Accepted Manuscript

A highly-efficient technique for evaluating bond-orientational order parameters

Szymon Winczewski, Jacek Dziedzic, Jarosław Rybicki

PII: S0010-4655(15)00347-1
DOI: http://dx.doi.org/10.1016/j.cpc.2015.09.009
Reference: COMPHY 5759

To appear in: Computer Physics Communications

Received date: 11 March 2015
Revised date: 10 September 2015
Accepted date: 12 September 2015

Please cite this article as: S. Winczewski, J. Dziedzic, J. Rybicki, A highly-efficient technique for evaluating bond-orientational order parameters, Computer Physics Communications (2015), http://dx.doi.org/10.1016/j.cpc.2015.09.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
A highly-efficient technique for evaluating bond-orientational order parameters

Szymon Winczewskia, Jacek Dziedziea,b, Jarosław Rybickia,b,c

aFaculty of Applied Physics and Mathematics, Gdańsk University of Technology,
\textit{Narutowicza 11/12, 80-952 Gdańsk, Poland.}
bSchool of Chemistry, University of Southampton, Highfield, Southampton S017 1BJ, UK.
cTASK Computer Centre, Gdańsk University of Technology,
\textit{Narutowicza 11/12, 80-952 Gdańsk, Poland.}

\textbf{Abstract}

We propose a novel, highly-efficient approach for the evaluation of bond-orientational order parameters (BOPs). Our approach exploits the properties of spherical harmonics and Wigner 3j-symbols to reduce the number of terms in the expressions for BOPs, and employs simultaneous interpolation of normalised associated Legendre polynomials and trigonometric functions to dramatically reduce the total number of arithmetic operations. Using realistic test cases, we show how the above, combined with a CPU-cache-friendly data structure, leads to a 10- to 50-fold performance increase over approaches currently in use, depending on the size of the interpolation grids and the machine used. As the proposed approach is an approximation, we demonstrate that the errors it introduces are well-behaved, controllable and essentially negligible for practical grid sizes. We benchmark our approach against other structure identification methods (centro-symmetry parameter (CSP), common neighbour analysis (CNA), common neighbourhood parameter (CNP) and Voronoi analysis), generally regarded as much faster than BOPs, and demonstrate that our formulation is able to outperform them for all studied systems.

\textbf{Keywords:}
structure identification, molecular dynamics, bond-orientational order, spherical harmonics, linear interpolation

\textbf{PACS:} 61.50.Ah, 02.70.Ns, 02.60.Ed

\section{1. Introduction}

Bond-orientational order parameters (BOPs) were proposed by Steinhard \textit{et al.} in 1981 \cite{1, 2} as a generalisation of the two-dimensional hexatic order parameter \cite{3}. Initially BOPs were applied to the study of the orientational order in liquids and glasses, later to become a standard tool in all of solid state physics. Nowadays BOPs are chiefly used to differentiate between crystalline phases, such as sc, bcc, fcc or hcp \cite{4-11}.

BOPs have been used to study nucleation and crystal growth \cite{6, 10-17}, helping to elucidate the structure of critical nuclei \cite{5} and nucleation kinetics \cite{18}. They also constitute a standard tool for the study of melting processes \cite{19-21}, where global BOPs are used as a direct indicator of a phase transition, while local BOPs serve as measures for the determination of solid and liquid fractions. Studies of undercooling and glassification \cite{10, 17, 22, 23} also employ BOPs, as do investigations of local icosahedral order in liquid metals \cite{21, 24} and in other systems \cite{1, 2, 25, 26}.

Many model systems have been studied with the aid of BOPs: hard- \cite{6, 16, 27-29} and soft-spheres \cite{4}, Lennard-Jones systems \cite{5, 9, 13, 14, 18, 20, 30, 31} (including binary \cite{32} and polydisperse \cite{22}), quantum

\textit{Email address: wisnia@kdm.tamk.gda.pl (Szymon Winczewski)}

Preprint submitted to Elsevier September 10, 2015
Lenard-Jones solids [19, 33] and Gaussian-core systems [9, 17]. Systems described with more complex potentials, such as Morse [34], modified Buckingham [15] and many-body potentials (pair functionals) [7, 8, 35, 36] have also been studied using BOPs.

The BOP technique is commonly used in the investigations of nanoscale systems, such as atomic clusters [35-37], and gold nanowires [7, 8]. BOPs have also been used in studies of shear-induced phenomena (e.g. shear-induced ordering [38], shear-induced crystallisation [39], and shear-induced overaging [40]), anomalies in liquids [41, 42], the freezing of argon in porous carbon [43], quasicrystals [26], and even plasma [44].

The widespread use of the BOP technique spurred a number of extensions or generalisations over the last decade. A modification, where an additional averaging over nearest neighbours is performed during the calculation of local BOPs was proposed by Lechner et al. [9] in order to improve identification of a variety of crystalline structures. A new formulation, where BOPs are combined with Voronoi tessellation, was proposed by Michel et al. [45]. This formulation removes the ambiguities introduced by the arbitrariness in the choice of a cutoff radius, allowing a better characterisation of the orientational order of disordered systems.

The fact that calculating BOPs involves repeated evaluation of spherical harmonics (SHs) [46] means that it is a computationally intensive approach. In a benchmark of methods for structural analysis Stukowski [47] assigns it a computational cost factor of 100, compared with 50 for Voronoi analysis [48, 49]. 3 for common neighbour analysis (CNA) [50] and 1 for the centro-symmetry parameter technique (CSP) [51].

The high computational effort associated with BOPs narrows the spectrum of their potential applications, and we are not aware of any examples in the literature where they would be used for the analysis of large-scale simulations – these typically employ computationally cheaper methods, such as energy filtering (e.g. Ref. [52, 53]), or CSP (e.g. Ref. [54]). Being able to use a more involved method that BOP constitutes for large-scale systems is an enticing prospect. A discussion of accuracy and limitations inherent in a number of approaches to structural analysis is given in Ref [47].

Moreover, the availability of the BOP approach to researchers is limited. To our knowledge, its implementation is not bundled with any of the well-known molecular dynamics codes or visualisation tools, while CSP, CNA or Voronoi analysis are offered by e.g. LAMMPS [55] or OVITO [56]. The authors are aware of only two implementations available to the scientific community: one due to Lechner et al. [9], and another due to Wang et al. [36]. Both of these implementations are less computationally efficient compared to competing, simpler approaches.

With the above considerations in mind, we feel a highly-efficient approach for the evaluation of bond-orientational order parameters has the potential to widen their spectrum of application. In this paper we propose a novel, approximate method for efficient calculation of BOPs, which can reduce the computational effort by a factor of up to 50, allowing it to outperform even the four approaches generally regarded as faster, i.e. CSP, CNA, CNP (common neighbourhood parameter) [57] and Voronoi analysis. The paper is organised as follows: In section 2 we describe the BOP approach, highlighting the steps in the calculation that can be optimised. Section 3 outlines the proposed technique for evaluating BOPs. Section 4 is devoted to benchmarking the efficiency and accuracy of the proposed approach. Section 5 contains conclusions.

2. The bond-orientational order parameter (BOP) method

Bond-orientational order parameters [1, 2] (BOPs) are used to characterise short-range order by classifying each atom as belonging to one of a number of close-packed structures. For every reference atom \(i \), the classification is performed in four stages, outlined below.

Stage 1.

The set \(B(i) \) of nearest neighbours \(j \) of atom \(i \) is determined. Nearest neighbours are defined as atoms that are no further away from atom \(i \) than a prescribed cutoff radius \(r_c \). The bond vectors \(\mathbf{r}_{ij} = \mathbf{r}_j - \mathbf{r}_i \), joining atom \(i \) with the neighbours \(j \) are calculated as Cartesian components. The number of neighbours of atom \(i \) (cardinality of \(B(i) \)) will be denoted by \(N_b(i) \).
<table>
<thead>
<tr>
<th>Structure</th>
<th>Q_4</th>
<th>Q_6</th>
<th>W_4</th>
<th>W_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>sc</td>
<td>0.76376</td>
<td>0.35355</td>
<td>0.15932</td>
<td>0.01316</td>
</tr>
<tr>
<td>bcc</td>
<td>0.08202</td>
<td>0.50083</td>
<td>0.15932</td>
<td>0.01316</td>
</tr>
<tr>
<td>fcc</td>
<td>0.19094</td>
<td>0.57452</td>
<td>-0.15932</td>
<td>-0.01315</td>
</tr>
<tr>
<td>hcp</td>
<td>0.09722</td>
<td>0.48476</td>
<td>0.13410</td>
<td>-0.01244</td>
</tr>
<tr>
<td>icos</td>
<td>0</td>
<td>0.66332</td>
<td>0</td>
<td>-0.16975</td>
</tr>
</tbody>
</table>

Table 1: BOP values for typical ideal structures.

Stage 2. Each bond vector r_{ij} is projected to the unit sphere, and its spherical coordinates $\theta(r_{ij})$ and $\phi(r_{ij})$ are calculated.

Stage 3. A vector of complex spherical harmonics (SHs) [46] $Y_{l,m}^m(\theta(r_{ij}), \phi(r_{ij}))$ is evaluated for every bond vector r_{ij}, for a chosen value of l and $m \in \{-l, \ldots, l\}$.

Stage 4. A vector of complex quantities $Q_{l,m}(i)$, defined as

$$Q_{l,m}(i) = \frac{1}{N_b(i)} \sum_{j \in B(i)} Y_{l,m}^m(\theta(r_{ij}), \phi(r_{ij}))$$

is constructed. Subsequently so-called second-order (Steinhardt) invariants are constructed, according to

$$Q_l(i) = \left(\frac{4\pi}{2l + 1} \sum_{m=-l}^{l} |Q_{l,m}(i)|^2 \right)^{1/2}$$

Third-order invariants [58] can also be constructed:

$$\bar{W}_l(i) = W_l(i) \times \left(\sum_{m=-l}^{l} |Q_{l,m}(i)|^2 \right)^{-3/2},$$

where

$$W_l(i) = \sum_{m_1, m_2, m_3} \begin{pmatrix} l & l & l \\ m_1 & m_2 & m_3 \end{pmatrix} Q_{l,m_1}(i) Q_{l,m_2}(i) Q_{l,m_3}(i).$$

The quantities

$$\begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix}$$

are Wigner $3j$-symbols [59].

Invariants for $l \leq 3$ vanish for lattices with cubic symmetry, and in practice bcc, fcc and hcp are differentiated using $l = 4$ and $l = 6$. Each atom i is classified as belonging to a particular structure by direct comparison of calculated invariants $Q_4(i)$, $Q_6(i)$, $W_4(i)$ and $\bar{W}_6(i)$ with reference values. The values for a number of ideal structures are given in Table 1.

At non-zero temperatures thermal motions lead to a smearing of the BOP values, and in practice classification is performed on a two-dimensional plane of parameter values (e.g. $Q_4(i) - Q_6(i)$ or $Q_6(i) - \bar{W}_4(i)$), on which regions corresponding to particular packings are defined. For examples see e.g. Refs. [7, 15]. However, no single, consistent approach to the classification itself has been proposed to date.
3. A highly-efficient approach for evaluating BOPs

The four stages of the calculation of BOPs outlined in Sec. 2 differ in computational effort. For the identification of neighbours (stage 1) efficient, linear-scaling algorithms, such as the linked-cell approach [60, 61] are typically used, and calculating bond vectors r_{ij} and their spherical coordinates (stage 2) are very simple operations. The computational effort of stages 1 and 2 is thus very small.

3.1. Evaluation of spherical harmonics by fast simultaneous interpolation

The most computationally demanding (about 60% of total effort for a standard implementation) is stage 3, where a large number of spherical harmonics (SHs) has to be evaluated, with the effort for the entire system scaling as $O(Nr_c^3)$. As an example, let us consider a system of modest size, $N = 4000$ atoms arranged in an fcc structure (thus with $N_b = 12$ neighbours within r_c). Assuming we are interested in invariants with $l = 4$ and $l = 6$, a total of $(2 \times 4 + 1 + 2 \times 6 + 1) \times 4000 \times 12 = 1.056 \times 10^9$ SHs need to be evaluated. In a direct approach these are calculated as

$$Y_l^m(\theta, \phi) = \tilde{P}_l^m (\cos \theta) e^{im\phi}$$

$$= K_l^m P_l^m (\cos \theta)$$

$$= \sqrt{\frac{2l + 1}{4\pi}} \frac{(-1)^l}{(l + m)!} P_l^m (\cos \theta)$$

$$\times \left[\cos(m\phi) + e^{i\phi} \sin(m\phi) \right],$$

where $P_l^m(x)$ are associated Legendre polynomials (ALPs) and $\tilde{P}_l^m(x) = K_l^m P_l^m(x)$

denote normalised associated Legendre polynomials (NALPs).

Below we propose a highly-efficient alternative to direct evaluation, based on simultaneous interpolation. Our approach proceeds by interpolating both the trigonometric functions and the NALPs in (6), exploiting the fact that each interpolation node only has to be calculated once for an entire set of interpolated functions. In the discussion that follows we assume a typical case where invariants with $l = 4$ and $l = 6$ are calculated.

The interpolated functions satisfy the necessary requirements for stable interpolation (bounded domain and codomain, continuity, low variability). We divide the domain of NALPs into p intervals, with a width of $h_x = 2/p$ each, locating the interpolation nodes at $x_j = -1 + jh_x$, where $j = 0, 1, \ldots, p - 1$. Similarly, we divide the domain of the trigonometric functions into q intervals, with a width of $h_x = 2\pi/q$ each, locating the interpolation nodes at $\phi_j = jh_x$, where $j = 0, 1, \ldots, q - 1$.

Interpolation tables, constructed at the outset of the calculation, are organised as follows:

1. For NALPs we store $\tilde{P}_l^m(x_i)$ and $\Delta \tilde{P}_l^m(x_i)$, where

$$\Delta \tilde{P}_l^m(x_i) = [\tilde{P}_l^m(x_{i+1}) - \tilde{P}_l^m(x_i)]/h_x,$$

for all 12 pairs of indices $(l, m) = (4, 0), (4, 1), \ldots, (4, 4), (6, 0), (6, 1), \ldots, (6, 6)$. We exploit two well-known properties of SHs:

$$Y_l^m(\theta(-r_{ij}), \phi(-r_{ij})) = (-1)^l Y_l^m(\theta(r_{ij}), \phi(r_{ij})),$$

$$Y_l^{-m}(\theta, \phi) = (-1)^m \overline{Y_l^m(\theta, \phi)}$$

to delay interpolation and storage of values for $m < 0$. The data structure stagers $\tilde{P}_l^m(x_i)$ and $\Delta \tilde{P}_l^m(x_i)$ and uses l as the fast-changing index for optimal cache efficiency. The precise ordering of values for a single interpolation node is shown in Table 2. The size of the data structure is $24p$ double precision values.
2. For interpolating trigonometric functions we store \(\sin(m\phi) \), \(\cos(m\phi) \), \(\Delta \sin(m\phi) \), \(\Delta \cos(m\phi) \), where

\[
\begin{align*}
\Delta \sin(m\phi_i) &= [\sin(m\phi_{i+1}) - \sin(m\phi_i)]/h_{\phi}, \\
\Delta \cos(m\phi_i) &= [\cos(m\phi_{i+1}) - \cos(m\phi_i)]/h_{\phi},
\end{align*}
\]

ordered as \(\cos(m\phi) \), \(\Delta \cos(m\phi) \), \(\sin(m\phi) \), \(\Delta \sin(m\phi) \), with \(m = 1, 2, \ldots, 6 \) being the slowly-changing index. The precise ordering of values for a single interpolation node is shown in Table 3. The size of the data structure is 24\(q \) double precision values. Note that in the calculation of interpolation slopes in (10) we always divide by \(h_{\phi} \) and not by \(mh_{\phi} \). This helps increase computational efficiency by allowing us to calculate each interpolation node only once for an entire set of functions.

Once the interpolation tables are constructed, the following steps are performed for every interpolation node \(j \). The inputs to the interpolation are \(\phi \) and \(x = \cos \theta \).

1. Find interpolation node \(x_i \), compute \(\Delta x = x - x_i \).
2. Interpolate \(\tilde{P}_l^m(x) \) for the 12 pairs of \((l, m) \) by linear interpolation:

\[
\tilde{P}_l^m(x) \approx \tilde{P}_l^m(x_i) + \Delta \tilde{P}_l^m(x_i) \times \Delta x,
\]

3. Find interpolation node \(\phi_i \), compute \(\Delta \phi = \phi - \phi_i \).
4. Interpolate \(\sin(m\phi) \) and \(\cos(m\phi) \), for \(m \in [1, 6] \) by linear interpolation:

\[
\begin{align*}
\sin(m\phi) &= \sin(m\phi_i) + \Delta \sin(m\phi_i) \times \Delta \phi \\
\cos(m\phi) &= \cos(m\phi_i) + \Delta \cos(m\phi_i) \times \Delta \phi,
\end{align*}
\]

5. Evaluate spherical harmonics \(\tilde{Y}_l^m \), for the 12 pairs of \((l, m) \) according to

\[
\tilde{Y}_l^m(\theta, \phi) = \tilde{P}_l^m(\cos \theta) [\cos(m\phi) + i \sin(m\phi)],
\]

where the interpolated values are used for the NALPs and the trigonometric functions.

The efficiency of this approach, to which we will refer as fast simultaneous interpolation (FSI), stems from a combination of the following:

- Linear interpolation is inherently faster compared to direct evaluation of trigonometric functions or NALPs.
- For every bond, all 12 spherical harmonics are evaluated for the same arguments.
- The interpolation node is shared by an entire vector of 12 NALPs, and by six pairs of trigonometric functions, and thus needs to be evaluated only once.
- A data structure that ensures maximum locality, and thus efficient use of CPU cache is employed.

With the proposed approach, a calculation of all 12 SHs involves only 27 additions, 48 multiplications, 53 assignments and 2 rounding operations (to find the interpolation nodes). Fast simultaneous interpolation can be easily generalised to utilise higher-order interpolation – this would have the advantage of reducing the memory footprint (as coarser grids would provide equivalent accuracy) at the cost of increasing the number of arithmetic operations required. In Sec. 4.1 we show how the memory footprint of our approach is insignificant for grid sizes used in practice, which makes linear interpolation entirely satisfactory for our needs.
3.2. Reducing the number of operations needed to calculate BOPs from SHs

The final, fourth stage in the determination of BOPs consists in calculating the BOPs from the spherical harmonics evaluated in stage 3. The direct approach (i.e. through (1)-(4)) is suboptimal. If we again use the example of a system with \(N_b = 12 \), the computational effort of evaluating \(Q_b, W_4, W_6 \) (which is the typical scenario) is: 1464 additions, 1954 multiplications, 3 divisions and 2 square root operations for a single atom. The above assumes that evaluating a complex modulus involves 2 multiplications and one addition.

Below we outline how this effort can be reduced several-fold. First, we again exploit the properties of SHs (8), (9) to elide all calculations where \(i > j \) and all calculations where \(m < 0 \), reducing the computational effort almost by a factor of 4. Subsequently we introduce:

\[
q_{i,m}(i) = \sum_{j \in B(i)} Y_{i}^{m}(\theta(r_{ij}), \phi(r_{ij})), \tag{12}
\]

\[
q_i(i) = \left(\sum_{m=-l}^{l} |q_{i,m}(i)|^2 \right)^{1/2}, \tag{13}
\]

and

\[
u_l(i) = \sum_{m_1+m_2+m_3=0} (l_{m_1} l_{m_2} l_{m_3}) q_{i,m_1}(i) q_{i,m_2}(i) q_{i,m_3}(i), \tag{14}
\]

which are analogous to the quantities in eqs. (1), (2), (4), except for normalisation factors. Once the above intermediate quantities are evaluated, BOPs can be calculated as

\[
Q_l(i) = \left(\frac{4\pi}{2l+1} \right)^{1/2} \frac{q_l(i)}{N_b(i)} \tag{15}
\]

and

\[
\tilde{W}_l(i) = \frac{\nu_l(i)}{(q_l(i))^3}. \tag{16}
\]

By again exploiting a property of SHs (9), we obtain

\[
q_{i,-m}(i) = (-1)^m \bar{q}_{i,m}(i), \tag{17}
\]

which in turn allows to rewrite (13) as

\[
q_i(i) = \left(|q_i,0(i)|^2 + 2 \sum_{m=1}^{l} |q_i,m(i)|^2 \right)^{1/2}. \tag{18}
\]

Let us now consider the sum (14). In a direct approach, 61 and 127 non-vanishing terms (those where \(m_1 + m_2 + m_3 = 0 \)) need to be evaluated for \(l = 4 \) and \(l = 6 \), respectively, for a total of 188 terms. We now recall several well-known properties of the Wigner 3j-symbol:

\[
\begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = \begin{pmatrix} l_2 & l_3 & l_1 \\ m_2 & m_3 & m_1 \end{pmatrix} = \begin{pmatrix} l_3 & l_1 & l_2 \\ m_3 & m_1 & m_2 \end{pmatrix}, \tag{19}
\]

\[
\begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} = (-1)^{l_1+l_2+l_3} \begin{pmatrix} l_1 & l_1 & l_3 \\ m_2 & m_1 & m_3 \end{pmatrix} = (-1)^{l_1+l_2+l_3} \begin{pmatrix} l_1 & l_3 & l_2 \\ m_1 & m_3 & m_2 \end{pmatrix}, \tag{20}
\]

\[
\begin{pmatrix} l_1 & l_2 & l_3 \\ -m_1 & -m_2 & -m_3 \end{pmatrix} = (-1)^{l_1+l_2+l_3} \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix}. \tag{21}
\]
By exploiting the above properties along with (15) we can reduce the computational effort to merely 9 terms for $l = 4$ and 16 terms for $l = 6$, recasting $w_4(i)$ as

$$w_4(i) = \text{Re} \left(q_{4,0}(i) \right) \left[\begin{pmatrix} 4 & 4 & 4 \\ 0 & 0 & 0 \end{pmatrix} \right] |q_{4,0}(i)|^2 + 6 \sum_{m=1}^{4} \left(\begin{pmatrix} 4 & 4 & 4 \\ -m & 0 & m \end{pmatrix} \right) |q_{4,m}(i)|^2$$

$$+ 12 \begin{pmatrix} 4 & 4 & 4 \\ -4 & 1 & 3 \end{pmatrix} \text{Re} \left(\overline{q}_{4,4}(i) \times q_{4,1}(i) \times q_{4,3}(i) \right)$$

$$- 12 \begin{pmatrix} 4 & 4 & 4 \\ -3 & 1 & 2 \end{pmatrix} \text{Re} \left(\overline{q}_{4,3}(i) \times q_{4,1}(i) \times q_{4,2}(i) \right)$$

$$+ 6 \begin{pmatrix} 4 & 4 & 4 \\ -4 & 2 & 2 \end{pmatrix} \text{Re} \left(\overline{q}_{4,4}(i) \times q_{4,2}(i) \times q_{4,4}(i) \right)$$

$$+ 6 \begin{pmatrix} 4 & 4 & 4 \\ -2 & 1 & 1 \end{pmatrix} \text{Re} \left(\overline{q}_{4,2}(i) \times q_{4,1}(i) \times q_{4,1}(i) \right),$$

(22)

and $w_6(i)$ as

$$w_6(i) = \text{Re} \left(q_{6,0}(i) \right) \left[\begin{pmatrix} 6 & 6 & 6 \\ 0 & 0 & 0 \end{pmatrix} \right] |q_{6,0}(i)|^2 + 6 \sum_{m=1}^{6} \left(\begin{pmatrix} 6 & 6 & 6 \\ -m & 0 & m \end{pmatrix} \right) |q_{6,m}(i)|^2$$

$$+ 12 \begin{pmatrix} 6 & 6 & 6 \\ -6 & 1 & 5 \end{pmatrix} \text{Re} \left(\overline{q}_{6,6}(i) \times q_{6,1}(i) \times q_{6,5}(i) \right)$$

$$+ 12 \begin{pmatrix} 6 & 6 & 6 \\ -6 & 2 & 4 \end{pmatrix} \text{Re} \left(\overline{q}_{6,6}(i) \times q_{6,2}(i) \times q_{6,4}(i) \right)$$

$$+ 12 \begin{pmatrix} 6 & 6 & 6 \\ -4 & 1 & 3 \end{pmatrix} \text{Re} \left(\overline{q}_{6,4}(i) \times q_{6,1}(i) \times q_{6,3}(i) \right)$$

$$- 12 \begin{pmatrix} 6 & 6 & 6 \\ -5 & 1 & 4 \end{pmatrix} \text{Re} \left(\overline{q}_{6,5}(i) \times q_{6,1}(i) \times q_{6,4}(i) \right)$$

$$- 12 \begin{pmatrix} 6 & 6 & 6 \\ -5 & 2 & 3 \end{pmatrix} \text{Re} \left(\overline{q}_{6,4}(i) \times q_{6,1}(i) \times q_{6,3}(i) \right)$$

$$- 12 \begin{pmatrix} 6 & 6 & 6 \\ -3 & 1 & 2 \end{pmatrix} \text{Re} \left(\overline{q}_{6,3}(i) \times q_{6,1}(i) \times q_{6,2}(i) \right)$$

$$+ 6 \begin{pmatrix} 6 & 6 & 6 \\ -6 & 3 & 3 \end{pmatrix} \text{Re} \left(\overline{q}_{6,6}(i) \times q_{6,3}(i) \times q_{6,3}(i) \right)$$

$$+ 6 \begin{pmatrix} 6 & 6 & 6 \\ -4 & 2 & 2 \end{pmatrix} \text{Re} \left(\overline{q}_{6,4}(i) \times q_{6,2}(i) \times q_{6,2}(i) \right)$$

$$+ 6 \begin{pmatrix} 6 & 6 & 6 \\ -2 & 1 & 1 \end{pmatrix} \text{Re} \left(\overline{q}_{6,2}(i) \times q_{6,1}(i) \times q_{6,1}(i) \right).$$

(23)

The above forms, although more verbose, allow for markedly more efficient computation – not only is the number of terms reduced (from 188 to 25), but the terms themselves are simpler. The number of operations necessary to calculate BOPs for a single atom (for the same model case) is reduced to 337 additions (from 1464), 176 multiplications (from 1954), 2 divisions (from 3). The number of square-root operations remains at 2.

4. Efficiency and accuracy of the proposed approach

4.1. Fast simultaneous interpolation

Here we demonstrate the efficiency and accuracy of the simultaneous interpolation scheme we proposed in Sec. 3.1. As an efficient and accurate approach to evaluating large numbers of spherical harmonics can
also find use outside the context of the BOP method, we begin by benchmarking the sole calculation of the SHs.

Our benchmark consisted in calculating the set of 12 SHs for 1 million randomly [62] chosen pairs of
(θ, ϕ). As a reference implementation we used the GNU Scientific Library [63] (GSL), which is widely used
in the scientific community. Since GSL does not directly calculate SHs, but only NALPs, an additional
calculation of trigonometric functions was needed, this was done through calls to native library functions.

The efficiency and accuracy of any interpolation scheme will depend on the size of the interpolation
grid(s) used. Our approach uses two grids, with p and q intervals, respectively (cf. Sec. 3.1), resulting in
$O(p + q)$ memory complexity. The time complexity of evaluating the SHs is $O(1)$ (independent of the size
of either grid), while the computational effort of constructing the interpolation grids scales as $O(p + q)$. In
practical applications the computational effort would be dominated by the interpolation itself, with the cost
of constructing the grids becoming increasingly more insignificant with increasing numbers of SHs calculated.

We begin by reporting (Fig. 1) the mean error in the obtained SHs as a function of p and q, using the
numerically exact GSL values as reference. Since the values of SHs can be arbitrarily close to complex zero,
we elect to report errors defined as

$$E = \left| \tilde{Y}_l^m((\theta, \phi)) - Y_l^m((\theta, \phi)) \right|,$$

where \tilde{Y}_l^m are the spherical harmonics evaluated with our approach according to (11), and Y_l^m are understood
to be the numerically exact values obtained with GSL. By mean error, (E), we shall denote the average
of E over the 12 SHs calculated for 1 million randomly generated pairs of (θ, ϕ). We acknowledge that for
SHs extremely close (or exactly equal) to complex zero, the relative error of the approximation can become
arbitrarily large. In applications where this would be deemed problematic (e.g. where accurate phases
were vital for arbitrarily small moduli), numerically exact calculations could easily be carried out once the value of the modulus was found to lie below a preset threshold. Here we chose not employ such a fallback
mechanism so as not to introduce a dependence of results on the value of the threshold.

Fig. 1 makes it apparent that highest accuracy, for a given memory footprint (proportional to $p + q$), is
achieved by using similar grid sizes, i.e. $p \approx q$. In order to simplify further analysis, in the text that follows
we assume $p = q$, and accordingly report efficiency and accuracy benchmarks for the case where the grid
size is taken to be identical.

We now turn to benchmarking the efficiency of the interpolation scheme for the SHs. We carefully ensured
that the control logic for traversing the pairs was identical between the reference and proposed approaches
and that only the walltimes of the actual SH evaluations were measured. In an effort to minimise the
effect of any external factors (concurrent processes, paging, caching, etc.) we performed 10 runs for each
approach, presenting averaged results. Since the relative performance of any two implementations is likely
to vary depending on the machine of which they are executed, we performed benchmarks on three distinct
machines. Machine A was a high-performance workstation, machine B was a typical computational node of
a computer cluster, and machine C was a laptop. The three machines differed with respect to clock rates,
CPU types, CPU cache and RAM speeds – the relevant hardware details are given in Table 4.

Fig. 2 shows the speedup of the proposed approach compared to the reference (GSL) implementation,
demonstrating that simultaneous interpolation is several tens of times faster for machines typically used
in scientific computations and 21-45 times faster on a laptop computer (machine C), with greatest relative
speedups obtained for the fastest machine (machine A).

We will now demonstrate that the above speedups were obtained for grid sizes that guarantee negligible
loss of accuracy. In Fig. 3 we show the mean error (E) of the calculated complex spherical harmonics as a
function of the interpolation grid sizes $p = q$. Fast simultaneous interpolation is seen to yield very accurate
SHs even for modest grid sizes – for the coarsest setting $(p = q = 600)$ the errors were as small as $(E) = 5.6 \times 10^{-5}$. The error and thus the accuracy is seen to be controllable – the mean error is well-
described with a relation $(E) = Cp^{-\alpha}$ (shown as line in the plot). The empirically obtained value of the
exponent α was 1.68, meaning that a fourfold increase of the grid size p leads to a 10.3-fold decrease of (E).

Fig. 4 shows the distribution of the errors, demonstrating that even for the coarsest grids $(p = q = 600)$
Figure 1: Errors introduced by the proposed approximation (shown as contour labels to the right of the plot). Black points represent tested grid size pairs. Grid sizes p and q between 25 and $25 \times 2^{11} = 51200$ were tested. Contour lines were obtained using biquadratic interpolation between the points.

Figure 2: Speedup of the proposed simultaneous interpolation compared to reference (GSL) implementation, for calculating 1M spherical harmonics.
Figure 3: A log-log plot of the error introduced by the approximations of the fast simultaneous interpolation. The line is a result of fitting $Cp^{-\alpha}$ to the datapoints.

Figure 4: Distribution histograms for the error (calculated according to 24) in the calculated spherical harmonics for three representative grid sizes (p).
they are well-behaved and increasing grid sizes quickly moderate the error distribution. For the medium-quality grids \((p = q = 2400)\) we find that in > 99.98% cases the error \(E\) did not exceed \(10^{-4}\).

We finish the discussion of fast simultaneous interpolation with a comment on memory use. The proposed approach has very modest memory requirements – even the finest grids used here \((p = q = 9600)\), for which the approximation errors are extremely small \((\mathbb{E} = 5.3 \times 10^{-7})\), necessitate storing only \((p + q) \times 24 = (9600 + 9600) \times 24 = 460800\) double precision values, for a total of only 3.7 MB.

4.2. Efficiency and accuracy of the proposed approach to evaluating BOPs

We shall now assess the efficiency and accuracy of the approach to evaluating BOPs that combines the fast simultaneous interpolation (FSI) described in Sec. 3.1 and the sum simplifications discussed in Sec. 3.2. We compare the implementation of our approach against the two widely used implementations – one due to Lechner et al. [9] and one due to Wang et al. [36]. Both of these employ the exact, direct approach of (1)-(4). In order to disentangle the effects of FSI (which is an approximation) from the effects of the sum simplifications (which do not involve approximations), we also performed benchmarks for calculations that use GSL to evaluate SHs exactly.

In order to perform a realistic benchmark, we prepared thirteen test cases representing typical systems whose structure would be analysed using the BOP approach. The test cases sample a variety of system sizes and structures (cf. Table 5 for details). We measured the walltime corresponding to evaluating all four BOP values for all atoms in every test case, for 50 different configurations of positions. The configurations were obtained in advance from molecular dynamics simulations. We note that Lechner’s implementation does not calculate \(W_4\) or \(W_6\), and these two invariants were not included in the datapoints for Lechner’s implementation. We used the same three representative machines as in Sec. 4.1 and ensured the test conditions were identical for all implementations. Depending on the machine, the size of the test case, and the implementation we calculated walltimes as averages over 5–1000 independent runs. We were careful to time only the BOP calculation itself, excluding the time necessary to identify nearest neighbours (stage 1). The fact that the laptop machine \((C)\) had very limited RAM \((2 \text{ GB})\) prevented us from running the largest, 1M+-atom, systems \((1e, 4e, 4f)\) on this machine. For the same reason, we were not able to benchmark the Lechner implementation for testcase \(4f\) \((8M+\text{ atoms})\) on machine B.

Fig. 5 illustrates the speedups obtained for the thirteen test cases. Our approach is found to be between 11 and 40 times faster compared to the implementation of Lechner et al., depending on machine and test case, and between 14 and 46 times faster compared to that of Wang et al. We note (cf. the datapoints labeled “GSL”) that most of the speedup \((\text{a factor of 7-24})\) can be attributed to the use of the interpolation scheme, while the the rearrangements described in Sec. 3.2 account for a further improvement in efficiency by a factor of 1-7-2.1.

As expected, the obtained speedups are seen to depend somewhat on the machine used for benchmarking. These differences result from a combination of hardware factors. We do not set out to identify the exact hardware details responsible for the degree of obtained speedup, rather, we only point out that the proposed computational approach consistently affords speedups of over an order of magnitude, regardless of architecture and hardware details.

We now turn to the assessment of errors that the proposed technique introduces in the values of the BOPs \(Q_4(i)\) and \(W_4(i)\). We followed a practical approach, whereby we compared BOP values calculated using FSI with numerically exact values obtained using GSL for the thirteen test cases used earlier in the text (cf. Table 5 for details). Here we only report on errors measured for test case 3 \((\text{liquid AlCu})\) which performed the worst in terms of errors. The results that we present were averaged over 10000 snapshots taken from an MD calculation in order to ensure good statistics. We calculated mean absolute errors in all four parameters under consideration: \(Q_4, Q_6, W_4,\) and \(W_6\).

Fig. 6 shows the measured absolute errors in BOPs as a function of the grid size \(p\). For the coarsest grids \((p = q = 600)\) the mean absolute errors were \(5.3 \times 10^{-5}, 1.1 \times 10^{-4}, 1.4 \times 10^{-4}\) and \(5.0 \times 10^{-5}\), for \(Q_4, Q_6, W_4,\) and \(W_6\) respectively. Using finer grids \((p = q = 9600)\) reduced the errors by two orders of magnitude. The above means that the artifacts introduced by the interpolation scheme are well in the realm of negligibility. In typical applications of the BOP method being able to determinize the parameters to the
Figure 5: Measured speedup of the proposed approach over the implementations of Lechner et al., Wang et al. and GSL. The three panels correspond to machines (A: top, B: middle, C: bottom). The datapoints correspond to grid sizes of $p = q = 2400$, while the error bars correspond to $p = q = 600$ (coarsest grids, highest speedup) and $s = 9600$ (finest grids, lowest speedup). Test cases (cf. Table 5) are shown on the X axis. The timings for the Lechner approach do not include the calculation of W_4 or W_6 (see text). Speedups for test cases 1e), 4ef) for machine C, and 4f) for machine B were not measured due to RAM limitations of the test environment (see text).
Figure 6: Errors introduced by the proposed approach for evaluating BOPs, measured for and averaged over 10000 snapshots of liquid AlCu (test case 3). The log-log plot in the top panel shows the mean absolute error (squares), with lines denoting results of a fit to the form Cp^{-a}. To facilitate comparison with typical values of the parameters, the bottom panel shows the distributions of the BOPs themselves. Both panels use the same coding: black squares – Q_4, red circles – Q_6, blue diamonds – W_4, green triangles – W_6.
absolute accuracy of 10^{-3} is entirely satisfactory. Our results show that, in the mean sense, such accuracy is obtained even for the coarsest grids we tested ($p = q = 600$).

We appreciate that knowing the mean absolute accuracy may not be sufficient for some applications of the BOP method. In Fig. 7 we show how the errors are distributed for three representative grid sizes for all BOPs of interest. The same test case was used. We find that for grids with $p = q = 9600$, the prevalence rate of absolute errors larger than the acceptance criterion assumed above (10^{-3}) is as small as 0.0004% (for Q_4), 0.001% (for Q_6), 0.06% (for W_4), 0.002% (for W_6). None of the 4×10^7 sets of four BOPs constituting our test case exhibited an absolute error larger than 10^{-2}, meaning such errors are expected to occur at most in 2.5×10^{-6}% cases.

4.3. Comparison of computational effort with other methods of structure characterisation

We demonstrated that the proposed approach reduces the computational effort of evaluating bond-orientational order parameters by more than an order of magnitude. The associated increase in computational efficiency is significant enough to warrant a comparison with other approaches to structure characterisation that are generally deemed to be more efficient.

A number of structure identification methods is reviewed in Ref. [47], including four widely used approaches – the centro-symmetry parameter (CSP), common neighbour analysis (CNA), the common neighbourhood parameter (CNP) and Voronoi analysis. Stukowski assigns to each of the reviewed approaches a
unitless computational cost factor, which essentially measures the relative slowness of an approach compared
to calculating the centro-symmetry parameter (CSP) [51], excluding the effort of neighbour identification.
The computational cost factors given in Ref. [47] for CNA, Voronoi and BOP approaches are, respectively, 3, 50 and 100 (Stukowski did not estimate the computational cost factor of the CNP method).

Below we re-evaluate the computational cost factor using the approach for evaluating BOPs proposed
in this work. For the purposes of this comparison, we re-implemented the CSP, CNA, CNP and Voronoi
approaches from scratch. The obtained implementations of CSP, CNA and Voronoi analysis mirror those
of Stukowski. In both cases Rycroft’s voro++ library [64] has been used to efficiently perform Voronoi
tessellation. Below we outline the operations performed within the framework of each approach.

In the CSP approach a single, real-valued parameter given by
\[\text{CSP}(i) = \sum_{j \in B(i)/2} |r_{ij} + r_{ik}|^2 \] (25)

needs to be determined for every characterised central atom \(i \). In the above, \(r_{ij} \) and \(r_{ik} \) denote the vectors
pointing from atom \(i \) to its two opposite neighbours \(j, k \in B(i) \), and the number of elements in the sum is
equal to half the number of nearest neighbours. The calculation of CSP\((i)\) necessitates identifying \(N_b(i)/2 \)
pairs of opposite neighbours, which corresponds to calculating, for every possible pair \((j, k) \) out of the total
of \(N_b(i)(N_b(i) - 1)/2 \), the value \(|r_{ij} + r_{ik}|^2 \) and using the \(N_b(i)/2 \) smallest values in (25). This formulation of CSP has been proposed by Kelchner et al. [51] and is implemented, e.g. in the LAMMPS package [55].

In the case of CNA, the analysis consists in the determination of three integer numbers \(n_{cn}(ij), n_b(ij) \),
and \(n_{nch}(ij) \) for every bond \(i_j \) joining the central atom \(i \) with its neighbours \(j \in B(i) \). These are, respectively:
the number of neighbour atoms the central atom \(i \) and its neighbour \(j \in B(i) \) have in common, \(n_{cn}(ij) \); the
total number of bonds between these common neighbours, \(n_b(ij) \); and the number of bonds in the longest
chain of bonds connecting the common neighbours, \(n_{nch}(ij) \). Apart from the need to determine \(N_b(i) \) such
triples, CNA involves the determination of the number of bonds of different types, which differ in the values
of \(n_{cn}, n_b \), and \(n_{nch} \).

The common neighbourhood parameter (CNP), proposed by Tsuzuki et al. [57], combines the advantages
of CSP and CNA. Here, for every central atom \(i \), a single, real-valued parameter is calculated according to:
\[\text{CNP}(i) = \frac{1}{N_b(i)} \sum_{j \in B(i)} \left| \sum_{k \in B(i) \cap B(j)} (r_{ik} + r_{jk}) \right|^2 \] (26)
The values of \(\text{CNP}(i) \) are calculated directly, by iterating over the neighbours of atom \(i \) in the first sum,
and the common neighbours of atoms \(i \) and \(j \) in the second sum.

In the case of Voronoi analysis, it becomes necessary to determine, for every atom \(i \) in the system, its
Corresponding Voronoi polyhedron. The polyhedra are subsequently described through the use of signatures
\((f_3, f_4, f_5, f_6, \ldots) \), where the symbol \(f_\epsilon \) denotes the number of faces with \(\epsilon \) edges.

We measured the time needed for performing structural identification for each of the methods: \(t_{BOP}, t_{CSP}, t_{CNA}, t_{CNP}, t_{Voronoi} \). The time required for neighbour identification and the calculation of bond
vectors was excluded. Measurements were performed for all thirteen test cases, on all three machines
described earlier. Results were averaged over 10 independent runs. We appreciate that the obtained relative
efficiencies of the methods are going to depend on implementation details. The results we show are valid for
our implementations, which we diligently optimised.

The missing points in Fig. 8 correspond to scenarios where RAM limitations prevented us from performing
the benchmark for the largest (1M+ atoms) systems. This is mostly seen on machine C (a laptop PC with
merely 2 GB of RAM), or for Voronoi analysis (which has much higher memory requirements compared
to CSP, CNA, CNP or BOP). The above reflects the simplified nature of our test environment, where all
calculations have been done in post-processing, in a single-CPU environment. In practice structural analysis
of 1M+ atom systems would be done in a distributed memory parallel environment.

The measured relative timings \(t_{CSP}/t_{BOP}, t_{CNA}/t_{BOP}, t_{CNP}/t_{BOP} \) and \(t_{Voronoi}/t_{BOP} \) shown in Fig. 8
demonstrate that with the approach we propose, BOP analysis can be carried out in less time than Voronoi
analysis (by at least an order of magnitude), and, crucially, in less time than CNA analysis. In particular, depending on the test case and the machine used, we achieve a speed-up between 8.1 and 50.1 compared to (our implementation of) Voronoi analysis and between 1.1 and 10.6 compared to (our implementation of) CNA analysis. Crucially, our timings also indicate that the computational effort of the proposed approach for evaluating BOP is comparable to that of the CSP method (with ratios $t_{\text{CSP}}/t_{\text{BOP}}$ between 0.5 and 2.1), and the CNP method (with ratios $t_{\text{CNP}}/t_{\text{BOP}}$ between 1.0 and 4.4).

We can thus conclude that the computational effort of our approach to structure identification by BOP is significantly lower than that of Voronoi analysis and even lower than (or at least comparable to) that of CSP, CNP and CNA methods. We posit that BOP analysis should no longer be regarded as a more computationally involved method of structure characterisation.

5. Conclusions

We devised an efficient technique for evaluating bond-orientational order parameters (BOPs). Our approach combines simultaneous interpolation in the evaluation of spherical harmonics with rearrangements in the expressions for obtaining BOPs from spherical harmonics. Cache-friendly data structures are employed in the interpolation.

The memory complexity of our approach is linear in the grid size. The computational complexity of initialisation (constructing the interpolation grids) is linear, while the time of actual evaluation is independent of the grid size. For sufficiently large numbers of evaluations and grid sizes used in practical calculations the latter time dominates.

As one stage of our approach relies on interpolation, we carefully measured the errors in the approximation both for the calculated spherical harmonics and the resultant BOPs. The errors inherent to our approach are seen to be well-behaved and controllable, even with linear interpolation, vanishing according to $p^{-1.68}$ with the grid size p. The errors are found to be negligible already at $p = 9600$, which corresponds to a memory footprint of only 3.7 MB and an initialisation time below 200 ms.

Benchmarks for a number of realistic test cases performed on three hardware configurations demonstrate that our approach is between 11 and 46 times faster compared to other widely used approaches to evaluating BOPs, and can even outperform other methods of structure identification that are generally regarded as computationally cheaper.

An implementation of the approach has been made available under the GNU GPLv3 license (see Supplementary Materials).

Acknowledgements

We acknowledge the support of the Polish Ministry of Science and Higher Education (grant IP2012 043972) and of the TASK Academic Computer Centre (Gdańsk, Poland). This research was also supported in part by the PL-Grid Infrastructure (grant POIG.02.03.00-00-096/10).
Figure 8: Computational cost factor of CSP, CNA, CNP and Voronoi methods relative to the proposed approach to evaluating BOPs, i.e. the ratio of the time needed to perform CSP, CNA, CNP or Voronoi analysis to the time needed to perform BOP analysis. The three panels correspond to machines (A: top, B: middle, C: bottom). The datapoints correspond to grid sizes of $p = q = 2400$, while the error bars correspond to $p = q = 600$ (coarsest grids, highest speedup) and $s = 9600$ (finest grids, lowest speedup). Test cases (cf. Table 5) are shown on the X axis. Cost factors for the largest systems (1de, 4def) were not calculated on every machine due to RAM limitations of the test environment (see text).

4 J. S. van Duinecessary text...

URL: http://dx.doi.org/10.1021/nl051149h.

URL: http://dx.doi.org/10.1039/A809848F.

URL: http://scitation.aip.org/content/aip/journal/jcp/104/24/10.1063/1.471721.

URL: http://scitation.aip.org/content/aip/journal/jcp/113/20/10.1063/1.1316105.

URL: http://scitation.aip.org/content/aip/journal/jcp/126/20/10.1063/1.2737054.

21 R. Lynden-Bell, J. Van Duinecessary text...

22 S. E. Abraham, D. Taguchi. Suppression of the rate of growth of dynamic heterogeneities and its relation to the local...

URL http://dx.doi.org/10.1038/nmat2634

URL http://dx.doi.org/10.1140/epjb/e2006-00348-9

URL http://scitation.aip.org/content/aip/journal/jcp/125/19/10.1063/1.2390700

URL http://dx.doi.org/10.1140/epje/i2010-10583-5

URL http://scitation.aip.org/content/aip/journal/jcp/115/19/10.1063/1.1413739

URL http://scitation.aip.org/content/aip/journal/jcp/130/15/10.1063/1.3106759

URL http://scitation.aip.org/content/aip/journal/jcp/131/13/10.1063/1.3239468

URL http://scitation.aip.org/content/aip/journal/jcp/116/20/10.1063/1.1471243

URL http://dx.doi.org/10.1080/00268970010018972

URL http://scitation.aip.org/content/aip/journal/jcp/122/21/10.1063/1.1917756

URL http://scitation.aip.org/content/aip/journal/jcp/101/2/10.1063/1.467771

URL http://scitation.aip.org/content/aip/journal/jcp/130/3/10.1063/1.3058433

URL http://scitation.aip.org/content/aip/journal/jcp/125/12/10.1063/1.2357119

URL http://www.sciencemag.org/content/279/5356/1525.abstract

URL http://stacks.iop.org/0965-0978/18/i=1/a=015012

URL http://www.gnu.org/software/gsl/1

URL http://scitation.aip.org/content/aip/journal/chaos/19/4/10.1063/1.3215722.
<table>
<thead>
<tr>
<th>Offset</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$P^0_4(x_i)$</td>
</tr>
<tr>
<td>1</td>
<td>$\Delta \Delta P^0_4(x_i)$</td>
</tr>
<tr>
<td>2</td>
<td>$P^0_6(x_i)$</td>
</tr>
<tr>
<td>3</td>
<td>$\Delta \Delta P^0_6(x_i)$</td>
</tr>
<tr>
<td>4</td>
<td>$P^1_4(x_i)$</td>
</tr>
<tr>
<td>5</td>
<td>$\Delta \Delta P^1_4(x_i)$</td>
</tr>
<tr>
<td>6</td>
<td>$P^1_6(x_i)$</td>
</tr>
<tr>
<td>7</td>
<td>$\Delta \Delta P^1_6(x_i)$</td>
</tr>
</tbody>
</table>

Table 2: A cache-friendly ordering of values for a single NALP interpolation node.

<table>
<thead>
<tr>
<th>Offset</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$\cos(\phi_i)$</td>
</tr>
<tr>
<td>1</td>
<td>$\Delta \cos(\phi_i)$</td>
</tr>
<tr>
<td>2</td>
<td>$\sin(\phi_i)$</td>
</tr>
<tr>
<td>3</td>
<td>$\Delta \sin(\phi_i)$</td>
</tr>
<tr>
<td>4</td>
<td>$\cos(2\phi_i)$</td>
</tr>
<tr>
<td>5</td>
<td>$\Delta \cos(2\phi_i)$</td>
</tr>
<tr>
<td>6</td>
<td>$\sin(2\phi_i)$</td>
</tr>
<tr>
<td>7</td>
<td>$\Delta \sin(2\phi_i)$</td>
</tr>
</tbody>
</table>

Table 3: A cache-friendly ordering of values for a single trigonometric function interpolation node.

<table>
<thead>
<tr>
<th>Machine</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor type</td>
<td>Intel i7-3820</td>
<td>Intel Xeon L5640</td>
<td>Intel Atom 330</td>
</tr>
<tr>
<td>Clock rate</td>
<td>3.60 GHz</td>
<td>2.27 GHz</td>
<td>1.60 GHz</td>
</tr>
<tr>
<td>Level 1 cache</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>instruction</td>
<td>4×32 KB</td>
<td>6×32 KB</td>
<td>2×32 KB</td>
</tr>
<tr>
<td>data</td>
<td>4×32 KB</td>
<td>6×32 KB</td>
<td>2×24 KB</td>
</tr>
<tr>
<td>Level 2 cache</td>
<td>2×256 KB</td>
<td>6×256 KB</td>
<td>2×512 KB</td>
</tr>
<tr>
<td>Level 3 cache</td>
<td>10 MB</td>
<td>12 MB</td>
<td></td>
</tr>
<tr>
<td>Memory</td>
<td>DDR3, 16 GB @1333MHz</td>
<td>DDR3, 16 GB @1333MHz</td>
<td>DDR2, 2 GB @667MHz</td>
</tr>
</tbody>
</table>

Table 4: Hardware details of the machines used in benchmarks.
<table>
<thead>
<tr>
<th>Test case</th>
<th>System characteristics</th>
<th>Description</th>
<th>Size (atoms)</th>
<th>Coordination number</th>
<th>Cutoff radius r_c (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td></td>
<td>fcc Cu single-crystal at 300 K</td>
<td>32000</td>
<td>12</td>
<td>3.07</td>
</tr>
<tr>
<td>1b</td>
<td></td>
<td></td>
<td>256000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td></td>
<td></td>
<td>2048000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>liquid Cu at 1900 K</td>
<td>500</td>
<td>12.16</td>
<td>3.54</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>liquid AlCu alloy at 1300 K</td>
<td>4000</td>
<td>12.73</td>
<td>3.77</td>
</tr>
<tr>
<td>4a</td>
<td></td>
<td></td>
<td>250</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td></td>
<td></td>
<td>2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4c</td>
<td></td>
<td>bcc Mo single-crystal at 300 K</td>
<td>16000</td>
<td>14</td>
<td>3.5</td>
</tr>
<tr>
<td>4d</td>
<td></td>
<td></td>
<td>128000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4e</td>
<td></td>
<td></td>
<td>1024000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4f</td>
<td></td>
<td></td>
<td>8192000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Test cases used in error analysis and benchmarks.