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Spatial turbulence spectra for high-Reynolds-number shear flows are usually obtained
by mapping experimental frequency spectra into wavenumber space using Taylor’s hy-
pothesis, however, this is known to be less than ideal. In this paper, we propose a cross-
spectral approach which allows us to determine entire wavenumber—frequency spectrum
using two-point measurements. The method uses cross-spectral phase differences between
two points—equivalent to wave velocities—to reconstruct the wavenumber—frequency
plane, which can then be integrated to obtain the spatial spectrum. We verify the tech-
nique on a particle image velocimetry (PIV) data set of a turbulent boundary layer.
To show the potential influence of the different mappings, the transfer functions that
we obtained from our PIV data are applied to hot-wire data at approximately the
same Reynolds number. Comparison of the newly proposed technique with the clas-
sic Taylor’s hypothesis approach shows that—as expected—Taylor’s hypothesis holds for
larger wavenumbers (small spatial scales), however, for smaller wavenumbers (large spa-
tial scales) there are significant differences. In the range of Reynolds number examined in
this study, double peaked spectra in the outer region of a turbulent wall-flow are thought
to be the result of using Taylor’s hypothesis. This is consistent with previous studies
that focussed on examining the limitations of Taylor’s hypothesis (del Alamo & Jiménez
2009). The newly proposed mapping method provides a data-driven approach to map
frequency spectra into wavenumber spectra from two-point measurements and will allow
the experimental exploration of spatial spectra in high-Reynolds-number turbulent shear
flows.

1. Introduction

To infer spatial characteristics from temporal signals, experimentalists have long used a
time—space mapping that originates from Taylor’s hypothesis of frozen turbulence (Taylor
1938). Taylor assumes that—at a point—the change of turbulent velocity fluctuations in
time can be directly related to their spatial change—via the mean [convection| velocity.
Lin (1953) shows that, while the hypothesis holds in isotropic homogenous convective
turbulence, for (wall-bounded) shear flows the hypothesis breaks down and is restricted
to a limited range of wavenumbers (or frequencies).

In order to still be able to use Taylor’s hypothesis to map temporal spectra into space,
experimentalists focus on finding an appropriate convection velocity (or velocities) to
replace the mean velocity. They use two-point (cross-)correlation of time signals and
apply (time-)filtering to get frequency dependent convection velocities (Davies, Fisher
& Barrat 1963; Davies & Fisher 1963; Fisher & Davies 1964; Wills 1964; Goldschmidt,
Young & Ott 1981; Krogstad, Kaspersen & Rimestad 1998). An alternative method is to
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use a cross-spectral approach where the convection velocity is determined by the phase
angle between two-point cross-spectra (Harrison 1958; Cenedese, Romano & Di Felice
1991; Romano 1995), which is similar to the spectral filtering techniques, where both are
intended to overcome the dependancy of the convection velocity on the time delay and
separation distance.

Using particle image velocimetry (PIV), large regions of flow can be sampled at the
same time and these large fields-of-view (FOVs) combined with high-repetition-rate cam-
eras and lasers allow to directly investigate Taylor’s hypothesis and convection velocities
(Dennis & Nickels 2008; Elsinga, Poelma, Schréder, Geisler, Scarano & Westerweel 2012).

In order to compare data obtained in experiments and computations (and vice versa),
recent efforts have shifted from correlation based techniques to spectral approaches
(LeHew, Guala & McKeon 2011; del Alamo & Jiménez 2009; Monty & Chong 2009;
LeHew, Guala & McKeon 2013; Renard & Deck 2015). These studies find that the con-
vection of specific frequencies (waves) depends on their frequency and results show that
a range of these ‘convection’ velocities exists (see also Buxton et al. 2013). All studies
(try to) reduce this spread into a single convection velocity per wavenumber by averaging
or by finding the peak of the convection-velocity-distribution.

In the process of finding an appropriate frequency—wavenumber mapping using a single
convection velocity per wavenumber (or frequency), the range of convection—or wave—
velocities and its effect has been neglected, and as a result, the efforts of finding a fix
for Taylor’s hypothesis by applying different ‘convection’ velocities are problematic. A
comprehensive exposition of the issues using a single convection velocity is given by
Geng et al. (2015), who consider Taylor’s hypothesis using a transport equation analysis,
and most recent, Wilczek et al. (2015) show an approach to model this spread with a
simple linear random advection model, which shows promise, however, still needs good—
experimental or simulation—data to be validated.

In this paper, we aim to overcome these problems. First, we explain how frequency
spectra—via the wavenumber—frequency spectrum—can be mapped into wavenumber
spectra. Ideally this mapping is the full wavenumber—frequency spectrum itself. We
will determine a subset of the wavenumber—frequency spectra—at different wall-normal
locations—for a turbulent boundary layer using PIV data for reference, in which the
spread of the wavenumber—frequency spectrum can confirm that wave velocities have a
range of values which need to be taken into account. For each flow this mapping func-
tion can be reduced to a single—wavenumber dependent—convection velocity and gain
function, however, the validity of such a reduced transfer function needs to be verified for
each flow separately. Therefore, an approach that will give us the flow specific transfer
function—whether this transfer function is universal or not—would be preferable over
determining the transfer function for a specific flow. Next, we propose such an approach,
a new way of estimating the wavenumber-frequency spectrum using cross-spectra. This
allows us to map spectra from frequency to wavenumber (or vice versa) without the issues
related to defining and determining convection velocities. The new approach is then ver-
ified against the direct wavenumber—frequency spectrum on a turbulent boundary layer
data set. Finally, we discuss how the transfer functions obtained with our approach—from
our PIV data and applied to a hot-wire data set at a comparable Reynolds number—can
change the outlook of finding specific features in the spatial spectra, currently thought
to stem from a Taylor’s hypothesis mapping. We finally conclude with some perspective
of applying the proposed method to higher-Reynolds-number flows.
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FIGURE 1. Example of instantaneous streamwise velocity fields. Top: Large field-of-view.
Bottom: small field-of-view.

2. Turbulent boundary layer experiment

Time-resolved PIV experiments were performed in a streamwise—wall-normal plane in
a turbulent boundary layer on the bottom wall of the turbulent boundary layer water
tunnel at Cambridge University Engineering Department. The test section of the water
tunnel is 0.5 m deep and 0.9 m wide and 8 m long, and the working water depth was 0.4
m. The flow was tripped with a 5 mm glass rod at the beginning of the test-section and
PIV measurements were performed 4.5 m downstream of this trip (see Dennis & Nickels
2008, 2011). At this location, nominal flow conditions were: free-stream velocity, Uy, =
0.67 m s~!; boundary layer thickness, § = 0.1 m; friction velocity, U, = 0.027 m s™;
and corresponding Reynolds number, Re, = 2700.

As flow traces we used Dantec Dynamics S-HGS silver-coated hollow glass spheres
that have a mean diameter of 10 um (diameter range of 2-20 pm). These tracers were
illuminated by a New Wave Pegasus-PIV laser, a dual-head, high-repetition rate, diode-
pumped Nd:YLF laser, with a wavelength of 527 nm, 10 mJ of energy per cavity, pulse
duration of 180 ns at 1000 Hz and a beam diameter of 1.5 mm. A double-concave cylin-
drical lens was used to expand the laser beam into a sheet and a mirror directed the
laser sheet upwards into the test section. Four Photron SA1.1 digital high-speed CMOS
cameras were placed to the side of the test section with their viewing axis approximately
perpendicular with the sidewall of the water tunnel. To obtain fields-of-view (FOVs) with
sufficiently large dimension in streamwise direction, the four cameras were placed side-
by-side. The cameras each have a resolution of 1024 pixelx1024 pixel, digital resolution
(bit depth) of 12 bit and a pixel size of 20 um x 20 pm. Each was fitted with a Sigma
macro lens with a focal length of 180 mm.

Two experiments were performed, one with a small FOV and one with a large FOV.
Examples of velocity fields of both FOVs are shown in figure 1. To achieve the different
magnifications the cameras were placed at about 40 cm and 90 cm from the measurement
plane for the small FOV and large FOV, respectively. Each camera’s FOV was calibrated
using a single calibration plate, which covered the complete combined FOV of all cameras
and was aligned with the laser sheet.

Particle image pairs are captured and processed using LaVision software DaVis 7.2.
Images were preprocessed using a min-max normalisation. Gaussian weighted correlation
started with an initial window size of 64 by 64 pixel and finished at 16 by 16 pixels with
an overlap factor of 50%. The resulting data of the large FOV covered an area of 37 x
4.6 cm (3.70 x 0.460) with a spatial resolution of AT = 22 (IT = 43) and a temporal
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FIGURE 2. Boundary layer statistics. (a) Mean profile (b) Reynolds stresses

resolution of AtT = 1.5 and the small FOV covered an area of 17 x 4.5 cm (1.7§ X
0.458) with a spatial resolution of h™ = 10 (I* = 20) and a temporal resolution of At* =
0.7. A total of about 50,000 velocity fields were obtained for the small FOV—10 runs of
5000 images over 5 s each—and 25,000 velocity fields for the large FOV—5 runs of 5000
images over 10 s each—, spanning a time interval of more than 300 §/U.

The resulting boundary layer mean velocity and Reynolds stresses agree with two
previous studies at a comparable Reynolds number (figure 2: Hutchins et al. 2009; Herpin
et al. 2010).

3. Frequency—wavenumber mapping

To map temporal spectra into spatial spectra, we move through the wavenumber—
frequency plane, and the ideal mapping is the wavenumber—frequency spectrum itself.
However, out of necessity, most approaches approximate this mapping function and the
shape of this plane depends on the approach taken. The complete mapping procedure
consists of four steps. First, the temporal spectrum is determined; second, A trans-
fer function—generally from two point measurements—is obtained; third, the temporal
spectrum is mapped onto the wavenumber—{requency plane using the transfer function;
and last, the wavenumber—frequency spectrum is integrated across frequency to obtain
the wavenumber spectrum. A schematic of this process is depicted in figure 3.

Using a Taylor’s hypothesis mapping approach assumes the wavenumber—frequency
spectrum to be a single line, creating a unique wavenumber—frequency mapping pairs,
which are related to one another by the phase velocity of each wave. In this case the
process can be simplified into a two step process: 1) determine the frequency spectrum
and 2) map the frequencies to wavenumbers using the wave (convection) velocity. For
wave velocities that are a function of frequency (and thus wavenumber), a non-uniform
gain function has also to be applied in this second step. The main issue for Taylor’s
hypothesis approaches is to find the correct convection velocity.

First we will look at what the wavenumber—frequency spectra should look like, and
then we discuss the different convection (or wave) velocities.

3.1. Wavenumber—frequency spectrum and wave velocities

Using our PIV data, we obtain spatial, temporal, and wavenumber—frequency spectra (for
a subdomain of the full range of scales) to see how they are related. The wavenumber—
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FIGURE 3. Schematic of how to map a temporal spectrum into a spatial spectrum via the
wavenumber—frequency plane—for a single wall-normal location.
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frequency spectrum at a given wall-normal location y is power spectral density ®(&,, f;y)

as a function of wavenumber £, and frequency f, where the wavenumber is the inverse

of the wavelength & = )\1 and the frequency the inverse of the waveperiod (time-scale),

f = <. The wavenumber and frequency are related to their angular counterparts by:
= 27T§z s w=2nf.

Experlmental data are limited in domain length and resolution. To minimise effects of
truncation and account for differences in resolution, we determine power spectral density
by taking the following windowed and truncated two-dimensional Fourier transform of
the velocity fluctuations:

1
/ / (z, )/ (2, t;y)e "2 TH82) gidy
\/XT JE T w(a, t)2dtda

(3.1)
where X is the domain length, T the sample time interval length, w the weighting function
(we used a Hamming window). After which, the power spectral density is estimated by:

(I)uu(gzv f; y) =" (€z7 f; y)ﬂ(fr, Ve y) (3'2)

where @* is the conjugate of 4.

(s, f3y)

The frequency range and resolution as well as the wavenumber range and resolution
we can obtain from our PIV experiment are listed in table 1.
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Experiment range maximum resolution  subset resolution
f0/Uss Af§/Uso Af§/Uss
Small FOV +75.76 0.030 0.24
Large FOV +37.88 0.015 0.12
&6 AEL0
Small FOV +135.4 0.54
Large FOV +60.9 0.27

TABLE 1. Nyquist range and resolution in the wavenumber—frequency plane based on time
separation, sample length, interrogation window size and domain length.

3.1.1. Wavenumber—frequency spectrum

For each wall-normal location, the ideal mapping function is the wavenumber—frequency
spectrum at that wall-normal location, and this mapping function changes significantly
with wall-normal location, see figure 4 for the frequency-wavenumber spectrum of the
streamwise velocity at three different wall-normal locations. In our flow we have a positive
velocity, which—due to the choice of transform—results in a negative slope (see figure
2 of Moin 2009) of the distribution of the wavenumber—frequency spectrum. The main
figure is the spectrum from the smaller FOV (and hence can reach higher frequencies and
wavenumbers) while the data from the larger FOV is presented as an inset for all three
locations. In the region where the two FOV overlap, the results show good agreement,
indicating that truncation effects do not significantly influence these results.

The width and symmetry of the spectra is a measure for the validity of Taylor’s hy-
pothesis (McKeon & Sharma 2010). The slope follows the local mean velocity and spread
of the contours decreases with increasing wall-normal location. This suggests that the
range of convection velocities (and wave velocities) decreases with increasing wall-normal
location (or decreasing turbulence intensities). Wall-normal velocity fluctuation spectra
show similar behaviour and are not shown here for brevity.

3.1.2. Wawve velocities

The main issue in Taylor’s hypothesis mapping approaches is to find the correct wave
velocity. Wave velocities or phase velocities are velocities at which specific energy con-
taining waves, ®(&,, f;y), travel and are given by:

f
Up = —— 3.3
P é-:c ( )
where the minus sign is due to the choice of signs in the Fourier transform (equation 3.1).
Wave velocities differ from convection velocities (u. = — (Qyud,u) / ((Oyu)?), as defined

by del Alamo & Jiménez 2009) and they link a specific wavenumber to a specific frequency
and can therefore be used to map the energy of a frequency to a wavenumber. However,
due to the distribution of energy in the wavenumber—frequency plane, the energy of a
single frequency will contribute to multiple wavenumbers. Del Alamo & Jiménez (2009)
show multiple ways to obtain—average—phase (wave) and convection velocities and state
that the different velocities are not equivalent. The main reason for this is that wave
velocity is only identical to the convection velocity if there is only one single wave or
when all phase velocities are the same (Freegarde 2013). When different waves have
different phase velocities, their combined convection velocity will be different. It must be
noted that use of Taylor’s hypothesis implies that all phase velocities are the same. Any
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FIGURE 4. Wavenumber—frequency power spectral density of streamwise velocity fluctuations,
®,,,, for three different wall-normal locations. The inset shows the same power spectral density
obtained using the large FOV data. The diagonal red line (colour online, else grey line) indicates
the local mean velocity . The extent (half the Nyquist range) of the spectral domain covered by
the large FOV (inset) is indicated by the light grey box.
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FIGURE 5. Power spectral density distributions with wave velocity, up = —f/£;. Spread of

power spectral density along cuts—with constant frequency or wavenumber (black or blue line
respectively, colour online, else black or grey line)—of the wavenumber—frequency spectra in
figure 4. The cuts are chosen such that they each pass through the Taylor’s hypothesis mapping
point, £&; = f/U — up = U, indicated by the vertical line.

deviation results in error and, therefore, del Alamo & Jiménez (2009) introduce figures
of merit for the frozen-turbulence assumption.

The difference between two ways of determining average wave velocities is the direction
of integration (del Alamo & Jiménez 2009). One can integrate in wavenumber direction—
keeping frequency constant—or integrate in frequency direction—and keep wavenumber
constant. For example, if we choose a constant frequency to examine wave velocities,
we make cuts along wavenumber direction in the wavenumber—frequency spectra, and
want to find the centre of gravity of the resulting distribution, however, if we choose the
wavenumber to be constant we take a cut in the frequency direction (see also Moin 2009).
Depending on the spread and shape of the wavenumber—frequency distribution, this re-
sults in different answers. To visualise this difference, figure 5 shows the two different
cuts—expressed as a distribution of power spectral density with a wave velocity (using
equation 3.3, see also Wills 1964; Goldschmidt et al. 1981)—for the same wall-normal
locations as figure 4. A constant frequency is chosen for the small and large FOV and
constant wavenumbers are chosen such that the resulting cuts cross each other through
the classic Taylor’s hypothesis point—i.e. {, = f/U — u, = U. The distributions differ
significantly from each other near the wall and with increasing wall-normal location they
narrow and overlap more. This indicates that the spread of the wavenumber—frequency
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spectrum influences the difference between the two average wave velocities—each on one
side of the local mean velocity.

Different ways of defining wave velocities can be applied to the power spectral energy
distribution to obtain different wave velocities for each wall-normal location (similar to
convection velocities from the correlation plane, see e.g. Wills 1964; Goldschmidt et al.
1981, velocities for which 0®,,,/0¢; = 0, 0D, /0f = 0, or 0P, /0u, = 0 holds) and
these wave velocity definitions assume that a peak of the power (or energy) spectral
density (in a direction) is the best representative of the overall phase velocity, in contrast
with the weighted average of del Alamo & Jiménez (2009). For example, LeHew et al.
(2011) trace the ridge of a premultiplied spectrum. However—as also observed in earlier
studies—the actual spectra show a distribution around this peak or average (figure 5),
which means that a single wave velocity will not capture the transfer function correctly.
The main issue is that the power of one frequency contributes to the power of multiple
wavenumbers and vice versa. Farther away from the wall (y/é ~ 0.46), the two power
distributions with wave velocity appears similar, symmetric and with a small spread,
suggesting the effect of the distribution on wave velocities will be small. In contrast,
closer to the wall (y/§ = 0.026), the distribution is wider and shows an asymmetry that
will have an influence on mapping frequency to wavenumber and vice-versa.

Del Alamo & Jiménez (2009) propose a semi-empirical approach that uses a convolution
window that acts on the mean velocity and results in a wavenumber dependent convection
velocity and gain function, which acts as reduced model of the full wavenumber—frequency
spectrum. To account for the spread in wave velocities this convolution window depends
on wavelength (in streamwise and spanwise directions) and wall-normal distance. This
convolution window needs to be estimated from numerical or experimental data and
ideally should cover a wide range of Reynolds numbers. This requires more than the
commonly applied two-point measurements and is difficult to use—at least until a good
(model) convolution window is determined. Moreover, as they state, this approach is only
valid for channel flow (or perhaps even pipes) while its applicability in boundary layers
or other types of shear-flows remains unresolved.

3.2. Frequency—Wavenumber mapping using a cross-spectral approach

To bypass the issues with finding an appropriate approximation of the wavenumber—
frequency plane, we propose to reconstruct the wavenumber—{requency plane (the ideal
mapping function) by using a two-point cross-spectral approach based on distributions
of cross-spectral phase difference—equivalent to distributions of wave velocity. The re-
sulting transfer function can differ from flow to flow and location to location and our
approach will capture the transfer function for the flow and location it is applied. There-
fore, it provides a data-driven methodology that can be applied to any turbulent flow
at any location. Integrating the resulting wavenumber—frequency spectrum in frequency
direction leads to the wavenumber spectrum. So, to map temporal spectra into spatial
spectra we move through the wavenumber-frequency plane, and rather than simplifying
this plane to a single line (as done by Taylor’s hypothesis and approaches based on it),
our approach reconstructs the full wavenumber—frequency plane.

To map the frequency spectrum into a wavenumber spectrum (at a single wall-normal
location), we follow four steps, as outlined in figure 3: (i) determine the auto-spectrum
from single point measurement, (i) determine a transfer function using cross-spectra
of two-point measurements, (iii) reconstruct the wavenumber—{requency spectrum by
applying the transfer function to the auto-spectrum, and, finally, (iv) integrate the
wavenumber—frequency spectrum to obtain the spatial spectrum.

First, we start with the one-dimensional truncated weighted Fourier transform (to
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avoid any influences of our limited PIV domain),

1 T
Uy (fi2,y) = ———e= | w(t)
! q/TfOTw(t)Zdt/O

from which the auto-spectral power density, ®,, as a function of frequency can be deter-
mined:

u'(t;z,y)e 2T dt (3.4)

Q.(f;2,y) = U (f3 2, y) e (f52,9) (3.5)

This gives us the frequency spectrum as a function of wall-normal (and streamwise) loca-
tion. We take multiple spectra and average them to get a converged frequency spectrum—
as is common in determining turbulence spectra.

Then, the cross-spectrum between two different spatial locations separated by Az is
determined:

Vo (fi,Ax,y) = G (f52,9) 0 (f; 2 + Az, y) (3.6)

from which the cross-spectral power density, |¥,|, and the phase spectrum, v, are ob-
tained:

—1 (V)
o(f;z, Az, y) = tan~ ! 3.7
The resulting phase shift is used to estimate the corresponding wavenumber, 5:,37
c ¢I<f7x7A$ay)
s, A = :

Each cross-spectrum is a unique frequency—wavenumber mapping—having a single phase
velocity for each frequency (and, therefore, wavenumber).

Cenedese et al. (1991) and Romano (1995) used the average of these phase velocities to
determine frequency dependent convection velocities, similar to the (weighted) average
phase velocity as given by del Alamo & Jiménez (2009). Averaging increases the accuracy
of the (average) phase change, however, it also removes the spread present in phase
velocities and is susceptible to spectral folding. This spectral folding results in a decrease
in coherence (modulus of transfer function in figure 10 of Cenedese et al. 1991) and the
wrong average phase velocity (possibly the explanation for the abrupt change in average
phase velocity for the larger separation distances in figure 11 of Cenedese et al. 1991).
If the phase difference for a specific frequency determined within a range from —m to 7,
then the energy present in phase differences just larger than 7 will be folded back into
this range—just above —m—resulting in a wrong average phase difference.

To regain the distributions of phase velocities that is present in the wavenumber—
frequency spectrum, we use multiple cross-spectra to create phase difference probability
density functions per frequency—weighted with cross-spectral energy—and with these
form the basis of the transfer function G(x, &,, Az, f,y). To mitigate the effect of spectral
folding we apply an unfolding technique (see Buxton et al. 2013), where we shift the range
of phases to be around the average phase shift the local mean velocity will give for that
frequency. This resembles the way the wavenumber—{requency spectrum appears to be a
spread around the local mean velocity.

The wavenumber—frequency spectrum is then obtained by multiplying transfer function
with the auto-spectral power density,

(&, fr2, Az, y) = O(f32,y)G (&, fr 2, Az, y) (3.9)
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and, finally, integration in frequency direction results in the spatial spectrum:

B(,, A, y) = / B(E,, f12, A, y)df (3.10)

This approach can also be used to determine the mapping of the spatial spectrum into
the temporal spectrum—to map DNS results into frequency spectra for comparison with
experiments—by starting from two spatial signals at two different time instances and
following the same procedure replacing = by ¢, f by &, and &, by f.

3.3. Reconstructed wavenumber-frequency and mapped spectra

Using our turbulent boundary layer data, we reconstruct the wavenumber—frequency
spectra over the same range of wavenumbers and frequencies for which we have the
direct information, as in figure 4. We then integrate this to obtain spatial spectra, which
we compare with direct spatial spectra and the one obtained by using Taylor’s hypothesis.

3.3.1. Reconstructed wavenumber-frequency spectra

The resulting wavenumber—frequency spectra for the streamwise velocity fluctuations,
figure 6, are largely similar to the direct wavenumber-frequency spectra, however, have
two main differences.

First, near f = 0 the distribution shows a kink, rather than a continuous behaviour
as in figure 4. This is an effect of limited sample length indicating insufficient frequency
resolution. The results from the large FOV show this effect to a lesser extent, due to
their longer sample length, see the inset in figure 4. This effect can be corrected (see
Buxton et al. 2013), however, it is best to obtain a longer time signal to overcome this
problem. Performing the mapping for wall-normal velocity fluctuations, where most of
the relevant temporal scales are captured, the truncation effect is reduced, as shown in
figure 7. This indicates that if one captures all flow scales, there are no issues due to
truncation in reconstructing the wavenumber—frequency spectrum.

Second, the distributions in the reconstructed wavenumber—frequency spectra in figure
6 is more spread out compared to the direct spectra in figure 4, and wall-normal velocity
fluctuations in figure 7 show a similar difference to their reference (the latter not shown
for brevity). This additional spread is due to measurement noise (Buxton et al. 2013) and
can be reduced if the spatial separation is increased. However, increasing Az reduces the
frequency range that can be captured, see the appendix, and also increases the influence
of shear (Davies & Fisher 1963). Therefore, the spatial separation Az should be chosen
to balance the effect of measurement noise with that of the desired frequency range. A
comparison between the small FOV results with the large FOV results in figure 6 and
7 show that the spread is indeed reduced for a larger separation distance, however, the
reconstruction range is reduced, see the appendix.

It is important to stress that both above-mentioned differences are unique to PIV data
(due to dynamic range issues) and are likely to reduce when applying the approach to
two-point hot-wire data, since hot-wire measurements allow for longer time-series and
have lower measurement noise.

3.3.2. Temporal spectra mapped into spatial spectra

Now we can determine the wavenumber spectra using the reconstructed wavenumber—
frequency spectra of figure 6 and 7 by integrating along the frequency axis and compare
this to the direct spatial spectrum and classic Taylor’s hypothesis mapping.

Comparison of all three spectra—direct, Taylor’s hypothesis mapped, and current map-
ping approach spectra—for the streamwise velocity fluctuations at different wall-normal
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FIGURE 6. Reconstructed wavenumber frequency power spectral density of streamwise velocity
fluctuations, ém,um for three different wall-normal locations. The diagonal red line (colour online,
else grey line) indicates the local mean velocity, the diagonal dashed red lines (colour online,
else dashed grey lines) indicate the area within +x from the local mean velocity that is used
for the reconstruction, and the extent (half the Nyquist range) of the spectral domain covered
by the large FOV (inset) is indicated by the light grey box. Measurement point separation is
Az/§ =0.011 and Az/é = 0.025 for the small FOV and large FOV respectively.



Frequency—wavenumber mapping in turbulent shear flows 13

ci)x,vv Uoo/((SQU?)
0.0001 0.001 0.01 0.1

f6/Us

fo/Us

fo/Us

~60 -30 0 30 60
&0

FIGURE 7. Reconstructed wavenumber frequency power spectral density of wall-normal velocity
fluctuations, ézyw, for three different wall-normal locations. The diagonal red line (colour online,
else grey line) indicates the local mean velocity, the diagonal dashed red lines (colour online,
else dashed grey lines) indicate the area within +x from the local mean velocity that is used
for the reconstruction, and the extent (half the Nyquist range) of the spectral domain covered
by the large FOV (inset) is indicated by the light grey box. Measurement point separation is
Az/§ =0.011 and Az/é = 0.025 for the small FOV and large FOV respectively.
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FicURE 8. Mapped and original streamwise velocity fluctuation spectra for three different
wall-normal locations. Direct spatial spectrum blue line (colour online, else dark grey line),
Taylor’s hypothesis mapping red line (colour online, else light grey line), and current mapping
black line. Vertical grey lines indicate the inverse of separation distance. Measurement point
separation is Az/d = 0.011 and Az/d = 0.025 for the small FOV and large FOV respectively.

locations shows a remarkable agreement for the captured scales, see figure 8. Except for
the truncated lower wavenumbers, both the Taylor’s hypothesis mapping and our cross-
spectral approach mapping lie on top of the spatial spectrum. Compared with the effect
the spatial separation Az has on the reconstructed wavenumber—frequency spectrum, its
effect on the mapping is limited, see the appendix. The spatial spectra for the wall-normal
velocity fluctuations, in figure 9, show that the lower wavenumbers will also be mapped
correctly if they are captured sufficiently in the temporal spectrum.

This agreement between our approach and the direct spatial spectra shows that our
reconstruction of the wavenumber—frequency spectra works, and we can use it to map fre-
quency spectra in to wavenumber spectra, provided that we have sufficient long temporal
data to obtain the entire range of wavenumber spectra.
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Taylor’s hypothesis mapping red line (colour online, else light grey line), and current mapping
black line. Vertical grey lines indicate the inverse of separation distance. Measurement point
separation is Az/d = 0.011 and Az/d = 0.025 for the small FOV and large FOV respectively.

4. Discussion

The comparison between three different wavenumber spectra (direct, our mapping and
Taylor’s hypothesis) in the previous section show that Taylor’s hypothesis is applicable
for large wavenumbers (small scales), which agrees with Lin (1953), and the cross-spectral
approach gives similar results. However, the more pertinent question is what happens at
the smaller wavenumbers (large scales), where differences are expected (Lin 1953; del
Alamo & Jiménez 2009). Our PIV data of a turbulent boundary layer is not sufficiently
long (in time and space) to make this comparison directly. Therefore, we use the time-
series of our PIV data to obtain the transfer function for a range of wall-normal locations,
apply this transfer function to frequency spectra from hot-wire data at a comparable
Reynolds number, and use the resulting reconstructed wavenumber—frequency plane to
map the hot-wire frequency spectra into wavenumber spectra.
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else grey line), and our mapping, black line, for three different wall-normal locations.

We use the PIV data to determine the transfer function over the largest possible
range of frequencies (see table 1) from our spatially best resolved measurement, the
small FOV. We obtain transfer functions from our data for 36 of wall-normal locations
within our small FOV—spaced logarithmically in wall-normal direction to match the
hot-wire spacing. This transfer function is then applied to hot-wire data at a comparable
Reynolds number (data from Hutchins et al. 2009). The transfer function closest to each
hot-wire wall-normal location is used and is corrected for the (small) difference in local
mean velocity. Integration of the resulting reconstructed wavenumber—frequency plane
completes the mapping of the frequency spectra into wavenumber spectra.

Mapped spectra for three different wall-normal locations are shown in figure 10. As
expected, Taylor’s hypothesis mapping and our proposed mapping give similar results for
large wavenumbers (small scales). In contrast, the difference for lower wavenumbers (large
scales) is significant and the double peaked spread that is present for Taylor’s hypothesis,
figure 10, is contracted in the cross-spectral approach. The resulting difference in the
power density for y™ = 76 is over +30% for 0.45 < £,6 < 0.67 and —30% for £, < 0.1.
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The (non-)existence of the double peak in the spectra is consistent with the result of del
Alamo & Jiménez (2009), who noted that the double peak disappears when they applied
their convection velocity mapping to experimental data obtained in pipe flows. This
suggests that the mapping proposed in the current study is as effective as the convolution
window based mapping presented in del Alamo & Jiménez (2009). The difference between
the two approaches is that our frequency—wavenumber mapping is a data-driven approach
that relies on simultaneous two-point measurements that can be easily obtained via hot-
wire experiments. In fact, most studies in the literature use two-point measurements
to determine convection velocities (Davies et al. 1963; Davies & Fisher 1963; Fisher &
Davies 1964; Wills 1964; Goldschmidt et al. 1981; Krogstad et al. 1998; Harrison 1958;
Cenedese et al. 1991; Romano 1995).

The difference in spectra from Taylor’s hypothesis and from our mapping is consistent
with recent findings based on instantaneous structure tracking. For example, Lee et al.
(2014) found that large positive streamwise velocity fluctuation regions move faster than
the average velocity and large negative streamwise velocity fluctuations move slower than
the average velocity. We have made similar observations by tracking individual struc-
tures in space and time in our time-resolved PIV data (de Kat & Ganapathisubramani
2014). This means that positive and negative streamwise velocity fluctuation regions
of the same size can give rise to different frequencies (de Kat & Ganapathisubramani
2013). This would explain the double peak in the frequency spectra, since this behaviour
results in a bimodal distribution—similar to the probability function of a sinusoidal
wave (with some added noise). However, mapping via the reconstructed wavenumber—
frequency spectrum—including the spread of phase velocities—turns the double peak in
frequency spectrum back into a single peak in the wavenumber spectrum.

If we now take a global view and look wavenumber spectra for a range of wall-normal
locations at the same time in a spectrograph (contour plot) of power spectral density,
shown in figure 11, we can see the differences between using Taylor’s hypothesis (figure
11a) and our mapping approach (figure 11b). For the Taylor’s hypothesis mapping, we
can clearly see two regions. One small wavenumber region (£,0 =~ 0.16; A;/d ~ 6) that
corresponds to the outer region which has a clear presence below y/§ < 0.1 in figure 11(a)
and the top of the inner region at & ~ 1073 (A} ~ 1000) at the lowest wall-normal
location that we can map.

In a theoretical exposition, Lin (1953) showed that Taylor’s hypothesis will only hold
for wavenumbers that satisfy kU >> dU/dy and if we look at the difference between
the Taylor’s hypothesis and our current mapping, figure 11¢, we see that changes are
primarily located in the range kU < dU/dy, supporting Lin’s prediction on where Taylor’s
hypothesis holds and where it fails. The range of wall-normal locations where we see a
significant change is restricted to y/d < 0.1, where the ratio between fluctuating to local
mean velocity ratio is significant as well (vVu’2/U above 10%).

The inner and outer regions present in spectra obtained by Taylor’s hypothesis map-
ping are clearly described by Hutchins & Marusic (2007) and they are exploited by
Mathis et al. (2011) to model the inner—outer relation of streamwise velocity fluctuations
in wall-bounded flows. However, if we now look at our cross-spectral mapping result in
figure 11(b), we see that the distinction between these regions has disappeared. The low
wavenumber ridge (large wavelengths) has moved higher and tilted (i.e. moved more at
lower wall-normal distances) and at the same time the top of the inner region moved to
lower wavenumber (larger wavelengths) and merged with the ridge of the low wavenum-
bers that moved to higher wavenumbers. Instead of two distinct regions, we now see a
single ridge, which connects the—top of the—inner region with the outer region.
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FIGURE 11. Premultiplied mapped power density spectra of hot-wire data at a Reynolds number
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hypothesis mapping using the local mean velocity. (b) Current mapping based on cross-sectra.
(a-b) To facilitate comparison, one level is outlined and shaded red (colour online, else only
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kU = dU/dy.
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For a higher Reynolds, Rosenberg et al. (2013) find that the double peak in wavenum-
ber space still exists in their data even when they use the mapping from del Alamo &
Jiménez (2009), in contrast with what del Alamo & Jiménez (2009) find for their lower
Reynolds number. In fact, Rosenberg et al. (2013) obtained their wavenumber spectra by
extrapolating the model from del Alamo & Jiménez (2009) to a Reynolds number that is
over an order of magnitude larger. This is very interesting in light of other efforts aimed
at locating a k, !-region in the spectra using hot-wire data and Taylor’s hypothesis.

Perry & Abell (1975) state there should exist an overlap region between the inner
and outer region and this overlap should manifest itself as a k !-region in premultiplied
wavenumber spectrum. They show the existence of such a region in turbulent pipe flow
data. Nickels et al. (2005) hint at the existence of this k; !-region in turbulent bound-
ary layers, however, this extent is very limited. To our knowledge, there is very little
experimental evidence for the existence of this region over a large wavenumber range.
This could be due to lack of scale separation in the measurements. However, even very-
high-Reynolds-numbers pipe and boundary layer data from the Princeton superpipe and
HRTF (Vallikivi et al. 2015) do not conclusively show the presence of this k '-region.
Therefore, the lack of k !-region could be due to our limitation in determining the ap-
propriate transfer function for these flows.

For increasing Reynolds numbers, Perry & Abell (1975) hypothesise that the fractional
spread of phase velocities could reduce. Even over the ”Low”-Reynolds-number-range
examined in del Alamo & Jiménez (2009), convection velocity does indeed depend on the
Reynolds number. This dependence of phase velocities on Reynolds number can convert
a premultiplied wavenumber spectrum with a plateau (a pure k *-region) in to a double-
peaked frequency spectrum. In fact, the wavenumber spectrum could even retain the
double peak—with a k !-region in between. Very recent DNS of channel at Re, ~ 5200
by Lee & Moser (2015) appear to support the latter statement as their data shows a
double peak in the premultiplied wavenumber spectrum with a k; !-region between the
peaks. However, as the authors say in their paper, the development of the double peak
and the plateau region with increasing Reynolds number remains an open question. Our
cross-spectral mapping approach on two-point measurements—which can be applied to
any flow—Ilays the foundation to tackle this open question.

5. Conclusion

To aid the correct mapping of temporal turbulence spectra into spatial spectra, we
proposed a two-point cross-spectral approach that uses a distrbution of cross-spectral
phase differences—equivalent to a distribution of wave velocities—to reconstruct the
entire wavenumber—frequency plane. This plane can then be integrated to obtain the
spatial or temporal spectrum depending on the input data. Since the technique is a
purely data-driven approach, it can be employed in other shear-flows as well as in wall-
bounded flows at higher Reynolds numbers in order to examine the energy content in
spatial scales without invoking Taylor’s hypothesis.

The new technique was verified on a time-resolved PIV data of a turbulent boundary
layer. Transfer functions for a range of wall-normal location was obtained from this data
set and these transfer functions were applied to hot-wire data at a comparable Reynolds
number. Comparison of the newly proposed technique with the classical Taylor’s hypoth-
esis approach shows that Taylor’s hypothesis hold for larger wavenumbers (small spatial
scales). However, for smaller wavenumbers (large spatial scales) there are significant dif-
ferences, which have implications for potential double peaked turbulence spectra and
possible k, !-regions.
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Appendix A. Influence of spatial separation distance—and
measurement noise—on the reconstruction of
wavenumber—frequency spectra and the quality of the
frequency—wavenumber mapping

To test the influence of the separation distance, we performed wavenumber—frequency
spectra reconstruction for five different separation distances, figure 12, starting from the
smallest Axz/§ = 0.004 to five times larger Az/§ = 0.018, at the same wall-normal
locations as in figures 4 and 6. The spread decreases with increasing separation distance.
This effect is expected, since for larger displacements, the influence of the (fixed) noise
in the measurement system has a smaller (relative) influence.

However, due to the reconstruction technique the range of frequencies and wavenum-
bers become more and more restricted. The larger the separation distance, the smaller
the bandwidth of the reconstructed wavenumber-frequency spectrum.

Effect of the spatial separation distance on the frequency—wavenumber mapping is also
considered and figures 13 and 14 show the result of the frequency—wavenumber mapping
for different separation distances compared with spectra using Taylor’s hypothesis and
direct spatial spectra. For both streamwise velocity fluctuation spectra (figure 13) and the
wall-normal velocity fluctuation spectra (figure 14) the frequency—wavenumber spectra
using the current mapping show good agreement for Az/d > 0.01, however, for Az/d <
0.01, the spreading of the reconstructed wavenumber—frequency spectra appears to result
in an upward shift of the wavenumber spectrum using the current approach.

The two effects that the separation distance has are a noise effect for small Az and
a too narrow bandwidth restricting deviations from the classic Taylor’s hypothesis for
large Az. To balance the influence of these effects, we chose to use Az/d = 0.011 for the
small field-of-view in our current study.
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