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SUMMARY

Objective: To determine whether altered IL8 methylation status is associated with increased expression
of IL8 in human osteoarthritic (OA) chondrocytes.
Methods: IL8 expression levels and the percentage CpG methylation in human chondrocytes were
quantified by qRT-PCR and pyrosequencing in OA patients and in non-OA osteoporotic controls. The
effect of CpG methylation on IL8 promoter activity was determined using a CpG-free vector; co-
transfections with expression vectors encoding nuclear factor-kappa B (NF-«kB), AP-1 and C/EBP were
subsequently undertaken to analyse for IL8 promoter activity in response to changes in methylation
status.
Results: IL8 expression in OA patients was 37-fold higher than in osteoporotic controls. Three CpG sites in
the IL8 promoter were significantly demethylated in OA patients. Multiple regression analysis revealed
that the degree of methylation of the CpG site located at —116-bp was the strongest predictor of IL8
expression. In vitro DNA methylation was noted to decrease IL8 promoter basal activity. Furthermore, NF-
kB, AP-1 and C/EBP strongly enhanced IL8 promoter activity whilst DNA methylation inhibited the effects
of these three transcription factors.
Conclusions: The present study demonstrates the key role of DNA methylation status on the expression
of IL8 in human chondrocytes. We demonstrate a quantitative relationship between percentage
methylation and gene expression within clinical samples. These studies provide direct evidence linking
the activation of IL8, DNA demethylation and the induction of the OA process with important therapeutic
implications therein for patients with this debilitating disease.
© 2015 The Authors. Published by Elsevier Ltd and Osteoarthritis Research Society International. This is
an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

the blood to the affected site; a process mediated by chemokines,
small 8—12 kD chemotactic proteins’.

Osteoarthritis (OA) remains, currently, the most frequent cause
of pain, deformity and dysfunction in the elderly population?.
Although the pathogenesis of OA is far from clear, involvement of
inflammation in the development and progression of OA has been
implicated®*. Indeed, epidemiological studies indicate a significant
association between OA disease progression and the presence of
inflammatory synovium®®. Furthermore, a notable finding of
inflammation in the tissue is the recruitment of neutrophils from

* Address correspondence and reprint requests to: R.O.C. Oreffo, Bone and Joint
Research Group, MP 887, Institute of Developmental Science, University of South-
ampton Medical School, Tremona Road, Southampton, SO16 6YD, UK. Tel: 44-(0)23-
81-208502; Fax: 44-(0)23-81-205255.

E-mail address: roco@soton.ac.uk (R.0.C. Oreffo).
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Interleukin 8 (IL-8), also named CXCL-8, is an inflammatory
chemokine present under pathological conditions. IL-8, produced
by human OA chondrocytes, is an important mediator in the
pathophysiology of OA%~!" including promotion of a number of
pathogenic processes such as; (1) release of matrix
metalloproteinase-13 (MMP-13), (2) neutrophil accumulation and,
(3) activation and leukocyte homing to the synovium'> !4
Furthermore, IL-8 and other chemokines are known to induce
chondrocyte hypertrophy and differentiation®'>°, Pierzchala et al.
reported that synovial fluid from OA patients displayed signifi-
cantly increased levels of IL-8 compared to controls'’.

Gene expression is regulated by epigenetic and non-epigenetic
mechanisms. Epigenetics refers to heritable or stable, long-term
changes in gene activity without changes in the DNA sequence.
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DNA methylation at CpG sites is a central epigenetic mechanisms
conferring long-term regulation of set genes in contrast to regula-
tion observed by histone modifications'® 2?°. While DNA methyl-
ation of the so-called CpG islands have been predominantly
examined, a few studies have shown that single or a few specific
CpG sites can dominate the promoter activities of a particular
gene’' 2%, DNA methylation at CpG sites has been shown as a
critical mediator in human OA chondrocytes for a number of key
genes implicated in OA including IL1B, MMP13, iNOS and
COL9A1%"*#725 Furthermore, CpG methylation status can directly
affect the binding of transcriptional factors resulting in altered
transcriptional activity?®. In previous studies, transcriptional
regulation of IL8 by nuclear factor-kappa B (NF-kB), activator
protein-1 (AP-1) and CCAAT/enhancer-binding protein (C/EBP) has
been reported in a number of tissues and cell types including
colonic epithelial cells, ovarian cancer cells and myometrial
cells?’ 2, Critically, sequences spanning nucleotides —1 to —133
within the IL8 proximal promoter were observed to be essential
and sufficient for transcriptional regulation of the IL8 gene. This
sequence (—1 to —133) includes binding sites for NF-kB, AP-1 and C/
EBP?830-33 In addition, within IL8, the 1000-bp of the proximal
promoter region contains only three CpG sites all located close to
transcriptional binding sites (Fig. 1). However, the methylation
status of these CpG sites and subsequent involvement in the
regulation of IL8 regulation remains, to date, unknown. The current
study set out to examine whether the increased expression of IL8 in
human OA is a consequence of epigenetic regulation, specifically
DNA hypomethylation.

Materials and methods
Chondrocyte isolation

Human articular cartilage was obtained from the femoral heads
of patients undergoing hemiarthroplasty following a fracture of the
neck of femur (#NOF) or after total hip arthroplasty for OA (OARSI
score for OA grade®* in all OA patients was 3—4). Samples were
derived with full patient consent and prior approval of the local
Institutional Review Board. Given patients with a #NOF are likely to
be suffering from osteoporosis, and the accepted inverse relation
between OA and osteoporosis [17], cartilage from these patients
served as control samples>°. Cartilage tissue was dissected within
6 h of surgery from OA and non-OA samples and primary chon-
drocytes isolated as previously detailed in Refs. 26,36,37. Briefly,
non-OA/healthy chondrocytes were isolated from the cartilage
deep zone of patients with #NOF, whereas cartilage pieces adjacent
to weight-bearing areas of OA femoral heads (lacking surface
zones) were harvested for OA chondrocytes. Cartilage samples were
dissected and cut into small fragments and digested with 10%

-116 -106

ctttcgtcatactccgtatttgataaggaacaaataggaagtgtgatgactcaggtttgccctga

AP-1
-31
TSS
ggggatgggccatcagttgcaaatcgtggaatttcctetgacataatgaaaagatgagggtgceat
C/EBP  NF-kB
? :CpG site

Fig. 1. Diagrammatic representation of CpG sites within the proximal /L8 promoter
with CpG sites and location of transcription factors indicated.

trypsin (Lonza) in PBS for 30 min, followed by sequential digestion
using 1 mg/ml of hyaluronidase (Sigma—Aldrich) in PBS for 15 min,
and in 10 mg/ml of collagenase B (Roche Applied Science) in
DMEM/F12 medium (Life Technologies) for 12—15 h at 37°C. Iso-
lated chondrocytes from 15 #NOF samples (controls, 5 men and 10
women with a mean + SD age of 84.5 + 5.3) and 15 OA samples (OA,
seven men and eight women with a mean + SD age of 66.7 + 12.5)
were directly used for extraction of genomic DNA and total RNA.
The chondrocytes from seven #NOF patients were cultured for
culture experiments.

Chondrocyte culture

Following cell isolation, non-OA chondrocytes were divided into
three groups: (1) control culture, (2) IL-18 culture, and (3) 5-aza
culture. Chondrocytes were cultured at a density of 2—4 x 10°
cells/25-cm? flask in 5 ml of DMEM/F12 supplemented with 5% fetal
calf serum (FCS; Invitrogen), 1% insulin—transferrin—selenium
(Sigma—Aldrich), 100 units/ml of penicillin and 100 pg/ml of strep-
tomycin (Lonza), and 100 pg/ml of ascorbic acid (Sigma—Aldrich) in
the atmosphere of 5% CO, at 37°C. IL-1f (10 ng/ml) (Sigma—Aldrich)
and oncostatin M (10 ng/ml) (Sigma—Aldrich) were added to
cultures based on the observations these inflammatory cytokines
are elevated in OA synovial fluid and known to induce the short-
term induction of catabolic genes and to alter DNA methylation
status following long-term stimulation*?%>8, The primary cultures
were maintained for 5 weeks until cells reached confluence.

DNA and RNA extraction and molecular analysis (qRT-PCR)

Total RNA and genomic DNA were extracted simultaneously
from the harvested chondrocytes using AllPrep DNA/RNA Mini kit
(Qiagen). RNA was immediately reverse transcribed with Super-
Script VILO cDNA Synthesis Kit (Life Technologies). Relative quan-
tification of gene expression was performed with an ABI Prism
7500 detection system (Applied Biosystems). The 20-pul reaction
mixture was prepared in triplicate, containing 1 pl of comple-
mentary DNA, 10 pl of Power SYBR Green PCR Master Mix (Applied
Biosystems), and 250 nM of each primer. Thermal cycler conditions
included an initial activation step at 95°C for 10 min, followed by a
two-step PCR program of 95°C for 15 s and 60°C for 60 s for 40
cycles. The 2722¢t method was used for relative quantification of
gene expression. Reactions were performed in triplicate and sam-
ples normalised against GAPDH gene expression as control. GAPDH
primers were designed using Primer Express software (version 3.0;
Applied Biosystems). IL8 primers were obtained from the Primer-
Bank database®® (PrimerBank ID: 10834978a2) and the primers
used for quantitative reverse transcription PCR (qRT-PCR) are
illustrated in Table 1.

Bisulfite pyrosequencing

Genomic DNA extracted from each sample was treated with
sodium bisulfite to convert unmethylated cytosine in CpG sites to
uracil using the EZ DNA Methylation-Gold Kit (Zymo Research
Corporation). Following bisulfite treatment, PCR was performed
with Premium PCR Supermix High Fidelity (Invitrogen). The per-
centage DNA methylation in the IL8 promoter was quantified using
PyroMark MD (Qiagen). All primers were designed with Pyrose-
quencing Assay Design Software (Qiagen) (Table I).

Plasmid constructions

The IL8 promoter constructs were generated by PCR amplifica-
tion using genomic DNA from human articular chondrocytes as a
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Table I

Primer sequences for (a) RT-PCR, (b) pyrosequencing, and (c) site directed mutagenesis

Name (length, bp)

Sequence (5'—3’)

(a)
GAPDH (108)

F (CCAGGTGGTCTCCTCTGACTTC)

R (TCATACCAGGAAATGAGCTTGACA)

IL8 (112)

F (ACTGAGAGTGATTGAGAGTGGAC)

R (AACCCTCTGCACCCAGTTTTC)

(b)
IL8-Pyro-1 (70)

F (AGGGGATGGGTTATTAGTTG)

R (ACTTATACACCCTCATCTTTTCATT)
S (GGATGGGTTATTAGTTGTA)

IL8-Pyro-2 (148)

F (GGTTTATTT TAGGGTAAATTTGAGTTA)

R (ATTCACCAAATTATAAAACTTCAATATT)
S (ATTATATTTTTTATTTGTTTTTTATTAA)

()
IL8-Mut1 (—116%)f

F (AATTAAATTATTTTAAAGATCAAAGAAAACTTTtGTCATACTCCGTATTTGATAAGGAAC)

R (GTTCCTTATCAAATACGGAGTATGACaAAAGTTTTCTTTGATCTTTAAAATAATTTAATT)

IL8-Mut2 (—106+)t

F (CAAAGAAAACTTTCGTCATACTCtGTATTTGATAAGGAACAAATAGG)

R (CCTATTTGTTCCTTATCAAATaCAGAGTATGACGAAAGTTTTCTTTG)

IL8-Mut3 (~31%);

F (GATGGGCCATCAGTTGCAAATtGTGGAATTTCCTCT)

R (AGAGGAAATTCCACaATTTGCAACTGATGGCCCATC)

IL8-Mut4 (—106%)i

F (GATCAAAGAAAACTTTTGTCATACTCtGTATTTGATAAGGAACAAATAGGAAG)

R (CTTCCTATTTGTTCCTTATCAAATACaGAGTATGACAAAAGTTTTCTTTGATC)

F: forward; R: reverse; S: sequencing.
" Location of mutated CpG.
 Lowercase letters indicate a mutated base.

template. The following PCR primers were used: 5'-ATAG-
GATCCGCCTTGCTCCAACTGCCTTT-3' (forward) and 5'-AATC-
CATGGTGGTTTCTTCCTGGCTCTTGT-3' (reverse). Underlined letters
indicate BamHI and Ncol recognition sequences, respectively. The
resultant PCR products were digested with BamHI and Ncol
(Thermo Scientific) and transferred into the multiple cloning site of
a pCpGfree-Luc vector using Rapid DNA Ligation Kit (Thermo Sci-
entific). The vector lacks CpG sites within the whole vector
sequence and was generated as detailed by Klug and Rehli*’. Point
mutations at CpG sites were generated by converting CG to TG using
QuickChange II Site-Directed Mutagenesis Kit (Agilent Technolo-
gies). Primers for mutagenesis were designed using QuikChange
Primer Design (Agilent Technologies) (Table I). Promoter constructs
with a mutation at CpG sites located at —31-bp, —106-bp and —116-
bp from the transcription start site (TSS) were generated according
to the manufacturer's instructions. Promoter constructs with two
mutations at the CpG sites were produced by two-step mutagen-
esis. In total, six mutation patterns were generated (Fig. 6). The
sequences of all constructs were confirmed by DNA sequencing
using SmartSeq system (Eurofins Genomics).

In vitro methylation, transfection and luciferase assay

Plasmids were methylated using CpG Methylase M.Sssl (New
England Biolabs). Complete methylation was verified by plasmid
DNA bisulfite modification and pyrosequencing with specific
primers. The immortalized human chondrocytes, C28/12, were
seeded at a density of 30,000 cells per well in 24-well plates,
cultured in DMEM/F12 overnight, and transfected with a mixture of
300 ng luciferase reporter vector and 1 ng pRL-TK Vector (Prom-
ega), using FUGENE HD in vitro Transfection Reagent (Promega).
Transfected C28/12 cells were cultured for 48 h prior to harvest. Cell
lysates were assayed for firefly and renilla luciferase activity using a
Dual-Luciferase Reporter Assay System on a Varioskan Flash
(Thermo Scientific). Firefly luciferase activity of each transfection
was normalized against renilla luciferase activity. Reactions were

performed in duplicate, and each experiment was repeated at least
three times.

The expression vectors for NF-kB (p50, p65, or p50/p65), AP-1(c-
Fos, c-Jun, or c-Fos/c-Jun) and C/EBPB were used (60 ng) for co-
transfections. Blank expression vector pCMV4, pcDNA3.1 and
pcDNA3.1(+) served as controls, respectively. Total DNA was
normalized with empty vectors in the transfection mixture.

Statistical analysis

Statistical analysis was performed using SPSS Statistics (version
21.0; IBM). Cartilage samples were obtained from individual sub-
jects. The Mann—Whitney U test was used to compare gene
expression, CpG percentage methylation and age between two
groups. Female to male ratios were compared using chi-square test.
Spearman's rank correlation coefficient was used to analyse the
relationship between percentage methylation and IL8 expression
and multiple regression analysis using least-squares method was
applied to determine the relationship between IL8 expression and
patients' background data. Kruskal-Wallis test and New-
man—Kuels multiple comparisons test were used to analyse the
luciferase reporter assays. P values less than 0.05 were considered
significant.

Results

IL8 proximal promoter CpG sites are demethylated in OA
chondrocytes and correlate with higher IL8 gene expression

Initial studies centred on quantification of the CpG methylation
status of the IL8 proximal promoter in human primary chon-
drocytes isolated from articular cartilage obtained from non-OA
(#NOF) donors (n = 15) and patients with OA (n = 15). IL8
expression in OA chondrocytes was observed to be 37-fold higher
than in #NOF controls [Fig. 2(A)]. Pyrosequencing analysis of the IL8
promoter in the same subjects revealed that all three CpG sites in
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Fig. 2. (A) Relative mRNA expression of IL8 in non-cultured primary human chondrocytes obtained from patients with femoral neck fracture (NOF) and OA patients. mRNA was
analyzed by quantitative RT-PCR and normalized against GAPDH. (B) Percentage methylation of the indicated CpG sites in the IL8 proximal promoter in the same samples analysed
by bisulfite pyrosequencing. Y-axis shows non-adjusted percentage methylation. Values are the mean + SD of 15 independent samples from each group. **P < 0.01.

the promoter region were significantly demethylated in OA chon-
drocytes in contrast to #NOF chondrocytes. OA chondrocytes dis-
played a 22%, 26% and 15% statistically significant (P < 0.01)
reduction in methylation status at the —116, —106 and —31 CpG
sites, respectively [Fig. 2(A)].

A significant negative correlation was observed between IL8
gene expression and the percentage methylation of the CpG sites
located at —116-bp and —106-bp in OA chondrocytes [Fig. 3(A)]. The
percentage methylation of the CpG site located at —31-bp displayed
a correlation trend with IL8 expression although this was not sta-
tistically significant (P = 0.069). In contrast, no correlation was
observed between IL8 expression and the percentage methylation
in #NOF chondrocytes [Fig. 3(B)]. Importantly, multiple regression
analysis revealed that the percentage methylation of the CpG site
located at —116-bp was the strongest predictor of IL8 expression
(P < 0.01). Furthermore, advanced age and OA were also associated
with higher IL8 expression (Table II).

Demethylation of CpG sites in the IL8 promoter following long-term
culture does not result in induction of IL8 gene expression

Given monolayer culture is known to affect the gene expression
profile of chondrocytes®!, IL8 mRNA levels were analysed in pre-

chondrocytes over for 5 weeks. The culture of chondrocytes
resulted in a significant loss of IL8 expression [Fig. 4(A)]. CpG sites
located at —106-bp and —31-bp of the IL8 promoter in the cultured
chondrocytes showed significant demethylation compared with
pre-culture chondrocytes [Fig. 4(B)].

Long-term exposure to IL-13 and oncostatin M results in enhanced
expression of IL8 and loss of DNA methylation

Healthy chondrocytes were cultured for 5 weeks in IL-1/0OSM.
Long-term treatment with IL-1$/OSM induced a 24,000-fold in-
crease in IL8 expression compared to control cultures [Fig. 4(C)].
Pyrosequence analysis of the IL8 promoter revealed that #NOF
chondrocytes cultured using IL-13/OSM displayed a 22%, 25% and
2.3% reduction in methylation status at the —116, —106 and —31
CpG sites, respectively, in comparison to control cultures [Fig. 4(D)].

Methylation decreases IL8 promoter activity in vitro

To determine the effects of DNA methylation on IL8 promoter
activity, dual-luciferase reporter assays were performed. The C28/12
chondrocyte cell line was transfected with the wild type IL8 pro-
moter construct using a CpG free vector and pRL-TK vector as an

culture control chondrocytes compared with cultured internal control. The luciferase assay was performed 48 h after
OA primary chondrocytes
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subunit expression vectors. (C) Co-transfection with the AP-1 c-Fos and c-Jun subunit expression vectors. (D) Co-transfection with the C/EBPB expression vector. Values are the

mean + SD of three independent experiments. *P < 0.05, **P < 0.01.

transfection. Methylation treatment significantly decreased the
activities of the promoter constructs by seven fold [Fig. 5(A)].

NF-kB, AP-1 and C/EBPB mediate IL8 transactivation in human
chondrocytes and CpG methylation impairs IL8 promoter
transactivation

To determine the effects of DNA methylation and the tran-
scription factors NF-«kB, AP-1 and C/EBP and on IL8 promoter

Table II
Factors associated with IL8 relative expression in human chondrocytes
t value P value R? P value
#NOF/OA [OA] 2.71 0.012
Female/Male [Female] 0.81 0.427
Age 242 0.024
IL8 %Methylation (—31) 24 0.025
IL8 %Methylation (—106) 2.59 0.016
IL8 %Methylation (—116) -3.64 0.001
Total model 0.696 <0.0001

#NOF: a fracture of the neck of femur, OA: osteoarthritis.

activity, the expression vector encoding each transcription factor
and the control empty vectors were co-transfected with wild type
IL8 promoter construct using a CpG free vector. IL8 promoter ac-
tivity was significantly enhanced (35-fold) with the NF-«kB p65
subunit whilst, in contrast, DNA methylation suppressed the effect
of NF-kB on IL8 activity [Fig. 5(B)]. The AP-1 c-Jun subunit signifi-
cantly transactivated IL8 by 23-fold and the enhanced activity was
higher with overexpression of c-Fos and c-Jun combined (32-fold)
[Fig. 5(C)]. C/EBPS significantly enhanced IL8-driven reporter ac-
tivity 17-fold while DNA methylation significantly reduced the ef-

fect of C/EBPR [Fig. 5(D)].

Mutations at three CpG sites proximal to the TSS increase IL8

promoter basal activity

To determine the CpG sites critical for IL8 promoter activity, we
compared IL8 wild type promoter construct activity using a CpG
free vector against six vectors containing mutations at different
CpG sites [Fig. 6(A)]. Point mutations created on any single CpG site
or two CpG sites resulted in a significant increase in IL8 promoter
activity by 3.4—5.4 fold [Fig. 6(A)]. Furthermore, non-methylated
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—106/—31 mutant constructs showed a significant increase in
promoter activity (2.7—4.5 fold).

NF-kB, AP-1 and C/EBP( mediate IL8 transactivation in cooperation
with specific CpG sites within the proximal promoter

Sequences spanning nucleotides —1 to —133 within the IL8
proximal promoter were observed to be essential and sufficient for
transcriptional regulation of the IL8 gene’. This sequence includes
binding sites for NF-kB, AP-1 and C/EBP, and the three CpG sites
[Fig. 1].

To evaluate the role of each CpG site for transcription factor-
mediated IL8 transactivation, the IL8 wild type promoter
construct and the six vectors with point mutations were co-
transfected with the expression vectors encoding NF-«xB, AP-1 and
C/EBPpB. NF-kB overexpression increased the activity of wild type
and mutated non-methylated promoter constructs. Point muta-
tions created at —31-bp CpG or —106-bp CpG or both displayed a
trend for increased NF-kB-driven IL8 promoter transactivation in
methylated plasmids [Fig. 6(B)]. In contrast, following AP-1 over-
expression, methylated —116/—106 mutant constructs were
observed to enhance IL8 promoter activity [Fig. 6(C)]. Promoter
activity pattern under C/EBP overexpression was similar to that
observed following NF-kB overexpression. Non-methylated —106/
—31 mutant constructs showed a significant increase in the pro-
moter activity (2.8—3.1 fold) [Fig. 6(D)].

Discussion

The current study demonstrates that the increased expression of
IL8 in human OA chondrocytes is regulated by DNA demethylation
in cooperation with transcription factors. We show for the first time
that the percentage methylation of specific CpG sites correlates
with IL8 gene expression level in clinical OA samples. Furthermore,
long-term stimulation with IL-1p, a key pro-inflammatory cytokine
involved in the pathophysiology of OA, resulted in the marked in-
duction of IL8 with decreased CpG methylation in the IL8 promoter
in human chondrocytes. Furthermore, 5-aza-dC treatment induced
hypomethylation at the CpG site located at —116-bp in the IL8
promoter and enhanced IL8 expression (data not shown). More-
over, dual-luciferase reporter assays using a CpG free vector
revealed that methylation treatment significantly decreased the
activity of the IL8 promoter constructs, thus the methylation status
of CpG sites is one of the key transcriptional regulators of IL-8 in
human chondrocytes. Interestingly, methylation status of the CpG
sites did not correlate with IL8 expression level in #NOF chon-
drocytes. Furthermore, a significant DNA demethylation of the IL8
promoter in cultured chondrocytes did not result in increased IL8
gene expression compared with pre-culture chondrocytes. These
results suggest that methylation status alone was not sufficient to
regulate IL8 transcription. However, in pathological situations such
as OA, methylation status of specific CpG sites appears crucial to the
regulation of IL8 expression. Critically, multiple regression analysis
indicated that the methylation status of the CpG sites located
at —116-bp from the TSS provided a strong association with IL8
expression. Interestingly, this CpG is the most distal to the tran-
scriptional binding sites and, thus should be the least affected.
However, to date, there is a paucity of information concerning the
three-dimensional configuration of the chromatin in this region in
combination with transcription factors and indeed DNA methyl-
ation status and thus this remains an area for further study. Future
studies with enhanced patient numbers including different grades
of clinical OA, would be necessary to confirm and reveal the rela-
tionship of DNA methylation status with disease progression.

The primary functions of IL-8 are chemotaxis and angiogenesis
and IL-8 has been shown to play an essential role in acute inflam-
mation”*?*3. In general, OA is considered to be a “non-inflamma-
tory arthritis”. However, growing evidence indicates the
involvement of inflammation in the development and progression
of OA*°. A recent methylome study revealed an enrichment of
several pathways involved in inflammation including IL2, IL3, IL4
and IL6%*. Furthermore, SOCS2 and CIS-1, inhibitors of cytokine
signalling, have been shown to be suppressed in OA*>. Enhanced
expression of IL8 in OA chondrocytes in the present study supports
an association, in part, of OA with inflammation. Thus, disease
progression and joint symptoms could potentially be modified by
modulation and control of IL8 expression. The current findings
illustrating that DNA demethylation accounts for an increase in IL8
expression in OA suggesting a potential target for OA modulation
and warranting further (clinical and in vivo) examination.

Interestingly, IL8 expression is typically, low or undetectable in
normal non-inflammatory tissue. This is partly a result of tran-
scriptional repression of the IL8 promoter>’. The IL8 promoter
contains a negative regulatory element (NRE) to which the NF-kB-
repressing factor (NRF) binds. Reduction of cellular NRF by
expressing NRF-antisense RNA results in spontaneous IL8 gene
expression?’. Additionally, mutation of the NRE site results in loss of
NRF binding and increased basal IL8 expression®’. The existence of a
basal repression mechanism offers an explanation for the muta-
genesis results observed in the current study. Point mutations
created at the CpG sites in the IL8 promoter could interrupt basal
repression and result in increased promoter activity. In addition,
the present studies indicate methylated IL8 promoter constructs
display low promoter activity indicating DNA methylation is an
additionally basal repression mechanism of IL8 expression.

The transcription factors, NFkB, CEBP, and AP-1, have all been
implicated in IL8 expression in a number of cell types?’ %32, NF-xB
is a dimeric transcription factor composed of five different sub-
units®’3%46_ We recently showed the NF-kB p65 subunit played a
critical role in induction of iNOS in OA human chondrocytes in
coordination with DNA demethylation of the enhancer elements®>.
NF-kB has also been shown to regulate the expression of a number
of cytokines and chemokines, and several matrix degrading en-
zymes in OA pathogenesis47. A significant increase in IL8 promoter
activity by the NF-«B p65 subunit, AP-1 c-Jun subunit and C/
EBPB?’~3? was demonstrated in this study. Furthermore, the cur-
rent study demonstrates that CpG methylation impairs IL8 pro-
moter transactivation by the transcription factors NF-«B, AP-1 and
C/EBP. Interestingly, IL8 transactivation by NF-kB and C/EBP were
predominantly regulated by the CpG site located at —31-bp. In
contrast, AP-1 was predominantly regulated by the CpG site located
at —106-bp explained by the location of the CpG sites and the
binding sites of the transcription factors [Fig. 1].

In conclusion, the present study demonstrates the key role of
DNA methylation status on the expression of IL8 in OA chon-
drocytes. This study demonstrates the quantitative relationship
between percentage methylation of a CpG site and gene expression
in clinical OA cartilage samples with evidence linking the activation
of IL-8, DNA demethylation and, critically, induction of the OA
process. These findings suggest, tentatively, a potential predictive
marker, although additional in vivo and clinical studies are required
before confirmation of this inflammatory chemokine, for pharma-
cological intervention in the treatment of OA and, potentially, other
arthritic diseases.
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