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Abstract— Characteristics of photonic crystals are very 

sensitive to fabrication-induced disorders due to scattering losses. 

Here, we propose to use atomically flat silicon (111) surfaces, 

defined by anisotropic wet etching. We theoretically examined 

the impacts of the surfaces on the novel designs of photonic 

crystals. 

I. INTRODUCTION 

Photonic crystals (PhCs) provide the ability to control 

electromagnetic waves in the sub-wavelength regime through 

the generation of photonic band gaps (PBG) [1]. By using 

PhCs, we can reduce the footprint of a photonic device, while 

minimizing the energy consumption down to the order of 

fJ/bit, offering the potential realization of all-optical switches 

and interconnections based on existing CMOS technologies 

[2]. However, fabrication of such nano-scale structures still 

remains a practical challenge, as their performance is sensitive 

to structural disturbances, such as line-edge roughness [3], [4]. 

As a consequence, it is difficult to fabricate PhCs with 

sufficient manufacturing tolerance ready for mass production. 

In this paper, we propose a novel 2-dimensional PhC 

design using silicon (Si) (111) planes that can be fabricated 

through anisotropic wet etching. The Si (111) planes have a 

much slower etching rate in anisotropic wet etchants 

compared to other planes, thus capable of producing 

atomically flat interfaces with reduced roughness [5], [6]. By 

using Si (111) surfaces to construct PhCs, we can also expand 

the manufacturing tolerance against processing, since the 

etching is self-limited after defining the Si (111) surfaces [6]. 

Here, we study the impacts of Si (111) surfaces on the PBG 

generation and compare the results with conventional circular 

PhCs. We also review the impact of the surfaces on the PhC’s 

optical confinement capabilities. 

Fig. 1. Schematic of 2-dimensional PhCs with parallelogram lattice points on 

SOI. Examples of square lattice silicon rods (right) and air holes (left). 

Fig. 2. Simulated photonic crystals. (a) Circular air holes (white) on silicon 

slab in triangular lattice, (b) circular silicon pillars (grey) on air in triangular 

lattice tilted by 70.5°, (c) parallelogram air holes on silicon slab in square 
lattice, and (d) parallelogram silicon rods on air in square lattice titled by 

70.5°. 

II. PHOTONIC CRYSTAL DESIGN 

We assume the Silicon-On-Insulator (SOI) substrate with 

the Si (110) surface on the top layer. If we employ anisotropic 

alkali wet etching, we can define two surfaces with atomically 

flat Si (111) interface perpendicular to the substrate (Fig. 1). 

One surface is parallel perpendicular to the <112> direction, 

while the other surface is perpendicular along to the <110> 

direction. 

We propose a novel PhC that makes use of the these two 

Si (111) surfaces, forming parallelograms with interior angles 

70.53° and 109.47° (Figs. 1 and 2). To simulate our PhC, we 

consider a SOI wafer with the thickness of 300 nm. We 

investigate the transverse electric (TE) band structure for air 

holes in SOI slab and the transverse magnetic (TM) 

polarization band structure for Si pillars for various lattice 

structures (Table I). For both PhCs, we examined a square and 

a triangular lattice. We also examined a tilting of the square 

lattice by 70.5° to make the symmetry of the lattice the same 

as that of the parallelogram (Fig. 2 (d)) [7]. For completeness, 

we also simulated a tilted triangular lattice (Fig. 2b). As a 
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Fig. 3. Band structure (a) and gap map (b) of triangular lattice air holes 

PhCs with parallelogram lattice points. The shaded region in the band 
structure indicates a PBG. Red in the gap map indicates TE PBGs. 

 

reference, we simulated conventional PhCs with circular 

lattice points. 

III. BANDGAP SIMULATION RESULTS 

We simulated the PhCs using RSoft BandSOLVE with the 

plane wave expansion and characterized the PBG between the 

first and the second band. We simulated band structures for 

various filling fractions in each lattice structure. In a PhC with 

circular lattice points, the band structures are described by the 

ratio, l/a, where l is the diameter and a is the lattice constant 

(Fig. 2a). On the other hand, in a PhC with parallelogram 

lattice points, l is defined by the width of the parallelogram 

(Fig. 2c). We obtained the optimum ratio to find out the 

largest PBG (Δω) for each lattice structure. Fig. 4 compares 

the change in Δω between all lattice configurations as the l/a 

ratio is varied. We also obtained the frequency at the center of 

the gap, ω0. A summary of the results can be seen in Table I.  

We then characterized the structures using the gap-to-

midgap ratio, ωR = Δω/ω0. In the case of square lattices, tilting 

the lattice of the PhC strucutre by 70.5° enlarges the Δω and 

enhances ωR. This is expected from the parallelogram PhCs 

[7], but it is also true for circular lattice. In the case of 

triangular lattices, on the other hand, the tilting does not 

increase the ωR, presumably because the tilting angle does not 

agree with the triangular lattice. If we compare ωR among 

lattice types, the triangular lattice produces the largest ωR, 

irrespective of whether the lattice points are made of holes or 

pillars for both circular and parallelogram lattice points [7].  
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Fig. 4. Comparison of gap width versus ratio l/a between various lattice arrangements with circular lattice points for (a) air holes and (b) silicon pillars and 
parallelogram lattice points for (c) air holes and (d) silicon pillars. 

 

  

Fig. 5. Band structure (a) and gap map (b) of triangular lattice silicon pillars PhCs with parallelogram lattice points. The shaded region in the band structure 
indicates a PBG. Blue in the gap map indicates TM PBGs. 

 
In the case of air holes, lattices with parallelogram lattice 

points produce comparable ωR to those with circular lattice 

points. Square and tilted triangular lattices even show larger 

ωR. Among all air holes configurations, the largest ωR of 0.426 

with a TE gap width of 0.172(2πc/a) and a gap center at 

0.404(2πc/a) appears in the case of the triangular lattice with 

circular lattice points. The same lattice arrangement with 

parallelogram lattice points yields a ωR of 0.388 with a TE gap 

width of 0.153(2πc/a) and a gap center at 0.394(2πc/a), which 

is the largest value among all lattices with parallelogram 

lattice points.  
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TABLE II.  PARAMETERS CHARACTERIZING THE H0 CAVITY 
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Similar results were observed from the silicon pillars. The 

differences between ωR between two lattice points are less 

significant compared to air-holes based lattices. Among the 

parallelogram lattice points configurations, the triangular 

lattice with parallelogram lattice points produces the highest 

ωR of 0.317 with a TM gap of 0.144(2πc/a) and a gap center at 

0.455(2πc/a). This does not differ much from the same lattice 

with circular lattice points, which yields a ωR of 0.324 with a 

TM gap of 0.146(2πc/a) and a gap center at 0.452(2πc/a).  

As shown above, band structures of PhCs with 

parallelograms are not drastically different from those of the 

conventional PhCs, suggesting the possibility of integrating Si 

(111) surfaces into PhCs without compromising performance. 

It must also be noted that the simulations are made without 

taking into account the reduced sidewall roughness of the 

PhCs with parallelograms. We may therefore expect even 

more notable differences in ωR upon the smoothing of the 

sidewalls. 

IV. CAVITY SIMULATION RESULTS 

To demonstrate the optical confinement using our PhCs, 

we introduced a H0 cavity into the triangular air holes lattice 

[1]. The H0 cavity is formed by shifting two adjacent lattice 

points in the center outward in the x-direction by a distance d 

[8]. In our simulations, we fixed d to 0.12a. The width of the 

parallelogram lattice points and the lattice constant were 

optimized to achieve a resonant wavelength of 1550 nm inside 

the cavity. We simulated the structure using RSoft FullWAVE 

with the finite-difference time-domain approach and computed 

the quality factor, Q, and the modal volume, V. We used the 

ratio, Q/V, which is proportional to the Purcell factor [1] to 

describe the strength of the optical confinement. As a 

reference, we also simulated the same cavity in the triangular 

lattice PhC with circular air holes, as summarized in Table II.  

The lattice with the circular lattice points produced a Q 

value of ~21,000, which is over five times larger than the 

value of the lattice with the parallelogram lattice points 

(~4,000). Based on the Q/V values, the circle-based lattice 

seems to exhibit stronger optical confinement capabilities. 

Even though the ωR of these two lattices only differ by 0.038, 

the impacts on the Q values were significant. This would be 

attributed from the field distributions as shown in Table II. For 

circular lattice points, the monopole inside the cavity of the 

lattice with circular lattice points was more symmetrically 

distributed compared with that of the parallelogram lattice 

points. Due to the slanted sides of the parallelogram, the 

confined field inside the lattice is slightly tilted. The 

asymmetric geometry of the cavity slightly deforms the 

monopole and responsible for the additional loss mechanisms.  

V. CONCLUSION 

We theoretically examined 2-dimensional PhC structures 

using lattices that can be defined by Si (111) planes. We have 

shown that structures with parallelogram lattice points will 

have gap-to-midgap ratios comparable with conventional 

circular lattice points. Among lattices with parallelogram 

lattice points, the highest gap-to-midgap ratio of 0.388 was 

obtained from the triangular air holes configuration. We have 

also shown that the Q value of approximately 4,000 would be 

achievable. Therefore, the use of Si (111) planes for PhCs will 

be suitable for applications, which will not require the 

extremely high-Q values. For example, we can apply these 

PhCs for the grating coupler with the atomically flat low loss 

waveguide [9]. 
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