with the algorithm.

To this extent, the present work aims to show that crowdsourced biodiversity moni-

toring can be far more effective than its traditional counterpart when combined with

automation techniques that can only be enabled by the use of modern equipment with

sufficient computational power and rich in sensors. To prove this, it is here presented

the case study of the New Forest cicada (Section 1.1), an endangered insect native to

the New Forest in Hampshire, UK, which must be urgently rediscovered to prevent

its extinction. The aims of this investigation are presented in Section 1.2, followed by

the challenges and contributions of this work, presented in Section 1.3 and 1.4.
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1.1 The New Forest Cicada

The New Forest cicada (Cicadetta montana Scopoli 1772, referred to hereon as simply

‘the cicada’) is an insect of the order Hemiptera, suborder Auchenorrhyncha and the

only specimen of the Cicadidae family native to the United Kingdom. Here, it is only

found in the New Forest, from which its name originates. Around Europe, it is known

to be present in several countries, including France, Northern Italy, Slovenia, Germany

and Poland (Trilar and Hertach, 2008; Sueur and Puissant, 2007b).

Male cicadas are equipped with sound producing organs, called tymbals, with which

they emit high-pitch signals for the purposes of mating and locating. Female cicadas

can respond to these sounds with short wing clicks. The sound produced is difficult

to detect by humans, being at the boundaries of our hearing range (at a frequency

centred around 14 kHz). While children are known to be capable of hearing this

pitch, the natural decline in human hearing leads to most adults above 40 years in

age being unable to detect this call (Hertach, 2007). Nonetheless, the intensity of the

sound is very high, to the point that those who can capture the frequency are thought

to be able to hear the sound even 60 metres away (Pinchen and Ward, 2010).

In England, cicadas have only been heard singing between late May and early July,

and are commonly found in sunny, south facing, open deciduous woodland, with

few bushes and wide clearings (Pinchen and Ward, 2010). However, no sighting has

been confirmed since 1991, and the cicada is now considered highly endangered and

potentially already extinct.

Nevertheless, an active effort has been made to search for the New Forest cicada. An

official UK BAP (Biodiversity Action Plan) report, compiled by JNCC (Joint Nature

Conservation Committee) for DEFRA (Department for Environment, Food and Rural

Affairs) states the urgency of intervention necessary to save the New Forest cicada

(Joint Nature Conservation Committee, 2010). The observed decline in the species’

population is acknowledged to be an indicator for a “threatened habitat or conserva-

tion issue”. The report highlights a need to explore different potential sites, as well as

to collect information on surveying techniques and habitat management to preserve,

or improve, the autecological requirements.
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However, the lack of funding allocated to autecological monitoring has made it dif-

ficult in recent years to cover the entire area of the New Forest (not to mention the

possibility of exploring new areas) for the few entomologists that were assigned to the

task. To address this issue, the use of a crowdsourcing approach is proposed here, so

as to involve a large number of citizens in the search. In fact, the New Forest is visited

by millions of people every year (13.5 millions of day trip visitors alone according to

the New Forest District Council) who, if provided with the right tools, could help in

monitoring the presence of the cicada by covering a number of sites potentially never

searched before.

1.2 Research Aims

Therefore, this research focuses on four key contributions:

1. Construct the appropriate bioacoustical tools for detecting the New Forest ci-

cada, consisting primarily in an efficient machine-learning algorithm that can

recognise its call.

2. Develop a system for citizen scientists to search for the insects, reporting to one

central authority. Form a community around this endeavour to inform users and

promote collaboration.

3. Prove the effectiveness of this method as a generic technique for the monitoring

of species. The attention of this work is directed towards all British singing

Orthoptera and related insects.

4. Develop a set of tools for the collaboration of wildlife sound classification experts

to compare and benchmark different identification methods.

Finally this research aims to rediscover the presence of the New Forest cicada in order

to protect its habitat and conserve its population. This is, of course, beyond the control

and means of the methodology used, but will certainly be welcomed as a positive

outcome.

These goals present numerous challenges, summarised in the following section.
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1.3 Research Challenges

To allow the involvement of the crowd, the first step to be taken is to provide the end

users with the appropriate tools. To this end, a visitor to the New Forest will have to

be equipped with a method to detect and record the location of the cicada. The use

of mobile phones to accomplish this task is enticing, as they provide all the necessary

components and do not require visitors to buy or carry additional hardware. Hence,

a smartphone application (or app) is required that aims to provide the following fea-

tures:

1. Record sound from the built-in microphone. Issues are represented by micro-

phone’s sensitivity, user’s interaction with the smartphone (e.g. where the de-

vice is kept while recording, if the instructions are followed by the user, etc.)

and battery drain.

2. Detect the presence of a cicada call in real time and provide immediate feedback

to the user. This is affected by recording quality, computational power of the

device and effectiveness of detection algorithm.

3. Transmit observations to a central server to aggregate results and for further pro-

cessing of sound samples. Recordings should be geo-tagged and time-stamped.

The ability to relay the recording to the server should not depend on the pres-

ence of an active data connection at the time of the sample collection.

This outlines the additional requirement for a server-side infrastructure to collect and

analyse recordings. From these prerequisites, numerous challenges arise. Firstly,

the technical hurdles involved in developing a cross-platform app that can serve the

largest possible number of users, that is engaging and easy to use for a non-technical

public; and to power this with a web back-end capable of collecting observations,

processing recordings and collating a community of citizen scientists.

Secondly, the implementation of a robust algorithm to detect the cicada call. This

may not be easily distinguishable from background noise or other insects’ calls, espe-

cially if the specimen is far, the quality of the recording is insufficient, or other sound

sources are much stronger, filling the available bandwidth. To this extent, the signal
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should be analysed to reveal markers that characterise the call, that is its frequency,

amplitude and duration in time. In species identification studies, these features are

analysed to define the species volume, i.e. the amount of inter-species variability and

the intra-species limits (Sueur, 2006). In the present work these features will be used

to differentiate the call from overlapping sounds, in particular those generated by sim-

ilar insects. One should consider that directional microphones are normally used for

field recordings in bioacoustical studies, but the limit here is imposed by the recording

capabilities of the hardware considered, i.e. smartphones of varying price and qual-

ity, potentially held with the microphone facing away from the sound source or even

covered.

Thirdly, the analysis of the data collected to understand if any conclusive answer

can be extracted. In particular, it may be possible to map locations where the cicada

is not present, and use this information to potentially identify where it might be

present. However, a key issue remains as to how the population can be motivated to

use the tools and become involved in the project. Major challenges faced by current

crowdsourcing models are related to motivating users to return to the project after the

initial participation and to recruit other participants (Bell et al., 2008). The difficulty in

understanding the emerging behaviour of people interacting with the system and with

other users may require the investigation through a simulation model, which would

facilitate the task of exploring avenues for incentive models. It should be noted that

special care is required by this project on the incentive front, as an excessive invasion

of the known sites where the cicada could be found is also not advisable, since that

could disrupt its habitat with the potential for a disastrous effect on this endangered

insect.

Furthermore, the trustworthiness of the data collected must be taken into account to

avoid false reports (extensive research has been conducted in this area, for a recent

example see Yu et al., 2012). For instance, malicious users could record the sound

of the cicada in a different place, reproduce it in the New Forest and claim to have

found the local insect. This becomes a more concrete risk when monetary incentives

are offered, and therefore much more interest for malicious reporting arises.

When extending this process to classifying a larger set of species, a method must be

found that balances maximum information gain with minimal number of features, in
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order to be able to represent compactly sounds that are very different. It is therefore

paramount to understand what set of features can maximise the information content

across all the species considered. Towards this goal, several classification algorithms

can, given a set of features of a known set of samples, learn a profile for each class to

be used to distinguish unknown samples.

1.4 Research Contributions

Of the outlined objectives and challenges, this research has contributed to the field in

the following ways:

1. A novel real-time detection algorithm for insect classification capable of running

on a smartphone has been developed, addressing the gap in the literature of a

mobile-based insect detection system with immediate feedback to the user. The

algorithm is designed to be efficient to avoid draining the mobile device’s bat-

tery and to be responsive in real-time even on more constrained handsets. It

is capable of detecting the presence of the New Forest cicada even from low-

quality smartphone recordings, and to distinguishing it from two other species

of insects, which are found at the same time of the year in similar habitats.

The algorithm is designed in such a way that permits extension and adaptation

to different scenarios, by employing an established machine learning technique

for the classification of different sound sources in the signal. This contribu-

tion has been published in the 23rd International Joint Conference on Artificial

Intelligence (IJCAI 2013) (Zilli et al., 2013), where the paper has received the

Outstanding student paper award.

2. Around this algorithm, a citizen science platform has been built and deployed

to engage the general public in the search for the New Forest cicada. Users

are able to submit positive and negative results of a survey for the insect in a

specific location and can interact with the system by analysing the surveys they

have completed and submitted. This system hopes to serve as a reference for

future citizen science projects around the fields of computational sustainability

and biodiversity monitoring. This contribution, together with the aforemen-

tioned algorithm, has been reported extensively in the award-winning track of
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the Journal for Artificial Intelligence Research (JAIR) (Zilli et al., 2014). The in-

teraction of citizen scientists with the system and its effects on the development

of similar technologies has also been described in a paper published in the ACM

CHI Conference on Human Factors in Computing Systems 2014 (Moran et al.,

2014) and in the 3rd IEEE International Workshop on the Social Implication of

Pervasive Computing for Sustainable Living (SIPC ’14) (Pantidi et al., 2014).

3. The sensitivity of different smartphones’ microphones and their ability to detect

the cicada has also been compared so as to compile a data set of mobile devices

to be used as a reference in future similar projects. This lead to the ability to tune

the algorithm to match a specific device, improving the overall classification.

4. To extend this approach to multiple species, a generic insect classification algo-

rithm has also been developed, which demonstrates the application of the same

principles to all British singing Orthoptera. This also constitutes a platform to

benchmark different classification approaches in the wider wildlife sounds clas-

sification literature, which will be released to the community upon completion

of this research.

1.5 Thesis Outline

This thesis presents related work in Chapter 2, focusing on the two key research ar-

eas, that of smartphone-assisted citizen science applications in Section 2.1 and that of

bioacoustics in Section 2.2, while reviewing signal processing techniques for sound

analysis and machine learning methods for insect classification (Section 2.2.3). The

ecology of the New Forest cicada is also documented in Section 2.3, together with a

brief note on similar species Section 2.4. It then reports in Chapter 3 the achievements

of this research towards an efficient algorithm for automated cicada classification,

which resulted in a hidden Markov model-based classifier, assessed for accuracy and

performance against a state-of-the-art approach. Chapter 4 shows how this algorithm

has been ported to a cross-platform mobile app, now deployed and in use by hundreds

of citizen scientists. The chapter also reports an analysis of the users, their devices and

the locations surveyed for the presence of the cicada, as well as a comparison of mod-

ern smartphones based on the sensitivity of their microphone. Chapter 5 presents a
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novel adaptation of the literature on bird classification to the domain of insect calls,

testing the approach on different data sets. This extends the classification of cicada

calls to encompass all Orthoptera in the UK. Chapter 6 concludes and suggests some

avenues for future work. The appendices provide additional information about the

Application Programming Interfaces (APIs) of the app (Appendix A); a sample report

of the data collected (Appendix B); a description of the data sets collected and used

in the benchmarking of the algorithms presented (Appendix C); the original software

requirements (Appendix D); and finally a list of awards and media engagements of

the project spawned by this research (Appendix E).



Chapter 2

Background

This chapter describes relevant related work in the three broad areas in which this

project is involved: citizen science, bioacoustic techniques and the ecology of the New

Forest cicada.

2.1 Crowdsourcing and Citizen Science

This research investigates whether the involvement of citizens in biodiversity monitor-

ing is feasible and could bring substantial benefits to the field. This mass involvement

falls under the umbrella terms of crowdsourcing and citizen science, terms that are often

used interchangeably. However, these are not synonyms and some key differences

should be drawn to better define the problem.

Crowdsourcing is a newer term, coined by Jeff Howe in 2006. Born as a portmanteau

of crowd and outsourcing, it represents the process by which the intelligence and work-

force of a crowd can be exploited to accomplish a task. Companies and institutions

that normally assign employees to a job choose to offer that same job, in the form of

an open call, to the wider public (Howe, 2006). This is then often performed through

the distributed collaboration of several peers, but sometimes even just by single indi-

viduals.

The value of the crowd has been demonstrated at many different levels. Firstly, a large

collection of users often performs better then a selected few, especially when the task

13
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is simple and easily divided. The best solution is then not the average of individual so-

lutions, but the aggregation of all of them (Brabham, 2008). Secondly, the value of the

solution could lie in the abundance of different options. This is the case of remarkable

crowdsourcing successes such as Threadless, a company that calls for t-shirt designs

which is to then print and sell a selection of the best ones, rewarding the designers

with a prize considerable in value (US$1,500) but only a fraction of the profit made; or

iStockPhoto, a stock photography website that collects photographs and videos from

users. These are sold for much cheaper than a professional service could offer (low

and medium resolution are normally between US$1 and US$5 respectively), of which

the photographer receives 20%. Thirdly, users are often geographically distributed

and therefore have free and easy access to a vast area, while moving employees from

one place to another would be expensive. This is particularly the case when the prob-

lem has a highly distributed nature, for instance monitoring of a condition or an event

across a wide area. For example, after the Fukushima nuclear disaster, citizens in

Japan received, bought or built Geiger counters to monitor radiation levels (Plantin,

2011). This proved more effective than the sporadic information they received from

the authorities, and, as readings were published on Pachube1, an open stream data

gatherer, the collation of distributed data enabled anyone around the world to monitor

the radiation levels in Japan.

Citizen science is research conducted by amateur or non-professional scientists. It

generally involves the collection and/or analysis of data by volunteers who dedicate

their time and resources to a scientific investigation. It may happen that the core

project is run by professional scientists and that amateurs collaborate to provide a

contribution, however this is not always the case. In this respect, citizen science can

be viewed as a branch of crowdsourcing, in that the mass involvement is targeted to

data collection and analysis for scientific purposes. Active participation in the project

undertaken distinguishes other types of public engagement in scientific research from

citizen science; an example being the aforementioned SETI@home, where users only

made their machine’s resources available for computation but had no active role in

the research (Wiggins and Crowston, 2011).

The practise of citizen science is, however, older than that of crowdsourcing, although

the use of this term is relatively new (Silvertown, 2009). Early signs of this custom date

1Pachube has since been renamed Cosm first, and later xively http://xively.com/

http://xively.com/
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back to the beginning of the twentieth century, especially in fields such as astronomy

and ecology. The American Association of Variable Star Observers was founded in

1911 (Saladyga, 2012a) and since then 21 million variable star observations where

made by amateur and professional astronomers, resulting in a plethora of publications

and journals (Saladyga, 2012b). Similarly, in 1900 Frank Chapman started an annual

Christmas Bird Count where teams of volunteers conducted coordinated monitoring of

bird species and individuals in North America (Silvertown, 2009). Again this data,

collected over a number of years and freely available online, has been used to observe

trends of bird populations and their numbers.

However, it was only recently that citizen science became a highly widespread move-

ment. A profusion of different projects have spawned in fields such as conservation

biology, water quality monitoring, protein unfolding, population ecology and several

other monitoring tasks. To provide an indication of the extent of this explosion, a few

examples of major citizen science efforts are presented below.

Zooniverse (zooniverse.org) is a web portal that hosts different citizen science projects;

started in 2007 with Galaxy Zoo, a successful astronomical endeavour to classify galax-

ies from telescopic survey data, it has now grown to incorporate some of the largest

citizen science projects in different areas. In the field of biodiversity monitoring, sev-

eral different competing websites attempt to collect and map the presence of different

species around the World: iSpot (www.ispot.org.uk), developed by the Open Univer-

sity, Project Noah (projectnoah.org), Bug Guide (bugguide.net), Wild Lab (thewild-

lab.org), Evolution MegaLab (evolutionmegalab.org) and more. In environment mon-

itoring, NoiseTube (noisetube.net) is an example of mobile-phone aided noise pollu-

tion monitoring. Foldit (fold.it) is a computer game that harnesses humans’ problem-

solving abilities to tackle one of today’s hardest problems in biology, i.e. that of protein

folding.

Different factors have facilitated the flourishing of citizen science activity. Silvertown

(2009) identifies three main causes. Firstly, the progress in technology that made the

collection and sharing of data accessible to everyone. The internet is here, of course,

the principal player, but Silvertown predicted that mobile computing will also play an

important role. Some years later it can be observed that this phenomenon is already

happening on a large scale. A second factor is the realisation among professionals

https://www.zooniverse.org/
http://www.ispot.org.uk/
http://www.projectnoah.org/
http://bugguide.net/
http://www.thewildlab.org/
http://www.thewildlab.org/
http://www.evolutionmegalab.org/
http://noisetube.net/
http://fold.it/
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that citizen scientists constitute a “free source of labours, skills, computational power

and even finance” (Silvertown, 2009). This becomes particularly prominent in the

case of geographically distributed projects. Thirdly, research councils now require

a substantial component of ‘science outreach’ in any funding they assign so as to

justify the large use of taxpayers’ money. Citizen science becomes an opportunity to

demonstrate public involvement and wide applicability of a given research. Although

some may argue that this devalues scientific enquiry, it is clear that councils strive to

encourage applicable research, as opposed to only speculative theories.

However, despite the abundance of available citizens2 and the ease of data collection

provided by modern technologies, key concerns for citizen science project initiators

are the recruitment, retention and motivation of users. The first step to achieve this

is to obtain visibility for the project, independently from the recruiting strategy used

(Bell et al., 2008). While print and broadcasting publicity can be expensive, local

and online media can be cost effective and incisive. Once users are recruited, they

then need to be motivated to actively participate, delivering good quality and reliable

work. A number of strategies have been proposed and used to this extent; monetary

rewards are common and effective. Examples that successfully use this strategy are

the DARPA Red Balloon Challenge and the Tag Challenge described in Chapter 1.

The nature of these tasks made a monetary reward ideal as the task was very simple

and users could see a real potential of obtaining the reward. However, Nov et al.

(2011) warn against monetary incentives as they believe they do not motivate users

to provide the best quality work, but rather any result that would guarantee them

the reward with the least amount of effort. A different strategy to motivate users

is to foster competition amongst each other. CollabMap (Stranders et al., 2011) is a

collaborative tool for human computation developed to generate geo-spacial data for

evacuation routes; users are required to augment a map by a) drawing the outline of a

building, b) drawing evacuation routes and c) verifying routes drawn by others. Here

the developers have devised a strategy, built on top of that suggested by Bernstein

et al. (2010), by which users receive a reward in terms of reputation for any of their

activities that are positively verified by other users. Users with a high reputation are

then awarded a monetary return, and this not only motivates users to return to the

2The reasons behind why people decide to dedicate their time to citizen science projects or other
crowdsourcing projects, a notable example being Wikipedia, is a matter of fascinating discussions and
much research, which however lies beyond the scope of this thesis.



Chapter 2 Background 17

website, but also improves the level of trustworthiness of the inputted data. Extensive

experiments run by Bell et al. (2008) show that volunteers are best motivated by a

combination of social, cognitive and emotional drivers.

To effectively motivate users it may be desirable, however, to consider the context

in which the problem is set or in which the users are acting. The human participa-

tion component of citizen science projects generates uncertainty about the outcomes

as infinitely different possible reactions of players generate a complex non-linear sce-

nario. Simulating the experiments in software may therefore be essential to explore

in advance some of the emergent behaviours that could be observed in the real-world

experiment. This requirement is further discussed in Chapter 6, where the need for a

simulation model is debated together with future goals of this research.

2.2 Biodiversity Monitoring Using Sound

As introduced in Chapter 1, the use of sound to monitor biodiversity can be partic-

ularly useful for those animals that are elusive and difficult to spot at sight. This

section presents related work in bioacoustics, with particular focus on the techniques

used and the methods for automation of the task.

Animals often produce sound for communication purposes, known as non-incidental

sounds, or as a result of their activities and movements in the surrounding environ-

ment, such as eating or flying, referred to as incidental sounds (Chesmore and Ohya,

2004). Bioacoustics is the discipline that, combining biology and acoustics, studies

the production, dispersion and reception of these sounds. An application of this dis-

cipline is the acoustic identification of species, a practise that has received formal

attention from at least the late 1970s (Sueur, 2006). Several studies confirm that for

the purposes of speciation the analysis of animal sounds can, in certain cases, be even

more accurate than that of morphological traits (see, for example, Sueur and Puissant,

2007b; Gogala and Trilar, 2004). Moreover, detecting these sounds also proves to be

particularly useful to spot animals that are difficult to see, but make a distinctive noise

which sets them apart from other animals. This is the case, for instance, of birds, bats

and insects, where this identification has aided surveying, monitoring and mapping

of different species, which in turn is used for habitat conservation (e.g. Planitz et al.,
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2009; Riede, 1998; Laiolo, 2010). However, it is also the case for animals that are much

larger and easy to see, such as elephants, as their low-frequency vocalisations can

travel for several miles (see for example Payne et al., 2003; Clemins et al., 2005).

Bats emit a sound as a means to identify the location of and orient towards obstacles

and prey. This system, called echolocation, is used by several other animals and partly

by humans. The sound that bats produce is normally outside the range of human

hearing (ultrasound), and therefore it is not possible to detect without dedicated in-

strumentation. In 1997, Vaughan and Jones presented a method for identifying bat

species with multivariate analysis of their echolocation call, where they considered

time-expanded recordings of known species, offering an initial classification according

to the duty cycle of the call. The multivariate analysis performed on the recordings,

called discriminant function analysis (DFA), was used to categorise species (the de-

pendent variables), and is now common practise in several other studies (e.g. Obrist

and Flückiger, 2004; Papadatou et al., 2008).

The sound produced by insects is often a byproduct of their movement, for example

generated by the flapping of wings, such as in bees and flies. However, certain insects

intentionally emit a sound, often called song or call, for the purposes of courtship or

locating each other. An example of this is the cicada, an insect of the order Hemiptera

widely spread around the world. Bioacoustic identification is largely used for cicadas,

and has permitted in the past to distinguish morphologically similar species that were

thought to be the same (Gogala and Trilar, 2004; Sueur and Puissant, 2007a; Hertach,

2007; Trilar and Hertach, 2008).

Ultimately, the automated identification of species is the target that bioacoustics is

aiming to achieve in the context of systematics. For bats, but also for insects such as

Hemiptera and Orthoptera, this has been an ongoing effort for more than a decade (see

for example Parsons et al., 2000; Chesmore and Ohya, 2004). A number of common

problems recurring in several bioacoustic applications—and the techniques currently

used to solve them—are summarised below, starting from those reviewed by Parsons

et al. (2000). The focus is placed on those tools that will be valuable for this work, the

application of which is later presented in Chapters 3 and 5.
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2.2.1 Processing Animal Calls

Different tools and techniques are used in bioacoustical research to analyse the sounds

produced by animals. This section presents frequency transformation, amplitude de-

modulation and spectral analysis, and in the context of the latter, it introduces two

techniques for feature extraction: the Goertzel algorithm and mel frequency cepstral

coefficients (MFCCs).

2.2.1.1 Transforming Frequency

Frequency transformation is required when the sound under analysis is inaudible

by ear. This is certainly the case for bats, where the typical frequency range varies

between 12 and 160 kHz (note that humans can only hear frequencies between 20

Hz and 20 kHz), but it may also be necessary for some insects, such as the Cicadetta

montana, which produces a sound of dominant frequency roughly between 12 and 17

kHz, difficult to hear for people over 40 years of age. The most common techniques

for transforming frequency are heterodyne, frequency division and time expansion

(Parsons et al., 2000).

Heterodyning is a signal processing technique by which two or more frequencies are

combined to form new ones. In particular, the aim in bioacoustics is to produce a lower

frequency signal that maintains most of the original properties while being audible to

humans. This is achieved by mixing (i.e. multiplying) the original signal Forig by one

of similar frequency Fosc produced by an oscillator. Assuming Forig and Fosc are two

simple sine wave signals, sin(2π f1t) and sin(2π f2t), their product is:

1
2

cos[2π( f1 − f2)t]−
1
2

cos[2π( f1 + f2)t]

due to the trigonometric identity:

sin(α)sin(β) =
1
2

cos(α− β)− 1
2

cos(α + β)

This result is the sum of two frequencies, one at the sum of the two original ones

and one at their difference. A low-pass filter is then applied to the output so that
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only the low-frequency signal is preserved. This technique works with a narrow-

band input signal, a fact that constitutes its main advantages and disadvantages. The

narrow-band in fact provides good signal-to-noise ratio and high sensitivity to the

input, which is useful in survey work. However it also makes species identification

difficult, for example in the case of bats, because different species emit echos at differ-

ent frequencies and may be difficult to recognise after the signal has been processed.

Moreover, this may lead to undersampling of species as the heterodyne receiver can

only be tuned to detect one particular frequency, and therefore only species in that

band. (Parsons et al., 2000).

Another technique for transforming frequency is frequency division. This approach

simply divides the frequency of the input signal forig by a predefined value n in order

to lower its frequency:

fout =
forig

n

The output is produced by counting the zero crossings of the input and allowing only

every nth cycle to pass through. The amplitude is kept constant and therefore it does

not reflect that of the input signal. Noise can be reduced by filtering out those cycles

with an amplitude greater than a given threshold. To reintroduce the amplitude of

the input, in the final stage the output is then multiplied by the envelope of the input

amplitude. Among the advantages of this technique is the fact that, compared to

heterodyning, it is not limited to capturing specific frequencies and can therefore

detect all sounds in the spectrum (Parsons et al., 2000). Several disadvantages are

also experienced, most prominently the fact that no harmonic information is present

in the output, that division ratio must be carefully chosen (as it determines what

frequencies will be heard) and that information is lost in those cycles not represented

in the output.

An additional method is provided by time expansion, which replays the input signal

slower than the recording speed. This method is becoming increasingly popular as no

information is lost in the output signal, making it ideal for spectral analysis. High cost

of equipment, slow recording and processing rate and size and weight of equipment

are so far some of the most important limitations of this technique. However, the

increase of computational power in small devices (such as mobile phones) is making

this method more appealing.
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2.2.1.2 Amplitude Demodulation

Modulation of a signal is the process by which a fast changing periodic waveform (the

carrier wave, c(t)) is combined with a slow changing waveform carrying information

(the modulator, m(t)), resulting in a signal y(t) that is:

y(t) = m(t)c(t)

The resulting signal can then be demodulated, extracting information by separating it

from the carrier signal. The modulating signal can be varied in all the three principal

parameters of a periodic waveform, i.e. frequency, phase and amplitude. Here ampli-

tude modulation is considered, since the cicada call, as shown in Chapter 3, reveals

that important information is carried in this component.

One technique to demodulate an amplitude-modulated (AM) signal is the use of an

envelope detector, which can be implemented in hardware or in software. In software,

a common method is the use of a Hilbert transform, a mathematical linear operator

widely used in signal processing. This is a procedure applied to a real signal xr(t),

yielding to a new real signal xht(t) which is a 90-degree phase-shifted representation

of the original xr(t) (Lyons, 2004). The real continuous time-domain signal xr(t) can

be associated with a complex signal xc(t) such that:

xc(t) = xr(t) + jxi(t)

called the analytic signal, where the imaginary part xi(t) is the Hilbert transform of the

original xr(t) and j the 90-degree phase shift. From this, the instantaneous envelope

E(t) can be measured as:

E(t) = |xc(t)| =
√

xr(t)2 + xi(t)2

meaning that the envelope is equal to the the magnitude of the original xc(t) (Lyons,

2004). This technique has been used in preliminary work to classify a feature of the

New Forest cicada call, i.e. the presence of a pattern repeating roughly every 8 ms, as

shown in Section 3.2.
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Other techniques for demodulating a signal include the square and low-pass method

(SLP) and probabilistic amplitude demodulation (PAD) (Turner and Sahani, 2011).

The former isolates the modulator signal to low frequencies, so that they can then be

extracted by a low-pass filter. The latter is a method that uses probabilistic inference

to estimate the modulator signal. This technique appears to be robust to noise and

capable of considering prior user-specific knowledge to adapt to different signals.

These benefits come, however, with a greater computational cost.

2.2.1.3 Spectral Analysis

Useful information about an animal call can also be found in its spectral content.

Three techniques are commonly used to analyse the frequency in bats’ echolocation

calls: zero-crossing analysis, Fourier analysis and instantaneous frequency (Parsons

et al., 2000).

The first is a simple method which involves counting the number of times the input

wave crosses the x-axis. This permits one to quickly convert a signal from the time

domain to the frequency domain, as the signal will cross the x-axis twice for every

cycle. This method is, however, very sensitive to noise and will only take into account

the main component of the signal. Nevertheless, it is still a widely used approach in

bioacoustics (Chesmore, 2001).

A much more common technique is Fourier analysis, which is based on Joseph Fourier’s

intuition that representing a function in the form of a series decomposes it into sim-

pler components, easier to analyse. A notable example is the exponential function,

which can be represented as the series:

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . +

xn

n!
+ . . . =

∞

∑
n=0

xn

n!

Here the first few terms give a good approximation and are easier to deal with (for

example to integrate or differentiate) (James, 2011). In particular, a periodic function

f (t) with period T = 2π/ω can be represented as a Fourier series of the form:

f (t) = A0 +
∞

∑
n=1

An sin(nωt + φn)
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By expressing a function f (t) as its Fourier series expansion, this is decomposed into

its harmonic or frequency components. Given a period T, the function has frequency

components at discrete frequencies:

ωn =
2πn

T
= nω0 (n = 0, 1, 2, 3, . . .)

where ω0 is the frequency of the parent function f (t), called the fundamental frequency.

This forms a discrete spectrum, providing a frequency-domain representation of the

signal, useful to highlight prominent frequency components.

This technique for transforming a discrete function in the time domain into another

function in the frequency domain is known as the discrete Fourier transform (DFT).

The definition of the DFT describes a naïve implementation which is inefficient to

compute, namely of computational order O(n2). However, an efficient algorithm to

compute the DFT is the fast Fourier transform (FFT), which reduces the complexity to

order O(nlog(n)).

Among the several advantages of the Fourier transform is that no information is lost

from the original to the output signal (except for floating-point errors), and that it

is a reversible process. Moreover, this method is not particularly sensitive to noise,

providing a useful alternative when analysing animals’ calls in an environment such

as a forest, where overlapping sounds are present (Parsons et al., 2000).

Finally, a lesser known approach used in bioacoustic is that of estimating instantaneous

frequency, a technique falling under the branch of time–frequency analysis in signal

processing. This practice is better suited to short and rapidly changing signals (such

as those emitted by bats), where classical Fourier analysis assumes an infinite periodic

signal. Among the advantages is the fact that no information is lost in the process and

that frequency and time can be analysed simultaneously and at high definition. This

method is, however, very sensitive to noise and demands high computational power

(Parsons et al., 2000).

2.2.1.4 The Power Spectrum

The spectrum of frequencies in a sound or other signal is often a good indicator

of what source generates that signal. Taking an FFT over the entire signal reveals
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this range of frequencies, and for a discrete signal its resolution is proportional to the

number of samples used for the FFT. Sometimes, however, it is effective to understand

how those frequencies change over time, and therefore a short-term power spectrum is

considered. This method consists of segmenting the signal into shorter time series and

taking an FFT over each segment. This is referred to as short-time Fourier transform

(STFT). The visual representation of the short-time power spectrum takes the name of

spectrogram. This thesis, as the literature, makes wide use of this visualisation tool to

explain a sound.

The power spectrum of a discrete signal is itself a discrete signal sampled at linear

intervals across the frequency domain. Each sample corresponds to a value on the

Hertz scale. However, this scale is at times transformed into a non-linear scale that

emphasises particular frequencies. One such scale is the mel scale, which endeavours

to match human hearing by expanding (allocating more samples to) the lower frequen-

cies, and compressing higher ones. Introduced in 1937 by Stevens et al., this scale is

often used in speech recognition, which is particularly concerned with lower frequen-

cies, typical of human speaking and hearing (Plannerer, 2005). It is also common in

birds and insect classification, as the wildlife sound community has often borrowed

methods for the speech recognition literature. In particular, the mel scale is used in a

representation of the power spectrum called the mel-frequencies cepstrum, described

in more detail below.

2.2.1.5 The Goertzel Algorithm

Granted that these techniques can aid in analysing animal sounds, the need arises to

extract the maximum information from the signals considered at the lowest cost and

to represent it in the most compact way, whether that be for real-time feedback or for

batch processing of large data sets. Many strategies have been devised for this pur-

pose, and the choice of the appropriate one largely depends on domain knowledge.

The DFT analyses the entire spectrum of a signal. However, many insects, including

the Cicadetta montana, sing at a specific frequency with minimal variance between

individuals. Therefore a more efficient method for analysing a sound for the presence

of this tone would be a technique for single tone detection. An efficient algorithm for

this purpose is the Goertzel filter, which effectively computes a sparse FFT (Lyons,
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2004). Using this filter one can avoid computing the entire transform, the majority of

which would be discarded to only keep the output relative to the frequency of interest.

An efficient implementation of the Goertzel algorithm requires two steps. The first

step produces a coefficient that can be pre-computed and cached to reduce CPU cycles:

c = 2 cos
(

2π f
fs

)
(2.1)

where f is the central frequency in question and fs the sampling rate of the recording.

The second step consists of iteratively updating the values of a temporary sequence y

with any incoming sample sn such that:

yn = hamming(sn) + (c · yn−1)− yn−2 (2.2)

where the samples are passed through a Hamming filter, given by:

hamming(sn) = 0.54− 0.46 cos
(

2πsn

N − 1

)
(2.3)

and the length of the sequence of samples N determines the bandwidth B of the

Goertzel filter, such that:

B = 4
fs

N
(2.4)

A shorter sequence length N yields a larger bandwidth, at the cost of a noisier output.

In practice, we use multiples of 128 samples to match a typical smartphone’s audio

recording buffer size. For example, a block size of N = 128 samples gives a bandwidth

of just under 1.4 kHz. The magnitude m of the frequency band centred at f and with

bandwidth B in time slice t is then given by:

mt, f =
√

y2
N + y2

N−1 − c · yN · yN−1 (2.5)

In terms of computational complexity, this approach shows a considerable benefit

compared to the single-bin DFT. As mentioned above, the FFT has a complexity of

O(NlogN), while the Goertzel algorithm is only of order O(N), where N is the num-

ber of samples per window. Moreover, the sample update described in Equation (2.5)
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Figure 2.1: Mel filterbank with triangular filters

can be processed in real-time, eliminating the need for an independent background

thread on the smartphone app and the need to store sample values.

2.2.1.6 Mel-Frequency Cepstral Coefficients

Another approach used to summarise the power spectrum of a sound signal is the mel

frequency cepstrum, a representation based on the linear cosine transform of the log

power spectrum on the mel scale of the frequency. The discrete set of coefficients that

make up the cepstrum are called mel frequency cepstral coefficients (MFCCs). First

introduced by Davis and Mermelstein in 1980, they have proved to be very robust

against noise, and have been used in variety of different domains.

The extraction of MFCCs requires the following procedure (Lyons, 2014):

1. Frame the signal into short windows;

2. Take the FFT of each window;

3. Convert the powers of the frequencies obtained to the mel scale with the use of

triangular overlapping windows, summing the energy in each filter;

4. Take the logarithm of the filterbank energies, that is the energy of each mel

frequency bin;

5. Take the discrete cosine transform (DCT) of the log filterbank energies;

6. Select a number of coefficients of the DCT; the first one is normally discarded,

and a number of the remaining ones is selected, for example 2-13.
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MFCCs have a number of benefits as they have been modelled on the human cochlea.

For starters, humans cannot detect variation in very similar frequencies, so a range of

similar frequencies can be compressed into one value. On the mel scale, this becomes

more pronounced in the higher part of the spectrum, where these differences are

even more difficult to detect. Secondly, small changes in amplitude are also difficult

to detect, and hence a change in the logarithm of the energy value resembles more

closely the difference in amplitude we can detect. Thirdly, since the filterbanks are

overlapping, they are quite strongly correlated with each other; the DCT decorrelates

them, which ensures that they can be used with less bias in a classifier.

Having discussed some techniques to analyse sound and extract useful features from

it, the use of these methods in the state-of-the-art literature will now be reviewed.

2.2.2 Automated Identification

Manual identification of species from their songs through expert surveys is common

in bioacoustics and has been employed for several years (Chesmore, 2000). However,

these surveys have strong limitations, namely the fact that they are time consum-

ing and rely on the expertise of selected surveyors. Due to this, they tend to be

performed sporadically, often leading to a lack of information on population trends

(Chesmore, 2004). For years, automated identification of individuals and species has

therefore been at the centre of research in systematics to solve problems such as group

discrimination and intergroup characterisation (MacLeod, 2007). Possible techniques

towards this goal are DNA barcoding and morphological image recognition, facili-

tated recently by the use of powerful computers and even powerful mobile devices.

The potential of achieving this through sound on mobile devices has been identified

by Chesmore (2004), who proposed a signal recognition system called IBIS (Intelli-

gent Bioacoustic signal Identification System). This provides a time-domain analysis

combined with an artificial neural network to recognise British Orthoptera.

Towards the goal of detecting the presence of a species from its sound, much can

be learnt from the literature on Automated Taxon Identification (ATI) systems. In

fact, the structure of such systems is defined as a common pattern recognition system

(Chesmore, 2007), exemplified in Figure 2.2. A similar structure has been used in this

work to identify the presence of the New Forest cicada. Chesmore (2007) describes
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Figure 2.2: Block diagram of an Automatic Taxon Indentification system, reproduced
from (Chesmore, 2007)

important parameters to consider for acoustic sensors: the frequency response and

directionality of the microphone; the sampling frequency (which should be at least

twice the maximum frequency of the input signal, called the Nyquist frequency); the

accuracy to which the amplitude of the signal has to be represented (quantization);

storage space concerns, as standard-quality uncompressed audio recording can weigh

in the order of 5–10 megabytes per minute; and interference issues, in particular due

to other animal sounds and the surrounding environment.

With the automation of the collection of large data sets of sound recordings, the

need for automated techniques to analyse these signals efficiently becomes even more

prominent. The algorithms to do so typically range from those that operate solely

in the time domain, such as time domain signal coding (Chesmore, 2004; Chesmore

and Ohya, 2004), to those inspired by the literature of human speech recognition (for

example Potamitis et al., 2006; Pinhas et al., 2008). The latter typically use a hidden

Markov model (HMM) for classification (Leqing and Zhen, 2010), and perform a num-

ber of pre-processing stages to extract features from the raw recording. For example,

Chaves et al. (2012) present a state-of-the-art approach that pre-processes the recorded

sound to remove un-sounded periods where no insect call is detected, that maps the

raw frequencies to the mel scale; then it converts it into the cepstrum, the pseudo-time

domain described above, by calculating a number of MFCCs, that are used as features

for the HMM classification with just one state per species. Such approaches have

been shown to classify insects to very high levels of accuracy from clean recordings

collected using purpose-built hardware.

However, the present research argues that the use of the mel scale is not always ben-

eficial for animal sound recognition. This is mainly due to the fact that this scale

is designed to mimic human hearing and is therefore well suited to human speech,

emphasising low frequencies where voice is more present. Similarly, it may be bene-

ficial for the classification of a set of animals that emit low frequency signals, such as
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elephants and other large mammals, as evidence suggests that the majority of mam-

malian reception and vocal production systems are very similar (Clemins et al., 2005).

On the contrary, insects sound cover a much wider range of frequencies, and com-

pressing the higher end of the spectrum is not only unnecessary but potentially detri-

mental. This intuition is corroborated by a pilot system for automatic identification of

insect songs by Ganchev et al. (2007), which uses linearly spaced filters between 2 and

22 kHz, spaced at 100 Hz from one another, arguing that insects calls can cover the

entire spectrum of audible frequencies (and at times ultrasounds). Hence, the authors

use linear frequency cepstral coefficients (LFCCs) as features to their classification sys-

tem. Conversely, even with simpler features, HMMs are an efficient and scalable tool

for the purposes of the system here proposed, and are therefore reviewed in greater

detail in the following section.

In the wildlife sound classification domain, particularly relevant to the present re-

search is a thorough investigation by Stowell and Plumbley (2014) on bird sounds

classification. The authors compare three feature extraction techniques, MFCCs, mel

spectra and learnt features through spherical k-means. Based on the established k-

means clustering algorithm (Lloyd, 1982), the latter is an unsupervised method to

extract information from a data set from its characteristics, without enforcing do-

main knowledge (hence learning the relevant features). This algorithm (Dieleman and

Schrauwen, 2013; Coates and Ng, 2012) searches for unit vectors that minimise the an-

gular distance, rather than the Euclidean distance, between data points (Stowell and

Plumbley, 2014). The authors evaluate these techniques across four large data sets

ranging between 0.8 and 77.8 hours, with single and multiple labels (i.e. more than

one class present in each recording), with 77 to 501 different classes, and they find not

only that feature learning through spherical k-means is beneficial, but also that the

use the raw mel spectrum performs considerably better than MFCCs. This motivates

our work, described in Chapter 5, to extend the approach proposed for cicada clas-

sification to a larger number of species in a scalable fashion. Stowell and Plumbley

(2014) moreover summarise the features extracted in three different ways: by their

mean and standard deviation across time, by their maximum and by modulation co-

efficients. The latter are calculated with a STFT along the time axis, which captures

the temporal evolution of the features. They identify that in the case of birds the use

of these modulation coefficients is not beneficial. In contrast we argue that, with a
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small improvement in the summarisation of this feature that consists in sampling the

FFT spectrum on a logarithmic space, modulation coefficients can be useful for insects,

whose sounds express a strong feature in the repetition of phrases at regular intervals.

The coefficients can capture this repetition, improving the classification accuracy. The

result of this investigation is reported in Chapter 5.

2.2.3 Classification Techniques

The process of classifying sounds starts with the extraction of the appropriate features,

which has been covered in the previous section. The features obtained can fed to a

classifier or estimator that will make a judgement as to what class a set of features

related to an individual sample belongs to. This section reviews some of the relevant

classification techniques, which have been selected at the intersection of state-of-the-

art techniques and most appropriate tools for the problem this research aims to solve,

that is the real-time classification of crowdsourced insect sound recordings.

2.2.3.1 Hidden Markov Models

A hidden Markov model consists of a Markov chain of discrete latent variables and

a sequence of continuous observed variables, each of which is dependent upon one

discrete variable’s state (Blasiak and Rangwala, 2011). Figure 2.3 shows the graphical

structure of a HMM, where the discrete, hidden variables are represented by the

sequence z1, . . . , zT, and the continuous, observed variables are represented by the

sequence x1, . . . , xT. The value of each discrete variable zt corresponds to one of K

states, while each continuous variable can take on the value of any real number.

The behaviour of a hidden Markov model is completely defined by the following

three parameters. First, the probability of each state of the hidden variable at t = 1 is

z1 z2 z3 zT

x1 x2 x3 xT

Figure 2.3: A hidden Markov model. Unshaded square nodes represent hidden dis-
crete variables, while shaded circular nodes represent observed continuous variables.
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represented by the vector π such that:

πk = p(z1 = k) (2.6)

Second, the transition probabilities from state i at t− 1 to state j at t are represented

by the matrix A such that:

Ai,j = p(zt = j|zt−1 = i) (2.7)

Third, the emission probabilities that describe the observed feature, x, given parame-

ters φ, follow a log-normal distribution such that:

xt|zt, φ ∼ lnN (µzt , σ2
zt
) (2.8)

where φ = {µ, σ2}, and µzt and σ2
zt

are the mean and variance of the Gaussian distri-

bution for state zt.

Equations 2.6, 2.7 and 2.8 can then be used to calculate the joint likelihood of a hidden

Markov model:

p(x, z|θ) = p(z1|π)
T

∏
t=2

p(zt|zt−1, A)
T

∏
t=1

p(xt|zt, φ) (2.9)

where the model parameters are defined by θ = {π, A, φ}.

The most likely sequence of hidden states for a given observation sequence can be

found with the max-sum algorithm, known in HMMs as the Viterbi algorithm (Bishop

and Nasrabadi, 2006; Viterbi, 1967). This is different from the sequence of most prob-

able states, which may have zero probability, should two adjacent states, individually

most likely, not have any possibility of being connected. From the joint distribution

above, we can obtain the probability of the most likely sequence z1, . . . , zT producing

the observations x1, . . . , xT, called here ω(zT), by taking the natural logarithm and

exchanging maximisation and summation, such that:

ω(zT) = max
z

ln p(x, z). (2.10)
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Where the model parameters θ, fixed when finding the most probable sequence, were

omitted for clarity. This can be computed recursively (Storm, 2012) as:

ω(zt) = p(xt|zt)max
zt−1

ω(zt−1)p(zt|zt−1) (2.11)

where the basis is represented by:

ω(z1) = p(x1, z1) (2.12)

This method, efficient because growing only linearly with the length of the feature,

has been applied to construct an efficient algorithm for cicada detection, described

later in Chapter 3.

2.2.3.2 Decision Tree Learning

A simple way of selecting a class for a specific input sample is by traversing a binary

tree with a sequential decision-making process based on a threshold for each feature

value (Bishop and Nasrabadi, 2006). This non-parametric supervised learning method

is called a decision tree.

Decision trees have many advantages. Firstly, they can be visualised easily, are there-

fore easy to interpret, and require little effort in preparing the input data, even though

some effort must be made to balance classes that are too dominant. They can also

handle multi-output problem, such as the classification of sound recordings where

multiple species are singing in each sound sample. They can handle both numerical

and categorical data, and their accuracy can be assessed with statistical tests.

They also have, however, some disadvantages. They are susceptible to over-fitting,

meaning that they can learn over-complex structures that do not generalise to subse-

quent data they are given. In terms of learning, finding the optimal decision tree is

NP-complete, and implementations of the algorithm are therefore not guaranteed to

find a global optimum. Furthermore, they can be unstable, as small differences in the

input data can generate drastically different trees (Witten and Frank, 2005).

However, some of these drawbacks can be solved or mitigated by using an ensemble

of estimators, that is a number of different decision trees or other classifiers, whose
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output values are aggregated to improve robustness and accuracy. The aggregation

can be performed either by taking an average of independent results, in which case

the ensemble is said to be using a bagging method, or by building a series of estimators

that improve on the previous result, and taking a weighted average of the those, which

constitutes a boosting method.

A random forest classifier is one such example of an ensemble that averages on a

number of decision trees. However, a random forest also selects a subset of the fea-

tures in the input space during the learning process, so as to reduce the correlation

between trees. In fact, if one particular feature is a strong predictor of the outcome

variable, many trees will select this feature, introducing a correlation among them-

selves. By selecting a random subset of features for each tree, the algorithm decreases

the correlation between trees.

Both HMMs and decision trees have been used in the present work for the classi-

fication of sound recordings, and their performance in our setting is described and

evaluated in Chapter 3 and 5.

2.2.3.3 Other classification techniques

Several other machine learning techniques have been used in the literature to classify

animal sounds. Although not directly used in the present research for the reasons

highlighted above and further discusses in Chapter 3, a brief outline of the most

commonly occurring alternatives is provided below.

Linear discriminant analysis (LDA) is a statistical method with a linear decision bound-

ary. A discriminant function is one such function that assigns an input vector x to a

class Ck of a set of K possible classes (Bishop and Nasrabadi, 2006). Among its advan-

tages are the inherent support for multi-class decisions, the easy computability and

the absence of parameters to be tuned. Due to its simplicity, the method is widely used

across the literature (for example in Simmonds et al. (1996) for fish and in Parsons and

Jones (2000) for bats).

Support vector machines (SVMs), on the contrary, are not inherently multi-class. How-

ever, due to the common need for more-than-binary decisions, different methods have
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been proposed to combine two-class SVMs in order to provide a multi-class classi-

fier (Bishop and Nasrabadi, 2006). The advantages of SVMs are found mostly in

memory efficiency, versatility and effectiveness in higher dimensions, even when the

number of dimensions is greater than that of samples (though in such cases the ac-

curacy decreases significantly). The output estimates of SVMs are calculated through

cross-validation, which can be computationally expensive. Examples of successful use

of SVMs are found in classification of amphibians and birds (Acevedo et al., 2009;

Fagerlund, 2007) and bats (Redgwell et al., 2009).

Artificial Neural Networks (ANNs) are a class of machine learning algorithms also

commonly found in species sounds classification. Among these, the feed-forward neu-

ral network, or multilayer perceptron, is considered the most successful model (Bishop

and Nasrabadi, 2006) and consists of multiple, fully-connected layers of nodes in a di-

rected graph. For classification, the model is trained with a technique called error back-

propagation. The models generated by training such a neural network are often more

compact than an SVM, at the cost of more expensive training (Bishop and Nasrabadi,

2006). However, it is often acceptable to have a costly training procedure in order

to produce a compact model that performs more efficiently on classifying new data.

Once again, examples of using neural networks in bioacoustics are found in the clas-

sification of bats (Parsons and Jones, 2000; Redgwell et al., 2009; Walters et al., 2012),

insects (Chesmore, 2001) and birds (McIlraith and Card, 1997).

Having described the classification techniques used in this research and briefly men-

tioned alternative approaches, the remainder of this chapter will introduce the ecology

of the insect that motivates this research, the New Forest cicada.

2.3 The New Forest Cicada and Other Insects

New Forest cicada is the common name given to the only species of Cicadidae found

in England, the Cicadetta montana sensu stricto (Scopoli 1772). First seen in 1812 in

the south of the New Forest, it has since only been observed there (except for a few

sightings in Surrey), and from there it received its name. Despite their rarity in Eng-

land, Cicadidae are widely distributed outside the UK, predominantly in Southern

Europe and Asia, where due to their abundance they sometimes reach the status of
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Figure 2.4: Cicadetta montana, photograph by Jaroslav Maly, reproduced with permis-
sion.

pest (Pinchen and Ward, 2002). On the contrary, in England the presence of the cicada

has always been sporadic, and the largest group ever reported was of 100 singing

males in 1962, while the last confirmed sighting dates back to 1993. For this reason, it

is now considered highly endangered (Joint Nature Conservation Committee, 2010),

and some arguably consider it already extinct. However, lack of reports between 1941

and 1962 also resulted in its believed extinction until a colony was discovered on the

northern edge of the New Forest.

Literature regarding the life cycle of these cicadas in the New Forest is sparse. The

adult phase typically lasts between two and four weeks, in a period that extends to at

most from late May to mid July. Cicadas occupy the scrub layer, but males often fly

into the canopy (even as far as 12 m high) to sing. This makes them difficult to see and

might hinder their detection with standard microphones. In contrast females normally

bask on stems, where they feed on twigs, leaving traces of their presence. Cicadas

are known to feed on oaks, beech, birches, hawthorn, small leaved lime or bracken,

sucking the phloem of these plants (Pinchen and Ward, 2002). Another sign of their

presence is represented by the oviposition marks; cicadas lay their eggs in small-

diameter stems of herbaceous plants, creating W-shaped marks where they insert and

hide their eggs.

Depending on the external temperature, eggs hatch after 50 to 125 days, after which

nymphs find a suitable root, excavate an underground chamber around it, and live in
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(a) Closed turret (b) Turret exit hole

Figure 2.5: Two potential turrets spotted in the summer 2014 in the New Forest. No
other sign of cicada was detected in those locations. Photographs by Paul Brock.

shelter sucking its sap. Nymphs can stay underground for years before deciding to

emerge. In the spring of the year they emerge, they construct a turret, a conical struc-

ture at the entrance of their chamber (Figure 2.5). This constitutes another detectable

indicator of their presence. The use of this turret is still unknown, but it has been

speculated that it could provide insulation to the chamber. When they emerge, early

in the morning, they remove the turret and position themselves on the surrounding

vegetation, where they ecdyse to adults.

During their adulthood, male cicadas sing to attract a partner. Two distinct calls are

produced, one for locating each other and one for courting purposes, which differ

mainly in duration. The call is produced in the thoracic chamber by a pair of tym-

bals rapidly clicking a drum membrane. The locating call is composed of two short

warming-up chirrups of 2–3 seconds, the length of which may vary. The courtship

song can last several minutes, although it is normally in the range of 30-40 seconds. It

starts slowly at low amplitude and then increases progressively in volume, eventually

stopping quite abruptly, as can be observed from the oscillogram in Figure 2.6.

The call has been described as a faint, high-pitched ringing buzz (Pinchen and Ward,

2002), with a frequency starting quietly at 4 kHz to then increase in intensity and

frequency, stabilising around 16 kHz, where the majority of the call is produced. It

is similar to the call emitted by the Roesel’s bush cricket (Metrioptera roeselii) and it

is inaudible to most people above the age of 40 (although some experts suggest even

above the age of 25 (Trilar, 2012)). Males sing from an elevated position, only if the

temperature is above 20◦ Celsius and only in the sunshine. In the New Forest, they
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Figure 2.6: New Forest cicada call spectrogram (above) and waveform (below), of a
recording made in June 1971 by Jim Grant, sourced from The Wildlife Sounds Collection

of the British Library (Grant, 1971).

normally sing between 10:30am and 6pm, with a peak around 2–2:30pm. If cicadas

detect any danger, if the sky is cloudy or in the presence of a cooling breeze, the

singing stops immediately. Sometimes, however, they may continue singing while

moving from one spot to another. The cicada call can generally be heard, and has

traditionally been revealed, with a bat detector tuned to around 16 kHz.

The growing rarity of cicada sightings in the New Forest has generally been attributed

to three factors. Firstly, an intensification of grazing policies, which downsized the nat-

ural habitat of the cicada and made turrets and underground chambers more likely

to be trodden by grazing animals (Pinchen and Ward, 2010). Secondly, a change of

weather in the last few decades may have destroyed nymphs, as frequent and abun-

dant rain may have flooded the chambers, causing the nymphs to drown (Daponte,

2004). Thirdly, changes in felling and other forestry practises have reduced the space

for scrubby woodland edges where this cicada is most likely to be found.

Some monitoring and research work has been performed in the past few years by

the New Forest authorities and their partners and temperature monitoring loggers,

which provide crucial information on eggs hatching, have been deployed since 1995.

An event called New Forest BioBlitz is also held yearly to involve the population in

mapping the presence of animals and plant species. However, most of the current

knowledge about this insect can be attributed to a handful of entomologists that have

collected observations throughout the last century (of particular value is the work of

Lyle (1910, 1911, 1913) and Jim Grant between 1963 and 1990). In 2013, the Forestry
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Figure 2.7: Waveforms of similar insects. From top to bottom, beginning of Cicadetta
montana song, common field grasshopper, field cricket and Roesel’s bush-cricket. Al-
though at first sight they may look very different, they can be confused when heard.
The call has been repeated where necessary to match the length of other samples.

Sounds sourced from Jim Grant (Grant, 1971) and www.junglewalk.com

Commission has assigned funding to an insect charity named BugLife to perform habi-

tat surveys. This has led to three entomologists extensively looking for the cicada

across the summer 2013 in several of the known sites (Henshall, 2013). Nevertheless,

the lack of experts monitoring this insect, despite the great interest showed by conser-

vation bodies, the park authorities and the wider community, constitutes a founding

motivation for this research.

A few other singing insects have been heard in the New Forest, and the knowledge

of their call is paramount to this research, as it can be confused for that of the cicada.

For this reason, and for the purposes of extending this work to other insect species,

described later in Chapter 5, the following section gives an overview of related insect

species.

2.4 Crickets, Grasshoppers and Related Insects

The most archetypal, and perhaps best studied order of singing insects is that of the

Orthoptera, which includes crickets and grasshoppers. The United Kingdom has 28

native species of these, divided in seven families (Benton, 2012), most of which emit
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Figure 2.8: Spectrogram and waveform of the call of the two bush-crickets, the wave-
form shown at three different zoom levels. Reproduced from Rogers (2014).
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(a) dark bush-cricket (b) Roesel’s bush-cricket

Figure 2.9: Distribution of Dark and Roesel’s bush-crickets across the entire country.
Sourced from orthoptera.org.uk and data.nbn.org.uk

a sound that is useful for identification. An early but complete account is given by

Raggae (1965), which includes all species in the country with the exception of the ones

of recent discovery. Raggae (1965), and later Baldock (1999), also present a diagram of

the calls of all these known species. A more up-to-date and detailed account is given

on the ‘Orthoptera and allied insects’ website (Orthoptera Recording Scheme, 2015),

which reports phylogenetic information about the various families and species as well

as their conservation status and presence across the country.

Only a small number of these are present in the New Forest, and have a call that can be

mistaken for that of the cicada. Among these are the wood cricket, the field grasshop-

pers, the Roesel’s bush-cricket and the dark bush-cricket (Pinchen, 2012). The call of

the latter two is particularly similar to the New Forest cicada’s call in the frequency

domain, although they differ significantly in the time domain. Figure 2.7 displays

waveforms for these species, and although from these graphs certain differences ap-

pear very clearly, in noisy recordings the characters are less pronounced, and cause

difficulty in the classification. However, these insects are active (i.e. in their adulthood

orthoptera.org.uk
data.nbn.org.uk


Chapter 2 Background 41

and singing) at different times of the day and the year, though with some overlap, and

in a real scenario this can help to distinguish from one another. Our data collection

in the New Forest has revealed an abundance of dark bush-cricket and Roesel’s bush-

cricket (their presence in the country is shown in Figure 2.9), and therefore they have

become particularly significant to this research.

The dark bush-cricket (Pholidoptera griseoaptera) has a dominant frequency around

10 kHz, with a very wide spectrum (Figure 2.8a). Individuals are found singing in

proximity to each other, so often recordings contain more than one specimen. They

are mainly nocturnal, and mostly heard singing in the evening (Benton, 2012). In the

time domain, their call displays a short, ≈ 100 ms chirp, which itself is composed

of shorter repeating patters. The alternating of adjacent males (Benton, 2012) makes

it difficult to exploit the length of the pause in between chirps for the purposes of

automated classification.

The call of the Roesel’s bush-cricket (Metrioptera roeselii) also covers a very wide spec-

trum, at it can be heard as high-pitched buzz (Benton, 2012). Its prolonged, contin-

uous ≈ 10 ms bursts (Figure 2.8b) are so fast that they may appear as a continuous

call, and for this reason it is the insect that most resembles the cicada song, a key

difference being the constant amplitude (as opposed to the cicada that starts qui-

etly and becomes louder). The dominant frequency is even higher than the cicada’s,

around 23 kHz, with components still clearly visible around 60 kHz. The Roesel’s

bush-cricket’s adulthood starts only a few weeks after the cicada’s, around late June.

Though the most common, it should be noted that not only Orthoptera sing with

a loud, distinctive call. The lesser water boatman (Micronecta scholtzi), is a peculiar

example of a small bug, only 2 mm long, more closely related to the Cicadetta montana

than crickets and grasshoppers—being part of the same order (Hemiptera)—that emits

a mating stridulation of up to 99 dB by rubbing its penis against its abdomen (Sueur

et al., 2011). This call, despite being underwater, is so loud that it can be heard from

the surrounding environment. Similarly, many other insects produce incidental and

non-incidental sounds (see Section 2.2).
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2.5 Summary

This chapter has reviewed related work in the two key areas for this research, smart-

phone-based citizen science and bioacoustics, with a brief overview of some machine

learning techniques for wildlife sound classification. In particular, the difference be-

tween crowdsourcing and citizen science has been analysed in the context of a number

of examples from both domains, and the major issues related to crowd involvement

and incentive mechanisms have been highlighted. From the bat monitoring and the

automated taxa identification communities, knowledge has been drawn on state-of-

the-art methods of call detection and classification.

However, no tool exists today that could aid the citizen scientist to find the New

Forest cicada, nor any similar insect. A need for this is expressed by the combination

of a growing community of citizen scientists, who have helped solve many similar

problems in the past (Solon and Lanxon, 2012), the spreading of smartphone devices

across the population, ecological reports requiring intervention for species protection,

such as the one on the New Forest cicada (Joint Nature Conservation Committee, 2010)

and finally the lack of funding for expert ecologists to carry out manual surveys.

In light of this, the present research identifies the need to address these shortcomings

by devising a system to automatically detect and identify animal songs, reporting the

findings to a centralised database. Chapter 3 presents the bioacoustic components that

have been developed to support this system, and in particular the HMM-based cicada

detector algorithm proposed by this research, together with acoustic analysis that has

lead to the introduction of this algorithm. A study on the sensitivity of different

smartphone’s microphones is introduced in conclusion to this work. Chapter 4 then

describes the implementation and deployment of the system on a real smartphone

app, fully functional and currently in use by hundreds of citizen scientists. Chapter 5

extends on these methods to broaden the classification to all known species of British

singing Orthoptera.
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HMM-Based Acoustic Cicada

Detector

Nuit et jour à tout venant

Je chantais, ne vous déplaise.

La Cigale et la Fourmi,

traditional French fable

In order to address the shortcomings outlined in Chapter 2, the implementation of a

system that would both provide the tools for searching for the New Forest cicada and

act as a test bench for other citizen science bioacoustic projects was deemed necessary.

The proposed system allows users to navigate around the New Forest and record the

presence of the insect, giving immediate feedback about the surrounding environ-

ment. To this extent, an automated real-time low-power smartphone-based algorithm

is required to classify the cicada call and report back to the user. This chapter presents

a) the analysis performed to understand the features of the call; b) an initial, efficient

algorithm based on a simple frequency feature; c) a more advanced algorithm based

on a hidden Markov model (HMM), exploiting frequency-domain and time-domain

features of the call; d) a critical evaluation of the proposed algorithm in comparison to

a state-of-the-art technique for batch insect classification and an additional evaluation

against alternative methods, also informed by the literature. Chapter 4 then presents

how this algorithm has been ported to a fully-deployed mobile system.

43
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3.1 Initial Recordings and Tools Used

The development of such a system requires that two conditions are met. In the first

place, it must determined whether the sound of the cicada can be detected by a smart-

phone; if this holds true, the characteristics of the insect’s call must be analysed to be

able to automate its classification. To this extent, recordings of male Cicadettae mon-

tanae have been taken by the author in Kranjska Gora, Slovenia (see Figures 3.1 and

3.2), where a substantial population is known to be singing every year.

Sound recordings have been made with a range of different devices. From the top end

to the bottom end of the price spectrum: a Fostex FR-2LE field recorder with a Telinga

Stereo Dat-Mic microphone on a Pro 8 handle, in a 1mm flexible parabolic dish; a Sony

PCM-M10 portable recorder, an iPhone 4S, an HTC One X, a Samsung Galaxy Tab GT-

P1000, and two Samsung Galaxy Mini. Table 3.1 outlines the relevant characteristics

of these devices, and the apps used for recording on the smartphones. No difference

has been noted in the recording capabilities of the different apps, all able to capture

uncompressed audio from the microphone, sampled at up to 44,100 Hz (Android) or

48,000 Hz (iPhone). In addition to a sound recording app, the smartphones used an

instantaneous spectrum analyser to locate the high-frequency peaks generated by the

cicada.

The recordings at two different sites near Kranjska Gora, collected over two days (more

than 100 tracks in total), have been analysed for the presence of the cicada. Figure 3.3

shows an example of a good recording, made with the Fostex FR-2LE, where several

songs have been captured. The song is visible as a band, centered around 13.5 kHz,

lasting for roughly 30 seconds, starting quietly and becoming progressively louder

(the warmer colors on the spectrogram) to then interrupt abruptly. The high-intensity

sound at the bottom of the spectrum (low frequencies) is background noise, mostly

Device OS Sampling App Approx. Cost
Fostex FR-2LE + Telinga Pro 8 N/A 96,000 Hz, 24bit N/A £2000
Sony PCM-M10 N/A 48,000 Hz, 16bit N/A £150
iPhone 4S iOS 48,000 Hz, 16bit Recorder Pro £450
HTC One X Android 4.0 44,100 Hz, 16bit Hertz, Tape-a-Talk £500
Samsung Galaxy Tab GT-P1000 Android 2.3 44,100 Hz, 16bit Hertz, Tape-a-Talk £400
Samsung Galaxy Mini Android 2.2 44,100 Hz, 16bit Hertz, Tape-a-Talk £100

Table 3.1: List of devices used for recording and relative apps and settings, where
applicable. The approximate cost is accurate to the date of purchase (2012).
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Figure 3.1: Visited sites in Kranjska Gora. On the left, the map of Slovenia. On the
right, the two sites visited.

Figure 3.2: Typical habitat of Cicadetta montana in Kranjska Gora. In the New Forest,
this habitat is slightly different, tending more towards open deciduous woodland. On
the left, the Fostex recorder with the Telinga microphone in action; on the right, Faber-
acoustical’s SignalScope (http://www.faberacoustical.com/ios_apps/signalscope/)

showing an FFT of the microphone’s input, with no sign of a cicada singing.
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Figure 3.3: Spectrogram of a recording in Kranjska Gora, Slovenia, taken with the
Fostex FR-2LE at 96 kHz. At least five calls are clearly visible, although one is inter-

rupted by a vehicle passing by (the low-frequency band around 02:00).

http://www.faberacoustical.com/ios_apps/signalscope/
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represented by wind noise or nearby road traffic, and occasionally people speaking. It

should be noticed how in moments where a high background noise was present (e.g.,

in Figure 3.3, the car passing by around 02:00m into the recording) the call becomes

more difficult to hear, but it remains clearly visible on the spectrogram.

Beside providing a plethora of song recordings, the expedition highlighted differ-

ent aspects of the problem. Firstly, the different recording capabilities of the devices

tested. These are described in more detail in Section 4.4. Secondly, the difficulty at

performing automated detection when more than one male is singing, as many of the

features of the call are lost if two similar sounds are overlapping. However, experts

say that in the case of the Cicadetta montana this is an unlikely possibility, as popu-

lations are small and rarely two males sing together (Trilar, 2012). Thirdly, the fact

that a directional microphone, such as the Telinga used in the experiment, is excellent

for a good quality recording and if one knows where the cicada could be, but it is

not equally good for reconnoitring as the directionality impedes a wide-range search.

These considerations further motivated this research and have been taken into account

during the development of the tools.

3.2 Sound Analysis of Existing Recordings

The first step towards an automated detection of the cicada call is the analysis of

its features. To this extent a high-quality recording of Cicadetta montana, provided

by Dr Tomi Trilar and Prof Matija Gogala from the Slovenian Museum of Natural

History, as well as a sound file from the wildlife recordings archive at the British

Library, have been studied to discover key features. While the former constitutes a

recording of Cicadetta montana of excellent quality in a different country, the latter is

the only available recording of the cicada in the New Forest (to the best of the author’s

knowledge), dating back to 1971. The waveform and spectrogram of the call are shown

in Figure 3.4. Unless stated otherwise, the characteristics here reported are found to

apply to most song recordings.

In the frequency domain the most notable trait is the prevalence of a component

between 12 and 17 kHz, particularly strong around 13–14 kHz. An FFT of the signal

confirms this observation across the entire sample (Figure 3.5).
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Figure 3.4: Waveform and Spectrogram of a high quality recording. In the top-right
corner, a detail of the waveform shows an 8 ms repeating pattern (the size of the

detail does not match the size of the box in the expanded waveform).
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Figure 3.5: FFT across the entire 40 seconds sample.

In the time domain the most prominent behaviour is the increasing intensity of the

call, which starts low (and is difficult to notice), to then become increasingly loud

before stopping abruptly. This behaviour could be classified using a probabilistic

model, whereby the sudden interruption of the sound can be a strong indicator of the

presence, in the previous moment, of the call. This can be reversed using a Hidden

Markov Model, as the information at a given time-step is correlated to the previous

instant. The use of a Probabilistic Graphical Model (PGM) to classify the sound may

be considered as future work (see Chapter 6).

Another feature is the presence of a repeating 7–8 ms amplitude modulation pattern.

To extract the modulating waveform, the signal has been rectified and passed through

a low-pass filter which retains this slower component of the signal (roughly 130 Hz). A

better result is, however, achieved with a standard amplitude demodulation technique,
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Figure 3.6: Comparison between a low-pass Butterworth filter (red) and a Hilbert
transform (green) plotted on the positive side of the original sound, in a 40 ms win-

dow (≈ 1800 samples)

envelope detection, obtained with a Hilbert transform. The comparison of the two is

presented in Figure 3.6, where the green line represents the envelope computed by

the Hilbert transform, while the red one the low-pass filter (in this case, a Butterworth

filter), applied on a 40 ms window.

Running an FFT on the envelope shows the presence of a strong 130 Hz component,

with several harmonics, as expected (Figure 3.7). Moreover, a 65 Hz component ap-

pears quite prominently, which may indicate the fact that there is also a 16 ms repeti-

tion, in which the two 8 ms windows are slightly different. This is further confirmed

by a subsequent test, in which a sliding window of samples traversed the envelope

of the signal looking for similar sets of samples. The result, of which a particular is

shown in Figure 3.8, exhibits the two repeating patterns mentioned above (here lower

score means closer matching to the sampling window).

However, an analysis of different sound samples demonstrates that this behaviour

only manifest itself occasionally, probably in the highest quality recordings. This

feature is therefore not to be relied upon and this needs to be considered especially

0 100 200 300 400 500 600 700
Frequency (Hz)

0
1000
2000
3000
4000
5000
6000
7000
8000

A
m

pl
it

ud
e

Figure 3.7: FFT of the envelope of the sound. The highest peak is on 0 Hz, the second
on ≈ 130 Hz, with relative harmonics, and the third one at ≈ 65 Hz, with relative

harmonics, showing the two 8 and 16 ms patterns.
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when recording with mobile phones, where the response of the microphone may not

be optimal.

The carrier wave can be obtained by dividing the signal by its envelope, as shown in

blue in Figure 3.9, where the original signal in represented in black and its enevelope

in red. Provided that this carrier is sufficiently clean, a simple method to calculate

its frequency is counting the zero crossings. This has been performed in windows of

250 ms, and represented in Figure 3.10, which shows how the carrier wave increases

to reach an equilibrium around 13.5 kHz, though still gradually incrementing until it

stops.

3.3 Frequency-based Classifier

With the results of the analyses considered, a first classifier has been built, based

purely on the frequency domain. This in fact exhibits clear separation between the ci-

cada call and background noise, with a clean 13.5 kHz-centred peak, consistent across

all available recordings. On the contrary, the time domain exhibits a clear character

only in certain recordings—consider for example a recording where the microphone

has been moved closer and further away from the singing cicada; the amplitude will

vary and the feature will be lost (for an example, refer back to Grant’s recording in

Figure 2.6).

The algorithm therefore takes the signal, divides it into one second overlapping rect-

angular windows and calculates an FFT of the window. Within that spectrum, it

computes the ratio between the sum of the frequency components from 11 to 17 kHz

and from 8 to 9 kHz. This is based on the visual intuition that the frequency spec-

trum rarely shows any strong component above 8 kHz, while much of the background

noise lies at lower frequencies (e.g. wind-generated noise, human voice, road traffic,

etc.). However, between 11 and 17 kHz a high intensity noise is present during the

cicada call, and therefore the difference between this and the 8–9 kHz range differs

significantly in the presence of a cicada. The model can be expressed as:
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Figure 3.8: Pattern matching using recursive traversing of the sound sample. A 140
ms-long detail is shown here, where two repeating patterns are visible. Lower values

mean closer matching.
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Figure 3.9: Carrier wave of the signal (in blue), obtained dividing the original signal
(in black) by its Hilbert envelope (in red).
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Figure 3.10: Frequency of the carrier wave obtained by counting zero crossings in
250 ms windows.
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p(c) =

17e3

∑
i=11e3

Ω(i)

9e3

∑
i=8e3

Ω(i)

where p(c) is the likelihood, at each window, of a cicada being singing and Ω(i)

the amplitude of the ith frequency component of the spectrum. The value of p(c) is

therefore a measure of the acoustic energy in the range 11 to 17 kHz compared to 8 to

9 kHz. This can be normalised across samples to provide a consistent measurement.

The same calculation can be performed by extracting frequency bins with a Goertzel

filter rather than an FFT. This is more efficient (for a sufficiently small number of bins,

in this case 2), and does not require the signal to be divided into windows. The output

of the filter can in fact be updated with each new sample (see Section 2.2.1.5). This
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(a) Fostex FR-2LE, 96 kHz, ≈ 350 seconds, unaltered
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(b) iPhone 4S, 48 kHz, ≈ 29 seconds, filtered

Figure 3.11: Output of the classifier for two different recordings. On top, one with
several cicada songs; at the bottom one with one song only. The latter is high-pass

filtered at 12 kHz and amplified.
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Figure 3.12: A dark bush-cricket triggers the frequency-based classifier, appearing
like a short burst of cicada call.

method constitutes the foundations of the feature extraction process for the HMM-

based classifier presented in the following section.

The output of this simple classifier, represented in Figure 3.11, shows good perfor-

mance both on a high-quality sample (Figure 3.11a) and on a medium-quality smart-

phone sample (Figure 3.11b), and is robust to different types of noise, such as human

voice, road traffic and similar low-frequency sounds. However, it is not robust to

other insects’ calls, as exemplified by the output of the algorithm run on a dark bush-

cricket’s recording (see Figure 3.12).

To address this issue, the algorithm can be extended to consider the notion of time,

so that other insects would be rejected as the combination of frequency and time is

likely to produce a distinctive signature of the insect. In order to implement this, a

variable may count the amount of continuous samples of this features that have been

observed thus far, and relate those to the length of each insect’s call. While being very

tractable and computationally efficient, this method is not very robust and does not

scale well to multiple insects, which may have different combination of call’s duration

and frequency. Therefore, a robust classifier that combines all these features in a

structured model is proposed and described below.
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3.4 Real-Time Insect Detection Using Hidden Markov Models

To address the robustness and scalability limitations of the previous method, while

still maintaining computational efficiency and maximising the detection accuracy, a

novel method is presented in two stages. First, an efficient extraction of individ-

ual terms of a DFT from the raw audio recordings using the Goertzel algorithm, the

implementation of which has already been presented in Section 2.2.1.5, and the com-

bination of two or more of these terms to produce continuous feature vectors that are

robust to noise. Then, the classification of insects at each sample of these vectors using

a multi-state HMM.

3.4.1 Feature Extraction Using Goertzel Algorithm and Filter Ratio

As previously noted, the magnitude of the frequency component at 14 kHz is a good

indicator of the presence of a New Forest cicada, robust against generic background

noise, which is normally contained in the lower 5 kHz of the frequency spectrum.

However, it may be sensitive to white noise that covers the entire frequency spectrum,

such as handling noise. Therefore, in order to reduce this sensitivity, the magnitude of

this feature is divided by the magnitude observed around 8 kHz. This band is outside

the range of both the cicada call and environmental noise. Hence, this ratio will be

high in the presence of a cicada and tend to zero when either no sound is detected

in the cicada range or if sound is present across both bands. However, it will not

be able to discriminate between the calls of the New Forest cicada and the Roesel’s

bush-cricket, both of which exhibit a prolonged call at a similar frequency. Therefore,

an additional 19 kHz band is extracted, holding a block size N = 128 samples, which

leads to a bandwidth of just under 1.4 kHz. Hence, the three frequency bands are as

follows: mt,8 which represents the 8 kHz frequency which is outside the range of both

the cicada call and environmental noise, mt,14 which represents the 14 kHz frequency

of both the New Forest cicada and the dark bush-cricket, and mt,19 which represents

the 19 kHz frequency of only the dark bush-cricket and the Roesel’s bush-cricket. We

then take ratios of these frequencies to produce two features:

xt,1 =
mt,14

mt,8
, xt,2 =

mt,19

mt,14
(3.1)
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Figure 3.13: Log-normal distribution of the extracted feature for the cicada call

As such, at any point t, xt,1 will be high in the presence of any of the insects considered

and tend to one when either no sound is detected in the cicada range or if sound is

present across both bands. In addition, xt,2 will be high in the presence of the dark

bush-cricket, and tend to zero in the presence of the New Forest cicada. These two

features form a T-by-2 feature vector which is used for classification.

It is worth noting that the difference between these two features has also been con-

sidered as opposed to the ratio, as well as the individual frequency bins fed indepen-

dently to the classifier, as reported later in the evaluation of this method. The ratio,

however, has the benefit of acting as a normaliser for the amplitude of the two bands,

providing a feature that is less dependent on the recording device.

With this, in order to obtain real-time computationally efficient insect identification,

an HMM-based approach to classification is adopted.

3.4.2 Distribution of the Features

Figure 3.13 shows a histogram of data generated by a cicada’s song, along with a

log-normal distribution fitted to the data. A log-likelihood ratio test on a normal, log-

normal and exponential distributions fitted to a data set of cicada songs shows that

the log-normal distribution matches the data better than the normal (F = 3512.13, p <

0.001) and exponential (F = 1516.06, p < 0.001) distributions. However, despite its

long tail, the log-normal distribution still has poor support for data of unusually high
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magnitude, as are often generated by handling noise. In order to prevent the model

from strongly favouring a certain state when a data point is in the extreme of the

log-normal distribution, the emission probabilities are capped to capture cases where

the features are likely to be poorly represented by this model. The outcome of this is

that the likelihood that such data points result from the correct state may be so low

that the model triggers a state change even though the transition probability strongly

discourages it (by being itself very low). Therefore, the emission probability of such

data points are capped such that there is a maximum ratio, initially 100, with which

any state can be preferred to another.

3.4.3 Multi-State Finite State Model of Insect Call

Therefore, a five-state HMM for cicada detection—hereon referred to as cicada de-

tection algorithm (CDA)—is proposed, in which the states consist of: an idle state in

which no insect is singing (I), a cicada singing state (C), a state where the dark bush-

cricket is chirping (DC), a short pause in between the dark bush-cricket’s chirps (DSP)

and a state in which the Roesel’s bush-cricket is calling (R). The emission parameters,

i.e. the location a and scale b of the log-normal distribution, are learned empirically

using:

a = ln

(
µ2√

σ2 + µ2

)
, b =

√
ln
(

1 +
σ2

µ2

)
(3.2)

where µ represents the mean and σ2 represents the variance of the data. This manual

estimation was originally based on the few recordings the authors had gathered from

historical archives, and has therefore been improved with recordings obtained by the

deployment of this work, described in the following chapter.

The transition matrices describing the dynamics of a Markovian process can be rep-

resented graphically using finite state machines. Figure 3.14a shows the five states

described above and all possible transitions, where those with non-zero probability

are represented by arrows connecting two states. The model explicitly represents the

silence between the dark bush-cricket’s chirps, which is essential information for dis-

tinguishing between the calls of the New Forest cicada and dark bush-cricket. This is

in contrast to existing batch classification methods which remove such silent periods

of a recording in order to improve the computational cost of the operation and classify
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Figure 3.14: Comparison of finite state machines

only sounded periods of the sample file (Chaves et al., 2012). These methods also em-

ploy a feature extraction process whereby they compute a number of mel-frequency

cepstral coefficients for each species in the model, making the process scalable to sev-

eral insects, at the cost of higher computational complexity. In contrast, this method

is more closely tailored to the requirements of the present scenario, producing the

improvement in efficiency necessary for a mobile application. Figure 3.14b shows a

variant of the approach where the silent states have been removed, against which the

model here proposed is evaluated in the following section. Furthermore, the HMM

could be arranged so as to be fully-connected, allowing transitions between states that

are otherwise disconnected (for example between a Roesel’s Bush-cricket and a Dark

bush-cricket). However, this confuses the model between states that have very similar

emission probabilities, without providing any improvement in accuracy. Hence this

variation has been excluded from the comparison in the following section. The entire

classifier is summarised in Figure 3.15.

The Viterbi algorithm (Section 2.2.3.1) is used to infer the most likely sequence of

hidden states given the features described. Despite the fact that the number of possible

paths grows exponentially with the length of the chain, this algorithm efficiently finds

the most probable sequence with a cost that grows only linearly with the length of the

chain.
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3.5 Evaluation of the algorithm Using Smartphone Recordings

The proposed approach is evaluated in three different ways. First, it is compared

against a state-of-the-art approach, replicated from Chaves et al. (2012). Secondly,

individual components of this method and other practises informed by the literature

are used in turn to test if they improve the performance of the proposed algorithm.

These two comparisons are presented in this section. Thirdly, the accuracy of this

model is compared with a more generic insect recognition system, modelled on the

bird classification algorithm presented in Stowell and Plumbley (2014). The latter is

presented and assessed in Chapter 5.

3.5.1 Evaluation against the State of the Art

The benchmark system proposed by Chaves et al. (2012) works in the following way.

The signal is firstly stripped of un-sounded areas and segmented to extract individual

calls. It is then pre-processed by removing the DC offset, dividing it into frames,

emphasising high frequencies, and passing it through a windowing function. The

windows are then run through a FFT and converted into the mel frequency scale, from

which the MFCCs are generated. The implementation of this process, replicated from

the paper here considered, is summarised in Figure 3.16, where the feature extraction

process is run on a recording with several dark bush-cricket’s calls and three cicada

calls. The input signal has already been stripped of unsounded periods. The output

of the process are the MFCCs shown in the last plot of the figure. These are used as

Start
detection

Extract
20 filters

Save raw
filters

Save ratios
14/8, 19/14

Frequency
classifier

Run Viterbi

Save
recording

Save
spectrogram

at each iteration

immediately

after 30 sec

after 30 sec

after 30 sec

Figure 3.15: Detector flow, as implemented in the app. Saving the spectrogram and
a sound recording is desirable as later discussed in Chapter 4, at the cost of saving

all twenty filters instead of just three.
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Figure 3.16: Implementation of the feature extraction process described by Chaves
et al. (2012) on a recording that includes several dark bush-cricket’s calls and three
cicada calls. The figure does not include the pre-processing stage, so the calls have
already been stripped of unsounded periods. The steps are labelled on top of each

plot.
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individual features for a simple HMM. For the recording in analysis, this consists of

two states, one for the cicada and one for the bush-cricket, with a feature vector of 24

cepstral coefficients, each assumed to be normally distributed. No state for silence is

considered, as this has been removed during the pre-processing stage.

To evaluate the accuracy of the two approaches, recordings of the New Forest cicada

from the known habitat in Slovenia and the dark bush-cricket from the New Forest

were collected using an Apple iPhone 4S. In contrast to existing recording libraries,

this data set represents the quality of crowdsourced data that the system is likely to

encounter, exhibiting significant noise and insect calls of varying amplitude depend-

ing on the proximity of the recording device to the specimen. Since this evaluation

compares recordings at each time step (as opposed to classifying an entire recording

as one insect), for the sake of clarity no Roesel’s bush-cricket is considered in this

instance, limiting the model to two insects and four states.

Figure 3.17 shows a comparison of the two approaches using a concatenation of three

cicada calls and several instances of the dark bush-cricket call intertwined. Figure

3.17a shows a spectrogram with the time domain on the x-axis, and the frequency

domain on the y-axis, with the magnitude of the frequency bins varying with the

colour of the plot. The three cicada calls can be identified as the prolonged strong

component in the high frequency band. The chirping calls are visible as thin vertical

bars on the top half of the spectrum. Note that the different recordings, merged

together into this data set, have varying background noise, identifiable particularly as

high magnitude components at the bottom of the spectrum. Figure 3.17b shows the

ground truth, labelled manually, i.e. the correct classification of the different insects.

The states are labelled as in Figure 3.14a, where I represents the un-sounded idle state,

C represents the cicada’s song and D represents both the dark bush-cricket’s chirping

and short pause states. Figure 3.17c shows the output of the model from Chaves et al.

(2012). For this approach, areas identified as idle have been removed from the feature

by the pre-processing stage, but have been reintroduced in the output for the sake

of comparison. On the plot they are marked as idle, although the model itself does

not account for an idle state. Since the comparison is focused on the discernment

of the two insects rather than the detection of sounded and un-sounded areas, the

sounded and un-sounded areas were manually labelled. Finally, Figure 3.17d shows

the output of the model proposed in this thesis. The two states used to identify the
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dark bush-cricket’s call are merged into one, again as represented in Figure 3.14a. It is

immediately apparent how closely the proposed approach matches the ground truth

in comparison to Chaves et al. (2012).

From this it can be concluded that removing silence between calls also removes the

time-domain features crucial at discerning these two insects. The output of the HMM

in Figure 3.17c displays confusion between the chirping call and the prolonged call

and is unable to identify them correctly. The visual intuition is confirmed by the

accuracy measures described below and reported in Table 3.2. On the contrary, the

proposed model is able to take advantage of the clear time-domain feature and, de-

spite the emission probabilities of the two sounded and the two un-sounded states

being identical, the transition probabilities ensure that prolonged periods of silence

are classified as the idle state. To this extent, the backward pass of the Viterbi algo-

rithm ensures that any mistakes due to a state having the highest local probability

are corrected to provide the most likely overall path. Furthermore, this approach can

be readily extended to calls of more complexity by further increasing the number of

sub-states attributed to each insect.

The accuracy by which each approach can correctly classify the cicada is assessed

using the standard precision, recall and F1 score metrics. The precision represents the

fraction of time slices in which the approach detected the cicada as singing when it

was in fact singing, while the recall represents the fraction of time slices in which the
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Figure 3.17: The proposed model, run on a recording with several dark bush-cricket’s
calls and three cicada songs. I, C and D represent the idle, cicada and dark bush-
cricket states respectively, as in Figure 3.14a. D encompasses both the dark bush-

cricket’s chirping (DC) and short pause (DSP) states.
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Approach Precision Recall F1-score
Proposed approach 1.000 0.914 0.955
Chaves et al. (2012) 0.563 0.071 0.126

Table 3.2: Accuracy metrics of cicada detection

cicada was singing that were correctly detected. Precision and recall are defined as:

precision =
tp

tp + f p
(3.3)

recall =
tp

tp + f n
(3.4)

where tp represents the number of correct cicada song detections (true positives), f p

represents the number of cicada song detections when it was actually not singing (false

positives), and f n represents the number of cicada songs which were not detected

(false negatives). At this stage, this work is not concerned by the accuracy of the

cricket’s detection. We also use the F1 score, which represents a weighted combination

of precision and recall, defined as:

F1 = 2 · precision · recall
precision + recall

(3.5)

Table 3.2 shows the precision, recall and F1 score metrics both for the approach de-

scribed here and that used by Chaves et al. 2012 over a much larger data set of over 30

different cicada songs. It is clear that the approach proposed by Chaves et al. (2012)

fails to distinguish between the cicada’s song and the bush-cricket’s chirp, resulting

in poor precision and recall statistics. Conversely, both the precision and recall met-

rics for the proposed approach are close to 1, as a result of the model’s ability to use

the periods between the bush-cricket’s chirps to differentiate between the two songs.

Furthermore, the vastly greater precision and recall metrics for this approach have

resulted in a greater F1 score. This can be interpreted as a suitable trade off between

false detections and missed detections.

It is also worth comparing the computational efficiency of the approach used by

Chaves et al. (2012) to the approach described here. In the Chaves et al. (2012) model,

the two most costly operations, namely the sound detection algorithm and the com-

putation of the cepstral coefficients, both require an order O(NlogN) to compute,
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with N being the number of samples in the recording. In comparison, the entire fea-

ture extraction process in the proposed model only requires O(N) operations. This

complexity corresponds to a computation time of 537s for the Chaves et al. (2012)

approach, while the present approach takes 45s to process the recording of length

311s, shown in Figure 3.17. Since the Chaves et al. (2012) method takes longer to run

than the length of the recording, clearly it is not efficient enough to run in real time.

In comparison, the present approach processed the whole recording in one seventh

of the recording time, and therefore is suitable to run in real time. These values,

although dependent on implementation details, corroborate the hypothesis that the

former model has a considerably higher computational complexity, as shown in Sec-

tion 3.4. This, together with the increased robustness to noise shown by the accuracy

metrics, allows us to conclude that the proposed model is better suited to real-time

detection than the state of the art for insect classification. The execution times of both

approaches were evaluated on a mid-range modern computer (Intel Core 2 Duo CPU,

2.4 GHz, 8 GB RAM), with the software entirely written in Python. This evaluation

has been published in the proceedings of the 23rd International Joint Conference on

Artificial Intelligence (IJCAI) 2013 (Zilli et al., 2013).

3.5.2 Evaluation against Variants

Further to the comparison above, this section introduces three variants of the approach

described thus far that, selecting components and practices informed by the literature,

may improve the cicada detection algorithm. For this test, the recordings of Roesel’s

bush-cricket calls were also used so as to match the requirement to recognise this

insect, observed after the first season of deployment of the Cicada Hunt app (see

Chapter 4)

The three variants are as follows. The first one uses the three raw frequencies de-

scribed above (8, 14 and 19 kHz), as opposed to their ratio, directly as features (CDA

raw frequencies). The second variant removes un-sounded periods from the recording

and, as such, segments it into individual calls. It then applies the 3-state model shown

in Figure 3.14b to classify the insects (CDA silence removed). The third approach does

not apply a HMM at all, and instead uses the ratio of frequencies to directly identify
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Approach Precision Recall F1-score
CDA 0.66 0.78 0.82

CDA raw frequencies 0.46 0.94 0.62
CDA silence removed 0.62 0.99 0.75

Mixture model 0.61 0.65 0.67

Table 3.3: Accuracy metrics of cicada detection

the most likely state, given only the instantaneous emission probabilities of the fea-

tures. As such, this method can be considered as a mixture model, since each time

slice is classified independently. This method is considerably more computationally

efficient, at the cost of losing the information of the time domain.

The accuracy of each approach is evaluated using a collection of 235 recordings taken

by citizen scientists using smartphones from the New Forest and by the authors of this

paper in Slovenia over the summer of 2013. Each recording is 30 seconds long, and in

most cases contains a call of either the New Forest cicada (from Slovenia), a dark bush-

cricket or a Roesel’s bush-cricket (from the New Forest). Some recordings contain

different types of noise, including people speaking, walking, calls of birds, handling

noise and even people mimicking the sound of the cicada. As discussed before, this

data set represents the quality to be expected in real, crowdsourced recordings. Each

recording was later labelled by domain experts as containing either one or none of

the insects of interest. Although multiple insects in the recordings will not make

the classification fail, only one singing insect per recording is here considered. If

more than one is present, the ground truth is set across the 30-second recording as

the longest or loudest singing insect, therefore taking the state active for the longest

period as the outcome of the model. Since the emission probabilities in the model are

purposely tuned, no training data is required, and hence the entire data set is used

for testing.

Table 3.3 shows the precision, recall and F1 score metrics of the proposed approach

compared to the three variants over the data set of recordings from the New Forest

and Slovenia. Similarly, Figure 3.18 reports the true and false positives, with real

values along the y axis and predicted class along the x axis. It can be seen that the

proposed approach (CDA) achieves an F1 score of 0.82, and as such outperforms each

benchmark variant, visually apparent from the darkness along the main diagonal in

Figure 3.18a. In contrast, the variant which uses the raw frequency measurements
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Figure 3.18: Confusion matrices for the four variants of the detection algorithm. On
the y-axis, the actual class; on the x-axis, the predicted class.

as the HMM feature vector (CDA raw frequencies) receives an F1 score of 0.62. This

is a result of the approach’s lack of robustness to noise, such as handling noise, as

shown by the high number of false positives in Figure 3.18b. Furthermore, the variant

of the CDA which removes the silent periods (CDA silence removed) receives an

F1 score of 0.75. Although this appears as positive result, Figure 3.18c highlights

its lack of ability to discriminate between the dark bush-cricket and the New Forest

cicada. This method, as well as the raw frequencies approach, favours the New Forest

cicada, scoring a good true positive rate but consequently also a high false postive

rate. Finally, the mixture model method receives an F1 score of 0.67 because the

lack of transition probabilities leaves the decision to the emission probabilities only,

not utilising the information contained in the time domain, making the number of

true and false positives more equally distributed (Figure 3.18d). Insects with similar

emission probabilities, such as the Roesel’s bush-cricket and the dark bush-cricket,

will therefore be difficult to classify with this method. It should be noted however

that this approach is considerably more computationally efficient, as it decides on the

most likely state instantaneously and without traversing the entire recording.

Figures 3.19, 3.20, 3.21 and 3.22 show a comparison of the four approaches over a

sample recording for each of the four species in the recordings analysed. The top

plot of each figure shows a spectrogram with the time domain on the x-axis, and

the frequency domain on the y-axis, with the magnitude of the frequency bins vary-

ing with the colour of the plot. Subsequently, the figure shows the most likely state

identified by each approach. In each plot, the states are labelled as in Figure 3.14a,

where I represents the un-sounded idle state (if present), C represents the cicada’s
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Figure 3.19: Model comparison on a New Forest cicada recording
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Figure 3.20: Model comparison on a recording with no singing insect

song, R represents the Roesel’s bush-cricket and DC and DSP the dark bush-cricket’s

chirping and short pause states, respectively. The gaps in the silence-removed variant

correspond to unsounded periods.

Figure 3.19 shows that classifying the cicada is easier for the HMM-based methods,

as the call lasts for a long period without interruption and is clearly distinct from
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Figure 3.21: Model comparison on a Roesel’s bush-cricket recording
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Figure 3.22: Model comparison on a dark bush-cricket recording
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background noise. A more noisy recording would cause the raw-frequency approach

to fail. The mixture model approach struggles to distinguish between the cicada and

the dark bush-cricket call, since they are similar in features but different in the time

domain, which this model does not capture. Figure 3.20 shows how the variants

are more sensitive to noise than the CDA for different reasons. The raw frequencies

approach doesn’t filter out background noise, while the mixture model triggers a

cicada state even for a very short noise in the right frequency band. The silence-

removed method is only active in the short period of higher background noise, and

not having an idle state, it is forced to classify the sound as any of the sounded states.

Figure 3.21 shows how, when silence is removed, a Roesel’s bush-cricket becomes

very similar to a dark bush-cricket, having very similar emission probabilities. The

same condition is observed by the mixture model, that doesn’t have a perception of

time. Similarly, Figure 3.22 shows that the dark bush-cricket is difficult to classify

for the mixture model and the approach with silence removed, as explained thus far.

Moreover, it shows how a trade-off between a very quiet insect (visible throughout the

recording) and no insect must be made, as the insect could be at any distance from

the microphone, and thus there is no limit to how quiet it may be.

The analysis and output of the 235 recordings is reported on the project’s web site,

with a page for each recording, together with the parameters of the HMM, the audio

file, and information about the recording device1. This enables other researchers to

replicate this method and compare results for each individual input in the data set.

This comparison was also published in the Journal of Artificial Intelligence Research

(JAIR) (Zilli et al., 2014).

3.6 Summary

This chapter has first presented a simple threshold-based classifier, efficient but not

robust to noise. It has then extended the method by selecting a better set of frequency

features, strong against noise and capable of indicating the presence of insects com-

peting for a similar sound space to that of the New Forest cicada. It has proposed a

1Result at http://www.newforestcicada.info/devdash. The data can be used free of charge, provided
that the New Forest Cicada Project is attributed according to the Creative Commons Attribution (BY)
licence.

http://www.newforestcicada.info/devdash
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classification algorithm, based on a hidden Markov model that uses these frequency

features to distinguish between New Forest cicada, dark bush-cricket and Roesel’s

bush-cricket, taking advantage of their signature in the time domain and fulfilling

the requirement of this investigation to be able to detect the presence of the New

Forest cicada in the wild. The chapter has then evaluated the approach against a

state-of-the-art method, showing that the proposed system considerably outperforms

the state-of-the-art. It has also introduced three variants that, informed by current

practises in the literature, could have improved the classification. It resulted that the

proposed method is still more accurate by a small margin. Finally, as this approach

is tailored to power a smartphone-based acoustic classifier, the frequency response of

some common smartphone models has been analysed, leading to the ability to tune

the parameters of the HMM to match the specific device.

With that in mind, this thesis will now proceed to reporting the development, deploy-

ment and outcomes of the smartphone-based crowdsourced acoustic cicada detector

that motivated the creation of the algorithm here described.



Chapter 4

Searching with Citizens

The mantis stalks the cicada,

unaware of the oriole behind.

Writings of Zhuang-Zhou,

Chinese philosopher, 4th century BC

Chapter 3 described the design and implementation of an algorithm for real-time

detection of the New Forest cicada. Ultimately, the objective of this research is to pro-

duce a system that can help citizen scientists to detect the presence of the New Forest

cicada. Therefore, this chapter describes the architecture of the system envisioned,

its development, deployment and the initial results after two seasons of data collec-

tion. The citizen science project that was created around this system has been named

“The New Forest Cicada Project” and its activities are collected and organised on the

website www.newforestcicada.info.

4.1 System Requirements and Architecture

The system required is formed of different components, summarised in Figure 4.1.

At the user’s end, a smartphone client—an app—is required to collect observations.

These consist of a record of whether a cicada was found or not, and require at least

a time stamp and an accurate location in order to determine their validity. These two

parameters alone are useful in a number of different ways. Firstly, knowing where

69
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Figure 4.1: Architecture diagram of the system.

the cicada is not present at different times will generate a knowledge of the places

where it is less likely to be found, and will give a degree of confidence that the insect

can generally be considered missing from that area. Secondly, this knowledge can

be represented on a map (for example as a probabilistic heat-map layer), with which

users are recommended locations to visit. Thirdly, the data can be analysed to under-

stand what parts of the forest are normally covered by users and potentially provide

incentives to move to different areas. A model may be built with this information to

understand respectively a) how people move, where do they go and how they can be

motivated to go elsewhere, in order to cover more surface of the forest and b) with

what confidence level it can be established that the New Forest cicada is really not

present in the area considered, should it not be found.

To determine the presence of a cicada, the app processes the signal collected from the

in-built microphone. Ideally, the sound should be stored for further processing, but as

uncompressed audio uses large amounts of space, a selection must be made on what

files to keep and what to discard. Finally, the collection of this information, i.e. time,

location, likelihood of the presence of the cicada and sound recording, is hereon called

a survey and the storage of this a survey report.

A second major component of the system is a server back end to store the information

collected from the citizens’ mobile devices. This requires a database infrastructure

and an API to allow it to communicate with the mobile app. Additionally, further
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sound processing can be performed on the server, where more computational power

is available. A front end to this database will also permit users to visualise and manage

their contribution, promoting the establishment of an on-line community.

The combination of these components form the technical foundation required to ad-

dress some key issues of this research, namely:

• to locate the vanishing animal so that it can be preserved and protected;

• to address the shortcomings of manual surveying, which is time-consuming and

requires high expertise from the surveyor.

• to equip a large number of enthusiasts with inexpensive tools to perform this

search.

• to test incentive mechanism in the field of biodiversity monitoring, well-established

in terms of citizen science activism;

• to create a real time smartphone-based bioacoustic platform to act as a model for

other applications, for example for the monitoring of different animal species.

The remainder of this chapter will describe how these components have been designed

and implemented to meet the requirements outlined thus far.

4.2 Mobile Client

The mobile client is the part of the system with which users interact the most. There-

fore, it is essential that careful design choices are followed in accordance to sound

human-computer interaction principles to recruit and retain the largest number of

users. Moreover, since the mobile development landscape is very varied with tens of

different platforms and thousands of versions available, it is necessary for the suc-

cess of the citizen science endeavour to target the appropriate devices in order to

maximise coverage while minimising cost of development. This section outlines the

design choices that were taken in relation to the principles followed.
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(a) Native Android (b) PhoneGap on iOS (c) PhoneGap on
Android

Figure 4.2: Prototype apps, on three different pages. On the left, the information
page about the cicada in native Android; in the middle, the home page on an iOS
device and on the right the observation page, which allows to take a recording, a

picture or a combination of both and submit them to the servers.

4.2.1 Initial App

An initial app has been developed for Android and iPhone devices. Two different

approaches have been implemented for prototyping, a native client that uses the

platform’s APIs directly and a PhoneGap1 client, a cross-platform framework that

allows HTML5 development, exposing platform calls through a Javascript API (see

Figure 4.2).

Furthermore, the PhoneGap client has been designed with two different interfaces,

aiming to look native on both iOS and Android. The former uses jQuery Mobile,

another cross-platform HTML5 framework that provides a javascript library and iOS-

like styling, optimised for touch-screen devices. The latter uses xUI, a lightweight

javascript library similar to jQuery Mobile but with no UI styling. It strikes clearly that

a compromise between portability and native look must be found, as using different UI

development frameworks impedes portability, but native look is important to provide

a professional appearance and a more responsive interface. However, the majority of

the core functionality of the application needs to be implemented in platform-specific

1PhoneGap, http://phonegap.com/ is also known as Project Cordova, acquired by the Apache Software
foundation and currently in the Apache Incubator (http://incubator.apache.org/).

http://phonegap.com/
http://incubator.apache.org/
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language to access lower level functionality and obtain maximum performance, espe-

cially when processing audio signals in real-time.

4.2.2 The App Deployed

After several iterations, the mobile client was designed according to the following

principles. The user interaction is controlled by a cross-platform HTML5, CSS and

javascript-powered interface, which communicates with the underlying platform through

the PhoneGap framework, separating the components according to a Model-View-

Controller (MVQ) pattern. The app is developed for Android and iOS and all com-

putationally expensive tasks, including the sound analysis, run in a PhoneGap plug-in

(PhoneGap Development Team, 2013), implemented in the underlying platform’s de-

velopment kit language (Objective C for iOS, Java for Android)2. This ensures high

performance while maintaining the cost for the front-end development low. The app

was released to the markets in early June 2013 (see Section 4.5) under the name of

Cicada Hunt and the API used to communicate between the front-end and the back-

end is reported in Appendix A. The user interaction can be grouped in three areas,

which correspond to the three tabs in the main screen, exemplified by screen captures

in Figure 4.3.

Detector page Firstly, the app presents the detector page. A crucial difficulty for a

human to detect the New Forest cicada’s call is the fact that the pitch is too high for

most people to hear, at the edges of the hearing range of the average 40 years old. To

address this issue, this tab presents a visualisation of the sound drawn as a circular

spectrogram. In the centre, the cicada logo lights up when a call is being detected,

triggered by the instantaneous output of the Goertzel filter described in Section 3.3,

updated every 128 samples from the microphone. Twenty concentric circles around

it represent twenty frequency bands of the spectrum, centred from 1 to 20 kHz with

bandpass of 1.4 kHz, which ensures rapid updating of the filter used for detection.

Each of these becomes brighter with a higher signal strength (i.e. a louder sound at

2The front-end was developed in collaboration with an external company; the iOS plug-in was devel-
oped by Prof Alex Rogers, while the Android plug-in by the author of this thesis.
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(a) Detector page, with
cicada being detected

(b) Information page. (c) Reports page.

Figure 4.3: The three main screens of Cicada Hunt on Android.

that pitch), paler when the band is quieter. The outer ones, roughly from 12 to 18 kHz

are those triggered by the cicada call, producing the distinctive effect shown in Figure

4.3a. Tapping the centre of the app starts a 30-second survey, where the sound is

recorded and then analysed by the HMM-based algorithm described in Section 3.4.

This interaction is core to the interface, as it encourages users to stop and wait in

silence, thus maximising the chances of detecting the required sound.

As the survey finishes, the user is presented with one of three cases, as shown in

Figure 4.4. If nothing was detected, a fact about the cicada, its habitat, the New Forest

or the technology behind the app provide an informative notion, encouraging the

user to try again (Figure 4.4a). This intends to both support the morale of the user

who is receiving negative results, and to provide educational content, so that citizen

scientists receive some information in exchange for the work they have performed.

If a cicada was found, a positive message informs the user of the potential discovery,

allowing for the algorithm to be in error or to be triggered by, say, the recording of

a cicada call instead of a call itself (Figure 4.12b). The third case is provoked by the

detection of another insect, similar in call to the New Forest cicada. At present, the

app encompasses three other insects present in the New Forest: a dark bush-cricket, a

Roesel’s bush-cricket and a field grasshopper, though it does not convey to the user an

authoritative distinction between these three. Instead, the user is shown a spectrogram
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(a) End of survey
where no cicada or
other insect was found

(b) End of survey
screen where cicada

was found

(c) End of survey
screen where the user

can select options

Figure 4.4: Three states of the detector page, before and after a survey.

of a typical call of these insects, as well as a spectrogram of what they have just

recorded (Figure 4.4c), and they are asked to select to which insect their recording

looks most similar. This promotes the involvement of the user in the process, who

would otherwise be passively observing the mobile agent execute the detection.

Reports page The end of a survey produces a report, which is initially saved locally.

The report is geo-tagged and time-stamped, and saves a unique identifier of the phone

as well as basic information about the device. As soon as an internet connection

becomes available, the report is uploaded to the project’s servers, where it is available

to the research team to analyse further. This apparently minor precaution is actually

crucial, as a data connection is often missing or unreliable in the forest. Users are also

allowed to manage their reports by logging onto the project’s website and registering

their device with the online system (described later in Section 4.3). The report also

saves an uncompressed 44.1 kHz 16 bit PCM WAV sound recording in the case the

cicada or another insect are found, and provided that the user has granted permission

to do so. The file takes 2.7 MB on disk, so it is deleted as soon as the report is sent

to the server. Lastly, a low-resolution spectrogram is saved in all cases, constructed

from the combination of the output of the 20 Goertzel filters over the 30 seconds

survey, saved every 128 samples. This constitutes the easiest way for a human to
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check for the presence of the cicada and provides no privacy concerns (speech could

not be reconstructed from such spectrograms). Moreover, the payload of the image

file, saved in Base64 (Josefsson, 2006), is around 15 KB and therefore much lighter

than a full uncompressed sound recording.

Information page An information tab presents more extensive material on the New

Forest, the cicada, the algorithm used and the device itself, as well as some tips on how

to best use the app. This educational aspect is also very common in citizen science

projects, where the time invested by the user is rewarded with information to learn

more (Cooper et al., 2007). The “Tips and tricks” page is presented as a cartoon so as

to be easy to read and accessible to the largest audience. Finally, the information page

reports a unique identifier for the device, with which users can link their handset to

an online account.

Finally, Figure 4.5 sums up the interaction of the user with the app, showing the flow

one would follow once the client on their device has launched.

4.2.3 Other platforms

The principal target platforms are iOS and Android, as the two platforms in 2011,

when the development was started, held the 75.6% of the smartphone market share

(Go-Gulf, 2012) (note that by the last quarter of 2014 this value shot up to 96.3%

of the market (International Data Corporation, 2015)). However, a simple, feature-

reduced application may be developed in the future for other platforms to ensure the

best coverage of the population. In fact, it is difficult to assess beforehand who the

users of such a citizen science effort would be. 80% of the world population has a

mobile phone, 20% of those have a smartphone, 89% of whom use their smartphone

throughout the day (Go-Gulf, 2012). These statistics are not, however, linear with

age, and the penetration of mobile phone and smartphone users decreases in the

older population. An analysis of the users performed through the data collected is

presented later in Section 4.5.

A minimal platform for the app could work with as a little as the GPS only, allowing

users to indicate where they think they have detected a cicada by ear. Alternatively, in
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Figure 4.5: App flow, as experienced by the user.

order to include feature phones, an even simpler approach would consist in allowing

users to text their position to the best of their knowledge to report a potential sighting.

Finally, it should be mentioned that the platform need not be constrained to a mobile

phone. A custom-built device with a low-power microcontroller, a microphone and

a battery can be built for a few pounds, and deployed stand-alone in the forest, as

part of a wireless sensor network or even embedded in a wrist band for users. These

options have been initially considered, but their implementation lies beyond the scope

of this thesis and is therefore discussed in Section 6.1 as possible future work.
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Figure 4.6: The dashboard of survey reports, as visible by an entomologist or a staff
member on the website. In green a potential cicada discovery, in yellow the report of

another insect.

4.3 Server Back-end

The mobile client requires a central server to collect survey reports. This has been

implemented in Django, a Python web framework, and powered by a PostgreSQL

database. The implementation details of the server are not relevant to this thesis,

but the API that governs communications between the client app and the server are

reported in Appendix A.1.

The data collected from the app is reported in a dashboard, publicly available at http:

//newforestcicada.info/dashboard (see Figure 4.6). Here users can register their de-

vices and see where they have been surveying the forest, accessing a list of their

personal reports. At the same time, a small set of project authors and collaborating

entomologist have access to the list of all reports submitted and can classify recordings

by replaying the sound and analysing the spectrogram.

The report page, an example of which is depicted in Figure 4.7, gives a detailed de-

scription of all the data linked to a species survey, in particular recording and upload-

ing date and time, device model, app and framework version, surveyor (if known), a

map of the location and the low-resolution spectrogram generated by the app with the

output of the 20 Goertzel filters. If a sound file is attached to the survey, the page will

http://newforestcicada.info/dashboard
http://newforestcicada.info/dashboard
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Figure 4.7: A report page in the dashboard, outlining some of the features. In this
instance, a cicada recording was played in the microphone of the iPhone 5 at the

University of Southampton.
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also produce a high quality spectrogram as in Figure 4.7, as well as giving controls to

play the sound. These are instrumental for an entomologist to manually confirm the

classification.

Towards this purpose, a drop-drown menu allows entomologist to override the clas-

sification given by the app, providing an expert review of the recording. This has

proved crucial for the correction of errors in the algorithm and the training of a more

accurate model between the first and the second season of deployment.

4.4 Evaluation of Microphone Frequency Response

A major challenge faced in developing the app so as to be suitable for the largest

possible number of devices is the difference in hardware components. Different screen

sizes, for example, require either a tailored design, or an adaptive interface that can

scale to small smartphones as well as large tablets. Even more challenging, however,

is the difference in sensitivity of the built-in microphones.

Empirical tests reveal that some smartphones are equipped with a very sensitive mi-

crophone, while others have strong limitations. This generally relates well to the

price of the device, but it is not always the case. To this respect, smartphones can be

broadly divided into three categories; a) those with a high quality microphone, very

sensitive to cicada call (generally quite expensive devices) b) those with a low quality

microphone and not so sensitive, but still capable of detecting the cicada call when

very loud (generally cheap devices); c) those with a sensitive microphone, but filtered

in hardware, and therefore not capable of identifying the call at all (also often quite

expensive handsets).

In order to quantify these claims, a range of different devices has been tested. The

test consisted in reproducing four types of sound for at least 2 seconds each. Silence,

white noise, a frequency sweep from 50 to 20,000 Hz, and the cicada call. These were

reproduced in a custom-built sound-proof chamber, itself placed in a quiet location,

with a Visaton KE 25 SC 8 Ohm tweeter. The phones were all arranged with the mi-

crophone facing the speaker and all equally distant from it. The sound volume was

calibrated so that the volume of the cicada call was equivalent to that likely to be
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Device Filtered Silence (SEM) Cicada (SEM) Ratio
iPhone 4 No 1.623 (0.075) 13.047 (0.327) 8.041
iPhone 5 No 1.897 (0.076) 14.793 (0.388) 7.800
iPhone 4S No 1.466 (0.050) 10.549 (0.337) 7.196
iPhone 3 No 1.469 (0.047) 10.539 (0.430) 7.173
Telinga No 1.500 (0.044) 7.658 (0.233) 5.104
HTC Desire No 0.844 (0.041) 4.255 (0.265) 5.041
Xperia Mini No 2.480 (0.155) 10.190 (0.262) 4.109
Moto A953 No 2.015 (0.104) 5.845 (0.148) 2.901
Galaxy S3 No 1.374 (0.038) 3.279 (0.088) 2.387
Xperia Z No 0.951 (0.032) 1.971 (0.059) 2.072
HTC One S No 1.466 (0.040) 2.915 (0.085) 1.988
Nexus 4 No 0.675 (0.025) 1.314 (0.026) 1.946
HTC Desire X No 1.243 (0.054) 1.817 (0.075) 1.462
Galaxy Ace 2 No 1.953 (0.063) 2.162 (0.059) 1.107
Galaxy S2 No 1.916 (0.085) 2.101 (0.031) 1.097
Nexus One Yes 1.514 (0.051) 1.568 (0.045) 1.036
HTC One X Yes 1.933 (0.062) 1.732 (0.052) 0.896
HTC Wildfire S No 2.032 (0.088) 1.683 (0.063) 0.828

Table 4.1: Comparison of popular smartphone devices. Values are means of ratios of
14 and 8 kHz Goertzel filters, sampled every ≈ 3 ms (128 samples at 44,100 kHz). In

brackets, standard error of the mean.

detected by the phone in the wild, using the measurements obtained by recording ci-

cada calls in Slovenia. The synthetic white noise and and frequency sweep were tuned

accordingly. Finally, to collect test recordings and to automate their transmission to

the server3, an auxiliary app called SoundCheck has been implemented. This is capable

of either downloading the up-to-date benchmarking sound and self-testing the device

through its own speaker, or recording from an external speaker. The latter option is

more accurate as it is independent of the quality of the device’s speaker, and therefore

it was the solution used for the tests here performed.

A comparison of the sensitivity of the microphones based on how well they are ca-

pable of detecting the cicada call in the test environment described above is hence

reported here. Table 4.1 summaries the outcome of the test, reporting the standard

error of the mean (SEM) of the ratio between the 14 kHz and 8 kHz bands extracted

with the Goertzel filter when no sound was played (marked as Silence), when the ci-

cada call was played (Cicada), and the ratio between these two. A higher value of the

latter means a clearer indication of the cicada call, and therefore a greater confidence

in the detection. Figure 4.8 shows the reference sound played to the phone, together

3The database of recording can be found at http://newforestcicada.info/phonetest/list

http://newforestcicada.info/phonetest/list
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Figure 4.8: Comparison of two phones. At the top, the waveform (a) and spectro-
gram (b) of the sample calibration file. At the bottom, the very sensitive iPhone 5 (c)
and the hardware-filtered HTC One X (d), both top-end devices for iOS and Android.

with two high-end devices; the Apple iPhone 5, detecting the cicada call very clearly,

and the HTC One X, hardware filtered and therefore incapable of detecting the insect’s

call. Table 4.1 confirms this, as the two devices score values at opposite ends of the

scale.

This comparison results in the ability to calibrate the emission probabilities of the

HMM to the specific phone model. For devices not yet calibrated, the app selects

a set of generic parameters that are suitable for most microphones, slightly skewed

to discourage an abundance of false positives that would mislead the user. The app

downloads a list of calibration parameters at run time, so that new devices can be

calibrated without having to push an update of the app to the respective markets.

4.5 System Deployment and Users

The system presented thus far was officially launched on June 8th, 2013 at the New

Forest BioBlitz, an annual event held by the New Forest National Park Authorities to

engage the public into mapping biodiversity.

The user base this project is aiming to involve can be broadly divided in three cate-

gories.

Bug enthusiasts. The most technical group, these users are willing to set out to search

for the endangered insect. The group also includes entomologists who are pas-

sionate or even paid to work on the species. Most likely, the smallest group.
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Figure 4.9: Operating system versions of the devices that submitted reports between
June 2013 and March 2015.

Locals. Potentially the most assiduous group. This includes people living or working

locally in the New Forest, who have a general interest in the park and its ecology.

They may interact with the system often and for short periods of time.

Tourists and visitors. The most numerous group. The New Forest reports 13.5 mil-

lion day visitors every year (New Forest District Council). They may be the least

active, using the app only once or a few times, but scattered across various ar-

eas of the park and available in the right season for the insect’s adulthood—hot

sunny days, between May and July. They are also likely to be present around

camp sites, some of which are historical know sites of cicada emergence.

Since its launch, the app has been downloaded around 3000 times. 2968 unique de-

vices have submitted reports, in most days of the cicada adulthood period. Over 11000

reports were submitted, and of these 1303 have an audio track attached. 2577 reports

were taken within the boundaries of the New Forest, but an additional 3000 does not

have a GPS location, either because the user decided not to share it or because a GPS

fix could not be obtained in time. Overall, 1482 devices (50%) were running iOS, while

1486 (50%) were running Android—a very different proportion from the first season

alone, when over 65% of devices were running iOS. Figure 4.9 shows a breakdown

of the most popular operating system versions for the two platforms. With a small
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Figure 4.10: Reports per user by operating system for the top 25 users (right, trend
of the top 100).

amount of resources to be allocated to development, these analytics are paramount to

understanding what devices should be targeted first and to provide support for those

that will enable the widest participation.

Figure 4.10 shows a bar graph of the number of reports uploaded by the top 25 con-

tributors, with the trend for the top 100 users displayed in the top-right corner. It

should be noted that among these, 5 are entomologists and member of the research

team. However, these users only covered specific areas of the forest, in particular those

where the cicada had historically been observed. In contrast, the citizen scientists sub-

mitted far fewer reports per user, but the reports were more evenly distributed across

the New Forest, as shown in Figure 4.11. This shows the crucial difference that this

distributed approach can make, as entomologists cannot be ubiquitously present in

different areas of the forest when the conditions are favourable, and can only cover

a limited territory, while visitors, though contributing individually less, can help re-

discover the cicada if it has moved to different sites, as it is currently suspected. At

the same time, while entomologists have the tools and the knowledge to recognise

insects’ calls, the general public must be equipped with an accessible method. In this

space, the implementation and deployment of this automated acoustic insect detec-

tion algorithm has succeeded to bring to the public the possibility to contribute to the

distributed monitoring of insect species, as shown by the large number of downloads

of the app and submitted reports.
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Others

Entomologists

Figure 4.11: Location of submitted reports. In 2014 the 22nd brood of the North-
American periodical cicadas (Magicicada) emerged, and attracted great interest on the

topic of cicadas in general, hence the number of reports in North America.

A full report, up to date at the time of writing, is presented in Appendix Appendix B.

No Cicadetta montana has yet been found in the New Forest.

4.5.1 System Testing

With no individual of cicada found, the need arose to test the system in a way that

could prove its correct operation. This verification can be separated into two stages.

Firstly, the assessment of the HMM-based algorithm powering the app; this has al-

ready been showed in comparison to the state-of-the-art approach for batch classi-

fication, and its better performance in the current scenario reported in Section 3.5.

Secondly, the system may fail in the implementation of the algorithm onto the mobile

client and in the integration of the infrastructure as a whole.

To test the latter, the research team once again travelled to Slovenia, where the first

recordings of real Cicadettae montanae were made. There, it could be showed that the

system was perfectly capable of detecting the cicada, and this resulted in the collection

of hundreds of recordings. Due to the lack of ground truth, it is not possible to assess

precision and recall of the system, but photographic and videographic evidence of
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Figure 4.12: Female Cicadetta montana being held by entomologist Tomi Trilar, and
Cicada Hunt detecting the presence of the insect, both in Slovenia.

the successful detection is reported on the project’s website, and the full database of

recordings is available upon request.

Furthermore, the interaction of users with the deployed system has been investigated

to understand usage patterns and barriers in the uptake of the system by the wider

community. The outcome of a number of interviews was reported in a paper appeared

in the Proceedings of the 32nd annual ACM conference on Human factors in comput-

ing systems (CHI 2014) (Moran et al., 2014) and reported a certain level of resistance

against the use of smartphone in the field, as well as providing guidance for the im-

plementation of future systems in a similar space based on the expertise gathered in

this experiment.

4.6 Publicity and Public Engagement

Significant user participation is necessary for a citizen science project to succeed. To

expand the number of users, a certain level of publicity and public engagement is

therefore indispensable. The New Forest Cicada Project was involved in the Science

and Engineering Day and Solent Big Bang Fair at University of Southampton; the

New Forest BioBlitz 2013 and Wood Fair 2013 and 2014; the British Science Festival

2013 in Newcastle; the BBC Summer of Wildlife 2013 in Birmingham, as well as talks

in several conferences, meetings and schools. This resulted in articles or mentions on,

among others, BBC News, The Guardian, The Daily Echo, BBC Wildlife Magazine,
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EnvioNews, Wildlife Extra, BugLife, Gigaom, DEFRA Magazine, the New Scientist

and an interview on BBC Radio (a list of all media engagement is presented in Ap-

pendix E. This, together with presence on social media, contributed to the recruitment

of hundreds of users.

4.7 Summary

This chapter has presented a novel, mobile citizen science platform for searching for

an endangered insect—the first of its kind to the best of the author’s knowledge. The

system is composed of a mobile app for iOS and Android devices, catering to the vast

majority of smartphone users, and a website that collects all the users’ observations

and permits the involvement of field experts. It showed how careful design is imper-

ative for the participation of a broad audience, and a simple, intuitive interface can

engage hundreds of citizen scientists. Over 3000 users have downloaded the app to

date, and more than 11000 reports were submitted, making it one of the largest citi-

zen science projects of its kind. While the effectiveness of the system was confirmed

through a field trip in the Slovenian Alps, where the species is present, no Cicadetta

montana was reported in the New Forest during the two mating seasons in which the

system was deployed, and it therefore remains missing in the UK. However, the app

is also used in survey work by professional entomologists in different locations across

Europe. Finally, a question remains as to whether a similar system can be used for a

broader set of insects and for wildlife in general. The following chapter attempts to

address this matter.





Chapter 5

Broader Insect Sound Recognition

What would be left of our tragedies

if an insect were to present us his?

Emile Cioran,

Romanian philosopher, 20th century

Thus far, this research has demonstrated the usefulness and applicability of the usage

of smartphones and citizen science to searching and monitoring the presence of one

animal species in the wild. However, the app developed and the classification algo-

rithm used are tailored to the New Forest cicada, and as such are not able to assist

in the monitoring of other wildlife, if not for very few similar insects. Therefore, in

order to extend this method for wider applicability, the present chapter describes a

different classification algorithm, modelled on state-of-the-art techniques used in the

bird classification literature, inspired particularly by the work presented by Stowell

and Plumbley (2014). Since the focus remains on insects, the method here presented

attempts to exploit two features commonly found in most species, that is a dominant

frequency or set of frequencies, and a repetition of phrases at regular intervals. The

following chapter will then evaluate this method against different data sets.

89
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Figure 5.1: Flow of the possible combinations of feature extraction parameters and
aggregation methods.

5.1 Feature Extraction

Many classification methods follow a similar procedure. The signal in analysis is ini-

tially (and optionally) pre-processed, where it is cleaned from noise and segmented

into more tractable chunks. Subsequently, a set of features is extracted from it, gener-

ally based on some domain knowledge of the signal. Last comes an optional aggre-

gation stage, where the features are down-sized to a more compact format, making

them more tractable for the classifier. This procedure is repeated for all the signals in

the data set to be classified. At a later stage, in order to assess the model, the data

set is partitioned in two sets, so that the classifier can be trained on one part, and as-

sessed on the other. The features of the training data are therefore fed to the classifier

together with the ground truth (also known as labels) of the data. Once trained, the

classifier is given the features extracted from the test set, from which it predicts the

most likely class for each input sample. This is then matched to the ground truth of

the latter data set to assess the accuracy of the classifier.

Figure 5.1 describes the feature extraction procedure in this investigation. First, the

entire power spectrum is extracted, and optionally converted to the mel scale. This

permits a comparison between the Hertz and the mel spectra, as it is argued here

that the latter, although commonly used, is not beneficial for insect classification. The

spectrum is then transformed into cepstral coefficients, but each step is disabled in

turn. In fact, as seen in Section 2.2.1.6, the cepstral coefficients are the results of a

discrete cosine transform (DCT) of the log of the power spectrum, and hence for each

of the two spectra considered, the logarithm of the spectrum is optionally considered,

and consequently the DCT, resulting in 23 = 8 permutations of parameters.



Chapter 5 Broader Insect Classification 91

The power spectrum is a two dimensional matrix, the size of which depends on the

length of the window of the STFT and the length of the recording. For a 30 seconds

recording sampled at 44,100 Hz, with a window size of 256 samples and no overlap

between windows, the power spectrum is a matrix of 128 by 44100× 30/256 = 5167

samples. Since classifiers generally require a single vector of features per sample

input, the matrix must be stacked into an array of 5167 × 128 = 661376 features.

Although modern computers can handle such a large feature space, it is often conve-

nient and certainly much more efficient to reduce these dimensions to a more tractable

number, which also mitigates the problem over overfitting the model when there a too

few input samples.

Several techniques can be used to downscale these features. Firstly, one can assume

that the evolution of the frequencies over time does not contain much information,

so that the average strength of a frequency bin is a sufficient indicator of the type of

sound in the recording. This appears to be a reasonable assumption for insects, the

sounds of which are often generated by scratching, rubbing, tapping and hence do not

tend to modulate in frequency. If this assumption holds, the mean of the magnitude

of each frequency bin provides sufficient information on the dominant frequencies,

while the standard deviation gives an indication of whether the amplitude varies in

time or remains constant. The two combined are, moreover, very compact—in the

example above, if one were to aggregate the features by their mean and standard

deviation, they would result in 2× 128 samples. Stowell and Plumbley (2014) argue

that for birds, where often recordings contain a large amount of silence and only brief

sounded periods, the mean of a frequency bin is diluted and approaches the value of

the unsounded periods. In that case, summarising by taking the maximum value may

be a better indicator. Therefore, the present approach (see Figure 5.1) summarises by

both mean and standard deviation (µ + σ) and maximum (max).

If, however, the pattern with which frequencies are observed in the recording exposes

a character of the singing species, both these approaches fall short. Consider, for

example, three tones of a certain frequency; one is present every second for half a

second at amplitude x, the second is present every second for a quarter of a second,

at amplitude 2x, and the third constantly present at amplitude 2x. The max would not

be able to distinguish between the second and the third, while the mean would not

distinguish the first from the second, although the standard deviation may reveal the
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difference. In a real-world setting where the quality of the recording can very signifi-

cantly, this shortcoming might be even stronger. Therefore, an alternative solution is to

take an additional FFT over each bin of the spectrum to detect the presence of repeat-

ing patterns. The discrete values generated by the FFT will here be called modulation

coefficients (mod) to match the nomenclature in Stowell and Plumbley (2014).

5.1.1 Summarising by Modulation Coefficients

The FFT of the power spectrum captures the magnitude of both the frequency at

which an insect is stridulating, and of the frequency of slower, repeating patterns. For

example, the dark bush-cricket, common in the New Forest, chirps at a frequency of

approximately 1 Hz, but each chirp is composed of three phrases, repeating at about

40 Hz, and in a clean recording each of these reveals a further 600 Hz amplitude mod-

ulation (for a clear example refer to Figure 2.8a in Chapter 2). Averaging over time or

taking the maximum value of each frequency bin would discard this information. Fig-

ure 5.2 shows an artificial signal that exemplifies the power of this feature extraction

method. The sample signal is composed of two sine waves, one at 8 kHz and one at

16 kHz, silenced 6 and 10 times per second respectively. The FFT of the mixed signal

shows, like the clean carrier wave, the two peak frequencies, and the spectrogram also

highlights the alternating chirps. However, these four frequencies are perfectly sum-

marised only in the FFT of the power spectrum, which in Figure 5.2 is capped to the

first 50 Hz. On the y-axis, the frequency domain is represented as in the spectrogram,

while the x-axis shows the frequency of the repeated patterns (6 and 10 Hz). Finally

Figure 5.2 shows the same feature, but represented with one line per frequency band,

capped at 300 and 30 Hz respectively.

This artificial signal exemplifies the effectiveness of the FFT of the power spectrum.

However, a question remains as to how to represent this feature compactly while re-

maining maximally general about the features extracted—the method should capture,

for example, all the 1, 40 and 600 Hz modulations of the dark bush-cricket’s call, and

equally whatever other insect is given to the classifier. To do so, this work proposes

to uniformly resample the FFT bins in the log-frequency space. This is motivated

by the fact that determining the probability with which a bin contains the feature is
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Figure 5.2: Modulation coefficients of a sample sine wave. The signal is composed
of 5 seconds of a 8 kHz and 5 seconds of a 16 kHz sine waves, repeating at 6 and 10
Hz respectively. The FFT shows a clear peak at the two carrier frequencies, but only

the FFT of spectrum shows both the carrier and the modulating frequencies.
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equivalent to trying to determine an uninformative prior in Bayesian statistics. Max-

imum entropy theory says that the correct uninformative prior for a scale parameter,

such as a time or a length, is given by a probability distribution proportional to 1/x

(Jaynes, 2003). Therefore, since it cannot be determined a priori whether the repeti-

tion of phrases happens at say, 1, 40 or 600 Hz, resampling the FFT bins uniformly

in the log-frequency space in the range provided by the power spectrum and the FFT

discards minimal information, independently from the scale.

A few parameters determine the final output feature. Firstly, the maximum frequency

fmax that the modulation coefficients can detect is determined by the window size w

of the STFT and the sampling rate fs of the recording, such that:

fmax =
fs

2 · w

In the example above, with sampling rate of 44,100 Hz and a window size of 256, fmax

is only ≈ 86 Hz, which is insufficient for many of the insects considered. Reducing

the window size degrades the accuracy of the spectrum, but tests have shown that a

window size of 64 samples, which gives ≈ 344 Hz output, performs well for the data

sets analysed by this research (see Section 5.4 below). A second parameter is the lowest

frequency of interest fmin. This is limited by the length of the recording considered, as

the lowest component a recording will contain is inversely proportional to its length

s, such that:

fmin =
1

2 · s

Therefore, a 1-second recording will not contain any component below 0.5 Hz and a

30-second recording will not contain anything below 1/60 Hz. However, since this

value must remain consistent across the feature set given to the classifier, the low-

est useful value will be selected, albeit being wasteful in sampling space for shorter

recordings. Finally, the number of modulation coefficients for the log-frequency space

can be selected arbitrarily, with the lowest number being maximally efficient and the

entire range of bins in the input being maximally accurate. Empirical tests show

that 48 is a good compromise on a modern desktop computer. Figure 5.3 shows the

log-frequency modulation coefficients for a sample call of New Forest cicada, dark

bush-cricket and Roesel’s bush-cricket side-by-side. The three insects are quite similar

in this feature space, though clear differences can still be seen.
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In conclusion, the combination of these feature extraction and aggregation methods is

used in the system here proposed. The power spectrum is used either raw or logged,

cosine-transformed and translated onto the mel scale, as well as each permutation of

these transformations. It is then summarised by mean and standard deviation over

time, maximum value over time, or with the modulation coefficients sampled on the

log-frequency scale describe thus far, leading to a total 24 different feature sets. For

each of these, the entire set of recordings is classified both with a decision tree and

with a random forest classifier.

5.2 Classification with Decision Trees

Decision trees have been selected as classification algorithm for a number of reasons.

First of all, they are commonly used in the literature, and therefore allow for easy

comparison of the method here proposed against the state of the art. For example,

they are used by Stowell and Plumbley (2014) for bird classification, and since the data

sets used by this paper are available to download, the method has been benchmarked

against the same data, and the comparison is described below. Secondly, they allow

for multi-output classification, that is a scenario where multiple classes (in this case

species) are present in the same signal (recording). Thirdly, the learning process to

train decision trees is intuitive and can be easily visualised, making them compelling

for this exploratory part of the present research. Lastly, many of the limitation of

decision trees are mitigated by the usage of an ensemble algorithm, such as a random

forest classifier, which is therefore also used for comparison.

5.3 Engineering of the Model

The computational methods used to develop this insect classification model have been

carefully designed, and it is therefore worth spending a few words on the engineering

of the software. This program aims to allow collaboration and contribution of different

developers in the field of wildlife sound classification, so as to provide a common

benchmarking platform, and as such it will be released upon completion of this thesis

under an open-source licence.
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Figure 5.3: Comparison of log-frequency modulation coefficients for New Forest
cicada, dark bush-cricket and Roesel’s bush-cricket, with 7-22 kHz in the spectrum

and 48 coefficients.
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The software is written in Python and offers the following features:

• Easily extensible object-oriented design

• Separation of model and controller

• Multi-core operation that can process recordings, train and validate results in

parallel (through the multiprocessing library)

• Serialisation of intermediate steps, to avoid recomputing identical steps

• Storage of results in a mongo database

• Serving of results in HTML via an HTTP Server

• Dynamic comparison of different parameters (also saved to database and served

in HTML)

• Logging of model operation with different levels of verbosity

• Utilities for Comma-separated values (CSV) formatting of input data

• Separation of settings configuration to customise all parameters in one place.

In order to include a model for a new data set, a developer need only extend the

abstract model class and provide an input file in CSV format with the files to classify

and their respective label. Optionally, two different files can be provided as test and

train sets. A plethora of different features extraction methods are already provided,

but more can be implemented by extending the feature extraction routine. Similarly,

two classifiers are currently included, but more can be added.

The classification is built on the powerful and widely used scikits-learn machine

learning library (Pedregosa et al., 2011). The results are outputted in colour on the

console and in the HTML reports, and served through the lightweight flask web

framework. Five data set models are provided as examples.

Additionally, to further develop the collaborative approach to insect classification that

this research wants to promote, an initial version of the model has also been imple-

mented on Microsoft Azure Machine Learning (Azure ML1), a novel cloud-based data

1http://azure.microsoft.com/en-us/services/machine-learning

http://azure.microsoft.com/en-us/services/machine-learning
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Figure 5.4: Wildlife classification system on Azure ML, tested on an birds data set.

mining and machine learning platform developed by Microsoft. This allows develop-

ers to collaborate remotely on the same model, and execute it on powerful pay-per-use

servers, while also sharing large data sets. The platform is currently in its infancy, and

it charges for usage and computational time, but it is actively developed and offers

free plans for academic purposes. The interface of the system with an early version of

the model proposed is exemplified in Figure 5.4, where it is tested on a bird calls data

set.

5.4 Evaluation on Large Scale Data Sets

Once again, the method proposed is evaluated against three very different data sets,

each with their own benefits and drawbacks. The limitations are outlined below, but

can be broadly grouped into a) the quality of the recordings b) the number of samples

per species c) the number of different devices used for recording. A more detailed

description of these data sets with a list of species is reported in Appendix C.

The execution of the model proposed observes the following procedure. Each record-

ing is re-sampled at 44,100 Hz, where necessary. The power spectrum is then extracted

with an STFT window size of 64 samples and with no overlap, and the lower frequency
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bands are discarded to filter out background noise, with cut-off frequency dependent

on the data set. The volume of each recording is normalised by dividing the power

spectrum by the root-mean-square (RMS) amplitude. It is then optionally transposed

on the mel spectrum with 40 mel filters. Subsequently it is also optionally logged

and cosine-transformed to output 13 coefficients. The features extracted when the

spectrum is logged and cosine-transformed correspond to the cepstral coefficients.

As described above, the spectrum is then summarised in one of three ways: either

with the mean and standard deviation, providing 64 features (32 each for mean and

standard deviation, corresponding to half the STFT window size) or less, in case the

lower components are discarded; with the maximum of each frequency bin, providing

again 32 features or less; or finally through the extraction of modulation coefficients.

For the log-frequency sampling of the FFT, 48 bins are used, minimum and maximum

frequencies of 1/60 Hz and 344 Hz respectively, as discusses in the previous section.

The first modulation coefficient corresponds to the DC component of the signal, and

therefore resembles the values of the mean value across time, as exemplified later in

Figures 5.5 and 5.6.

If only one set of data has been provided, this is split into two parts for training

and testing (a method called hold-out). The results reported here use a 50% split, but

66% for training is also commonly used. The accuracy of the trained model is assessed

with the F1 score, described in Chapter 3, and by measuring the area under the receiver

operating characteristic (ROC) curve. The ROC curve is a well-established technique

that shows the rate of true positives against the rate of false positives. This measure

is used in both the published literature and in wildlife sound classification challenges

(for example the NIPS 2013 multi-label bird species classification challenge2).

Alternatively, a robust way of assessing the model trained is by using cross-validation.

This method divides the training set in a number of chunks (or folds), for example 10.

Nine of these are used for training, and one for testing, and in turn each fold is kept

aside for testing, while the rest is used for training, which reduces the variance of the

estimate.
2NIPS4B is assessed on kaggle at https://www.kaggle.com/c/

multilabel-bird-species-classification-nips2013

https://www.kaggle.com/c/multilabel-bird-species-classification-nips2013
https://www.kaggle.com/c/multilabel-bird-species-classification-nips2013
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Figure 5.5: Mean, standard deviation and first modulation coefficient of the signal
between 7 and 22.05 kHz for the three insects in the data set.

The results of the validation for each data set are reported below with F1 score, ROC

AUC score and score of a 10-fold cross validation. Unless specified otherwise, the

parameters used are those described thus far.

5.4.1 Cicada Hunt Recordings

The first data set (NFcrowd) is a subset of 54 out of the 235 recordings collected by

users in the New Forest and in Slovenia in the first season of deployment of the

mobile system, representing three species: New Forest cicada, dark bush-cricket and
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Figure 5.6: Mean of mean, standard deviation and first modulation coefficient of the
signal between 7 and 22.05 kHz for the three insects in the data set.

Roesel’s bush-cricket, with 18 samples each. The limit of 18 is imposed by the number

of recordings of the least occurring species, the dark bush-cricket, to which the other

species were matched. This removes one aspect of bias for the classifier, which may

otherwise learn the frequency of occurrence of one species and score a good result by

simply always selecting the most frequently occurring one.

The importance of this data sets lies chiefly in the quality of the recordings. In fact

it represents real, crowdsourced data, and is therefore the collection that most closely

matches the purpose of this investigation. This not only means that the recording
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device is different, but also that many forms of background noise are present, that po-

tentially parts of the call are missing and that the singing insect is not cleanly centred

in the recording, as it happens in most library recordings that are manually processed.

It also constitutes the same set for which the cicada detection algorithm (CDA), pre-

sented in Chapter 3, was developed and on which is was calibrated, allowing for

a direct comparison. On the contrary, the small number of species and of samples

constitute its main limitations.

In this evaluation, the frequencies below 7 kHz have been discarded. This is due to

the fact that all cicada recordings, taken with similar devices and in a similar loca-

tion, presented an artifact around 6 kHz that was producing a bias in the classifier.

The learning algorithm would therefore learn the artifact instead of the song of the

insect, scoring very good results. Removing these frequencies solved the problem, yet

highlighted an unpredicted limitation of the data set. Figures 5.5 and 5.6 show the

mean, standard deviation and first modulation coefficient of all the recordings in the

set, the former in the form of one line per recording, the latter as the average across

all the recordings, surrounded by the standard deviation. The model was also trained

with the first modulation coefficient only, which is very similar to the mean as dis-

cussed above, as well as with linear modulation coefficients. The combination of all

three transforms and five aggregation methods is depicted in Figure 5.7, where all the

powers have been log-scaled for clarity.

Table 5.1 presents the 20 permutation of parameters that performed best at classify-

ing this data set, sorted by their F1 score. The log-frequency modulation coefficients

(logmod) perform generally better than mean and standard deviation (µ + σ), and tak-

ing the logarithm of the values also has a generally positive effect. It is less clear

whether the mel or the Hertz spectrum performs better, with the mel scoring slightly

higher results. The reason for this is that, with the lower 7 kHz removed and the

three species being fairly similar in frequency, the alleged drawbacks of using the mel

spectrum are not noticeable. As expected, no benefit has been observed in the first co-

efficient as opposed to mean and standard deviation, and equally for linear-frequency

coefficients as opposed to log-frequency ones; therefore for the sake of clarity these

results have been omitted from the table.

A further comparison can be drawn also with the previous cicada detection algorithm
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Figure 5.7: Feature extraction of a Cicadetta montana with all permutations of parameters. The columns correspond to Hertz/mel spectrum,
logged and not logged, and DCT-transformed or not. The rows are the summary features, linear modulation coefficients (MOD), only the first 10
coefficients (MOD10), on the log-frequency scale (LOG MOD), only the first coefficient (MOD0), mean and standard deviation (µ, σ), and maxium (max).
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Classifier Mel Log DCT MOD µ σ Max Agg Features CV score F1 score ROC AUC Correct
decisiontree • • • • logmod 624 0.800 0.927 0.944 92.593%
randomforest • • • logmod 1920 0.900 0.926 0.980 92.593%
randomforest • • • • logmod 624 0.833 0.888 0.975 88.889%
decisiontree • • logmod 1056 0.867 0.810 0.861 81.481%
randomforest • • • logmod 624 0.733 0.809 0.914 81.481%
randomforest • • • • max 13 0.700 0.769 0.864 77.778%
decisiontree • • logmod 1920 0.583 0.743 0.806 74.074%
randomforest • • logmod 1056 0.900 0.733 0.908 74.074%
randomforest • • • • µ+σ 80 0.700 0.710 0.737 70.370%
randomforest • • • µ+σ 44 0.700 0.705 0.861 70.370%
decisiontree • • • logmod 624 0.767 0.704 0.778 70.370%
decisiontree • • logmod 624 0.700 0.701 0.778 70.370%
randomforest • • • µ+σ 80 0.633 0.693 0.851 70.370%
randomforest • • • • µ+σ 26 0.617 0.691 0.885 70.370%
decisiontree • • • logmod 1920 0.933 0.690 0.778 70.370%
decisiontree • • • • µ+σ 26 0.617 0.668 0.750 66.667%
decisiontree • • max 40 0.650 0.668 0.750 66.667%
decisiontree • • • max 40 0.650 0.668 0.750 66.667%
randomforest • • µ+σ 44 0.800 0.666 0.853 66.667%
decisiontree • • µ+σ 44 0.700 0.659 0.750 66.667%

Table 5.1: Summary of results for the NFcrowd data set.
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(CDA) model from Chapter 3, which classified the same data set (although on all

235 samples). The F1 scored by the CDA reached a value of 0.82, while the model

here described with the optimal set of parameters scores F1 = 0.92. The difference

is notable and is to be attributed to the hand-tuning of parameters performed in the

CDA. In fact, with the little data for which that method was designed, the hand-tuning

was not only beneficial but necessary (no phone model had been tested, and very few

cicada recordings were available to the authors), while with a good set of samples as

in the present evaluation the model is able to learn the necessary parameters. In the

future, a further comparison may use this data to learn the parameters of the HMM

for the CDA, for example through an expectation-maximisation (EM) algorithm such

as the Baum–Welch algorithm, therefore adapting the parameters to the data.

5.4.2 British Orthoptera Recordings

While the NFcrowd data set provides a good comparison to the existing system, it

does not assess the model against the purpose it was built for, that is many-species

classification. To address this shortcoming, another data set containing all 28 known

species of Orthoptera in the UK is used here, and hereon referred to as UKorthoptera.

The set contains 70 recordings, with two to four recordings per species, which for

certain species also represent different types of calls. The recordings are very clean and

of good quality, which simplifies classification but can also be considered a limitation

for the present scenario. The small number of recording per species constitutes the

other main limitation of this data set.

Given the small amount of data, the recordings are segmented into 2 second chunks

that are treated as individual samples. Despite dramatically improving the accuracy,

this trick has two side-effects, namely that a) the model could be tested and trained on

parts of the same recording, giving it a slightly positive bias, and b) that unsounded

periods of a recording may happen to be treated as samples for an insect, giving the

model a slightly adverse bias.

Results in Table 5.2 show good overall performance, given the large number of classes

and the small number of samples, with F1 score just under 0.72. While the best per-

forming method uses log-frequency modulation coefficients, it is not clear that these

are significantly better than aggregating by mean and standard deviation, as the latter
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Figure 5.8: Confusion matrix of UKorthoptera data set. The labels correspond to the
Dutch orthoptera atlas identification numbers, as reported in the table below.

ID Latin name English name ID Latin name English name
1 Phaneroptera falcata Sickle-bearing bush-cricket 20 Nemobius sylvestris Wood cricket
3 Leptophyes punctatissima Speckled bush-cricket 21 Oecanthus pellucens Tree cricket
4 Meconema thalassinum Oak bush-cricket 22 Gryllotalpa gryllotalpa Mole cricket
5 Meconema meridionale Southern Oak bush-cricket 26 Stethophyma grossum Large marsh grasshopper
6 Conocephalus dorsalis Short-winged conehead 29 Stenobothrus lineatus Stripe-winged grasshopper
7 Conocephalus discolor Long-winged conehead 30 Stenobothrus stigmaticus Lesser Mottled Grasshopper
8 Tettigonia viridissima Great green bush-cricket 31 Omocestus viridulus Common green grasshopper

10 Decticus verrucivorus Wartbiter 32 Omocestus rufipes Woodland grasshopper
12 Platycleis albopunctata Grey bush-cricket 35 Chorthippus vagans Heath grasshopper
13 Metrioptera brachyptera Bog bush-cricket 37 Chorthippus brunneus Field grasshopper
15 Metrioptera roeselii Roesel’s bush-cricket 40 Chorthippus albomarginatus Lesser marsh grasshopper
16 Pholidoptera griseoaptera Dark bush-cricket 42 Chorthippus parallelus Meadow grasshopper
18 Gryllus campestris Field cricket 44 Myrmeleotettix maculatus Mottled grasshopper
19 Acheta domesticus House cricket 45 Gomphocerippus rufus Rufous grasshopper
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Figure 5.9: Feature extraction of a Sickle-bearing bush-cricket with all permutations of parameters. The columns correspond to Hertz/mel spectrum,
logged and not logged, and DCT-transformed or not. The rows are the summary features, linear modulation coefficients (MOD), only the first 10
coefficients (MOD10), on the log-frequency scale (LOG MOD), only the first coefficient (MOD0), mean and standard deviation (µ, σ), and maxium (max).
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Classifier Mel Log DCT MOD µ σ Max Agg Features CV score F1 score ROC AUC Correct
randomforest • • • • µ+σ 26 0.864 0.497 87.702%
randomforest • • • • • µ+σ 26 0.864 0.497 88.026%
randomforest • • • µ+σ 26 0.857 0.521 87.379%
randomforest • • µ+σ 64 0.856 0.492 87.055%
decisiontree • • • • µ+σ 26 0.847 0.499 84.790%
randomforest • logmod 1536 0.838 0.509 85.761%
randomforest • max 32 0.825 0.500 83.819%
randomforest • • max 32 0.825 0.499 83.819%
randomforest • • • • µ+σ 26 0.814 0.512 82.201%
randomforest • • • µ+σ 64 0.809 0.500 82.524%
decisiontree • • µ+σ 64 0.804 0.499 80.259%
randomforest • • max 13 0.802 0.513 81.877%
decisiontree • • • µ+σ 26 0.793 0.500 80.906%
decisiontree • • • µ+σ 80 0.793 0.505 79.612%
randomforest • • • µ+σ 80 0.790 0.489 80.259%
randomforest • • • logmod 624 0.783 0.505 79.935%
randomforest • • logmod 1920 0.781 0.490 79.288%
decisiontree • • • • µ+σ 26 0.780 0.502 78.964%
decisiontree • • • • • µ+σ 26 0.769 0.506 77.023%
decisiontree • • • µ+σ 64 0.764 0.507 77.023%

Table 5.2: Summary of results for the UKorthoptera data set.
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score very good results, with better computational efficiency. However, the random

forest ensemble mostly outperforms the decision tree, which highlights the instability

of the latter to training with little data.

5.4.3 NIPS4B Bird Classification Challenge

Much of the literature on insect sound classification assesses algorithms against a

specific set of recordings. If these data sets are not made available, it becomes hard

to benchmark the methods used against each other. Recently, in order to mitigate this

problem, the community has organised challenges in which competitors are given a

labelled set of recordings to train their algorithms against, and an unknown set of

test data. Results against the test data are submitted to a common platform, which

assesses the performance on the results obtained.

Therefore, one such data set was required to evaluate the approach proposed in this

chapter against the state of the art. Given that these competitions are not yet common

for insect classification and that this approach is modelled on the bird sounds recogni-

tion literature, a data set of bird calls was selected, provided by the Neural Information

Processing Scaled for Bioacoustics (NIPS4B) bird song competition. Competitors are

given a set of 678 recordings with labels, containing one or more of 87 species of birds.

They are also given an additional 1000 recordings with no labels, which they have

to classify and the results of which are submitted by each entrant and compared to

others. Hence, no ground truth is given for these, but upon submission an overall

score, in terms of ROC AUC score, and a ranking are returned to the competitor.

Therefore, the most prominent advantages of this data set are a) an easy comparison

against other implementations, b) a large number of samples and c) the presence

of separate, unlabelled data for testing, which ensures that no information can be

learnt from scoring the model (and therefore eliminates any such bias). The main

shortcoming is of course the fact that the species classified are birds and not insects,

so the device introduced to model insect calls may not perform as well as existing

implementations.

Consequently, two sets of results are presented. The first one, reported in Table 5.3,

shows once again very good overall performance, this time sorted by ROC AUC score
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to match the competition’s assessment. As expected, the modulation coefficients do

not perform better in this scenario, as they are tailored to strong, regular chirps that

are not often present in birds. It is interesting to note how here the random forest

classifier consistently outperforms the simple decision tree. The second assessment

of this data set is the comparison with other competitors in the challenge. This is

extremely beneficial to test that the implementation matches what is expected, and

to avoid any voluntary or involuntary tampering of the results. The method here

presented scores a ROC AUC on the 1000 unlabelled samples of 0.87, similar to Stowell

and Plumbley (2014) on which this system is modelled. This confirms the integrity

of the results, and gives confidence of the validity of the model in the global research

community.

5.4.4 Additional Data Sets

In order to address the limitation of sample size of the insect data sets here presented,

a further set of all insect and related sounds is currently being collected, and already

amounts to over 14 GB of recordings. This has being provided by the British Library’s

Wildlife Recording Scheme and contains samples for each British Orthoptera species,

together with a small number of birds and frogs. The processing of this data set, in

which many of the insects are “introduced” by a voice that describes the environment

and credits the authors, is ongoing effort and its scope lies beyond that of this thesis.

Initial results on a subset of these files show promising results through the system

described in this chapter.

5.5 Summary

This chapter has presented a novel insect classification algorithm based on a random

forest classifier, which extracts a discrete set of log-frequency modulation coefficients

from the power spectrum of a recording and uses them as features for classification.

The model shows excellent performance on three insect species commonly found in

the New Forest, and it classifies a large data sets of 87 birds species with accuracy

comparable to the state-of-the-art in the field. It also achieves a high score on a small

data set of 28 insect species, though this limitation calls for a larger data base of insect
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Classifier Mel Log DCT MOD µ σ Max Agg Features CV score F1 score ROC AUC Correct
randomforest • • • µ+σ 26 0.224 0.159 0.788 11.034%
randomforest • • • • • µ+σ 26 0.183 0.108 0.787 7.931%
randomforest • • • • µ+σ 26 0.202 0.146 0.784 9.655%
randomforest • • µ+σ 64 0.215 0.151 0.783 10.517%
randomforest • • • µ+σ 80 0.191 0.142 0.782 10.862%
randomforest • • • • µ+σ 26 0.195 0.156 0.775 10.862%
randomforest • • • µ+σ 64 0.198 0.090 0.770 5.862%
randomforest • • • • µ+σ 80 0.173 0.100 0.766 7.241%
randomforest • max 32 0.179 0.081 0.750 5.345%
randomforest • • max 32 0.179 0.081 0.748 5.345%
randomforest • • logmod 1920 0.160 0.078 0.730 5.517%
randomforest • • • max 40 0.156 0.037 0.726 2.414%
randomforest • logmod 1536 0.160 0.044 0.726 2.586%
randomforest • • max 40 0.156 0.035 0.724 2.241%
randomforest • • • logmod 624 0.159 0.035 0.722 2.586%
randomforest • • • logmod 1920 0.154 0.026 0.680 1.724%
randomforest • • max 13 0.162 0.074 0.677 5.000%
randomforest • • • max 13 0.157 0.055 0.663 3.793%
randomforest • • • max 13 0.150 0.026 0.660 1.897%
randomforest • • logmod 624 0.157 0.015 0.659 0.862%

Table 5.3: Summary of results for the nips4b data set.
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recordings, which is being collected at the time of writing and will continue to grow

over the years. The algorithm surpasses the previously proposed cicada detection al-

gorithm in terms of accuracy and scalability, though it remains more computationally

expensive. The entire sound recording classification system is also currently being

deployed in an Orthoptera reporting app, developed by the Orthoptera Recording

Scheme at the Centre for Ecology and Hydrology, which will provide an unprece-

dented set of Orthoptera recordings, similar to that of the New Forest Cicada Project,

but on a national and international scale.



Chapter 6

Conclusions and Future Work

This thesis documented novel research on the application of citizen science to biodi-

versity monitoring. Surveying animal species through the sound they produce has

long been an established technique, especially for those animals that emit a very dis-

tinctive call, such as bats, birds and insects. The involvement of the general public in

this effort has been effective in past years, but the introduction of new technologies

recently brought citizen involvement to a new level. Smartphones have been inte-

gral to this shift; the large number of sensors with which they are equipped, their

widespread presence among the population and their ease of use make them the per-

fect vehicle for people’s involvement in scientific research. This work exploits these

emerging technologies to rediscover the New Forest cicada, a highly endangered in-

sect that produces a high-pitched song, difficult to hear for humans but easily detected

by mobile phones. The conception of a machine learning algorithm that would detect

the presence of this insect in real time on a mobile device and the implementation of

the infrastructure apt to search for it are the core objectives of this research, which

eventually aims to generalise this method to any application of citizen biodiversity

monitoring.

More specifically, this thesis has reviewed in Chapter 2 the literature in the two key

areas for this research: citizen science and bioacoustics. The former has been described

in the wider context of crowdsourcing applications, collecting a range of examples

from which experience has been drawn. The latter has been discussed in relation to

automated identification of taxa, of which a specific area is aimed to be advanced with

113
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Figure 6.1: The app’s main screen on Android and iOS.

this work. Chapter 2 has also reviewed tools, techniques and algorithms commonly

used in bioacoustics, as well as introducing the ecology of the New Forest cicada, the

knowledge of which is essential to an effective search.

Chapter 3 has then presented a novel approach to efficiently detecting the presence of

this insect, built on an HMM-based approach. In order to devise this method, the call

of the cicada and of few similar insects have been analysed, and two strong features

where observed in the call of the former. A constant 13.5 kHz-centred signal in the

frequency domain, and an increasing intensity of the sound in the amplitude domain,

with a sudden stop after 30–40 seconds. A weaker feature also consists of an 8 ms

and a 16 ms pattern that repeat in the call, but these only become noticeable in high

quality recordings. Results of the evaluation of this method against a data set of over

200 smartphone recordings of the New Forest cicada, the Roesel’s bush-cricket and the

dark bush-cricket, collected by the research team in Slovenia and by citizen scientists

in the New Forest show high accuracy, with an F1 score of 0.82 for the cicada call,

despite the variable quality of the recordings.
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Chapter 4 then illustrated how this novel approach has been ported to a mobile sys-

tem, with a client for Android and iOS devices and a server to collect user obser-

vations. These form the basis of a large citizen science endeavour, called the New

Forest Cicada Project, which has been fully deployed and can boast 3000 users col-

lecting thousands of observations. With this system, citizens have already surveyed

the New Forest during two seasons. At present, no specimen has been found, but

the correct operation of the system has been verified by trialling the app in Slovenia,

where the species was previously found. There, the client has been used to collect

hundreds of call samples, which have later been used to increase the robustness of

the system against other insects. In addition, the chapter compared 17 of the most

widespread mobile devices in terms of the sensitivity of their microphone and their

ability to detect the cicada.

Finally, Chapter 5 investigated an alternative approach to automated insect sounds

classification, based on the extraction of log-frequency cepstral coefficients and the

classification with decision forests and random forest ensembles. The former is an

innovative, compact representation of the spectrum that exploits the strong frequency

components in insect calls and the repetition of phrases, while assuming no prior

knowledge of the calls in analysis. It therefore scales better than then HMM-based

approach to a many-species scenario, at the cost of higher computational complexity.

This algorithm is in the process of being included in an Orthoptera recording app

developed by the Centre for Ecology and Hydrology.

In conclusion, the research presented in this thesis has constructed the tools, both

methodological and practical, to detect the presence of an endangered insect with

the involvement of the general public, and has proposed methods to apply the same

methodology to the broader monitoring of wildlife with sound. The publication of

this research in international conferences and journals, the awards received and most

importantly the strong participation of citizen scientists in this endeavour vouch for

the need for similar efforts to be embraced for the protection of the natural environ-

ment.
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6.1 Future Work

The effectiveness of the methods proposed call for further research in the areas ex-

plored here, as well as for the practical implementation and deployment of similar

tools in different domains. A few avenues for future work are discussed below.

For the purposes of the present and other smartphone-based acoustic projects, further

extensive tests may be performed on mobile devices and the frequency response of

their microphone. A database that collects this type of information is not yet present,

to the best of the author’s knowledge, and may be valuable to similar projects within

and outside the biodiversity context. This may even be achieved through a collabo-

rative effort, where users can send recordings of a test sound that are then centrally

collected and analysed.

With the infrastructure of the mobile client in place and a community of citizen sci-

entists already interested in the subject, further research may also be performed on

incentive mechanisms that can motivate people’s participation. This can be obtained

through the involvement of local schools, businesses, tourist information centres and

park authorities who may be interested in attracting customers while raising public

awareness on the issues of biodiversity monitoring. A local café may offer, for exam-

ple, a free beverage to the user who submitted the most number of reports in a day,

so that the business and the citizen science project both benefit from this mutual inter-

action. Gamification, that is the engagement of users through a game in a non-game

context, is also an appealing route as a) hundreds of millions of people worldwide

play electronic games (McGonigal, 2011), making them a very large community to ap-

peal to and b) the computational sustainability scenario attracts much public attention

these days when more and more emphasis is put on safeguarding the environment.

Moreover, this work has already collected thousands of reports worldwide, the anal-

ysis of which lies beyond the scope of this thesis, but providing an excellent starting

point for future work. Many observation of different insects have in fact been sub-

mitted to the system, some mistakenly classified as one of the known insects (for

example the periodical cicadas (Magicicadae) recorded in America, where many re-

ports were submitted); other were submitted in places where the Cicadetta montana
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is present, such as Portugal and Spain. The analysis of the existing reports and the

engagement with local communities then proves a matter of entomological interest.

The system, however, should not be restricted to smartphones alone. The entomol-

ogists who survey the New Forest for the presence of the cicada often return to the

same sites where the insect was historically found. The inspection of these sites is less

suitable to citizen scientists, who may gather in large numbers and disrupt the habitat.

At the same time, the few entomologists struggle to cover all sites in the sunny, warm

days in which the insect sings. A hardware-based, standalone cicada detector would

therefore be desirable to monitor the sites at regular intervals. The device should have

a long-lasting battery, potentially harvesting energy from the environment, for exam-

ple with a solar panel. It should be low-cost to be widely deployed and to allow for

the risk of being damaged by the elements. Ideally, it may be networked to report any

relevant observation to a base station, but in its simplest form it may save data to a

memory card, which can be occasionally collected and analysed.

Furthermore, the same techniques and algorithm used in this research may be applied

outside the biodiversity monitoring domain by using citizen science and smartphones

to monitor other environmental factors using sound. Example applications would be

the monitoring of soundscapes and tranquillity around urban parks or the detection

of faults in electrical equipment, such as alternators, that emit a distinctive noise when

close to failure.

The distribution of the source code produced by this research—in particular the mo-

bile app and the classification algorithms—under an open-source licence proposed

upon completion of this programme should further facilitate the employment of sim-

ilar methods in the wider contexts and scenarios outline above.
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Application Programming Interfaces

A.1 App to Server Back End API

A.1.1 Fields

$SERVER=http://newforestcicada.info/api

A.1.1.1 Methods

GET $SERVER/get_auth_token

• return

auth_token

– type: char(64)

– description: unique authentication token from the server

POST $SERVER/upload

• params:

auth_token:
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– required

– type: char(64)

– description: unique authentication token

wav_file

– optional

– type: file (only WAV or FLAC)

– description: sound recording

recording_titestamp

– required

– type: datetime

– description: timestamp of the observation time (NOT the uploading time)

latitude

– optional

– type: float

– description: latitude of the observation

longitude

– optional

– type: float

– description: longitude of the observation

photo_file

– optional

– type: file (only PNG or JPG)

– description: photograph of the observation.

description

– optional

– text
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– description: anything that the user wants to add to the observation

observation_id

– optional

– type: int

– description: database ID, only needed to modify an existing entry

• return

JSON array {exit_status, observation_id}

exit_status

– type: ‘int‘:

0: OK

>0: error

observation_id

– type: int

– description: database ID of the entry

A.2 Internal App’s Front-end to Back-end API

A.2.0.2 Method Summary

boolean execute(java.lang.String~action,

org.json.JSONArray~args,

org.apache.cordova.api.CallbackContext~callbackContext)}

The only method ever to be called from the javascript interface.

double getAmplitude()

Get a value of the amplitude from the microphone.
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double getCicada()

Get the estimate of the presence of the cicada, in a float value between 0 and 1.

double[] getFrequencies()

Get array of frequency magnitudes, one per frequency bin.

org.json.JSONArray getReport(int id)

Retrieve a survey report.

void initialiseDetector(org.apache.cordova.api.CallbackContext~callbackContext)}

Initialise the audio system.

void startDetector()

Start buffering audio sample for the benefit of the cicada detector.

void startWhiteNoise()

Emit white noise from the default output device.

void stopDetector()

Gracefully stop and destroy the audio analysis system.

void stopWhiteNoise()

Stop emitting white noise.

java.lang.String writeRecording()

Write the current buffer to file.

A.2.0.3 Method Detail

execute

boolean execute(java.lang.String action,

org.json.JSONArray args,
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org.apache.cordova.api.CallbackContext callbackContext)

throws org.json.JSONException

The only method ever to be called from the javascript interface. The call will be in the

following format:

exec(<successFunction>, <failFunction>, <service>, <action>, [<args>]);

where <service> will be the name of the class implementing this interface and <action>

one of the private methods below.

Throws: org.json.JSONException

initialiseDetector

void initialiseDetector(org.apache.cordova.api.CallbackContext callbackContext)

Initialise the audio system. This should be called before any other call to the audio

system is made, including detecting the cicada or requesting an amplitude value.

startDetector

void startDetector()

Start buffering audio sample for the benefit of the cicada detector. Once this function

is called, it is safe to retrieve values of the cicada estimate through getCicada().

stopDetector

void stopDetector()

Gracefully stop and destroy the audio analysis system. A call to startDetector() is

sufficient to restart the process.

../../../info/newforestcicada/plugin/CicadaDetectorInterface.html#getCicada()
../../../info/newforestcicada/plugin/CicadaDetectorInterface.html#startDetector()
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getAmplitude

double getAmplitude()

Get a value of the amplitude from the microphone.

Returns: a single floating point value between 0 and 1.

getFrequencies

double[] getFrequencies()

Get array of frequency magnitudes, one per frequency bin. The number of frequency

bins will be proportional to the sampling frequency, but would normally be 20, repre-

senting frequencies between 1 and 20 kHz. This number will however vary and one

should not rely on it being 20.

Returns: double array of frequency magnitudes

getCicada

double getCicada()

Get the estimate of the presence of the cicada, in a float value between 0 and 1.

Returns: the estimated value

startWhiteNoise

void startWhiteNoise()

Emit white noise from the default output device.
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stopWhiteNoise

void stopWhiteNoise()

Stop emitting white noise. A call to startWhiteNoise() is sufficient to restart the noise

generation.

writeRecording

java.lang.String writeRecording()

Write the current buffer to file. The filename is currently determined internally

Returns: the path to the file written.

getReport

org.json.JSONArray getReport(int id)

Retrieve a survey report. If id is null, then retrieve the latest report.

The JSON Array will be in the form: {id: {<insect_id> : {name : <value>}, ...},

recording: <true|false>}}

../../../info/newforestcicada/plugin/CicadaDetectorInterface.html#startWhiteNoise()
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Sample Survey Report

The document below is a sample report that can be automatically generated for single

users, groups, or for the entire body of citizen scientists surveying for the New Forest

cicada. This report is generated by an R script that connects to the project’s back-end

PostgreSQL database and generates a reStructuredText document, then compiled to

HTML or PDF. The document below is the complete version of all surveyors.

127



New Forest Cicada Project
Summary of Reports

Updated on Fri Mar 27 15:34:27 2015

Table of Contents
Number of Reports 1

Survey Dates 5

Devices 8

Users 12

Number of Reports
There are 11386 reports. Of these, 3025 don’t have location and 2578 have a location
within the New Forest area (approximately). These are reported on the map below.

∙ Total: 11386

∙ In the New Forest: 2578

– BugLife: 577 in the New Forest

– Others: 2001 in the New Forest

1
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Figure 1: Buglife

2
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Figure 2: Others
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Figure 3: Everyone

The mean location accuracy is 1077. This means that the GPS was mostly prrr
disabled.

4
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Survey Dates
Reports have been submitted on 654 days:

31 May 2013
01 Jun 2013
03 Jun 2013
04 Jun 2013
05 Jun 2013
06 Jun 2013
07 Jun 2013
08 Jun 2013
09 Jun 2013
10 Jun 2013
11 Jun 2013
12 Jun 2013
13 Jun 2013
14 Jun 2013
15 Jun 2013
16 Jun 2013
17 Jun 2013
18 Jun 2013
19 Jun 2013
20 Jun 2013
21 Jun 2013
22 Jun 2013
23 Jun 2013
24 Jun 2013
25 Jun 2013
26 Jun 2013
27 Jun 2013
28 Jun 2013
29 Jun 2013
30 Jun 2013
01 Jul 2013
02 Jul 2013
03 Jul 2013
04 Jul 2013
05 Jul 2013
06 Jul 2013
07 Jul 2013
08 Jul 2013
09 Jul 2013
10 Jul 2013

11 Jul 2013
12 Jul 2013
13 Jul 2013
14 Jul 2013
15 Jul 2013
16 Jul 2013
17 Jul 2013
18 Jul 2013
20 Jul 2013
21 Jul 2013
22 Jul 2013
23 Jul 2013
24 Jul 2013
25 Jul 2013
26 Jul 2013
27 Jul 2013
28 Jul 2013
29 Jul 2013
30 Jul 2013
31 Jul 2013
01 Aug 2013
03 Aug 2013
04 Aug 2013
05 Aug 2013
06 Aug 2013
07 Aug 2013
08 Aug 2013
09 Aug 2013
10 Aug 2013
11 Aug 2013
13 Aug 2013
14 Aug 2013
15 Aug 2013
17 Aug 2013
18 Aug 2013
19 Aug 2013
20 Aug 2013
21 Aug 2013
22 Aug 2013
23 Aug 2013

24 Aug 2013
25 Aug 2013
26 Aug 2013
27 Aug 2013
28 Aug 2013
29 Aug 2013
30 Aug 2013
31 Aug 2013
01 Sep 2013
02 Sep 2013
03 Sep 2013
05 Sep 2013
06 Sep 2013
07 Sep 2013
09 Sep 2013
11 Sep 2013
12 Sep 2013
14 Sep 2013
17 Sep 2013
19 Sep 2013
22 Sep 2013
25 Sep 2013
27 Sep 2013
29 Sep 2013
02 Oct 2013
03 Oct 2013
05 Oct 2013
07 Oct 2013
10 Oct 2013
25 Oct 2013
26 Oct 2013
07 Nov 2013
10 Dec 2013
13 Dec 2013
03 Jan 2014
08 Jan 2014
23 Jan 2014
07 Feb 2014
11 Feb 2014
23 Feb 2014

25 Feb 2014
11 Mar 2014
13 Mar 2014
14 Mar 2014
15 Mar 2014
16 Mar 2014
17 Mar 2014
20 Mar 2014
24 Mar 2014
25 Mar 2014
27 Mar 2014
04 Apr 2014
10 Apr 2014
13 Apr 2014
14 Apr 2014
19 Apr 2014
25 Apr 2014
26 Apr 2014
06 May 2014
07 May 2014
09 May 2014
10 May 2014
11 May 2014
14 May 2014
15 May 2014
16 May 2014
17 May 2014
18 May 2014
22 May 2014
24 May 2014
28 May 2014
29 May 2014
01 Jun 2014
02 Jun 2014
05 Jun 2014
06 Jun 2014
07 Jun 2014
08 Jun 2014
09 Jun 2014
10 Jun 2014

5
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11 Jun 2014
12 Jun 2014
13 Jun 2014
14 Jun 2014
15 Jun 2014
17 Jun 2014
18 Jun 2014
19 Jun 2014
21 Jun 2014
22 Jun 2014
23 Jun 2014
24 Jun 2014
25 Jun 2014
27 Jun 2014
28 Jun 2014
29 Jun 2014
30 Jun 2014
01 Jul 2014
02 Jul 2014
03 Jul 2014
05 Jul 2014
09 Jul 2014
10 Jul 2014
11 Jul 2014
12 Jul 2014

13 Jul 2014
14 Jul 2014
15 Jul 2014
16 Jul 2014
17 Jul 2014
18 Jul 2014
19 Jul 2014
20 Jul 2014
21 Jul 2014
22 Jul 2014
23 Jul 2014
24 Jul 2014
25 Jul 2014
26 Jul 2014
28 Jul 2014
29 Jul 2014
30 Jul 2014
31 Jul 2014
01 Aug 2014
02 Aug 2014
03 Aug 2014
04 Aug 2014
06 Aug 2014
08 Aug 2014
09 Aug 2014

10 Aug 2014
14 Aug 2014
15 Aug 2014
18 Aug 2014
19 Aug 2014
20 Aug 2014
21 Aug 2014
23 Aug 2014
24 Aug 2014
29 Aug 2014
02 Sep 2014
05 Sep 2014
06 Sep 2014
08 Sep 2014
09 Sep 2014
10 Sep 2014
13 Sep 2014
14 Sep 2014
16 Sep 2014
18 Sep 2014
20 Sep 2014
28 Sep 2014
02 Oct 2014
03 Oct 2014
04 Oct 2014

05 Oct 2014
06 Oct 2014
11 Oct 2014
12 Nov 2014
16 Nov 2014
17 Nov 2014
22 Nov 2014
24 Nov 2014
25 Nov 2014
02 Dec 2014
04 Dec 2014
16 Dec 2014
19 Dec 2014
05 Jan 2015
11 Jan 2015
18 Jan 2015
22 Jan 2015
30 Jan 2015
03 Feb 2015
05 Feb 2015
24 Feb 2015
03 Mar 2015
04 Mar 2015
05 Mar 2015

6
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Devices
There are 3014 unique devices. Of these, 1492 (50) are iOS, 1520 are Android.

Android

iOS

Platform distribution

Figure 4: Device distribution

7
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iPhone 4S

iPhone 4

iPhone 5

Galaxy SIII 

iPhone 5S

Nexus 4

Galaxy SII 

iPod touch 4G

Distribution of unique devices

Figure 5: Device distribution
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Distribution of unique devices
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Figure 6: Device distribution
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iPhone 4

iPhone 4S

iPhone 5

Nexus 4

Galaxy SIII 

iPhone 5S

SM−G900F

Most reports per device

Figure 7: Device distribution
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Most reports per device
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Figure 8: Device distribution

Users
We cannot determine the number of users, as we don’t keep any information about
them, unless they register on the website. Most users have one device, so we can

11
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approximate the number of users to that of devices (see above). Below we report
statistics about users assuming a single device per user.

Number of reports of top 10 contributors and their phone model
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Figure 9: Top 10 contributors
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Appendix C

Wildlife Sounds Data Sets

Four core data sets have been used throughout this investigation. These summarised

below.

C.1 NFcrowd

The NFcrowd data set is composed of 235 of New Forest cicada, Roesel’s bush-cricket

and dark bush-cricket collected with smartphones around the New Forest and the

Slovenian Alps. All recordings are 30-seconds long, sampled at 44,100 Hz, taken with

the Cicada Hunt application.

C.2 UKorthoptera

The UKorthoptera data set is composed of 70 recording by Baudewijn Ode from the

Dutch Orthoptera Atlas and selected by entomologist Bjorn Beckmann to represent

the 28 species of Orthoptera in the UK. Follows a list of descriptive file names and

spectrogram of the calls. All rights remain with Baydewijn Ode.

Sickle-bearing bush-cricket - call type 1 - 1 echeme

Sickle-bearing bush-cricket - call type 1 - 1 echeme - example 2

Sickle-bearing bush-cricket - call type 2 - series of syllables

Speckled bush-cricket - call of a few males

141
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Speckled bush-cricket - call of a male on the right, female replying on the left

Speckled bush-cricket - call of one male

Oak bush-cricket - a male drumming on side of container

Oak bush-cricket - a male drumming on side of container - example 2

Southern oak bush-cricket - a male drumming on side of container

Southern oak bush-cricket - a male drumming on side of container - example 2

Short-winged conehead

Short-winged conehead - example 2

Short-winged conehead - example 3

Long-winged conehead

Long-winged conehead - example 2

Great green bush-cricket - at low temperature, others calling in the background

Great green bush-cricket

Great green bush-cricket - example 2

Wartbiter

Wartbiter - example 2

Grey bush-cricket - many echemes - at low temperature

Grey bush-cricket - many echemes

Bog bush-cricket - many echemes - at low temperature

Bog bush-cricket - many echemes

Bog bush-cricket - many echemes - example 2

Roesel’s bush-cricket - at low temperature

Roesel’s bush-cricket - long echeme

Roesel’s bush-cricket - short echemes

Dark bush-cricket - 2 males alternating

Dark bush-cricket - at low temperature, Great green bush-cricket in the background

Dark bush-cricket - many echemes

Dark bush-cricket - many echemes - example 2

Field cricket - at low temperature

Field cricket - chorus of many males

Field cricket - many echemes

Field cricket - many echemes - example 2

House cricket - many echemes
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House cricket - several echemes - less active

Wood cricket - chorus of many males

Wood cricket - long echemes

Wood cricket - short echemes

Tree cricket - various echemes

Mole cricket

Mole cricket - example 2

Large marsh grasshopper - 1 series

Large marsh grasshopper - 1 series - example 2

Stripe-winged grasshopper - 1 echeme

Stripe-winged grasshopper - 1 echeme - example 2

Lesser Mottled Grasshopper - 1 echeme

Lesser Mottled Grasshopper - 1 echeme - example 2

Lesser Mottled Grasshopper - 1 echeme - example 3

Common green grasshopper - 1 echeme

Common green grasshopper - 1 echeme - example 2

Woodland grasshopper - 1 echeme

Woodland grasshopper - 1 echeme - example 2

Woodland grasshopper - 1 echeme - example 3

Heath grasshopper - 1 echeme

Heath grasshopper - 1 echeme - example 2

Heath grasshopper - 1 echeme - example 3

Field grasshopper - 1 series of echemes

Field grasshopper - 1 series of echemes - example 2

Field grasshopper - 4 echemes - at low temperature

Lesser marsh grasshopper - 1 series of echemes

Lesser marsh grasshopper - 1 series of echemes - example 2

Meadow grasshopper - at lower temperature - 2 echemes - other males in the back-

ground

Meadow grasshopper - several echemes

Mottled grasshopper - 1 series of echemes

Mottled grasshopper - 1 series of echemes - example 2

Rufous grasshopper - 1 verse
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01 Sickle-bearing bush-cricket - call type 1 - 1 echeme
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01 Sickle-bearing bush-cricket - call type 1 - 1 echeme - example 2
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01 Sickle-bearing bush-cricket - call type 2 - series of syllables
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03 Speckled bush-cricket - call of a few males
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03 Speckled bush-cricket - call of a male on the right, female replying on the left
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03 Speckled bush-cricket - call of one male
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04 Oak bush-cricket - a male drumming on side of container
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04 Oak bush-cricket - a male drumming on side of container - example 2
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05 Southern oak bush-cricket - a male drumming on side of container
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05 Southern oak bush-cricket - a male drumming on side of container - example 2
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06 Short-winged conehead
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06 Short-winged conehead - example 2
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06 Short-winged conehead - example 3
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07 Long-winged conehead
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07 Long-winged conehead - example 2
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08 Great green bush-cricket
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08 Great green bush-cricket - at low temperature, others calling in the background
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08 Great green bush-cricket - example 2
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10 Wartbiter
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10 Wartbiter - example 2
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12 Grey bush-cricket - many echemes
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12 Grey bush-cricket - many echemes - at low temperature
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13 Bog bush-cricket - many echemes
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13 Bog bush-cricket - many echemes - at low temperature
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13 Bog bush-cricket - many echemes - example 2
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15 Roesel's bush-cricket - at low temperature
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15 Roesel's bush-cricket - long echeme
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15 Roesel's bush-cricket - short echemes
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16 Dark bush-cricket - 2 males alternating
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16 Dark bush-cricket - at low temperature, Great green bush-cricket in the background
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16 Dark bush-cricket - many echemes
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16 Dark bush-cricket - many echemes - example 2
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18 Field cricket - at low temperature

0 5 10 15 20 25
0

5

10

15

20

Fr
eq

ue
nc

y 
(k

H
z)

18 Field cricket - chorus of many males
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18 Field cricket - many echemes
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18 Field cricket - many echemes - example 2
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19 House cricket - many echemes
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19 House cricket - several echemes - less active
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20 Wood cricket - chorus of many males
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20 Wood cricket - long echemes
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20 Wood cricket - short echemes
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21 Tree cricket - various echemes
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22 Mole cricket
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22 Mole cricket - example 2
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26 Large marsh grasshopper - 1 series
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26 Large marsh grasshopper - 1 series - example 2
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29 Stripe-winged grasshopper - 1 echeme
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29 Stripe-winged grasshopper - 1 echeme - example 2
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30 Lesser Mottled Grasshopper - 1 echeme
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30 Lesser Mottled Grasshopper - 1 echeme - example 2
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30 Lesser Mottled Grasshopper - 1 echeme - example 3
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31 Common green grasshopper - 1 echeme
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31 Common green grasshopper - 1 echeme - example 2
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32 Woodland grasshopper - 1 echeme
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32 Woodland grasshopper - 1 echeme - example 2
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32 Woodland grasshopper - 1 echeme - example 3
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35 Heath grasshopper - 1 echeme
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35 Heath grasshopper - 1 echeme - example 2
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35 Heath grasshopper - 1 echeme - example 3
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37 Field grasshopper - 1 series of echemes
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37 Field grasshopper - 1 series of echemes - example 2
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37 Field grasshopper - 4 echemes - at low temperature
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40 Lesser marsh grasshopper - 1 series of echemes
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40 Lesser marsh grasshopper - 1 series of echemes - example 2
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42 Meadow grasshopper - at lower temperature - 2 echemes - other males in the background
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42 Meadow grasshopper - several echemes
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44 Mottled grasshopper - 1 series of echemes
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44 Mottled grasshopper - 1 series of echemes - example 2
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45 Rufous grasshopper - 1 verse
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45 Rufous grasshopper - 1 verse - example 2
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C.3 nips4b

The nips4b data set has been assembled by the BIOTOPE society, which collects bird

recordings around Europe. It was made available for the NIPS 2013 multi-label bird

species classification challenge and remains available after the competition has ended.

More details about the data set can be found on the competition’s submission page:

https://www.kaggle.com/c/multilabel-bird-species-classification-nips2013.

C.4 BLorthoptera

Finally, a large data set of Orthoptera recordings and related sounds has been col-

lected by the author of this thesis, and provided by the curator of the British Library’s

wildlife and environmental sounds division. A brief description of the files has is

reported schematically below.

https://www.kaggle.com/c/multilabel-bird-species-classification-nips2013
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Family Samples
Gryllidae 184
Tettigoniidae 96
Acrididae 24
Discoglossidae 16
Meliphagidae 4
Alaudidae 3
Turdidae 2
Ranidae 1
Strigidae 1
Not confirmed 2

Table C.1: Recordings by family for the BLorthoptera data set
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Species Samples
Field Cricket 49
Mole Cricket 30
Sword-bearing Conehead 27
Fire-bellied Toad 16
Black-horned Tree Cricket 16
Carolina Ground Cricket 15
Allard’s Ground Cricket 14
Spring Field Cricket 13
Broad-winged Bush Katydid 12
Snowy Tree Cricket 11
Common True Katydid 10
Four-spotted Tree Cricket 9
Narrow-winged Tree Cricket 8
Fall Field Cricket 7
Gladiator Meadow Katydid 6
Meadow Grasshopper 6
Common Meadow Katydid 6
Froggatt’s Buzzer Grasshopper 5
Striped Ground Cricket 4
Oblong-winged Katydid 4
Tui 4
Bush Cricket 4
Mottled Grasshopper 4
Bush Cricket sp. nov. 4
Wart-biter 3
Woodlark 3
Cricket 3
Great Green Bush Cricket 3
Grasshopper 3
Dark Bush Cricket 3
Roesel’s Bush Cricket 2
Dusky-faced Meadow Katydid 2
Wood Cricket 2
White-fronted Wart-biter 2
Northern Meadow Locust 2
Texas Bush Katydid 2
Say’s Bush Cricket 2
Common Field Grasshopper 2
Common Green Grasshopper 2
Southern Field Cricket 2
Long-winged Cone-head 1
Bog Bush Cricket 1
Bluethroat 1
Tree Cricket 1
Curve-tailed Katydid 1
Tawny Owl 1
Iberian Marsh Frog 1
Slender Conehead 1
Nimble Meadow Katydid 1
Nightingale 1
Least Shieldback 1

Table C.2: Recordings by species for the BLorthoptera data set





Appendix D

Software Requirements

This appendix provides an early version of the formal software requirements of the

New Forest Cicada Project Formal, which coordinated the development of the system

required for this work. Part of the tasks have been developed in cooperation with a

student intern, working on the project over a three month period.
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New Forest Cicada Project
Formal Software Requirements

v. 0.1

Davide Zilli

Started: June 25, 2012
Last updated: July 18, 2012

The New Forest Cicada project is based on Crowdsourcing and Citizen
Science techniques. As such, it requires a) a strong web presence and b) a
mobile app to provide information and collect data from users. In this context
the development of the software necessary to satisfy these requirements is not
an implementation excercise or mere publicity effort, but a founding block of
the project itself. To an extent, novel research will only be possible once these
tools are ready to use.

The development of the tools can, however, eventually drain a large part
of the project resources. To limit this, the cooperation of different developers
will be required. This document outlines the software requirements in order
to facilitate the collaboration of developers.

The document is by nature work in progress and the latest version should
always be considered.

Contents

1 Web presence and Backend 2
1.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Mobile app 5
2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Systems 6

1
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1 Web presence and Backend

The website is made of two separate components:

1. a collection of information pages about the project, the researchers and
the the New Forest Cicada, with dynamic content generation.

2. a dynamic backend to the app, providing user management, data col-
lection/storage, data visualisation, additional user participation features
(such as a “Cicada game”).

The two should however be implemented on the same system because of
a) a slight overlap (e.g. an info page about the project would be required on
both) and b) because it would facilitate users moving from one to the other.

1.1 Features

Follows a list of features for the web site. The order in which they should be
implemented is expressed in subsection 1.2.

Theme

Design of a CSS/JS theme for the frontend. Can potentially reuse an existing
freely available one.

Basic static website Progress: 10%

Static web pages including:

• Information page about the project and authors.
• Information page about the cicada. The species found in the New Forest,

a sonogram and oscillogram of the call, a sample audio of the call.
• A selection of media: photos, videos
• Information page about the app.

More dynamic pages include:

• Weather feed on the home page, to attract people to go look for the
cicada. It should be targeted at “promoting” sunny warm days.

• Downloads of the app.
• Blog entries (see below) on project updates

Blog

A blog of the highlights of the project. Features should include:

• Subscription (RSS or similar, Facebook, Twitter)

2
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• Commenting on blog entries
• Easy input of new contents (requires user management)

The use of existing platforms, such as wordpress, should be considered.

Social media integration in the website

• Embed Twitter feed
• Facebook/Google+ like and sim.
• Share this page
• Email this page

Twitter feed

• Creation of a Twitter account

Facebook page

• Creation of a facebook page
• Detail about the project, link to the website on the info section

User Management

Django integrates easy user management. This will be required for the Blog
(posting, commenting) and for the app.

OpenID and social media login should be allowed. It should include at
least OpenID, Google and Facebook authentication, as well as custom regis-
tration/login.

Sound Game (iHear)

Implement a simple game platform. Rules for the game are:

• users are given a sound file on a page that also displays the location of
the recording, the time, an oscillogram and a spectrogram.

• a player has to listen to the sound and tell what animal they can hear
• a points system rewards them for:

1. guessing the correct animal, if known
2. guessing the correct animal, if unknown. Points will be awarded

after the identification has been confirmed
3. extra points will be awarded for more specific classification (species,

subspecies, . . . )

• initially, known recordings will be presented, so that the user can be
trained and assessed.

3
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The dynamics of the games are still loosely defined. A precise design will
be required before implementation. Potentially it could include:

• Levels. At initial levels the user plays with known recordings. After-
wards, known and unknown will be mixed.

• Different sorts of animals. The target is cicadas, but nothing prevents us
to use any sound emitting animals: ducks, elephants, monkeys, . . . The
implementation should not change.

Basic Backend

Receive recordings from the mobile app

Manipulate and show recordings

• display recordings’ oscillogram, spectrogram, source, location
• display a map of observations

1.2 Roadmap

SY = systems, FE = front end, BE = back end, EX = extra

0001. [SY] django project setup [DONE]

0002. [SY] redmine setup [DONE]

0003. [SY] git repo setup

0004. [FE] website mockup/system diagram

0005. [FE] theme

0006. [FE] static info pages

0016. [BE] OpenID auth

0017. [SY] Website analytics

0007. [FE] homepage weather feed

0008. [FE] blog

0009. [BE] receive recordings from mobile app

0010. [BE] display list of recordings

0011. [BE] display recordings' oscillogram, spectrogram, source, loc

0012. [BE] display recordings on a map

0013. [FE] create facebook page (only once website is running)

0014. [EX] game design and mockup

0015. [EX] game implementation

4

Appendix D Software Requirements 157



2 Mobile app

2.1 Features

Client Setup

• User interface mockup
• Formal app requirements
• framework choice (native API, HTML5 framework?)
• storage model

WAV recording

• Neat, polished, un-copyrighted WAV recording.
• 44.1 kHz sampling rate or higher
• Storage

1. sqlite db? Are there better options?
2. Keep important files until able to send them
3. What if you run out of space?
4. Keep files that user wants to keep anyway.
5. Delete files that have been transmitted and are not important.

• 30 seconds windowing for continuous monitoring
• Extensive testing.

File sharing system

• Choice of method/protocol. HTTP? Are there better options?
• Cross site request forgery protection
• Authentication
• Coupling with backend

Cross Platform port

• What are the target platforms? Mandatory: Android, iPhone. Desirable:
Windows mobile, Blackberry, Symbian.

• Can an easier implementation be made for other platforms?

Icon Set

Design an icon set for both the website and the apps. The icons will recall the
cicada, but present it as a pleasant character rather than a scary insect.

Social aspect

Share through social media:

5
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• Findings, observations (both sound and pictures)
• amount of the forest covered
• “Now in the forest”

Game App

A game to publicize the New Forest Cicada, building on examples such as
“Angry Birds”. The implementation of this will require an immense develop-
ment effort and is left as future work.

Integration with PlanetOrchid

Provide a Human-Agent agile-teaming game to look for electronic cicadas,
based on the PlanetOrchid platform. The interface should be easy for vast
public engagement, including engagement of children in schools.

2.2 Roadmap

0001. Android client setup

0002. GUI mockup

0003. home page - buttons

0004. info page - the new forest cicada - text

0005. info page - the new forest cicada - sound

0006. record in WAV

0011. storage model

0007. send recording to server (file sharing)

0008. iOS client port

0009. other platforms port

0010. icon set

3 Systems

Version Control

Software is under git version control, and the address is:

git://git.ccada.co.uk

Tools and Frameworks

6
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Component Language or tool
Web server apache running mod_wsgi.
Web framework Python Django
App A combination of native iOS dev kit (objective C) and

native Android APIs (Java) plus any other required by
additional platforms

Table 1: Languages and frameworks

7
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Appendix E

Awards and Media Engagement

E.1 Awards

The project has received the following awards:

• Silver Medal for Engineering at the SET for Britain 2015 research competition (http:

//www.setforbritain.org.uk/2015winners.asp)

• Best Student Paper Award at the International Joint Conference for Artificial Intelli-

gence (IJCAI) 2013, Beijing, China

• Winner of the Faculty heat of the Three Minute Thesis (3MT®) Competition, Uni-

versity of Southampton.

E.2 Media Presence

The project has featured several times in local and national mass media publica-

tion. An up-to-date list of the most important publications can be found at http:

//newforestcicada.info/press/. The list below summarises the most relevant ones

at the time of writing:

• BBC Radio Solent

Dr Alex Rogers presents the project on air, 05 June 2013
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• Get ready to find the British cicada

DEFRA Biodiversity News, Issue #64, page 19, April 24, 2014

• Hunt for cicada only the young can hear

The Telegraph, April 24, 2014

• Elusive Forest insect is one of UK’s most endangered species

New Forest Post, March 13, 2014

• New Forest cicada is named one of country’s most endangered creatures by

Species Recovery Trust

James Franklin, Daily Echo, March 11, 2014

• The Unsuspecting Naturalist

Paul Marks, New Scientist, Issue 2932, Aug. 29, 2013

• Bits and Bugs—Making the most of Technology in Entomology

Alexander Hay, Software Sustainability Institute Bulletin of the Royal Entomo-

logical Society, Aug. 22, 2013

• BBC Wildlife—3 Things we love this month
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• Searching for Cicada Song: A crowdsourcing project
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• Smartphone app launched to track down rare insect
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• App to aid rare New Forest cicada hunt
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• How a smartphone could become an endangered cicada detector
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