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Abstract  

The pro-survival Bcl-2 family member Mcl-1 is expressed in chronic lymphocytic leukemia (CLL), with 

high expression correlated with progressive disease. The spliceosome inhibitor spliceostatin A (SSA), 

is known to regulate Mcl-1 and so here we assessed the ability of SSA to elicit apoptosis in CLL. SSA 

induced apoptosis of CLL cells at low nanomolar concentrations in a dose- and time-dependent 

manner, but independently of SF3B1 mutational status, IGHV status and CD38 or ZAP70 expression. 

However, normal B and T cells were less sensitive than CLL cells (p=0.006 and p<0.001, respectively). 

SSA altered the splicing of anti-apoptotic MCL-1L to MCL-1s in CLL cells coincident with induction of 

apoptosis. Overexpression studies in Ramos cells suggested Mcl-1 was important for SSA-induced 

killing since its expression inversely correlated with apoptosis (p=0.001). IL4 and CD40L, present in 

patient lymph nodes, are known to protect tumor cells from apoptosis and significantly inhibited SSA, 

ABT-263 and ABT-199 induced killing following administration to CLL cells (p=0.008). However, by 

combining SSA with the Bcl-2/Bcl-xL antagonists ABT-263 or ABT-199, we were able to overcome this 

pro-survival effect. We conclude that SSA combined with Bcl-2/Bcl-xL antagonists may have 

therapeutic utility for CLL.  
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Introduction 

Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic lymphocytes in 

peripheral blood, bone marrow, lymph nodes and spleen. It is incurable without allogeneic 

transplantation and exhibits a high degree of heterogeneity in clinical course. Progressive disease is 

characterised by unmutated immunoglobulin heavy variable (IGHV) genes, ZAP70 and CD38 

expression.1 Genetic markers including deletions of 17p, 11q and 13q, trisomy 12 and TP53 mutations2-

4 have been known to impact prognosis for some time, however with the emergence of next 

generation sequencing, a plethora of new genetic alterations have been identified including NOTCH1 

(10-15%)5-8 and SF3B1 (10-17%)8-10 mutations which identify patients with progressive disease.8  

 

SF3B1 is one of the proteins that make up the spliceosome and regulates excision of introns from pre-

mRNA11. The catalytic core is made up of 5 small nuclear protein complexes (snRNP), U1, U2, U4, U5 

and U6. SF3B1 belongs to the U2 snRNP complex implicated in constitutive and alternative splicing 

within eukaryotic cells. Mutations in SF3B1 are generally missense mutations, predicted to generate 

altered splicing function.8 They elicit changes in the RNA splicing profile in CLL cells and can affect 

important genes such as FOXP1, ATM and TNIP1 amongst others.9, 12 Therefore targeting the 

spliceosome may be a novel therapeutic approach for the treatment of CLL. Several compounds are 

available for this purpose,13-16 including meayamycin B17, 18 and the structurally related spliceostatin A 

(SSA).16 SSA is a synthetically modified analog of the natural product FR901464,19 while meayamycin 

B is prepared by total synthesis.20 SSA binds to SF3B1 and possibly other members of the splicing factor 

3 complex and targets normal splicing in the cell, promoting alternative gene splicing, accumulation 

of unspliced mRNAs in the nucleus and a decrease in translation.16 Numerous transcripts have been 

shown to be down-modulated by SSA-altered splicing in HeLa cells.21 Furthermore, work in 

neuroblastoma cells has highlighted the importance of the spliceosome in regulating the expression 

of the pro-survival Bcl-2 family member Mcl-1.22  

 

In CLL, Mcl-1 expression correlates with stage of disease, lymphocyte doubling time, IGHV mutation 

status, ZAP70 positivity and CD38 expression.23 Furthermore, the Mcl-1 expression level and Mcl-1:Bax 

ratio correlate with resistance to fludarabine and time to first treatment.23 Mcl-1 may also be 

expressed to a greater extent in CLL lymph nodes compared with blood, where resistance to apoptosis 

is known to occur.24 The emergence of Bcl-2 inhibitors such as ABT-263 and ABT-199 are showing 

considerable promise for the treatment of CLL, however these drugs are unable to inhibit the anti-

apoptotic effects of Mcl-1 conferred by the microenvironment,25 thus identifying a known mechanism 
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of resistance to these BH3-mimetics.26-29 Several pan-Bcl-2 family inhibitors such as obatoclax, 

sabutoclax and AT-101 have been developed with low micromolar potency against Mcl-1. Obatoclax 

(a BH-3 mimetic) has been investigated in a phase I clinical trial for advanced CLL, but its effect was 

limited.30 Studies on AT-101 with rituximab showed some efficacy, resulting in partial remissions.31, 32 

Therefore, there is a need to develop alternative Mcl-1 inhibitors perhaps in combination with Bcl-

2/Bcl-xL inhibitors.  

 

In this study we showed that the SF3B1 splicing inhibitor SSA induced robust apoptosis in CLL cells 

whilst normal lymphocytes were significantly more resistant. Apoptosis was induced independently 

of SF3B1 mutation status. SSA-induced apoptosis correlated with altered MCL-1 RNA splicing and 

downregulation in Mcl-1L protein expression. IL4 and CD40L treatment conferred resistance to SSA-

induced apoptosis; however, this resistance was reversed by combining SSA with the Bcl-2 family 

inhibitors ABT-199 or ABT-263. These data suggest that microenvironmental signals in the lymph node 

may make the CLL cells that reside there resistant to SSA. Therefore combining inhibitors of both Bcl-

2/Bcl-xL and Mcl-1 may be warranted for the treatment of CLL. 

 

Methods 

Patients 

Diagnosis of CLL was according to the IWCLL-NCI 2008 criteria.3 Fifty-nine samples were obtained from 

patients diagnosed with CLL at the Royal Bournemouth Hospital and Southampton General Hospital 

following ethical committee approvals (06/Q2202/30 and 228/02/t, respectively) under the 

declaration of Helsinki (Supplementary Table 1). Malignant cell isolation and the determination of 

their purity have been described previously.33 Isolates typically contained >90% CD19+CD5+ cells. 

Normal B and T lymphocytes from peripheral blood were taken from healthy age-matched controls as 

previously described.34 Mutational screening for SF3B1 was carried out by Sanger sequencing as 

previously reported (Supplementary Table 2).8 

 

Reagents and antibodies 

Spliceostatin A was produced by Professor Yoshida (Riken Institute, Japan).16 Meayamycin B was 

produced by the Koide group (University of Pittsburgh, USA).20 ABT-199 and ABT-263 were purchased 

from Selleckchem (USA). Annexin V-FITC was produced in-house (Southampton CR-UK core protein 

production facility). Pan-caspase inhibitor Z-VAD.fmk (Z-VAD) was from Enzo Life Sciences (UK) and Q-

VD-OPh was from Calbiochem (UK). Recombinant human IL4 and CD40L were from R&D Systems (UK). 

Antibodies for flow cytometry and immunoblotting are detailed in Supplementary Table 3.  
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Cell culture 

CLL cells were cultured as previously described.35 The Burkitt’s lymphoma cell lines Ramos and Raji 

were obtained from ECACC. Cells were maintained in RPMI1640 supplemented with 10% FCS, 2mM 

glutamine, penicillin/streptomycin and 1mM sodium pyruvate (Life Technologies, UK).  

 

Cell viability assay 

Cell death was measured by flow cytometry of Annexin-V-FITC and propidium iodide (PI) labelled cells 

as previously described.36 Viable cells were negative for both Annexin-V and PI. Fifty percent inhibitory 

concentration values (IC50) were measured using CalcuSyn software (Biosoft, UK). The combination 

effect of SSA and ABT-199 or ABT-263 was calculated by comparing the expected and observed 

survival, as previously described for CLL.37, 38  

 

RT-PCR 

Total RNA was isolated with the RNeasy mini kit (Qiagen, UK) as described by the manufacturer. Total 

RNA was reverse-transcribed with M-MLV enzyme (Promega, UK). Conventional PCR was performed 

for DNAJB1, RIOK3, MCL-1, BCL-X and UBIQUITIN (Supplementary Table 3) using the GoTaq Green 

Master Mix (Promega, UK). Real time PCR was performed on a LightCycler 480 (Roche, UK) using Syto9 

(Life technologies, UK). Each sample was analysed in triplicate with UBIQUITIN as a house-keeping 

control. The relative gene expression was calculated by the 2-ΔΔCT method. Each sample was 

normalized to its non-treated matched sample. 

 

Immunoblotting 

Immunoblot analysis was performed as previously described.36 Proteins were separated on 12% 

polyacrylamide gels (LifeTechnologies, UK). Blots were probed with primary antibodies 

(Supplementary Table 2) and secondary antibodies (Dako, UK). Blots were visualized with ChemiDoc-

It Imaging System (UVP, UK) and densitometry performed with Image J.  

 

Nucleofection 

Nucleofection was performed with the Amaxa Cell Line Nucleofector Kit V (Lonza, UK), according to 

the manufacturer’s instructions. Cells were nucleofected with the empty vector pcDNA3 (mock) or 

pcDNA3-9E10-Mcl-1L plasmid, and were selected in complete media with 1mg/ml geneticin (Life 

Technologies, UK). Clones were evaluated for Mcl-1L overexpression after 14 days. 
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Statistical analysis 

The normal distribution of the samples was tested by D'Agostino-Pearson test. Statistical differences 

between groups were evaluated by Student's t test or ANOVA when samples were normally 

distributed or by the Mann-Whitney U or Kruskal-Wallis test when samples were not. Correlation 

analysis was carried out using Pearson or Spearman test depending on the normality of the samples. 

Statistical analysis was performed using GraphPad Prism v6 (GraphPad Software Inc). 

 

Results 

SSA induces caspase-dependent apoptosis of CLL cells in a dose- and time-dependent manner 

CLL samples (n=59) were treated with SSA (2.5-20nM) and cell death assessed by Annexin-V/PI staining 

and immunoblotting over 24h. SSA increased Annexin-V binding (Figure 1A) and cleaved caspase-3 

and PARP (p89) (Figure 1B) within 24h at low nanomolar concentrations. CLL cell death was caspase-

dependent since treatment with Z-VAD (Figure 1B-C) and QVD (Supplementary Figure 1A-B) 

significantly protected against SSA-induced cell death even at the highest concentrations (p=0.0027 

and p=0.034 at 10nM and 20nM, respectively). Moreover SSA induced substantial apoptosis within 

12-24h in a dose dependent manner (Figure 1D).  

 

Sensitivity to SSA is independent of SF3B1 mutational status  

Due to the incidence of SF3B1 mutations in CLL,8, 10 we compared the effect of SSA on 13 patients 

carrying a mutation in this gene  and 42 wild-type patients. The SF3B1 mutations observed reflected 

the spectrum reported previously (Supplementary Table 2).8 We confirmed that the splicing of ATM, 

FOXP1 and TNIP1 were altered in these samples as previously described9, 12 (Supplementary Figure 2A-

C). However, no significant difference between the mean SSA IC50 of wild-type (5.5nM) and SF3B1 

mutated samples (4.9nM; p=0.516) was observed (Figure 2A). In addition, SSA appears equally 

effective at inducing substantial apoptosis independently of IGHV mutational status, ZAP70 or CD38 

expression, and genetic abnormalities [del(13q), Tri12, del(11q) and del(17p)] (Figure 2B-E, 

Supplementary Figure 3A). To determine whether SF3B1 mutations conferred resistance to other 

drugs, we treated 8 samples with SF3B1 mutations and 18 wild-type patients with chlorambucil (CHL). 

Samples with SF3B1 mutations were significantly (p=0.0016) more resistant to CHL than wild-type 

patients (Supplementary Figure 3B-C). 

 

Normal B and T cells are less sensitive to SSA  

Normal B (CD19+) and T (CD3+) lymphocytes from control age-matched healthy donors (HD) were more 

resistant to SSA than CLL cells, with an IC50 of 12.1nM (p=0.003) and 61.7nM (p<0.001), respectively 
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(Figure 2F). We also selected three CLL samples in which the proportion of CD5+CD19+ (B-CLL) to total 

lymphocytes was lower than 60% cells and analysed the effect of SSA in the CLL cells (CD19+CD5+CD3-), 

B-cells (CD19+CD5-CD3-) and T-cells (CD3+CD5+CD19-). As above, T cells from CLL patients were 

significantly more resistant than CLL cells (~60nM; p=0.029). However, we only observed a trend for 

increased resistance of normal B cells to SSA (16.9nM) compared to CLL (6.67nM) in these patients 

(Figure 2G).  

 

SSA induces changes in MCL-1 splicing 

To assess the effect of SSA on splicing within CLL cells, we studied the genes DNAJB1 and RIOK3 in 

which other splicing inhibitors have been shown to induce intron retention (larger RT-PCR products). 

SSA induced a dose-dependent increase in the unprocessed mRNA species compared to the mature 

mRNA (Figure 3A). Therefore, SSA was shown to decrease the capability of the CLL cells to correctly 

process pre-mRNAs. The siRNA-mediated knockdown of SF3B1 induces changes in the splicing of MCL-

1 and BCL-X in solid tumors,39 so, we investigated the effect of SSA on MCL-1 and BCL-X in CLL cells. 

SSA decreased MCL-1L and increased MCL-1s isoforms in a dose-dependent manner even in the 

presence of Z-VAD (Figure 3B), confirming that the accumulation of MCL-1s was not an indirect result 

of caspase cleavage and cell destruction. In contrast, BCL-X showed no altered splicing following SSA 

treatment (Figure 3C). SSA-induced altered splicing of MCL-1 occurred in a time- and dose-dependent 

manner (Figure 3D-F), occurring as early as 6h after 5nM SSA administration and immediately prior to 

CLL apoptosis. Importantly, MCL-1 splicing occurred to the same extent in both wild-type and SF3B1 

mutated samples (Supplementary Figure 4A-B). In addition, the changes in MCL-1 splicing were 

specific to SSA, as other drugs used to treat CLL did not affect this gene (Supplementary Figure 4C). 

 

Altered MCL-1 splicing reduces Mcl-1L protein expression 

Next, we evaluated what impact altered splicing of MCL-1 mRNA had on protein expression and 

whether SSA regulated expression of other Bcl-2 family members. SSA caused a marked reduction in 

Mcl-1L protein expression, which was equivalent in the presence of Z-VAD, indicating this decrease 

was not due to proteolytic cleavage after caspase activation. In contrast, Bcl-2 and Bcl-xL showed no 

consistent change in expression (Figure 4A). The pro-apoptotic BH3-only protein Puma decreased 

alongside Mcl-1L whereas Noxa increased in 5/7 samples. As such, Mcl-1L reduction was the only 

consistent Bcl-2 family protein change observed and coincided with apoptosis, as measured by PARP 

cleavage (Figure 4A). A summary of the effect of SSA on Mcl-1L protein expression is presented in 

Figure 4B.The decrease in Mcl-1L protein started at 6h with 10nM SSA, coincident with the decrease 

in mRNA levels (Figure 4C). To indicate whether the reduction in Mcl-1L induced by SSA may be due to 
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inhibition of SF3B1 we used a second inhibitor meayamycin B and showed similar results (Figure 4D). 

Finally, we correlated Mcl-1L and Bcl-xL expression at a basal level with sensitivity to SSA. Mcl-1L but 

not Bcl-xL expression inversely correlated with increased IC50 values (p=0.045; Supplementary Figure 

5A-C). 

 

Overexpression of Mcl-1L protects Ramos cells from SSA-induced apoptosis 

To confirm that Mcl-1L protein reduction was responsible for the SSA-induced apoptosis, we 

attempted to overexpress Mcl-1L directly. These studies are difficult to perform in CLL cells due to low 

transfection efficiency and/or high background apoptosis following nucleofection. Therefore, we 

undertook these studies in Ramos B cells in which we could more readily manipulate Mcl-1 protein 

expression. We first showed that SSA was able to induce apoptosis of Ramos cells with a comparable 

IC50 to that of CLL cells (4.68nM) (Figure 5A-B), in a dose-, time- and caspase-dependent manner 

(Figures 5B-C). We also showed that SSA downregulated Mcl-1L expression in Ramos cells, akin to that 

in CLL (Figure 5A). We then nucleofected Ramos cells with plasmids containing a Myc-tagged Mcl-1L 

protein or the empty plasmid (mock) and selected three stable clones which overexpressed Myc-

tagged Mcl-1L that is unable to be alternatively spliced by SSA (Figure 5D). Importantly, these clones 

were selected to reflect levels of ectopic Mcl-1L that could be considered physiological. Ramos cells 

which overexpressed Mcl-1L still underwent apoptosis but were significantly less sensitive to SSA 

induced killing at the concentrations investigated (Figure 5E-F). In contrast to CLL, SSA also strongly 

reduced Bcl-xL expression in Ramos cells, potentially explaining why they still undergo some apoptosis 

in the presence of sustained Mcl-1L. To explore whether Bcl-xL levels could help explain differential 

sensitivity to SSA, a second B cell-line, Raji, was examined. In Raji cells, SSA again reduced Mcl-1L 

expression in a dose dependent manner but was unable to promote extremely high levels of apoptosis 

even at high doses (20-80nM). However, in contrast to Ramos cells Bcl-xL levels in Raji cells remained 

high in the presence of SSA, (Supplementary Figure 6), supporting the role of Bcl-xL in inhibiting SSA 

toxicity. 

 

SSA-induced apoptosis is reduced in the presence of microenvironment support 

Microenvironment signals are known to confer drug resistance to CLL cells and influence Mcl-1L 

expression.36, 40-42 In order to analyse the potential effect of these signals on SSA-induced apoptosis, 

we tried to mimic lymph node conditions in vitro. T cells are abundant in CLL lymph nodes,43 therefore 

we treated CLL cells with CD40L plus IL4, mimicking T cell help. This combination caused the expected 

increase in phosphorylated STAT6, an indicator of IL4 signalling, phosphorylated IκBα, an indicator of 

NFκB activation and accumulation of the NFκB downstream targets Mcl-1 and Bcl-xL (Figure 6A). 
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IL4/CD40L treatment doubled the expression of Mcl-1L, whilst Bcl-xL increased further, up to ~3.5-fold 

compared to the control. This increase in Mcl-1L and Bcl-xL significantly correlated with resistance to 

SSA (p=0.008) (Figure 6B). However SSA was still able to promote MCL-1 splicing (Figure 6C). These 

data again suggest that increased Bcl-xL expression by IL4/CD40L is associated with resistance to SSA. 

 

SSA in combination with ABT-199 or ABT-263 synergises to overcome microenvironment signals  

To confirm that the reduced sensitivity to SSA was a result of increased Bcl-xL, we next evaluated SSA 

in combination with the BH3-mimetic ABT-263, which inhibits Bcl-2, Bcl-xL and Bcl-w but not Mcl-1, or 

ABT-199 which preferentially targets Bcl-2. These compounds alone or in combination were evaluated 

in CLL cells treated with (Figure 7) or without IL4/CD40L (Supplementary Figure 7). SSA, but not ABT-

199 or ABT-263, induced a dose-dependent reduction of Mcl-1L whilst Bcl-2 and Bcl-xL expression did 

not significantly change (Figure 7A. Supplementary Figure 7A). In the absence of IL4/CD40L, all 

compounds induced efficient dose-dependent apoptosis (Supplementary Figure 7A-B). However, any 

combination effects were difficult to discern due to the substantial amount of apoptosis with the 

compounds alone (Supplementary Figure 7B). In contrast, following IL4/CD40L stimulation, CLL cells 

underwent significantly less SSA- and ABT-199-induced cell death, whilst becoming completely 

resistant to ABT-263 (Figure 7B). Nevertheless, the combination of SSA with ABT-263 or ABT-199 

significantly augmented CLL apoptosis (Figure 7A-B). Using the fractional 2-drug analysis method 

previously described for CLL,38, 44 we evaluated the synergistic interaction between SSA and ABT 

compounds. Values above the diagonal line represent additive interaction whilst those under the line 

are synergistic. Under basal conditions, the drug combinations presented additive or synergistic 

effects in most of the patients (Supplementary Figure 7C-D). In the presence of IL4/CD40L, a strong 

synergistic relationship was observed  following treatment with SSA and ABT-199 (Figure 7C) or ABT-

263 (Figure 7D). It was noteworthy that the combination of SSA and ABT-199 or ABT263 also presented 

marked synergistic effects on 17p deleted samples after IL4/CD40L stimulation (Supplementary Figure 

8). These data suggest that SSA in combination with Bcl-2/Bcl-xL inhibitors may be a useful strategy for 

targeting cells receiving microenvironmental signals within the protective lymph node niche.  

 

Discussion 

Solid and haematological malignancies commonly overexpress anti-apoptotic Bcl-2 family members, 

allowing them to evade apoptosis.45, 46 Whilst compounds have been developed to mimic BH3 proteins, 

many of these target Bcl-2, Bcl-xL and Bcl-w with little to no effect on Mcl-1.45, 47 It is known that 

targeting all pro-survival members is critical for efficient apoptosis48 and CLL is known to have elevated 

levels of Bcl-2, Bcl-xL and Mcl-1 in lymph nodes.24 Furthermore, Mcl-1 expression is known to correlate 
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with progressive disease, resistance to chemotherapy and time to first treatment23, therefore 

overcoming Mcl-1 is likely to be critical for effectively treating CLL.  

  

In this study, SSA, an analogue of FR901464 that inhibits the SF3B1 protein, induced altered splicing 

and down-regulation of Mcl-1L, which was concordant with caspase-dependent apoptosis of CLL cells 

at low nanomolar concentrations. In agreement with the key role of Mcl-1 in regulating CLL survival, 

we saw an inverse correlation between Mcl-1L expression and sensitivity to SSA in CLL samples. 

Interestingly, 2- and 14-fold higher concentrations of SSA were required to kill normal B and T cells, 

respectively. This sensitivity profile indicates that B cells and particularly tumor B cells are more 

sensitive to spliceosome interference than T cells. The molecular basis behind this is unclear but since 

Mcl-1 and Bcl-xL are essential for T cell survival,49 resistance may relate to Bcl-xL overexpression or 

differential splicing by SSA in B and T cells.  

 

SSA-induced killing of CLL cells was independent of the mutational status of SF3B1 and IGHV, as well 

as, CD38 and ZAP70 expression. SF3B1 mutations have been shown to be present at sub-clonal levels,50 

however all our SF3B1 mutant samples exhibited deregulated splicing supporting the notion that the 

SF3B1 mutant protein in these cases has a functional impact. The equal sensitivity of CLL samples to 

SSA indicates a common mechanism of cell death irrespective of the size of the SF3B1 mutated clone 

within the population. Therefore further correlations between SSA sensitivity and SF3B1 mutant sub-

clonal levels from deep-sequencing data will be required to fully elucidate this relationship and these 

studies are ongoing. Furthermore, we showed that SF3B1 mutated samples have a significantly greater 

IC50 for chlorambucil than WT samples. These data suggest that SF3B1 mutations may confer reduced 

sensitivity to drug induced apoptosis supporting previous reports with fludarabine.51  

 

The binding of SSA to SF3B1 inhibits pre-RNA splicing16 but also induces changes in alternative 

splicing.52 We have demonstrated in CLL cells that SSA promotes alternative-splicing of MCL-1. Laetsch 

et al. observed similar results in neuroblastoma cell lines.22 A reduction of SF3B1 protein by siRNA in 

HeLa cells resulted in a similar increase in the MCL-1S:MCL-1L ratio39, however in neuroblastoma cell 

lines SF3B1 knockdown increased the production of MCL-1L modestly and MCL-1S markedly.22 

Together these data hint to a complex regulation of MCL-1 which likely varies in a cell and context 

dependent manner. In resting CLL cells, MCL-1L is the main isoform produced by alternative splicing. 

After SSA treatment, RT-PCR analysis indicated a preferential alternative splicing towards the MCL-1S 

isoform which resulted in a downregulation of the anti-apoptotic Mcl-1L protein. Previous studies have 

indicated that Mcl-1S might have pro- rather than anti-apoptotic properties.53 We saw no evidence for 
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the generation of mature Mcl-1S protein before or after SSA treatment in CLL or Ramos cells even in 

the presence of Z-VAD, suggesting that the Mcl-1s form is not stable and/or biologically functional in 

these cells. Supporting our hypothesis that Mcl-1L reduction is the primary reason for the apoptosis 

induced by SSA, we saw tight correlation between the reduction in MCL-1L transcripts, protein 

expression and apoptosis. Furthermore, overexpression of unspliceable Mcl-1L in Ramos cells partially 

protected from SSA-induced apoptosis. This incomplete protection may be due to the fact that SSA 

also downregulated Bcl-xL, in Ramos cells (but not in CLL or Raji cells). Bcl-xL is not highly expressed in 

CLL cells in the blood, but is significantly expressed at higher levels in the lymph nodes.24 In addition, 

our current observations using IL4/CD40L to mimic this microenvironment suggest that SSA alone may 

be less effective at treating CLL cells in the lymph node niche. These data are supported by results 

with Raji cells, which retained Bcl-xL expression and were relatively insensitive to SSA-induced 

apoptosis, although Mcl-1 was spliced and down-regulated. Another FR901464 analogue, meayamycin 

B, induced the same reduction on Mcl-1L expression (this study) and non-small cell lung cancer and 

head and neck cancer cell lines.18, 54 Although, differential and off-target effects cannot be ruled out 

completely, the similar responses with two structurally different compounds suggests that cell death 

is regulated by altered MCL-1 splicing. 

 

In our study, IL4/CD40L stimulation increased the expression of Bcl-xL and Mcl-1L and reduced the 

sensitivity of CLL cells to SSA. One explanation for this is that the induction of anti-apoptotic proteins 

was higher in IL4/CD40L-stimulated cells, indeed the levels of Bcl-xL appeared higher with IL4/CD40L 

treatment compared to the control. Several Bcl-2 inhibitors have been developed in the last 20 years, 

including the series of BH3-mimetics pioneered by Abbot.55 ABT-737, ABT-263 and ABT-199 reflect the 

best developed exponents of this approach and have shown promising results as single agents or in 

combination with other cytotoxic agents.56 The clinical trial of ABT-263 in CLL demonstrated rapid and 

profound reduction of CLL cells in the blood, whilst bone marrow biopsies showed evidence of residual 

CLL cells.26 In that study, resistance to ABT-263 correlated with higher Mcl-1 expression levels.26 

However, another study demonstrated that the resistance of CLL cells to ABT-737 was due to Bcl-2A1 

and not Mcl-1 expression.29, 57  

 

Under IL4/CD40L stimulation, ABT-199 or ABT-263 alone failed to induce significant apoptosis in CLL 

cells, whilst its combination with SSA produced a dramatic reduction in cell viability. Combinations of 

the BCR kinase inhibitors (ibrutinib or idelalisib) with Bcl-2 family inhibitors (ABT-199) have been 

proposed, since ibrutinib and idelalisib cause an efflux of CLL cells out of the lymph nodes into the 

blood where they can be readily killed by ABT-199. However, patients treated with BCR kinase 
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inhibitors alone still have residual disease in their nodes. We therefore propose that a combination of 

ABT-199 with SSA may be a more successful approach for targeting residual disease in the lymph nodes 

in order to provide complete and durable responses for this currently incurable disease. Whilst costs 

preclude our investigation of SSA and ABT-199 or ABT-263 either alone or in combination in vivo, 

previous studies have been performed with meayamycin B and FR901464 alone and shown some 

antitumor effect in vivo, further suggesting their promise for use as effective new therapies.59, 60 
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Figure Legends 
 
Figure 1. SSA induces apoptosis in CLL cells in a dose- and time-dependent manner.  
CLL cells were incubated with vehicle control or 2.5-20nM SSA for 24h. (A) Apoptosis was quantified 
by Annexin V/PI staining and flow cytometry. (B) CLL cells were treated as above but in the presence 
or absence of Z-VAD.fmk. Immunoblotting was performed for cleaved caspase-3 and its substrate 
PARP with Hsc70 as a loading control. A representative blot of 6 patients is shown. (C) CLL cells (n=6) 
were incubated with SSA in the presence or absence of Z-VAD.fmk. Apoptosis was measured by 
Annexin V/PI and the number of viable cells remaining normalized to untreated control samples. (D) 
CLL cells were incubated with (5, 10 or 20nM) or without SSA for 6, 12 or 24h. Cell viability was 
assessed by Annexin V/PI (n=5) and normalized to untreated samples. Bars represent mean ± SD. *: 
P<0.05; **: P<0.01; ***: P<0.001. 
 
Figure 2. Sensitivity of CLL and normal B and T cells to SSA-induced apoptosis 
Cell viability assays were used to generate IC50 values for CLL samples treated with SSA (2.5-40nM SSA) 
for 24h. The IC50 values were plotted for (A) SF3B1 mutated (n=13) and wild-type samples (n=42), (B) 
mutated-IGHV (M-CLL; n=26) and unmutated-IGHV (U-CLL; n=29), (C) ZAP70+ (>30%) and ZAP70- 
(<30%), (D) CD38+ (>30%) and CD38- (<30%), (E) genetic abnormalities del(13q) (n=21), Tri12 (n=5), 
del(11q) (n=11) and del(17p) (n=8) and wild-type (n=10). (F) Cell viability assays were performed in 
healthy age-matched donors (n=5). Apoptosis was evaluated by Annexin V/PI staining following gating 
on the normal B (CD19+) or T (CD3+) lymphocyte  populations. A representative cohort of CLL samples 
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is shown for comparison. (G) CLL, B and T cells from individual CLL patients (n=3) were compared in 
the same assay after staining with CD19, CD5 and CD3 to identify CLL (CD19+CD5+CD3-), B (CD19+CD5-

CD3-) or T cells (CD19-CD5+CD3+). Lines represented mean ± SD.  *: P<0.05; **: P<0.01; ***: P<0.001. 
 
Figure 3. SSA treatment causes intron retention and modifies MCL-1 RNA splicing in CLL cells.  
(A) CLL samples were incubated with 2.5-20nM SSA for 24h and assessed for intron retention by PCR 
for DNAJB1 and RIOK3 in the presence (+RT) or absence (-RT) of reverse transcriptase (RT) (n=4). mRNA 
species with intron retention are highlighted by (»).MCL-1 (B) and BCL-X (C) splice variants analysed 
by RT-PCR after SSA treatment in the presence or absence of Z-VAD.fmk (n=6). (D) The effect of SSA 
on MCL-1 splicing was assessed in a dose- and time-dependent manner by RT-PCR (D) and real-time 
PCR (E-F). The relative expression of MCL-1L and MCL-1S was normalized to the control sample (0nM 
SSA) at each time point. All samples were assessed in triplicate and represent the mean ± SD. 
UBIQUITIN was used as house-keeping gene. *: P<0.05; **: P<0.01; ***: P<0.001.  
 
Figure 4. SSA/Meayamycin B treatment reduces Mcl-1L protein expression 
Immunoblotting was performed on CLL cells treated in a (A, B) dose- (24h) and (C) time-dependent 
manner (10nM) with SSA as indicated and various pro- and anti-apoptotic proteins investigated. CLL 
cells in (A) were also treated in the presence or absence of Z-VAD.fmk. (B) Quantitation of Mcl-1L 
protein expression normalised to Hsc70 in CLL samples treated with SSA (n=7); bars represent mean 
± SD. (D) CLL cells were treated with Meayamycin B in a dose dependent manner and immunoblotting 
was performed for PARP and Mcl-1 . Hsc70 was used as a loading control. *: P<0.05; ***: P<0.001  
 
Figure 5. Mcl-1L overexpression in Ramos cell lines induces resistance to SSA.  
(A) Ramos cells were treated with SSA (1.25-10nM) for 24h in the presence or absence of Z-VAD.fmk 
(25µM) and PARP cleavage, Mcl-1L and Bcl-xL expression was investigated by immunoblotting. Hsc70 
was used as a loading control for immunoblotting. (B) Ramos cells were incubated as above and 
viability assessed with Annexin V/PI by flow cytometry, plotted as the mean ± SD of 4 independent 
experiments. (C) Ramos cells were exposed to 5nM SSA for 6, 12, 18 and 24h. Data represent the mean 
± SD of 4 independent experiments. (D) Ramos cells were nucleofected with an empty vector (Mock) 
or a vector containing the sequence for Mcl-1L tagged with myc (Mcl-1-tag myc). After selection, 
cellular extracts were subjected to immunoblot analysis for Mcl-1L. (E) Annexin V/PI was used to 
quantify cell viability following SSA treatment for 24h in Ramos cells overexpressing Mcl-1L or vector 
control. Raw data from a representative experiment is shown.(F) Summary of 3 independent 
experiments where data is represented as mean ± SD. **: P<0.01; ***: P<0.001 .  
 
Figure 6. The effect of microenvironment signals on SSA-induced apoptosis.  
CLL cells were treated with IL4 (10ng/ml) and/or CD40L (300ng/ml either alone or in combination, in 
the presence or absence of SSA (5-20nM). (A) Immunoblotting for PARP, phosphorylated STAT6 
(pSTAT6), phosphorylated I𝜅Bα (pI𝜅Bα), Mcl-1L, Bcl-xL, Bcl-2 and Hsc70, as a loading control, were 
performed. (B) Annexin V/PI analysis was quantified following 24h of SSA treatment and the 
percentage of viable cells determined. (C) PCR was performed to investigate whether MCL-1 
underwent alternative splicing following 5-10nM SSA treatment in the presence of IL4 and CD40L 
alone or in combination. Mean values are shown. *: P<0.05; **: P<0.01. 
 
Figure 7. SSA in combination with the Bcl-2 family inhibitors ABT-199 or ABT-263 augments 
apoptosis in CLL cells following IL4/CD40L treatment 
CLL cells were treated with IL4 and CD40L for 6h. The cells were subsequently treated with SSA, ABT-
199, ABT-263 or their combinations at a 1:1 ratio for 24h. (A) Immunoblotting was performed and 
analysed for the expression of PARP, Mcl-1L, Bcl-xL, Bcl-2 and Hsc70 as a loading control. (B) Annexin 
V/PI analysis was performed and the percentage of viable cells calculated. Data represent mean ± SD 
of seven independent experiments. (C) Synergistic interactions were evaluated at a 1:1 ratio between 
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SSA and ABT-199 as indicated. (D) Synergistic interactions were evaluated at a 1:1 ratio between SSA 
and ABT-263. Points below the diagonal line represent synergistic interactions, above the line are 
additive. **: P<0.01; ***: P<0.001. 
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