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Abstract 

A carbon fibre reinforced plastic (CFRP) adhesively bonded single lap joint sample is 

used for comparing the detection of different defect types using pulsed phase 

thermography (PPT). Firstly, a polytetrafluoroethene (PTFE) insert, of the type widely 

used to simulate defects in composite materials, was added to the bond line of the joint.  

Liquid layer kissing defects were simulated using silicon grease. PPT clearly identified 

the PTFE but not the silicon grease contamination. The PPT identified the silicon grease 

defect when the joint was loaded. It is postulated that kissing defects can be detected 

using thermography if a small load is applied to the joint, as loading opens the defect 

and produces a gap that provides sufficient thermal contrast for detection. Thermoelastic 

stress analysis (TSA) is used to validate the approach. On-site application is addressed 

both in terms of the load application and the use of low cost infrared (IR) detectors.  

Keywords: C. non-destructive testing, C. thermal analysis, B. composites, kissing 

defects, pulse phase thermography. 

1 Introduction 

Sensitive and reliable non-destructive methods of detecting defects in adhesive bonds 

must be identified to enable adhesive bonds to be used in primary structural roles. Such 

non-destructive evaluation (NDE) approaches should be suitable for use in the field and 

provide efficient and rapid inspection over potentially large areas. 

There are several types of defects that can occur in adhesive bonds. These defect types 

can be broadly split into three categories: voids, inclusions and low volume/kissing 

defects. Voids and inclusions are relatively easy to detect using a range of NDE 

techniques as they generally have different properties to the surrounding materials. A 

variation in material density greatly aids defect detection when using ultrasound, where 

as a variation in heat transfer properties enhances the thermal contrast for detection 
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using thermographic approaches. The final, and most elusive, type of defect may be 

called a low volume defect or kissing defect [1].  

A kissing defect can be defined as the improper adhesion of adhesive to adherend. 

Physically, kissing defects are low volume defects that have material properties that are 

similar to the surrounding materials and therefore do not provide sufficient contrast to 

be detected using typical NDE procedures. There are several theories [2] of the cause of 

kissing defects, including: contamination, improper adhesive curing or mixing and 

variations in environmental conditions during joint construction.  

In the present investigation it was necessary to define a means of creating simulated 

kissing defects in known locations. It has been suggested that simulated kissing defects 

can be produced in two ways: dry contact and liquid layer [1]. The dry contact bond is 

achieved by compressively loading an adherend to precured adhesive to achieve 

intimate contact with zero adhesion across the entire bond. Dry contact defects have 

been investigated using ultrasonic techniques [3-5] where the nonlinearity of the 

response was found to be inversely related to the amount of compressive load, i.e. the 

degree of contact of the two surfaces. A liquid layer kissing defect is created by adding 

of a small amount of contaminant to the bond line, e.g. [6, 7]. This type of simulated 

kissing defect is more realistic in terms of adhesive bonds as it can be introduced to just 

part of the bond with the surrounding area bonded. Ultrasonic detectability of liquid 

layer defects have also been investigated [1] using basic c-scans on a realistic bond and 

with compressive loading applied uniformly across the bond area. It was found above a 

low level (5 MPa) of compression that the reflection coefficient is reduced for the defect 

thus decreasing the likelihood of detection if any leakage path exists for the liquid layer 

to escape through. Where this liquid layer is contained the increase in pressure reduced 

the reflection coefficient more gradually.  The literature shows that NDE of adhesive 

bonds is typically carried out using ultrasound. However, ultrasound is a generally a 

time consuming process often requiring coupling with the material to obtain the highest 

sensitivity.  

There have been some applications of thermographic approaches to the identification of 

defects in bonded joints, e.g. [8, 9] , however these have been based on identification of 

a region of distinct differing thermal properties, such as flat bottom holes, air gaps, full 
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delamination and inserts. Kissing defects contain far less thermal contrast than has been 

created in these cases. Pulsed thermography (PT) data may be processed into pulse 

phase thermography (PPT) phase data to enhance the detectability of low contrast 

defects via use of a fast Fourier transform (FFT) [10].  

While promising results have been obtained using ultrasonic approaches, the purpose of 

the present paper is to investigate an alternative method for identification of kissing 

defects based on thermography. Liquid layer defects in bonded joints are investigated 

and it is demonstrated that the defects can be classified as kissing defects. A comparison 

of the thermal response from a PTFE insert, representative of a typical composite 

calibration sample, and the simulated kissing defects is described. As PPT relies on 

thermal contrast between the defect and bulk material of the joint, the work investigates 

if the application a small load can help identify a kissing defect. A literature review has 

been conducted to ascertain if such a proposition has been explored previously. A US 

patent has been filed describing an idea [11] but no subsequent research or experimental 

proof of concept is in the public domain. For validation purposes thermoelastic stress 

analysis (TSA) [12] is used to analyse stress fields on the surface of the joints. A single 

lap joint configuration with simulated defects in the bond line is used so that TSA and 

PPT could be carried out whilst loading in a standard servo-hydraulic test machine. A 

finite element model establishes the minimum gap the loading must produce to provide 

sufficient thermal contrast for kissing defect identification. Finally, the feasibility of 

using a vacuum loading to open a kissing defect is investigated.  

2 Experimental procedure 

2.1 Thermographic techniques 

Pulse phase thermography 

PPT is an active thermographic method where a pulse of heat is applied to the surface of 

a component and the thermal evolution on the surface is monitored using an infrared (IR) 

detector [13, 14]. The current work focusses on the use of PPT in the reflection mode 

shown in Fig. 1a with heat source and detector focussed on the same surface of the 

component [15]. Reflection mode requires only single sided access making it versatile 

and suited to a wide range of on-site applications. Heat is pulsed onto the surface of the 

component. The surface temperature decays as the heat front propagates through the 
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where T is the temperature change, T is the absolute temperature of the surface of the 

material, α is the coefficient of linear thermal expansion, ρ is the density and Cp is the 

specific heat. Equation (1) is only valid where the temperature change occurs 

isentropically (i.e., no heat transfer, plasticity, dissipation etc.). It is also assumed that 

material properties are such that they are independent of temperature. The thermal data 

is processed using a lock-in amplification routine with the applied cyclic load used as a 

reference signal. Therefore the magnitude and phase of T are obtained. The phase data 

contains information about the synchronisation of the loading and the thermal response. 

2.2 Sample preparation 

Single lap joints were manufactured from [0, 90]2s carbon fibre reinforced epoxy resin 

pre-preg SE84LV by Gurit. Pieces of the same CFRP panel were used as spacers to 

reduce the bending moment in the lap joint, as in Fig. 2. The bond was made using 

Araldite rapid curing epoxy adhesive with a total bond area of 30 x 30 mm and a bond 

thickness of 0.2 mm. Defect material of 10 x 10 mm was added to the bond line to 

create defect. Three defect materials were used: 0.02 mm thick polytetrafluoroethene 

(PTFE), Frekote mould release agent and silicon grease. Specimens without defects 

were used as control specimens to compare mechanical properties. The PTFE was a 

loose insert cut to size to be used as a thermal control sample to establish experimental 

parameters for PPT and TSA experiments. The silicon grease and Frekote release agent 

aimed to simulate kissing defects by applying them to one of the adherends of the lap 

using a stencil. The silicon grease was applied in a single layer using a spatula and the 

Frekote was applied in six layers using a cloth to minimise bleeding. The adhesive was 

applied to the opposite adherend to minimise smearing of the contaminants. The bond 

was cured at room temperature with a pressure of 0.3 MPa applied uniformly across the 

joint for at least 3 hours, until the adhesive was fully cured. Testing was carried out at 

least 24 hours after joint manufacture. All lap joints we manufactured in the same 

method using the same materials with only the contamination varied. 
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the other adherend as shown in Figure 3. The Frekote appears to have affected the 

adhesive and prevented adhesion of the adhesive on both adherends. Both contaminants 

were only introduced on one adherend, so the Frekote has penetrated through the 

thickness of the adhesive. The action of the Frekote has effectively removed the 

adhesive from the vicinity of the bond. As the definition of a kissing defect is the 

adhesive remains in the area of application but does not bond to the adherend, the 

Frekote has produced a defect that cannot be defined as a kissing defect. Furthermore, 

as Frekote has very low viscosity there was some bleeding from the area where the 

Frekote was applied, which led to it spreading into a larger area of the bond than was 

intended. In view of the two above reasons, i.e. the penetration of the Frekote into the 

adhesive and its low viscosity, it was concluded that Frekote was not suitable for 

introducing a controlled simulated kissing defect. Therefore the kissing defects in the 

current work are all simulated using silicon grease, as described in section 2.2.  

The PTFE insert samples were also inspected as a thermal control sample for defect 

identification. Ultrasonic c-scans have been taken of the PTFE and silicon defects using 

a 25 MHz very high frequency transducer, see Fig. 4. Generally ultrasonic inspection of 

composites uses transducer frequencies below 5 MHz [20] due to high levels of 

attenuation. As a higher frequency can resolve a thinner feature, the standard 

frequencies used for c-scanning composites are not able to resolve kissing defects. In 

the current case it has been possible to use very high frequency transducers able to 

resolve the thin defects of interest, which were not resolvable even with a 15 MHz 

probe. Fig. 4 shows both the PTFE and silicon grease contamination are clearly 

identified using the 25 MHz transducer. It could be claimed that the defects are not true 

kissing defects as they are detectable by very high frequency ultrasound, however as 

these defects are not detectable using standard ultrasound they can be commonly 

categorised as kissing defects. The purpose of these ultrasound images was to establish 

that the defects are not detectable using standard frequency ultrasound and to enable the 

location and extent of the contaminations to be established. There is an anomaly 

identified in the upper edge of the silicon grease lap which could be improper adhesion 

or could be delamination of the adherend introduced during the cutting of the adherends. 

The results from the tests to failure of the silicon grease contaminated laps were used to 

define the loading parameters for the NDE. TSA tests were carried out at 3 + 1 kN and 



 

 

the T

tensi

the d

for la

load 

Table

silicon

 

Fig. 3
uncon

 

a 

Fig. 4

TSA mean lo

ile load was

defects. Defe

ap joint con

was selecte

e 1 Failure loa

n grease. 

C

C

S

F

No defect 

3 Photos of adh
ntaminated joi

4 Ultrasonic c-

Tighe, R.C
adhesive bo

Adhe

oad of 3 kN

s to create a 

fects are fou

nfigurations;

ed for the te

d and effectiv

Contaminatio

Control (no de

Silicon grease

Frekote mould

Fre

herends after 
int, a Frekote 

-scans of a) PT

C., Dulieu-Bar
nds using infr
sion, 64, 2016

N was also u

bending mo

und on the n

; therefore, 

sts to give t

ve adhesive are

on Fa
(kN

efect) 11

e 6.6

d release 6.0

ekote mould r

failure showin
contaminated 

TFE and b) sil

rton, J.M. and
rared thermog
6, 168-178. ht

8 

used as the s

oment in th

neutral axis 

a relatively

the best cha

ea for failed la

ailure load 
kN) 

.9 ± 0.4 

6 ± 0.5 

0 ± 0.6 

 
release 

ng variation o
d joint, silicon 

b 

licon lap joint

d Quinn, S., “I
graphy”, Intern
ttp://dx.doi.org

static load f

he sample th

of bending 

y large tensi

ance of defe

ap joints conta

Shear 
strength 
(kN/m2) 
13222 ± 444

7333 ± 625 

6666 ± 750 

Silicon grea

of failure mode
grease contam

ts using 25 MH

Identification o
national Journ
g/10.1016/j.ija

for PPT. The

hat was suffi

for the sam

le load at 50

ct detection

aining no defe

Adhesive 
area 
(mm2) 
900 

800 

<800 

ase 

es of the bond
minated and P

Hz transducer

of kissing def
nal of Adhesiv
adhadh.2015.

e aim of the

ficient to op

mple, as is ty

0% of the fa

n.  

ect, Frekote an

PTFE inser

d for an 
PTFE insert jo

r, step size 0.2

fects in 
ves and 
10.018 

e 

en 

ypical 

failure 

nd 

 
rt 

int. 

 
2 mm. 



Tighe, R.C., Dulieu-Barton, J.M. and Quinn, S., “Identification of kissing defects in 
adhesive bonds using infrared thermography”, International Journal of Adhesives and 

Adhesion, 64, 2016, 168-178. http://dx.doi.org/10.1016/j.ijadhadh.2015.10.018 
 

9 
 

2.4 Experimental procedure 

The IR detector used for both the TSA and the PPT was a Cedip Silver 480M photon 

detector with an indium antimonide (InSb) sensor array with a detectable wavelength 

range of 2 - 5.5 µm. The detector is cooled using a Stirling pump maintaining an 

operating temperature of 77 K. The detector recorded at 383 Hz at the full detector array 

size of 256 x 320. The heating source used was a Nikon Speedlight SB-600, which is an 

external camera flash unit that was triggered remotely to provide surface heating to the 

bonded areas. The standoff distance between IR detector and specimen was 250 mm and 

the distance between flash and specimen was 150 mm.  

The loading sequence was as follows. Each sample was clamped in the test machine and 

PPT was carried out on the unloaded samples. A load was applied to the sample up to 

the TSA mean load of 3 kN. PPT was carried out again at this load. The cyclic load of 3 

+ 1 kN at 5 Hz was then applied and TSA was carried out. Once the TSA measurement 

was complete the sample was held at 3 kN and a repeat of the PPT was carried out. 

Finally the sample was unloaded and a final PPT test was carried out. Comparison of 

the unloaded PPT before and after loading was made to check for any clear signs of 

damage caused by the loading. Also, comparison of the loaded PPT before and after the 

cyclic loading was made to ensure that damage had not evolved.  

3 Results 

3.1 PTFE 

Fig. 5 shows a sample of the TSA and PPT results for the PTFE inserts. TSA ΔT and 

phase data (Δφ) are presented allowing analysis of any changes in the surface stress 

field and any phase shift obtained between the cyclic loading and the thermal response. 

Variation in TSA phase data shows areas where a range of factors may be affecting the 

response including non-adiabatic conditions, localised plasticity or localised heating. 

The TSA ΔT data shows a gradient from a lower value at the top of the bond (i.e. the 

free edge) to a higher value in the adherend at the lower edge of the bond, a typical 

contour plot is shown in Fig. 5a. The lap joint geometry results in an offset loading in 

each adherend which develops the stress gradient across the lap. This bending causes 

peel stresses in the lap and results in compression across the bond, as the bond is loaded 

in tension this compression reduced the tensile stress across the bond, causing the 
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aluminium vacuum chamber of 120 mm diameter was held in place on the aluminium/ 

triplex side of the bonds using ‘tacky tape’ commonly employed in composite materials 

processing. The bond was inspected from the CFRP surface for both panels. The 

vacuum chamber was connected to a pump which allowed the pressure reduction on the 

sample to be incrementally changed. The vacuum pressure was varied between ambient 

pressure, i.e. 0% vacuum, and maximum vacuum possible, 100%, using a vacuum pump. 

Fig. 13a and b show the PPT phase results of the same region of the aluminium and 

CFRP sample with no load applied and 100% vacuum loading. Features of the 

aluminium bond are indicated in Fig. 13a. The darker circular ring visible in the images 

(indicated by the dashed line) is due to the presence of the aluminium vacuum chamber 

attached to the rear of the sample while the strip across the centre (indicated by the 

dotted line) is where the aluminium located. Lines of fibre and resin are visible in the 

images as the CFRP had a low fibre volume fraction of 37%, hence there is a visible 

heat transfer contrast between resin and fibre as the fibre is sparsely distributed in the 

resin. Without the addition of load the silicon grease contamination is not visible in the 

phase data, however with the addition of the vacuum it is clearly identified in the centre 

of the image. Line profiles of data were taken across the defect location as indicated in 

Fig. 13 (solid line), for each level of vacuum applied; these are provided in Fig. 14a. 

The phase contrast is shown to increase with increased percentage vacuum as the defect 

is opened further and the heat path changes. Fig. 14b shows the mean Δφ obtained over 

the defect for each level of vacuum. The uncertainty is taken as the standard deviation 

of the phase values taken over the defect. There is an increase in the phase contrast as 

the vacuum is increased from 0 % to 60 %, as the defect is opened. Above 60 % 

vacuum the changes in contrast are insignificant. This indicates at 60 % the defect is as 

open as its maximum amount, without inducing propagation. Upon unloading of the 

sample the defect closed again and became undetectable, hence showing that there was 

no plastic deformation. Further corroboration that the defect did not propagate is the 

close correlation of the bonded sections of the profile data as shown in Fig. 14a. As the 

defect did not propagate into ‘well bonded’ areas the loading remained non-destructive 

and hence the approach can be considered to be non-destructive. The amount of vacuum 

pressure required is dependent on the adherend material and the size of the defect to be 
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