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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

School of Electronics and Computer Science

Doctor of Philosophy

SPECTRUM/ENERGY EFFICIENT RESOURCE ALLOCATION FOR MULTI-USER

MULTI-RELAY OFDMA CELLULAR NETWORKS: A FRACTIONAL

PROGRAMMING APPROACH

by Kent Tsz Kan Cheung

This thesis focuses on the energy efficiency (EE) of relay-aided cellular networks, which

is motivated by the ever-increasing need to support higher and higher data rates, while

reducing the energy costs. Relaying is a beneficial tool for either increasing the reliability or

the coverage area of a wireless network as a result of the reduced communication distances,

albeit this might increase the energy consumption in practice. Our approach in this thesis

was to study and model progressively more complex and more realistic cellular networks.

By utilizing novel transmission protocol designs, we were able to formulate their associated

EE resource allocation optimization problems. Thus, efficient tools can be employed for

solving these problems to maximize the EE.

We commenced by discussing the basic communication theory building blocks to be used

in the later chapters. A state-of-the-art literature review was provided, which covers the

energy-efficiency aspects (either based on EE or total power minimization) of orthogonal

frequency division multiple access (OFDMA) networks, as well as their multiple-input–

multiple-output (MIMO) and relay-assisted variants. We then provided a broad overview

of the mathematical optimization tools that will be extensively used in this thesis. Our

overview covered convex sets and functions, convex optimization forms and the important

concept of duality. We then described a range of solution methods, which can be applied

to various forms of optimization problems. Complex problems, such as mixed integer non-

linear programming (MINLP) problems and fractional problems were also considered, as

well as methods of reformulating them in a way, which facilitates their solution via stan-

dard convex optimization techniques. Furthermore, the important theoretic foundations of

decomposition were highlighted, and examples of convex optimization applied in communi-

cation networks were provided.

Having laid the foundations, we embarked on studying a relay-aided OFDMA cellular net-

work. In contrast to previous contributions in this area, our multi-relay multiuser network
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supports simultaneous direct and relaying links. However, relay node (RN) selection is im-

plicitly achieved, since the users rely on the specific RNs, which they are geographically

nearest to. We formulated the (normalized) EE metric of the network as a function of

the subcarrier and power allocation of the system. This metric was then employed in the

formal definition of the EE maximization problem of the network, which is fractional and

involves binary constraints. Therefore, solving it would typically require a computational

complexity, which is exponentially proportional to the number of optimization variables. For

the sake of developing a practical solution algorithm, we employed a convex relaxation of

the binary-constrained optimization variables, thereby converting the problem into a quasi-

concave form. Thus, the convex forms of the quasi-concave problem could be obtained from

Dinkelbach’s method, as well as from the Charnes-Cooper transformation and from the bi-

section method. We developed algorithms based on dual decomposition for each method in

order to evaluate their performance versus complexity trade-offs. In particular, we observed

that the algorithm based on the Charnes-Cooper transformation is capable of attaining the

optimal solution in much fewer iterations than the algorithms based on either Dinkelbach’s

method or on the bisection method, hence it was chosen as the preferred approach in our

later studies. Furthermore, we characterized the trade-off associated with adjusting the

various system parameters on the attainable EE and spectral-efficiency (SE) of the system.

Most notably, we observed that increasing either the number of subcarriers or the num-

ber of relays suffers from diminishing returns as regards to the EE of the system, whilst

increasing the number of active user equipment (UEs) improves both the EE and SE of

the system owing to its increased multi-user diversity. Furthermore, we compared both EE

maximization (EEM) and SE maximization (SEM) algorithms. In particular, we noted that

increasing the available transmit power in certain scenarios, reduces the EE of the system,

when using the SEM algorithm, even though it might result in an increased SE. By contrast,

the EEM algorithm approaches an EE upper bound at a reduced SE.

We then proceeded to conceiving a novel transmission protocol for a general multi-relay

multiuser MIMO- OFDMA cellular network based on joint transmit and receive beamform-

ing. This transmission protocol is suitable for a network consisting of an arbitrary number

of RNs and UEs, as well as any number of antennas on any of the communicating nodes. It

operates based on designing the receive beamforming matrices for each subcarrier so that

their associated MIMO channel matrices can be mathematically decomposed into several

effective multiple-input–single-output (MISO) channels, which are referred to as spatial mul-

tiplexing components (SMCs) in this thesis. Transmitting on these SMCs without imposing

interference amongst them can then be achieved by employing zero-forcing (ZF) transmit

beamforming. For the sake of increasing the attainable spatial multiplexing gain, several

SMCs may be grouped for transmission on each subcarrier. We proposed a pair of such

grouping algorithms. The first one is based on an exhaustive search over all the possible

grouping combinations, while the second is a low-complexity alternative, which iteratively
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improves a fixed set of groups. Finding the optimal groups having the best EE or SE as

well as their associated power allocation values were formulated as optimization problems.

With the aid of the previously employed variable relaxation and transformations, the op-

timization problems were rewritten in their epigraph form. Thus, the resultant problems

were convex and we developed algorithms based on dual decomposition for solving them.

We characterized the performance of the grouping algorithms and observed that our lower-

complexity alternative was also capable of finding near-optimal solutions, despite its much

lower complexity. Furthermore, the effect of several system parameters imposed on both

the SE and EE was observed. In particular, we concluded that the optimal EE is achieved

by the system, when the maximum power constraint of both the base station (BS) and of

each RN was set to 50dBm. Furthermore, the effect of the power constraint on the BS has

a much more grave effect on the attainable SE and EE of the system, than the constraint

of the RNs. Moreover, increasing the number of antennas at the BS increases both the SE

and EE owing to their higher achievable multiplexing gains. However, increasing either the

number of RNs or the number of subcarriers reduces the SE and EE, since these additional

resources are not efficiently, utilized when maximizing the SE or EE.

Then our system model was further expanded to a multi-cell network. Thus, there were

multiple BSs, RNs and UEs, all equipped with multiple antennas. For the sake of avoiding

the potentially excessive co-channel interference (CCI), we employed the novel technique

of interference alignment (IA), when designing a pair of transmission protocols. The first

one was termed as the full-IA protocol, which aims for avoiding all CCI impinging from

all possible transmitters, but requires that each BS has access to the channel state infor-

mation (CSI) of all the channels associated with all other cells. On the other hand, the

partial-IA protocol only requires the CSI of the limited set of channels associated with its

own cell, and disregards the other-cell interference (OCI). Thus, its performance may be

degraded, but benefits from a lower CSI feedback overhead. Both transmission protocols

depend on carefully determining the number of signal dimensions available for each trans-

mitter, when considering the IA technique. Since the number of available signal dimensions

is inversely proportional to the number of channels, which IA algorithm operates on, we

can conclude that the full-IA protocol also suffers from a reduced spatial multiplexing gain,

when compared to the partial-IA protocol. Based on either the full-IA or the partial-IA

protocols, we computed the relevant transmit and receive beamforming weight matrices.

We then formulated the network-wide EE optimization problem and again, invoked the

Charnes-Cooper transformation for obtaining the optimization problem in a convex form.

Our proposed solution algorithm is based on dual decomposition and may be applied dis-

tributively in the network. The simulation results indicated that the partial-IA protocol

outperforms the full-IA protocol in all cases, due to the full-IA protocol’s action of overcom-

pensating, when aiming for avoiding all possible interference, hence substantially reducing

its attainable spatial multiplexing gain. Furthermore, increasing the spatial multiplexing
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gain achievable by each RN beyond two actually reduces the network’s EE, since the spatial

multiplexing gain achieved by BSs would have to be reduced in order to accommodate IA.

Additionally, deploying a single RN in each sector is sufficient for maximizing the attainable

SE, although the EE is reduced, when increasing the number of RNs.
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General Notation

A boldface uppercase letters denote matrices.

aij the element of the matrix A at row i, column j.

x boldface lowercase letters denote column vectors.

x standard lowercase letters denote scalars.

xi the ith element of the vector x.

Diag{x} a diagonal matrix with x being its diagonal elements.

diag{A} a vector comprised of the diagonal elements of the matrix A.

Trace(A) trace of matrix A.

AT transpose of the matrix A.

AH Hermitian transpose of the matrix A.

A−1 inverse of the square matrix A.

A† Moore-Penrose inverse (pseudoinverse) of the matrix A.

rank (A) rank of matrix A.

<(A) elementwise real part of the matrix A.

=(A) elementwise imaginary part of the matrix A.

IN the (N ×N)-element identity matrix.

1N the dimension-N column vector of ones.

R the field of real numbers.

C the field of complex numbers

Z the set of all integers.

R+ the set of all nonnegative real numbers.

R++ the set of all positive real numbers.

R− the set of all nonpositive real numbers.

R−− the set of all negative real numbers.

Rn the n-dimensional vector of real numbers.

Rm×n the m× n-dimensional matrix of real numbers.

‖·‖p the p-norm of a vector.

‖·‖F the Frobenius norm of a matrix.

min(·) minimum operator.

max(·) maximum operator.

inf(·) infimum operator.

sup(·) supremum operator.

log(·) natural logarithm operator.

log2(·) base 2 logarithm operator.
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xvi GENERAL NOTATION

aff S affine hull of set S.

dom f domain of function f .

[a, b] closed set of real numbers between a and b.

(a, b) open set of real numbers between a and b.

∇ first order vector differential operator.

∇2 second order vector differential operator.

A � 0 A is a positive semidefinite matrix.

x � a vector x is elementwise greater than a.

epi f epigraph of function f .

hypo f hypograph of function f .

h ◦ g the function composed of h (g).

f ′ first order derivative of function f .

f ′′ second order derivative of function f .

relint D relative interior of set D.

Df (x) first order derivative of function f with respect to x.

[·]+ projection onto the nonnegative field of real numbers.

bc floor operator.
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Chapter 1
Introduction

Mobile data traffic has grown tremendously in recent years, which is a trend that is set

to continue for the near future [1–3]. Consequently, the industry has been prompted into

focusing their efforts on increasing the achievable area spectral efficiency (ASE) [4] of cellular

systems using advanced technologies, which is expressed in
[
bits/sec/Hz/km2

]
. In the

interest of improving the ASE through spatial reuse of the available wireless resources,

heterogeneous networks, small cells and MIMO antenna techniques may be employed [5–8].

However, these capacity-improvement methods conflict with the growing need to reduce the

energy consumption of a wireless network [9–11], which was triggered by the perpetually

increasing energy prices, as well as by societal and political pressures on mobile phone

operators to reduce their ’carbon footprint’ [12, 13]. To elaborate, more BSs are required

in order to provide the same coverage using smaller cells, while employing more antenna

components requires additional radio frequency (RF) chains. Both effects contribute to

an increase of the network’s operational energy costs. On the other hand, the EE of the

network may be improved by employing intelligent resource allocation (RA) [8, 11, 14] for

exploiting any available multi-user, time, spatial or frequency diversities. Nonetheless, the

complexity of RA is further exacerbated by the impact of CCI in a network consisting of

multiple cells [5].

Substantial joint academic and industrial research efforts have been dedicated to develop-

ing novel energy-saving techniques, as exemplified by the ’green radio’ project [10], the

GreenTouch alliance [15], and the energy aware radio and network technologies (EARTH)

project [12,16]. Substantial research efforts have also been dedicated to relay-aided OFDMA

wireless networks, as exemplified by the third generation partnership project’s (3GPP)

long term evolution-advanced (LTE-A) and IEEE 802.16 worldwide interoperability for mi-

crowave access (WiMAX) [17] standards. The wireless resources of time and frequency have

to be carefully assigned for increasing the system’s SE or EE in an OFDMA system, which

can be arranged by an intelligent RA scheduler. Furthermore, relaying between the BS and

1
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the UE can improve the EE, since the quality of the communication link is maintained at re-

duced transmission power requirements owing to the reduced transmission distances. Thus,

the need for expensive deployment and maintenance of additional BSs can be circumvented.

The complex interplay of the above issues motivates the investigations of this thesis, which

focuses on the optimal RA for maximizing the SE or EE of multi-user multi-relay networks.

In the following, the basics of the communication principles employed in this thesis are

described.

1.1 Discrete Memoryless Time-Invariant Channel Capacity

For a discrete memoryless time-invariant channel, the symbol received at time instant i can

be modeled as

y [i] =
√
g [i]x [i] + n [i] , (1.1)

where
√
g [i] is the channel gain, x [i] is the transmitted symbol and n [i] is the noise sample.

The signal-to-noise ratio (SNR) at the receiver is then defined as

γ [i] =
g [i]P [i]

N0B
, (1.2)

where P [i] = |x [i]|2 is the transmission power, while B is the received signal bandwidth.

Furthermore, the power spectral density of the additive white Gaussian noise (AWGN) is

given by N0/2. The SNR determines the achievable Shannon capacity [4] of

C =

∫ ∞

0
B log2 (1 + γ) p (γ) dγ, (1.3)

which is the maximum mutual information (MI) that can be conveyed over the channel with

a vanishingly low error probability. The Shannon capacity can be maximized if knowledge

of the channel state information (CSI) g [i] is available at both the transmitter and receiver.

In that case, the Shannon capacity is simply given by

C = B log2

(
1 +

g [i]P [i]

N0B

)
, (1.4)

and it is clear that a high channel capacity can be attained, when the channel gain is

favorably high.

The wireless channel encountered in real-world scenarios is affected by fast-fading, shadow-

ing and path-loss. In case of cellular systems, the fading encountered in both the down-

link (DL) and uplink (UL) channels is typically frequency-selective, which is the result of

having multiple signals paths of varying lengths between the transmitting BS and the user,

as demonstrated in Fig. 1.1. A measure of the severity of the frequency-selective fading is
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Figure 1.1: The multiple signal paths arriving at the user at different times causes
frequency-selectivity in the channel transfer function.

given by the coherence bandwidth, which is the average bandwidth over which the complex

valued fading envelope can be considered constant. If the signal bandwidth is similar to

the coherence bandwidth, then the signal experiences frequency-flat fading. On the other

hand, if the coherence bandwidth is lower than the signal bandwidth, the signal undergoes

frequency-selective fading, which is detrimental to the quality of reception since it causes

inter-symbol interference, hence increasing the error probability, unless intelligent counter-

measures are invoked. In the LTE-A and the WiMAX standards, the OFDMA technique [18]

is employed.

1.2 Orthogonal Frequency Division Multiple Access
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Frequency

Figure 1.2: A demonstration of how OFDMA partitions the channel’s bandwidth into
multiple subchannels.

In OFDMA, the whole channel’s bandwidth is divided into multiple subchannels, centered

around the subcarriers, as depicted in Fig. 1.2, where each subcarrier is employed for trans-

mitting different symbols. An immediate benefit of using OFDMA is that each subband

signal’s bandwidth is substantially reduced, thus making it more likely that each signal

experiences frequency-flat fading.
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Figure 1.3: A block diagram of a point-to-point link employing OFDMA using the IFFT
and the FFT. The operations performed by the transmitter are shown at the top, while the
bottom details the receiver’s operations. The blocks labelled D/A and A/D perform the

digital-to-analogue and analogue-to-digital covnersion, respectively.

The OFDMA operation is performed as shown in Fig. 1.3. The data stream is initially

modulated into N complex-valued quadrature amplitude modulation (QAM) symbols

X [0] , X [1] , · · · , X [N − 1] , (1.5)

which are parallelized and mapped to specific OFDMA subcarriers. The inverse fast Fourier

transform (IFFT) can be used for simultaneously modulating the phase and amplitude of a

block of N subcarriers instead of using a bank of N parallel modems, which is formulated

as

x [n] =
1√
N

N−1∑

i=0

X [i] ej2πi/N , n = 0, · · · , N − 1, (1.6)

where x [n] represents the OFDMA symbols. As seen in Fig. 1.3, a cyclic prefix is ap-

pended to each OFDMA symbol to ensure that consecutive OFDMA symbols are free from

inter-symbol interference [4] and all OFDMA symbols are combined using the parallel-to-

serial converter to yield the baseband OFDMA signal, which is upconverted to the carrier

frequency of f0 and transmitted. The inverse operations are performed at the receiver of

Fig. 1.3, with the inclusion of a low pass filter (LPF) for removing the high frequency com-

ponents. Since OFDMA modulation and demodulation is a linear process, it is convenient

to manipulate the baseband QAM modulated symbol stream in simulations, instead of the

RF signals.

In cellular systems, different subsets of these subcarriers may be allocated for transmission

to different users in a cellular system [18], thus attaining two types of diversity, which may

be jointly exploited for improving the attainable capacity of the system. Firstly, multi-user
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diversity is attained with the aid of appropriate user mapping, since a channel spanning

from the BS to a specific UE and undergoing severe fading may be freely reassigned for

transmission to a different user with more friendly channel conditions. On the other hand,

activating only those subcarriers that are suitable for high-quality transmission to a par-

ticular UE leads to frequency diversity. These philosophies are underpinned by several

contributions in the literature [18,19], where the goal is to assign the available resources, for

example power and subcarriers, so that a system-wide metric is maximized. These methods

belong to the family of resource allocation policies and typically aim for solving one of two

problems: either the SE [20–22] of the system is maximized while a maximum power con-

straint is enforced, or the power consumption is minimized under a minimum total system

throughput or individual UE rate constraint [23–27], which may be viewed as ensuring fair-

ness among the users, since each user achieves at least a minimum rate. Furthermore, for a

given system bandwidth, the sum rate maximization and SEM solutions are identical. To

avoid any additional abbreviations, they are both henceforth referred to as SEM.

1.3 Resource Allocation Fundamentals

Effective RA can be achieved by spectrum allocation and power allocation [28]. The goal of

spectrum allocation is to assign the scarce time-, frequency- and code-domain radio resources

to the transmissions associated with the set of active users. The majority of the CCI may

be avoided be careful power allocation, if these resources are orthogonally assigned, so that

there are no overlapping transmissions.

In the case of the LTE-A and the WiMAX standards [8, 29, 30], the time-domain (TD)

resource is partitioned into frames in a time-division multiple access (TDMA) manner,

while the frequency-domain (FD) resource is partitioned into subchannels using OFDMA.

The benefit of using OFDMA, as described above, is that the frequency-selective wireless

channel can be transformed into several low-rate, non-dispersive subchannels, which exhibit

frequency-flat fading. This assists in intelligent scheduling by facilitating channel adapta-

tion. The time-frequency partitions are then referred to as resource blocks (RBs), which

are depicted in Fig. 1.4. As seen in Fig. 1.3, the role of the scheduler is to perform sub-

carrier mapping, so that the RBs are assigned to users in an intelligent manner, which

maximizes some network-wide metric. The most common scheduling algorithms include

round-robin (RR) and proportional fair (PF) scheduling [31]. The RR scheduler aims for

maximizing the resource usage fairness by assigning a roughly equal number of resources

to each user, while the PF scheduler takes into account the past history of the attained

transmission rates of each user and assigns the future resources to balance equitably the

longterm rate achieved by all users.

During the past decade, a large body of literature has been accumulated on the subject of
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Figure 1.4: The wireless resources of time and frequency may be partitioned into RBs
and assigned to particular users.

RA [23,24,26,32]. While the basic RR and PF scheduling algorithms are still advocated in

the wireless standards, the research community has developed more sophisticated algorithms

based on exploiting the available CSI to perform opportunistic RA [33]. As shown in Fig. 1.5,

wireless channels suffer from time- and frequency-selective fading, therefore it is inevitable

that certain users will experience more favorable wireless links to the BS. The system’s

C
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Frequency
Time

Figure 1.5: A conceptual illustration of the time- and frequency-varying nature of a
wireless channel.

performance can be improved by assigning RBs to the wireless links corresponding to the

preferable channel conditions, thus exploiting the so-called multi-user diversity [4].

The RA problem is further complicated in relay-aided multi-cell networks. Cellular networks

employ a unity frequency reuse factor to improve the attainable ASE, while relaying is ca-

pable of improving either the quality of the end-to-end link or of reducing the transmission

power requirement. However, the multiple simultaneous transmissions result in stronger

CCI. Intelligent schedulers are required for allocating resources, while ensuring that the

CCI is carefully managed and that the communication overhead required between BSs is

not excessive. Beneficial methods of avoiding excessive CCI include geometric program-
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ming (GP) [34–36] or iterative water-filling (IWF) [37]. Both approaches are derived from

convex optimization. The latter one will be detailed in Section 2.8.2.

1.4 Relay-Aided Transmissions

Relay

DestinationSource

Figure 1.6: An example of a relay network. The direct link between the source and
destination is indicated with a dashed line, while the relayed link using the RN is shown

using the solid line.

The relay channel, as shown in Fig. 1.6, has been extensively studied in the research commu-

nity [38–41]. In the context of cellular networks, the relay channel is created by employing

RNs, thus extending the wireless coverage, reducing the required transmission power, or im-

proving the reliability of the wireless link [17,42]. The pair of relaying protocols advocated

in the seminal work of [43] are the AF and the DF protocols [43]. The AF protocol is less

complex than DF, since the RN needs only has to receive and linearly amplify the trans-

missions, before forwarding it to the destination. On the other hand, DF requires that the

RN decodes and then re-encodes the symbol stream, thus requiring a more intelligent RN

and imposing an additional delay on the end-to-end transmission. The effects of scheduling

and frequency reuse in the context of the above-mentioned networks was studied in [44].

In the AF protocol, the complex-valued symbol sequence transmitted from the source

node (SN), xs, is received at the RN and may be written as

yr = hs,rxs + nr, (1.7)

where hs,r is the complex-valued channel fading coefficient of the link between the SN and

RN, which is assumed to be constant for the duration of the transmitted symbol sequence,

while nr is the complex-valued, zero-mean, circularly symmetric Gaussian random noise

sequence with a variance of N0. The RN applies an amplification factor to the received

sequence given by

β =

√
Pr

|as,r|2 Ps +N0

, (1.8)

where Ps and Pr are the maximum instantaneous power constraints of the SN and RN,

respectively. Then the RN transmits the sequence βyr, which now has an average power of

Pr. After receiving the transmissions from both the SN and RN, the MI conveyed to the
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destination node (DN) is given by [43]

IAF ≤
1

2
log2

(
1 + |hs,d|2

Ps
N0

+ f

(
|hs,r|2

Ps
N0

, |hr,d|2
Pr
N0

))
, (1.9)

where hs,d and hr,d is the complex-valued channel coefficient of the SN-to-DN link and the

RN-to-DN link, respectively, while the relaying-function is given by:

f (x, y) :=
xy

x+ y + 1
. (1.10)

If the channel between the SN and DN is undergoing severe fading, the SN-DN link may be

ignored. Then the MI conveyed to the DN is given by

IAF =
1

2
log2

(
1 + f

(
|as,r|2

Ps
N0

, |ar,d|2
Pr
N0

))
. (1.11)

When employing the DF protocol, the RN first has to decode the symbol sequence received

from the SN, before re-encoding and transmitting it to the DN. The MI conveyed to the DN

is given by

IDF ≤ min

{
1

2
log2

(
1 + |as,r|2

Ps
N0

)
,
1

2
log2

(
1 + |as,d|2

Ps
N0

+ |ar,d|2
Pr
N0

)}
. (1.12)

Once again, if the SN-DN link is undergoing severe fading, it may be ignored, hence the MI

is given by

IDF ≤ min

{
1

2
log2

(
1 + |as,r|2

Ps
N0

)
,
1

2
log2

(
1 + |ar,d|2

Pr
N0

)}
. (1.13)

In other words, using the DF protocol while ignoring the SN-DN link, the MI is intuitively

limited by the MI conveyed on either the SN-RN or the RN-DN links.

1.5 State-of-the-Art Literature Review of Energy-Efficient

OFDMA Systems

As mentioned above, due to the scarcity of radio resources and the ever-higher capacity

requirements, intelligent radio resource management (RRM) has become an important con-

cern in current and future wireless networks [45, 46]. A stylized overview of the interplay

amongst RRM techniques is provided in Fig. 1.7, which will be further discussed in the

following. Furthermore, several studies, surveys and magazine articles investigating the

general energy-efficiency issue and energy efficient RRM methods are available as exempli-

fied by [11,13,14,47–64].
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Figure 1.7: An overview of the major topics related to radio resource management.

1.5.1 Resource-Allocation Criteria

The optimization objectives of RRM shifted from high spectral-efficiency, which is mea-

sured in [bits/sec/Hz], or throughput [65–67], which is measured in [bits/sec], to high

area-spectral efficiency [4, 68] measured in
[
bits/sec/Hz/m2

]
. Concurrently, energy effi-

ciency ([bits/Joule/Hz]) has become a grave concern [10, 11, 14, 55, 69–71], which is some-

times addressed by minimizing the power required for supporting the target performance

criterion [72–80]. However, minimizing the power consumption is typically not equivalent

to maximizing the EE [55].

On the other hand, due to the need for simultaneously satisfying several users, the issues of

user-fairness [81–86] and outage performance [78,87,88] arose, with the objective of ensuring

that the users are not ’rate-starved’. Furthermore, congestion control [83,86,89–92] aims for

carefully managing the resources so that none of the wireless links are over-utilized, while

buffer overflow also is avoided [86, 93]. Additionally, current devices are often required to

support real-time interactive applications, such as voice and video, which come with their

own service criteria. Often, this manifests itself as a restriction imposed on the maximum

tolerable end-to-end delay [94,95], or requirements in terms of quality-of-service (QoS) [33,



10 Ch. 1. Introduction

81, 82, 96–106], or even quality-of-experience (QoE) [107–109]. Naturally, wireless networks

have to share the wireless spectrum, and it is beneficial to control the amount of interference

that each transmitter inflicts [110–112].

1.5.2 System Model

Classic RRM is more naturally implemented in infrastructure-based networks, such as cel-

lular systems [32,46,84,85,99,100,102,113–123], wireless local area networks (WLANs) [98,

106, 114, 124–126] and paging systems [4], which all benefit from the assistance of access

points (or BSs), when implementing centralized RRM algorithms. On the other hand, ad-

hoc networks [81, 90, 96, 127–129], self-organizing networks [130–135] and wireless sensor

networks [20, 136–139] have to distributively coordinate their own transmissions, which are

typically of multi-hop nature. Although the traditional infrastructure-based networks are

of single-hop nature, current networks may invoke relaying [20, 21, 65, 76, 88, 104, 140–155]

for extending the wireless coverage or for improving the link reliability. RRM is fur-

ther complicated, when there are multiple simultaneous transmitters, as in multi-cell net-

works [66,94,115,156–160], and multi-tier (heterogeneous) networks [70,133,161–166]. This

problem is further exacerbated, where there is no coordination amongst the transmitters,

as exemplified by a cognitive network [67, 70, 78, 111, 126, 167–172], where the primary and

secondary users belong to separate networks.

1.5.3 Resource-Allocation Techniques

Traditional RRM techniques include power control [32,88,91,118,135,140,149,153,159,173–

176], rate control or prediction [33, 132, 175, 177, 178], as well as the allocation of time and

frequency resources [32, 75, 77, 109, 111, 149, 156, 159, 175, 179]. In the case of code-division

multiple-access (CDMA) systems, code allocation is an important consideration [85,124,157,

167]. Furthermore, MIMO systems may employ antenna allocation [71,80,126,180,181]. In

the case of infrastructure-based networks, the access points can perform access/admission

control [69,101,163,182–185] for ensuring that the network does not become oversubscribed.

Additionally, handovers in cellular systems ensure that a smooth service is provided for the

users [97,101,186]. All of these techniques can be applied simultaneously and harmoniously

by utilizing cross-layer design for jointly fulfilling the objectives of RRM [33, 104–106, 137,

139,187–190].

1.5.4 Mathematical Tools for Resource Allocation

The tools available for RRM include meta-heuristic based techniques [103, 115, 119, 127,

150, 191], such as genetic algorithms [192, 193], ant-colony optimization [79, 155, 176, 194]
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and particle swarm optimization (PSO) [195, 196]. Typically, these algorithms are of low-

complexity and are capable of finding acceptable solutions, but without any guarantees

of optimality. On the other hand, convex optimization [121, 154, 170, 172, 197] can be im-

plemented in form of both distributed and centralized algorithms, which are capable of

finding optimal solutions at the cost of additional complexity. In the case of non-linear

non-convex, and combinatorial optimization problems, the optimal or near-optimal solu-

tions can still be found through reformulations, relaxations or by exploiting the specific

system model [21, 22, 71, 120, 181, 198–202]. Additionally, these mathematical optimization

techniques can be generalized under the umbrella of calculus of variations [203] for solving a

wider range of problems. Efficient RRM may also be performed based on game-theoretical

principles [14,69,70,112,128,129,147,175,204], which can model the RRM function as a non-

cooperative [69,72,74,148,151,152,162,164,171,173,174,205–208] or cooperative (coalition)

game [14, 161, 169, 183, 209–211], resulting in Nash equilibria or Pareto optimal solutions,

respectively. In the case of congestion controlled delay-constrained services, queuing the-

ory [69,83,86,92,182,185,187,212,213] is often useful in making RRM decisions.

In this thesis, we focus our attention on convex optimization techniques invoked for maximiz-

ing either the spectral-efficiency or energy-efficiency through power and subcarrier allocation

in multi-user, multi-cell, relay-aided, OFDMA cellular networks, which are related to the

topics seen in Fig. 1.7. Due to the nature of the topic at hand, it is beneficial to limit our

focus to topics closely related to homogeneous OFDMA cellular networks in order to offer

a concise literature review.

1.5.5 Energy-Efficient Resource Management in Conventional

OFDMA Cellular Networks

Some of the earliest studies of energy-awareness in communication channels were performed

by Kwon et al. [232], Gallager [233] and Verdu [234]. Kwon et al. [232] introduced the

energy-efficiency (EE) metric of
C

S
[bits/Joule] , (1.14)

where C is the well-known channel capacity, while S is the signal power. Gallager [233]

studied cost-limited channels, while Verdu [234] introduced the capacity per unit cost given

by C (β) /β, which was subsequently employed in various network scenarios.

Later on, energy-awareness shifted away from the information-theoretic perspective to the

protocol and algorithm design perspectives, as demonstrated by Wu et al. [235], Rulnick et

al. [236,237], and Zorzi et al. [238]. In [235], the authors presented an energy-efficient caching

protocol for both reducing the bandwidth required by the wireless network and for reducing

its battery power requirements. A single point-to-point link was studied in [236,237], where

the aim was to maintain a certain QoS in the face of arbitrary interference. Thus, an
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Reference Year(s) Summary of contribution

Wong et al. [23, 214] 1999 Formulated the total power minimization prob-
lem based on subcarrier allocation and bit-
loading. A suboptimal method is employed for
allocating subcarriers, then optimal bit-loading
is performed.

Kivanc et al. [215,216] 2000-2003 Built upon [23, 214] by developing low-
complexity algorithms for the optimization
problem. The resources required by each user
are computed, which aided the subcarrier
allocation.

Kim et al. [217,218] 2001-2006 Reformulated [23, 214] as an ILP. Suboptimal
subcarrier allocation is performed based on the
relaxed ILP.

Seong et al. [219] 2006 Demonstrated that solving the power minimiza-
tion problem with relaxed subcarrier constraints
is asymptotically-optimal as the number of sub-
carriers increases. Their results showed that just
8 subcarriers is sufficient for this to be true.

Miao et al. [220–225] 2008-2012 Considered uplink EE with subcarrier allocation
and rate adaptation. Optimal algorithms are
presented. Problems featuring objective func-
tions based on arithmetic and geometric averages
of the EE are also solved. Interference-limited
scenario is later considered using a game theory
approach.

Isheden et al. [226,227] 2010-2012 Provided a unifying framework for EE maxi-
mization. Solutions based on both Dinkelbach’s
method and the Charnes-Cooper transformation
are studied.

Xiong et al. [228–231] 2011-2012 Presented methods to characterize the SE-EE
tradeoff curve in both the DL and the UL.

Ng et al. [201] 2012 BS cooperation is employed for transmitting to
multiple users without interference. The EE
maximization problem is solved using subopti-
mal user selection and ZF combined with Dinkel-
bach’s method.

Table 1.1: A selection of the prominent contributions in the field of resource allocation
for energy-efficiency in OFDMA cellular networks.

algorithm was developed for dynamically minimizing the transmit power. The authors

of [238] studied the performance of various error control protocols conceived for different

transmit power profiles. Although the metric of (1.14) was defined as early as 1986 [232], in

terms of energy-awareness, the widely adopted mentality was to minimize the total transmit

power, while the per bit power metric did not enjoy widespread use until much later. A

selected list of notable contributions on this topic is provided in Table 1.1.
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The seminal work of Wong et al. [23, 214] first investigated minimizing the total transmit

power subject to subcarrier allocation constraints. The problem was reminiscent of the

classic resource assignment problem. Rate constraints were introduced [23], and the binary

constraints imposed on the assignment variables were relaxed for the sake of obtaining the

optimal solution. Suboptimal heuristic algorithms were presented in [23] as low-complexity

alternatives. The authors of [215,216] extended the previous work in [23] by presenting some

lower-complexity alternatives based on determining the resources necessary for each user,

and then assigning the available subcarriers based on these requirements. An alternative

approach was adopted by Lee et al. [239], who grouped the subcarriers according to their

channel gains, and allocated the bits to each group instead of each individual subcarrier.

Kim et al. [217,218] reformulated the nonlinear problem of [23] as an integer linear program-

ming (ILP) problem, and employed suboptimal subcarrier allocation based on the relaxation

of the ILP. Single-user orthogonal frequency division multiplexing (OFDM) bit loading was

then performed. The authors of [240] built upon the contribution of [214] to include the

QoS constraints expressed in terms of rate and bit error rate (BER) requirements. The

so-called Hungarian algorithm [241] was employed for obtaining the optimal subcarrier allo-

cation matrix. Suboptimal heuristic methods were also presented in [240]. Liang et al. [242]

adopted the approach of linearizing the objective function without sacrificing the optimality

of the final solution. The ILP was thus transformed into a binary linear programming (BLP)

problem and solved at a reduced complexity.

Li et al. [243] presented an alternative approach based on sectorizing the macrocell, before

employing a heuristic method for subcarrier and bit allocation to minimize the total trans-

mission power subject to specific minimum rate and maximum symbol error rate (SER)

constraints. On the other hand, [244] incrementally assigned blocks of subcarriers according

to particular rate and BER requirements in order to minimize the total transmission power.

Zhang et al. [245–247] adopted a cross-layer approach by employing a packet error rate (PER)

constraint for ensuring error-free packet transmission at the medium access control (MAC)

layer. Thus, fair queuing was emulated at the MAC layer and various packet scheduling

schemes were employed. Both optimal, as well as relaxed and linear programming (LP)-

based algorithms were proposed for obtaining the solution. A single-cell system was con-

sidered in [248], where the authors implemented a low-complexity algorithm for jointly op-

timizing the power allocation, bit-loading, automatic repeat-request (ARQ) transmissions,

and adaptive modulation and coding (AMC) scheme. Similarly, Han et al. [249] employed

a heuristic algorithm for selecting the modulation and coding scheme (MCS) for each user

and for assigning subchannels to users. In another vein, Zarakovitis et al. [250] modeled

the packet arrival process and imposed a maximum delay constraint. Furthermore, a robust

bit-loading algorithm was employed for guarding against channel variations. The resultant

optimization problem was shown to be convex after the binary constraints were relaxed.
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The authors of [219] showed that the subcarrier and power allocation problem is non-convex,

but solving its dual problem with the aid of relaxation is asymptotically optimal as the

number of subcarriers increases. As a further advance in the field, Mao et al. [251] presented

an efficient branch and bound method for allocating subcarriers. Two suboptimal algorithms

were also presented. By contrast, the authors of [252] developed suboptimal algorithms based

on a branch and bound technique combined with dynamic programming. Akbari et al. [253]

performed sequential subcarrier allocation, followed by power allocation for maximizing

the EE in a DL scenario. They presented solutions based on both time-sharing as well

as without time-sharing of the subcarriers. However, they observed that employing time-

sharing reduces the complexity involved, while resulting in an improved performance. The

authors of [254] studied the UL, and presented a pair of suboptimal algorithms. On the

other hand, Xu et al. [255] additionally took into account the DL energy consumption of the

receiver in their problem formulation, where a quantum PSO algorithm was employed for

obtaining the solution. Lim et al. [256] studied a network employing multiple radio access

technologies (RATs).

Several authors studied the EE in multi-cell scenarios. For example, the authors of [257]

assumed interference averaging and presented several algorithms for finding the solution to

the power minimization problem. On the other hand, the authors of [74] adopted a game

theoretical approach to the power-, rate- and subcarrier-allocation problem by modeling the

network as a non-cooperative game with a referee. This referee regulates both the subcarrier

usage as well as the rate requirements of every user in order to maximize the system-wide

performance metric. Abrardo et al. [117,258] modeled the resource allocation problem cast in

the context of a total power minimization as a network flow problem using graph theory. The

resultant ILP is complex, hence suboptimal algorithms were presented for obtaining solutions

at an affordable complexity. The authors of [259] studied the UL counterpart of [117, 258],

but relaxed the integer constraints in order to formulate the problem as a LP. A heuristic

and distributed algorithm was proposed for its practical implementation. By contrast, the

authors of [260] employed a simple algorithm, which minimized the total transmission power

and then performed subcarrier allocation for minimizing the maximum outage probability,

while Bang et al. [261] investigated fractional frequency reuse and BS coordination for

developing a suboptimal algorithm for minimizing the total power consumption. The authors

of [262] modeled the uplink of a multi-cell system as a non-cooperative so-called potential

game, where selfish users unconsciously benefit the overall network EE by adapting their

transmit powers and subcarrier allocations. Venturino et al. [263] considered the sum EE

of a multi-cell system, and proposed a suboptimal heuristic algorithm for solving the user

scheduling and power allocation problem. Furthermore, an optimal algorithm was presented

for a noise-limited scenario, where the interference terms were ignored. The same authors

later considered clustering the BSs for the sake of coordinating their resource allocation

objectives in [264]. Suboptimal algorithms were presented for optimizing diverse objective
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functions based on the global EE as well as on the sum, or product of each BS’s EE. Optimal

algorithms were again presented for the noise-limited scenario. On the other hand, Liu et

al. [265] presented a two-step algorithm, which obtains the Pareto-optimal power allocation

values by modeling the problem as a non-cooperative super-modular game. Based on the

optimal power allocation, the optimal subcarriers were chosen by examining the resultant

signal-to-interference-plus-noise ratio (SINRs).

The normalized per bit EE metric of (1.14) was employed in [220], where Miao et al. studied

the uplink of an OFDMA system in a flat fading channel. The Lagrange multiplier method

was employed for obtaining the optimal subcarrier allocations, while the EE-optimal system

rate was obtained based on the relationship between the transmission power and rate. This

work was extended in [221,224] to frequency-selective fading channels, although only a single

user was considered. Two algorithms were conceived for obtaining the optimal solution.

Subsequently, lower-complexity algorithms were presented in [223, 225], which employed

the exponentially time-averaged rate and the energy consumed in the objective function

of each user. The scheduling metric was based on the arithmetic or geometric mean of

each user’s objective function. An interference-limited scenario was studied in [222], which

proposed algorithms for solving the cooperative two-user and non-cooperative multi-user EE

problems. Andreev et al. [266] later invoked the solution presented in [223,225] in a WiMAX

network. An interference-aware power control algorithm was proposed for improving the

cell-edge users’ performance. By contrast, the reciprocal of the EE metric was minimized

in [267], where the authors ordered the users according to their respective channel gains, and

exploited the convexity of the objective function for developing a low-complexity algorithm

for finding the EE-optimal system’s rates and power variables. This work was then extended

to multi-cell scenarios in [268].

The DL SE-EE tradeoff of power and subcarrier allocation was studied in [228,229], where

both the upper and lower bounds of the optimal SE-EE curve was obtained via dual de-

composition and relaxation, respectively. A suboptimal algorithm was also presented for

approaching this curve. This work was extended in [230,231] to include the uplink scenario

and to obtain the optimal solution by evaluating every possible subcarrier allocation. On the

other hand, the same authors studied the EE-delay trade-off in [269,270] using the concept

of effective capacity in their problem formulation. The relaxed problem was solved to obtain

a tight upper bound to the original solution. Furthermore, the EE-delay trade-off curve was

also characterized. The authors later studied the optimal EE trade-off in the UL versus DL

in a single cell system [271], where the users can harvest energy from the received DL signal

for use in the UL. Then the multi-objective problem was transformed into a single-objective

problem, where the subcarrier allocation constraints were subsequently relaxed. A branch

and bound type algorithm was proposed for finding feasible weights for the formulating the

single-objective function.
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On the other hand, the authors of [272] also studied the SE-EE trade-off both in a single

cell system and a multi-cell system. They observed that small cells and beamforming are

preferred for EE. Furthermore, Zheng et al. [273,274] studied the SE-EE trade-off subject to

rate constraints in both the UL and DL of a single-cell system. The optimal water level was

determined for each user and suboptimal subcarrier allocation was employed for obtaining

an appealing trade-off. Tang et al. [275] considered the SE-EE trade-off in the single cell DL

scenario, while employing a resource efficiency metric, which was based on a combination

of the SE and EE. Linear scalarization was employed again, and both optimal as well as

suboptimal methods were proposed for solving the resultant single-objective problem. By

contrast, a PSO based approach was pursued in [276] for optimizing the combined SE and

EE objective function.

Ng et al. [201] employed Dinkelbach’s method for maximizing the EE in a multi-cell system,

subject to both user-rate and backhaul-capacity constraints. BS cooperation was assumed

and the BSs formed a multiple antenna aided system employing ZF transmit beamform-

ing, which eliminated the interference. Similarly, Haider et al. [277] employed Dinkelbach’s

method, but in a single cell system operating under rate constraints, where the branch and

bound technique was used for finding the optimal subcarrier allocations. Loodaricheh et

al. [278] also employed Dinkelbach’s method in a single cell system, but utilized user co-

operation for increasing the attainable EE performance. On the other hand, the authors

of [279] relaxed the subcarrier allocation constraints to solve a similar problem at a reduced

complexity. Shi et al. [280] demonstrated that OFDMA is the optimal multiple access

method, when aiming for maximizing the EE in the single cell DL system, and presented

algorithms based on Dinkelbach’s method, for obtaining the optimal solution. Ng et al. [281]

later studied the EE of a single-cell network, where the BS was equipped with an energy

harvester. Offline EE maximization was performed with the aid of relaxation and Dinkel-

bach’s method. However, the online optimization based on a dynamic stochastic method

is excessively complex, hence a suboptimal algorithm was proposed. Dinkelbach’s method

was compared to other methods in [226, 227], which provided a unified framework of EE

maximization.
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Reference Year(s) Summary of contribution

Klein et al. [282] 2007 Total power minimization is considered for a sin-
gle cell scenario with simultaneous direct and re-
laying links. The subframe duration of the first
hop is determined, followed by subcarrier alloca-
tion. The optimal bit and power allocations are
then obtained by formulating and solving a LP
problem.

Ma et al. [283] 2008 Total power minimization is considered for a
three node network. Either the AF or DF proto-
col is invoked. Bit and power loading algorithms
are proposed for either fixed or variable power
ratios of the source and relay.

Girici et al. [284,285] 2008-2009 Focused on DF relaying without direct links.
The weighted total power minimization problem
requires a complex solution algorithm. There-
fore, a suboptimal method is proposed, which
chooses the number of subcarriers and subframe
duration, then applies subcarrier allocation and
water-filling based power allocation.

Ho et al. [286] 2011 By contrast to the above, an UL scenario is con-
sidered, where relays employ the DF protocol,
and an exponentially time-averaged EE metric is
maximized. A low-complexity scheme is devel-
oped for power, subcarrier and relay allocation.

Joung et al. [27, 287] 2011-2012 Total power minimization subject to minimum
SINR constraints is studied. Direct, and AF or
DF relay-aided transmissions modes are avail-
able. A sequential heuristic algorithm is pro-
posed for choosing the communication mode and
performing the subcarrier allocation.

Zhang et al. [288] 2013 Joint subcarrier assignment, bit and power al-
location is performed for the UL of a multiuser
system. A suboptimal greedy algorithm is devel-
oped based on subcarrier permutations, while a
more efficient algorithm using bisection method
is later proposed.

Chen et al. [289] 2014 Total total power minimization in the DL of
a multi-relay network using discrete modula-
tion levels. A suboptimal algorithm is pro-
posed, which consisting of a simple relay selec-
tion method, then a resource allocation method
using virtual direct transmissions.

Table 1.2: A selection of the prominent contributions in the field of RA for EE in relay-
aided OFDMA cellular networks.
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1.5.6 Energy-Efficient Resource Management in Relay-Aided

OFDMA Cellular Networks

Although EE has been extensively studied in conventional cellular networks, the EE of relay-

aided cellular networks has only recently become a subject of interest. Most of the existing

literature considers fairness or sum-rate maximization [20–22,199]. Here we exclude articles

from this review regarding user cooperation, since user cooperation requires that both the

relay and the user benefit from relaying, which is not the case in the classical relay-aided

networks. Nonetheless, three-node networks and two-way relaying can be readily conceived

with cellular networks, which are hence included in this literature review. A summary of

some selected contributions on this topic is listed in Table 1.2.

In [282], Klein et al. studied the total power minimization problem in a single cell DF relay-

aided network, which supports simultaneous direct and relaying links. The time duration

of the first hop subframe was determined, before subcarrier, bit and power allocation was

performed using the LP solver of [218]. Similarly, Wang et al. [290] considered both direct

and relayed transmission in the context of total power minimization problem. However,

the mode selection variable was relaxed and the problem was suboptimally solved using a

duality approach and the Hungarian method. By contrast, Girici et al. [284, 285] assumed

that the direct link was weak and hence only considered the relaying links and proposed

a suboptimal procedure to compute the subframe durations and the number of subcarriers

required by each link, before subcarrier allocation and power allocation was carried out

based on water-filling. Chen et al. [289] formulated the power minimization problem in

conjunction with discrete modulation levels and proposed a suboptimal algorithm relying

on a simple relay selection method.

Some authors studied the effects of partial or outdated CSI. For example, Song et al. [291]

assumed only the availability of statistical knowledge of the users’ channels and proposed

a suboptimal algorithm based on the dual problem formulated for relay selection, as well

as for power and subcarrier allocation in order to minimize the total transmit power, while

supporting a certain rate requirement. On the other hand, the authors of [292] assumed

having outdated CSI, but also employed the dual problem for developing an algorithm for

performing the resource allocation.

Xiao et al. [25,293] adapted the transmission power of the first and second hops for ensuring

that both links are capable of supporting the same rate. The same authors later stud-

ied the power minimization problem in a multi-cell scenario and employed non-cooperative

game theory for developing a distributed algorithm to balance the rate achieved on both

the first and second hop links for preventing the assignment of excessive power, while reduc-

ing the interference imposed. Joung et al. [27, 287] also studied the multi-cell scenario and

incorporated both the direct as well as the AF or DF relaying links. A sequential heuris-
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tic algorithm was developed for selecting the most appropriate communication mode and

the subcarrier allocations. The multi-cell network can also be viewed as a multiple-source

multiple-destination network. In [294], Wang et al. employed an objection function, which

strikes a balance between the total power minimization and maintaining fairness for the users

of a multiple-source multiple-destination network in terms of their guaranteed rate. The op-

timal power and subcarrier allocations were obtained using a dual approach. Although, the

subcarrier selection variables were relaxed, it was shown that the optimal configurations

were still found. Banizaman et al. [295] aimed for minimizing the total energy consumption,

but observed that obtaining the optimal solution is too complex and may lead to unfairness.

Thus, they developed a suboptimal algorithm for performing sequentially user selection, fol-

lowed by relay and subcarrier selection, then finally by power and bit allocation. Huang et

al. [296] also attempted to promote fairness and assigned weights to each packet according to

their importance. The problem of carefully allocating the time domain, subcarrier, bit and

power resources for minimizing the total energy consumption was formulated as an integer

problem, which is excessively complex. Consequently, a suboptimal three-step algorithm

was proposed.

The relay-assisted UL was studied in [286], where Ho et al. employed DF relays and max-

imized the exponentially time-averaged EE metric using a low-complexity algorithm for

power, subcarrier and relay allocation. By contrast, Jiang et al. [297] proposed a suboptimal

algorithm based on decomposition. Initially, subcarrier allocations were obtained for each

user assuming equal power and bit allocation, then bit and power allocation was performed

using a bisection search. Fairness was later considered to develop another algorithm. On

the other hand, Zhang et al. [288] performed joint subcarrier assignment, as well as bit and

power allocation using a greedy algorithm, which considers every possible permutation of

the legitimate subcarrier assignments. A suboptimal algorithm based on a bisection search

was also proposed. Similarly, Hao et al. [298] employed joint optimization for the sake of

maximizing the EE. Dinkelbach’s method was used for solving the problem optimally, while

two lower-complexity algorithms were proposed for subcarrier pairing.

A three node network was considered in [283], where bit and power loading algorithms were

proposed for either AF or DF relaying protocols in order to minimize the total energy con-

sumption, while supporting fixed or variable power ratios of the source and relay. Yu et

al. [299] also studied the EE maximization problem in the context of a three node network.

However, they employed the AF protocol and devised a pair of algorithms for power alloca-

tion. One of their algorithms relies on an approximation assuming a high SNR and results

in a low-complexity solution algorithm. The alternative is a higher-complexity solution,

which does not rely on the aforementioned approximation. The authors of [300] formulated

the subcarrier and power allocation as a mixed binary problem and proposed a suboptimal

solution of separate subcarrier allocation and power allocation. Likewise, Chen et al. [301]

studied the EE maximization problem in a three-node network featuring an AF relay. Their
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low-complexity power allocation algorithm relies on subcarrier matching of the first and

second hop links for forming a virtual direct link. On the other hand, Sun et al. [302] stud-

ied the EE maximization problem using bit allocation in a three node network subject to a

requirement on the minimum number of bits transmitted. Their solution consisted of hybrid

one-way and two-way relaying on separate subcarriers. Initially, the number of subcarriers

required by each source was determined and then the optimal indices were found using a

bisection search. Subsequently, optimal power and bit allocations were obtained based on

classical water-filling. Chen et al. [303] also considered two-way relaying, but aimed for

minimizing the total energy consumption in the network subject to specific queue stabil-

ity constraints. They formulated and solved the associated convex optimization problem

and subsequently designed a scheduling protocol based on their results. Similarly, Chang

et al. [304] minimized the total energy consumption in a two-way relaying network using

a low complexity phase, subcarrier and power allocation algorithm. The authors of [305]

incorporated exclusive or (XOR)-based network coding into their two-way relaying network

and proposed a suboptimal algorithm for power-aware relay selection and for opportunistic

network coding. On the other hand, Liu et al. [306] did not consider network coding, but

devised a three part suboptimal algorithm consisting of relay selection and subcarrier as-

signment, subcarrier pairing, as well as rate and power allocation for a two-way multi-relay

network. By contrast, the authors of [307] invoked a full-duplex relay and modeled the

subcarrier as well as power allocation as a three-stage Stackelberg game. The subgame-

perfect equilibrium was analyzed for each stage using the backward induction method and

an iterative algorithm was proposed to obtain this result.
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Reference Year(s) Summary of contribution

Hu et al. [308,309] 2004 Employed eigendecomposition for obtaining the
transmit and receive beamformers. Users corre-
sponding to the maximal eigenvalues are chosen,
and a greedy bit allocation algorithm minimized
the total power.

Zhang et al. [82, 310,311] 2003-2005 SVD-based MF is employed for the transmit and
receive beamformers. A complex greedy algo-
rithm and a lower-complexity alternative for bit
and subcarrier allocation minimized the total
power. These were extended to ZF and MMSE
receiver types, where users were chosen accord-
ing to their spatial correlations for reducing the
resultant CCI.

Ho et al. [77, 312] 2008-2009 Similar to [82, 310, 311], but uses a Lagrangian
method for resource allocation that approaches
optimality as the number of subcarriers in-
creases.

Kim et al. [313,314] 2008-2010 Modeled the link adaptation problem as a GP
problem of obtaining the optimal number of spa-
tial streams, number of antennas, use of spatial
multiplexing or STBC, constellation size, band-
width, transmit power and choice of ML or ZF
for MIMO decoding. The GP was solved with
efficient convex optimization algorithms.

Prabhu et al. [315] 2010 Minimized the EPG of a SVD-based system us-
ing Dinkelbach’s method, and evaluated multiple
antenna configurations.

Ng et al. [71, 200] 2012 MRT beamforming is employed, which chooses
users corresponding to the highest eigenvalue of
the channel correlation matrix. The ratio of the
weighted outage capacity over the total energy
consumption formulated with multiple variables
and was maximized with Dinkelbach’s method.
MRT is later employed in a cellular system with
physical-layer security enhancements.

Xu et al. [316] 2013 Also employed SVD-based MF beamformers, but
proposed a three-step searching algorithm to
firstly find the continuous variable solution for
the number of subcarriers occupied by each user
based on the KKT conditions, then optimize the
number of active RF chains, and finally discretize
the number of subcarriers for each user with the
optimal number of active RF chains.

Table 1.3: A selection of the prominent contributions in the field of resource allocation
for energy-efficiency in MIMO-aided OFDMA cellular networks.
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1.5.7 Energy-Efficient Resource Management in MIMO-OFDMA

Cellular Networks

The employment of multiple antennas in communication networks has grown in popularity as

a benefit of their linear capacity improvement, whilst only logarithmic capacity increases are

possible upon increasing the transmission power of a single-antenna system. In terms of sum

rate maximization or EE optimization, the conventional approach is to design beamform-

ers, which decouple the links between multiple transmit and receive antennas into several

angularly selective links. Consequently, the traditional resource allocation techniques de-

signed for single antenna aided systems can be readily applied. A summary of the notable

contributions in this area is provided in Table 1.3.

A natural choice for the beamforming matrices designed for maximizing the sum rate are the

matched filter (MF) matrices of the transmitter and receiver [317], which can be obtained

by employing the singular value decomposition (SVD) of the MIMO channel matrix. Thus,

the effective channel matrix is diagonalized and the remaining nonzero elements can be

employed as the channel gains in the traditional water-filling algorithm.

In [82, 310, 311], Zhang et al. employed the aforementioned technique for a multiuser DL

system. A complex greedy algorithm and a suboptimal lower-complexity alternative were

proposed for obtaining the optimal bit and subcarrier allocation to minimize the total

power. The authors later extended their work to both ZF and minimum mean-squared

error (MMSE) receiver types, while taking into account the spatial correlations of the users

in order to reduce the CCI. Similarly, Ho et al. [77, 312] employed SVD-based MF beam-

forming matrices, but used a Lagrangian approach for solving the resultant optimization

problem. They proved that their solution is asymptotically optimal, as the number of sub-

carriers increases. Similarly, Prabhu et al. [315] considered SVD-based beamforming, but

minimized the energy-per-goodbit (EPG) of the system using Dinkelbach’s method. Xu et

al. [316] instead adopted a three-step search algorithm to first find the continuous variable

solution for the number of subcarriers occupied by each user based on the Karush-Kuhn-

Tucker (KKT) conditions, before optimizing the number of active RF chains, and finally

discretizing the number of subcarriers for each user in conjunction with the optimal number

of active RF chains. SVD-based beamformers were also employed in [304, 318], where the

authors formulated a joint resource allocation problem to determine the optimal antenna,

subcarrier, transmission power configuration to minimize total energy consumption of the

system. Zhao et al. [319] proposed optimal and suboptimal algorithms for obtaining the

subcarrier, antenna, time slot, and power configurations for minimizing the total power

in a high-speed railway network, where SVD-based beamformers were employed. Xiao et

al. [320, 321] extended their previous work in [279] to MIMO-aided systems, and employed

the SVD to find the interference nulling precoders for each user. Again, the SVD was em-

ployed to decompose the effective channel matrix for obtaining the MF beamformers, thus
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diagonalizing the effective channel matrix. On the other hand, Liu et al. [322] considered

full duplex MIMO-aided relaying in the DL and employed both Dinkelbach’s method and

discrete stochastic optimization methods for solving the associated energy-efficient resource

allocation problem at a low-complexity.

Using the ZF beamformer facilitates serving multiple users on the same subcarrier without

interference, although the effective channel gains will be lower than those obtained, when

using MF based beamformers. For example, in [323], Shin et al. used ZF for eliminating the

interference amongst the users selected by employing the user selection algorithm of [324].

She et al. [325] performed scheduling based on either dirty paper coding (DPC), ZF-DPC

or ZF transmitters and employed waterfilling after determining the number of subcarriers

assigned to each user. On the other hand, Kim et al. [313, 314] included maximum likeli-

hood (ML) decoding, as well as ZF in their optimization problem. The reciprocal of the EE

metric was minimized and the authors specifically formulated a GP problem for obtaining

the optimal configuration in terms of the number of spatial streams, number of antennas, the

choice of spatial multiplexing versus space-time block code (STBC), the constellation size,

bandwidth, transmit power and decoding method. The GP problem was then efficiently

solved using standard convex optimization techniques. Ersalan et al. [326–328] considered

MMSE receivers in addition to ZF. Their EE metric consisted of a realistic modeling of the

PER and it was maximized by choosing the optimal transmission mode, which encapsulates

the transmission power, the number of spatial streams, number of antennas, modulation

type and coding rate.

By contrast, Hu et al. [308, 309] employed the eigendecomposition to the MIMO channel

matrix for designing the array weights of the transmit and receive beamformers. The users

were selected based on the resultant eigenvalues, and a greedy algorithm was employed for bit

allocation. Zappone et al. [329] considered maximum ratio combining (MRC) receivers in a

multi-cell UL network and formulated a non-cooperative potential game for joint subcarrier

allocation and transmit power control for the sake of maximizing the EE. On the other hand,

Ng et al. [71, 200] employed maximum ratio transmission (MRT) beamformers at the BS,

which had array weights obtained as the eigenvectors of the channel matrices corresponding

to the highest eigenvalues. Dinkelbach’s method was invoked for maximizing the ratio of the

weighted outage capacity over the total energy consumption by finding the optimal power

allocation, data rate adaptation, antenna allocation and subcarrier allocation. In [200], the

same authors considered a similar system in the context of providing physical-layer security

enhancements. They injected the transmitted signal with artificial noise, which was pre-

nulled for the intended receivers.
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1.6 Organization and Novel Contributions of this Thesis

We have previously discussed the motivation of this thesis and discussed some of the funda-

mental building blocks of wireless communication systems, which will be employed exten-

sively in future chapters. Now that a state-of-the-art literature review has been performed,

we present the organization of this thesis and highlight the novel contributions.

1.6.1 Organization of this Thesis

An overview of the structure of this thesis is provided in Fig. 1.8. As alluded to above,

this thesis focuses on SEM/EEM of multi-user multi-relay OFDMA cellular networks. In

particular, each chapter will explore progressively more complex system models, which re-

quire sophisticated transmission protocols and optimization models in order to develop their

associated optimization algorithms. To elaborate, in

• Chapter 2, we explore convex analysis and optimization, which will form the basis of

the work in later chapters. We commence by detailing the differences between convex and

nonconvex sets and functions, as well as by providing some intuitive geometric examples

to aid the reader. These building blocks can be manipulated by mathematical methods

preserving convexity, so that a wide range of functions and sets become identifiable as

convex. We then present the standard form of an optimization problem and the necessary

conditions for classifying a problem as an instance of convex programming, MINLP, or

fractional programming (FP). In particular, we explore solution methods designed for

MINLP and FP problems, which typically involve reformulating the original nonconvex

problem as a series of convex problems that can be efficiently solved. The concept of

duality is presented along with the solution methods derived from satisfying the KKT

optimality conditions. We then touch upon decomposition theory and conclude with some

examples of convex optimization applied to the wireless communications field.

• Chapter 3, motivated by Chapter 1, we study maximizing the EE of a relay-aided

OFDMA single-input–single-output (SISO) cellular network with the aid of both power

and subcarrier allocation, where each network node is equipped with a single antenna.

However, relay selection is not considered, since we assume that each user is associated

with the specific relay, which is geographically nearest to itself. An optimization problem

is formulated by considering both AF relays and simultaneous direct as well as relaying

links on separate subcarriers, which results in a MINLP. However, with a relaxation of

the binary constraints on the subcarrier selection variable, the problem is reformulated as

a FP problem, and the solution methods detailed in Chapter 2 for this class of problems

can be applied. We provided three solution algorithms based on these methods and

compared their performance versus complexity trade-offs. Furthermore, we investigated
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the SE versus EE trade-offs, when considering the effects of a wide range of system

parameters.

• Chapter 4, we extend the work of Chapter 3 to MIMO-aided systems. For the sake of

simultaneously serving multiple users while achieving a high SE, we develop a transmis-

sion protocol based on ZF beamforming, thus effectively removing any CCI amongst the

users sharing the same subcarrier. As an additional benefit, the transmission protocol

also takes into account simultaneous relaying and direct links using the same subcarrier,

which allows for higher flexibility in scheduling decisions. Two user grouping algorithms

are presented, which respectively employ an exhaustive search and a lower-complexity

method. The problems of user group selection and power allocation for maximizing the

SE or EE are formulated based on the optimization framework developed previously in

Chapter 3. However, since now DF relays are considered, we adopt the epigraph form

of the optimization problem, which leads to a convex formulation after several variable

relaxations and transformations. Again, dual decomposition is employed for developing

a solution algorithm and the SE versus EE performance of the system is evaluated for a

range of parameters.

• Chapter 5, the contributions in Chapters 3 and 4 are further extended to multi-cell

scenarios. Due to the potentially excessive CCI, we employ the IA technique for developing

a pair of distributed transmission protocols, that either ensure that all interference is

avoided, or all of the OCI is avoided. We refer to these two protocols as the full-IA and

partial-IA protocols, respectively. We then employ the low-complexity grouping algorithm

developed in Chapter 4 and formulate the EE maximization problem. We employ various

relaxations and variable transformations for reformulating the problem in a convex form,

which allowed us to develop a distributed solution algorithm based on dual decomposition.

Subsequently, we compare the performance of the full-IA and partial-IA protocols for a

range of system parameters.

• Chapter 6, we summarize the thesis and propose several future work ideas.

1.6.2 Contributions of this Thesis

The contributions of this thesis are centered around novel transmission protocols and algo-

rithms designed for EE maximization in cooperative cellular networks. To elaborate:

• In [330, 331], we formulated the problem of EE maximization in a multiple AF relaying-

assisted cellular network, where simultaneous direct and relayed transmissions are em-

ployed. The resultant MINLP problem is typically challenging to solve. Thus, we pro-

posed several variable relaxations and transformations for the sake of reformulating the

problem in a convex form. Three beneficial solutions algorithms were developed for find-

ing the SE- or EE-optimal power and subcarrier allocations. The performance versus

complexity of each algorithm was compared. Additionally, the SE and EE performances
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obtained from these algorithms were compared across a wide range of system parameters.

• In [332], we built upon our previous work in [330,331] by incorporating MIMO transceivers

into the previous network scenario. The MIMO transceivers are exploited for achieving a

spatial multiplexing gain and for the sake of scheduling flexibility by employing a novel

transmission protocol, which is based on ZF beamforming. This transmission protocols

supports simultaneous direct and relaying links, as well as multiple users, sharing the

same subcarrier. Furthermore, we proposed two novel grouping algorithms for obtaining

sets of compatible simultaneous direct and relaying links. The first grouping algorithm is

based on an exhaustive search of all possible combinations, while the second is a lower-

complexity alternative. The problem of choosing the SE- or EE-optimal groups and their

associated power allocations was formulated and along with multiple variable relaxations

and transformations, the problem was proven to be convex. A solution algorithm based

on dual decomposition was developed and the performance of our transmission protocol

was evaluated in conjunction with diverse system parameters.

• In [333], we further develop the system model studied in [332] in order to include mul-

tiple cells, with multiple relays and multiple users in each cell. For the sake of avoiding

the potentially excessive CCI arriving from multiple simultaneous transmitters, the IA

technique is employed, and we developed two novel transmission protocols based on this

IA technique. The first protocol is termed full-IA, which attempts to avoid any possible

source of CCI at the expense of reducing the achievable spatial multiplexing gain. On the

other hand, the second protocol is termed as partial-IA and only avoids the CCI generated

that was generated within its own cell, thus supporting a higher spatial multiplexing gain

than the full-IA protocol. Furthermore, these protocols were designed so that simulta-

neous direct and relaying links, as well as multiple users, can share the same subcarrier.

This benefits the flexibility of the scheduling decisions. Groups of compatible links are

found, and the problem of choosing the optimal groups and their power allocations is for-

mulated as an optimization problem, which is then converted into a convex form with the

aid of various variable relaxations and transformations. A distributed solution algorithm

is then developed for this optimization problem, and the EE performance of the network

is evaluated for a wide range of system parameters.
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Figure 1.8: An illustration depicting the organization of this thesis.





Chapter 2
Fundamentals of Convex

Optimization and its Application

Examples

2.1 Introduction

In Chapter 1, we examined the introduced the basics of wireless communications theory

and provided a literature review for motivating the investigations of the later chapters of

this thesis. An important tool, which is gaining progressively more attention in the field is

convex optimization, which is introduced in this chapter. Explicitly, we will journey from

the basics of convexity and convex functions, through convex optimization problems to their

solution methods. We will conclude with some simple and intuitive examples of how convex

optimization can be employed in the wireless communications field.

2.2 A Brief Historical Perspective of Mathematical

Optimization

We commence by briefly reviewing the history of mathematical optimization. For a more

complete discussion, we refer the reader to [334].

The earliest examples of mathematical optimization originated from 300 B.C., when Greek

mathematicians studied geometry problems requiring optimal solutions. For example, Euclid

considered the minimal distance between a point and a line, and the largest area contained

within a rectangle with a fixed perimeter length. In 100 B.C., Heron proved that light

travels between two points with the shortest path, when reflected off a mirror.

29
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It was not until the 17th century that Fermat proved the gradient of a function vanishes at

the extreme points of a function. Importantly, Newton and von Leibniz developed calculus,

which paved the way for Johann and Jacob Bernoulli to develop the calculus of varia-

tions (CoV), which is a type of generalized optimization. Euler and Lagrange also worked

on CoV in the 18th century. In the 19th century, Legendre made contributions towards

CoV and developed the least-squares method, which Gauss also claims to have invented. In

1847, Cauchy presented the gradient method.

Research into mathematical optimization intensified in the early to mid 20th century. Jensen

introduced convex functions in 1905, using ideas from Hadamard, Hölder, and Stolz. In

1939, Kantorovich presented the LP-model and a method for solving it, which won him and

Koopmans a Nobel prize in 1975. During World War II, significant efforts were placed on

operations research in conjunction with optimization. Most importantly, in 1947, Dantzig

presented the classic Simplex method for solving LP problems, while during the same year

von Neumann developed the theory of duality. In 1951, Kuhn and Tucker augmented the

optimality conditions for nonlinear problems, which were previously presented in Karush’s

master thesis. On the other hand, Ford and Fulkerson studied network problems in 1954,

which gave birth to the field of combinatorial optimization. An important contribution

was made in 1984, when Karmarkar introduced his polynomial time algorithm for solving

LP problems, which sparked intense research into interior point methods. Since the 1980s,

computer technology has advanced to the point that they became capable of handling heuris-

tic global optimization and large-scale problems, while mathematical optimization became

popularized in acdemia and engineering.

2.3 An Introduction to Convex Sets and Functions

Convex optimization constitutes an important family of mathematical optimization tech-

niques. More explicitly, it concerns the optimization of a convex objective function featur-

ing decision variables restricted to convex sets. The definitions of affine/convex sets and

affine/convex functions are given in the following, along with some examples.

2.3.1 Affine Sets and Functions

An affine set contains the line through any two points within the set, as depicted in Fig. 2.1.

If x1, x2 ∈ C, then we have αx1 + (1− α)x2 ∈ C, ∀α ∈ C. Furthermore, this property can

be extended to multiple points to form an affine combination

α1x1 + α2x2 + · · ·+ αnxn, (2.1)
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x2

x1

C
Figure 2.1: The line passing through the points x1 and x2 form the affine set denoted by

C.

which must also be part of the affine set if x1, x2, · · · , xn ∈ C, α1 + α2 + · · ·+ αn = 1, and

α1, α2, · · · , αn ∈ R. For example, any subspace is an affine set.

The affine hull of any set S is defined as

aff S = {α1x1 + α2x2 + · · ·+ αnxn|x1, x2, · · · , xn ∈ S, α1 + α2 + · · ·+ αn = 1} . (2.2)

In other words, it is the smallest affine set, which contains S.

2.3.2 Convex Sets

A set, C, is convex if ∀x1, x2 ∈ C and α ∈ [0, 1]

αx1 + (1− α)x2 ∈ C (2.3)

is satisfied. Geometric examples of convex and nonconvex sets in R2 are given in Fig. 2.2.

Some more examples of convex sets include the closed set [a, b], where a, b ∈ R, Euclidean
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(a) This is a convex set. Any two
points drawn from the set may be
connected by a line, which remains
in the set.
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(b) This is not a convex set. The line
formed between the points A and B
passes outside the set.
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(c) This is not a convex set. The
direct line formed between points A
and B exits the set.

Figure 2.2: Illustrations of convex and nonconvex sets, where the sets are shaded.

balls and ellipsoids, norm balls and cones and polyhedra. More importantly, [0,∞) is a

ray (half-line) and hence convex. Loosely speaking, points in a convex set have an unob-

structed view of every other point in the set.
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2.3.3 Convex Functions

A function f : Rn → R is convex if its domain, indicated by dom f , is a convex set and

∀x1, x2 ∈ dom f and α ∈ [0, 1],

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α) f (x2) (2.4)

is satisfied [34]. This may be visualized geometrically in Fig. 2.3. In simple terms, the chord

f (x2)

x1 x2x

f
(x
) f (x1)

Figure 2.3: Geometric interpretation of the convex function definition.

formed between the points (x1, f (x1)) and (x2, f (x2)) lies on or above the curve formed by

f (x). In the case of Fig. 2.3, the chord always lies above the function curve. Therefore,

f (x) is in fact strictly convex. Assuming that the function is differentiable, the first-order

necessary and sufficient condition for convexity may be stated as

f (y) ≥ f (x) +∇f (x)T (y − x) , (2.5)

where the domain of f , denoted by dom f , is open and convex, while x, y ∈ dom f . This

is elucidated in Fig. 2.4, which demonstrates that the first order Taylor approximation of a

convex function is a global underestimator [34]. A further result of this property is that if

f (y)
f (x) +∇f (x)T (y − x)

(x, f (x))

Figure 2.4: The first-order conditions for convexity of a function.

∇f (x) = 0, then (2.5) reduces to f (y) ≥ f (x), which implies that x is the global minimizer
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of f . Indeed, this simple result demonstrates why it is possible to effectively perform convex

optimization.

If f (x) is twice differentiable, the second-order necessary and sufficient condition for con-

vexity is that its Hessian is positive semidefinite, which may be formally stated as

∇2f (x) � 0, ∀x ∈ dom f. (2.6)

In other words, the function f (x) has positive (upwards) curvature.

On the other hand, f (x) is concave if −f (x) is convex. In other words, if

f (αx1 + (1− α)x2) ≥ αf (x1) + (1− α) f (x2) ,∀x1, x2 ∈ dom f and α ∈ [0, 1] , (2.7)

then f (x) is concave. Geometrically, the chord in the example of Fig. 2.3 is required to

be below the function curve, which has a negative (downwards) curvature. It is important

to observe that a function can be both convex and concave simultaneously, in other words,

affine. More importantly, a function can be neither convex nor concave.

From the above descriptions, it is clear that all affine functions are convex (and concave).

Some more examples, which may be readily proven [34], include the

• Exponential function (convex): f (x) = eax, for any a ∈ R;

• Logarithm function (concave): f (x) = log (x), where x ∈ R++;

• Powers: f (x) = xa is convex for a ≤ 0 and a ≥ 1, but concave when 0 < a < 1;

• Norm functions (convex): f (x) = ‖x‖p, p > 1;

• Max function (convex): f (x) = maxi (xi);

• Geometric mean (concave): f (x) = (
∏n
i=1 xi)

1
n , where dom f = Rn++;

• Quadratic-over-linear function (convex): f(x, y) = x2

y , where x ∈ R and y > 0.

2.3.3.1 Sublevel Sets

A convex function f (x) : Rn → R has convex α-sublevel sets, which are defined as

Cα = {x ∈ dom f |f (x) ≤ α} . (2.8)

An example is illustrated on the left of Fig. 2.5, where the dashed line indicates the convex set

of x values, which results in a function value of less than or equal to α. However, a function

having convex sublevel sets is not necessarily convex as well, which is demonstrated on the

right of Fig. 2.5.
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x

f (x1) = f (x2) = α

x1 x2

f
(x
)

x1

f (x1) = α

x

f
(x
)

Figure 2.5: An illustration of two examples of sublevel sets. The left figure depicts a
convex function, however, the figure on the right depicts a concave function.

Similarly, a concave function has convex α-superlevel sets, defined as

Cα = {x ∈ dom f |f (x) ≥ α} . (2.9)

In fact, this is demonstrated in the example on the right of Fig. 2.5 (since it depicts a

concave function), which has both convex sublevel and superlevel sets.

2.3.3.2 Epigraphs

x

f
(x
)

t

x

f
(x
)

t

Figure 2.6: An illustration of the epigraph (left) and hypograph (right) of a convex
function and a concave function, respectively.

An epigraph of the function f (x) : Rn → R is simply defined as

epi f = {(x, t) |x ∈ dom f , f (x) ≤ t} (2.10)

and it is a subset of Rn+1. The epigraphs of a convex function are convex sets, which is

demonstrated in Fig. 2.6. Similarly, concave functions have convex hypographs, which are
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defined as

hypo f = {(x, t) |x ∈ dom f , f (x) ≥ t} . (2.11)

2.3.4 Operations that Preserve Convexity

Apart from employing the above-mentioned fundamentals, the convexity of a function may

also be verified by examining the operations that would lead to the specific form of the

function itself. For example, the following operations preserve the convexity of a function,

hence it is sufficient to verify the convexity of its constituent components:

• Nonnegative weighted sum: If f is convex, the nonnegative weight w > 0 may be applied

to it without affecting its convexity, resulting in wf . If fi, ∀i ∈ {1, · · · ,m}, represents

convex functions, while wi > 0, ∀i ∈ {1, · · · ,m}, the nonnegative weighted sum given by

f = w1f1 + w2f2 + · · ·+ wmfm (2.12)

is also convex. Similarly, the nonnegative weighted sum of a series of concave functions

results in a concave function. Furthermore, a nonnegative nonzero weighted sum of a

series of strictly convex (concave) functions is strictly convex (concave).

• Composition with an affine mapping : An affine mapping, described as Ax + b, where

A ∈ Rn×m, x ∈ Rm and b ∈ Rn may form the input of a convex function given by

f : Rn → R. The resultant composition, given by

g (x) = f (Ax + b) , (2.13)

where dom g = {x|Ax + b ∈ dom f}, is convex as well. Similarly, if f is concave, so is

g.

• Perspective transformation: A perspective transformation of a convex function f (x) de-

fined as

g (x, t) = t · f (x/t) , (2.14)

where dom g = {(x, t) |x/t ∈ dom f, t > 0}, is also convex. Similarly, if f is concave, so

is g.

• Pointwise maximum/supremum and pointwise minimum/infimum: If f1 (x) and f2 (x)

are convex functions, their pointwise maximum

max {f1 (x) , f2 (x)} (2.15)

is also convex. On the other hand, if f1 (x) and f2 (x) are concave functions, their

pointwise minimum

min {f1 (x) , f2 (x)} (2.16)
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is concave.

• Scalar composition: A scalar function composition of h : R→ R and g : Rn → R, resulting

in f = h ◦ g : Rn → R, may be written as

f (x) = h (g (x)) , (2.17)

where dom f = {x ∈ dom g|g (x) ∈ dom h}. Assuming that g and h are twice differen-

tiable, the function f is convex if

f ′′ (x) = h′′ (g (x)) g′ (x)2 + h′ (g (x)) g′′ (x) ≥ 0. (2.18)

Thus, the following rules may be derived

f is convex if h is convex and nondecreasing, and g is convex,

f is convex if h is convex and nonincreasing, and g is concave,

f is concave if h is concave and nondecreasing, and g is concave,

f is concave if h is concave and nonincreasing, and g is convex,

(2.19)

where all function domains are R. On the other hand, without the assumption that the

function domains are all of R, and without the assumption that the base functions are

twice differentiable, the following rules may be derived

f is convex if h is concave, h̃ is nondecreasing, and g is convex,

f is convex if h is convex, h̃ is nonincreasing, and g is concave,

f is concave if h is concave, h̃ is nondecreasing, and g is concave,

f is concave if h is concave, h̃ is nonincreasing, and g is convex.

(2.20)

Here, h̃ denotes the extended-value extension of the function h, which assigns the value∞
(−∞) to points not in dom h for convex (concave) functions [34], as depicted in Fig. 2.7.

0 x

f (x)

0 x

f (x)

Figure 2.7: The function on the left is defined on the domain R+. Although convex, its
extended-value extension is not nondecreasing. The function on the right is defined for all

of R, and is convex and nondecreasing.
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• Vector composition: A vector function composition of h : R → R and gi : Rn → R,

∀i ∈ {1, · · · , k} is convex if

f ′′ (x) = g′ (x)T∇2h (g (x)) g′ (x) +∇h (g (x))T g′′ (x) ≥ 0, (2.21)

which is simply the vector equivalent of (2.18). Similarly, we may derive the following

rules

f is convex if h is convex, h is nondecreasing in each argument, and gi are convex,

f is convex if h is convex, h is nonincreasing in each argument, gi are concave,

f is concave if h is concave, h is nondecreasing in each argument, gi are concave.

The general rules are obtained, when enforcing monotonicity on the extended-value ex-

tensions of h.

2.4 Optimization Problems

An optimization problem in standard form is written as

minimize
x∈D

f0 (x) (2.22)

subject to fi (x) ≤ 0, i = 1, · · · ,m (2.23)

hi (x) = 0, i = 1, · · · , p, (2.24)

where x is the vector of optimization or decision variables, f0 (x) : Rn → R is the objective

function or cost function, fi (x) ≤ 0 are the inequality constraints, and hi (x) = 0 are

the equality constraints. The functions fi : Rn → R and hi : Rn → R are referred to

as the inequality constraint functions and the equality constraint functions, respectively.

Furthermore, the domain, denoted by D, of the optimization problem is defined as

D =

[
m⋂

i=0

dom fi

]
∩
[

p⋂

i=1

dom hi

]
, (2.25)

and any point x ∈ D that satisfies the constraints (2.23)–(2.24) is said to be a feasible point,

while any other point is said to be infeasible. In Fig. 2.8, the filled shape indicates the

intersection of one hyperplane and two convex sets. A feasible point can be obtained from

this intersection, it these sets depict the domains associated with the constraints of an

optimization problem. On the other hand, an optimization problem without constraints is

termed as being unconstrained.

The optimization problem is solved by finding a specific value of x ∈ D, which results in the
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Figure 2.8: The filled section indicates the intersection of one hyperplane and two convex
sets.

optimal value of the optimization problem defined as

p∗ = inf {f0 (x) |fi (x) ≤ 0, i = 1, · · · ,m, hi (x) = 0, i = 1, · · · , p} . (2.26)

In order words, x minimizes f0 among all the values of x ∈ D, which satisfy the constraints

of (2.23)–(2.24). Any particular x, which achieves this goal, is denoted by x∗and it is termed

as an (globally) optimal point, as is illustrated in Fig. 2.9. If there exists a feasible point

resulting in p∗ = −∞, the optimization problem is unbounded below.

f
(x
)

x∗

p∗

Figure 2.9: The infimum of f0 is obtained at x∗, when f0 (x∗) = p∗.

As alluded to above, there may be many points, which achieve the optimal value of p∗. The

corresponding optimal set is defined as

X = {x|fi (x) ≤ 0, i = 1, · · · ,m, hi (x) = 0, i = 1, · · · , p, f0(x) = p∗} . (2.27)

An empty optimal set implies that the optimal value is not attained or not achieved. An

ε-suboptimal set contains all feasible points x, which satisfy f0 (x) ≤ p∗ + ε. Furthermore,

given R > 0, a feasible point x is locally optimal if

f0 (x) = inf {f0 (z) |fi (z) ≤ 0, i = 1, · · · ,m, hi (z) = 0, i = 1, · · · , p, ||z− x||2 ≤ R} .
(2.28)
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Clearly, if f0 is convex, a locally optimal point is also globally optimal. These concepts are

illustrated in Fig. 2.10.

X

p∗ + ǫ

p∗

ǫ-suboptimal

2R

z

Figure 2.10: The set X indicates the optimal set of points, which obtain p∗ for the
example function. The enveloping ε-suboptimal set is also shown. On the other hand, the
area indicated by 2R highlights the locally optimal set, which contains points that obtain

objective function values identical to that obtained by the point z.

2.4.1 Convex Optimization Problems

The optimization problem of (2.22)–(2.24) is a convex optimization problem if fi, i =

0, · · · ,m are convex, while hi, i = 1, · · · , p are affine. Furthermore, the feasible set of

the problem is convex, since it is the intersection of m convex sets and p hyperplanes.

The standard form of an optimization problem may be written in the equivalent epigraph

form of

minimize
x∈D,t∈R

t (2.29)

subject to f0 (x)− t ≤ 0 (2.30)

fi (x) ≤ 0, i = 1, · · · ,m (2.31)

hi (x) = 0, i = 1, · · · , p, (2.32)

which is also convex.

2.4.2 Mixed Integer Nonlinear Programming

If the objective function involves both continuous and integer independent variables, while

at least one of fi, i = 0, · · · ,m is nonlinear, the optimization problem constitutes an instance

of MINLP problems, which are nonconvex. These problems may be solved using the classic

branch-and-bound method [241, 335, 336], which pursues a ’divide-and-conquer’ approach.

Although typically computationally complex, they are able to find the global optimum
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of nonconvex MINLP problems and to guarantee that the solution found is at most ε-

suboptimal. The branch-and-bound method is described in the following and in Fig. 2.11.

6. Set optimal solution
for selected variableinteger variables?

Are there remaining 5. Solve resultant
problems

convex problem
7. Solve the resultant

4. Fix an arbitrary
integer variable

3. Obtain lower
bound

2. Solve relaxed
problem

1. Relax integer
variables

No

Yes

Figure 2.11: A flow diagram of the steps performed in the branch-and-bound method.

1. Relax all remaining integer variables so that their domains are continuous, hence convex.

2. Solve the relaxed problem using algorithms described later in Section 2.6 and obtain the

optimal solution to this relaxed problem.

3. The optimal value of the relaxed problem is a lower bound of the original problem, since

the integer constraints were loosened.

4. (Branching) Choose an arbitrary variable, which was subject to integer constraints, to

fix at each of its feasible integer values. Then, formulate and solve each of the resultant

optimization problems. Thus, an optimization problem is solved for every possible integer

solution for the chosen variable.

5. The fixed value of the integer variable associated with the optimization problem that

results in the lowest optimal value is then the optimal solution for that variable. Thus,

the associated variable is fixed to this optimal value for future steps of this algorithm.

6. (Bounding) Furthermore, the optimal objective function value associated fixed integer

variable is a tighter lower bound for the original optimization problem, since this new

objective function value is obtained after having restricted that particular variable to an

integer set. On the other hand, any solutions satisfying the original domain restrictions

correspond to upper bounds for the optimal objective function value.

7. Repeat steps 4 to 6 until optimal values for all integer variables have been obtained.

8. Substitute the optimal integer values into the original optimization problem and solve

the resultant convex problem.
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2.4.2.1 A Branch and Bound Example

(
1, 3

4
, 1
)

[
−1

2
,∞

)

(?, 0, ?)

infeasible
(
5
6
, 1, 1

)
[
−1

6
,∞

)

(0, 1, ?)

infeasible

x2 = 1x2 = 0

x1 = 1x1 = 0

(1, 1, 1)

[0, 0]

Figure 2.12: A Branch-and-Bound example. The upper and lower bounds of the optimal
value are listed above the boxes, which contain the optimal solution at each stage of the

algorithm. The underlined values indicate the fixed integer variable values.

An example is provided in Fig. 2.12, which solves the following naive Boolean minimization

problem

minimize x1 + 2x2 − 3x3 (2.33)

subject to 3x1 + 2x2 + x3 ≥ 5.5 (2.34)

xi ∈ {0, 1} , i = 1, 2, 3, (2.35)

which has the optimal solution of (1, 1, 1). However, when employing the branch-and-bound

method described above, Step 1 dictates that the integer variables are initially relaxed to

the domain [0, 1]3, which results in the optimal solution of
(
1, 3

4 , 1
)

and a lower bound to

the optimal value of −1
2 , as was outlined in Steps 2 and 3. Since the optimal value of x2

is non-integer, it may be chosen as the initial variable to fix to integer values as suggested

in Step 4, resulting in two branches. However, x2 = 0 is infeasible, since the inequality

constraint can no longer be satisfied. As described in Steps 5 and 6, setting x2 = 1 and

solving the resultant problem results in an optimal solution of
(

5
6 , 1, 1

)
and a tighter lower

bound of the optimal value of −5
6 . Since there are remaining integer variables, branching

is again performed, but with x1. This reveals another infeasible solution, and an integer

solution, which provides both a lower and an upper bound of 0 to the optimal value. The

optimal solution for x3 is also obtained as 1 and it is not necessary to branch with x3. As

optimal solutions for all integer variables have been obtained, Step 7 is not required and we

conclude that the optimal solution is (1, 1, 1) with an optimal value of 0.
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2.4.3 Fractional Programming

A FP approach may be formulated as:

minimize
x∈D

f0 (x) =
g (x)

h0 (x)
(2.36)

subject to fi (x) ≤ 0, i = 1, · · · ,m (2.37)

hi (x) = 0, i = 1, · · · , p, (2.38)

where h0 (x) > 0, ∀x ∈ D. Furthermore, if both g (x) and h0 (x) are affine, the optimization

problem constitutes an instance of linear FP. If g (x) is convex (concave), while h0 (x) is

affine, the problem represents an instance of quasiconvex (quasiconcave) programming. A

function is also quasiconvex (quasiconcave) if all of its sublevel (superlevel) sets are convex,

as demonstrated in Fig. 2.13. A function that is both quasiconvex and quasiconcave is

termed as being quasilinear. Clearly, all convex functions are quasiconvex, but not all

quasiconvex functions are convex.

a b c

α

β

Local optima

Global optimum

Figure 2.13: The sublevel sets for the left function are convex, so it is quasiconvex.
However, it is not convex nor concave, since the function is concave for below a, but convex
for values greater than a. The right function is quasiconcave, but not concave. Its local

optima are not necessarily globally optimal.

As demonstrated in Fig. 2.13, the distinguishing difference between quasiconvex (quasicon-

cave) functions and convex (concave) functions is that quasiconvex (quasiconcave) functions

may have locally optimal solutions, which are not globally optimal solutions. Further-

more, quasiconvex functions are not necessarily continuous. However, there are methods for

converting a quasiconvex optimization problem into efficiently-solvable convex problem(s),

which result in the optimal solution of the quasiconvex problem. It is important to observe

that the methods detailed in the following may be readily applied to either quasiconvex

minimization or quasiconcave maximization.
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2.4.3.1 Bisection Method

The bisection method [34] relies on the fact that quasiconvex functions have convex sublevel

sets. Therefore, if a quasiconvex objective function value can attain the value of σ, there

exists some x ∈ D satisfying the convex inequality constraint

g (x)

h0 (x)
≤ σ, (2.39)

which may be verified by solving the following feasibility problem

find
x∈D

x (2.40)

subject to
g (x)

h0 (x)
≤ σ (2.41)

fi (x) ≤ 0, i = 1, · · · ,m (2.42)

hi (x) = 0, i = 1, · · · , p. (2.43)

When written in the standard convex optimization form, the above problem may be ex-

pressed as

minimize
x∈D

0 (2.44)

subject to
g (x)

h0 (x)
≤ σ (2.45)

fi (x) ≤ 0, i = 1, · · · ,m (2.46)

hi (x) = 0, i = 1, · · · , p, (2.47)

where the goal is to find a feasible value of x, thus the objective function is unimportant.

If (2.44)–(2.47) is feasible, the quasiconvex objective function can attain the value σ and

hence a lower value of σ may be subsequently verified as being feasible, otherwise a higher

value of σ must be verified as being feasible. Thus, the bisection method may be employed

for successively checking the feasibility of different values of σ, until the minimum value is

attained. The bisection method is formally listed in Table 2.1. Given the initial parameters,

the bisection method will converge within exactly dlog2

(
σU+σL

ε

)
e iterations. However, it is

typically not possible to obtain tight upper and lower bounds of the optimal value before-

hand. This coupled with the fact that a convex optimization problem must be solved at

each iteration may result in an excessive complexity for the algorithm.

A method of obtaining an upper bound to the optimal value is to simply assume a naive, yet

feasible x value, which clearly results in an objective function value that is higher than the

optimal. Furthermore, if the objective function is strictly higher than zero, a naive lower

bound is simply zero.
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Table 2.1: The bisection method for quasiconvex minimization.

Input: σU (initial upper bound to the optimal value)
σL (initial lower bound to the optimal value)
ε > 0 (convergence tolerance)

1: σ ← σU+σL
2

2: do while σU + σL > ε
3: Solve (2.44)–(2.47)
4: if σ feasible
5: σL ← σ
6: else
7: σU ← σ
8: end if
9: end do

2.4.3.2 Solving an Example Fractional Programing Problem

with the Bisection Method

Let us elucidate the bisection method by working through a simple example. The problem

of interest is given by

minimize
x≥0

x2

x+ 1
, (2.48)

which clearly is solved by x = 0. However, when following the bisection method, we ini-

tially determine both upper and lower bounds of the optimal objective function value. By

substituting x = 0, we obtain the lower bound of 0, while for the sake of this example, we

assume an upper bound of 1. Following the Table 2.1, we formulate and solve the feasibility

problem associated with the previously specified upper and lower bounds as follows

minimize
x≥0

0 (2.49)

subject to 2x2 − x− 1 ≤ 0, (2.50)

which can clearly be solved with x = 0. However, solving the above feasibility problem only

determines that the objective value of σ = σU+σL
2 = 1

2 is obtainable. Thus, we are able to

update the upper bound with σL = 1
2 resulting in the following feasibility problem

minimize
x≥0

0 (2.51)

subject to 2x2 − 0.5x− 0.5 ≤ 0, (2.52)
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which can again be solved by x = 0 and showing that the upper bound can be updated to

σL = 1
4 . As is clearly seen, for this particular problem, the upper bound can be continually

decreased and the associated feasibility problems solved with x = 0, until the stopping

criterion is satisfied. In this case, we can see that the result will be σ = 0, which is obtained

when x = 0.

2.4.3.3 Dinkelbach’s Method

Table 2.2: Dinkelbach’s method for quasiconcave maximization.

Input: ε > 0 (convergence tolerance)

1: n← 0
2: qn ← 0
3: do
4: Solve F (qn) to obtain xn

5: qn+1 ← g(x∗n)
h0(x∗n)

6: n← n+ 1
7: while qn − qn−1 > ε

Dinkelbach’s method [337, 338] is constituted by an iterative algorithm employed for solv-

ing a quasiconcave problem in a parameterized concave form. The algorithm is formally

summarized in Table 2.2. An objective function value of q is assumed, which allows the

objective function to be written in the concave subtractive form of g (x)− q · h0 (x). At the

optimal value of q∗, the following holds true

F (q∗) := maximize
x

{g (x)− q∗ · h0 (x)} = 0. (2.53)

Furthermore, it can be shown [200,337,338] that employing the optimal solution xn of F (qn)

generates
g (xn)

h0 (xn)
= qn+1 > qn, (2.54)

implying that monotonically increasing objectives function values can be attained until the

optimal value of the original quasiconcave problem is found, as depicted in Fig. 2.14. These

facts lead to a simple algorithm for solving the quasiconcave problem solved by Dinkelbach’s

method of Table 2.2. For further details and a proof of convergence, please refer to [337].

Although the algorithm benefits from a superlinear convergence rate, this is achieved at the

cost of having to solve a series of concave programming problems, which may lead to an

excessive complexity.
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Figure 2.14: An example of the increasing objective function values of q obtained by
Dinkelbach’s method of Table 2.2.

2.4.3.4 Solving an Example Fractional Programing Problem

with Dinkelbach’s Method

Let us now employ Dinkelbach’s method to solve the example of (2.48), which is listed again

as follows

minimize
x≥0

x2

x+ 1
. (2.55)

We commence by rewriting the above problem as a maximization problem, which is a re-

quirement of Dinkelbach’s method. Thus, we now focus our attention on the following

problem:

maximize
x≥0

− x2

x+ 1
(2.56)

and we choose the value of q = −1 to initialize Dinkelbach’s method. Following Step 4 of

Table 2.2, we formulate the problem in the subtractive form given by

maximize
x≥0

−
(
x2 + x+ 1

)
, (2.57)

which is readily solved with x = 0, since any higher (feasible) value of x only reduces the

objective value. Thus, we obtain the updated value of q = 0 and formulate the associated

subtractive problem of

maximize
x≥0

−x2, (2.58)

which is again readily solved with x = 0. Since this obtains the same previously-obtained

objective value, we can conclude that the original optimization has been solved.
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2.4.3.5 Charnes-Cooper Method

The distinguishing features of the Charnes-Cooper method [338] are that variable trans-

formations are introduced and that the FP problem is reduced to a single optimization

problem. The variables introduced are

y =
x

h0 (x)
, (2.59)

where

t =
1

h0 (x)
. (2.60)

Thus, the original quasiconcave problem may be equivalently rewritten as a concave pro-

gramming problem [338]

maximize
y/t∈D,t>0

t · g
(y

t

)
(2.61)

subject to t · fi
(y

t

)
≤ 0, i = 1, · · · ,m (2.62)

t · hi
(y

t

)
= 0, i = 1, · · · , p, (2.63)

t · h0

(y

t

)
= 1, (2.64)

and then optimally solved using any of the standard methods listed in Section 2.6.

2.4.3.6 Solving an Example Fractional Programing Problem

with the Charnes-Cooper Transformation

The Charnes-Cooper transformation may be applied for solving the above example of (2.48),

which we again write as a maximization problem:

maximize
x≥0

−x2

x+ 1
. (2.65)

We then introduce the auxiliary variables given by

t =
1

x+ 1
(2.66)

and

y =
x

x+ 1
(2.67)

to reformulate the optimization problem as

maximize
y/t≥0,t>0

−t ·
(y
t

)2
(2.68)

subject to t ·
(y
t

+ 1
)

= 1, (2.69)
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which can be simplified to give

maximize
y≥0,t>0

−y
2

t
(2.70)

subject to y + t = 1. (2.71)

The resulting objective is a negative quadratic-over-linear function, thus the problem is a

concave maximization problem. Once again, the problem is readily solved with y = 0, which

maximizes the numerator of the objective function, meaning that t = 1. If we substitute this

value of y back into 2.67, we obtain the solution x = 0, which is the same as was obtained

with the previous two methods of Sections 2.4.3.1 and 2.4.3.3.

2.5 Duality

This section explains the concept of duality and the methods that facilitate the approximate

solution of convex optimization problems within a given tolerance. It is important to observe

that although these methods are applied for convex minimization, they may be adapted for

employment in concave maximization by simply negating the objective function to formulate

the problem in its equivalent convex minimization form.

2.5.1 The Lagrangian Function and the Lagrange Dual Function

We commence by rewriting the standard form of an optimization problem as a single ob-

jective function summed with both its inequality and equality constraints in order to derive

the Lagrangian function given by

L (x,λ,ν) = f0 (x) +

m∑

i=1

λifi (x) +

p∑

i=1

νihi (x) . (2.72)

In (2.72), both the inequality and equality constraints are weighted by the variables λi ∈ R+,

i = 1, · · · ,m and νi ∈ R, i = 1, · · · , p, respectively, which are termed as the Lagrangian mul-

tipliers associated with the inequality and equality constraints, respectively. To elaborate,

the variable λi is the Lagrangian multiplier associated with the inequality constraint fi (x),

while the variable νi is the Lagrangian multiplier associated with the equality constraint

hi (x). Furthermore, these variables are collected into the vectors λ and ν.

The Lagrange dual function is then defined as the minimum value of L (x,λ,ν) over all

values of x, which is written as

g (λ,ν) = inf
x
L (x,λ,ν) = inf

x

(
f0 (x) +

m∑

i=1

λifi (x) +

p∑

i=1

νihi (x)

)
. (2.73)
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Since g (λ,ν) is the infimum of a family of affine functions, it is always concave, regardless

of the convexity of fi (x), i = 0, · · · ,m or hi (x), i = 1, · · · , p. If the optimal value of the

original (primal) problem is denoted by p∗, any dual feasible point of (λ,ν) results in the

lower bound of

g (λ,ν) ≤ p∗. (2.74)

This may be readily verified by noting that given a dual feasible point, each term in the

first summation of (2.73) is nonpositive, while each term in the second summation is zero.

Let us now find the Lagrange dual function of the simple LP problem given by

minimize
x∈Rn

cTx (2.75)

subject to Ax = b, (2.76)

x � 0. (2.77)

The Lagrangian is given by

L (x,λ,ν) = cTx−
n∑

i=1

λixi + νT (Ax− b) = −bTν +
(
c + ATν − λ

)T
x, (2.78)

which results in the dual function

g (λ,ν) = inf
x∈Rn
L (x,λ,ν) = −bTν + inf

x∈Rn

{(
c + ATν − λ

)T
x
}
. (2.79)

It becomes plausible then that g (λ,ν) is unbounded from below if we have c+ATν−λ 6= 0,

while the nontrivial solution of −bTν is obtained when we have c+ATν−λ = 0. Therefore,

a lower bound to the above LP of −bTν is obtained when we have ν ∈ R, λ ∈ R+ and

c + ATν − λ = 0.

2.5.2 The Lagrange Dual Problem

The dual problem is defined as

maximize g (λ,ν) (2.80)

subject to λ � 0, (2.81)

which may be interpreted as the important problem of finding the best lower bound to the

primal optimization problem. A feasible solution to the dual problem is given by the pair

(λ,ν) and is it termed as dual feasible. The optimal solution is denoted by (λ∗,ν∗) and it

is termed as dual optimal or the optimal Lagrangian multipliers.
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The nontrivial dual problem of the previous example LP is given by

maximize −bTν (2.82)

subject to c + ATν − λ = 0 (2.83)

λ � 0, (2.84)

which is equivalent to

maximize −bTν (2.85)

subject to c + ATν − λ � 0. (2.86)

2.5.3 Strong and Weak Duality

The optimal value of the dual problem, denoted by d∗, is the highest lower bound to the

optimal value of the original minimization problem. In other words, weak duality, given by

d∗ ≤ p∗, (2.87)

holds, which is true regardless of the convex or non-convex nature of the primal problem.

The difference

p∗ − d∗ ≥ 0 (2.88)

is termed the optimal duality gap. Therefore, given a dual feasible point, it is possible to

find a lower bound to the optimal value of an optimization problem, which is often useful

when determining stopping criteria for solution algorithms.

Under certain conditions, strong duality holds, when we have:

d∗ = p∗. (2.89)

In other words, the optimal duality gap is zero, which means that solving the dual prob-

lem is equivalent to solving the primal problem. For example, strong duality usually holds

for (but is not limited to) convex minimization problems. In all cases, constraint qualifi-

cations determine whether strong duality holds. For example, Slater’s theorem [34] states

that if the problem is convex and satisfies Slater’s condition, then strong duality holds.

Explicitly, Slater’s condition is that there exists a point x ∈ relint D strictly satisfying the

convex (but not affine) inequality constraints [34]. In many cases, this condition is trivially

satisfied.

A geometric interpretation of strong and weak duality is presented in Figs. 2.15 and 2.16 for

a simple optimization problem having only a single inequality constraint. Given a nonconvex

problem, the set of tuples (f1 (x) , f0 (x)), denoted by G, is nonconvex. The dual function is a
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supporting hyperplane to G and its intersection with the vertical axis indicates the obtained

value of f0. Solving the dual problem provides the highest lower bound, d∗, of the optimal

primal value, p∗. In the case of a nonconvex problem, the difference obeys p∗ − d∗ 6= 0 and

the duality gap is nonzero. On the other hand, in the case of a convex problem, G is a

convex set and the supporting hyperplane reaches p∗. Thus, we have d∗ = p∗ and hence the

duality gap is zero.

G

f0 (x)

p∗

g (λ∗) = f0 (x
∗) + λ∗f1 (x∗)d∗

f1 (x)

Figure 2.15: The set of tuples given by G = (f1 (x) , f0 (x)) is nonconvex. Hence, no
supporting hyperplane to G can reach p∗, which implies weak duality and a nonzero duality

gap.

G

g (λ∗) = f0 (x
∗) + λ∗f1 (x∗)

f1 (x)

f0 (x)

d∗ = p∗

Figure 2.16: The set of tuples given by G = (f1 (x) , f0 (x)) is convex. There exists a
supporting hyperplane to G at (0, p∗), which implies strong duality and a zero duality gap.

2.5.4 The Karush-Kuhn-Tucker Conditions

For the special case of optimization problems exhibiting strong duality with differentiable

objective, inequality and equality functions, the KKT conditions may be employed for ver-

ifying whether x and (λ,ν) are primal and dual optimal, respectively.

Given a primal and dual feasible point, the optimal x∗ that minimizes the Lagrangian
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corresponds to the point, where its gradient vanishes. Therefore, we have:

∇f0 (x∗) +
m∑

i=1

λ∗i∇fi (x∗) +

p∑

i=1

ν∗i∇hi (x∗) = 0. (2.90)

Additionally, given that strong duality holds, we have:

m∑

i=1

λ∗i fi (x∗) = 0. (2.91)

However, each term in the above summation is nonpositive, so it follows that

λ∗i fi (x∗) = 0, i = 1, · · · ,m, (2.92)

which is termed complementary slackness. In other words, the optimal Lagrangian mul-

tiplier is zero unless its associated inequality constraint function is active at the optimal

solution (when fi (x∗) = 0).

Combining the above two conditions with the conditions for primal and dual feasibility leads

to the KKT conditions formulated as [34]:

fi (x∗) ≤ 0, i = 1, · · · ,m (2.93)

hi (x∗) = 0, i = 1, · · · , p (2.94)

λ∗i ≥ 0, i = 1, · · · ,m (2.95)

λ∗i fi (x∗) = 0, i = 1, · · · ,m (2.96)

∇f0 (x∗) +

m∑

i=1

λ∗i∇fi (x∗) +

p∑

i=1

ν∗i∇hi (x∗) = 0. (2.97)

Any primal and dual optimal point for an optimization problem with strong duality must

satisfy the above conditions. In the case of convex optimization problems, the converse

is true, implying that any point satisfying the KKT conditions must be primal and dual

optimal.

2.6 Solution Algorithms

There exist numerous methods for solving different types of optimization problems [34]. For

example, a popular method of solving linear problems is the simplex method [241], which

often proves to be an efficient solution method. On the other hand, the ellipsoid, subgradient,

and bundle methods are suitable for convex problems, while cutting-plane methods solve

integer optimization problems [34,241,335]. In this section, we focus our attention on interior

point (or barrier) methods by initially building our discussion upon fundamental solution
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methods suitable for unconstrained optimization problems.

2.6.1 Unconstrained Minimization

In this section, we study unconstrained minimization problems of the form

minimize
x∈Rn

f0 (x) , (2.98)

where we assume that f0 is convex and twice continuously differentiable. Therefore, x∗ is

optimal iff

∇f0 (x∗) = 0, (2.99)

which is equivalent to solving n equations with n unknowns. It is often not possible to

solve (2.99) analytically, hence an iterative algorithm may be employed for obtaining a

minimizing sequence of x(k), where f0

(
x(k)

)
→ p∗ as k → ∞. These descent methods

may be terminated, when we have f0

(
x(k)

)
− p∗ ≤ ε, where ε is the affordable tolerance.

Furthermore, x(0) is termed the initial point.

A minimizing sequence of x(k) can be formulated as

x(k+1) = x(k) + t(k)∆x(k), (2.100)

where t(k) > 0 (except when x(k) is optimal) is termed the step size or step length, while

∆x(k) is a vector denoting the step or search direction. Since the objective is minimization,

the aim is to generate a minimizing sequence resulting in

f0

(
x(k+1)

)
< f0

(
x(k)

)
, (2.101)

(except when x(k) is optimal) which requires that

∇f0

(
x(k)

)T
∆x(k) < 0. (2.102)

In other words, ∆x(k) must be a descent direction, which is illustrated in Fig. 2.17. Thus,

the general structure of a descent method follows Table 2.3, where the particular choice of

the stopping criterion depends on the specific method employed.

A line search is performed in Step 4 of Table 2.3 for determining a suitable value for the

step size t(k). A naive method is the exact line search resulting in

t(k) = arg min
s≥0

f0

(
x(k) + s∆x(k)

)
, (2.103)

which simply aims for minimizing the objective along the search direction. The exact line

search is suitable when the cost of solving (2.103) is low. However, most practical solvers
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Descent direction

f0 (x)

x(k)

∇f0
(
x(k)

)

Figure 2.17: The line ∇f0
(
x(k)

)
is the gradient of f0 at x(k). Therefore, any viable

descent direction is to the left of the dashed line.

Table 2.3: A general descent method for minimization.

Input: x(0) ∈ dom f0

ε > 0

1: k ← 0
2: do

3: Determine search direction ∆x(k)

4: Choose step size t(k)

5: x(k+1) ← x(k) + t(k)∆x(k)

6: k ← k + 1
7: while stopping criterion not satisfied

employ inexact methods, which instead opt for reducing the objective by an acceptable

amount along ∆x(k). Among the inexact methods, the backtracking line search benefits

from both simplicity and efficiency. Given the two parameters of

0 < α < 0.5 (2.104)

and

0 < β < 1, (2.105)

the backtracking line search may be performed, as detailed in Table 2.4. A geometric

interpretation is provided in Fig. 2.18, which demonstrates that β iteratively scales down the

step size from unity, until the objective value becomes acceptably lower than that predicted

using a modified linear interpolation at f0

(
x(k)

)
.

Step 3 of Table 2.3 requires computing a search direction, ∆x(k). The gradient descent

method adopts the natural choice of the negative gradient (or subgradient if the objective

is nondifferentiable) at x(k), denoted by −∇f0

(
x(k)

)
, as the search direction. In this case,

the stopping criterion is typically
∣∣∣∣∇f0

(
x(k)

)∣∣∣∣
2
≤ η, which simply means that the method

iterates until the gradient becomes sufficiently low. The gradient descent method exhibits
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Table 2.4: The backtracking line search method [34].

Input: 0 < α < 0.5
0 < β < 1

∆x(k)

1: t(k) ← 1

2: do while f0

(
x(k) + t(k)∆x(k)

)
> f0

(
x(k)

)
+ αt(k)∇f0

(
x(k)

)T
∆x(k)

3: t(k) ← βt(k)

4: end do

f0
(
x(k) +∆x(k)

)

f0
(
x(k)

)

f0
(
x(k)

)
+ αt(k)∇f0

(
x(k)

)T
∆x(k)

β2 ββ3

t(k) = 0 t0 t(k) = 1

Figure 2.18: A geometric interpretation of the backtracking line search. The value of t(k)

is iteratively scaled back from unity until t(k) < t0, which is the value needed to obtain the
decease in the objective value predicted using the linear interpolation at f0

(
x(k)

)
using a

gradient scaled by α.

linear convergence and benefits from simplicity of implementation [34].

Alternatively, the steepest descent method employs the first-order Taylor approximation at

x(k) for determining a search direction that maximizes the approximated reduction of the

objective value. If v denotes the search direction, the approximated objective value is given

by [34]

f0

(
x(k) + v

)
≈ f0

(
x(k)

)
+∇f0

(
x(k)

)T
v, (2.106)

where ∇f0

(
x(k)

)T
v is the directional derivative of f0

(
x(k)

)
in the direction v, which should

result in ∇f0

(
x(k)

)T
v < 0 and have a limited norm. Thus, a normalized steepest descent

direction is given by [34]

∆x
(k)
nsd = arg min

v∈Rn

{
∇f0

(
x(k)

)T
v

∣∣∣∣ ||v|| = 1

}
, (2.107)

where ||·|| is any norm on Rn. Geometrically, ∆x
(k)
nsd is the vector directed to a point on

the unit sphere of the norm, centered at x(k), which minimizes ∇f0

(
x(k)

)T
v resulting in

the maximum reduction of the objective function value, as demonstrated in Fig. 2.19. In

this case, a quadratic norm is employed, resulting in an ellipsoid for the unit sphere of the
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norm. When the norm employed is the Euclidean norm, the unit sphere is circular and the

steepest descent direction is simply a unit vector of the negative gradient. Furthermore, if

the `1-norm is employed, the steepest descent direction is simply the standard basis vector,

corresponding to the minimum component of the gradient, in the direction of the negative

gradient. The steepest descent method converges linearly, assuming that a suitable norm is

employed [34].

f0 = a > f0 = b

∆x
(k)
nsd

x(k) −∇f0
(
x(k)

)

Figure 2.19: The steepest descent search direction is the unit length vector in some norm

||·|| in the direction of the negative gradient ∇f0
(
x(k)

)
that maximizes the decrease in the

objective value. the vertical lines represent level curves of the function f0.

The final method presented in this section is Newton’s method [34], which relies on employing

the Newton step and the Newton decrement. The Newton step, given by [34]

∆x
(k)
nt = −∇2f0

(
x(k)

)−1
∇f0

(
x(k)

)
, (2.108)

may be interpreted in multiple ways. For example, it is the minimizer of the second-order

Taylor approximation of f0, given by [34]

f0

(
x(k) + v(k)

)
≈ f0

(
x(k)

)
+∇f0

(
x(k)

)T
v +

1

2
vT∇2f0

(
x(k)

)
v, (2.109)

while also being the solution of the linearized optimality condition, given by [34]

∇f0

(
x(k) + v

)
≈ ∇f0

(
x(k)

)
+∇2f0

(
x(k)

)
v = 0. (2.110)

On the other hand, the Newton decrement is given by [34]

λ
(
x(k)

)
=

[
∇f0

(
x(k)

)T
∇2f0

(
x(k)

)−1
∇f0

(
x(k)

)] 1
2

. (2.111)

Assuming that the second-order Taylor approximation using the Newton step obtains the

optimal value of p∗, we may write (dropping the superscript (k)):

f0 (x)− p∗ = f0 (x)−
[
f0 (x) +∇f0 (x)T ∆xnt +

1

2
(∆xnt)

T∇2f0 (x) ∆xnt

]
(2.112)
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= ∇f0 (x)T∇2f0 (x)−1∇f0 (x)− 1

2
∇f0 (x)T∇2f0 (x)−1∇f0 (x)(2.113)

=
1

2
∇f0 (x)T∇2f0 (x)−1∇f0 (x) (2.114)

=
1

2
λ (x)2 . (2.115)

Therefore, the Newton decrement is an estimate of the optimality gap and it is employed

as the stopping criterion in Newton’s method, as described in Table 2.5. In general, the

convergence of Newton’s method is rapid (quadratic near the optimal point), while being

invariant to the problem size or the parameters employed [34], making it preferable over the

previously discussed methods.

Table 2.5: Newton’s method for optimization [34].

Input: x(0) ∈ dom f0

ε

1: k ← 0
2: do while true

3: ∆x
(k)
nt ← −∇2f0

(
x(k)

)−1∇f0

(
x(k)

)

4: λ
(
x(k)

)2 ← ∇f0

(
x(k)

)T∇2f0

(
x(k)

)−1∇f0

(
x(k)

)

5: if 1
2λ
(
x(k)

)2 ≤ ε
6: break
7: end if

8: Backtracking line search to obtain t(k)

9: x(k+1) ← x(k) + t(k)∆x
(k)
nt

10: k ← k + 1
11: end do

2.6.2 Equality Constrained Minimization

Let us now turn our attention to equality-constrained minimization problems formulated as

minimize
x∈Rn

f0 (x) (2.116)

subject to Ax = b, (2.117)

where once again, f0 is twice continuously differentiable and Ap×n ∈ R with rank (A) =

p < n. Thus, there are p independent equations with n unknowns and the linear system is

underdetermined. Upon employing the KKT conditions of (2.93)–(2.97), the optimal primal

and dual variables, x∗ and ν∗ respectively, obey

Ax∗ = b (2.118)
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and

∇f0 (x∗) + ATν∗ = 0, (2.119)

which in some rare cases can be solved analytically. For example, when applied to a problem

associated with a quadratic objective function formulated as

minimize
x∈Rn

1

2
xTPx + qTx + r (2.120)

subject to Ax = b, (2.121)

where we have P ∈ Sn+ and Ap×n ∈ R, the KKT conditions require that [34] Ax∗ = b and

that

Px∗ + q + ATν∗ = 0. (2.122)

These two conditions may be written as the KKT system given by [34]

[
P AT

A 0

][
x∗

ν∗

]
=

[
−q

b

]
, (2.123)

where the matrix of coefficients is referred to as the KKT matrix. If the KKT matrix is

nonsingular, there is a unique and optimal primal-dual pair, which solves (2.116)–(2.117).

If it is singular but solvable, there are multiple solutions. If it is unsolvable, the problem is

either infeasible or unbounded from below.

For general equality constrained minimization problems, typically a modified version of

Newton’s method is employed, which crucially requires that a feasible starting point is

chosen and that each Newton step maintains this feasibility. More specifically, the starting

point must satisfy [34]

Ax(0) = b, (2.124)

while the Newton step at iteration k satisfies

A∆x
(k)
nt = 0. (2.125)

The feasible Newton step at iteration k is derived by replacing the objective function by its

second-order Taylor approximation f̂0 near x(k) to yield [34]:

minimize
v∈Rn

f̂0

(
x(k) + v

)
= f0

(
x(k)

)
+∇f0

(
x(k)

)T
v +

1

2
vT∇2f0

(
x(k)

)
v(2.126)

subject to A
(
x(k) + v

)
= b, (2.127)

where the decision variable is now v. Notice that the above problem is an equality-

constrained quadratic problem, which may be analytically solved by finding the solution
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to the KKT system given by [34]

[
∇2f0

(
x(k)

)
AT

A 0

][
v

ω

]
=

[
−∇f0

(
x(k)

)

0

]
, (2.128)

where ω is the dual variable associated with the quadratic problem. The optimal primal

solution is x
(k)
nt = v∗, and since Av∗ = A∆x

(k)
nt = 0, ∆x

(k)
nt is a feasible descent direction,

when Newton’s method is initialized with a feasible starting point.

On the other hand, a generalized Newton method is effective in the case of possibly infeasible

starting points and iterates. Recall that the KKT optimality conditions of (2.118)–(2.119)

for an equality-constrained minimization problem are given by Ax∗ = b and ∇f0 (x∗) +

ATν∗ = 0. Given a current (possibly infeasible) iterate x(k), the goal is to ensure that the

next iterate of
(
x(k) + ∆x(k)

)
approximately satisfies the KKT conditions. Performing the

first-order approximation for the gradient at the next iterate results in [34]

∇f0

(
x(k) + ∆x(k)

)
= ∇f0

(
x(k)

)
+∇2f0

(
x(k)

)
∆x(k), (2.129)

which allows us to write the approximate KKT conditions as [34]

A
(
x(k) + ∆x(k)

)
= b (2.130)

and

∇f0

(
x(k)

)
+∇2f0

(
x(k)

)
∆x(k) + ATω = 0, (2.131)

where ν∗ has been substituted by ω. This set of linear equations in ∆x(k) and ω may be

written as a KKT system given by

[
∇2f0

(
x(k)

)
AT

A 0

][
∆x(k)

ω

]
= −

[
∇f0

(
x(k)

)

Ax(k) − b

]
. (2.132)

Notice the similarities between (2.132) and (2.128). In fact, when the current iterate is

feasible, the second block on the right-hand side vanishes and the method will proceed to

descend with feasible steps, as in the case of the feasible-start Newton’s method. Thus,

rpri

(
x(k),ω

)
= Ax(k) − b (2.133)

is the primal residual [34] at the current iterate. Furthermore, the dual residual is defined

as the gradient of the Lagrangian, which is written as [34]

rdual

(
x(k),ω

)
= ∇f0 (x∗) + ATω. (2.134)

We may interpret this Newton method as a primal-dual method, which updates both the
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primal and dual variables to satisfy the KKT conditions. Let us define the primal-dual step

applied to the primal-dual pair, given by y
(k)
pd =

(
x(k),ω

)
, as ∆y

(k)
pd =

(
∆x(k),∆ω

)
. When

minimizing the residual r
(
y

(k)
pd

)
, the first-order Taylor approximate of the next iterate may

be employed to give [34]

r
(
y

(k)
pd

)
+Dr

(
y

(k)
pd

)
∆y

(k)
pd = 0, (2.135)

which implies

Dr
(
y

(k)
pd

)
∆y

(k)
pd = −r

(
y

(k)
pd

)
, (2.136)

where Dr
(
y

(k)
pd

)
is the derivative of r

(
y

(k)
pd

)
at y

(k)
pd . Evaluating Dr

(
y

(k)
pd

)
results in [34]

[
∇2f0

(
x(k)

)
AT

A 0

][
∆x(k)

∆ω

]
= −

[
rpri

rdual

]
= −

[
∇f0

(
x(k)

)
+ ATω

Ax(k) − b

]
. (2.137)

If the substitution of ω+ = ω + ∆ω is performed, the above system of equations simplifies

to (2.132), where ω+ is then the updated dual variable. Thus, we may conclude that the

solution of (2.132) aims for minimizing both the primal and dual residuals. This motivates

using the residual as the stopping criterion in the backtracking line search of the infeasible-

start Newton method, as detailed in Table 2.6. It is possible to show that each iteration of

this method reduces the norm of the residual by at least a fixed amount, while convergence

is quadratic in the vicinity of the optimal solution [34].

Table 2.6: Infeasible-start Newton method [34].

Input: 0 < α < 0.5, 0 < β < 1

x(0) ∈ dom f0, ω
ε > 0

1: k ← 0
2: do

3: Compute ∆x(k) and ∆ω using (2.137)
4: t← 1

5: while
∣∣∣∣r
(
x(k) + t∆x(k),ω + t∆ω

)∣∣∣∣
2
> (1− αt)

∣∣∣∣r
(
x(k),ω

)∣∣∣∣
2
,

6: t← βt
7: end while

8: Update x(k+1) ← x(k) + t∆x(k), ω ← ω + t∆ω
9: k ← k + 1

10: while Ax(k) 6= b or
∣∣∣∣r
(
x(k),ω

)∣∣∣∣
2
> ε
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2.6.3 Interior Point Methods

Let us now focus our attention on general convex minimization problems of the form

minimize
x∈D

f0 (x) (2.138)

subject to fi (x) ≤ 0, i = 1, · · · ,m (2.139)

Ax = b, (2.140)

where fi, i = 0, · · · ,m are twice continuously differentiable, while A ∈ Rp×n and rank (A) =

p < n. Furthermore, the problem is strictly feasible and solvable. Thus, there exists primal

and dual optimal points satisfying the KKT conditions of (2.93)–(2.97) [34].

2.6.3.1 Barrier Method

The aim is to convert the above problem into a series of equality-constrained problems, which

can be solved using Newton’s method. This is accomplished by firstly introducing a barrier

function [34] to formulate the general convex problem as an equivalent equality-constrained

problem, given by

minimize
x∈D

f0 (x) +
m∑

i=1

I− (fi (x)) (2.141)

subject to Ax = b, (2.142)

where I− (u) is the nonpositive indicator function,

I− (u) =




∞ if u > 0,

0 if u ≤ 0.
(2.143)

Clearly, the equality-constrained problem of (2.141)–(2.142) is infeasible if at least one of the

original inequality constraints are not satisfied. However, I− (u) is not differentiable, hence

Newton’s method cannot be directly applied. To circumvent this setback, the approximation

of [34]:

Î− (u) = −1

t
log (−u) , dom Î− = R−− (2.144)

is employed instead of I− (u), with the parameter t > 0 controlling the accuracy of the

approximation, and, as depicted in Fig. 2.20, when t → ∞, the approximation becomes

progressively more accurate [34]. Thus, (2.141)–(2.142) may be approximated by [34]

minimize
x∈D

tf0 (x) + φ (x) (2.145)

subject to Ax = b, (2.146)
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t
t

0−1

Î− (u)

I− (u)

Figure 2.20: The approximation Î− (u) models I− (u) more closely as t→∞.

where the logarithmic barrier function [34]

φ (x) = −
m∑

i=1

log (−fi (x)) , dom φ = {x ∈ D|fi (x) < 0, i = 1, · · · ,m} , (2.147)

is employed, and where the objective has been multiplied by the parameter t. The minimizers

of (2.141)–(2.142) are identical to those of (2.145)–(2.146), which additionally benefits from

having a differentiable objective function. Thus, the aforementioned Newton methods may

be similarly applied for solving (2.145)–(2.146).

The minimizer of (2.145)–(2.146) given a parameter t is termed a central point, which we

denote as x∗ (t). The sequence of x∗ (t) as t→∞ is termed the central path. Central points

must be strictly feasible, and each yield a dual feasible point ν̂ (t) satisfying [34]

0 = t∇f0 (x∗ (t)) +∇φ (x∗ (t)) + ATν̂ (t) (2.148)

= t∇f0 (x∗ (t)) +
m∑

i=1

1

−fi (x∗ (t))
∇fi (x∗ (t)) + ATν̂ (t) (2.149)

from which we can obtain a lower bound to the optimal value. We proceed by introducing:

λ∗i (t) =
1

−tfi (x∗ (t))
(2.150)

and ν∗ (t) = ν̂ (t) /t, so that (2.149) may be rewritten as [34]

0 = ∇f0 (x∗ (t)) +
m∑

i=1

λ∗i (t)∇fi (x∗ (t)) + ATν∗ (t) . (2.151)

Therefore, x∗ (t) is a minimizer of the Lagrangian

L (x,λ,ν) = f0 (x) +

m∑

i=1

λifi (x) + νT (Ax− b) , (2.152)
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while λ∗ (t) = (λ∗1 (t) , · · · , λ∗m (t)) and ν∗ (t) result in a dual function value of [34]

g (λ∗ (t) ,ν∗ (t)) = f0 (x∗ (t)) +

m∑

i=1

λ∗i (t) fi (x∗ (t)) + ν∗ (t)T (Ax∗ (t)− b) (2.153)

= f0 (x∗ (t))−m/t, (2.154)

when substituting in (2.150). In particular, observe that the resultant duality gap is simply

m/t. Thus, we may conclude that

f0 (x∗ (t))− p∗ ≤ m/t, (2.155)

and x∗ (t) is m/t-suboptimal. More importantly, it is clear that x∗ (t) → x∗ when t → ∞.

The barrier method is outlined in Table 2.7.

Table 2.7: The barrier method [34].

Input: Strictly feasible x(0)

Barrier parameters t > 0, µ > 1
Tolerance ε > 0

1: k ← 0
2: do

3: Compute x∗ (t), which solves (2.145)–(2.146), with x(k) as reference point

4: x(k+1) ← x∗ (t)
5: t← µt, k ← k + 1
6: while µm/t > ε

Step 3 of Table 2.7 is often referred to as a centering step or an outer iteration of the bar-

rier method, which typically invokes Newton’s method for solving the equality-constrained

minimization problem. On the other hand, each iteration of Newton’s method in Step 3 is

termed an inner iteration of the barrier method.

Furthermore, the choice of µ > 1 should be considered carefully. If µ is close to unity, t

increases only marginally with each outer iteration, but the previous value for x will be a

good approximation of the solution for the minimization problem with the updated t. Thus,

fewer inner iterations are expected to be required, albeit at the cost of a higher number

of outer iterations since the iterate only progresses marginally. This approach is termed as

the path-following method [34]. Alternatively, if µ is large, t increases substantially and the

previous iterate is likely to be far from the optimal solution for the updated minimization

problem. Therefore, fewer outer iterations are required in exchange for more inner iterations.

A requirement of the barrier method is that of having a strictly feasible starting point.

When such a point is not known, the barrier method is preceded by a phase I stage in

which a strictly feasible point is found (or the constraints are found to be infeasible), which
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is then employed as the starting point in the phase II (barrier method) stage. A possible

method for computing an initial strictly feasible point is to solve

minimize
s∈R,x∈D

s (2.156)

subject to fi (x) ≤ s, i = 1, · · · ,m (2.157)

Ax = b. (2.158)

If Ax = b has any solutions, (2.156)–(2.158) is strictly feasible, since we can compute its

value for Ax(0) = b and set s to be larger than maxi=1,··· ,m
(
fi
(
x(0)

))
. Thus, after obtaining

a strictly feasible point for (2.156)–(2.158), the barrier method can be employed for finding

the minimum s.

Clearly, if s∗ < 0, the corresponding x∗ is a strictly feasible point for (2.138)–(2.140) and

thus may be employed as the starting point for solving (2.138)–(2.140) using the barrier

method. Furthermore, the barrier method for solving (2.156)–(2.158) may be terminated,

when we have s(k) < 0, since any strictly feasible point will be adequate and it is not

necessary to solve the problem with a high accuracy.

On the other hand, if we have s∗ > 0, (2.138)–(2.140) is infeasible. The barrier method

for (2.156)–(2.158) may simply be terminated, when a dual feasible point resulting in a

strictly positive dual objective value is found, which indicates that a lower bound for the

primal objective value is strictly positive, proving that (2.138)–(2.140) is infeasible.

However, if we have s∗ = 0, the corresponding x∗ is only a feasible point for (2.138)–

(2.140). In practice, the barrier method is terminated when |fi (x∗)| ≤ ε, indicating that

some fi (x∗) ≤ ε and were infeasible, while some fi (x∗) ≤ −ε and were feasible.

2.6.3.2 Primal-Dual Interior Point Method

We will now briefly touch upon a basic primal-dual interior point method. Unlike for the

barrier method, there is no distinction between the inner and outer iterations. Both the

primal and dual search directions are computed simultaneously, and are not necessarily fea-

sible at each iteration. For most problems of interest, the primal-dual interior point methods

outperform the barrier methods, since they exhibit a better than linear convergence [34].

We commence by writing the modified KKT equations as [34]

fi (x∗) ≤ 0, i = 1, · · · ,m (2.159)

Ax∗ = b, i = 1, · · · , p (2.160)

λ∗i ≥ 0, i = 1, · · · ,m (2.161)

−λ∗i fi (x∗) =
1

t
, i = 1, · · · ,m (2.162)
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∇f0 (x∗) +
m∑

i=1

λ∗i∇fi (x∗) + ATν∗ = 0. (2.163)

The equality conditions of (2.159)–(2.163) may be written as

rt (x∗,λ∗,ν∗) =



rdual

rcent

rpri


 (2.164)

=



∇f0 (x∗) +Df (x∗)T λ∗ + ATν∗

−diag (λ∗) f (x∗)− (1/t) 1

Ax− b


 (2.165)

= 0, (2.166)

where f : Rn → Rm is a function returning the values of the inequality-constraint functions

of the optimization problem, while Df (x) is its derivative matrix. In other words, we have

f (x) =




f1 (x)
...

fm (x)


 and Df (x) =




∇f1 (x)T

...

∇fm (x)T


 . (2.167)

The first and last block of rt (x,λ,ν) are dual and primal residuals, respectively. The middle

block is termed as the centrality residual, which corresponds to the modified complementary

condition of (2.162). Clearly, as t → ∞, the solution to rt (x,λ,ν) = 0 approaches the

solution for the original KKT conditions.

Given the primal-dual point

y
(k)
pd =

(
x(k),λ(k),ν(k)

)
(2.168)

and a Newton step of

∆y
(k)
pd =

(
∆x(k),∆λ(k),∆ν(k)

)
, (2.169)

the first-order Taylor approximation

rt

(
y

(k)
pd + ∆y

(k)
pd

)
≈ rt

(
y

(k)
pd

)
+Drt

(
y

(k)
pd

)
∆y

(k)
pd = 0

(2.170)

Drt

(
y

(k)
pd

)
∆y

(k)
pd = −rt

(
y

(k)
pd

)

(2.171)


∇2f0

(
x(k)

)
+
∑m

i=1 λi∇2fi
(
x(k)

)
Df
(
x(k)

)T
AT

−diag
(
λ(k)

)
Df
(
x(k)

)
−diag

(
f
(
x(k)

))
0

A 0 0







∆x(k)

∆λ(k)

∆ν(k)


 = −



rdual

rcent

rpri




(2.172)
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can be made. Thus, the Newton step at iteration k may be computed by solving (2.172).

Observe that the primal and dual update directions are coupled. Furthermore, when primal

feasibility is satisfied we have rpri = 0, which results in A∆x(k) = 0 and primal feasibility

is maintained in each step.

Since the primal and dual iterates of this primal-dual method may not be feasible, a surrogate

duality gap is introduced [34], which is defined as

η̂
(
x(k),λ(k)

)
= −f

(
x(k)

)T
λ(k). (2.173)

The surrogate duality gap corresponds to the duality gap of the barrier method if x(k) is

strictly feasible, while λ(k) and ν(k) are dual feasible. The value of t corresponding to the

surrogate duality gap is

t =
µm

η̂
, (2.174)

which is the same as the value t assuming that the aforementioned conditions are satisfied.

Table 2.8: The primal-dual interior point method [34].

Input: Strictly feasible x(0), λ(0) � 0
Update parameter µ > 1
Tolerances ε > 0, εfeas > 0

1: k ← 0
2: do
3: Set t← µm/η̂

4: Compute primal-dual direction ∆y
(k)
pd using (2.172)

5: Line search to determine s

6: Update y
(k+1)
pd ← y

(k)
pd + s∆y

(k)
pd

7: t← µt, k ← k + 1
8: while ||rpri||2 > εfeas or ||rpri||2 > εfeas or η̂ > ε

The primal-dual interior point method is described in Table 2.8 and terminates, when primal

and dual feasibility is satisfied within the tolerance of εfeas, and the surrogate duality gap is

smaller than the tolerance ε. Furthermore, a modified backtracking line search is performed

in Step 5 of Table 2.8 for determining a value of s, which results in a sufficient reduction to

the norm of the residual. The initial value of

smax = sup
{
s ∈ [0, 1] |λ(k) + s∆λ(k) � 0

}
(2.175)

is computed to ensure that dual feasibility is established. Then, the value of s = 0.99smax is

iteratively multiplied by β ∈ (0, 1), until strict primal feasibility is established. The value of

s is further multiplied by β, until a sufficient by rapid reduction of the residual is observed,
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resulting in [34]

∣∣∣
∣∣∣rt
(
x(k) + s∆x(k),λ(k) + s∆λ(k),ν(k) + s∆ν(k)

)∣∣∣
∣∣∣
2
≤ (1− αs)

∣∣∣
∣∣∣rt
(
x(k),λ(k),ν(k)

)∣∣∣
∣∣∣
2
,

(2.176)

where α ∈ (0, 0.5).

2.7 Decomposition Theory

Let us now briefly describe a technique conceived for decomposing an optimization problem

into several distributed subproblems, coordinated by a high-level master problem through

signaling. Decomposing a problem often benefits its implementation in large-scale systems

and can lead to more efficiently solvable formulations than the original problem [339]. Fur-

thermore, they may offer physically-meaningful insights into the optimization problem and

its optimal solution.

In this section, we consider both primal and dual decomposition techniques [339], which

decompose the primal and Lagrange dual problems, respectively. In the case of primal

decomposition, the signaling directed to the subproblems may be interpreted as explicit

resource allocation, since each subproblem is informed of the amount of resources that it can

access. On the other hand, the signaling in dual decomposition may be interpreted as pricing,

since each subproblem is informed of the price of the available resources, allowing them to

decide how much can be afforded. The basic schematic of decomposition is illustrated in

Fig. 2.21.

2.7.1 Primal Decomposition

Primal decomposition [339] may be applied to a problem featuring coupling variables. For

example, the variable y couples the variable x in the problem

maximize
y∈Y,x∈X

n∑

i=1

fi (xi) (2.177)

subject to Aixi � y, ∀i, (2.178)

where we have x =
[
xT

1 , · · · ,xT
n

]T
, while X = X1× · · · ×Xn is the Cartesian product of the

closed convex sets of feasible values for each xi. When the value of y is fixed, the above

problem can be decomposed into n problems of the form

maximize
xi∈Xi

fi (xi) , (2.179)

subject to Aixi � y, (2.180)
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Subproblem 1 Subproblem N

Master problem

Whole problem

· · ·

Decomposed problem

· · ·
resources/prices

Original problem

Figure 2.21: The general structure of a decomposed problem is shown at the bottom. In
the case of primal decomposition, the signaling directed to the subproblems informs them
of the amount of resources they can access. On the other hand, the signals are prices in the

case of dual decomposition.

where only the local variable xi is optimized. The optimal value of these subproblems is

denoted by φi (y) and the master problem is given by

maximize
y∈Y

n∑

i=1

φi (y) , (2.181)

which is typically solved with the aid of a gradient or subgradient based method. From sen-

sitivity analysis [34,335], we know that a subgradient of
∑n

i=1 φi (y) is given by
∑n

i=1 λ
∗
i (y),

where λ∗i (y) is the optimal Lagrange multiplier for the constraint (2.180) in each subprob-

lem.

2.7.2 Dual Decomposition

On the other hand, dual decomposition [339] is suitable, when the problem features coupling

constraints. For example, the problem

maximize
x∈X

n∑

i=1

fi (xi) (2.182)

subject to

n∑

i=1

Aixi � c (2.183)
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is coupled by its constraint. We can form the Lagrangian of the above problem to give

L (x,λ) =
n∑

i=1

fi (xi)− λT

(
n∑

i=1

Aixi − c

)
(2.184)

=
n∑

i=1

(
fi (xi)− λTAixi

)
− λTc, (2.185)

which naturally lends itself to decomposition. The subproblems are then given by

maximize
x∈X

fi (xi)− λTAixi, (2.186)

while the master dual problem is formulated as:

minimize
λ�0

n∑

i=1

gi (λ) + λTc, (2.187)

where gi (λ) is the optimal value of the corresponding subproblem given λ. Observe that

the variable λ acts as a pricing parameter for the subproblems, since it penalizes increasing

the value of xi. Furthermore, since this approach solves the dual problem, a sufficiently

reliable result is only obtained, provided that strong duality exists.

2.7.3 Reformulations

We have seen that primal decomposition is applicable to a problem featuring coupling vari-

ables, while dual decomposition is applicable to a problem featuring coupling variables.

However, it is possible to perform either primal or dual decomposition on the same problem

with the aid of auxiliary variables.

Explicitly, for (2.177)–(2.178), we may introduce the auxiliary variables yi and solve the

equivalent problem of

maximize
y∈Y,yi,x∈X

n∑

i=1

fi (xi) (2.188)

subject to Aixi � yi, ∀i (2.189)

yi = y, ∀i, (2.190)

which is associated with the Lagrangian

L (x,λ,ν) =

n∑

i=1

fi (xi)−
(

n∑

i=1

λT
i (Aixi − yi)

)
−

n∑

i=1

νT
i (y − yi) . (2.191)



70 Ch. 2. Fundamentals of Convex Optimization and its Application Examples

Thus, the subproblems are given by

maximize
yi∈Y,xi∈Xi

fi (xi)− λT
i (Aixi − yi)− νT

i yi, (2.192)

while the master dual problem is given by

minimize
λ�0,y∈Y

g (λ,ν)−
n∑

i=1

νT
i y. (2.193)

Similarly, for (2.182)–(2.183) the auxiliary variable y =
[
yT

1 , · · · ,yT
n

]T
may be introduced

and the equivalent problem of

maximize
x∈X ,y

n∑

i=1

fi (xi) (2.194)

subject to Aixi � yi, ∀i (2.195)
n∑

i=1

yi � c, (2.196)

may be solved using primal decomposition. The subproblems are given by

maximize
x∈X

fi (xi) (2.197)

subject to Aixi � yi, ∀i, (2.198)

while the master problem is formulated as

maximize
y

n∑

i=1

φi (yi) (2.199)

subject to
n∑

i=1

yi � c, ∀i, (2.200)

where φi (yi) is the optimal value for the corresponding subproblem, given yi.

2.8 Application Examples of Convex Optimization

in Wireless Communication

We have explored the basics of convex optimization problems, along with various methods

of finding their solutions. In this section, we study some representative examples of convex

optimization applied to wireless communications problems, which are pertinent to this the-

sis. It is necessary to mention that the following is by no means an exhaustive review of

optimization applied to wireless communications. For example, we refrain from considering

semidefinite or second-order conic programming, which was discussed in [340], nor do we
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explore geometric programing [35,36] or robust optimization [341–345].

2.8.1 Classical Water-Filling and its Relation to Lagrangian Duality

We begin with the classical water-filling method of maximizing the capacity of n discrete

unit-bandwidth wireless channels. Given that the information theoretic limit of wireless

channel i having a channel gain gi is defined by log2 (1 + gipi), where pi is the transmitter

power, the sum capacity of the system is

n∑

i=1

log2 (1 + gipi) . (2.201)

Moreover, the system is subject to a total power constraint of P . Thus, we may formulate

the concave maximization problem of

maximize
p�0

n∑

i=1

log2 (1 + gipi) (2.202)

subject to
n∑

i=1

pi ≤ P, (2.203)

which has the well-known solution [4, 34] of

p∗i =

[
c− 1

gi

]+

, (2.204)

where c is some constant termed the water-level. The optimal solution is illustrated in

Fig. 2.22 for a system associated with n = 7 discrete channels.
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Figure 2.22: An illustration of the water-filling method. The shaded areas indicate the
amount of power allocated to each discrete wireless channel, where c is the maximum value
that 1

gi
+ p∗i can reach. Hence, the optimal solution is analogous to pouring water into a

container having a ragged bottom until the water-level of c is reached.

We will now demonstrate how the optimal solution is derived from duality. We commence
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by employing the KKT optimality conditions to derive

n∑

i=1

p∗i ≤ P (2.205)

p∗i ≥ 0, ∀i (2.206)

λ∗ ≥ 0 (2.207)

λ∗
(
P −

n∑

i=1

p∗i

)
= 0 (2.208)

gi
ln 2 (1 + gip∗i )

− λ∗ = 0, ∀i, (2.209)

where λ∗ is the optimal Lagrange multiplier associated with the maximum power constraint.

Solving (2.209) for p∗i reveals that we have

p∗i =
1

λ∗ ln (2)
− 1

gi
, (2.210)

which is

p∗i =

[
1

λ∗ ln (2)
− 1

gi

]+

, (2.211)

when enforcing the nonnegativity constraint of (2.206). Thus, we arrive at

c =
1

λ∗ ln (2)
(2.212)

and the water-level is determined by the optimal Lagrangian multiplier. Observe from the

complementary slackness condition of (2.208), that the optimal Lagrangian multiplier is zero

unless the inequality constraint function is active. Thus, the optimal Lagrangian multiplier

is obtained when
n∑

i=1

p∗i = P. (2.213)

In other words, the water-level c is set to that specific value, which results in allocating all of

the available power. Furthermore, observe that more power is allocated to channels featuring

a higher channel gain (and a lower 1/gi) so that they may be exploited for increasing the

overall system capacity.

2.8.2 Advanced Water-Filling Methods

In this section, we explore some advanced water-filling methods applied to the simple sys-

tem described above. For example, if the system aims for maintaining fairness of resource

allocation to channels, the optimization problem may be written as

maximize
p�0

n∑

i=1

ωi log2 (1 + gipi) (2.214)
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subject to
n∑

i=1

pi ≤ P, (2.215)

where ωi is a measure of allocation priority for channel i. The above problem has the optimal

solution

p∗i =

[
ωi

λ∗ ln (2)
− 1

gi

]+

. (2.216)

Observe that the water-level for channel i is now given by ωi/λ
∗ ln (2), implying that a

channel associated with a greater value of ωi is allocated more power, even if the channel

gains are identical. This result is an example of multi-level water-filling.

In the case of maximizing the energy-efficiency of the system, the optimization problem can

be written as

maximize
p�0

∑n
i=1 log2 (1 + gipi)

C +
∑n

i=1 pi
(2.217)

subject to
n∑

i=1

pi ≤ P, (2.218)

where the objective has units of [bits/sec/Hz/Jule] and C is some constant. This is a case

of FP and we may apply Dinkelbach’s method for reformulating it as a series of convex

programming problems of the form

maximize
p�0

n∑

i=1

log2 (1 + gipi)− qj ·
(
C +

n∑

i=1

pi

)
(2.219)

subject to
n∑

i=1

pi ≤ P, (2.220)

where qj is the value of the original objective function obtained in the previous iteration of

Dinkelbach’s method. The above problem has the optimal solution of

p∗i =

[
1

ln (2) (λ∗ + qj)
− 1

gi

]+

. (2.221)

Observe that the water-level is now given by 1/ ln (2) (λ∗ + qj), which means that a higher

value of qj results in a lower power allocation for every channel. In other words, as the

resultant energy-efficiency increases, the optimal power allocation becomes progressively

restrictive, until the equilibrium point of the maximum energy-efficiency is obtained.

Let us now explore the case, where the communication channels are mutually interfering.

The associated optimization problem can be written as

maximize
p�0

n∑

i=1

log2

(
1 +

gipi∑
j 6=i gj,ipj

)
(2.222)
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subject to pi ≤ Pi, ∀i (2.223)

where gj,i is the channel gain between the transmitter occupying channel j and the receiver

of channel i, while
∑

j 6=i gj,ipj is the total interference power at the receiver of channel i.

Furthermore, channel i is subject to a maximum power constraint of Pi, which is associated

with the Lagrangian multiplier λi.

Although the objective function is nonconvex, the authors of [37] showed that the optimal

solution can be obtained using iterative water-filling, which requires that each channel is

iteratively allocated the optimal power of

p∗i =

[
1

λ∗i ln (2)
−
∑

j 6=i gj,ipj
gi

]+

, (2.224)

assuming that every other channel has a fixed power allocation, until the objective value

converges.

When the objective is to minimize the total transmission power subject to per channel

capacity requirements of Ri for channel i, the optimization problem can be formulated as

minimize
p�0

n∑

i=1

pi (2.225)

subject to log2 (1 + gipi) ≥ Ri, ∀i (2.226)
n∑

i=1

pi ≤ P, (2.227)

which is a convex minimization problem. If we denote the Lagrangian multiplier for the ith

channel’s capacity constraint as νi, the optimal solution is given by

pi =

[
νi

ln (2) (1 + λ∗i )
− 1

gi

]+

. (2.228)

Observe that if the capacity constraint is strictly satisfied for channel i, we have νi = 0 and

zero power is allocated for this channel. A nontrivial solution occurs when log2 (1 + gipi) =

Ri, which requires that

pi =
exp (Ri ln (2))− 1

gi
. (2.229)

Thus, the optimal (and intuitive) solution is to allocate only the power necessary to fulfill

the channel capacity requirements.
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2.9 Chapter Summary and Conclusions

In this chapter, we have explored the basics of convexity and convex functions, as well

as the various methods by which the convexity of a function may be determined. Given

this knowledge, we were able to formally classify optimization problems as either convex

or nonconvex. Moreover, we delved deeper into the topic of nonconvex optimization, and

detailed several approaches for reformulating them so that they may be solved using convex

optimization techniques.

In Section 2.5, we then examined duality, along with the Lagrangian function and the

dual problem. The importance of both strong and weak dualities was illustrated, and the

motivation for formulating problems as convex problems was provided. Most importantly,

the KKT conditions of optimality were listed in Section 2.5.4, and the complementary

slackness condition was explained.

Armed with the knowledge acquired in Section 2.5, we studied the various methods of solv-

ing convex optimization problems. In Section 2.6.1, we began with simple unconstrained

problems, which can be solved using iterative descent methods, and in Section 2.6.2 we then

proceeded to study equality-constrained problems, which required that the iterate progresses

along a feasible descent direction. In Section 2.6.3, we explored interior points methods,

which can be applied to problems featuring both equality and inequality constraints. We

proceeded in Section 2.6.3.1 by studying the logarithmic barrier function and the method by

which it can be employed for reformulating the problem as a series of equality-constrained

problems. In Section 2.6.3.2, a simple primal-dual interior point method is additionally

provided. Furthermore, we examined both primal and dual decompositions, along with re-

formulations that allow either method to be applied to decomposable optimization problems.

Finally, in Section 2.8 we explored some select examples of convex optimization applied

to wireless communications. We began by studying the classical water-filling result and

how it relates to the dual of the problem of channel capacity maximization. Furthermore,

we progressed to more advanced optimization problems and studied their water-filling type

optimal solutions.





Chapter 3
Spectral/Energy Efficient Resource

Allocation for SISO-Aided

Single-Cell Networks

3.1 Introduction

As described in Chapter 1, the EE of wireless cellular networks is becoming an increasingly

important design metric for mobile operators, when attempting to reduce their operating

costs, whilst satisfying both societal and regulatory demands. Additionally, cellular networks

employ multicarrier physical layer transmissions and heterogeneous network elements, thus

increasing the complexity of the EE problem when accounting for all of these factors.

We now formally define the EE metric used in this thesis as a counterpart of the ASE

metric [4], where the latter is normalized by area and has the units of
[
bits/sec/Hz/km2

]
,

while the unit of the EE metric is [bits/sec/Hz/W]. This results from forming the ratio of the

SE obtained over the power dissipated. We simplify this by combining the units of time and

power to give energy, thus the (normalized) EE may also be measured in [bits/Joule/Hz].

In this chapter, our focus is on the EEM problem cast in the context of a SISO multi-relay,

multi-user cellular network, which employs the ubiquitous OFDMA scheme described in

Section 1.3. Here, SISO means that the BS, the users and the RNs are each equipped with

a single antenna. More specifically, the RNs may employ the AF protocol of Section 1.4 for

relaying the information transmitted by the BS in the DL to the UE experiencing unfavorable

channel conditions. Moreover, the BS and the RNs may transmit simultaneously, but on

different OFDMA subcarriers, thus completely avoiding interference between the BS’s and

the RNs’ DL transmissions. The specific selection of UEs to receive DL transmissions from

77
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either the BS or the RNs as well as their associated power control variables is formulated as

an optimization problem, where the optimization objective can be either the SEM or EEM.

An example of the SEM problem was considered in [22], where the authors formulated the

optimization problem for the DL of an AF relaying-aided OFDMA cellular network and

their goal was to optimize the power and subcarrier allocation so that the SE of the system

was maximized, whilst satisfying a certain maximum outage probability and total power

constraint. In the class of power minimization problems, an example is the often-cited

work by Wong et. al [23], where a heuristic bit allocation algorithm was conceived for a

multi-user OFDMA system with the goal of minimizing the power consumption under a

minimum individual user rate constraint. With a similar goal, Piazzo [24] developed a sub-

optimal bit allocation algorithm for an OFDM system as a lower-complexity alternative to

the well-known Hughes-Hartogs algorithm [346]. This work was later extended to provide

the optimal bit allocation in [26].

However, the SEM and the power minimization problems do not directly consider an EE

objective function and in general they do not deliver the EEM solution. In recent years,

research into resource allocation using an EE objective function has become increasingly

popular. In reality, EEM may be viewed as an example of multi-objective optimization,

since typically the goal is to maximize the SE achieved, whilst concurrently minimizing the

power consumption required. From this perspective, [347] derives an aggregate objective

function, which consists of a weighted sum of the sum rate achieved and the power dissipated.

However, selecting appropriate weights for the two objective functions is not straightforward

and different combinations of weights can lead to very different results. Another example

is given in [348], where the EEM problem is considered in a multi-relay network employing

the AF protocol. However, the authors of [347, 348] only optimize the user selection and

power allocation without considering the subcarrier allocation in the network. Another

formulation, demonstrated in [224, 225], considers power and subcarrier allocation in an

OFDMA cellular network, but without a maximum total power constraint and without

relaying. The contribution most similar to the work presented in this chapter is that of

Ng et. al [200], where the authors formulated the EEM problem in the context of an

OFDMA cellular network under a maximum total power constraint. The EEM problem is

then solved using Dinkelbach’s method [337]. However, in contrast to our work, relaying is

not considered by Ng et. al. Furthermore, they did not employ and compare other methods

of solving the fractional quasi-concave EEM problem.

In contrast to the above-mentioned contributions, we consider both the SE and EE opti-

mization metrics. Furthermore, we solved their associated optimization problems with the

aid of three separate methods, which we compare in terms of their performance attained

versus the complexity imposed.
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3.1.1 Novel Contributions

This chapter focuses on a solution method conceived for the EEM problem of a multi-relay,

multi-user OFDMA cellular network, which jointly considers both power and subcarrier al-

location under a certain maximum total power constraint. The contributions of this chapter

are summarized as follows.

• The EEM problem of a multi-relay, multi-user OFDMA cellular network, in which both

direct and relayed transmissions are employed, is formulated as a fractional programming

problem, which jointly considers both the power and subcarrier allocation. In contrast

to previous contributions such as [44], our goal is that of finding the optimal power and

subcarrier allocations within a network context. Furthermore, in contrast to [20–26,347,

348], our focus is on an EE objective function. It is demonstrated that in its original form

the problem is a MINLP. As described in Section 2.4.2, MINLPs are typically challenging

to solve. In order to make the problem more tractable, both a variable transformation

and a relaxation of the integer variables is introduced.

• It is proven that the relaxed problem is a quasi-concave FP problem. Thus, we employ the

methods described in Section 2.4.3 for converting the quasi-concave problem into one or

several concave maximization problems. Each of these concave problems is solved using

the dual decomposition approach of Section 2.7. The prevailing method employed in the

existing literature for solving quasi-concave problems is Dinkelbach’s method, as exempli-

fied in [71,200,201]. However, the performance of the Charnes-Cooper transformation has

rarely been explored [226,227]. Furthermore, there are no comparisons between these al-

gorithms and a baseline algorithm relying on the bisection method of Section 2.4.3. Thus,

in this chapter, we demonstrate that the EEM algorithms based on either Dinkelbach’s

method of Section 3.4, or on the Charnes-Cooper transformation method of Section 3.5,

or alternatively on the bisection method of Section 3.6 are capable of reaching the opti-

mal solution obtained via an exhaustive search. Furthermore, the former two algorithms

converge within a low number of iterations, which means that the original problem was

solved at a low complexity.

• Comparisons are made between two multi-relay resource allocation problems, namely one

that solves the EEM problem and another that considers SEM. It is shown in Section 3.7

that when the maximum affordable power is lower than a given threshold, the two prob-

lems have the same solutions. However, as the maximum affordable power is increased,

the SEM algorithm attempts to achieve a higher SE at the cost of a lower EE, while given

the total power, the EEM algorithm reaches the upper limit of the maximum achievable

SE for the sake of maintaining the maximum EE.

• Since the system model is generalized, the EEM and SEM algorithms may be invoked

for gaining insights into the specifics of network design, when we aim for maximizing

either the EE or SE. To that end, a comprehensive range of results is presented, which
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characterizes both the effect of increasing the number of available subcarriers and UEs in

the system, whilst quantifying the impact of both the number as well as position of RNs.

The algorithms may be used for characterizing the effects of many other system design

choices on the maximum SE and EE.

3.1.2 Chapter Organization

The rest of this chapter is organized as follows. In Section 3.2, the multi-user, multi-relay

OFDMA based cellular network model is described, which is followed by a formulation of

our optimization problem in Section 3.3. Upon invoking a transformation of variables and a

relaxation of the integer variables, it is proven that the objective function is quasi-concave.

Three beneficial solution methods are contrasted. Specifically, Dinkelbach’s method is used

in Section 3.4, the Charnes-Cooper transformation method is employed in Section 3.5, while

the bisection method is advocated in Section 3.6, all of which solve the quasi-concave prob-

lem by solving either one or several concave maximization problems. Furthermore, the

algorithms required for solving these concave maximization problems are devised from dual

decomposition. The performance of these EEM algorithms is demonstrated in Section 3.7,

which includes results obtained when the EEM and SEM algorithms are employed for char-

acterizing the effect of different system design choices on the achievable SE and EE. Lastly,

a summary is given in Section 3.8.

3.2 System Model

Consider an OFDMA DL cellular system relying on a single BS, M fixed RNs and K

uniformly-distributed UEs, as shown in Fig. 3.1. Although it is more realistic to consider

a multi-cell system, which would lead to inter-cell interference, our system model assumes

that intelligent interference coordination or mitigation techniques are employed such that

the level of inter-cell interference is negligible [5]. However, a multi-cell scenario will be

considered in Chapter 5.

The cell is divided into M sectors, where each sector is served by one of the fixed RNs.

Naturally, the path-loss is a major factor in determining the receiver’s SNRs at the UEs,

and thus has a substantial effect on the EE. Therefore, in order to minimize the RN-to-UE

pathloss, we employ the so-called distance dependent relay-selection [349], where all the UEs

in a specific sector are only supported by that sector’s RN. Thus, relay selection is implicitly

accomplished. Furthermore, since a single RN supports multiple UEs within its own sector,

this protocol can be likened to the shared relay scheme described in [349, 350], which is

elucidated in Fig. 3.2. On the other hand, this system model may be readily extended to
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Figure 3.1: An example of a cellular network with M = 3 RNs and K = 18 UEs.
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Figure 3.2: An illustration of the shared relay scheme employed in this chapter.

include sophisticated relay selection schemes, but for the sake of mathematical tractability,

they are not included in this chapter.

This system model accounts for both the AF relayed link as well as for the direct link between

the BS and UEs, while the variables related to these two communication protocols are

distinguishable by the superscripts A and D, respectively. When defining links, the subscript

0 is used for indicating the BS, whilst M(k) ∈ {1, · · · ,M} indicates the RN selected for

assisting the DL-transmissions to user k. The proportion of the BS-to-RN distance to the

cell radius is denoted by Dr, while the total available instantaneous transmission power of

the network is Pmax. Although it is more realistic to consider a system with separate power

constraints for each transmitting entity, for simplicity, a certain total power constraint is
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considered. The results obtained provide insights into holistic system design by granting a

higher grade of freedom in terms of sharing the power among the transmitting entities, and

thus attaining a higher performance.

Using the direct transmission protocol, the receiver’s SNR at UE k on subcarrier n may be

expressed as ΓD,nk (P), whereas when using the AF relaying protocol described in Section 1.4,

the receiver’s SNR at UE k on subcarrier n may be expressed as

ΓA,nk (P) =
γA,n0,M(k)γ

A,n
M(k),k(

γA,n0,M(k) + γA,nM(k),k + 1
) , (3.1)

where

γX,na,b =
PX,na,b G

n
a,b

∆γN0W
(3.2)

is the SNR at receiver b ∈ {1, · · · ,M, 1, · · · ,K} on subcarrier n ∈ {1, · · · , N}, and PX,na,b

is allocated to transmitter a ∈ {0, · · · ,M} using protocol X ∈ {D,A} for transmission to

receiver b. Furthermore, Gna,b represents the channel’s attenuation between transmitter a and

receiver b on subcarrier n, which is assumed to be known at the BS for all links. The channel’s

attenuation is modeled by the path-loss and the Rayleigh fading between the transmitter

and receiver. Furthermore, N0 is the AWGN variance and W is the bandwidth of a single

subcarrier. Still referring to (3.1), ∆γ is the SNR gap at the system’s BER target between

the SNR required at the discrete-input continuous-output memoryless channel (DCMC)

capacity and the actual SNR required the modulation and coding schemes of the practical

physical layer transceivers employed. For example, making the simplifying assumption that

idealized transceivers operating exactly at the DCMC capacity are employed, then ∆γ =

0dB. Although it is not possible to operate exactly at the DCMC channel capacity, several

physical layer transceiver designs exist that operate arbitrarily close to it [351]. Additionally,

the power allocation policy of the system is denoted by P, which determines the values of

PX,na,b .

Assuming sufficiently high receiver’s SNR values, the following approximation can be made

ΓA,nk (P) ≈
PA,n0,M(k)G

n
0,M(k)P

A,n
M(k),kG

n
M(k),k

∆γN0W
(
PA,n0,M(k)G

n
0,M(k) + PA,nM(k),kG

n
M(k),k

) , (3.3)

which is valid for

PA,n0,M(k)G
n
0,M(k) + PA,nM(k),kG

n
M(k),k � ∆γN0W. (3.4)

It is plausible that in next-generation systems, through the combination of multi-user and

frequency diversity, this assumption holds true when an intelligent scheduler is employed [44].
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The SE of an AF link to UE k on subcarrier n is then given by

RA,nk (P) =
1

2
log2

(
1 + ΓA,nk

)
[bits/s/Hz], (3.5)

where the factor of 1
2 accounts for the fact that two time slots are required for the two-hop

AF transmission. The SE of a direct link to UE k on subcarrier n is similarly given by

RD,nk (P) = log2

(
1 + ΓD,nk

)
[bits/s/Hz]. (3.6)

The subcarrier indicator variable sX,nk ∈ {0, 1} is now introduced, which denotes the alloca-

tion of subcarrier n for transmission to user k using protocol X for sX,nk = 1, and sX,nk = 0

otherwise. The weighted total SE of the system is calculated as

RT (P,S) =

K∑

k=1

ωk

N∑

n=1

sD,nk log2

(
1 + ΓD,nk

)
+
sA,nk

2
log2

(
1 + ΓA,nk

)
[bits/s/Hz], (3.7)

where S denotes the subcarrier allocation policy of the system, which determines the values

of the subcarrier indicator variable sX,nk . The weighting factor ωk may be varied for ensuring

fairness amongst users. However, since ensuring fairness is not the focus of this thesis,

ωk = 1, ∀k is assumed then the effect of ωk may be ignored.

In order to compute the energy used in these transmissions, a model similar to [352] is

adopted and the total power consumption of the system is assumed be governed by a constant

term and a term that varies with the transmission powers, which may be written as (3.8).

PT (P,S) =
(
P

(B)
C + P

(R)
C M

)
+

K∑

k=1

N∑

n=1

sD,nk ξ(B)PD,n0,k +
sA,nk

(
ξ(B)PA,n0,M(k) + ξ(R)PA,nM(k),k

)

2
[Watts]

(3.8)

Here, P
(B)
C and P

(R)
C represent the fixed power consumption of each BS and each RN,

respectively, while ξ(B) > 1 and ξ(R) > 1 denote the reciprocal of the drain efficiencies of the

power amplifiers employed at the BS and the RNs, respectively. For example, an amplifier

having a 25% drain efficiency would have ξ = 1
0.25 = 4.

Finally, the average EE metric of the system is expressed as

ηE(P,S) =
RT (P,S)

PT (P,S)
[bits/Joule/Hz]. (3.9)
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3.3 Problem Formulation

The aim of this chapter is to maximize the energy efficiency metric of (3.9) subject to

a maximum total instantaneous transmit power constraint. In its current form, (3.9) is

dependent on the set of 3KN continuous power variables PD,n0,k , PA,n0,M(k) and PA,nM(k),k, ∀k, n
and on the 2KN binary subcarrier indicator variables sD,nk and sA,nk , ∀k, n. Thus, it may

be regarded as a MINLP problem, which hence can be solved using the classic branch-

and-bound method described in Section 2.4.2. However, the computational effort required

for branch-and-bound techniques typically increases exponentially with the problem size.

Therefore, a simpler solution is derived by relaxing the binary constraint imposed on the

subcarrier indicator variables, now denoted by s̃D,nk and s̃A,nk , so that they may assume

continuous values from the interval [0, 1], as demonstrated in [23, 353]. Furthermore, the

auxiliary variables of P̃D,n0,k = PD,n0,k s̃
D,n
k , P̃A,n0,M(k) = PA,n0,M(k)s̃

A,n
k and P̃A,n0,M(k) = PA,n0,M(k)s̃

A,n
k

are introduced. These new power variables form the set P̃, while the relaxed subcarrier

indicator variables form the set S̃.

In [353], such a relaxation results in a time-sharing solution regarding each subcarrier. In

this thesis, this relaxation may be viewed as time-sharing of each subcarrier, as multiple

users can then occupy a fraction of each subcarrier in time. Naturally, the relaxation means

that we do not accurately maximize the original objective function of (3.9). In fact, since

we have expanded the space of feasible solutions, solving the relaxed problem results in an

upper bound of the optimal objective value of the original problem. However, the algorithms

devised in this thesis for obtaining the optimal solution to the relaxed problems will only

retain integer values of the relaxed variables. Therefore, the algorithms essentially maximize

a lower bound of the relaxed problem. Having said that, as shown in [200, 202, 330], the

optimal solution to the original problem is still obtained with high probability when using

the dual decomposition method on the relaxed problem (as in this thesis) as the number of

subcarriers tends to infinity. It was shown that 8 subcarriers is sufficient for this to be true

in the context of [219], while we will show that 2 subcarriers is sufficient in Section 3.7

The optimization problem is formulated as

maximize
P̃,S̃

R̃T

P̃T
(3.10)

subject to

K∑

k=1

N∑

n=1

P̃D,n0,k + P̃A,n0,M(k) + P̃A,nM(k),k ≤ Pmax, (3.11)

s̃D,nk + s̃A,nk ≤ 1, ∀k, n, (3.12)

K∑

k=1

s̃D,nk + s̃A,nk ≤ 1, ∀n, (3.13)

P̃D,n0,k , P̃A,n0,M(k), P̃
A,n
M(k),k ∈ R+, ∀k, n, (3.14)
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0 ≤ s̃D,nk , s̃A,nk ≤ 1, ∀k, n, (3.15)

where the objective function formulated by the ratio between

R̃T =

K∑

k=1

N∑

n=1

s̃D,nk log2

(
1 +

P̃D,n0,k G
n
0,k

s̃D,nk ∆γN0W

)

+
s̃A,nk

2
log2


1 +

P̃A,n0,M(k)G
n
0,M(k)P̃

A,n
M(k),kG

n
M(k),k

s̃A,nk ∆γN0W
(
P̃A,n0,M(k)G

n
0,M(k) + P̃A,nM(k),kG

n
M(k),k

)


 (3.16)

and

P̃T =
(
P

(B)
C + P

(R)
C M

)
+

K∑

k=1

N∑

n=1

ξ(B)P̃D,n0,k +

(
ξ(B)P̃A,n0,M(k) + ξ(R)P̃A,nM(k),k

)

2
. (3.17)

In this formulation, the decision variables are contained in the sets P̃ and S̃. Physically,

the constraint (3.11) ensures that the sum of the power allocated to variables P̃D,n0,k , P̃A,n0,M(k)

and P̃A,nM(k),k does not exceed the maximum power budget of the system. Constraint (3.12)

ensures that a single transmission protocol, either direct or AF, is chosen for each user-

subcarrier pair. The constraint (3.13) guarantees that each subcarrier is only allocated to

at most one user, thus intra-cell interference is avoided. The constraints (3.14) and (3.15)

describe the feasible region of the optimization variables.

3.3.1 Proving that the Objective Function of (3.10) is Quasi-Concave

We wish to determine whether the objective function is concave or quasiconcave so that the

associated optimization problem can be efficiently solved. From Section 2.4.3, we know that

in order to show that (3.10) is quasi-concave, it is sufficient to prove that the numerator is

concave and the denominator is both affine as well as positive, while the domain is convex. It

is plausible that the denominator is both affine and positive, since it is the linear combination

of multiple nonnegative variables and a positive constant. The proof that the numerator is

concave is as follows.

Firstly, the concavity of

f1

(
P̃A,n0,M(k), P̃

A,n
M(k),k

)
=

P̃A,n0,M(k)G
n
0,M(k)P̃

A,n
M(k),kG

n
M(k),k

∆γN0W
(
P̃A,n0,M(k)G

n
0,M(k) + P̃A,nM(k),kG

n
M(k),k

) (3.18)

is proven. This may be accomplished by examining the Hessian matrix of f1

(
P̃A,n0,M(k), P̃

A,n
M(k),k

)

with respect to (w.r.t.) the variables P̃A,n0,M(k) and P̃A,nM(k),k, which has the eigenvalues e1 = 0
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and

e2 = −
2
(
Gn0,M(k)G

n
M(k),k

)2 (
P̃A,n0,M(k) + P̃A,nM(k),k

)

∆γN0W
(
P̃A,n0,M(k)G

n
0,M(k) + P̃A,nM(k),kG

n
M(k),k

)3 , (3.19)

which are non-positive, indicating that the Hessian is negative-semidefinite. From Sec-

tion 2.3.3, we conclude that f1

(
P̃A,n0,M(k), P̃

A,n
M(k),k

)
is concave w.r.t. the variables P̃A,n0,M(k)

and P̃A,nM(k),k.

Employing the composition rules of (2.19)–(2.20) reveals that

f2

(
P̃A,n0,M(k), P̃

A,n
M(k),k

)
= log2

[
1 + f1

(
P̃A,n0,M(k), P̃

A,n
M(k),k

)]
(3.20)

is concave, since log2(·) is concave as well as non-decreasing and 1 + f1

(
P̃A,n0,M(k), P̃

A,n
M(k),k

)

is concave.

The second term in the summation of (3.16) may be written as

f3

(
P̃A,n0,M(k), P̃

A,n
M(k),k, s̃

A,n
k

)
= s̃A,nk,n log2


1 +

P̃A,n0,M(k)G
n
0,M(k)P̃

A,n
M(k),kG

n
M(k),k

s̃A,nk ∆γN0W
(
P̃A,n0,M(k)G

n
0,M(k) + P̃A,nM(k),kG

n
M(k),k

)


 ,

(3.21)

which may be obtained using the perspective transformation of Section 2.3.4 yielding

f3

(
P̃A,n0,M(k), P̃

A,n
M(k),k, s̃

A,n
k

)
= s̃A,nk · f2


 P̃

A,n
0,M(k)

s̃A,nk

,
P̃A,nM(k),k

s̃A,nk


 , (3.22)

thus preserving concavity. Strictly speaking, the perspective transformation also requires

that s > 0. However, convexity is also preserved for the situation when s = 0 as proven

in [22].

Using similar arguments, s̃D,nk log2

(
1 +

P̃D,n
0,k Gn

0,k

s̃D,n
k ∆γN0W

)
is proven to be concave w.r.t. the

variables s̃D,nk and P̃D,n0,k .

Finally, the numerator is shown to be concave w.r.t the variables s̃A,nk , s̃D,nk , P̃D,n0,k , P̃A,n0,k ,

P̃A,n0,M(k) and P̃A,nM(k),k, ∀k, n, since it is the non-negative sum of multiple concave functions.

Thus, the objective function (3.10) has a numerator that is concave, while its denominator

is affine. Hence, (3.10) is quasi-concave.

3.3.2 Problem Solution Methods

As described in Section 2.4.3, quasi-concavity may be viewed as a type of generalized con-

cavity, since it can describe discontinuous functions as well as functions that have multiple

stationary points, which are clearly not concave. This means that a local maximum is not
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guaranteed to be a global maximum and thus standard convex optimization techniques, such

as interior-point or ellipsoid methods, cannot be readily applied for finding their optimal

solution [34]. However, a quasi-concave function has convex superlevel sets, hence the bisec-

tion method of Section 2.4.3.1 may be used for iteratively closing the gap between an upper

and lower bound solution, until the difference between the two becomes lower than a pre-

defined tolerance. The drawback of this method is that there is no exact method of finding

the initial upper as well as lower bounds. Additionally, a convex feasibility problem must be

solved in each iteration, which may become computationally undesirable. Another approach

is Dinkelbach’s method described in Section 2.4.3.3, which solves the quasi-concave problem

as a sequence of parameterized concave programming problems. A third method is based on

the Charnes-Cooper variable transformation of Section 2.4.3.5, which transforms the quasi-

concave problem into a concave problem with an additional linear constraint. Although this

additional constraint makes the problem more complex, the original quasi-concave problem

may then be solved as a single concave problem, which avoids the need for solving multiple

problems as in the case of Dinkelbach’s method.

In this chapter, we solve the relaxed problem using all three methods to compare their

performance versus complexity in Section 3.7.

3.4 Dinkelbach’s Method for Solving (3.10)–(3.15)

Dinkelbach’s method, as described in Section 2.4.3.3, relies on solving the subtractive form

of the FP problem in each iteration j. When applied to the problem of (3.10)–(3.15), the

optimization problem may be written as

maximize
P̃,S̃

K∑

k=1

N∑

n=1

s̃D,nk log2

(
1 +

P̃D,n0,k G
n
0,k

s̃D,nk ∆γN0W

)

+
s̃A,nk

2
log2


1 +

P̃A,n0,M(k)G
n
0,M(k)P̃

A,n
M(k),kG

n
M(k),k

s̃A,nk ∆γN0W
(
P̃A,n0,M(k)G

n
0,M(k) + P̃A,nM(k),kG

n
M(k),k

)




−qj



(
P

(B)
C + P

(R)
C M

)
+

K∑

k=1

N∑

n=1

ξ(B)P̃D,n0,k +

(
ξ(B)P̃A,n0,M(k) + ξ(R)P̃A,nM(k),k

)

2




(3.23)

subject to

K∑

k=1

N∑

n=1

P̃D,n0,k + P̃A,n0,M(k) + P̃A,nM(k),k ≤ Pmax, (3.24)

s̃D,nk + s̃A,nk ≤ 1, ∀k, n, (3.25)

K∑

k=1

s̃D,nk + s̃A,nk ≤ 1, ∀n, (3.26)

P̃D,n0,k , P̃A,n0,M(k), P̃
A,n
M(k),k ∈ R+, ∀k, n, (3.27)
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0 ≤ s̃D,nk , s̃A,nk ≤ 1, ∀k, n. (3.28)

Since it has been shown that RT

(
P̃, S̃

)
is concave whilst PT

(
P̃, S̃

)
is affine, the objective

function (3.23) is concave, and (3.23)– (3.28) is a concave maximization problem w.r.t.

the variables P̃ and S̃. Assuming the existence of an interior point (Slater’s condition as

explained in Section 2.5.3), there is a zero duality gap between the dual problem of (3.23)–

(3.28) and the primal problem of (3.10)– (3.15). Thus solving the dual problem is equivalent

to solving the primal problem.

As described in Section 2.5, the Lagrangian of (3.23)– (3.28) is given by

L
(
P̃, S̃, λ

)
=

K∑

k=1

N∑

n=1

s̃D,nk log2

(
1 +

P̃D,n0,k G
n
0,k

s̃D,nk ∆γN0W

)

+
s̃A,nk

2
log2


1 +

P̃A,n0,M(k)G
n
0,M(k)P̃

A,n
M(k),kG

n
M(k),k

s̃A,nk ∆γN0W
(
P̃A,n0,M(k)G

n
0,M(k) + P̃A,nM(k),kG

n
M(k),k

)




−qj



(
P

(B)
C + P

(R)
C M

)
+

K∑

k=1

N∑

n=1

ξ(B)P̃D,n0,k +

(
ξ(B)P̃A,n0,M(k) + ξ(R)P̃A,nM(k),k

)

2




+λ

(
Pmax −

K∑

k=1

N∑

n=1

P̃D,n0,k + P̃A,n0,M(k) + P̃A,nM(k),k

)
, (3.29)

where λ ≥ 0 is the Lagrangian multiplier associated with the constraint (3.11). The feasible

region constraints (3.14) and (3.15), and constraints (3.12) and (3.13) will be considered

when deriving the optimal solution, which is detailed later.

The dual problem of (3.23)– (3.28) may be written as

min.
λ≥0

g(λ) = min.
λ≥0

max.
P̃,S̃

L
(
P̃, S̃, λ

)
, (3.30)

which is solved using the dual decomposition approach described in Section 2.7. Using

dual decomposition, (3.30) may be readily solved via solving NK similar subproblems to

obtain both the power as well as subcarrier allocations, and by solving a master problem

to update λ (i) at iteration i. The dual decomposition approach of Section 2.7 adapted for

solving (3.23)– (3.28) is outlined in the following.

3.4.1 Solving the Subproblem of Power and Subcarrier Allocation

For a value of λ (i) at iteration i of the dual decomposition method and a fixed value of

qj , max.
P̃,S̃

L
(
P̃, S̃, λ (i)

)
is solved to obtain the corresponding optimal power and subcarrier

allocations. Since the problem is now in a standard concave form, the KKT conditions given

by (2.93)–(2.97), which are first-order necessary and sufficient conditions for optimality,
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may be used in order to find the optimal solution. All optimal variables are denoted by

a superscript asterisk. The total transmit power assigned for AF transmission to user k

over subcarrier n is now denoted by P̃A,nk = P̃A,n0,M(k) + P̃A,nM(k),k. Then, by substituting

P̃A,nM(k),k = P̃A,nk − P̃A,n0,M(k) into (3.29), the following first-order derivatives may be obtained

∂L
(
P̃, S̃, λ (i)

)

∂P̃D,n0,k

∣∣∣∣∣∣
P̃D,n
0,k =P̃D,n∗

0,k

= 0, (3.31)

∂L
(
P̃, S̃, λ (i)

)

∂P̃A,nk

∣∣∣∣∣∣
P̃A,n
k =P̃A,n∗

k

= 0 (3.32)

and
∂L
(
P̃, S̃, λ (i)

)

∂P̃A,n0,M(k)

∣∣∣∣∣∣
P̃A,n
0,M(k)

=P̃A,n∗
0,M(k)

= 0. (3.33)

The optimal values of PD,n0,k may be readily obtained from (3.31) as

PD,n∗0,k =

[
1

ln 2
(
qjξ(B) + λ (i)

) − 1

αD,nk

]+

, (3.34)

where the effective channel gain of the direct transmission is given by

αD,nk =
Gn0,k

∆γN0W
(3.35)

and [·]+ denotes max(0, ·) since the powers allocated have to be nonnegative due to the

constraint (3.14). Similarly the optimal values of P̃A,n0,M(k) and P̃A,nM(k),k may be obtained by

equating (3.32) and (3.33) to give

PA,n∗0,M(k) = βA,nk PA,n∗k (3.36)

and

PA,n∗M(k),k =
(

1− βA,nk

)
PA,n∗k , (3.37)

where the total transmit power assigned for the AF transmission to user k over subcarrier

n is given by (3.38), (3.39) and (3.40).

PA,n∗k =


 1

ln 2
(
βA,nk

(
qjξ(B) + 2λ (i)

)
+
(

1− βA,nk

) (
qjξ(R) + 2λ (i)

)) −
1

αA,nk




+

(3.38)

αA,nk =
βA,nk

(
1− βA,nk

)
Gn0,M(k)G

n
M(k),k(

βA,nk Gn0,M(k) +
(

1− βA,nk

)
GnM(k),k

)
∆γN0W

(3.39)
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βA,nk =
−GnM(k),k

(
qjξ

(R) + 2λ (i)
)

+
√
Gn0,M(k)G

n
M(k),k

(
qjξ(B) + 2λ (i)

) (
qjξ(R) + 2λ (i)

)

Gn0,M(k)

(
qjξ(B) + 2λ (i)

)
−GnM(k),k

(
qjξ(R) + 2λ (i)

)

(3.40)

Observe that (3.40) is the fraction of the total AF transmit power that is allocated for the

BS-to-RN link while obeying 0 ≤ βA,nk ≤ 1.

Having calculated the optimal power allocations, the optimal subcarrier allocations may be

derived using the first-order derivatives as follows:

∂L
(
P̃, S̃, λ (i)

)

∂s̃D,nk

= log2

(
1 + αD,nk PD,n∗0,k

)
−

αD,nk PD,n∗0,k

ln 2
(

1 + αD,nk PD,n∗0,k

)

= Dn
k





< 0 if s̃D,n∗k = 0,

= 0 if s̃D,n∗k ∈ (0, 1)

> 0 if s̃D,n∗k = 1

, (3.41)

and

∂L
(
P̃, S̃λ (i)

)

∂s̃A,nk

=
1

2
log2

(
1 + αA,nk PA,n∗k

)
− αA,nk PA,n∗k

2 ln 2
(

1 + αA,nk PA,n∗k

)

= Ank





< 0 if s̃A,n∗k = 0,

= 0 if s̃A,n∗k ∈ (0, 1)

> 0 if s̃A,n∗k = 1.

, (3.42)

(3.41) and (3.42) stem from the fact that if the optimal value of s̃X,nk occurs at the boundary

of the feasible region, then L
(
P̃, S̃, λ (i)

)
must be decreasing with the values of s̃X,nk that

approach the interior of the feasible region. By contrast, for example, the derivative Dn
k = 0

if the optimal s̃D,nk is obtained in the interior of the feasible region [23]. However, since

each subcarrier may only be used for transmission to a single user, each subcarrier n is

allocated to the specific user k having the highest value of max (Ank , D
n
k ) in order to achieve

the highest increase in L
(
P̃, S̃, λ (i)

)
. The optimal allocation for subcarrier n is as follows

s̃D,n∗k =





1, if Dn
k = maxj

[
max

(
Anj , D

n
j

)]
and Dn

k ≥ 0,

0, otherwise,
(3.43)

and
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s̃A,n∗k =





1, if Ank = maxj

[
max

(
Anj , D

n
j

)]
and Ank ≥ 0,

0, otherwise.
(3.44)

If there are multiple users that tie for the value of max (Ank , D
n
k ), then a random user from the

maximal set is chosen. Thus constraints (3.12)– (3.15) are satisfied and the optimal primal

variables are obtained for a given λ (i). Observe that the optimal power allocations given

by (3.34) and (3.38) are indeed customized water-filling solutions described in Section 2.8,

where the effective channel gains are given by αD,nk and αA,nk , respectively, and where the

water levels are determined both by the cost of allocating power, λ (i), as well as the current

cost of power to the EE given by qj .

3.4.2 Updating the Dual Variable λ

Since (3.34), (3.36), (3.37), (3.43) and (3.44) give a unique solution for max.
P̃,S̃

L
(
P̃, S̃, λ (i)

)
,

it follows that g (λ) is differentiable and hence the gradient method of Section 2.6 may be

readily used for updating the dual variable λ. The gradient of L
(
P̃, S̃, λ

)
w.r.t. λ is given

by

∂L
(
P̃, S̃, λ

)

∂λ
= Pmax −

K∑

k=1

N∑

n=1

(
P̃D,n0,k + P̃A,n0,M(k) + P̃A,nM(k),k

)
. (3.45)

Therefore, λ (i) may be updated using the optimal variables to give (3.46),

λ (i+ 1) =

[
λ (i)− αλ (i)

(
Pmax −

K∑

k=1

N∑

n=1

P̃D,n∗0,k + P̃A,n∗0,M(k) + P̃A,n∗M(k),k

)]+

(3.46)

where αλ(i) is the size of the step taken in the direction of the negative gradient for the dual

variable λ (i) at iteration i. For the performance investigations of Section 3.7, a constant step

size is used, since it is comparatively easier to find a value that strikes a balance between

optimality and convergence speed. The process of computing the optimal power as well

as subcarrier allocations and subsequently updating λ (i) is repeated until convergence is

attained, indicating that the dual optimal point has been reached. Since the primal problem

is concave, there is a zero duality gap between the dual and primal solutions as described

in Section 2.5. Hence, solving the dual problem is equivalent to solving the primal problem.

The inner loop solution method is summarized in Table 3.1.

3.4.3 Summary of Solution Algorithm Based on Dinkelbach’s Method

Again, for additional clarity, the solution algorithm, based on Dinkelbach’s method, is sum-

marized in Fig. 3.3. Firstly, the relaxed problem (3.10)– (3.15) expressed in a fractional
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Table 3.1: Inner loop solution method for obtaining the optimal power and subcarrier
allocations for a given qj .

Algorithm 2 Inner loop solution method for obtaining the optimal power
and subcarrier allocations for a given qj .

Input: IDinner (maximum number of iterations)
εDinner > 0 (convergence tolerance)

1: i← 0
2: do while |λ (i)− λ (i− 1) | > εDinner and i < IDinner
3: i← i+ 1
4: for n from 1 to N
5: for k from 1 to K
6: Obtain the optimal power allocation using (3.34), (3.36) and (3.37)
7: end for
8: Obtain the optimal subcarrier allocation using (3.43) and (3.44)
9: end for

10: Update the dual variables λ using (3.46)
11: end do
12: return

form is rewritten as a subtractive, parameterized concave form, where qj is the parameter.

Solving this problem for a given qj is termed an outer iteration, and is illustrated in the

upper block of Fig. 3.3. The lower block of Fig. 3.3 illustrates the dual decomposition ap-

proach that is employed for solving the subtractive, concave problem. Each iteration of the

dual decomposition approach is termed an inner iteration. In each inner iteration, 2NK

subproblems are solved to obtain the optimal power and subcarrier variables for a given qj

and for the dual variable λ (i). The dual variable λ is then updated, depending on the power

and subcarrier variables obtained. Multiple inner iterations are completed until convergence

of the optimal dual and primal solutions is reached. The optimal P∗ and S∗ are then fed

back into the upper block of Fig. 3.3 to evaluate the updated value of qj , which is used in the

next outer iteration. Several outer iterations are completed until convergence to the optimal

qj is obtained. The corresponding optimal P∗ and S∗ values are the power and subcarrier

allocation variables that solve the problem (3.10)– (3.15). The algorithmic complexity of

this method is dominated by the comparison operations given by (3.43) and (3.44), which

leads to a total complexity of O (Idual × 2NK) when NK is large, where Idual is the total

number of inner iterations required for reaching convergence in Dinkelbach’s method.

3.5 Charnes-Cooper Transformation Method for

Solving (3.10)– (3.15)

Another method of solving the problem (3.10)– (3.15) is the Charnes-Cooper transformation

method described in Section 2.4.3.5, which transforms the FP problem into a parameter-free
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P
(B)
K,N

Find
P

(R)
K,N

sK,N

Dual Decomposition

Subtractive form

qj+1 =
RT (P∗,S∗)
PT (P∗,S∗)

maxP,S RT (P ,S)− qjPT (P ,S)

P ,S

Fractional form

Dinkelbach’s method

P∗,S∗

Master problem Subproblems

P
(B)
1,1

Find
P

(R)
1,1

s1,1

· · ·Find λ
λ (i)

Figure 3.3: Summary of the solution algorithm based on Dinkelbach’s method.

concave problem. This provides an advantage over the method described in Section 3.4 since

it is not necessary to iteratively determine the optimal parameter q∗.

Let us introduce the variable transformations

t =
1(

P
(B)
C + P

(R)
C M

)
+
∑K

k=1

∑N
n=1 ξ

(B)P̃D,n0,k + 1
2

(
ξ(B)P̃A,n0,M(k) + ξ(R)P̃A,nM(k),k

)

(3.47)

and P̂D,n0,k = P̃D,n0,k t, P̂
A,n
0,M(k) = P̃A,n0,M(k)t, P̂

A,n
M(k),k = P̃A,nM(k),kt, ŝ

D,n
k = s̃D,nk t and ŝA,nk = s̃A,nk t.

Let us furthermore collect the power variables into a set denoted by P̂, while the subcarrier

indicator variables are in a set denoted by Ŝ. The problem (3.10)– (3.15) may then be

written as

maximize
t>0,P̂,Ŝ

t

K∑

k=1

N∑

n=1

ŝD,nk

t
log2


1 +

P̂D,n
0,k

t Gn0,k
ŝD,n
k
t ∆γN0W




+
ŝA,nk

2t
log2


1 +

P̂A,n
0,M(k)

t Gn0,M(k)

P̂A,n
M(k),k

t GnM(k),k

ŝA,n
k
t ∆γN0W

(
P̂A,n
0,M(k)

t Gn0,M(k) +
P̂A,n
M(k),k

t GnM(k),k

)


 (3.48)
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subject to t




K∑

k=1

N∑

n=1

P̂D,n0,k

t
+
P̂A,n0,M(k)

t
+
P̂A,nM(k),k

t
− Pmax


 ≤ 0, (3.49)

t

(
ŝD,nk

t
+
ŝA,nk

t
− 1

)
≤ 0, ∀k, n, (3.50)

t

(
K∑

k=1

ŝD,nk

t
+
ŝA,nk

t
− 1

)
≤ 0, ∀n, (3.51)

t

(
P̂D,n0,k

t

)
, t


 P̂

A,n
0,M(k)

t


 , t


 P̂

A,n
M(k),k

t


 ∈ R+, ∀k, n, (3.52)

t

(
ŝD,nk

t
− 1

)
, t

(
ŝA,nk

t
− 1

)
≤ 0 ≤ t

(
ŝD,nk

t

)
, t

(
ŝA,nk

t

)
, ∀k, n, (3.53)

t



(
P

(B)
C + P

(R)
C M

)
+

K∑

k=1

N∑

n=1

ξ(B)
P̂D,n0,k

t
+

1

2


ξ(B)

P̂A,n0,M(k)

t
+ ξ(R)

P̂A,nM(k),k

t




 = 1,

(3.54)

which can be rewritten as

maximize
t>0,P̂,Ŝ

K∑

k=1

N∑

n=1

ŝD,nk log2

(
1 +

P̂D,n0,k G
n
0,k

ŝD,nk ∆γN0W

)

+
ŝA,nk

2
log2


1 +

P̂A,n0,M(k)G
n
0,M(k)P̂

A,n
M(k),kG

n
M(k),k

ŝA,nk ∆γN0W
(
P̂A,n0,M(k)G

n
0,M(k) + P̂A,nM(k),kG

n
M(k),k

)


(3.55)

subject to

K∑

k=1

N∑

n=1

P̂D,n0,k + P̂A,n0,M(k) + P̂A,nM(k),k ≤ t · Pmax, (3.56)

ŝD,nk + ŝA,nk ≤ t, ∀k, n, (3.57)

K∑

k=1

ŝD,nk + ŝA,nk ≤ t, ∀n, (3.58)

P̂D,n0,k , P̂A,n0,M(k), P̂
A,n
M(k),k ∈ R+, ∀k, n, (3.59)

0 ≤ ŝD,nk , ŝA,nk ≤ t, ∀k, n, (3.60)

1−


t
(
P

(B)
C + P

(R)
C M

)

+

K∑

k=1

N∑

n=1

ξ(B)P̂D,n0,k +
1

2

(
ξ(B)P̂A,n0,M(k) + ξ(R)P̂A,nM(k),k

)

 = 0. (3.61)

Strictly speaking, the constraint t > 0 is also needed, but this is guaranteed due to con-

straint (3.47). Observe that the objective function has a similar form to f3

(
P̃

(B)
k,n , P̃

(R)
k,n , s̃k,n

)

and it is thus concave, while all constraints are affine. Therefore, (3.55)–(3.61) is a concave

maximization problem, which can be efficiently and optimally solved using the dual decom-
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position method, as described in Section 3.4.

3.5.1 Solution Method for the Transformed Problem (3.55)–(3.61)

The method of solving (3.55)–(3.61) is similar to that of Section 3.4, where we first form

the Lagrangian of (3.55)–(3.61) as

L
(
P̂, Ŝ, t, λ, µ

)
=

K∑

k=1

N∑

n=1

ŝD,nk log2

(
1 +

P̂D,n0,k G
n
0,k

ŝD,nk ∆γN0W

)

+
ŝA,nk

2
log2


1 +

P̂A,n0,M(k)G
n
0,M(k)P̂

A,n
M(k),kG

n
M(k),k

ŝA,nk ∆γN0W
(
P̂A,n0,M(k)G

n
0,M(k) + P̂A,nM(k),kG

n
M(k),k

)




+λ

(
t · Pmax −

K∑

k=1

N∑

n=1

P̂D,n0,k + P̂A,n0,M(k) + P̂A,nM(k),k

)

+µ


1−


t
(
P

(B)
C + P

(R)
C M

)

+
K∑

k=1

N∑

n=1

ξ(B)P̂D,n0,k +
1

2

(
ξ(B)P̂A,n0,M(k) + ξ(R)P̂A,nM(k),k

)



, (3.62)

where λ ≥ 0 and µ ∈ R are the Lagrangian multipliers associated with the constraints

of (3.56) and (3.61), respectively, while the other constraints and t > 0 will be satisfied

during the optimization process, which is detailed below.

Using the KKT conditions of (2.93)–(2.97) and setting the derivative w.r.t. the optimal

variables to zero, we may write

∂L
(
P̂, Ŝ, t, λ, µ

)

∂P̂D,n0,k

∣∣∣∣∣∣
P̂D,n
0,k =P̂D,n∗

0,k

= 0, (3.63)

which imply that

P̂D,n∗0,k = ŝD,nk

[
1

ln 2
(
λ (i) + µ (i) ξ(B)

) − 1

αD,nk

]+

, (3.64)

where αD,nk is once again given by (3.35) and i is the iteration index of the dual decomposition

method.

Using a similar method as described in Section 3.4, the total power assigned to the relaying

link assisting UE k may be denoted as P̂A,nk = P̂A,n0,M(k) + P̂A,nM(k),k. Thus, the optimal total
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relaying power variables are obtained by the KKT conditions given by

∂L
(
P̂, Ŝ, t, λ, µ

)

∂P̂D,nk

∣∣∣∣∣∣
P̂D,n
k =P̂D,n∗

k

= 0, (3.65)

which imply that

P̂A,n∗k = ŝA,nk


 1

ln 2
(
βA,nk

(
µ (i) ξ(B) + 2λ (i)

)
+
(

1− βA,nk

) (
µ (i) ξ(R) + 2λ (i)

)) −
1

αA,nk




+

,

(3.66)

where αA,nk and βA,nk are given by (3.39) and (3.40), with µ (i) replacing the parameter qj .

The optimal powers assigned for each BS-to-RN and RN-to-UE are then given by

P̂A,n∗0,M(k) = βA,nk P̂A,n∗k (3.67)

and

P̂A,n∗M(k),k =
(

1− βA,nk

)
P̂A,n∗k , (3.68)

respectively.

The first order derivatives of the Lagrangian (3.62) w.r.t. the subcarrier indicator variables

are given by

∂L
(
P̂, Ŝ, t, λ, µ

)

∂ŝD,nk

= log2

(
1 + αD,nk PD,n∗0,k

)
−

αD,nk PD,n∗0,k

ln 2
(

1 + αD,nk PD,n∗0,k

)

= Dn
k





< 0 if ŝD,n∗k = 0,

= 0 if ŝD,n∗k ∈ (0, t)

> 0 if ŝD,n∗k = t∗

, (3.69)

and

∂L
(
P̂, Ŝ, t, λ, µ

)

∂ŝA,nk

=
1

2
log2

(
1 + αA,nk PA,n∗k

)
− αA,nk PA,n∗k

2 ln 2
(

1 + αA,nk PA,n∗k

)

= Ank





< 0 if ŝA,n∗k = 0,

= 0 if ŝA,n∗k ∈ (0, t)

> 0 if ŝA,n∗k = t∗.

, (3.70)

Following a similar logical argument to that given in Section 3.4, the optimal subcarrier
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indicator variables are given by

ŝD,n∗k =





t∗, if Dn
k = maxj

[
max

(
Anj , D

n
j

)]
and Dn

k ≥ 0,

0, otherwise,
(3.71)

and

ŝA,n∗k =





t∗, if Ank = maxj

[
max

(
Anj , D

n
j

)]
and Ank ≥ 0,

0, otherwise.
(3.72)

Observe that the optimal value of t is yet to be determined. However, having obtained the

optimal subcarrier assignments, the optimal value of t∗ is given by

t∗ =
1

(
P

(B)
C + P

(R)
C M

)
+
∑K

k=1

∑N
n=1

ξ(B)P̂D,n∗
0,k

ŝD,n∗
k

+ 1

2ŝA,n∗
k

(
ξ(B)P̂A,n∗0,M(k) + ξ(R)P̂A,n∗M(k),k

) ,

(3.73)

which only depends on the dual variables.

Now that all optimal primal variables have been obtained, λ may be updated as follows

λ (i+ 1) =

[
λ(i)− αλ (i)

(
t∗ · Pmax −

K∑

k=1

N∑

n=1

P̂D,n∗0,k + P̂A,n∗0,M(k) + P̂A,n∗M(k),k

)]+

, (3.74)

where i is the current iteration index and αλ (i) is a sufficiently small step size.

However, observe that this method cannot be applied to update µ since the constraint (3.61),

which ensures that t is the reciprocal of the denominator in (3.10), is always satisfied because

we calculate t exactly using (3.73). In this case, any real value of µ satisfies the KKT

conditions. Therefore, we propose an alternative method, where we substitute the optimal

primal variables of P̃ and S̃ into L
(
P̂, Ŝ, t, λ, µ

)
and find the derivative w.r.t. the optimal

t to give

∂L
(
P̂, Ŝ, t, λ, µ

)

∂t
=

K∑

k=1

N∑

n=1

s̃D,n∗k log2

(
1 +

P̃D,n∗0,k Gn0,k

s̃D,n∗k ∆γN0W

)

+
s̃A,n∗k

2
log2


1 +

P̃A,n∗0,M(k)G
n
0,M(k)P̃

A,n∗
M(k),kG

n
M(k),k

s̃A,n∗k ∆γN0W
(
P̃A,n∗0,M(k)G

n
0,M(k) + P̃A,n∗M(k),kG

n
M(k),k

)




+λ

(
Pmax −

K∑

k=1

N∑

n=1

P̃D,n∗0,k + P̃A,n∗0,M(k) + P̃A,n∗M(k),k

)

−µ



(
P

(B)
C + P

(R)
C M

)
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Table 3.2: Solution algorithm for transformation method.

Algorithm 3 Solution algorithm for transformation method

Input: ICCmax (maximum number of iterations)
ε > 0 (convergence tolerance)

1: i← 0
2: do while |λ (i)− λ (i− 1) | > ε and |µ (i)− µ (i− 1) | > ε and i < ICCmax
3: i← i+ 1
4: for n from 1 until N do
5: for k from 1 until K do
6: Obtain the optimal power allocation using (3.64)–(3.68)
7: end for
8: Obtain the optimal subcarrier assignments using (3.71) and (3.72)
9: end for

10: Obtain the optimal t using (3.73)
11: Update the dual variable λ using (3.74)
12: Update the dual variable µ using (3.76)
13: end do
14: return

+
K∑

k=1

N∑

n=1

ξ(B)P̃D,n∗0,k +
1

2

(
ξ(B)P̃A,n∗0,M(k) + ξ(R)P̃A,n∗M(k),k

)

 = 0. (3.75)

Thus, the updated value of µ is given by

µ (i+ 1) =




K∑

k=1

N∑

n=1

s̃D,n∗k log2

(
1 +

P̃D,n∗0,k Gn0,k

s̃D,n∗k ∆γN0W

)

+
s̃A,n∗k

2
log2


1 +

P̃A,n∗0,M(k)G
n
0,M(k)P̃

A,n∗
M(k),kG

n
M(k),k

s̃A,n∗k ∆γN0W
(
P̃A,n∗0,M(k)G

n
0,M(k) + P̃A,n∗M(k),kG

n
M(k),k

)




+λ (i)

(
Pmax −

K∑

k=1

N∑

n=1

P̃D,n∗0,k + P̃A,n∗0,M(k) + P̃A,n∗M(k),k

)
 ·



(
P

(B)
C + P

(R)
C M

)
+

K∑

k=1

N∑

n=1

ξ(B)P̃D,n∗0,k +
1

2

(
ξ(B)P̃A,n∗0,M(k) + ξ(R)P̃A,n∗M(k),k

)


−1

.

(3.76)

This process iterates until the dual variables reach a predefined convergence tolerance ε. We

summarize this solution method in Table 3.2.
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3.6 Bisection Method for Solving (3.10)–(3.15)

As described in Section 3.3, the quasi-concave objective function (3.10) has convex super-

level sets, and it follows that (3.10)– (3.15) can be solved using the bisection method of

Section 2.4.3.1. We commence by writing (3.10) in a quasiconvex form with an upper bound

as follows
−R̃T
P̃T

≤ σ, (3.77)

where

σ =
σU + σL

2
, (3.78)

and σU as well as σL are the current upper and lower bounds on the objective value,

respectively. Rewriting (3.77) as

− R̃T − σP̃T ≤ 0, (3.79)

we see that if −R̃T − σP̃T ≤ 0 is not satisfied, then the objective function cannot obtain

the value σ, which means that σL may be set to σ, otherwise σU may be set to σ. Observe

that by writing the objective function in a quasiconvex form, the objective value will always

be negative, and the goal is to increase it’s magnitude in the negative direction. Thus, if

a value of σ cannot be achieved, the lower bound of σL is updated rather than the upper

bound of σU . For a given σ, (3.79) may be verified using the minimization problem given

by

minimize
P̃,S̃

−R̃T − σP̃T (3.80)

subject to

K∑

k=1

N∑

n=1

P̃D,n0,k + P̃A,n0,M(k) + P̃A,nM(k),k ≤ Pmax, (3.81)

s̃D,nk + s̃A,nk ≤ 1, ∀k, n, (3.82)

K∑

k=1

s̃D,nk + s̃A,nk ≤ 1, ∀n, (3.83)

P̃D,n0,k , P̃A,n0,M(k), P̃
A,n
M(k),k ∈ R+, ∀k, n, (3.84)

0 ≤ s̃D,nk , s̃A,nk ≤ 1, ∀k, n. (3.85)

Clearly, the objective function (3.80) is now in a convex form, while the constraints (3.81)–

(3.85) remain convex. Therefore, (3.80)–(3.85) is a convex minimization problem and can

be optimally and efficiently solved using the dual decomposition method described in Sec-

tion 3.4. If the optimal value of (3.80)–(3.85) is less than zero, the objective function (3.10)

can attain the value of σ, and the upper bound σU can be set to σ. Otherwise, the lower

bound σL is set to σ. A new value of σ is computed from (3.78) and the process iterates

until the difference between the upper and lower bounds becomes less than ε.
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3.6.1 Solution Algorithm for (3.80)–(3.85)

The Lagrangian for the problem (3.80)–(3.85) can be written as

L
(
P̃, S̃, λ

)
= −




K∑

k=1

N∑

n=1

s̃D,nk log2

(
1 +

P̃D,n0,k G
n
0,k

s̃D,nk ∆γN0W

)

+
s̃A,nk

2
log2


1 +

P̃A,n0,M(k)G
n
0,M(k)P̃

A,n
M(k),kG

n
M(k),k

s̃A,nk ∆γN0W
(
P̃A,n0,M(k)G

n
0,M(k) + P̃A,nM(k),kG

n
M(k),k

)






−σ



(
P

(B)
C + P

(R)
C M

)
+

K∑

k=1

N∑

n=1

ξ(B)P̃D,n0,k +

(
ξ(B)P̃A,n0,M(k) + ξ(R)P̃A,nM(k),k

)

2




+λ

([
K∑

k=1

N∑

n=1

P̃D,n0,k + P̃A,n0,M(k) + P̃A,nM(k),k

]
− Pmax

)
. (3.86)

Once again, λ is the dual variable associated with the constraint (3.81), while the con-

straints (3.82)–(3.85) are implicitly satisfied using the solution algorithm to be described

below.

In the case of minimization, the dual problem can be written as

max.
λ≥0

g (λ) = max.
λ≥0

min.
P̃,S̃
L
(
P̃, S̃, λ

)
. (3.87)

Observe that the goal is to maximize the dual function rather than minimizing it, which was

the case in Sections 3.4 and 3.5. However, in a similar fashion to Sections 3.4 and 3.5, the

KKT optimality conditions may be employed to find the optimal direct link power variables

as

PD,n∗0,k =

[
1

ln 2
(
λ (i)− σξ(B)

) − 1

αD,nk

]+

(3.88)

at iteration i of the dual decomposition method, while the total power assigned to the

RN-UE link k, denoted by PA,nk = PA,n0,M(k) + PA,nM(k),k, is optimal when we have

PA,n∗k =

[
1

ln 2
[
2λ (i)− σ

(
ξ(B)β + ξ(R) (1− β)

)] − 1

αD,nk

]+

, (3.89)

where β is given by (3.40) with −σ replacing qj , and αD,nk is given by (3.35).

In a similar fashion to that presented in Sections 3.4 and 3.5, the derivatives of the La-
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grangian (3.86) w.r.t. the subcarrier indicator variables are

∂L
(
P̃, S̃, λ

)

∂s̃D,nk

= − log2

(
1 + αD,nk PD,n∗0,k

)
+

αD,nk PD,n∗0,k

ln 2
(

1 + αD,nk PD,n∗0,k

)

= Dn
k





< 0 if s̃D,n∗k = 1,

= 0 if s̃D,n∗k ∈ (0, 1)

> 0 if s̃D,n∗k = 0

, (3.90)

and

∂L
(
P̃, S̃, λ

)

∂s̃A,nk

= −1

2
log2

(
1 + αA,nk PA,n∗k

)
+

αA,nk PA,n∗k

2 ln 2
(

1 + αA,nk PA,n∗k

)

= Ank





< 0 if s̃A,n∗k = 1,

= 0 if s̃A,n∗k ∈ (0, 1)

> 0 if s̃A,n∗k = 0.

, (3.91)

Since the goal is to minimize the Lagrangian, the optimal subcarrier indicator variables are

given by

s̃D,n∗k =





1, if Dn
k = minj

[
min

(
Anj , D

n
j

)]
and Dn

k ≤ 0,

0, otherwise,
(3.92)

and

s̃A,n∗k =





1, if Ank = minj

[
min

(
Anj , D

n
j

)]
and Ank ≤ 0,

0, otherwise.
(3.93)

Having obtained all the optimal primal variables, the dual variable λ may be updated. Since

the goal is to maximize the dual function, λ should be incremented in the direction of its

positive gradient as follows

λ (i+ 1) =

[
λ (i) + αλ (i)

([
K∑

k=1

N∑

n=1

P̃D,n∗0,k + P̃A,n∗0,M(k) + P̃A,n∗M(k),k

]
− Pmax

)]+

. (3.94)

The process of updating the primal and dual variables repeats until the objective value con-

verges to the predefined tolerance of ε. The value of σ is then updated and the minimization

problem is repeatedly solved until the value of σ converges. The bisection method used for

solving (3.10)– (3.15) is summarized in Table 3.3 and illustrated in Fig. 3.4.



102 Ch. 3. Spectral/Energy Efficient Resource Allocation for SISO-Aided Single-Cell Networks

Table 3.3: Solution algorithm for bisection method.

Algorithm 3 Solution algorithm for bisection method

Input: IBmax (maximum number of iterations)
ε > 0 (convergence tolerance)
σU (upper bound)
σL (lower bound)

1: do while |σU − σL| > ε
2: σ ← σU+σL

2
3: i← 0
4: do while |λ (i)− λ (i− 1) | > ε and i < IBmax
5: i← i+ 1
6: for n from 1 until N do
7: for k from 1 until K do
8: Obtain the optimal power allocation using (3.88)–(3.89)
9: end for

10: Obtain the optimal subcarrier assignments using (3.92) and (3.93)
11: end for
12: Update the dual variable λ using (3.94)
13: end do

14: if −R̃T − σP̃T > 0
15: σL ← σ
16: else
17: σU ← σ
18: end if
19: end do
20: return

3.7 Results and Discussions

This section presents the results of applying the EEM algorithm described in Section 3.4

to the relay-aided cellular system shown in Fig. 3.1. Again, the channel is modeled by the

path-loss [354] and uncorrelated Rayleigh fading obeying the complex normal distribution,

CN (0, 1). It is assumed that the BS-to-RN link has line-of-sight (LOS) propagation, imply-

ing that a RN was placed on a tall building. However, the BS-to-UE and RN-to-UE links

typically have no LOS, since these links are likely to be blocked by buildings and other large

obstructing objects. The RNs are evenly distributed at a fixed distance around the central

BS and the UEs are uniformly distributed within the cell. An independently-random set of

UE locations as well as fading channel realizations are generated for each channel sample.

For fair comparisons, the metrics used are the average SE per subcarrier and the average

EE per subcarrier. On the other hand, the sum rate may be calculated by multiplying

the average SE by NW . Additionally, ρ is introduced to denote the average fraction of

the total number of subcarriers that are used for AF transmission. Thus, ρ quantifies the

benefit attained from introducing RNs into the system. The main simulation parameters

are given in Table 3.4. In all cases, the step size and the initial value of λ was empirically
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Figure 3.4: Summary of the solution algorithm based on the bisection method.

optimized to give the optimal objective value in as few iterations as possible, although the

exact analytical method for achieving this still remains an open issue.

3.7.1 Convergence of Iterative Algorithms to Optimal Value

Fig. 3.5 illustrates the convergence behavior of all three methods applied to a selection of

small-scale systems, averaged over 104 different channel realizations. Since the problem

size is small, it is possible to generate also the exhaustive-search based solution within a

reasonable computation time. The number of iterations is measured by the total number

of primal-dual updates required for the dual decomposition algorithms to converge. This

metric is chosen as each method employs the dual decomposition method for solving their

convex/concave problems, where each primal-dual update requires roughly similar complex-

ities. Observe in Fig. 3.5 that the bisection method requires the most iterations for converg-

ing to the optimal value obtained by the exhaustive search. This matches our expectation,

since the bisection method has to solve a convex optimization problem for each value of σ,

which leads to a potentially excessive number of iterations. By contrast, the algorithms that

rely on Dinkelbach’s method and on the Charnes-Cooper transformation method converge

within 30 iterations, as shown in Fig. 3.5(b). However, the algorithm relying on Dinkelbach’s
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(a) Convergence plot for the bisection method.
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(b) Convergence plot for both the Dinkelbach’s method and the Charnes-Cooper trans-
formation method.

Figure 3.5: Average EE versus the total number of iterations needed by each of the
solution methods when using the simulation parameters from Table 3.4 with Pmax = 0dBm,

Dr = 0.5, M = 0 and with a cell radius of 1km.
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Table 3.4: Simulation parameters used to obtain all results in this section unless otherwise
specified.

Simulation parameter Value

Subcarrier bandwidth, W Hertz 12k

Number of RNs, M {0, 1, 2, 3, 5, 6}
Number of subcarriers, N {128, 512, 1024}
Number of UEs, K {30, 60, 120}
Cell radius, km {0.75, 1, 1.25, 1.5, 1.75, 2}
Ratio of BS-to-RN distance to the cell {0.1, 0.3, 0.5, 0.7, 0.9}
radius, Dr

SNR gap of wireless transceivers, 0
∆γ dB

Maximum total transmission power, {0, 5, 10, 15, 20, 25, 30,
Pmax dBm 35, 40, 45, 50, 55, 60}
Fixed power consumption of the BS, 60

P
(B)
C Watts [352]

Fixed power consumption of RNs, 20

P
(R)
C Watts [352]

Reciprocal of the BS power amplifier’s 2.6

drain efficiency, ξ(B) [352]

Reciprocal of the RNs’ power amplifier’s 5

drain efficiency, ξ(R) [352]

Noise power spectral density, −174
N0 dBm/Hz

Maximum number of outer iterations in 10
Dinkelbach’s algorithm, IDouter
Maximum number of inner iterations in 100
Dinkelbach’s algorithm, IDinner
Convergence tolerance of iterative 10−8

algorithms, εDouter = εDinner
Number of channel samples 104

method still requires solving multiple optimization problems and thus exhibits a slower con-

vergence than the algorithm relying on the Charnes-Cooper transformation method, which

only solves a single optimization problem.

Additionally, these results demonstrate that the EEM algorithms indeed result in the optimal

power and subcarrier allocations obtained using an exhaustive search, even though the

relaxed problem is solved and a high receiver’s SNR was assumed.

3.7.2 Effect of the Number of UEs on the Attainable SE and EE

Additionally, the EEM algorithm may be employed for evaluating the effects of system-level

design choices on the network’s SE and EE. The maximum SE is obtained in the first outer

iteration of Dinkelbach’s method with q0 = 0, since this equates to zero penalty for any
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(b) Average EE and ρ versus Pmax for K = 30, 60 and 120.

Figure 3.6: Average SE, EE and ρ, and the effect of an increasing number of users, K,
for a system with simulation parameters from Table 3.4 with N = 128, M = 3, Dr = 0.5

and with a cell radius of 1.5km.
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power consumption. In the case of the Charnes-Cooper transformation method, t can be

set to unity to obtain the SE solution.

The effect of K on the average EE and SE is depicted in Fig. 3.6. As expected, upon

increasing K, the multi-user diversity of the system is increased, since the scheduler is

allowed to choose its subcarrier allocations from a larger pool of channel gains. More

specifically, additional terms are included in both the numerator and denominator of the

objective function given by (3.10), when K is increased. Thus, the optimization algorithm

will selectively allocate more power and subcarriers for transmissions to those UEs, which

are associated with more favorable direct or relayed links, in order to achieve a higher SE or

EE performance, as illustrated in Fig. 3.7. This results in an increase of both the maximum

EE as well as of the SE attained.

UE 3

UE 2

BS

UE 1

UE 4

RN UE 5

UE 2

UE 3

RN

UE 1

BS

Figure 3.7: An illustration of the effect of increasing K. When more UEs are added to
the system, the optimization algorithm selectively allocates more power and subcarriers to

those UEs associated with more favorable channel conditions.

Furthermore, Fig. 3.6 shows that as Pmax is increased, the SEM algorithm continues to

allocate more power in order to achieve a higher average SE at the cost of EE, while the

EEM algorithm attains the maximum EE and does not continue to increase its attainable

SE by sacrificing the achieved EE. This trend is demonstrated in terms of the objective

function of (3.10), since the numerator increases only logarithmically upon increasing the

transmission power, while the denominator grows linearly. Thus, the objective function value

initially experiences a sharp increase, when increasing the transmission power. However, the



108 Ch. 3. Spectral/Energy Efficient Resource Allocation for SISO-Aided Single-Cell Networks

logarithmic increase of the numerator engendered by increasing the transmission power is

rapidly outweighed by the linear increase of the denominator. Thus, the EE curve of Fig. 3.6

features a peak, but falls off as the transmission power is further increased.

On the other hand, ρ is inversely proportional to K. This indicates that as the multi-user

diversity increases, the subcarriers are less likely to be allocated for AF transmissions, simply

because there are more favorable BS-to-UE channels owing to having more UEs nearer to

the cell-center, as demonstrated in Fig. 3.7. Moreover, the value of ρ decreases as Pmax

increases, because there is more power to allocate to the BS-to-UE links for UEs near the

cell-center, which benefit from a reduced pathloss as well as from a more efficient power

amplifier at the BS.

3.7.3 Effect of the Number of Subcarriers on the Attainable SE and EE

Fig. 3.8 illustrates the effect of increasing N on the attainable SE and EE. Fig. 3.8 shows

much of the same trends as Fig. 3.6. For example, the SE continues to rise at the cost of

EE, as Pmax increases when using the SEM algorithm, while the EEM algorithm attains

the maximum EE and the corresponding SE. However, in Fig. 3.8 both the SE and EE,

averaged over N , decreases upon increasing N , which implies that the subcarriers are used

inefficiently, when more of them are available. Since the achievable SE and EE values are

primarily limited by the total power constraint of the system, even if N is increased, the

numerator of the objective function given by (3.10) would increase only logarithmically via

more beneficial subcarrier allocations, while the SE and EE values obtained suffer from a

linear reduction, since they are normalized by the total available bandwidth.

In Fig. 3.8, it is noticeable that ρ increases upon increasing N , which is in contrast to

the trend observed in Fig. 3.6. This may be understood by considering the UEs within

the network. Since the UEs positions are fixed, as N increases the scheduler has access

to a larger pool of channel gains for each individual UE, thus more cell-edge users may

be supported for the sake of maximizing either the SE or EE. As shown in Fig. 3.9, the

scheduler may opt for serving these cell-edge UEs, which were not previously selected, in

order to take advantage of the initially sharp increase of the logarithmic numerator of (3.10),

when the allocated power is low. However, it is observed that increasing K does not exhibit

this effect, since a larger K value indicates that there are more UEs near the cell-center.

Furthermore, since both the SEM and EEM algorithms are greedy, these cell-center UEs

are served before the cell-edge UEs, hence ρ decreases. The reduction of ρ when Pmax is

very small suggests that the total available power in the system is not high enough to take

advantage of the AF transmissions.
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(a) Average SE and ρ versus Pmax for N = 128, 512 and 1024.
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(b) Average EE and ρ versus Pmax for N = 128, 512 and 1024.

Figure 3.8: Average SE, EE and ρ, and the effect of an increasing number of subcarriers,
N , for a system with simulation parameters from Table 3.4 with K = 30, M = 3, Dr = 0.5

and with a cell radius of 1.5km.
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Figure 3.9: An illustration of the effect of increasing N . When more subcarriers are added
to the system, the optimization algorithm may opt for serving extra UEs, which were not
previously selected, in order to benefit from the initially sharp rise in the obtainable SE
and EE values, owing to the logarithmic nature of the numerator of the objective function

given by (3.10).

3.7.4 Effect of the Cell Radius on the Attainable SE and EE

The effect of increasing the cell radius on the attainable SE and EE is characterized in

Fig. 3.10. As expected, increasing the cell radius has a detrimental effect on both the SE

and EE of the system regardless of the number of RNs employed owing to the increased

pathlosses experienced. Additionally, it is noteworthy that ρ increases as the cell radius

increases, indicating that in line with our expectation, relaying is more beneficial for larger

cells. Since the UEs are uniformly-distributed, a larger proportion of the UEs are closer to

the cell edge, when the cell radius is increased, as shown in Fig. 3.11. This is coupled with

the fact that these UEs near the cell edge have a lower channel gain owing to their higher

pathloss. Thus, relaying becomes more beneficial in terms of the attainable SE or EE in

larger cells.

On the other hand, the increase in the SE obtained from employing RNs in a large cell is

small. For example, the SE is improved by a factor of 1.03 when M = 6 RNs are used

instead of M = 0 at a cell radius of 2km. This improvement is modest when compared to

the reduction in EE of a factor of 0.34 due to having to support additional transmitting
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(b) Average EE and ρ versus Pmax for M = 0, 1, 2, 3, 5 and 6.

Figure 3.10: Average SE, EE and ρ, and the effect of an increasing cell radius for a system
with simulation parameters from Table 3.4 with K = 30, N = 128, M ∈ {0, 1, 2, 3, 5, 6},

Dr = 0.5 and with a Pmax = 0dBm.
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Figure 3.11: An illustration of the effect of increasing the cell radius. As the cell radius
is increased more UEs are near the cell-edge, owing to their uniform distribution. Thus,

relaying becomes more beneficial, when the cell radius is large.

entities. This phenomenon stems from the fact that, since the UEs are uniformly distributed

across the cell, the UEs nearer the cell-center are more likely to be allocated resources for

maximizing the SE or EE as they may benefit from the more-favorable direct transmission.

Thus, increasing the number of RNs in the system brings a marginal benefit in terms of SE

or EE.

3.7.5 Effect of the Relay’s Position on the Attainable SE and EE

The effect of the RNs’ position relative to the BS and the cell-edge is illustrated in Fig. 3.12,

which clearly shows that the optimal SE and EE is obtained, when the RN is closer to the

BS than to the UEs. This stems from the fact that the RN benefits from having a stronger

LOS link to the BS, when it is placed closer to the BS, thus strengthening the AF links.

However, it cannot be placed too close to the BS, since the benefits gleaned from having a

stronger BS-to-RN link are then outweighed by having a more hostile RN-to-UE link.



3.7.5. Effect of the Relay’s Position on the Attainable SE and EE 113

M = 6
M = 5
M = 3
M = 2
M = 1
M = 0

ρ
Average SE

Dr

ρ

A
ve
ra
ge

S
E
[b
it
s/
se
c/
H
z]

0.6

0.5

0.4

0.3

0.2

0.1

0
0.90.70.50.30.1

3.8

3.7

3.6

3.5

(a) Average SE and ρ versus Pmax for M = 0, 1, 2, 3, 5 and 6.

M = 6
M = 5
M = 3
M = 2
M = 1
M = 0

ρ
Average EE

Dr

ρ

A
ve
ra
ge

E
E
[b
it
s/
J
ou

le
/H

z]

0.6

0.5

0.4

0.3

0.2

0.1

0
0.90.70.50.30.1

0.1

0.08

0.06

0.04

0.02

0

(b) Average EE and ρ versus Pmax for M = 0, 1, 2, 3, 5 and 6.

Figure 3.12: Average SE, EE and ρ, and the effect of an increasing Dr, with simulation
parameters from Table 3.4 with K = 30, N = 128, M ∈ {0, 1, 2, 3, 5, 6}, Pmax = 0dBm and

with a cell radius of 1.5km.
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Table 3.5: Summary of the differences in complexities between each solution algorithm,
as was depicted in Fig. 3.5.

System parameters Solution algorithm Iterations required

K = 2, N = 2
Bisection 676
Dinkelbach’s 120
Charnes-Cooper 11

K = 3, N = 2
Bisection 521
Dinkelbach’s 140
Charnes-Cooper 5

K = 2, N = 3
Bisection 781
Dinkelbach’s 119
Charnes-Cooper 13

K = 3, N = 3
Bisection 625
Dinkelbach’s 138
Charnes-Cooper 9

3.8 Chapter Summary and Conclusions

In this chapter, the joint power and subcarrier allocation problem was formulated for max-

imizing the EE in a multi-relay aided multi-user OFDMA cellular network. The objective

function was proven to be quasi-concave and the three methods of Section 2.4.3 were em-

ployed for solving the associated optimization problem. Dinkelbach’s method solved the

optimization problem by converting it to a sequence of subtractive concave problems, the

Charnes-Cooper transformation method converted the quasi-concave problem into a single

concave problem with an additional linear constraint, while the bisection method solved the

quasi-concave problem as a series of feasibility problems. All three methods relied on the

dual decomposition approach described in Section 2.7 for solving their convex problems,

hence their algorithmic complexities are comparable. All three methods were validated by

comparing their EEM solutions to those found with the aid of an exhaustive search. The

results presented in Section 3.7 demonstrate that although all three methods obtain the

optimal solution, the bisection method requires many more iterations than either Dinkel-

bach’s method or the Charnes-Cooper method, since several feasibility problems have to be

solved. On the other hand, since only a single optimization problem has to be solved, the

Charnes-Cooper method converges within much fewer iterations than Dinkelbach’s method.

Therefore, we can conclude that the Charnes-Cooper method is the least algorithmically

complex method out of the three, and yet, it remains capable of finding the optimal results.

A summary of the various complexities required by each solution algorithm is provided in

Table 3.5.

Further simulation results show that when there is insufficient power for attaining the max-

imum achievable EE, both the EEM and the SEM algorithms have the same solution. As

the system’s total power is increased, the SEM algorithm continues to allocate more power
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in order to achieve ever higher values of SE, whereas the EEM algorithm reaches an upper

bound and does not make use of the additional available power. In the scenario considered,

increasing the total power available to the system beyond 40dBm offers no benefits to EE.

Additionally, a comprehensive study of the effect of various system parameters on the achiev-

able SE and EE is performed. To summarize, the achievable SE and EE is increased, when

there is a larger number of UEs in the system owing to achieving a higher multi-user di-

versity. Increasing the number of available subcarriers, although increases the sum rate

owing to frequency diversity, reduces the average SE and EE since not all subcarriers are

effectively utilized. The benefit of introducing RNs into the network for improving the

achievable SE becomes more significant as the cell-size increases or the number of relays

increases. However, the EE is then degraded due to the increased overhead power consump-

tion. Furthermore, relaying is more beneficial, when the RNs are placed closer to the BS,

if there exists a LOS link between the RNs and BS, since the received SNR at the RNs is

improved.





Chapter 4
Spectral/Energy Efficient Resource

Allocation for MIMO-Aided

Single-Cell Networks

4.1 Introduction

We have seen in Chapter 3 that it is possible to formulate the problem of maximizing the

EE of a relay-aided cellular network with the aid of a FP approach by employing methods

described in Section 2.4.3. Furthermore, we have concluded from Section 3.7 that a RA

scheme optimized for achieving a high SE is expected to perform poorly in terms of its

EE, since the Shannon capacity increases only logarithmically with the SNR, i.e. with the

transmit power. Nonetheless, we were able to demonstrate in Section 3 that the Charnes-

Cooper variable transformation of Section 2.4.3.5 was capable of solving the optimization

problem of (3.10)–(3.15) in fewer iterations than both Dinkelbach’s method and the bisection

method of Sections 2.4.3.3 and 2.4.3.1, respectively. As a further enhancement to the system

model of Section 3.2, in this chapter MIMO techniques are introduced for increasing the

attainable spatial multiplexing gain, thus increasing both the attainable SE and EE, because

in contrast to the logarithmic Shannon-capacity, the capacity of MIMO systems may be

increased linearly with the transmit power, provided that the extra power is assigned to

additional antennas.

It is widely acknowledged that under the idealized simplifying condition of having perfect

CSI at the transmitter, the DL or broadcast channel (BC) capacity [355, 356] may be ap-

proached with the aid of DPC [357]. However, the practical implementation of DPC is

hampered by its excessive algorithmic complexity upon increasing the number of users. On

the other hand, beamforming (BF) is an attractive suboptimal strategy for allowing mul-

117
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tiple users to share the BC while resulting in reduced multi-user interference (MUI). A

low-complexity transmit-BF technique is the ZF based BF (ZFBF), which can asymptoti-

cally achieve the BC capacity as the number of users tends to infinity [324]. Furthermore,

ZFBF may be readily applied to a system with multiple-antenna receivers through the use of

the SVD [358]. As a result, the associated MIMO channels may be mathematically decom-

posed into several effective MISO channels, which are termed SMCs in this chapter. Note

that these effective MISO channels are different from the physical MISO channels directly

composing the physical MIMO channel. For brevity, we coin the term SMC to emphasize

that these effective MISOs will be used for the purpose of spatial multiplexing. A more

in-depth discussion regarding the concept of SMCs will be provided in Section 4.4. Fur-

thermore, in [359], these SMCs are specifically grouped so that the optimal grouping as

well as the optimal allocation of the power may be found on each subcarrier block using

convex optimization. In contrast to the channel-diagonalization methods of [77, 317, 360],

the ZFBF approach does not enforce any specific relationship between the total numbers

of transmit antennas and receive antennas. Therefore, ZFBF is more suitable for practical

systems, since the number of transmit antennas at the BS is typically much lower than the

total number of receive antennas of all the UEs. Compared to the random BF methods,

such as that of [361], ZFBF is capable of completely avoiding the interference, allowing us to

formulate our SEM/EEM problems as convex optimization problems. Due to its desirable

performance versus complexity trade-off, in this chapter we employ ZFBF in the context

of multi-relay aided MIMO-OFDMA systems, where the direct link between the BS and

the UE may be exploited in conjunction with the relaying link for further improving the

system’s performance.

Although the EE metric of Chapter 3 was employed in [201, 224, 225, 330], these contribu-

tions did not consider RA in the context of a MIMO system, and only [330] incorporated

relaying. On the other hand, although there are numerous contributions on optimal RA in

MIMO systems, they typically only focused on either the SEM (equivalently, the sum-rate

maximization) or the power minimization [202, 359, 362–364]. For example, the authors

of [359] applied BF to a DL cellular system and aimed for minimizing the resultant total

transmission power, while simultaneously satisfying the per-user rate requirements. The

authors of [363] instead choose to minimize the per-antenna transmission powers, while

satisfying both the maximum per-antenna power constraints as well as the per-user SINR

requirements. Although there exists some literature studying the EE of relay-aided MIMO

systems [365,366], these contributions typically focus their attention on a simple three-node

network consisting of the source, the destination and a single RN.

To summarize, there is a paucity of literature on the convex optimization approach to the

EEM problem associated with both RA and joint transmit/receive BF in the context of

multi-user multi-relay MIMO-OFDMA systems, which hence motivates this chapter. The

most similar contribution to the work presented in this chapter is that of [359]. However, the
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Tx Rx

x y
H

Figure 4.1: An illustration of a non-dispersive MIMO link, where the both transmitter
and receiver have NT = NR = 4 antennas each. The transmitter sends the symbol vector x
across channel H. The receiver attempts to recover the transmitted symbol vector from y.

authors of [359] only aimed for minimizing the total power, while we focus our attention on

the EE objective function. Furthermore, we improve the system’s SE and EE by invoking

relaying, which imposes an increased complexity both on the transmission protocols and on

the optimization algorithm.

As an additional contribution, the Charnes-Cooper transformation of Sections 2.4.3.5 and

3.5 is employed in this chapter for solving the associated EEM problem, in contrast to the

scalarization approach of [347] that requires the weighting of multiple objectives. On the

other hand, the employment of Dinkelbach’s method detailed in Sections 2.4.3.3 and 3.4 is

avoided, since it would require solving a series of parametric convex problems, rather than

the resultant single convex problem of the Charnes-Cooper transformation, as demonstrated

in Section 3.5. Although the latter approach does impose an additional linear constraint

on the problem, our results provided in Section 3.7 demonstrated that it is capable of

reaching the optimal solution at the cost of much fewer iterations than its rivals, and it

is thus the preferred method. The authors of [227] employed the Charnes-Cooper variable

transformation for the EEM of a simple point-to-point link. However, as far as we are aware,

the Charnes-Cooper transformation has rarely been used in other contexts for solving the

EEM problem.

4.1.1 Chapter Preliminaries

Let us examine the non-dispersive MIMO link exemplified in Fig. 4.1, where we have

x =




x1

x2

x3

x4




, H =




h11 h12 h13 h14

h21 h22 h23 h24

h31 h32 h33 h34

h41 h42 h43 h44




, y =




y1

y2

y3

y4



. (4.1)

The complex-valued symbols of xi and yi correspond to the symbol transmitted to or re-

ceived from the ith antenna at the transmitter or receiver, respectively. Additionally, hij

represents the channel coefficient between the ith receive antenna and the jth transmit



120 Ch. 4. Spectral/Energy Efficient Resource Allocation for MIMO-Aided Single-Cell Networks

antenna. Therefore, this system can be represented by

y = Hx + n, (4.2)

where n = (n1, n2, n3, n4)T is the vector of noise components contaminating the symbols at

the receiver. Observe that

y1 = h11x1 + h12x2 + h13x3 + h14x4 + n1 (4.3)

y2 = h21x1 + h22x2 + h23x3 + h24x4 + n2 (4.4)

y3 = h31x1 + h32x2 + h33x3 + h34x4 + n3 (4.5)

y4 = h41x1 + h42x2 + h43x3 + h44x4 + n4 (4.6)

and each transmitted symbol is interfering with the reception of each other symbol. In

order to eliminate this effect and hence to obtain interference-free symbols for the sake of

achieving a spatial multiplexing gain, multiple antennas may be invoked for transmit and

receive BF for the sake of diagonalizing the channel matrix. Hence we invoke the SVD of

H, which is assumed to have a full rank, yielding

H = USVH, (4.7)

where both U ∈ C4×4 and V ∈ C4×4 are unitary matrices, while

S =




s1 0 0 0

0 s2 0 0

0 0 s3 0

0 0 0 s4




(4.8)

is a diagonal matrix of the singular values of H. Since, both U and V are unitary, we have

UHU = I4 and VHV = I4. Therefore, UH and V may be used as the receive and transmit

BF matrices, respectively. Given the data symbols x̃ = (x̃1, x̃2, x̃3, x̃4)T, the transmitted

symbols are x = Vx̃, while the decision vector is given by ỹ = (ỹ1, ỹ2, ỹ3, ỹ4)T = UHy.

Thus, the system may be represented by

ỹ = UHy (4.9)

= UH (Hx + n) (4.10)

= UH (HVx̃ + n) (4.11)

= UHHVx̃ + UHn (4.12)

= UHUSVHVx̃ + UHn (4.13)

= Sx̃ + UHn. (4.14)
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ñ2 ỹ2
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Figure 4.2: Parallel decomposition is applied to the top MIMO point-to-point link using
both transmit and receive BF, which results in parallel channels with effective channel gains

equal to the singular values of the original MIMO channel matrix, H.

Introducing the notation of UHn = (ñ1, ñ2, ñ3, ñ4)T allows us to write

ỹ1 = s1x̃1 + ñ1 (4.15)

ỹ2 = s2x̃2 + ñ2 (4.16)

ỹ3 = s3x̃3 + ñ3 (4.17)

ỹ4 = s4x̃4 + ñ4. (4.18)

Thus each symbol of ỹ is received without interference from other symbols. In effect, parallel

decomposition [4] has been applied to the channel, as depicted in Fig. 4.2. In tangible

physical terms, the MIMO link has been converted into non-interfering parallel channels

having gains given by the singular values of the original MIMO matrix. It is important to

note that the noise power imposed is not affected by the receive BF operator, since U is

unitary.

In this chapter, the parallel decomposition concept of Fig. 4.2 is developed further and

applied to a system relying on multiple transmitters and multiple receivers. Let us elaborate

on the example of Fig. 4.2 using just two receivers for the sake of illustrating the core concept

employed in this chapter - namely that of SMCs. The SVD is employed similarly in this case

for decomposing the MIMO channel (assumed to be full-rank) between the Transmitter and

Receiver 1, yielding H1, as well as between the Transmitter and Receiver 2, namely H2, as

follows

H1 = U1S1V
H
1 (4.19)

H2 = U2S2V
H
2 . (4.20)

Similarly, the left unitary matrices U1 and U2 are employed as the receive beamformers for
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Figure 4.3: The total number of SMCs generated for NT = 4 and NR = 4, where we have
2 ·min (NT , NR) = 8 in this example.

Receiver 1 and 2, respectively, for deriving the effective channel matrices of

H1 = S1V
H
1 (4.21)

H2 = S2V
H
2 . (4.22)

Since both V1 and V2 are unitary matrices, these effective channel matrices contain rows,

which are independent of each other. Furthermore, the norms of the orthogonal rows are

equal to their corresponding singular values, which constitute the diagonal entries in S1 and

S2, respectively. These rows are referred to as SMCs in this chapter. Given a transmitter

relying on NT transmit antennas, and two receivers each having NR receive antennas, the

total number of SMCs generated in this example is 2 ·min (NT , NR). This is demonstrated

in Fig. 4.3, where si,j corresponds to the jth singular value of the channel matrix between

the Transmitter and Receiver i, while vi,j is its corresponding right singular vector. Since

the transmitter can only transmit to NT SMCs without causing interference between them,

a total of

min [NT , 2 ·min (NT , NR)] (4.23)

SMCs have to be selected for transmission. This is the purpose of the SMC grouping

algorithms described in Section 4.5. The SMCs to serve are arranged as the rows of the

transmission matrix H̃ and they are used for forming the ZF transmit BF matrix of

T = H̃H ·
[
H̃H̃H

]−1
. (4.24)

Thus, each selected SMC becomes free from interference.

In the case of the multiple transmitters portrayed in Fig. 4.4, say Tx 1 transmits its data

symbols intended for the receiver Rx, while Tx 2 also has to include its corresponding SMC,

when computing its ZFBF matrix. With reference to Fig. 4.4, if the SMC s1,1v1,1 is selected
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Tx 1

Tx 2

Rx

s2,4v2,4

s2,3v2,3

s2,2v2,2

s2,1v2,1

s1,3v1,3

s1,4v1,4

s1,2v1,2

s1,1v1,1

Figure 4.4: An example of SMCs, when multiple transmitters are used.

for transmission by Tx 1, then SMC s2,1v2,1 must be selected for transmission by Tx 2 in

order to avoid imposing interference at the receiver.

4.1.2 Novel Contributions

As stated above, the aim of this chapter is to formally optimize the SE or EE of a multi-

relay MIMO-OFDMA cellular system by intelligently assigning the available power and

frequency resources when employing both transmit and receive BF. A concise list of our

novel contributions is as follows.

• This chapter focuses on a sophisticated DF [43] protocol aided multi-relay assisted MIMO-

OFDMA cellular system model, whose network nodes are all equipped with multiple

antennas. More specifically, this system model accounts for both the direct links between

the BS and the UEs, as well as the relaying links employing the DF relaying protocol [43].

This system model is unlike that of [324, 359], which did not consider relaying, and it is

also distinct from that of [365, 366], which only consider a single RN and a single UE.

Additionally, we dispense with the constraint that the number of antennas at the BS

needs to be greater or equal to the sum of the number of antennas at the UEs, which

was assumed in [77, 317, 360]. Furthermore, this system model builds upon Section 3.2

as the network elements may now be equipped with an arbitrary number of antennas for

improving the system’s SE or EE performance.

• A novel transmission protocol is proposed. Since the multi-relay MIMO-OFDMA system

model considered has not been studied in the context of the SEM/EEM problems before,

we develop a novel transmission protocol that exploits spatial multiplexing in both trans-

mission phases while allowing both the direct and relaying links to be simultaneously

active. Although this protocol does not benefit from a higher spatial degree of freedom

than that of the conventional half-duplex relay based cooperative system, we glean more
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flexibility in choosing the best group of channels for each transmission phase, which leads

to additional selection diversity. As a result, the achievable SE/EE performance may be

improved. Again, this protocol is distinct from that presented in [324,359], since relaying

is not considered in those works. Another benefit is that since spatial multiplexing is

employed in conjunction with OFDMA, multiple data streams may be served using the

same subcarrier block, while the transmit ZFBF is employed for avoiding the interfer-

ence. Furthermore, the receive-BF matrices are designed with the aim of generating a

number of SMCs that may be grouped for the purpose of increasing the attainable spatial

multiplexing gain.

• Two SMC grouping algorithms are proposed. To elaborate, we present a pair of novel

algorithms for grouping the SMCs transmissions. The possibility of relayed transmissions

means that we have to partition each transmission period into two halves, one consisting

of BS-to-UE and BS-to-RN links, and the other consisting of additional BS-to-UE as

well as RN-to-UE links. As a result, the SMC-pairs of the two-hop relaying links are

incomparable to the SMCs of the direct links in either the first or the second transmis-

sion phases. This is because, firstly the RNs are subject to their individual maximum

transmission power constraints, and secondly they employ the DF protocol, which means

that the information conveyed on the RN-to-UE link cannot be more than that conveyed

on the BS-to-RN link. These challenging issues are resolved by the proposed grouping

algorithms. The first grouping algorithm is optimal in the sense that it is based on ex-

haustive search over all the SMC groupings that satisfy the semi-orthogonality criterion,

while the second algorithm constitutes a lower-complexity alternative. This complexity-

reduction is achieved by a multi-stage SMC group construction process. In each stage, we

firstly compute the orthogonal components with respect to the vectors contained in the

tentative SMC group to be constructed using all the residual legitimate SMC vectors, and

then insert the particular SMC vector that results in the orthogonal component having

the highest norm into the SMC group to be constructed. In principle, this method is

similar to that of [324, 359], but it has been appropriately adapted for the multi-relay

cellular network considered under the above-mentioned particular constraints.

• The problems of choosing the SE- or EE-optimal SMC groupings and their associated

power control values are formulated and solved using convex optimization. In contrast

to [202, 359, 362–364], the crucial objective of maximizing the EE metric is employed, as

motivated above. On the other hand, in contrast to [201,224,225], we consider a system

that allows for simultaneous direct and relayed transmissions for the sake of increasing

the attainable spatial multiplexing gain. Although there exist other methods of solving

this EEM problem [200, 201, 330, 347], we employ the Charnes-Cooper transformation

of Sections 2.4.3 and 3.5 for obtaining the maximum EE solution, since it exhibits a

reduced complexity as a benefit of solving only a single convex optimization problem, as

we demonstrated in Section 3.7.
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RN

UE

BS

Figure 4.5: An example of a multi-relay MIMO-OFDMA cellular network, consisting of
a single BS at the cell-center, 3 RNs and 15 UEs.

4.1.3 Chapter Organization

The rest of this chapter is organized as follows. Section 4.2 describes the multi-relay MIMO-

OFDMA cellular network considered, while Section 4.4 characterizes our novel transmission

protocol that allows for both direct and relayed links to be simultaneously activated. In

Section 4.5, we elaborate on the aforementioned SMC grouping algorithms conceived for

forming the sets of possible transmission groups. Finding the optimal transmission groups

and the optimal power control variables is then formulated as an optimization problem in

Section 4.6, which is then solved by using a number of variable transformations and relax-

ations. Our grouping algorithms and our SEM/EEM solver are characterized in Section 4.7.

Finally, we present a summary in Section 4.8.

4.2 System Model

We focus our attention on the DL of a multi-relay MIMO-OFDMA cellular network, as

shown in Fig. 4.5. The BS, M DF-assisted RNs and K UEs are each equipped with NB,

NR and NU antennas, respectively, in contrast to the system model of Section 3.2, which

featured only single antenna nodes. The cellular system has access to N subcarrier blocks,

each encompassing W Hertz of wireless bandwidth. The subcarrier blocks considered here

are the resource blocks described in Section 1.3. The BS is located at the cell-center, while

each of the RNs are located at a fixed distance from the BS on a circle and are positioned

at identical angular rotations. The ratio of the distance between the BS and RNs to the

cell radius is denoted by Dr. On the other hand, the UEs are uniformly distributed in

the cell. The BS coordinates and synchronizes its own transmissions with that of the RNs,

which employ the DF protocol and thus avoids the problem of noise amplification. As it

will be shown in Section 4.6.3.1, this strategy results in a simple algorithm for finding the
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BS

HBU
n,k

HRU
n,m,k

UE k

RN m

HBR
n,m

Figure 4.6: An illustration of the DL channels in the MIMO-OFDMA relay-aided cellular
network.

optimal power control variables. For the subcarrier block n ∈ {1, · · · , N}, let us define the

complex-valued wireless channel matrices between the BS and UE k ∈ {1, · · · ,K}, between

the BS and RN m ∈ {1, · · · ,M}, and between RN m and UE k as HBU
n,k ∈ CNU×NB ,

HBR
n,m ∈ CNR×NB and HRU

n,m,k ∈ CNU×NR , respectively, as shown in Fig. 4.6. These complex-

valued channel matrices account for both the frequency-flat Rayleigh fading and the path-

loss between the corresponding transceivers. The coherence bandwidth of each wireless

link is assumed to be sufficiently high, so that each individual subcarrier block experiences

frequency flat fading, although the level of fading may vary from one subcarrier block to

another in each transmission period. Additionally, the transceivers are stationary or moving

slowly enough so that the level of fading may be assumed to be fixed for the duration of a

scheduled transmission period. Furthermore, the receive antennas are spaced sufficiently far

apart, so that each transmit/receive antenna pair experiences independent and identically

distributed (i.i.d.) fading. Since these channels are slowly varying, the system is capable of

exploiting the benefits of channel reciprocity associated with time-division duplexing (TDD),

so that the CSI becomes available at each BS- and RN-transmitter and at each possible RN-

and UE-receiver. To elaborate, HBU
n,k and HBR

n,m are known at the BS, HBR
n,m and HRU

n,m,k are

known at the RN m, while HBU
n,k and HRU

n,m,k are also known at UE k. Additionally, through

the use of dedicated low-rate error-free feedback channels, HRU
n,m,k is also assumed to be

known at the BS so that the BS may perform network-wide scheduling. It is important

to remember that, since our focus is on the resource allocation and the associated SE/EE

optimization problems, the idealized simplifying assumption of the availability of perfect

CSI is employed. At the current stage, accounting for erroneous CSI using, for example,

robust optimization [342] is beyond the scope of this chapter and may be addressed in our

future work. These channel matrices are assumed to have full row rank, which may be

achieved with a high probability for typical DL wireless channel matrices.

Furthermore, each receiver suffers from AWGN having a power spectral density of N0.

The maximum instantaneous transmission power available to the BS and to each RN due to

regulatory and health-constraints is PBmax and PRmax, respectively. Since OFDMA modulation
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v1

v2

v1|ℜ(vH
1 v2)|

‖v1‖‖v2‖ = 0
|ℜ(vH

1 v2)|
‖v1‖‖v2‖ = 1

v2

Figure 4.7: The 2-dimensional vectors on the left are orthogonal vectors, while the 2-
dimensional vectors on the right are linearly dependent.

constitutes a linear operation, we focus our attention on a single subcarrier block and as

usual, we employ the commonly-used equivalent baseband signal model. Furthermore, since

the specific signal model expressions of each link is dependent on the transmission protocol

to be designed, they are not presented here but instead detailed in Section 4.4.

4.3 The Definition of Semi-Orthogonality

The system can simultaneously use two transmission modes to convey information to the

UEs, namely the BS-to-UE mode, and the relaying-based BS-to-RN and RN-to-UE mode.

Note that although in classic OFDMA each data stream is orthogonal in frequency, for

the sake of further improving the system’s attainable SE or EE performance, our system

employs spatial multiplexing in conjunction with ZFBF so that multiple data streams may

be served using the same subcarrier block, without suffering from interference. Additionally,

since the relaying-based transmission can be split into two phases, the design philosophy

of the BF matrices in each phase are described separately, although for simplicity we have

assumed that the respective channel matrices remain unchanged in both phases. Firstly,

the definition of the semi-orthogonality criterion is given as follows [324].

A pair of MISO channels, represented by the complex-valued column vectors v1 and v2, are

said to be semi-orthogonal to each other with parameter α ∈ [0, 1], when

∣∣<
(
vH

1 v2

)∣∣
‖v1‖‖v2‖

≤ α. (4.25)

To be more specific, a measure of the grade of orthogonality between v1 and v2 is given

by the left-hand side of inequality (4.25), which ranges from 0 for orthogonal vectors to

1 for linearly dependent vectors. The authors of [324] demonstrated that employing the

ZFBF strategy for MISO channels that satisfy α → 0, while the number of users K → ∞,

asymptotically achieves the DPC capacity, and it is therefore optimal for the BC channel.

Similar principles are followed when maximizing the SE or EE of the system considered
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in this chapter. Additionally, the effective channel gains of the ith SMC after applying

transmit ZFBF is lower bounded by [324]

‖vi‖2

1 + (N∗−1)4α2

1−(N∗−1)α2

, (4.26)

where vi is the orthogonal component of the ith SMC with respect to the other SMCs

chosen, while N∗ is the number of antennas at the transmitter. Therefore, one can see that

imposing a lower value of α raises this lower bound on the effective channel gains after

applying ZFBF. This is because the channel inversion operation of ZFBF then amounts to

a simple matrix rotation operation, making the effective channel gains equal to the squared

norms of the channel vectors. Although the effective channel gains may be improved when

imposing a lower value of α, the attainable multiplexing gain may decrease, because the

probability of finding SMCs that satisfy this stricter semi-orthogonality criterion is reduced.

Having said this, the derivation of an expression for this probability in the context of the

considered system model is beyond the scope of this treatise.

On the other hand, a high value of α would increase the grouping algorithms’ complexity,

since there are more candidate SMCs to search through. At the same time, this would also

decrease the lower bound on the effective channel gains, potentially leading to sub-optimal

SMC groups. Clearly, a trade-off should be struck, but the optimal α cannot be found in

a closed-form - in fact it would depend on several system parameters, such as K, M , N ,

NB, NR and NU . Hence in Section 4.7 the effect of varying the value of α on the system’s

attainable SE and EE is explored.

4.4 Transmission Protocol Design

For more explicit clarity, a schematic of the transmit and receive BF matrices in the first

and second transmission phases is presented in Fig. 4.8.

4.4.1 BF Design for the First Transmission Phase

In the first transmission phase, only the BS is transmitting, while both the RNs and the UEs

act as receivers. This is similar to the classic DL multi-user MIMO model. As described

above, our aim is 1) to design a ZFBF matrix for the BS to avoid interference between data

streams, and 2) to design receive BF matrices for the UEs and RNs so that the resultant

effective DL channel matrices contain as many semi-orthogonal rows as possible that sat-

isfy (4.25) for a given α. Ideally, all receivers (UEs and RNs) should jointly compute their

receive BF matrices to accomplish the second goal. The joint computation is required only

for attaining the highest number of semi-orthogonal rows globally. However, it is generally



4.4.1. BF Design for the First Transmission Phase 129
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(a) Transmit and receive BF matrices employed in the
first phase.
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UE k
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n,j WB,T2

n,j
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n,j,mW
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(b) Transmit and receive BF matrices employed in the sec-
ond phase.

Figure 4.8: A conceptual schematic of the transmit- and receive-BF matrices employed in
the first and second transmission phases. In the first phase, the BS applies the ZFBF matrix
TT1

n,j in order to serve multiple data streams without imposing interference between them.
In the second phase, the BS and RNs employ separate ZFBF matrices to distributively

avoid interference between the data streams being served.

impossible, since we cannot realistically assume that the channel matrices associated with

each UE and RN are shared among them, due to the geographically-distributed nature of

the UEs and RNs. As a compromise, we opt for guaranteeing that each individual effec-

tive DL channel matrix contains locally orthogonal rows by employing the SVD [324, 359].

Although these locally orthogonal rows may not remain orthogonal globally, they can be

characterized using the semi-orthogonality metric of (4.25).

Bearing this in mind, the channel matrices of all DL transmissions originating from the BS

are decomposed at the BS, UEs and RNs using the SVD [34] as

HBU
n,k = UBU

n,kSBUn,k
(
VBU
n,k

)H
(4.27)

and

HBR
n,m = UBR

n,mSBRn,m
(
VBR
n,m

)H
, (4.28)
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respectively. Thus, the receive-BF matrices for UE k and RN m are given by

RBU,T1
n,k =

(
UBU
n,k

)H ∈ CNU×NU (4.29)

and

RBR,T1
n,m =

(
UBR
n,m

)H ∈ CNR×NR , (4.30)

and the effective DL channel matrices are then given by

HBU,T1
n,k = RBU,T1

n,k HBU
n,k = SBUn,k

(
VBU
n,k

)H ∈ CNU×NB (4.31)

and

HBR,T1
n,m = RBR,T1

n,m HBR
n,m = SBRn,m

(
VBR
n,m

)H ∈ CNR×NB , (4.32)

respectively. Note that T1 is used for indicating the first transmission phase, and underline

is used to denote the effective DL channel matrices. Since VBU
n,k and VBR

n,m are both unitary,

while SBUn,k and SBRn,m are both real and diagonal, these effective DL channel matrices respec-

tively consist of min (NB, NU ) and min (NB, NR) orthogonal nonzero rows with norms equal

to their corresponding singular values. We refer to these nonzero orthogonal rows as the

SMCs of their associated MIMO channel matrix. The reason why we use min(NB, NU ) and

min(NB, NR), instead of NU and NR, is because the antenna configuration NB ≤ NU and/or

NB ≤ NR is also covered. Furthermore, note that only when NB ≥ NU and NB ≥ NR, a

single SMC is generated for each receive antenna.

The K BS-to-UE MIMO channel matrices and M BS-to-RN channel matrices generate a

total of

[K ·min (NB, NU ) +M ·min (NB, NR)] (4.33)

SMCs. Since these SMCs are generated from independent MIMO channel matrices asso-

ciated with geographically distributed UEs and RNs, they are not all guaranteed to be

orthogonal to each other. Furthermore, since each UE or RN has multiple antennas and

NB might not be sufficiently large to simultaneously support all UEs and RNs, we have to

determine which specific SMCs should be served. As a result, for each two-phase transmis-

sion period, we opt for selecting a SMC group accounting for both phases from the set of

available SMC groups. This selection process is achieved by jointly using the SMC grouping

algorithm and solving the optimization problem detailed below. For the sake of clarity, the

concepts of the SMC, of the SMC group and of the set of SMC groups are illustrated in

Fig. 4.9.

To elaborate a little further, a set of SMC groups, Gn, which is associated with subcarrier

block n, may be obtained using one of the grouping algorithms presented in Section 4.5.
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Figure 4.9: A conceptual illustration of the differences between SMCs, SMC groups and
a set of SMC groups.

The BS selects a single group, j ∈ Gn, containing (but not limited to QT1j SMCs out of the

[K ·min (NB, NU ) +M ·min (NB, NR)] (4.34)

available SMCs to be supported by using ZFBF. Thus, we have

QT1j ≤ min [NB,K ·min (NB, NU ) +M ·min (NB, NR)] (4.35)

and a multiplexing gain of QT1j is achieved. The SMC group selection, as a part of the

scheduling operation, is carried out at the BS before initiating the first transmission phase.

Hence, the selected SMC group will also contain QT2j SMCs selected by the BS for the

second transmission phase, as detailed in Section 4.4.2. Let us denote the refined effective

DL channel matrix with rows being the QT1j selected SMCs as HT1
n,j ∈ CQ

T1
j ×NB . The ZFBF

transmit matrix applied at the BS to subcarrier block n is then given by the following right
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inverse

TT1
n,j =

(
HT1
n,j

)H
·
[
HT1
n,j

(
HT1
n,j

)H
]−1

∈ CNB×QT1
j . (4.36)

Since HT1
n,jT

T1
n,j = INB

, the potential interference between the QT1j selected SMCs is com-

pletely avoided. Furthermore, the columns of TT1
n,j are normalized by multiplying the diag-

onal matrix WT1
n,j on the right-hand side of TT1

n,j to ensure that each SMC transmission is

initially set to unit power. This is accomplished by ensuring that each diagonal element of

WT1
n,j is equal to the reciprocal of the norm of the column vector to be normalized. Then,

TT1
n,jW

T1
n,j is used as the DL transmit-BF matrix for the BS in the first phase. Thus, the

effective channel-to-noise ratios (CNRs) in the first transmission phase can be written as

GBU,T1n,j,e1
=

∣∣∣wBU,T1n,j,e1

∣∣∣
2

∆γN0W
(4.37)

and

GBR,T1n,j,e =

∣∣∣wBR,T1n,j,e

∣∣∣
2

∆γN0W
, (4.38)

respectively, where wBU,T1n,j,e1
and wBR,T1n,j,e are the diagonal elements in WT1

n,j . More specifically,

these diagonal elements correspond to SMC group j and subcarrier block n, and they are as-

sociated with either a direct BS-to-UE SMC or a BS-to-RN SMC. The additional subscripts

e1 ∈ {0, · · · ,min[NB,K · min(NB, NU )]} and e ∈ {0, · · · ,min[NB,M · min(NB, NR),K ·
min(NR, NU )]} are used for distinguishing the multiple selected SMCs of the direct links (i.e.

those related to UEs), from the multiple selected SMC-pairs that may be associated with a

particular RN M(e), respectively. A single SMC-pair consists of a SMC for the first phase

and another for the second phase. Although these SMCs are generated separately in each

phase, the SMC-pair associated with a common RN has to be considered as a single entity

in the SMC grouping algorithms presented in Section 4.5. Note that M (e) is a function of

e, representing the RN index (similar to m used before) associated with the SMC-pair e, as

further detailed in Section 4.5.

At a given BER requirement, ∆γ is the SNR gap between the lower-bound SNR required

for achieving the DCMC capacity and the actual higher SNR required by the MCS of

the practical physical layer transceivers employed. For example, making the simplifying

assumption that idealized transceivers capable of achieving exactly the DCMC capacity are

employed, then ∆γ = 0dB. Although, strictly speaking, so far it is not possible to operate

exactly at the DCMC channel capacity, there does exist several physical layer transceiver

designs that operate very close to it [351]. Furthermore, the noise power received on each

subcarrier block is given by N0W .
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4.4.2 BF Design in the Second Transmission Phase

The second transmission phase may be characterized by the MIMO interference channel.

A similar methodology is employed in the second transmission phase, except that now

both the BS and the RNs are transmitters, while a number of UEs are receiving. In this

phase, our aim is 1) to design ZFBF matrices for the BS and RNs to avoid interference

between data streams, 2) and to design a receive-BF matrix for each UE so that the effective

channel matrices associated with each of its transmitters contain rows which satisfy the

semi-orthogonal condition (4.25) for a given α. This means that more data streams may be

served simultaneously, thus improving the attainable SE or EE performance. Since there

are multiple distributed transmitters/MIMO channel matrices associated with each UE,

the SVD method described in Section 4.4.1, which is performed in a centralized fashion,

cannot be readily applied at the transmitter side. Instead, we aim for minimizing the

resultant correlation between the generated SMCs, thus increasing the number of SMCs

which satisfy (4.25) for a given α. To accomplish this goal, we begin by introducing the

shorthand of

HBU,T2
n,k = RU,T2

n,k HBU
n,k ∈ CNU×NB (4.39)

and

HRU,T2
n,m,k = RU,T2

n,k HRU
n,m,k ∈ CNU×NR (4.40)

as the effective channel matrices between the BS and UE k, and between RN m and UE k,

respectively, on subcarrier block n in the second transmission phase, where RU,T2
n,k ∈ CNU×NU

is the yet-to-be-determined UE k’s receive-BF matrix. In light of the preceding discussions,

one of our aims is to design RU,T2
n,k so that the off-diagonal values of the matrices given by

A0 = HBU,T2
n,k

(
HBU,T2
n,k

)H
= RU,T2

n,k HBU
n,k

(
HBU
n,k

)H (
RU,T2
n,k

)H
(4.41)

and

Am = HRU,T2
n,m,k

(
HRU,T2
n,m,k

)H
= RU,T2

n,k HRU
n,m,k

(
HRU
n,m,k

)H (
RU,T2
n,k

)H
, ∀m (4.42)

are as small as possible. For example, an A matrix of either (4.41) or (4.42) can be written

as

A =




v1

v2

v3

v4



[
vH

1 ,v
H
2 ,v

H
3 ,v

H
4

]
=




v1v
H
1 v1v

H
2 v1v

H
3 v1v

H
4

v2v
H
1 v2v

H
2 v2v

H
3 v2v

H
4

v3v
H
1 v3v

H
2 v3v

H
3 v3v

H
4

v4v
H
1 v4v

H
2 v4v

H
3 v4v

H
4



, (4.43)

where vi, i ∈ {1, 2, 3, 4} are the generated SMCs organized as the rows of the equivalent

channel matrix, H. The right hand side of (4.43) shows that the off-diagonal values quantify

the grade of orthogonality between the SMCs generated. For the sake of maximizing the

number of SMCs satisfying (4.25), these off-diagonal values should be minimized. This
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design goal may be restated as

min.
R

U,T2
n,k ,Λ0,Λm

∣∣∣∣
∣∣∣∣HBU

n,k

(
HBU
n,k

)H −
(
RU,T2
n,k

)−1
Λ0

(
RU,T2
n,k

)−H
∣∣∣∣
∣∣∣∣
2

F

+

M∑

m=1

∣∣∣
∣∣∣HRU

n,m,k

(
HRU
n,m,k

)H

−
(
RU,T2
n,k

)−1
Λm

(
RU,T2
n,k

)−H
∣∣∣∣
∣∣∣∣
2

F

, (4.44)

where Λ0 and Λm are diagonal matrices containing the diagonal elements of A0 and Am, re-

spectively. Therefore,
(
RU,T2
n,k

)−1
is the jointly diagonalizing matrix [367], when HBU

n,k

(
HBU
n,k

)H

and HRU
n,m,k

(
HRU
n,m,k

)H
, ∀m are the matrices to be diagonalized. Thus, the algorithm pre-

sented in [367] for solving (4.44) may be invoked at UE k for obtaining RU,T2
n,k , which may

be further fed back to the BS and RNs. Hence, the BS and RNs do not have to share

HBU
n,k or HRU

n,k via the wireless channel and do not have to solve (4.44) again. As a result,

we accomplish the goal of creating effective channel matrices that contain rows aiming to

satisfy (4.25). In fact, when there are only two matrices to diagonalize, say A0 and A1,

the diagonalizing matrix may be obtained from the eigenvectors of A0 (A1)−1 [368]. This

diagonalizing matrix is capable of fully diagonalizing both A0 and A1.

The algorithm involves iterating between two processing phases, namely the alternating-

column (AC) and diagonal center (DC) phases, which is hence referred to as the AC-DC

algorithm in [367]. Let us rewrite the objective function of (4.44) in the simplified form

given by

K∑

k=1

wk
∣∣∣∣Ak −BΛkB

H
∣∣∣∣2

F

=
K∑

k=1

wk

∣∣∣∣∣

∣∣∣∣∣Ak −
N∑

n=1

λ[k]
n bnb

H
n

∣∣∣∣∣

∣∣∣∣∣

2

F

, (4.45)

where Ak ∈ CN×N , ∀k represents the matrices to be diagonalized, B ∈ CN×N is the jointly

diagonalizing matrix, λ
[k]
n is the (n, n)th entry of Λk, and bn is the nth column of B.

Additionally, the weighting factors wk of (4.45) may be invoked for assigning the required

priorities to the matrices to be diagonalized.

The AC phase of the algorithm simply minimizes the objective function of (4.45) by optimiz-

ing each column of B, while keeping the other columns constant, as described in Algorithm 1.

This algorithm is applied once to each column of B in a sequential order, where the index

of the column selected is given by l. Firstly, the matrix P is computed in line 3 of Algo-

rithm 1. This matrix is Hermitian, therefore it can be decomposed using the symmetric

eigendecomposition [34] in line 4 in order to give the ordered eigenvalues and eigenvectors
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Algorithm 1: Algorithmic description of the AC phase

inputs : Matrices to be diagonalized Ak,
Diagonal matrices Λk,
Weights wk,
Diagonalization matrix B,
Selected column index l

outputs: none

1 void ACPhase (Ak,Λk, wk,B, l)

2 begin

3 P←
K∑

k=1

wkλ
[k]
l


Ak −

N∑

n=1
n6=l

λ
[k]
n bnb

H
n


;

4 eigen (P,β,V);
5 if β1 < 0 then
6 bl ← 0;

7 else

8 bl ← v1
√
β1√∑K

k=1 ωk

(
λ
[k]
l

)2 ;

9 end if
10 return;

11 end

of P in β and V, respectively. The highest eigenvalue, denoted by β1 and the corresponding

eigenvector, v1, are used for computing the updated column bl of B, in lines 5 to 9 of

Algorithm 1. Additionally, the vector v1 must be rotated so that its first nonzero element

becomes real-valued and positive.

Algorithm 2: Algorithmic description of the DC phase

inputs : Matrices to be diagonalized Ak,
Diagonal matrices Λk,
Diagonalization matrix B

outputs: none

1 void DCPhase (Ak,Λk,B)

2 begin

3 G←
[(

BHB
)∗ �

(
BHB

)]−1
;

4 for k = 1 to K do
5 Λk ← diag

{
G diag

{
BHAkB

}}
;

6 end for
7 return;

8 end

The DC phase of the diagonalization algorithm attempts to minimize the objective function

of (4.45) by updating Λk, ∀k, which is described in Algorithm 2. The matrix G is computed
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in line 3 with the aid of the Hadamard product (element-wise multiplication). This matrix

is then used for updating the diagonal matrices Λk, ∀k, in lines 4 to 6 of Algorithm 2.

The columns of RU,T2
n,k have been normalized for ensuring that the power assigned for each

SMC remains unaffected. After obtaining the receive-BF matrix, the SMCs of the transmis-

sions to UE k on subcarrier block n are given by the nonzero rows of the effective channel

matrices HBU,T2
n,k and HRU,T2

n,m,k , ∀m. Since the BS and the RNs act as distributed broadcasters

during the second phase, they are only capable of employing separate ZFBF transmit matri-

ces for ensuring that none of them imposes interference on the SMCs it does not explicitly

intend to serve. As described with Fig. 4.4, when computing its ZFBF transmit matrix,

each transmitter (either the BS or a RN) must take into account an auxiliary SMC, which

is also selected from the legitimate SMC candidates and is required for nulling the interfer-

ence that this particular transmitter imposes on each selected information-bearing SMC of

the other transmitters. Furthermore, each auxiliary SMC is employed by its corresponding

transmitter to transmit several additional zeros that are padded to the normal data symbols.

As a beneficial result, no interference is received at each UE from the transmitter that does

not serve this particular UE. For more details of the SMC-based transmission in the second

phase, please refer to Algorithm 3 described in Section 4.5.1.

By employing one of the grouping algorithms described in Section 4.5, the BS schedules

QT2j ≤ min

[
min (NB, NR) ,

K∑

k=1

LBk + LRk

]
(4.46)

SMCs to be served simultaneously in the second phase, where LBk and LRk represent the

number of SMCs of UE k served by the BS and by RNs in this phase, respectively, where we

have LBk + LRk ≤ NU , LBk ≤ min(NB, NU ), and LRk ≤ min(NR, NU ). Note that since UE k

may be simultaneously served both by the BS and by a RN (each of them serves a fraction

of UE k’s SMCs), it is possible that the summation of the respective number of UEs served

by the BS and by RNs may be higher than K. Note that, if at least one SMC of a UE

is served by the BS (or a RN), we say that this UE is served by the BS (or the RN). Let

us denote the refined effective DL channel matrices, from the perspectives of the BS and

RN m, consisting of the QT2j selected SMCs as HB,T2
n,j ∈ CQ

T2
j ×NB and HR,T2

n,j,m ∈ CQ
T2
j ×NR ,

respectively. Since these are known to each transmitter, they may employ ZFBF transmit

matrices in the second phase, given by the right inverses

TB,T2
n,j =

(
HB,T2
n,j

)H
·
[
HB,T2
n,j

(
HB,T2
n,j

)H
]−1

∈ CNB×QT2
j (4.47)

for the BS, and

TR,T2
n,j,m =

(
HR,T2
n,j,m

)H
·
[
HR,T2
n,j,m

(
HR,T2
n,j,m

)H
]−1

∈ CNR×QT2
j (4.48)
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for RN m. Similar to the first transmission phase, these ZFBF transmit matrices are normal-

ized by WBU,T2
n,j and WRU,T2

n,j,m , respectively, to ensure that each SMC transmission is initially

set to unit power. Upon obtaining the selected SMCs, we denote the effective CNRs in the

second transmission phase as

GBU,T2n,j,e2
=

∣∣∣wBU,T2n,j,e2

∣∣∣
2

∆γN0W
(4.49)

and

GRU,T2n,j,e =

∣∣∣wRU,T2n,j,e

∣∣∣
2

∆γN0W
, (4.50)

where wBU,T2n,j,e2
and wRU,T2n,j,e are the diagonal elements in WBU,T2

n,j and WRU,T2
n,j,M(e), respectively,

and the subscript M(e) has been defined in Section 4.4.1. To elaborate, for a second-

phase BS-to-UE link, wBU,T2n,j,e2
corresponds to SMC group j and subcarrier block n, while

the subscript e2 ∈ {0, · · · ,min[NB,K ·min(NB, NU )]} is employed for further distinguishing

the multiple selected SMCs associated with UEs from the BS. Similarly, wRU,T2n,j,e , which also

corresponds to SMC group j and subcarrier block n, is associated with the second-phase

RN-to-UE link between RN M (e) and the particular UE determined by the SMC-pair e.

The sequence of matrix operations is illustrated in Fig. 4.10, where we have introduced

the additional binary-valued matrices of ET1
n,j and ET2

n,j , which represent the SMC selection

matrices computed by the SMC grouping algorithms of Section 4.5, while the additional

binary-valued row vectors fT1n,j,e1 , fT1n,j,e, fT2n,j,e2 and fT2n,j,e select the specific antenna corre-

sponding to either SMC e1, e2 or e for either UE k or RN m during either transmission

phases. Furthermore, nT1k , nT1M(e) and nT2k are the vectors constituting the complex-valued

symbols representing the AWGN suffered by their respective antennas during their respec-

tive transmission phases. The vector of complex-valued modulated symbols is denoted by

dT1n and dT2n for the first and second transmission phases, respectively, in Fig. 4.10. Fur-

thermore, the diagonal real-valued normalization matrices precede their associated ZFBF

matrices for both transmission phases. The ZFBF matrix TT1
n,j is given by (4.36), while

TB,T2
n,j is given by (4.47) and TR,T2

n,j,m is given by (4.48). On the other hand, the receive BF

matrices of RBU,T1
n,k , RBR,T1

n,k and RU,T2
n,k are given by (4.29), (4.30) and (4.44), respectively.

Furthermore, the transmit power allocation matrices of PB,T1
n,j , PB,T2

n,j and PR,T2
n,j,M(e) contain

the power allocation values computed in Section 4.6.

4.4.3 Achievable SE and EE

For the sake of convenience, let us first denote the transmit power allocation policy as P,

which is a set composed by all transmit power control variables invoked at the BS and/or

RNs in both transmission phases. Since receive-BF is employed in conjunction with ZFBF,

each SMC transmission may be viewed as a SISO link. Therefore, on the direct links, the
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WT1

n,j


wBU,T1

n,j,e1
. . .

wBR,T1

n,j,e
. . .


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(a) Matrix operations required in the first transmission phase. Transmit BF is only applied at the BS.
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(b) In the second transmission phase, both the BS and all RNs are transmitting, and therefore they employ
distributed ZFBF to ensure interference-free reception at the UEs. ‡For simplicity of illustration, both the BS

and RNM (e) have access to dT2
n above. However, note that each RN only has access to the complex-valued

modulated symbols that it received during the first transmission phase. Therefore, some entries in dT2
n at

each RN will be zero, corresponding to symbols which that particular RN did not previously receive and
decode.

Figure 4.10: Block diagrams illustrating the matrix operations required in the two trans-
mission phases.
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receiver’s SNR at UE k corresponding to SMCs e1 and e2 may be expressed as

ΓBU,T1n,j,e1
(P) = GBU,T1n,j,e1

PBU,T1n,j,e1
(4.51)

and

ΓBU,T2n,j,e2
(P) = GBU,T2n,j,e2

PBU,T2n,j,e2
(4.52)

for the first and second transmission phases, respectively. The scalar variables PBU,T1n,j,e1
and

PBU,T2n,j,e2
, which are elements of P, determine the transmit power values for SMCs e1 and e2

on the direct links. As a result, the achievable instantaneous SE of the direct links is given

by

CBU,T1n,j,e1
(P) =

1

2
log2

(
1 + ΓBU,T1n,j,e1

(P)
)

(4.53)

and

CBU,T2n,j,e2
(P) =

1

2
log2

(
1 + ΓBU,T2n,j,e2

(P)
)
, (4.54)

which are normalized both by time and by frequency to give units of [bits/sec/Hz]. The

factor of 1
2 accounts for the fact that the transmission period is split into two phases.

Similarly, for the SMC-pair e of the DF relaying links, the SNR at RN M(e) in the first

transmission phase is given by

ΓBR,T1n,j,e (P) = GBR,T1n,j,e PBR,T1n,j,e

and the SNR at UE k in the second transmission phase is formulated as

ΓRU,T2n,j,e (P) = GRU,T2n,j,e PRU,T2n,j,e .

Additionally, PBR,T1n,j,e and PRU,T2n,j,e are also elements of P. Since the RNs employ the DF

protocol, the achievable SE is limited by the weaker of the two RN-related links [43] and is

given by

CBRUn,j,e (P) = min

[
1

2
log2

(
1 + ΓBR,T1n,j,e (P)

)
,
1

2
log2

(
1 + ΓRU,T2n,j,e (P)

)]
.

Let us now introduce the SMC group selection variable sn,j ∈ {0, 1}, which indicates that

SMC group j, as introduced in Sections 4.4.1 and 4.4.2, is selected for subcarrier block n,

when sn,j = 1, and sn,j = 0 otherwise. All SMC group selection variables are scalars and

are collected into a set denoted by S. Once again, we emphasize that Gn denotes the set of

possible SMC groups for subcarrier block n. Thus, the total achieved SE is given by

CT (P,S) =
N∑

n=1

∑

j∈Gn
sn,j


 ∑

e1∈En,j

CBU,T1n,j,e1
(P) +

∑

e2∈En,j

CBU,T2n,j,e2
(P) +

∑

e∈En,j

CBRUn,j,e (P)


 ,

(4.55)
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where En,j is the set comprising the SMCs in the selected group j on subcarrier block n.

In this chapter, we adopt the energy dissipation model presented in [369], where the total

energy dissipation of the system is assumed to be dependent on several factors, including the

number of transmit antennas, the energy dissipation of the RF and baseband circuits, and

the efficiencies of the power amplifier, feeder cables, cooling system, mains power supply,

and converters. For the sake of simplicity, the total energy dissipation as presented in [369]

has been partitioned into a fixed term, and a term that varies with the transmission powers.

Thus, the energy dissipation of the system may be characterized by

PT (P,S) =
(
PBC +M · PRC

)
+

1

2

N∑

n=1

∑

j∈Gn
sn,j


ξB


 ∑

e1∈En,j

PBU,T1n,j,e1
+

∑

e2∈En,j

PBU,T2n,j,e2


+

∑

e∈En,j

(
ξBPBR,T1n,j,e + ξRPRU,T2n,j,e

)

 ,

(4.56)

where PBC and PRC represent the fixed energy dissipation of each BS and each RN, respec-

tively, while ξB > 1 and ξR > 1 are the energy dissipation multipliers of the transmit powers

for the BS and the RNs, respectively. The effect of multiple transmit antennas on the total

energy dissipation has been included in the terms PBC , PRC , ξB and ξR.

Finally, the EE of the system is expressed as

ηE (P,S) =
CT (P,S)

PT (P,S)
. (4.57)

The objective of this chapter is to maximize (4.57) by appropriately optimizing P and S.

In the previous chapter, a simpler system model was featured, which allowed for simultaneous

direct and AF relay-assisted transmission across different subcarriers, and did not require

the grouping algorithms to be discussed in Section 4.5. By contrast, with the aid of the

ZFBF described above, in this chapter both direct and DF relay-assisted transmissions can

be conveyed by the same subcarriers. Moreover, the SMCs associated with either the direct

or the relay-assisted transmissions are primarily selected based on the semi-orthogonality

criterion. Hence the UEs are not restricted to be aided only by the RNs closest to them,

as was the case in Chapter 3. A consequence of employing multiple antenna aided nodes in

the system is the increased power cost imposed by the additional RF chains required. This

has been accounted for in (4.56).

Furthermore, it is possible to employ adaptive antennas [370] in conjunction with the trans-

mission protocol described above for the sake of improving the system’s EE. For example,

by deactivating some of the RF chains, the power consumption can reduced at the cost of

a reduced resource allocation flexibility. Another consideration is the specific combination
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of antennas in the system, which should be deactivated, since each combination naturally

results in a unique set of SMCs. Generally speaking, considering every possible combina-

tion of activated antennas would result in an improved performance. However, this would

lead to excessive complexity both in terms of the grouping algorithm and the optimization

algorithm. Thus, adaptive antennas are not considered in this chapter.

4.5 Spatial Multiplexing Component Grouping Algorithms

As described in Section 4.2, the BS has to choose QT1j and QT2j SMCs for the first and second

transmission phases, respectively. These selected SMCs collectively form the SMC group

j, as exemplified in Fig. 4.9. Since the system supports both direct and relaying links,

the grouping algorithms described in [324, 359], which were designed for MIMO systems

dispensing with relays, may not be directly applied. Instead, we propose a pair of viable

grouping algorithms, namely the exhaustive search-based grouping algorithm (ESGA), and

the orthogonal component-based grouping algorithm (OCGA).

Note that because there are multiple distributed transmitters in the second transmission

phase, each UE designs its receive-BF matrix by jointly considering all the MIMO channel

matrices associated with it, as described in Section 4.4.2. However, before applying this

method, we have to determine which particular transmitters (out of the BS and RNs) should

actively transmit in the second transmission phase based on the results of SMC selection.

Note that it is possible that the SMC candidates obtained may lead to higher effective CNRs

when a subset of the transmitters are inactive. On the one hand, an additional effect of only

activating a subset of transmitters is the reduced number of SMC candidates, which might

in turn result in a reduced number of qualified SMCs that satisfy the semi-orthogonality

criterion considered. As a result, the achievable spatial multiplexing gain and SE might be

degraded. On the other hand, this SE-reduction effect may be counteracted by the improved

CNRs gleaned from the fact that it is easier to generate SMCs that can satisfy a stricter semi-

orthogonality criterion, specified by a smaller value of α, when the number of transmitters is

lower. For example, in the scenarios where only one or two active transmitters are selected,

the UEs can employ receive-BF matrices that create effective DL channel matrices containing

completely orthogonal rows by using the SVD or the exact diagonalization method described

above, respectively. In order to account for this dilemma, for the second transmission phase,

the proposed grouping algorithms evaluate a full list of SMCs, which consists of the SMCs

obtained from the 2M+1 − 1 possible combinations of active transmitters (the BS and M

RNs, while ignoring the case when there are no active transmitters). Compared to using a

smaller list of SMCs, using a full list of SMCs ensures that achieving a lower-bound SE is

always guaranteed, while a higher SE can only be obtained upon increasing the number of

transmitters in the system.
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4.5.1 Spatial Multiplexing Component Checking Algorithm

Both grouping algorithms must evaluate a particular SMC before it may be included into the

SMC group to be generated. This evaluating and SMC-group updating process is depicted in

Algorithm 3. More specifically, the algorithm identifies the transmitters associated with each

SMC of the current SMC group, denoted by En,j , in lines 7 to 17. The transmitter associated

with the candidate SMC, ec, is identified in lines 18 to 28. Additionally, as briefly pointed

out above, for an active transmitter, if the candidate SMC is associated with a transmission

in the second phase, then the auxiliary SMCs, e∅ and e∅m, are included for the other active

transmitters in lines 23, 26 and 27, in order to ensure that these potentially interfering

transmitters do not impose interference on the candidate SMC, as depicted in Fig. 4.4. For

distributed transmitters encountered in the second transmission phase, it is not feasible to

design a single ZFBF transmit matrix as we did for the BS in the first transmission phase.

For the second transmission phase, when NB ≤ NU and NR ≤ NU , each SMC is associated

with a single receive antenna. Consider this case as an example, when the BS is transmitting

on a SMC to a particular receive antenna of a UE, an active RN may be transmitting zeros on

an auxiliary SMC, which is also selected from the legitimate SMC candidates, to the same

receive antenna of that UE. As a beneficial result of this strategy, for each transmitter,

the interference imposed by other active transmitters are nulled. Furthermore, observe

that e∅ and e∅m represent auxiliary SMCs invoked by the BS and RNs, respectively. Having

determined the transmitters associated with the SMCs, the algorithm checks that the SMCs

associated with the same transmitter satisfy the semi-orthogonality criterion of (4.25) having

parameter α in lines 20, 29 and 30. Furthermore, the algorithm ensures that the inclusion

of the candidate SMC does not force any of the transmitters to transmit over its maximum

number of transmit dimensions, as depicted in lines 29 and 30. Meanwhile, each UE should

not receive more than its maximum number of receive dimensions, which is accomplished in

lines 12, 32 and 33. Finally, the maximum achievable spatial multiplexing gain should not

be exceeded in either the first or second phase, which is ensured by lines 35 and 36. If all of

these checks are successful, the algorithm exits with a true condition in line 37.

4.5.2 Exhaustive Search and Orthogonal Component-Based

Grouping Algorithms

We present our first grouping method in Algorithm 4. Simply put, the ESGA recursively

creates new SMC groups by exhaustively searching through all the possible combinations

of SMCs and including those that pass the SMC checking algorithm. To elaborate, in the

loop ranging from line 3 to line 9, the algorithm searches through all the possible SMCs

associated with subcarrier block n, which are collectively denoted by En and satisfy ec ∈ En.

The specific SMCs that satisfy the checks performed in line 4 are appended to the current

SMC group in line 5, and the resultant updated SMC group E ′n,j′ is appended to the set of
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Algorithm 3: SMC checking algorithm

inputs : candidate SMC ec, current SMC group En,j ,
semi-orthogonality parameter α

outputs: true or false

1 bool SMCCheck (ec, En,j , α)

2 begin

3 T BS,T1 ← {};
4 T BS,T2 ← {};
5 T RN,T2m ← {}, ∀m ∈ {1, · · · ,M};
6 RUE,T2k ← {}, ∀k ∈ {1, · · · ,K};
7 foreach SMC e1 ∈ En,j do
8 T BS,T1 ← T BS,T1 ∪ {e1};
9 end foreach

10 foreach SMC e2 ∈ En,j do
11 T BS,T2 ← T BS,T2 ∪ {e2};
12 RUE,T2k ← RUE,T2k ∪ {e2};
13 end foreach
14 foreach SMC e ∈ En,j do
15 T BS,T2 ← T BS,T2 ∪ {e};
16 T RN,T2M(e) ← T

RN,T2
M(e) ∪ {e};

17 end foreach

18 if ec is BS transmission in T1 then
19 T BS,T1 ← T BS,T1 ∪ {ec};
20 if T BS,T1 is not α-semi-orthogonal or |T BS,T1 | > NB then return false;

21 else if ec is BS transmission in T2 then
22 T BS,T2 ← T BS,T2 ∪ {ec};
23 T RN,T2m ← T RN,T2m ∪ {e∅m}, ∀m ∈ {1, · · · ,M};
24 else if ec is RN m transmission in T2 then

25 T RN,T2m ← T RN,T2m ∪ {ec};
26 T BS,T2 ← T BS,T2 ∪ {e∅};
27 T RN,T2m′ ← T RN,T2m′ ∪ {e∅m′}, ∀m′ ∈ {1, · · · ,M} \m;

28 end if

29 if T BS,T2 is not α-semi-orthogonal or |T BS,T2 | > NB then return false;

30 if T RN,T2m is not α-semi-orthogonal or |T RN,T2m | > NR, m ∈ {1, · · · ,M} then return
false;

31 if ec is UE k reception in T2 then

32 RUE,T2k ← RUE,T2k ∪ {ec};
33 if |RUE,T2k | > NU , k ∈ {1, · · · ,K} then return false;

34 end if

35 if |T BS,T1 | > min (NB,KNU +MNR) then return false;

36 if
∑K

k=1 |R
UE,T2
k | > min (NB, NR) then return false;

37 return true;

38 end
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Algorithm 4: Exhaustive search-based grouping algorithm (ESGA)

inputs : set of SMC groups associated with subcarrier block n (initialized as empty set),
Gn
current SMC group (initialized as empty set), En,j
SMCs associated with subcarrier block n, En
semi-orthogonality parameter α

outputs: none

1 void ESGA (Gn, En,j , En, α)

2 begin

3 foreach ec ∈ En do
4 if SMCCheck (ec, En,j , α) then
5 E ′n,j′ ← En,j ∪ {ec};
6 Gn ← Gn ∪ {E ′n,j′};
7 ESGA

(
Gn, E ′n,j′ , En \ ec, α

)
;

8 end if

9 end foreach
10 return;

11 end

SMC groups obtained for subcarrier block n in line 6. Additionally, E ′n,j′ is used recursively

in line 7 for filling this group and for forming new groups. The computational complexity

of ESGA is dependent on the number of SMCs which are semi-orthogonal to each other.

The worst-case complexity is obtained when every SMC satisfies the checks performed in

line 4, leading to a time-complexity (in terms of the number of SMC groups generated)

upper-bounded (not necessarily tight) by O
(∑N

n=1 |En|θ
)

, where

θ = min [NB,K ·min (NB, NU ) +M ·min (NB, NR)] + min

[
min (NB, NR) ,

K∑

i=1

LBi + LRi

]
.

(4.58)

In other words, each subcarrier block may be treated independently. For each subcarrier

block, |En| SMCs must be checked until the maximum multiplexing gain in both the first

and second phases has been attained.

The second algorithm, OCGA, is presented in Algorithm 5, which aims to be a lower com-

plexity alternative to ESGA. The OCGA commences by creating a SMC candidate set Ec,
whose elements satisfy the checks performed in Algorithm 3, in lines 4 to 16. More specifi-

cally, if the current SMC group En,j is empty, the algorithm can simply create a new SMC

group containing only the candidate SMC that has passed the SMC checks of Algorithm 3

in lines 7 to 10. If the SMC group is not empty, the algorithm adds to it the particular SMC

candidate that results in the highest norm of the orthogonal component (NOC), via the

Gram-Schmidt procedure [324,359], in line 20. This process is repeated until the maximum



4.5.2. Exhaustive Search and Orthogonal Component-Based

Grouping Algorithms 145

Algorithm 5: Orthogonal component-based grouping algorithm (OCGA)

inputs : set of SMC groups associated with subcarrier block n (initialized as empty set),
Gn
current SMC group (initialized as empty set), En,j
SMCs associated with subcarrier block n, En
semi-orthogonality parameter α

outputs: none

1 void OCGA (Gn, En,j , En, α)

2 begin

3 complete ← true;
4 Ec ← {};
5 foreach ec ∈ En do
6 if SMCCheck (ec, En,j , α) then
7 if |En,j | == 0 then
8 E ′n,j′ ← En,j ∪ {ec};
9 OCGA

(
Gn, E ′n,j′ , En \ ec, α

)
;

10 return;

11 else
12 Ec ← Ec ∪ {ec};
13 complete ← false;

14 end if

15 end if

16 end foreach

17 if complete then
18 Gn ← {En,j};
19 else
20 E ′n,j′ ← En,j ∪ arg max

ec∈Ec
NOC (ec, En,j);

21 OCGA
(
Gn, E ′n,j′ , En \ ec, α

)
;

22 end if

23 return;

24 end

multiplexing gain in both the first and second phases has been attained. When comparing

the NOCs obtained for the relaying links, the minimum of the NOCs obtained from the

BS-to-RN and RN-to-UE SMCs is used. This is because the information conveyed on the

relaying link is limited by the weaker of the two transmissions, which is reflected in the

effective channel gains quantified by these norms. If no SMCs satisfy the checks of line 6,

the current SMC group is complete, and it is appended to the current set of SMC groups

in line 18. Since new groups are only created when the current SMC group is empty, this

algorithm results in much fewer groups than ESGA. The algorithmic time-complexity is

given by O
(∑N

n=1 |En|
)

as a single group is created for each initially-selected SMC.
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Both grouping algorithms may be initialized with an empty SMC group, En,j ← {}, and an

empty set of SMC groups, Gn ← {}, so that they recursively create and fill SMC groups

according to their criteria. Additionally, a final step is performed to remove the specific

groups, which result in effective channel gains that are less than or equal to that of an-

other group, while having the same transmitters. Therefore, this final step does not reduce

the attainable SE or EE, but reduces the number of possible groups, thus alleviating the

computational complexity imposed by the optimization algorithms of Section 4.6.3.

4.5.3 The Norm of the Orthogonal Component Algorithm

Algorithm 6: Algorithm for computing the norm of the orthogonal component

inputs : Candidate SMC ec, SMC group En,j
outputs: The norm of the orthogonal component

1 double NOC (ec, En,j)
2 begin

3 S ← {};
4 foreach e ∈ En,j do

5 S ← S ∪ e−
∑

s∈S

es∗

||s||2 s;

6 end foreach

7 return

∣∣∣∣∣

∣∣∣∣∣ec −
∑

s∈S

ecs∗

||s||2 s

∣∣∣∣∣

∣∣∣∣∣ ;

8 end

The NOC procedure is outlined in Algorithm 6, which aims for finding the norm of the

orthogonal component of the candidate SMC ec with respect to the SMC group En,j . Initially,

the SMC group is orthogonalized using the Gram-Schmidt procedure in lines 3 to 6, which

organizes the orthogonalized vectors of the SMC group into the set denoted by S. The

orthogonal component of ec with respect to the orthogonal components of the SMC group

is then computed in line 7, where the algorithm returns its norm.

4.6 Problem Formulation and Solution

Having obtained the set of SMC groups Gn for each subcarrier block n, in this section our aim

is to find the optimum power variables contained in P and optimum SMC-group selection

variables contained in S, so that (4.57) is maximized. We commence by formulating the
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problem of maximizing the SE of the system as (4.59)–(4.65).

maximize
P,S

CT (P,S) (4.59)

subject to
∑

j∈Gn
sn,j ≤ 1, ∀n, (4.60)

N∑

i=1

∑

j∈Gn
sn,j


 ∑

e1∈En,j

PBU,T1n,j,e1
+
∑

e∈En,j

PBR,T1n,j,e


 ≤ PBmax, (4.61)

N∑

i=1

∑

j∈Gn
sn,j

∑

e2∈En,j

PBU,T2n,j,e2
≤ PBmax, (4.62)

N∑

i=1

∑

j∈Gn
sn,j

∑

e∈En,j

M(e)=m

PRU,T2n,j,e ≤ PRmax, ∀m, (4.63)

sn,j ∈ {0, 1} , ∀n, j, (4.64)

PBU,T1n,j,e1
, PBR,T1n,j,e , PBU,T2n,j,e2

, PRU,T2n,j,e ≥ 0, ∀n, j, e1, e2, e. (4.65)

To elaborate, (4.59) represents the sum SE of the system, which is formulated in more

detail as (4.55). The constraints (4.61)–(4.63) ensure that the maximum instantaneous

transmission power constraint is never exceeded in either of the two transmission phases for

the BS and the RNs, while the constraints (4.60) and (4.64) ensure that only a single SMC

group is selected for each subcarrier block. Finally, (4.65) restricts the power variables to

be non-negative.

4.6.1 Relaxed Spectral Efficiency Maximization Problem

Although the constraint (4.65) is affine (hence convex) in the optimization variables con-

tained in P, (4.60)–(4.63) are nonconvex [34], because (4.64) imposes a binary constraint

on the problem. Furthermore, the objective function given by (4.59) is not concave, since

it is dependent on the binary variables given by S. Thus, (4.59)–(4.65) may be classified

as a MINLP problem, which may be solved using the classic branch-and-bound method de-

scribed in Section 2.4.2. However, this method typically incurs a computational complexity

that increases exponentially in the number of discrete variables, which is undesirable for

practical implementations. To circumvent this initial setback, we introduce the following

auxiliary variables

P̃BU,T1n,j,e1
= PBU,T1n,j,e1

s̃n,j , ∀n, j, e1, (4.66)

P̃BR,T1n,j,e = PBR,T1n,j,e s̃n,j , ∀n, j, e, (4.67)

P̃BU,T2n,j,e2
= PBU,T2n,j,e2

s̃n,j , ∀n, j, e2, (4.68)

P̃RU,T2n,j,e = PRU,T2n,j,e s̃n,j , ∀n, j, e, (4.69)
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C̃BU,T1n,j,e1
, C̃BU,T2n,j,e2

and C̃BRUn,j,e , ∀n, j, e1, e2, e, (4.70)

where we have relaxed the binary constraint of (4.64) to give

0 ≤ s̃n,j ≤ 1, ∀n, j, (4.71)

as was performed in Section 3.3, so that we may write (4.59)–(4.65) in the hypograph form

given by

maximize
C̃,P̃,S̃

N∑

i=1

∑

j∈Gn


 ∑

e1∈En,j

C̃BU,T1n,j,e1
+

∑

e2∈En,j

C̃BU,T2n,j,e2


+


 ∑

e∈En,j

C̃BRUn,j,e


 (4.72)

subject to
s̃n,j
2

log2

(
1 +

GBU,T1n,j,e1
P̃BU,T1n,j,e1

s̃n,j

)
≥ C̃BU,T1n,j,e1

, ∀n, j, e1, (4.73)

s̃n,j
2

log2

(
1 +

GBU,T2n,j,e2
P̃BU,T2n,j,e2

s̃n,j

)
≥ C̃BU,T2n,j,e2

, ∀n, j, e2, (4.74)

s̃n,j
2

log2

(
1 +

GBR,T1n,j,e P̃BR,T1n,j,e

s̃n,j

)
≥ C̃BRUn,j,e , ∀n, j, e, (4.75)

s̃n,j
2

log2

(
1 +

GRU,T2n,j,e P̃RU,T2n,j,e

s̃n,j

)
≥ C̃BRUn,j,e , ∀n, j, e, (4.76)

∑

j∈Gn
s̃n,j ≤ 1, ∀n, (4.77)

N∑

i=1

∑

j∈Gn


 ∑

e1∈En,j

P̃BU,T1n,j,e1
+
∑

e∈En,j

P̃BR,T1n,j,e


 ≤ PBmax, (4.78)

N∑

i=1

∑

j∈Gn

∑

e2∈En,j

P̃BU,T2n,j,e2
≤ PBmax, (4.79)

N∑

i=1

∑

j∈Gn

∑

e∈En,j

M(e)=m

P̃RU,T2n,j,e ≤ PRmax, ∀m, (4.80)

0 ≤ s̃n,j ≤ 1, ∀n, j, (4.81)

P̃BU,T1n,j,e1
, P̃BR,T1n,j,e , P̃BU,T2n,j,e2

, P̃RU,T2n,j,e ≥ 0, ∀n, j, e1, e2, e, (4.82)

where C̃, P̃ and S̃ indicate the variable-sets containing their associated auxiliary variables.

Writing the original optimization problem in the hypograph form of (4.72)–(4.82) means

that minimum per-link or system-wide SE constraints may be readily introduced. How-

ever, minimum SE constraints are not considered in this chapter as our goal is to find the

maximum SE/EE solutions, which may not be equivalent to the solutions obtained when

satisfying minimum SE constraints.

It can be seen that the objective function of (4.59) has been replaced by (4.72) using the
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auxiliary rate variables given in (4.70), and by introducing the hypograph constraints (4.73)–

(4.76). These additional constraints ensure that the feasible auxiliary rate variables do not

exceed their counterparts calculated on each link before using relaxation. As a result, the

sum rate given by (4.72) invoking the feasible auxiliary rate variables does not exceed the

sum rate given by (4.55) either. Observe that obtaining separate constraints for the first-

and second-phase power control variables associated with the relayed transmission is made

possible using the DF protocol. This then allowed us to readily derive the optimal power

control variables as the decoupled water-filling solutions in Section 4.6.3.1, which would not

have been possible if the AF protocol was employed, as demonstrated in Section 3.5.

As our next step, we prove that the problem described by (4.72)–(4.82) is a concave pro-

gramming problem. Clearly, (4.72) is affine, hence concave, while (4.77)–(4.82) are all affine,

and hence convex. Therefore, what remains is to show that constraints (4.73)–(4.76) are

convex as well. These remaining constraints may be written in the form of

C − s

2
log2

(
1 +

GP

s

)
≤ 0, (4.83)

where s, P and C are the decision variables. From Section 3.3, we know that functions

of the form f (P, s) = s
2 log2

(
1 + GP

s

)
are concave. Thus, it can be readily shown that

C − s
2 log2

(
1 + GP

s

)
is convex, since it is the sum of two convex functions. Since (4.83) is

convex, it is clear that the constraints in (4.73)–(4.76) are convex and hence (4.72)–(4.82) is a

concave programming problem, whose solution algorithm will be presented in Section 4.6.3.

4.6.2 Energy Efficiency Maximization Problem

The EE objective function, given by

(4.72)

PT

(
P̃, S̃

) , (4.84)

where

PT

(
P̃, S̃

)
=

(
PBC +M · PRC

)
+

1

2

N∑

n=1

∑

j∈Gn

K∑

k=1

ξB


 ∑

e1∈En,j

P̃BU,T1n,j,e1
+

∑

e2∈En,j

P̃BU,T2n,j,e2




1

2

N∑

n=1

∑

j∈Gn

K∑

k=1

∑

e∈En,j

(
ξBP̃BR,T1n,j,e + ξRP̃RU,T2n,j,e

)
, (4.85)

which is obtained by substituting (4.66)–(4.69) into (4.56) and introducing the relaxed

variables s̃n,j . The objective function (4.84) is a linear-fractional function, since it is a ratio

of two affine functions. Thus the EEM problem can be solved using the Charnes-Cooper
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transformation of [338], as given by

ĈBU,T1n,j,e1
= C̃BU,T1n,j,e1

t, ∀n, j, e1, (4.86)

ĈBU,T2n,j,e2
= C̃BU,T2n,j,e2

t, ∀n, j, e2, (4.87)

ĈBRUn,j,,e = C̃BRUn,j,e t, ∀n, j, e, (4.88)

P̂BU,T1n,j,e1
= P̃BU,T1n,j,e1

t, ∀n, j, e1, (4.89)

P̂BU,T2n,j,e2
= P̃BU,T2n,j,e2

t, ∀n, j, e2, (4.90)

P̂BR,T1n,j,e = P̃BR,T1n,j,e t, ∀n, j, e, (4.91)

P̂RU,T2n,j,e = P̃RU,T2n,j,e t, ∀n, j, e, (4.92)

ŝn,j = s̃n,jt, ∀n, j, (4.93)

where the auxiliary variable t is given by

t =
1

PT

(
P̃, S̃

) . (4.94)

Thus, the EEM problem may be written as

maximize
Ĉ,P̂,Ŝ,t

N∑

i=1

∑

j∈Gn


 ∑

e1∈En,j

ĈBU,T1n,j,e1
+

∑

e2∈En,j

ĈBU,T2n,j,e2


+


 ∑

e∈En,j

ĈBRUn,j,e


 (4.95)

subject to
ŝn,j
2

log2

(
1 +

GBU,T1n,j,e1
P̂BU,T1n,j,e1

ŝn,j

)
≥ ĈBU,T1n,j,e1

, ∀n, j, e1, (4.96)

ŝn,j
2

log2

(
1 +

GBU,T2n,j,e2
P̂BU,T2n,j,e2

ŝn,j

)
≥ ĈBU,T2n,j,e2

, ∀n, j, e2, (4.97)

ŝn,j
2

log2

(
1 +

GBR,T1n,j,e P̂BR,T1n,j,e

ŝn,j

)
≥ ĈBRUn,j,e , ∀n, j, e, (4.98)

ŝn,j
2

log2

(
1 +

GRU,T2n,j,e P̂RU,T2n,j,e

ŝn,j

)
≥ ĈBRUn,j,e , ∀n, j, e, (4.99)

∑

j∈Gn
ŝn,j ≤ t, ∀n, (4.100)

N∑

i=1

∑

j∈Gn


 ∑

e1∈En,j

P̂BU,T1n,j,e1
+
∑

e∈En,j

P̂BR,T1n,j,e


 ≤ t · PBmax, (4.101)

N∑

i=1

∑

j∈Gn

∑

e2∈En,j

P̂BU,T2n,j,e2
≤ t · PBmax, (4.102)

N∑

i=1

∑

j∈Gn

∑

e∈En,j

M(e)=m

P̂RU,T2n,j,e ≤ t · PRmax, ∀m, (4.103)

0 ≤ ŝn,j ≤ t, ∀n, j, (4.104)
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P̂BU,T1n,j,e1
, P̂BR,T1n,j,e , P̂BU,T2n,j,e2

, P̂RU,T2n,j,e ≥ 0, ∀n, j, e1, e2, e, (4.105)

t ·
(
PBC +M · PRC

)
+

1

2

N∑

n=1

∑

j∈Gn
ξB


 ∑

e1∈En,j

P̂BU,T1n,j,e1
+

∑

e2∈En,j

P̂BU,T2n,j,e2




+
1

2

N∑

n=1

∑

j∈Gn

∑

e∈En,j

(
ξBP̂BR,T1n,j,e + ξRP̂RU,T2n,j,e

)
= 1 (4.106)

where Ĉ, P̂ and Ŝ indicate the variable-sets containing their associated transformed vari-

ables. It is clear that the objective function (4.95) is affine, hence concave, while the con-

straints (4.100)–(4.106) are all affine, and hence convex. The constraints (4.96)–(4.99) are of

the form (4.83) and are hence convex. Therefore, the problem described by (4.95)–(4.106) is

a concave programming problem, which can be solved using the algorithm of Section 4.6.3.

In contrast to the optimization problem given by (3.55)–(3.61) of Chapter 3, the objective

function of (4.95) is linear, since we have cast the problem in a hypograph form. However,

here we have the additional inequality constraints given by (4.96)–(4.99). Furthermore, we

now have separate maximum transmission power constraints for the BS and the RNs, which

are given by (4.101)–(4.103), respectively. We inherit from (3.55)–(3.61) similar subcarrier

indicator variable constraints, nonnegative power variable constraints, and the single lin-

ear constraint imposed by applying the Charnes-Cooper transformation. Explicitly, these

constraints are given by (4.100), (4.104), (4.105) and (4.106), respectively.

4.6.3 Solution Algorithm Based on the Dual Decomposition Method

The dual decomposition method described in Section 2.7 and employed in Sections 3.4–3.6

can be used for conceiving solution algorithms for the SEM and EEM problems formulated

as (4.72)–(4.82) and (4.95)–(4.106), respectively. We commence by describing the solution

algorithm conceived for (4.95)–(4.106), which we term the EEM algorithm. The EEM

algorithm, based on dual decomposition, iterates between calculating the tentative optima

of the primal variables, namely of ĈBU,T1n,j,e1
, ĈBU,T2n,j,e2

, ĈBRUn,j,e , P̂BU,T1n,j,e1
, P̂BU,T2n,j,e2

, P̂BR,T1n,j,e , P̂RU,T2n,j,e ,

ŝn,j as well as t, and updating the dual variables λT1 , λT2 , νm as well as µ, which will be

defined later, until the objective function value converges.

4.6.3.1 Obtaining the Optimal Primal Variables

Recall from Sections 2.8 and 3.5, that the transformed power control variables of the direct

SMCs encountered in the problem of (4.95)–(4.106) may be formulated as the water-filling
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solutions of

P̂BU,T1n,j,e1
= ŝn,j

[
1

(ξBµ (i) + 2λT1 (i)) ln 2
− 1

GBU,T1n,j,e1

]+

= ŝn,jP
BU,T1
n,j,e1

(4.107)

and

P̂BU,T2n,j,e2
= ŝn,j

[
1

(ξBµ (i) + 2λT2 (i)) ln 2
− 1

GBU,T2n,j,e2

]+

= ŝn,jP
BU,T2
n,j,e2

, (4.108)

where i is the iteration index of the dual decomposition method. Additionally, the trans-

formed power control variables of the relaying SMCs may be initially written as

P̂BR,T1n,j,e = ŝn,j

[
1

(ξBµ (i) + 2λT1 (i)) ln 2
− 1

GBR,T1n,j,e

]+

= ŝn,jP
BR,T1
n,j,e (4.109)

and

P̂RU,T2n,j,e = ŝn,j

[
1(

ξRµ (i) + 2νM(e) (i)
)

ln 2
− 1

GRU,T2n,j,e

]+

= ŝn,jP
RU,T2
n,j,e . (4.110)

Note that the value of ŝn,j in (4.107)–(4.110) is not yet known. Since the SE attainable for

a relaying link is limited by the weaker of the BS-to-RN and RN-to-UE links, there is no

need to transmit at a high power on the stronger link, if the other link is unable to support

the high SE. Thus, the transformed power control variables provided for the relaying SMC

e may be refined by substituting (4.109)–(4.110) into the right-hand side of

P̂BR,T1n,j,e = min

(
P̂BR,T1n,j,e ,

GRU,T2n,j,e

GBR,T1n,j,e

· P̂RU,T2n,j,e

)
(4.111)

and

P̂RU,T2n,j,e = min

(
P̂RU,T2n,j,e ,

GBR,T1n,j,e

GRU,T2n,j,e

· P̂BR,T1n,j,e

)
. (4.112)

As a result, the tentative estimates of the maximum values that ĈBU,T1n,j,e1
, ĈBU,T2n,j,e2

and ĈBRUn,j,e
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can attain are given by

ĈBU,T1n,j,e1
=
ŝn,j
2

log2

(
1 +

GBU,T1n,j,e1
P̂BU,T1n,j,e1

ŝn,j

)
, (4.113)

ĈBU,T2n,j,e2
=
ŝn,j
2

log2

(
1 +

GBU,T2n,j,e2
P̂BU,T2n,j,e2

ŝn,j

)
, (4.114)

and

ĈBRUn,j,e =
ŝn,j
2

log2

(
1 +

GBR,T1n,j,e P̂BR,T1n,j,e

ŝn,j

)

=
ŝn,j
2

log2

(
1 +

GRU,T2n,j,e P̂RU,T2n,j,e

ŝn,j

)
,

(4.115)

where the value of ŝn,j remains unknown. However, it is plausible that for the purpose of

maximizing the objective function value, ŝn,j ,∀n, j will always be given its maximum value

t, if the single SMC group j is selected for subcarrier block n. Thus, the chosen SMC group

j for subcarrier block n is given by the group obtaining the highest value of

∑

j∈Gn


 ∑

e1∈En,j

ĈBU,T1n,j,e1
+

∑

e2∈En,j

ĈBU,T2n,j,e2


+

∑

e∈En,j

ĈBRUn,j,e . (4.116)

where ŝn,j inside the logarithm functions may be canceled out. Additionally, we can ig-

nore the common positive multiplicative factor of t without affecting the maximization

of (4.116). The objective function (4.95) is maximized when choosing this particular group

j for subcarrier block n, while for the remaining groups associated with the same subcarrier

block, we set the optimal values of P̂BU,T1∗n,j′ 6=j,e1 = P̂BU,T2∗n,j′ 6=j,e2 = P̂BR,T1∗n,j′ 6=j,e = P̂RU,T2∗n,j′ 6=j,e = ŝ∗n,j′ 6=j =

ĈBU,T1∗n,j′ 6=j,e1 = ĈBU,T2∗n,j′ 6=j,e2 = ĈBRU∗n,j′ 6=j,e = PBU,T1∗n,j′ 6=j,e1 = PBU,T2∗n,j′ 6=j,e2 = PBR,T1∗n,j′ 6=j,e = PRU,T2∗n,j′ 6=j,e = 0, as these

remaining groups are not chosen. For the selected SMC group, we set P̂BU,T1∗n,j,e1
= P̂BU,T1n,j,e1

,

P̂BU,T2∗n,j,e2
= P̂BU,T2n,j,e2

, P̂BR,T1∗n,j,e = P̂BR,T1n,j,e and P̂RU,T2∗n,j,e = P̂RU,T2n,j,e .

Consequently, the optimal value of t is given by

t∗ =


PBC +M · PRC +

1

2

N∑

n=1

∑

j∈Gn
ξB


 ∑

e1∈En,j

PBU,T1∗n,j,e1
+

∑

e2∈En,j

PBU,T2∗n,j,e2




+
1

2

N∑

n=1

∑

j∈Gn

∑

e∈En,j

(
ξBPBR,T1∗n,j,e + ξRPRU,T2∗n,j,e

)


−1

. (4.117)

Note that this is possible without knowing the exact value of ŝn,j , since the factor of ŝn,j

may be canceled out, and thus (4.117) is only dependent on the dual variables and on the
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SMC group selection.

Having identified the chosen SMC group, we set ŝ∗n,j = t∗ for this selected SMC group

corresponding to each subcarrier block n, and we have

ĈBU,T1∗n,j,e1
=
t

2
log2

(
1 +GBU,T1n,j,e1

PBU,T1n,j,e1

)
, (4.118)

ĈBU,T2∗n,j,e2
=
t

2
log2

(
1 +GBU,T2n,j,e2

PBU,T2n,j,e2

)
(4.119)

as well as

ĈBRU∗n,j,e =
t

2
log2

(
1 +GBR,T1n,j,e PBR,T1n,j,e

)

=
t

2
log2

(
1 +GRU,T2n,j,e PRU,T2n,j,e

)
, (4.120)

for that selected SMC group. To summarize, given a set of dual variables, the values of

power control variables are obtained, resulting in a chosen SMC group, which obtains the

SE values for the corresponding subcarrier block. Therefore, all of the primal variables are

obtained for a given set of dual variables. Thus, they are jointly optimized.

4.6.3.2 Updating the Dual Variables

From the derivation of the optimal primal variables described in Section 4.6.3.1, we can see

that the constraints (4.96)–(4.100) and (4.104)–(4.106) are implicitly satisfied. Therefore,

we update the dual variables λT1 , λT2 and νm which are associated with the remaining

constraints (4.101)–(4.103), respectively. These may be viewed as pricing parameters to

ensure that the optimal power control variables satisfy (4.101)–(4.103).

Since the Lagrangian of (4.95)–(4.106) is differentiable w.r.t. the dual variables, at each

iteration i of the solution algorithm, the gradient method described in Section 2.6 can be

employed for updating these dual variables according to

λT1 (i) =


λT1 (i− 1)− δλT1 (i) ·


t∗ · PBmax −

N∑

i=1

∑

j∈Gn


 ∑

e1∈En,j

P̂BU,T1∗n,j,e1
+
∑

e∈En,j

P̂BR,T1∗n,j,e








+

(4.121)

λT2 (i) =


λT2 (i− 1)− δλT2 (i) ·


t∗ · PBmax −

N∑

i=1

∑

j∈Gn

∑

e2∈En,j

P̂BU,T2∗n,j,e2






+

(4.122)
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νm (i) =


νm (i− 1)− δνm (i) ·


t
∗ · PRmax −

N∑

i=1

∑

j∈Gn

∑

e∈En,j

M(e)=m

P̂RU,T2∗n,j,e







+

, ∀m,

(4.123)

where δλT1 (i), δλT2 (i) and δνm (i) are appropriately chosen step sizes at iteration i.

The remaining dual variable, µ, which is associated with (4.106) also has to be updated.

However, the constraint given by (4.106) is implicitly satisfied since the value of t is computed

from (4.117). Therefore, we opt for the method employed in Section 3.5. We proceed by

differentiating the Lagrangian w.r.t t and substituting in the intermediate values of Ĉ, P̂, Ŝ
and t. Thus, the updated value of µ is given by

µ (i) = t∗ ·




N∑

i=1

∑

j∈Gn


 ∑

e1∈En,j

C̃BU,T1∗n,j,e1
+

∑

e2∈En,j

C̃BU,T2∗n,j,e2


+


 ∑

e∈En,j

C̃BRU∗n,j,e




+λT1 (i− 1) ·


PBmax −

N∑

i=1

∑

j∈Gn


 ∑

e1∈En,j

P̃BU,T1∗n,j,e1
+
∑

e∈En,j

P̃BR,T1∗n,j,e






+λT2 (i− 1) ·


PBmax −

N∑

i=1

∑

j∈Gn

∑

e2∈En,j

P̃BU,T2∗n,j,e2




+
M∑

m=1

νm (i− 1) ·


P

R
max −

N∑

i=1

∑

j∈Gn

∑

e∈En,j

M(e)=m

P̃RU,T2∗n,j,e





. (4.124)

All primal variables are jointly optimized in Section 4.6.3.1 as the optimal power variables are

determined by the related dual variables. This leads to the optimal group selection and rate

variables, which then allow us to find the optimal t. Given the tentative optima of primal

variables, the algorithm proceeds to update the dual variables, which are mostly to ensure

that the maximum power constraints are not violated. Using these updated dual variables,

the algorithm repeats this process until the objective function value η̂E (i) at iteration i

reaches the predefined convergence threshold, which is given by |η̂E (i)− η̂E (i− 1)| < ε.

This process is illustrated in Algorithm 7.

The method presented in Section 4.6.3.1 and Section 4.6.3.2 solves the EEM problem de-

scribed by (4.95)–(4.106). It may also be invoked for solving the SEM problem of (4.72)–

(4.82), while fixing µ = 0 and t = 1. This is because the EEM problem considered is

simplified to the SEM problem, when we have µ = 0 and t = 1.

In contrast to the solution algorithm described in Section 3.5, instead of allocating spe-

cific UEs to the subcarriers, we allocate SMC groups to subcarriers in this chapter. How-
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Algorithm 7: EEM algorithm

inputs : All SMC groups, Gn, ∀n, Number of subcarriers, N , Number of RNs, M
Maximum transmission power of the BS and RNs, PBmax, P

R
max

Noise power, N0

Fixed power dissipation of the BS and RNs, PBC , P
R
C

Transmission power dependent power dissipation of the BS and RNs, ξB, ξR

Algorithm convergence tolerance, ε
Initial values of the dual variables, λT1 (1) , λT2 (1) , µ (1) , νm (1) ,∀m
Step sizes for the dual variables, δλT1 , δλT2 , δµ, δνm , ∀m

outputs: The optimal EEM value, η̂∗E
1 double EEM(
Gn, N,M,PBmax, P

R
max, N0, P

B
C , P

R
C , ξ

B, ξR, ε, λT1 (1) , λT2 (1) , µ (1) , νm (1) , δλT1 , δλT2 , δµ, δνm
)

2 begin

3 i← 0;
4 η̂E (0)← 0;
5 repeat
6 i← i+ 1;
7 for n = 1 to N do
8 foreach En,j ∈ Gn do

9 Update the power variables using (4.107), (4.108), (4.109), (4.110);
10 Get adjusted relaying power variables with (4.111), (4.112);
11 Compute obtainable SE values from (4.113), (4.114), (4.115);

12 end foreach

13 Select SMC group obtaining the highest value of (4.116);
14 Set remaining groups’ power, selection, and SE values to zero;

15 end for

16 Compute the optimal t∗ value using (4.117);
17 Obtain optimal SE values from (4.118), (4.119), (4.120);
18 Update dual variables using (4.121), (4.122), (4.123), (4.124);
19 η̂E (i)← (4.95) · t∗;
20 until |η̂E (i)− η̂E (i− 1)| < ε;
21 return;

22 end

ever, we still compute the optimal power values using the water-filling based solutions

of (4.107), (4.108), (4.109) and (4.110). Furthermore, owing to the additional total power

constraints on the RNs, we have to update additional dual variables in each iteration of

Algorithm 7.

4.7 Numerical Results and Discussions

This section presents the numerical results obtained, when employing the SEM and EEM

algorithms described in Section 4.6 to the MIMO-OFDMA multi-relay cellular network
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Table 4.1: Simulation parameters used to obtain all results in Section 4.7 unless otherwise
specified.

Simulation parameter Value

Subcarrier block bandwidth, W [Hertz] 180k

Number of RNs, M {0, 1, 2, 4}
Number of subcarriers blocks, N {6, 12, 25, 50, 100}
Number of UEs, K {2, 10}
Antenna configuration, (NB, NR, NU ) (4, 4, 2)

Cell radius, [km] {0.75, 1.25, 1.75, 2.25}
Ratio of BS-to-RN distance to the cell 0.5
radius, Dr

SNR gap of wireless transceivers, ∆γ [dB] 0

Maximum total transmission power of the {0, 10, 20, 30,
BS and RNs, PBmax and PRmax [dBm] 40, 50, 60}
Fixed power rating of the BS, 32.306NB

P
(B)
C [Watts] [352,369]

Fixed power rating of RNs, 21.874NR

P
(R)
C [Watts] [352,369]

Reciprocal of the BS power amplifier’s 3.24NB

drain efficiency, ξ(B) [352,369]

Reciprocal of the RNs’ power amplifier’s 4.04NR

drain efficiency, ξ(R) [352,369]

Noise power spectral density, N0 [dBm/Hz] −174

Convergence threshold, ε 10−6

Number of channel samples 104

considered. In all cases, the step sizes and the initial values of the dual variables described

in Section 4.6.3.2 are empirically optimized to give the optimal objective function value

in as few iterations as possible, although the exact analytical method for determining the

optimal step sizes and initial values still remains an open issue. In our experience, the

algorithms converge within just 10 iterations when carefully chosen step sizes are employed,

regardless of the size of the problem. The pertinent simulation parameters are given in

Table 4.1. Additionally, the path-loss effect is characterized relying on the method and

parameters of [354], where the BS-to-UE and RN-to-UE links are assumed to be non-line-

of-sight (NLOS) links, since these links are typically blocked by buildings and other large

obstructing objects, while the BS-to-RN links are realistically assumed to be LOS links, as

the RNs may be strategically deployed on tall buildings to create strong wireless backhaul

links. Furthermore, independently and randomly generated set of UE locations as well as

fading channel realizations were used for each channel sample.

The results of a baseline algorithm is also presented to highlight the improved performance

obtained from employing the SEM and EEM algorithms. This baseline algorithm consists

of a random SMC grouping (RG) selection for each subcarrier block and then equal power

allocation (EPA) across all the selected SMCs, and will be termed the RG-EPA algorithm.
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Figure 4.11: The optimality gap and total number of SMC groups found when employing
the ESGA and OCGA, and using the parameters in Table 4.1 with N = 6, K = 2, M = 2,

PB
max = 20dBm, PR

max = 10dBm and a cell radius of 0.75km.

4.7.1 On the Optimality and the Relative Complexity of ESGA

and OCGA for Various α Values

Firstly, the behavior of the ESGA and OCGA as a function of α is examined. Note in

Fig. 4.11 that since the ESGA is capable of enumerating all possible SMC groupings, which

satisfy (4.25) for the corresponding α, the optimal SE is attained. The ’normalized op-

timality gap’ is then defined as (β/β∗) − 1, where β∗ is the optimal SE obtained from

employing the ESGA algorithm, and β is the SE obtained from any other algorithm. We

can see from Fig. 4.11, that the normalized optimality gap of OCGA relative to ESGA is

about 0.5% ∼ 1% for the α values considered. However, the number of groups found using

ESGA is exponentially increasing with α. By contrast, for OCGA, this number is always

significantly lower and gradually becomes less than 200, when α increases to 0.5. In fact,

the number of groups found by OCGA is reduced to about 5% of that found by ESGA at

α = 0.5. This demonstrates the viability of using OCGA in the following simulations as a
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reduced-complexity near-optimum alternative to ESGA. Under the conditions considered in

Fig. 4.11, the optimal EE solution is the same as the optimal SE solution, as detailed in the

next subsection. Therefore, as far as EEM is concerned, similar conclusions may be drawn

regarding the optimality of the two grouping algorithms.

4.7.2 The Variation in Achievable SE and EE for Different

Values of PB
max and PR

max

As shown in Fig. 4.12(a), the achievable SE is monotonically increasing with PBmax and

PRmax when using the SEM algorithm. This is not unexpected, since the SEM algorithm

optimally allocates all the available power for the sake of achieving the maximum SE. By

comparison, we observed from Fig. 4.12(a) and Fig. 4.12(b) that both the achievable SE

and EE of the EEM algorithm saturate at some moderate values of PBmax and/or PRmax,

which mirrors the trend demonstrated in Fig. 3.6. This is because the EEM algorithm only

allocates enough power (that may be lower than the power budget values of PBmax and/or

PRmax) for the sake of achieving the maximum EE. On the other hand, the EE performance of

the SEM algorithm is severely degraded upon further increasing PBmax and/or PRmax after its

EE performance reaches the peak, as shown in Fig. 4.12(b). This is because the EE metric

is a quasiconcave function of the transmit powers – its numerator (i.e. the SE) increases

logarithmically with the transmit powers, while its denominator increases linearly with the

transmit powers. In fact, the peak EE of the SEM algorithm is attained at PBmax = 40dBm

and PRmax = 40dBm, as seen in Fig. 4.12(b), and the associated normalized optimality gap is

only −0.074. By contrast, the achievable EE when using the EEM algorithm also saturates

at around PBmax = 40dBm and PRmax = 40dBm. Thus, the operating point of PBmax = 40dBm

and PRmax = 40dBm may strike an attractive balance between SEM and EEM. Of course,

the required trade-off may be struck on a case-by-case basis in practical systems. Observe

that when PBmax and PRmax have low/moderate values, the SEM and EEM algorithms share

the same solutions of P and S.

Additionally, the RG-EPA algorithm performs significantly worse in terms of SE when com-

pared to the SEM algorithm, and in terms of EE when compared to the EEM algorithm.

Furthermore, the RG-EPA algorithm performs even worse than the SEM algorithm in terms

of EE. Although the obtained SE when using the RG-EPA algorithm is, in some cases, higher

than the SE obtained when using the EE algorithm, this performance improvement comes

at a great cost to the EE performance of the RG-EPA algorithm.

Finally, note that although both the SE of the SEM algorithm, and the EE of the EEM

algorithm are non-decreasing as either PBmax or PRmax is increased, the effect of increasing

PBmax on the SE or EE is significantly more pronounced, than that of applying the same

increase to PRmax. The intuitive reasoning behind this is that the power available at the BS
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Figure 4.12: The average achievable SE and EE of the SEM, EEM and RG-EPA algo-

rithms upon varying PB
max and PR

max. The parameters in Table 4.1 with N = 6, K = 10,
M = 2, α = 0.1 and a cell radius of 1.75km are used.
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has a more pronounced effect on the system’s performance, since the direct links and, more

importantly, the BS-to-RN links rely on the BS. Therefore, increasing PRmax is futile if the

BS-to-RN links are not allocated sufficient power to support the RN-to-UE links.

4.7.3 The Variation in Achievable SE and EE for Different

Values of M and the Cell Radius

Fig. 4.13 illustrates some advantages and disadvantages of employing RNs in the cellular

system considered. We observe that the specific low values of the power constraints result

in the same solutions for both the SEM and EEM algorithms. This phenomenon was also

shown in Fig. 4.12.

As evidenced in Fig. 4.13(a), the attainable SE increases with M , which is a benefit of the

additional selection diversity, when forming relaying links. However, in contrast to Fig. 3.10,

the attainable SE does not increase substantially beyond M = 2. In fact, only an increase of

0.1% is attained for the SE, when M is increased from 2 to 4 at a cell radius of 0.75km. On

the other hand, the cost in terms of EE is significant (36.4%), as shown in Fig. 4.13(b). This

suggests that employing RNs does not constitute an energy-efficient technique, although it

increases the SE of a cellular system, which supports the conclusions drawn in Chapter 3.

This may be attributed to both the power amplifier inefficiency and to the non-negligible

fixed circuit energy dissipation of the RNs. Note furthermore that as in Chapter 3, both

the attainable SE and EE are decreasing upon increasing the cell radius as a result of

the increased path-loss of all the wireless links. However, this reduction is relatively small

between a cell radius of 1.75km and 2.25km. The reason behind this phenomenon is that

both the SEM and EEM algorithms will selectively serve the UEs nearer to the BS, so that

a similar performance may be attained without suffering from a substantial path-loss. This

is also the reason why the gain in SE gleaned by employing RNs at a cell radius of 2.25km

seems negligible in Fig. 4.13(a). Once again, the RG-EPA algorithm performs worse both

in terms of SE and EE performance.

4.7.4 The Achievable SE and EE as a Function of N and NB

Fig. 4.14 illustrates the effect of increasing N and NB on the attainable SE and EE. Note

that in a similar fashion to Fig. 4.13, the SEM and EEM algorithms attain the same solutions

in the operating region considered.

Observe from both Figs. 4.14(a) and 4.14(b) that the attainable SE increases upon increasing

NB. This is due to the increased attainable spatial degrees of freedom at the BS in the

first transmission phase, which allows for more direct transmissions overall. However, the

attainable EE increases only slightly, or may even decrease upon increasing NB, due to the
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(a) Surface plots of the achievable SE when using the SEM and EEM algorithms.
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(b) Surface plots of the achievable EE when using the SEM and EEM algorithms.

Figure 4.13: The average achievable SE and EE when using the SEM and EEM algo-
rithms, respectively, for varying M and cell radius, and using the parameters in Table 4.1

with N = 6, K = 10, α = 0.1, PB
max = 20dBm and PR

max = 10dBm.
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Figure 4.14: The average achievable SE and EE when using the SEM and EEM algo-
rithms, respectively, for varying N and NB , and using the parameters in Table 4.1 with
M = 2, K = 10, α = 0.1, PB

max = 20dBm, PR
max = 10dBm and a cell radius of 0.75km.
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higher fixed power costs of supporting additional RF chains. Moreover, both the SE and

EE are reduced upon increasing N , which suggests that increasing the number of subcarrier

blocks does not increase the average efficiency of each block. This is because the power

constraints are fixed and thus there is insufficient power for fully exploiting the additional

subcarrier blocks. However, note that both total SE and EE do indeed increase upon

increasing N , which may be explicitly seen upon multiplying the results of Figs. 4.14(a)

and 4.14(b) by NW . The RG-EPA algorithm performs worse in both cases as expected.

4.8 Chapter Summary and Conclusions

In this chapter, firstly a novel transmission protocol based on joint transmit-BF and receive-

BF was developed for the multi-relay MIMO-OFDMA cellular network considered. This

protocol allows for achieving high-SE performance for the MIMO broadcast network con-

sisting of a BS, multiple RNs and multiple UEs. The associated MIMO channel matrices

were mathematically decomposed into multiple MISO channels, which we referred to as

SMCs, using receive-BF. By applying ZFBF at the transmitter, the interference between

SMC-based concurrent transmissions is completely eliminated, provided that perfect CSI-

knowledge is available. For the purposes of obtaining a higher multiplexing gain, the SMCs

may be grouped according to the semi-orthogonality criterion. Consequently, a pair of group-

ing algorithms were proposed, referred to as ESGA and OCGA. The former exhaustively

enumerates all of the possible groupings, whereas the latter aims to be a lower-complexity

design alternative. Finding the SE-optimal and EE-optimal SMC groupings as well as their

associated optimal power control variables were formulated as optimization problems. With

the aid of several variable relaxations and transformations, these optimization problems were

transformed into concave optimization problems. Thus, the dual decomposition approach

was employed for finding the optimal solutions.

We demonstrated that the OCGA constitutes an attractive alternative to ESGA, since it

offers a near-optimal performance at a substantially reduced complexity across a range of α-

values, as summarized in Table 4.2. Furthermore, several numerical results were presented

for characterizing the system’s attainable SE and EE performance across a wide range

of system parameters, such as the transmit power constraints, cell radius, the number of

RNs, the number of BS antennas and the number of subcarrier blocks. To summarize,

the maximum attainable SE of the system continues to rise as the power constraint on

either the BS or RNs is loosened. However, this comes at a cost to EE, whose maximum is

attained when roughly PBmax = 50dBm and PRmax = 50dBm in the scenarios considered. This

results mirrors that of Section 3.7, however in this chapter we were also able to demonstrate

that the BS’s total power constraint has a greater effect on the attainable SE and EE of

the system, when compared to the total power constraint of the RNs, which is likely the
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Table 4.2: Summary of the reduction in complexity achieved versus the suboptimality
cost for various values of α, as was depicted in Fig. 4.11.

Semi-orthogonality parameter, α Suboptimality Complexity reduction

0.05 0.6% 36.1%

0.10 0.9% 52.2%

0.15 1.2% 65.1%

0.20 1.8% 74.6%

0.25 2.5% 81.7%

0.30 3.3% 86.8%

0.35 4.2% 90.5%

0.40 5.4% 93.2%

0.45 5.4% 95.1%

0.50 10.0% 96.5%

Table 4.3: Summary of the attainable gains in SE or EE, when employing their maxi-
mization algorithms compared to the RG-EPA algorithm, as depicted in Figs. 4.12 to 4.14.

Figures Max. gain in SE Min. gain in SE Max. gain in EE Min. gain in EE

Fig. 4.12 103.7 4.0 995.5 3.9

Fig. 4.13 2.0 1.2 2.2 1.2

Fig. 4.14 2.2 1.7 2.2 1.7

effect of allowing both direct and relayed transmissions in the transmission protocol. On

the other hand, increasing the number of RNs M and the number of subcarrier blocks

N in the system negatively affects the attainable SE and EE, which was also confirmed

in Section 3.7. However, increasing the number of antennas NB available at the BS does

increase the attainable SE and EE, since these additional antennas provide an increased

attainable spatial degrees of freedom at the BS in the first transmission phase. Moreover,

we show that our SEM/EEM algorithms perform significantly better than the benchmark

RG-EPA algorithm in Table 4.3.

It is important to highlight the differences in the attainable SE and EE values, when in-

creasing either the number K of UEs in the system, the number NB of antennas at the BS,

or the number M of RNs in the system. Since all of these parameters are directly related to

the number of antennas in the system, it is expected that an additional selection diversity

gain may be gleaned for increasing the attainable SE and EE upon increasing the number

of any of these parameters.

As shown in Fig. 3.6, doubling the number of UEs results in a linear SE increase, which

mirrors the trend demonstrated in Fig. 4.14. Although the EE does increase upon increasing

K in Fig. 3.6, the EE of Fig. 4.14 decreases as a result of the additional RF chains required

at the BS, which were not present, when obtaining the results in Fig. 3.6.

On the other hand, increasing the number of RNs in the system only results in a marginal

SE increase, as demonstrated in Figs. 3.10 and 4.13, while the EE erosion becomes severe.
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Therefore, we can conclude that although increasing the aforementioned parameters may

increase the SE, their effects on the EE are not equivalent.



Chapter 5
Spectral/Energy Efficient Resource

Allocation for MIMO-Aided

Multi-Cell Networks

5.1 Introduction

Chapter 4 considered EEM in the context of a cellular system, which contained both multiple

RNs as well as UEs, and expanded upon the system model of Chapter 3 by employing

multiple antenna aided network nodes. A transmission protocol based on both BF and on

the grouping of SMCs was presented in Section 4.4. However, in order to avoid interference

between the BS’s and RNs’ transmission, the network had to coordinate its transmissions

for the sake of reducing the total achievable spatial multiplexing gain. On the other hand,

realistic cellular networks are heterogeneous and multi-cellular, hence leading to severe CCI,

especially, when the networks aim for fully exploiting the precious wireless spectrum by

relying on a unity frequency reuse factor [371]. Thus, a distributed method of coordinating

the system’s transmissions for the sake of avoiding the excessive interference is required.

Furthermore, the system’s EE remains still a major concern [10] and the optimization tools

employed in Chapters 3 and 4 have to be invoked for maximizing the system’s EE. Against

this backdrop, in this chapter we aim for maximizing the EE of the DL of a DF relay-aided

MIMO-OFDMA multi-cell network that employs the technique of IA.

IA has been advocated as a viable technique of managing the UL co-channel interference

of multi-cell networks [372, 373]. Explicitly, IA is suitable for the UL, since the number

of receive antennas at the BS is typically higher than the number of transmit antennas at

each UE. Thus, the potentially higher number of signal dimensions available at the receiver

can be exploited for aligning the CCI into a predetermined interference subspace, so that

167
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the BS can receive the transmissions of its own UEs without CCI. However, this is not

feasible in the DL, since each UE has access to a low number of receive dimensions. This

challenge was successfully tackled by the DL transmission scheme of [374], which relies on

specifically designing transmit precoding matrices for reducing the number of transmit di-

mensions at the BSs, thus facilitating DL IA at the UEs. In contrast to other IA techniques,

such as [375–379], the technique presented in [374] does not require cooperation among the

BSs for exchanging CSI, and IA is accomplished distributively. Furthermore, this tech-

nique facilitates IA in systems relying on arbitrary antenna configurations with the aid of

frequency- or time-extension, which is capable of substantially expanding the total number

of transmit and receive dimensions in a multicarrier system such as OFDMA. In [380], the

technique of [374] was generalized to an arbitrary number of BSs and UEs, where each of

them is equipped with an arbitrary number of antennas. Furthermore, the authors of [380]

employed the semi-orthogonal user selection scheme of Yoo et al. [324] for maximizing the

achievable SE. However, relaying was not considered in [380] and each UE was limited to

receiving a single spatial stream.

The EE metric employed in Chapters 3 and 4 has also been utilized in [201,231,330–332,347].

The authors of [231] considered EEM of both the UL and the DL of a cellular network,

while providing both the optimal solution method and a lower-complexity heuristic method.

However, the effects of interference were not quantified in the system model of [231], since

only a single cell was considered. Additionally, no relaying was employed. In [201], EEM

was performed in a multi-cell setting, where the CCI was eliminated with the aid of BS

cooperation [5] and ZFBF. However, the authors of [201] have not considered the benefits

of multiple antenna aided nodes or relaying. As a further advance, the EE of a relay

aided system was considered in [347], where the objective function of the optimization

problem considered was formulated by incorporating both the SE and the energy dissipated.

Nevertheless, these two metrics must be appropriately weighted, which is still an open

challenge. Thus, the EE metric was not formally optimized.

The optimization problem considered in this chapter is formulated by maximizing the aver-

age EE of the system, which is given by a weighted sum of the fractional terms quantifying

each cell’s EE. Thus, it is possible to use the primal decomposition approach detailed in

Section 2.7 for initially decomposing the problem into a single subproblem for each BS,

requiring them to maximize each of their own cell’s EE. Thus, each BS individually solves

their own EEM problem without having to communicate with each other. The individual

subproblems can then be converted into a concave maximization form using the Charnes-

Cooper transformation of Sections 2.4.3.5, 3.5 and 4.6, so that the system can benefit from

the associated low complexity solution method compared to other methods, as exemplified

in Section 3.7.

The existing literature, which is most similar to the work presented in this chapter is that
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of Suh et al. [372, 374] and of Yang et al. [380]. Suh et al. [372, 374] created IA-based

transmission protocols for both the UL and DL of a cellular network. However, specific

values were employed both for the number of BS and UE antennas, as well as both for the

number of BSs and UEs in the system. Thus, the protocols cannot be readily generalized

to a network of an arbitrary size and antenna configuration. On the other hand, Yang et

al. [380] devised an IA-based transmission protocol for the DL of a cellular network of an

arbitrary size and antenna configuration, although each UE was limited to receiving only a

single data stream. Furthermore, Yang et al. [380] conceived a beneficial method for selecting

which UEs to serve. In contrast to these existing works, we remove the restriction imposed

on the number of UEs in the system and we support an arbitrary antenna configuration.

Furthermore, we do not restrict the number of data streams that each UE can receive.

However, the most notable difference is that we also invoke relaying for improving the

system’s SE and EE. Naturally, our transmission protocol has been designed with relaying

in mind.

Let us now elaborate further by classifying the CCI as intra-cell interference (ICI) and OCI.

In the DL considered, the former describes the interference that a RN or UE may receive

from the BS within its own cell, where multiple concurrent transmissions are also intended

for other RNs or UEs, while the latter describes the interference originating from sources

located in other cells.

5.1.1 Chapter Preliminaries

IA was first introduced in [381–383] and it was further popularized in [384, 385]. In [385],

Cadambe et al. described the main concept of IA and established the attainable degrees

of freedom (DoF), when employing IA for completely avoiding interference in a network

supporting three user-pairs as depicted in Fig. 5.1.

Three beneficial approaches conceived for interference management are described in [385],

depending on the relative strength of the interference compared to the desired signal. If the

interference is strong, it is possible to decode it and then, given the knowledge of the inter-

ference, distinguish the desired signal. Weak interference may simply be treated as noise. If

the interference strength is comparable to the desired signal’s strength, the traditional ap-

proach has been to orthogonalize the signals in the space-, time-, frequency- or code-domain.

Thus, the attainable DoF per user in an example system with K user-pairs scales with 1/K

through orthogonalization. The principle of IA is that instead of judiciously partitioning the

wireless resources amongst all users (often termed as orthogonalization), each user aligns

his/her transmissions into a predetermined subspace, referred to as the interference sub-

space, at all the other receivers, so that the remaining subspace at all receivers becomes

free of interference. Thus, the attainable DoFs in a system supporting K user-pairs is K/2
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Figure 5.1: This illustrates how IA can be achieved via delay offsets. The propagation
delay between each transmitter and their associated receiver is only 1 unit, whereas to other
receivers, the delay is 2 units. Thus, each receiver is able to receive the desired signal free

from interference, while all the interference is contained in the odd-index time slots.

when employing IA, instead of 1/K obtained through orthogonalization [385]. This becomes

highly favorable, as K increases.

A simple example is provided in Fig. 5.1, where each transmitter attempts to convey its

data to their corresponding receivers without interfering with the transmissions of the other

transmitters. Due to the differences in the propagation delay between different transmitter-

receiver pairs, each transmitter may simply transmit during the odd-index time slots. Each

receiver is then able to receive the desired data during the even-index time slots, while all

interference is contained in the odd-index time slots. Thus, each receiver is able to receive

useful data 1/2 of the time, which results in an achievable DoF per user of 1/2.

A more complex situation is illustrated in Fig. 5.3, which depicts users applying BF to align

the interference signals into a subspace distinct from their desired signals. For example,

let us assume that each transmitter is equipped with two antennas, while each receiver has

access to five antennas, and examine how receiver 1 aligns the interference signals. Naturally,

the other receivers can follow a similar process to achieve IA. The MIMO channel matrices

associated with the links between transmitters 1, 2 and 3, to receiver 1 may be respectively

written as H1,1, H2,1 and H3,1, which are each elements of C5×2. The channel matrices

associated with the interference sources (H2,1 and H3,1) may be concatenated to form an

interference channel matrix denoted by

Ĥ = [H2,1|H3,1] ∈ C5×4. (5.1)

The SVD, as exemplified in Fig. 5.2, is employed for finding the left nullspace of Ĥ. It can

be readily verified that Ĥ is guaranteed to have at least a one dimensional left nullspace

corresponding to the rightmost column vector in U, which is denoted as u5 ∈ C5×1. This is
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Figure 5.2: An illustration of the structure of the SVD. The leftmost left and right
singular vectors correspond to the non-zero singular values, while the rightmost left and
right singular vectors correspond to the zero singular vectors. Therefore, the rightmost left

singular vectors span the left nullspace of H.

a vector in both the left nullspace of H2,1 and the left nullspace of H3,1. In other words, if

u5 is used as the receive beamformer weight-vector for receiver 1, then we have uH
5 H2,1 =

uH
5 H3,1 = 0 and the interference emanating from transmitters 2 and 3 is completely avoided.

On the other hand, typically we have uH
5 H1,1 6= 0 and, given that transmitter 1 appropriately

designs its transmit beamformer weights, receiver 1 becomes capable of decoding its desired

signal. This process may be repeated at the other receivers to achieve complete IA. The

same IA technique will be employed in Section 5.3.

5.1.2 Novel Contributions

As stated above, the aim of this chapter is to formally optimize the EE of a multi-relay

MIMO-OFDMA cellular system by intelligently assigning the available power and frequency

resources, when employing both transmit and receive BF. A concise list of our novel contri-

butions is as follows.

• We evaluate the EEM of IA employed in a realistic MIMO-OFDMA system involving

multiple cells, multiple relays and multiple users. Although EEM has been studied in-

tensely in recent years [201, 231, 347], these contributions typically consider single cells

providing coverage without the assistance of relaying, or do not exploit the benefits of

multiple antenna aided transceivers. Additionally, although IA was employed recently

in [375, 386–389], these contributions focus on user-pair networks, rather than on multi-

user cellular networks and the associated challenges of implementing IA require further

research in the latter scenario. More importantly, previous contributions typically aim for

investigating its SE benefits, while the achievable EE of using IA-based protocols has not

been explored at all. Green communications has become increasingly important, but the

quantitative benefits of IA have not been documented in the context of energy-efficient

communications. Therefore, in this chapter we seek to deepen the research community’s
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Receiver 2
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Shared wireless channel

Figure 5.3: A network supporting three user-pairs. Each transmitter attempts to com-
municate with its corresponding receiver. Through the use of IA, each receiver is able to

distinguish its intended signal from the overlapping interference signals.

understanding of IA from an EE perspective. Furthermore, a more realistic multi-cell

MIMO-OFDMA relay-aided network is considered in this chapter, where multiple UEs

are supported by each BS and multiple RNs. Therefore, the system model considered in-

evitably becomes challenging. As a beneficial result, the protocols and solutions provided

in this chapter can be more readily applied to real network scenarios, when compared to

the existing IA literature, which focuses only on the K-user interference network. In con-

trast to our previous contributions [330–332], this chapter investigates a multiple antenna

aided multi-cell system. Although a multiple antenna assisted system was also studied

in our previous contribution [332], only a single macrocell was considered and no IA was

employed for avoiding the ICI imposed by both the simultaneously transmitting BS and

RNs.

• We provide a sophisticated generalization of the IA protocol considered in [374]. Explic-

itly, in contrast to [374], the proposed IA protocols account for three cells, for an arbitrary

number of UEs in each cell, for an arbitrary antenna configuration and for simultaneous

direct as well as relay-aided transmissions. This is accomplished through the careful de-

sign of precoding-, transmit- and receive- beamforming matrices in order to ensure that

IA is achieved. In particular, the number of guaranteed spatial dimensions available at
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the BSs, RNs and UEs must be judiciously chosen. Furthermore, we conceive of two

transmission protocols in this chapter, which may be implemented distributively at each

BS. The first protocol is termed as full-IA, which invokes IA for avoiding the interference

arriving from all transmitters. This is the intuitive choice, as advocated by the existing

literature [372, 374, 390] highlighting its benefits in terms of achieving the optimal DoF.

For example, it was also employed in [374], but for a simpler system model having no RNs.

The second protocol proposed is unlike that of [374] and it is termed as partial-IA, which

only aims for avoiding the ICI using IA, while ignoring the effect of OCI when making

scheduling decisions. The partial-IA protocol therefore reduces the computational burden

of having to estimate the DL CSI of the other-cell channel matrices at the receivers, albeit

this might be expected to reduce the system’s performance due to neglecting the OCI.

We compared the performance of these two protocols and found that, as a surprise, the

reduced-complexity partial-IA protocol is potentially capable of achieving a higher EE

than the full-IA protocol. Explicitly, the partial-IA protocol achieves a higher EE, since

more simultaneous transmissions may be scheduled due to its relaxed constraint on the

number of transmit dimensions available. Furthermore, in contrast to the protocol pro-

posed in [380], ours is a two-phase protocol, which is specifically designed for relay-aided

networks and does not limit the number of spatial streams available to each UE.

• Employing the BF matrices calculated from either the full-IA or partial-IA protocols

results in a list of SMCs as in Chapter 4, which correspond to the specific data streams that

the BSs can choose to support. Finding the optimal SMCs as well as the optimal power

control variables associated with these optimal SMCs is formally defined as a network-wide

optimization problem. Unlike in our previous work [330–332], we decompose the network-

wide multi-cell optimization problem in order to formulate a subproblem for each BS

using the technique of primal decomposition [339], thus eliminating the need for the high-

overhead backhaul-aided message passing amongst the BSs. Each of these subproblems

is then converted into a convex form with the aid of various variable relaxations and

transformations, which can then be optimally and distributively solved using the dual

decomposition and subgradient methods of [339].

5.1.3 Chapter Organization

The organization of this chapter is as follows. We introduce our system model in Section 5.2

and describe the proposed transmission protocols in Section 5.3. Subsequently, the EEM

optimization problem considered is formulated in Section 5.4, where the solution method is

developed as well. Our numerical results along with our further discussions are presented

in Section 5.5. Finally, our summary is presented in Section 5.6.
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Figure 5.4: A multi-cell system is depicted on the left. Each cell is divided into three
sectors, and one sector from each of the three neighboring cells are highlighted. This
highlighted region is termed an OCI region. Through the use of directional antennas, it is
assumed that the main source of OCI is caused when the neighboring BSs simultaneously
transmit to a receiver located in its associated OCI region. On the right is a close-up view
of the OCI region, with three BSs at the vertices of its perimeter. Furthermore, each sector

is supported by two RNs and provides coverage for six UEs in this example.

5.2 System Model

In this chapter, a multi-cell DL MIMO-OFDMA network, relying on a radical unity fre-

quency reuse factor is considered. The ubiquitous OFDMA technique is employed for

avoiding the severe frequency-selective fading encountered in wideband communication sys-

tems. Additionally, OFDMA allows for transmission symbol extensions in the frequency-

domain [374], which are required by the proposed IA-based transmission protocol described

in Section 5.3.

As depicted in Fig. 5.4, each macrocell is divided into three sectors, and it is assumed that

the employment of directional antennas and the NLOS path-loss attenuates the interference

power, with the exception of the OCI received from the first tier of interfering cells and

the ICI from the serving BS and RNs of each macrocell. Therefore, we may focus our

attention on the central region seen at the left of Fig. 5.4, which we term as an OCI region.

Thus, each DL transmission within an OCI region is subjected to OCI from two macrocells.

Furthermore, each 120◦-sector of Fig. 5.4 is supported by M RNs, which are located at a

fixed distance from its associated BS and evenly spaced within the sector, as seen at the

right of Fig. 5.4. The ratio of the BS-RN distance to the cell radius is denoted by Dr.

Additionally, K UEs are uniformly distributed within each 120◦-sector. The system has

access to L OFDMA subcarriers, each characterized by a wireless bandwidth of W Hertz.

The BSs, DF RNs, and UEs are respectively equipped with NB, NR and NU antennas.

It is assumed that all BSs and RNs are synchronized, and that the transceivers employ

complex-valued symbol constellations to convey their data.



5.2. System Model 175

UE 1

BS BSHBR,2
1,1HRU,1,1

1,1

HBU,1
1,1

HBR,1
1,1

HBU,2
1,1

HRU,2,1
1,1

Cell 1 Cell 2

RN 1 RN 1

Figure 5.5: An illustration of the links that the channel matrices are associated with.

For each subcarrier l ∈ {1, · · · , L}, the complex-valued channel matrix associated with the

wireless link spanning from the BS of macrocell n′ ∈ {1, 2, 3} to RN m ∈ {1, · · · ,M} be-

longing to macrocell n ∈ {1, 2, 3} is denoted by HBR,l,n′
n,m ∈ CNR×NB . The channel matrix

associated with the link spanning from the BS of macrocell n′ to UE k ∈ {1, · · · ,K} and

belonging to macrocell n on subcarrier l is denoted by HBU,l,n′
n,k ∈ CNU×NB . In this chapter,

superscript indices refer to the transmitter, while subscript indices refer to the receiver.

Additionally, a prime symbol ′ refers to a potentially interfering transmission source. Fur-

thermore, the channel matrix associated with the link between RN m′ belonging to macrocell

n′ and UE k belonging to macrocell n on subcarrier l is denoted by HRU,l,n′,m′
n,k ∈ CNU×NR .

All channel matrices are assumed to have a full rank, as is often the case for wireless DL

channels. For simplicity, the channel matrices associated with the same transceivers are com-

bined across subcarriers to give the block-diagonal channel matrices HBR,n′
n,m ∈ CLNR×LNB ,

HBU,n′
n,k ∈ CLNU×LNB and HRU,n′,m′

n,k ∈ CLNU×LNR , respectively. For example, we have

HBR,n′
n,m :=




HBR,1,n′
n,m 0 0

0
. . . 0

0 0 HBR,L,n′
n,m


 . (5.2)

The links that these channel matrices are associated with are illustrated in Fig. 5.5. The

channel matrices account for both the small-scale frequency-flat Rayleigh fading, as well as

the large-scale path-loss between the corresponding transceivers. In this system model, the

transceivers are either stationary or moving sufficiently slowly for ensuring that the chan-

nel matrices can be considered time-invariant for the duration of a scheduled transmission

period. However, the channel matrices may evolve between each transmission period. Fur-

thermore, it is assumed that the transceivers’ antennas are spaced sufficiently far apart for

ensuring that the associated transmissions experience i.i.d. small-scale fading, which are

drawn from complex i.i.d. normal distributions having a zero mean and a unit variance.

The system uses TDD and hence the associated channel reciprocity may be exploited for
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predicting the CSI of the slowly varying DL channels from the received UL signal. Further-

more, by assuming the availability of low-rate error-free wireless backhaul channels, the CSI

associated with the wireless intra-cell RN-UE links may be fed back to the particular BS in

control, so that it may make the necessary scheduling decisions.

Additionally, each receiver suffers from complex-valued AWGN having a power spectral

density of N0. Due to both regulatory and safety concerns, the maximum instantaneous

transmission power of each BS and each RN is limited, which are denoted by PBmax and PRmax,

respectively. We stipulate the idealized simplifying assumption that OFDMA modulation

and demodulation is performed perfectly for all the information symbols.

In contrast to the single cell system models of Chapter 3 and Chapter 4, the model presented

above is that of a multi-cell network. Unlike in the system model of Chapter 3, in this chapter

the UEs may be supported by RNs positioned anywhere in the cell, rather than only by

the specific RN that is located geographically closest to it. Furthermore, in contrast to the

system model of Chapter 3, MIMO transceivers are employed in this chapter.

5.3 Transmission Protocol Design

Each BS may convey information to the UEs by either using a direct BS-UE link, or by

utilizing a RN to create a two-hop BS-RN and RN-UE link, which requires two transmission

phases. Thus, each transmission period is split into two halves. Due to the simultaneous

transmissions from multiple sources, both the level of ICI and OCI in the network is likely

to be detrimental to the achievable EE. In order to avoid both types of interference, the

technique of IA is employed, which requires the careful design of both the transmit BF

matrices of the BSs and of the RNs, as well as the receive BF matrices of the RNs and

of the UEs. As relaying links may be utilized in this system, the design of these matrices

is different for the two transmission phases. Hence they are described separately in the

following. Additionally, both the full-IA and partial-IA protocols will be described side-by-

side. To elaborate a little further, the full-IA protocol aims for completely avoiding both

the ICI and OCI in both the first and second transmission phases by employing IA, while

the partial-IA protocol only aims for avoiding the ICI in both transmission phases, thus

dispensing with estimating the OCI channel matrices at each receiver.

5.3.1 Beamforming Design for the First Phase

In the first phase, only the BSs are transmitting to both the RNs and the UEs. Therefore,

the only source of interference is constituted by the neighboring BSs associated with the

same OCI region, which may be avoided by carefully designing the transmit BF matrices



5.3.1. Beamforming Design for the First Phase 177

at the BSs, as well as the receive BF matrices at the RNs and the UEs in a distribu-

tive manner. Initially, a trasmit precoding matrix, denoted by AB,n,T1 ∈ CLNB×SB,T1 , is

randomly-generated for each BS n, where SB,T1 is the number of symbols transmitted by

each BS during the first phase, which is accurately defined in Section 5.3.1.3. The matrix

AB,n,T1 has a full column rank and its entries are complex-valued. These transmit precoding

matrices are invoked for reducing the number of transmit dimensions for each BS from LNB

to SB,T1 , thus facilitating IA at the receivers. Furthermore, the columns of these transmit

precoding matrices are normalized so that the power assigned to each transmission remains

unaffected. By employing these transmit precoding matrices, the precoded channel matrices

of the first phase are given by

H̃BR,n′,T1
n,m := HBR,n′

n,m AB,n′,T1 ∈ CLNR×SB,T1
(5.3)

and

H̃BU,n′,T1
n,k := HBU,n′

n,k AB,n′,T1 ∈ CLNU×SB,T1
, (5.4)

respectively for the BS-RN and BS-UE links.

We now define SR and SU as the minimum number of receive dimensions at each RN and

each UE, respectively, which are chosen by the network operator. Furthermore, only the

specific values of SR and SU along with the number of antennas at each network node and

the number of available subcarrier blocks affect the feasibility of IA, while M and K have

no effect.

5.3.1.1 Full-IA Receiver Design

In order to completely avoid the interference arriving from the neighboring BSs during the

first phase, it is necessary for the precoded OCI channel matrices given by (5.3) and (5.4),

to have intersecting left nullspaces. Firstly, the precoded OCI channel matrices may be

concatenated for forming the interference matrices, for example

ĤR,T1
1,m :=

[
H̃BR,2,T1

1,m

∣∣∣H̃BR,3,T1
1,m

]
∈ CLNR×2SB,T1

(5.5)

for RN m in macrocell 1, and

ĤU,T1
2,k :=

[
H̃BU,1,T1

2,k

∣∣∣H̃BU,3,T1
2,k

]
∈ CLNU×2SB,T1

(5.6)

for UE k in macrocell 2. Fig. 5.6 illustrates which links are associated with the OCI channel

matrices. These precoded OCI matrices are associated with a left nullspace of at least SR

and SU dimensions if

LNR − 2SB,T1 ≥ SR (5.7)
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UE 1

BS BS

H̃BR,1
1,1

H̃BU,2
1,1

Cell 1 Cell 2

RN 1 RN 1

H̃BU,1
1,1

H̃BR,2
1,1

Figure 5.6: An illustration of the relevant channel matrices during the first transmission
phase of the full-IA protocol. The solid arrows indicate the direct channels to the RN and

UE of Macrocell 1, while the dashed arrows indicate the OCI channels.

and

LNU − 2SB,T1 ≥ SU , (5.8)

respectively. Therefore, to guarantee SR and SU receive dimensions at the RNs and UEs,

respectively, SB,T1 is derived as

SB,T1 =

⌊
min

(
LNR − SR

2
,
LNU − SU

2

)⌋
. (5.9)

The intersecting left nullspace may be found using the SVD on ĤR,T1
n,m and ĤU,T1

n,k , for RN m

and UE k in macrocell n, respectively. For example, the SVD of ĤR,T1
n,m may be written as

UR,T1
n,m SR,T1n,m

(
VR,T1
n,m

)H
, (5.10)

where UR,T1
n,m ∈ CLNR×LNR is the left singular matrix containing, as its columns, the left

singular vectors of ĤR,T1
n,m , while SR,T1n,m ∈ RLNR×2SB,T1

+ is a rectangular diagonal matrix

whose diagonal entries are the singular values of ĤR,T1
n,m ordered in descending value, and

VR,T1
n,m ∈ C2SB,T1×2SB,T1 is the right singular matrix containing, as its columns, the right

singular vectors of ĤR,T1
n,m . The intersecting left nullspace may then be obtained as the(

LNR − 2SB,T1
)

rightmost columns of UR,T1
n,m (corresponding to the zero singular values),

and this is used as the receive BF matrices, RR,T1
n,m , for RN m in macrocell n. A similar

procedure is performed for obtaining the receive BF matrices, RU,T1
n,k , for UE k in macrocell

n in the first phase, where the
(
LNU − 2SB,T1

)
rightmost columns of the corresponding left

singular matrix are selected.

To summarize, the cost of implementing the full-IA protocol in the first transmission phase

is the reduction of the number of available spatial transmission streams at each BS from

LNB to SB,T1 . Thus, if the RNs and UEs require a large number of spatial streams, the BSs

have to substantially reduce the number of transmitted streams in order to accommodate

IA. However, it is clear that SB,T1 should be higher than 0 to ensure that the BSs become
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capable of transmitting. Following this procedure, the

3SB,T1 − SR (5.11)

and

3SB,T1 − SU (5.12)

total interference signal dimensions received at each RN and at each UE respectively have

each been aligned to 2SB,T1 dimensions, leaving

LNR − 2SB,T1 ≥ SR (5.13)

and

LNU − 2SB,T1 ≥ SU (5.14)

receive signal dimensions free from interference at the RNs and UEs, respectively. Thus,

IA has been successfully employed for reducing the number of spatial dimensions that the

interference signals occupy.

5.3.1.2 Partial-IA Receiver Design

Using this design philosophy, the OCI encountered during the first phase is ignored when

designing the receive BF matrices. However, since there is no ICI in the first phase since

only the BSs are transmitting, there is no need to reduce the number of transmit dimensions

at the BSs. Therefore,

SB,T1 = LNB (5.15)

is chosen. Furthermore, the matched filter receiver design is adopted for maximizing the

achievable SE [317]. In this case, the SVD is performed on the intra-cell precoded channel

matrices, yielding for example

H̃BR,n,T1
n,m = UBR,n,T1

n,m SBR,n,T1n,m

(
VBR,n,T1
n,m

)H
(5.16)

and

H̃BU,n,T1
n,k = UBU,n,T1

n,k SBU,n,T1n,k

(
VBU,n,T1
n,k

)H
, (5.17)

respectively, and the SR (resp. SU ) leftmost left (thus corresponding to the highest singular

values) singular vectors are selected as the receive BF matrices for the RNs (resp. UEs) in

the first phase. Fig. 5.7 illustrates the channel matrices, which are employed for computing

the receive BF matrices.

In summary, IA is not required during the first transmission phase of the partial-IA protocol,

since the only transmitter within the same cell is the associated BS. Therefore, it is not
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UE 1

BS BS

H̃BU,1
1,1

H̃BR,1
1,1

Cell 1 Cell 2

RN 1 RN 1

Figure 5.7: An illustration indicating the direct channel matrices employed for computing
the receive BF matrices during the first transmission phase of the partial-IA protocol.

necessary for the BSs to reduce the number of transmit dimensions available to them for

the sake of avoiding interference.

5.3.1.3 Scheduling and Transmitter Design

Having designed the receive BF matrices, the effective DL channel matrices can be written

as

H
BR,n,T1
n,m :=

(
RR,T1
n,m

)H
H̃BR,n,T1
n,m (5.18)

or

H
BU,n,T1
n,k :=

(
RU,T1
n,k

)H
H̃BU,n,T1
n,k (5.19)

for RN m and UE k in macrocell n, respectively. We term the rows of these matrices as

the SMCs of the associated transceivers, since each SMC corresponds to a distinct virtual

MISO channel between the associated transmitter as well as receiver, and then multiple

MISOs can be multiplexed for composing a MIMO channel. A set of SMCs is generated for

each of the two transmission phases, and each BS then distributively groups these SMCs

according to the orthogonal component-based grouping algorithm of Section 4.5.2, given a

semi-orthogonality parameter α. For the first transmission phase, up to

min
(
SB,T1 ,KLNU +MLNR

)
(5.20)

SMCs may be served simultaneously by each BS, while avoiding ICI. The set of groupings

available for BS n is denoted by Gn. Note that, each group additionally contains the SMCs

selected for the second phase, as was discussed in Section 4.4. The SMCs belonging to

group j, which are denoted by En,j , are then the rows of the effective scheduled DL matrix,

denoted by HB,n,j,T1 for macrocell n. In order to avoid ICI between these selected SMCs

of group j, macrocell n applies the normalized ZFBF matrix given by the normalized right
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channel inverse

TB,n,j,T1 =
(
HB,n,j,T1

)H [
HB,n,j,T1

(
HB,n,j,T1

)H]−1 (
WB,n,j,T1

) 1
2 , (5.21)

before using its transmit precoding matrix AB,n. Furthermore,
(
WB,n,j,T1

) 1
2 is a real-

valued diagonal matrix, which normalizes the columns of TB,n,j,T1 for ensuring that the

power assigned to each transmission remains unaffected.

The effective end-to-end channel power gains are then given by the squares of the diagonal

entries in
(
WB,n,j,T1

) 1
2 . For SMC e1 in group j of macrocell n corresponding to a direct

first phase BS-UE link, the effective channel power gain is denoted by wBU,n,j,T1n,e1 , while the

effective channel power gain of the OCI link, originating from macrocell n′ serving SMC

group j′ to UE k in macrocell n, is obtained from the element of

∣∣∣∣
(
RU,T1
n,k

)H
H̃BU,n′,T1
n,k TB,n′,j′,T1

∣∣∣∣
2

(5.22)

corresponding to SMC e1 at UE k of macrocell n, and is denoted by wBU,n
′,j′,T1

n,e1 . In the

case of the full-IA protocol, all OCI is avoided, thus wBU,n
′,j′,T1

n,e1 = 0, ∀n′ 6= n. The effective

channel power gains for the BS-to-RN links, corresponding to SMC-pair e, may be similarly

obtained and are denoted by wBR,n,j,T1n,e , whereas an OCI link is denoted by wBR,n
′,j′,T1

n,e .

Note that relaying links contain both a SMC for the BS-RN link and a SMC for the RN-UE

link as discussed in Section 4.4.

5.3.2 Beamforming Design for the Second Phase

During the second phase, both the BSs and the RNs may transmit. Therefore, in a sim-

ilar fashion to the first phase, the BS in cell n adopts the precoding matrix AB,n,T2 ∈
CLNB×SB,T2 , while RN m in cell n adopts the transmit precoding matrix AR,n,m,T2 ∈
CLNR×SR

, which are again complex-valued matrices having a full column-rank. Addition-

ally, the columns of these transmit precoding matrices are normalized. Due to the additional

interference imposed by the transmissions of the RNs, it is necessary to reduce the number of

transmit dimensions at the BSs even further in order to facilitate IA at the DL receivers. Ad-

ditionally, note that each transmit precoding matrix used at the RNs consist of SR columns,

since the information received by each RN during the first phase must be conveyed to the

intended UE. The precoded channel matrices used during the second phase are thus given

by (note that the transmitter indices are n′ and m′, since these may be inter-cell channel

matrices)

H̃RU,n′,m′,T2
n,k := HRU,n′,m′

n,k AR,n′,m′,T2 ∈ CLNU×SR
(5.23)
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and

H̃BU,n′,T2
n,k := HBU,n′

n,k AB,n′,T2 ∈ CLNU×SB,T2
. (5.24)

5.3.2.1 Full-IA Receiver Design

The receiver design used during the second phase depends on whether the BS or a RN

is selected to serve each UE within the same macrocell. Each of the (1 + M) possible

transmitters may be examined for the sake of finding the most beneficial choice. For example,

assuming that BS 1 transmits to UE k during the second phase, the OCI and ICI channel

matrices may be concatenated to form

ĤBU,1,T2
1,k : =

[
H̃BU,2,T2

1,k

∣∣∣ H̃BU,3,T2
1,k

∣∣∣H̃RU,1,1,T2
1,k

∣∣∣ · · ·
∣∣∣H̃RU,1,M,T2

1,k∣∣∣H̃RU,2,1,T2
1,k

∣∣∣ · · ·
∣∣∣H̃RU,2,M,T2

1,k

∣∣∣H̃RU,3,1,T2
1,k

∣∣∣ · · ·
∣∣∣H̃RU,3,M,T2

1,k

]
∈ CLNU×(2SB,T2+3MSR).

(5.25)

However, when assuming for example, that RN 1 of macrocell n transmits to UE k, the

combined interference matrix is defined by

ĤRU,n,1,T2
n,k : =

[
H̃BU,1,T2
n,k

∣∣∣ H̃BU,2,T2
n,k

∣∣∣H̃BU,3,T2
n,k

∣∣∣H̃RU,1,2,T2
n,k

∣∣∣ · · ·
∣∣∣H̃RU,1,M,T2

n,k∣∣∣H̃RU,2,1,T2
n,k

∣∣∣ · · ·
∣∣∣H̃RU,2,M,T2

n,k

∣∣∣H̃RU,3,1,T2
n,k

∣∣∣ · · ·
∣∣∣H̃RU,3,M,T2

n,k

]

∈ CLNU×[3SB,T2+(3M−1)SR].

(5.26)

Therefore, in order to guarantee having SU receive dimensions at each UE, we have

SB,T2 =

⌊
min

(
LNU − SU − 3MSR

2
,
LNU − SU − (3M − 1)SR

3

)⌋
. (5.27)

In both cases described above, the SVD may again be employed for finding the intersecting

left nullspace of the precoded interference matrix. The receive BF matrix, RU,T2
n,k , at UE k in

macrocell n used during the second phase is then given by the rightmost (thus corresponding

to its zero singular values) LNU −
(
2SB,T2 + 3MSR

)
number of columns in the left singular

matrix of ĤBU,1,T2
1,k , when the BS is the activated transmitter. By contrast, when assuming

that RN 1 is the activated transmitter, the rightmost

min
(
SR, LNU −

[
3SB,T2 + (3M − 1)SR

])
(5.28)

number of columns in the ordered left singular matrix of ĤRU,n,1,T2
n,k specify the receive BF

matrix. Fig. 5.8 illustrates the relevant interference links when either the BS or an RN is

selected as the activated transmitter.
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UE 1

BS BS

H̃BU,2
1,1

H̃RU,2,1
1,1

Cell 1 Cell 2

RN 1 RN 1

H̃RU,1,1
1,1

H̃BU,1
1,1

(a) When the BS is selected as the activated transmitter, the channel matrices asso-
ciated with the links to all RNs and other BSs need to be considered when computing
the IA receive BF matrix.

UE 1

BS BS

H̃BU,2
1,1

H̃RU,2,1
1,1

Cell 1 Cell 2

RN 1 RN 1

H̃RU,1,1
1,1

H̃BU,1
1,1

(b) When a RN is selected as the activated transmitter, the channel matrices associ-
ated with the links to all BSs and other RNs need to be considered when computing
the IA receive BF matrix.

Figure 5.8: An illustration of the relevant links and their associated channel matrices
when computing the receive BF matrices employed during the second phase of the full-IA

protocol.

In conclusion, the BSs once again have to reduce the number of spatial transmission streams

available to them in order to facilitate IA. In this case, their number is reduced from LNB to

SB,T2 . Additionally, each RN reduces the number of streams available for them to transmit

from LNR to SR. On one hand, when the BS is selected as the active transmitter for a

particular UE using the full-IA protocol, a total of

3SB,T2 + 3MSR − SU (5.29)

interference signal dimensions are aligned to

2SB,T2 + 3MSR (5.30)

signal dimensions, leaving

LNU −
(
2SB,T2 + 3MSR

)
≥ SU (5.31)
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signal dimensions free from interference. Thus, IA has been successfully employed. On the

other hand, when a RN is selected as the activated transmitter for a particular UE, there is

a total of

3SB,T2 + 3MSR − SU (5.32)

interference signal dimensions, which are aligned to

3SB,T2 + 3MSR − SR (5.33)

signal dimensions. Therefore, IA is only feasible at the UEs if we have SR > SU . The

constraint given by

LNU −
(
3SB,T2 + 3MSR

)
− SR > SR (5.34)

is additionally enforced in the full-IA protocol, so that the CCI can still be nulled when

SR ≤ SU and a RN is selected as the active transmitter. However, IA is not employed in

this case.

5.3.2.2 Partial-IA Receiver Design

Although the effects of OCI are ignored when using this protocol, the ICI must be avoided.

Thus, the interference matrix, assuming for example that the BS is the selected transmitter

for UE k in macrocell 1, is then given by

ĤBU,1,T2
1,k :=

[
H̃RU,1,1,T2

1,k

∣∣∣ · · ·
∣∣∣H̃RU,1,M,T2

1,k

]
∈ CLNU×MSR

. (5.35)

By contrast, if RN 1 of macrocell n is selected as the transmitter for UE k, then the

interference matrix is given by

ĤRU,n,1,T2
n,k :=

[
H̃BU,1,T2
n,k

∣∣∣ H̃RU,n,2,T2
n,k

∣∣∣ · · ·
∣∣∣H̃RU,n,M,T2

n,k

]

∈ CLNU×[SB,T2+(M−1)SR], (5.36)

which implies that

SB,T2 = LNU − SU − (M − 1)SR (5.37)

is satisfied for ensuring that the UEs are capable of finding approximate receive BF matrices,

which completely null the ICI.

Thus, UE k may employ the LNU −MSR number of rightmost left singular columns in

ĤBU,1,T2
1,k as its receive BF matrix, when the BS is the activated transmitter. By contrast,

assuming that RN 1 is the activated transmitter, the

min
(
SR, LNU −

[
SB,T2 + (M − 1)SR

])
(5.38)
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UE 1

BS BSH̃RU,1,1
1,1

H̃BU,1
1,1

Cell 1 Cell 2

RN 1 RN 1

(a) When the BS is selected as the activated transmitter, the channel matrices as-
sociated with the links to all RNs within the same macrocell need to be considered
when computing the IA receive BF matrix.

UE 1

BS BSH̃RU,1,1
1,1

H̃BU,1
1,1

Cell 1 Cell 2

RN 1 RN 1

(b) When a RN is selected as the activated transmitter, the channel matrix asso-
ciated with the links to the BS and other RNs with the same macrocell need to be
considered when computing the IA receive BF matrix.

Figure 5.9: An illustration of the relevant links and their associated channel matrices
when computing the receive BF matrices employed during the second phase of the partial-

IA protocol.

number of rightmost left singular columns in ĤRU,n,1,T2
n,k specify the receive BF matrix.

Fig. 5.9 illustrates the relevant interference links when either the BS or an RN is selected

as the activated transmitter.

To summarize, the BSs reduce the number of spatial streams available to them from LNB

to SB,T2 , while the RNs reduce the number of their spatial streams from LNR to SR. On

one hand, when the BS is selected as the active transmitter for the partial-IA protocol, a

total of

SB,T2 +MSR − SU (5.39)

interference signal dimensions are aligned to MSR signal dimensions, leaving

LNU −MSR ≥ SU (5.40)

signal dimensions free from interference. Thus, IA has been successfully employed. On the
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other hand, when a RN is selected as the activated transmitter, there are a total of

SB,T2 +MSR − SU (5.41)

interference signal dimensions, which are aligned to

SB,T2 +MSR − SR (5.42)

signal dimensions. Therefore, IA is only feasible for SR > SU . However, the aforementioned

receive BF matrices are still capable of nulling the CCI, when a RN is selected as the active

transmitter in the partial-IA protocol and we have SR ≤ SU . But in this case the constraint

given by (5.34) is not required, since it is already satisfied by (5.37).

5.3.2.3 Scheduling and Transmitter Design

In a similar fashion to the first phase, the effective DL channel matrices are given by

H
RU,n,m,T2
n,k :=

(
RU,T2
n,k

)H
H̃RU,n,m,T2
n,k (5.43)

and

H
BU,n,T2
n,k :=

(
RU,T2
n,k

)H
H̃BU,n,T2
n,k , (5.44)

when the BS or RN m is activated as the transmitter for UE k belonging to macrocell n,

respectively. The rows of the DL transmit BF matrices corresponding to each transmitter

form the SMCs for that transmitter, and they may be grouped at each BS according to the

semi-orthogonal user selection algorithm described above. Furthermore, in the second phase,

each BS can select up to min
(
SB,T2 ,KLNU

)
number of SMCs to serve simultaneously while

avoiding ICI, whereas each RN may select min
(
SR,KLNU

)
number of SMCs. At BS n (or

RN m of macrocell n), the selected SMCs of group j form the rows of its effective scheduled

DL matrix, denoted by HB,n,j,T2 (or HR,n,m,j,T2). The ZFBF matrix employed by BS n or

by RN m of macrocell n in the second phase is then given by the right inverse

TB,n,j,T2 =
(
HB,n,j,T2

)H [
HB,n,j,T2

(
HB,n,j,T2

)H]−1 (
WB,n,j,T2

) 1
2 (5.45)

or

TR,n,m,j,T2 =
(
HR,n,m,j,T2

)H [
HR,n,m,j,T2

(
HR,n,m,j,T2

)H]−1 (
WR,n,m,j,T2

) 1
2 , (5.46)

respectively, where the real-valued diagonal matrices of
(
WB,n,j,T2

) 1
2 and

(
WR,n,m,j,T2

) 1
2

are required for normalizing the columns of TB,n,j,T2 and TR,n,m,j,T2 , respectively.

The effective channel power gains in the second phase are thus given by the squares of the
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diagonal entries in
(
WB,n,j,T2

) 1
2 and

(
WR,n,m,j,T2

) 1
2 . The effective channel power gain of a

BS-UE SMC e2 of group j associated with macrocell n and UE k is denoted by wBU,n,j,T2n,e2 ,

while the RN-UE effective channel power gain of SMC-pair e associated with RN m of

macrocell n and UE k may be denoted by wRU,n,m,j,T2n,e . Similar to the first phase, the

effective channel power gain of the OCI link originating from the BS of macrocell n′ serving

group j′ to UE k in macrocell n, is obtained from the specific element of

∣∣∣∣
(
RU,T2
n,k

)H
H̃BU,n′,T2
n,k TB,n′,j′,T2

∣∣∣∣
2

(5.47)

corresponding to SMC e2 at UE k of macrocell n, which is denoted by wBU,n
′,j′,T2

n,e2 . On the

other hand, the effective channel power gain of the OCI link, originating from RN m′ of

macrocell n′ serving group j′ to UE k of macrocell n, is obtained from the element of

∣∣∣∣
(
RU,T2
n,k

)H
H̃RU,n′,m′,T2
n,k TR,n′,m′,j,T2

∣∣∣∣
2

(5.48)

corresponding to SMC e at UE k of macrocell n, and is denoted by wRU,n
′,m′,j′,T2

n,e . In the

case of the full-IA protocol, all OCI is avoided, thus we have wBU,n
′,j′,T2

n,e2 = wRU,n
′,m′,j′,T2

n,e =

0, ∀n′ 6= n. The procedures for the full-IA and the partial-IA protocols are outlined in

Tables 5.1 and 5.2. Furthermore, an illustration of the transmit BF matrices and receive

BF matrices employed in both transmission phases is presented in Fig. 5.10.

5.3.3 Achievable Spectral Efficiency and Energy Efficiency

Since we have mathematically decomposed the MIMO channels into effective SISO channels,

we may directly employ the Shannon capacity bound for characterizing the achievable EE

performance, rather than relying on bounds derived for MIMO channels [391]. We begin by

defining the SINR of the direct link SMCs belonging to group j and intended for UE k of

macrocell n during the first and the second phase as

ΓBU,n,j,T1n,e1 (P,S) =
wBU,n,j,T1n,e1 PB,n,j,T1n,e1

∆γ
(
N0LW + IU,T1n,e1

) (5.49)

and

ΓBU,n,j,T2n,e2 (P,S) =
wBU,n,j,T2n,e2 PB,n,j,T2n,e2

∆γ
(
N0LW + IU,T2n,e2

) , (5.50)
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(a) Transmit BF matrices and receive BF matrices employed in the first transmission phase.
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(b) Transmit BF matrices and receive BF matrices employed in the second transmission phase.

Figure 5.10: An illustration of the transmit BF matrices and receive BF matrices employed
in both transmission phases.
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Table 5.1: The procedure of the full-IA protocol.

Algorithm 1 Full-IA protocol

1: for n from 1 to 3
2: Create precoding matrices for the BS, AB,n,T1 and AB,n,T2 .
3: for m from 1 to M

4: Compute the OCI matrix, ĤR,T1
n,m , for the first phase.

5: Using the SVD, find the left nullspace of ĤR,T1
n,m for use as the receive BF matrix,

RR,T1
n,m , in the first phase. Compute the effective DL channel matrix, H

BR,n,T1
n,m .

6: Create precoding matrix, AR,n,m,T2 .
7: end for
8: for k from 1 to K

9: Compute the OCI matrix, ĤU,T1
n,k , for the first phase.

10: Using the SVD, find the left nullspace of ĤU,T1
n,k for use as the receive BF matrix,

RU,T1
n,m . Compute the effective DL matrix, H

BU,n,T1
n,k .

11: Compute the ICI plus OCI matrix for the second phase assuming the

BS is chosen as the transmitter, ĤBU,n,T2
n,k . Use the SVD to compute the

receive BF matrix, RU,T2
n,k . Compute the effective DL channel matrix, H

BU,n,T2
n,k .

12: Compute the ICI plus OCI matrix for the second phase assuming the

RN m is chosen as the transmitter, ĤRU,n,m,T2
n,k . Use the SVD to compute the

receive BF matrix, RU,T2
n,k . Compute the effective DL channel matrix, H

RU,n,m,T2
n,k .

13: end for
14: Use the semi-orthogonal user selection algorithm [324,359]

to compute SMC groups, Gn.
15: for each j in Gn
16: Compute the ZFBF matrices, TB,n,j,T1 , TB,n,j,T2 and TR,n,m,j,T2 . Compute the

effective channel power gains.
17: end for each
18: end for

respectively, where the total received OCI in the first and second phase has been denoted

by

IU,T1n,e1 (P,S) =
∑

n′=1
n′ 6=n

∑

j′∈Gn′
sn
′,j′wBU,n

′,j′,T1
n,e1


 ∑

e′1∈En
′,j′
PB,n

′,j′,T1
n′,e′1

+
∑

e′∈En′,j′
PB,n

′,j′,T1
n′,e′


 (5.51)

and

IU,T2n,e2 (P,S) =
∑

n′=1
n′ 6=n

∑

j′∈Gn′
sn
′,j′wBU,n

′,j′,T2
n,e2

∑

e′2∈En
′,j′
PB,n

′,j′,T2
n′,e′2

+
∑

n′=1
n′ 6=n

∑

j′∈Gn′
sn
′,j′

∑

e′∈En′,j′
wRU,n

′,M(e′),j′,T2
n,e2 P

R,n′,M(e′),j′,T2
n,e′ , (5.52)
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Table 5.2: The procedure of the partial-IA protocol.

Algorithm 2 Partial-IA protocol

1: for n from 1 to 3
2: Create precoding matrices for the BS, AB,n,T1 and AB,n,T2 .
3: for m from 1 to M

4: Compute the DL channel matrix, H̃BR,n,T1
n,m .

5: Using the SVD, find the leftmost left singular vectors of ĤR,T1
n,m for use

as the receive BF matrix, RR,T1
n,m , in the first phase. Compute the effective DL

channel matrix, H
BR,n,T1
n,m .

6: Create precoding matrix AR,n,m,T2 .
7: end for
8: for k from 1 to K

9: Compute the DL channel matrix H̃BU,n,T1
n,k .

10: Using the SVD, find the left nullspace of ĤU,T1
n,k for use as the receive BF matrix,

RU,T1
n,m . Compute the effective DL matrix, H

BU,n,T1
n,k .

11: Compute the ICI matrix for the second phase assuming the BS is chosen

as the transmitter, ĤBU,n,T2
n,k . Use the SVD to compute the receive BF matrix, RU,T2

n,k .

Compute the effective DL channel matrix, H
BU,n,T2
n,k .

12: Compute the ICI matrix for the second phase assuming the RN m is

chosen as the transmitter, ĤRU,n,m,T2
n,k . Use the SVD to compute the

receive BF matrix, RU,T2
n,k . Compute the effective DL channel matrix, H

RU,n,m,T2
n,k .

13: end for
14: Use the semi-orthogonal user selection algorithm [324,359]

to compute SMC groups, Gn.
15: for each j in Gn
16: Compute the ZFBF matrices, TB,n,j,T1 , TB,n,j,T2 and TR,n,m,j,T2 . Compute the

effective channel power gains.
17: end for each
18: end for

respectively. As in Chapter 4, M (e) is a function of e, representing the RN index (similar

to m used before) associated with the SMC-pair e. For simplicity, the interference that

was not avoided using IA is treated as noise. Although not the case in this chapter, if the

level of interference is strong enough, then more sophisticated methods, such as multiuser

detection, may be employed. The set P contains the power control variables denoted by

PB,n,j,T1n,e1 , PB,n,j,T1n,e , PB,n,j,T2n,e2 , and PR,n,m,j,T2n,e , ∀n, e1, e2, e. On the other hand, the set S
contains the group selection indicator variables, sn,j , ∀n, j, where sn,j = 1, when the SMC

group j has been selected for macrocell n, and sn,j = 0 otherwise. The total noise power

across all subcarriers is given by N0LW , while ∆γ is the SNR difference between the SNR

at the DCMC capacity and the actual SNR required by the specific MCS of the practical

physical layer transceivers employed [351].

The SINR of the BS-RN SMC e belonging to group j of macrocell n and intended for RN
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m may be expressed as

ΓBR,n,j,T1n,e (P,S) =
wBR,n,j,T1n,e PB,n,j,T1n,e

∆γ
(
N0LW + IR,T1n,e

) , (5.53)

while the SINR of the corresponding RN-UE link may be formulated as

ΓRU,n,m,j,T2n,e (P,S) =
wRU,n,m,j,T2n,e PR,n,m,j,T2n,e

∆γ
(
N0LW + IU,T2n,e

) , (5.54)

where the total received OCI of the BS-RN and RN-UE links are given by

IR,T1n,e (P,S) =
∑

n′=1
n′ 6=n

∑

j′∈Gn′
sn
′,j′wBR,n

′,j′,T1
n,e


 ∑

e′1∈En
′,j′
PB,n

′,j′,T1
n′,e′1

+
∑

e′∈En′,j′
PB,n

′,j′,T1
n′,e′


 (5.55)

and

IU,T2n,e (P,S) =
∑

n′=1
n′ 6=n

∑

j′∈Gn′
sn
′,j′wBU,n

′,j′,T2
n,e

∑

e′2∈En
′,j′
PB,n

′,j′,T2
n′,e′2

+
∑

n′=1
n′ 6=n

∑

j′∈Gn′
sn
′,j′

∑

e′∈En′,j′
wRU,n

′,M(e′),j′,T2
n,e P

R,n′,M(e′),j′,T2
n′,e′ , (5.56)

respectively.

The achievable SE of the direct first and second phase transmissions can be respectively

written as

CBU,n,j,T1n,e1 (P,S) =
1

2
log2

(
1 + ΓBU,n,j,T1n,e1

)
(5.57)

and

CBU,n,j,T2n,e2 (P,S) =
1

2
log2

(
1 + ΓBU,n,j,T2n,e2

)
, (5.58)

where the pre-log factor of 1
2 accounts for the fact that the transmission period has been

split into two phases. When using the DF protocol, the achievable SE of the relaying link

is limited by the weaker of the BS-RN and RN-UE links as described in Section 1.4, and is

given by

CBRU,n,m,jn,e (P,S) = min

[
1

2
log2

(
1 + ΓBR,n,j,T1n,e

)
,
1

2
log2

(
1 + ΓRU,n,m,j,T2n,e

)]
. (5.59)

Thus, the total achievable SE of macrocell n is given by

CnT (P,S) =
∑

j∈Gn
sn,j


 ∑

e1∈En,j

CBU,n,j,T1n,e1 +
∑

e2∈En,j

CBU,n,j,T2n,e2 +
∑

e∈En,j

CBRU,n,M(e),j
n,e


 . (5.60)
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Furthermore, we adopt the simplified energy dissipation model of Section 4.4 in order to

formulate the total energy dissipation in macrocell n as

PnT (P,S) =
(
PBC +MPRC

)
+

1

2

∑

j∈Gn
sn,jξB


 ∑

e1∈En,j

PB,n,j,T1n,e1 +
∑

e2∈En,j

PB,n,j,T2n,e2




+
1

2

∑

j∈Gn
sn,j

∑

e∈En,j

(
ξBPB,n,j,T1n,e + ξRPR,n,M(e),j,T2

n,e

)
. (5.61)

The effect of the number of transmit antennas, of the energy dissipation of the RF as well

as of the baseband circuits, and the efficiencies of the power amplifier, feeder cables, cooling

system, mains power supply, and converters has been accounted for in the fixed energy

dissipation terms of PBC and PRC , while the transmit power dependent terms ξB and ξR are

associated with the BS n and its RNs, respectively.

Thus, the EE of macrocell n is given by

ηnE (P,S) =
CnT (P,S)

PnT (P,S)
. (5.62)

In the sequel, our aim is to maximize (5.62) for each macrocell n by the careful optimization

of the variables contained within P and S. We define the average EE of the multicell system

as

ηE (P,S) =
1

3

3∑

n=1

ηnE (P,S) , (5.63)

so that the average EE of the system can be optimized by individually maximizing each

macrocell’s EE, as it will be discussed in the following.

In contrast to the MIMO transmission protocol of Chapter 4, in this chapter we have em-

ployed the IA technique for the sake of avoiding some or all of the CCI present in the network.

This was accomplished by using interference-nulling beamforming matrices at the receivers

instead of the SVD-based beamforming matrices of Chapter 4, which were designed for

increasing the number of SMCs satisfying the semi-orthogonality constraint of (4.25). Fur-

thermore, in order to facilitate IA at the receivers, the transmitters in the network employ

precoding matrices, which reduce the number of spatial dimensions available to them. Then,

in a similar fashion to the transmission protocol presented in Chapter 4, the transmitters

employ ZFBF and normalization matrices for the sake of avoiding inter-stream interference.

The objective function of (5.63) is formulated as the average of each cell’s EE, whereas in

Chapter 4, the objective function was formed as the EE of a single cell. Moreover, (5.63)

features interference terms, which were not present in the previous chapters.
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5.4 Optimization Problem Formulation and

Solution Algorithm

In this section, our aim is to optimize the objective function (5.63). We formally describe

the optimization problem as

maximize
P,S

(5.63) (5.64)

subject to
∑

j∈Gn
sn,j ≤ 1, ∀n, (5.65)

∑

j∈Gn
sn,j


 ∑

e1∈En,j

PB,n,j,T1n,e1 +
∑

e∈En,j

PB,n,j,T1n,e


 ≤ PBmax, ∀n, (5.66)

∑

j∈Gn
sn,j

∑

e2∈En,j

PB,n,j,T2n,e2 ≤ PBmax, ∀n, (5.67)

∑

j∈Gn
sn,j

∑

e∈En,j

M(e)=m

PR,n,m,j,T2n,e ≤ PRmax, ∀n,m, (5.68)

sn,j ∈ {0, 1} , ∀n, j, (5.69)

PB,n,j,T1n,e1 , PB,n,j,T1n,e , PB,n,j,T2n,e2 , PR,n,m,j,T2n,e ≥ 0, ∀n, j, e1, e2, e. (5.70)

To elaborate, (5.63) is maximized by appropriately optimizing the decision variables con-

tained within the sets P and S. The constraint (5.65) ensures that each macrocell only

serves a single SMC group, thus the ICI is completely avoided. The constraints (5.66)–(5.68)

require that none of the transmitters exceeds its maximum transmission power constraint.

Observe that two constraints are needed for each BS, since each BS transmits in both phases,

whereas the RNs only transmit during the second phase. Furthermore, the constraint (5.69)

reflects the binary constraint imposed on the sn,j variables, while the constraints (5.70)

ensures that the power control variables are non-negative.

5.4.1 Concave Problem Formulation

Observe that in both the full-IA and partial-IA protocols, the OCI terms are negligible or

zero, if perfect CSI is available. Therefore, each macrocell’s EE is independent of the decision

variables associated with other macrocells, and the optimization problem can be split using

the primal decomposition method described in Section 2.7, and solved distributively, where

each macrocell optimizes its own EE. It can be readily proven that the objective function is

nonlinear and involves binary variables. Thus, the optimization problem of (5.64)–(5.70) is a

MINLP problem, which can be solved using the branch-and-bound method of Section 2.4.2.

In order to mitigate the heavy computational burden that this method entails, we relax the
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binary constraint (5.69) imposed on the variables sn,j by replacing it with

0 ≤ sn,j ≤ 1, ∀n, j, (5.71)

as it was similarly performed in Sections 3.3 and 4.6. Additionally, we introduce the auxiliary

variables

P̃B,n,j,T1n,e1 = tnsn,jPB,n,j,T1n,e1 , (5.72)

P̃B,n,j,T1n,e = tnsn,jPB,n,j,T1n,e , (5.73)

P̃B,n,j,T2n,e2 = tnsn,jPB,n,j,T2n,e2 , (5.74)

P̃R,n,m,j,T2n,e = tnsn,jPR,n,m,j,T2n,e , (5.75)

s̃n,j = tnsn,j , ∀n, j, e1, e2, e, (5.76)

where tn is given by

tn =


(PBC +MPRC

)
+

1

2

∑

j∈Gn
ξB


 ∑

e1∈En,j

P̃B,n,j,T1n,e1 +
∑

e2∈En,j

P̃B,n,j,T2n,e2




+
1

2

∑

j∈Gn

∑

e∈En,j

(
ξBP̃B,n,j,T1n,e + ξRP̃R,n,m,j,T2n,e

)


−1

. (5.77)

Note that we have applied the Charnes-Cooper variable transformation of Section 2.4.3.5

using the variable tn for each BS n. In a similar manner to Section 4.6, the auxiliary SE

variables C̃BU,n,j,T1n,e1 , C̃BU,n,j,T2n,e2 and C̃BRU,n,m,jn,e are introduced, so that we may rewrite the

optimization problem of (5.64)–(5.70) in the hypograph form given by

maximize
P̃n,S̃n,C̃n

∑

j∈Gn


 ∑

e1∈En,j

C̃BU,n,j,T1n,k,e1
+

∑

e2∈En,j

C̃BU,n,j,T2n,k,e2
+
∑

e∈En,j

C̃
BRU,n,M(e),j
n,k,e


 (5.78)

s̃n,j

2
log2

(
1 +

wBU,n,j,T1n,e1 P̃B,n,j,T1n,e1

s̃n,j∆γN0LW

)
≥ C̃BU,n,j,T1n,e1 , ∀j, e1, (5.79)

s̃n,j

2
log2

(
1 +

wBU,n,j,T2n,e2 P̃B,n,j,T2n,e2

s̃n,j∆γN0LW

)
≥ C̃BU,n,j,T2n,e2 , ∀j, e2, (5.80)

s̃n,j

2
log2

(
1 +

wBR,n,j,T1n,e P̃B,n,j,T1n,e

s̃n,j∆γN0LW

)
≥ C̃BRU,n,M(e),j

n,e , ∀j, e, (5.81)

s̃n,j

2
log2

(
1 +

w
RU,n,M(e),j,T2
n,e P̃

R,n,M(e),j,T2
n,e

s̃n,j∆γN0LW

)
≥ C̃BRU,n,M(e),j

n,e , ∀j, e,(5.82)

∑

j∈Gn
s̃n,j ≤ tn, (5.83)
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∑

j∈Gn


 ∑

e1∈En,j

P̃B,n,j,T1n,e1 +
∑

e∈En,j

P̃B,n,j,T1n,e


 ≤ tn · PBmax, (5.84)

∑

j∈Gn

∑

e2∈En,j

P̃B,n,j,T2n,e2 ≤ tn · PBmax, (5.85)

∑

j∈Gn

∑

e∈En,j

M(e)=m

P̃R,n,m,j,T2n,e ≤ tn · PRmax, ∀m, (5.86)

0 ≤ s̃n,j ≤ t, ∀j, (5.87)

P̃B,n,j,T1n,e1 , P̃B,n,j,T2n,e2 , P̃B,n,j,T1n,e P̃R,n,m,j,T2n,e ≥ 0, ∀j, e1, e2, e, (5.88)

tn ·
(
PBC +M · PRC

)
+

1

2

∑

j∈Gn
ξB


 ∑

e1∈En,j

P̃B,n,j,T1n,e1 +
∑

e2∈En,j

P̃B,n,j,T2n,e2




+
1

2

∑

j∈Gn

∑

e∈En,j

(
ξBP̃B,n,j,T1n,e + ξRP̃R,n,m,j,T2n,e

)
= 1, (5.89)

∀n, where P̃n, S̃n and C̃n denote the variable sets containing the auxiliary variables that are

associated with macrocell n. To elaborate further, the constraints (5.79) and (5.80) ensure

that the auxiliary SE variables given by C̃BU,n,j,T1n,e1 and C̃BU,n,j,T2n,e2 do not exceed the direct

link SEs obtained from (5.57) and (5.58), respectively, while the constraints (5.81) and (5.82)

have to be combined to guarantee that (5.59) is adhered to. The constraints (5.83)–(5.88)

are simply the equivalents of the constraints (5.65)–(5.70), when employing the auxiliary

variables, while the constraint (5.89) is the result of the Charnes-Cooper variable transfor-

mation. Finally, the objective function (5.78) defines the EE of macrocell n.

Let us now aim for proving that (5.78)–(5.89) is a concave maximization problem. It can

be readily shown that the objective function (5.78) is linear, hence concave. Similarly, the

constraints (5.83)–(5.89) are all linear. Therefore, what remains for us to prove is that the

constraints (5.79)–(5.82) are all convex. Observe that the constraints (5.79)–(5.82) are all

of the form
s

2
log2

(
1 +

aP

s

)
≥ C, (5.90)

which was already shown to be a convex constraint in Section 4.6. Thus, we have proven

that (5.78)–(5.89) is a concave programming problem, which may be solved using efficient

algorithms. Let us now proceed with the portrayal of the algorithm employed in this work

for solving the above problem.

5.4.2 Solution Algorithm

Observe that the optimization problem of (5.78)–(5.89) is akin to a sum-rate maximization

problem, which is optimally solved using the well-known water-filling method of Section 2.8.

The dual decomposition technique was used in Sections 3.5 and 4.6.3, which can similarly



196 Ch. 5. Spectral/Energy Efficient Resource Allocation for MIMO-Aided Multi-Cell Networks

be employed here, leading to

P̃B,n,j,T1n,e1 = s̃n,j

[
1

(ξBµ (i) + 2λn,T1 (i)) ln 2
− ∆γN0LW

wBU,n,j,T1n,e1

]+

(5.91)

and

P̃B,n,j,T2n,e2 = s̃n,j

[
1

(ξBµ (i) + 2λn,T2 (i)) ln 2
− ∆γN0LW

wBU,n,j,T2n,e2

]+

, (5.92)

where s̃n,j is yet to be determined, while [·]+ is equivalent to max (0, ·). At iteration i of

the dual decomposition method, µ (i) is the Lagrangian dual variable associated with the

constraint (5.89), while λn,T1 (i) and λn,T2 (i) are respectively the Lagrangian dual variables

associated with the constraints (5.84) and (5.85) for macrocell n. The Lagrangian dual

variables are updated using the subgradient algorithm of Section 2.6 at each iteration of the

dual decomposition method.

It may be shown that the power control variables of the relaying links may be formulated

as

P̃B,n,j,T1n,e = s̃n,j

[
1

(ξBµ (i) + 2λn,T1 (i)) ln 2
− ∆γN0LW

wBR,n,j,T1n,e

]+

(5.93)

and

P̃R,n,M(e),j,T2
n,e = s̃n,j

[
1(

ξRµ (i) + 2νn,M(e),T2 (i)
)

ln 2
− ∆γN0LW

w
RU,n,M(e),j,T2
n,e

]+

, (5.94)

where νn,M(e),T2 (i) is the Lagrangian dual variable associated with the constraint (5.86) for

RNM (e) belonging to macrocell n. Since the attainable SE of a relaying link is limited by

the weaker of the BS-RN and RN-UE links, there is no need to transmit at a higher power

than necessary, if the other link is unable to support the higher SE. Thus, the power control

variables for the relaying link are given by

P̃B,n,j,T1n,e = min

(
w
RU,n,M(e),j,T2
n,e

wBR,n,j,T1n,e

· P̃R,n,M(e),j,T2
n,e , P̃B,n,j,T1n,e

)
(5.95)

and

P̃R,n,M(e),j,T2
n,e = min

(
wBR,n,j,T1n,e

w
RU,n,M(e),j,T2
n,e

· P̃B,n,j,T1n,e , P̃R,n,M(e),j,T2
n,e

)
. (5.96)

Thus, the maximum values of C̃BU,n,j,T1n,e1 , C̃BU,n,j,T2n,e2 and C̃
BRU,n,M(e),j
n,e are given by

C̃BU,n,j,T1n,e =
s̃n,j

2
log2

(
1 +

wBU,n,j,T1n,e P̃B,n,j,T1n,e

∆γN0LW

)
, (5.97)
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C̃BU,n,j,T2n,e =
s̃n,j

2
log2

(
1 +

wBU,n,j,T2n,e P̃B,n,j,T2n,e

∆γN0LW

)
(5.98)

and

C̃BRU,n,M(e),j
n,e =

s̃n,j

2
log2

(
1 +

wBR,n,j,T1n,e P̃B,n,j,T1n,e

∆γN0LW

)

=
s̃n,j

2
log2

(
1 +

w
RU,n,M(e),j,T2
n,e P̃

R,n,M(e),j,T2
n,e

∆γN0LW

)
, (5.99)

where the value of s̃n,j is not yet known. However, regardless of the exact value of s̃n,j ,

macrocell n may choose the specific SMC group j that obtains the highest value of


 ∑

e1∈En,j

C̃BU,n,j,T1n,e1 +
∑

e2∈En,j

C̃BU,n,j,T2n,e2 +
∑

e∈En,j

C̃BRU,n,M(e),j
n,e


 (5.100)

in order to maximize the objective function (5.78) by setting

s̃n,j = tn, (5.101)

where the value of tn is not yet known. As a result, the SMC groups j′ 6= j are not chosen

and we may set the optimal values of s̃n,j
′∗ = P̃B,n,j

′,T1∗
n,e1 = P̃B,n,j

′,T2∗
n,e2 = P̃B,n,j

′,T1∗
n,e =

P̃
R,n,M(e),j′,T2∗
n,e = C̃BU,n,j

′,T1∗
n,e1 = C̃BU,n,j

′,T2∗
n,e2 = C̃

BRU,n,M(e),j′∗
n,e = 0, ∀e1, e2, e, j

′ 6= j. On

the other hand, P̃B,n,j,T1∗n,e1 = P̃B,n,j,T1n,e1 , P̃B,n,j,T2∗n,e2 = P̃B,n,j,T2n,e2 , P̃B,n,j,T1∗n,e = P̃B,n,j,T1n,e and

P̃
R,n,M(e),j,T2∗
n,e = P̃

R,n,M(e),j,T2
n,e for the selected SMC group.

The optimal value of tn is then given by

tn∗ =


PBC +M · PRC +

∑

j∈Gn

1

2s̃n,j
ξB


 ∑

e1∈En,j

P̃B,n,j,T1∗n,e1 +
∑

e2∈En,j

P̃B,n,j,T2∗n,e2




+
∑

j∈Gn

1

2s̃n,j

∑

e∈En,j

(
ξBP̃B,n,j,T1∗n,e + ξRP̃R,n,m,j,T2∗n,e

)


−1

. (5.102)

Observe that this is possible, since (5.102) is only dependent on the dual variables. Fur-

thermore, determining the value of tn∗ gives the optimal values of s̃n,j∗, and consequently

P̃B,n,j,T1∗n,e1 , P̃B,n,j,T2∗n,e2 , P̃B,n,j,T1∗n,e , P̃R,n,m,j,T2∗n,e , C̃BU,n,j,T1∗n,e , C̃BU,n,j,T2∗n,e and C̃
BRU,n,M(e),j∗
n,e for

the selected SMC group.

By following the above derivations, the constraints (5.79)–(5.83) and (5.87)–(5.89) are im-

plicitly satisfied and there is no need to introduce dual variables for them. This EEM

solution algorithm may be implemented distributively, and iterates between obtaining the

optimal primal variables and applying the subgradient method of Section 2.6 for updating
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Table 5.3: The EEM algorithm based on dual decomposition and the subgradient method.

Algorithm 1 EEM algorithm

1: i← 0
2: do while |λn,T1 (i)− λn,T1 (i− 1) | > ε or
|λn,T1 (i)− λn,T1 (i− 1) | > ε or
|νn,m,T2 (i)− νn,m,T2 (i− 1) | > ε or
|µ (i)− µ (i− 1) | > ε

3: i← i+ 1
4: if i > Imax
5: break
6: end if
7: for n from 1 to 3
8: for each j in Gn
9: Obtain the optimal power allocation using (5.91)–(5.96)

10: Compute their achievable SE using (5.97)–(5.99)
11: end for
12: Find the optimal SMCs, which obtains the maximum (5.100)
13: Compute the optimal t using (5.102)
14: end for
15: Update the dual variables λn,T1 (i), λn,T2 (i), νn,m,T2 (i)

and µ (i) using the subgradient method of Section 2.6
16: end do
17: return

the dual variables, until the change in the dual variable values becomes less than ε or the

maximum number of iterations, Imax, has been reached. The EEM algorithm is summa-

rized in Table 5.3, where λn,T1 (i), λn,T2 (i), νn,m,T2 (i) and µ (i) indicate the value of their

respective dual variables at the ith iteration.

In contrast to the previous chapter, we aim for optimizing the network-wide EE metric.

However, since we have employed the primal decomposition of [339] for the sake of solving

the EE optimization problem distributively at each cell, the optimal power variables, SMC

groups and the solution algorithm follow a similar form to those presented in Chapter 4.

5.5 Numerical Results and Discussions

This section presents the numerical results obtained, when the solution algorithm presented

in Section 5.4.2 is employed for the EEM problem of (5.78)–(5.89), where the simulation

parameters are given in Table 5.4. In all cases, the step sizes and the initial values of

the dual variables described in Section 5.4.2 are empirically optimized so that the algorithm

converges in as few iterations as possible, although the exact analytical method for achieving

this still remains an open issue. In our experience, the algorithm converges within just 10

iterations when carefully chosen step sizes are employed, regardless of the size of the problem.
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Table 5.4: Simulation parameters used to obtain all results in this section unless otherwise
specified.

Simulation parameter Value

Subcarrier block bandwidth, W [Hertz] 180k

Number of RNs per macrocell, M {0, 1, 2, 3}
Number of subcarriers blocks, N 12

Number of UEs, K 6

Antenna configuration, (NB, NR, NU ) (4, 4, 4)

Semi-orthogonality parameter, α 0.1

Inter-site distance (ISD), [km] {1.5, 2.5, 3.5, 4.5}
Minimum number of receive dimensions
at the RNs and UEs, SR and SU 1 and 2

Ratio of BS-to-RN distance to the cell
radius, Dr 0.7

SNR gap of wireless transceivers, ∆γ [dB] 0

Maximum total transmission power of the {0, 12, 24,
BS and RNs, PBmax and PRmax [dBm] 36, 48, 60}
Fixed power rating of the BS, 32.306NB

PBC [Watts] [352,369]

Fixed power rating of RNs, 21.874NR

PRC [Watts] [352,369]

Reciprocal of the BS power amplifier’s 3.24NB

drain efficiency, ξB [352,369]

Reciprocal of the RNs’ power amplifier’s 4.04NR

drain efficiency, ξR [352,369]

Noise power spectral density, N0 [dBm/Hz] −174

Convergence threshold, ε 10−8

Number of channel samples 104

Furthermore, we employed the path-loss model of [354] and assumed that all BS-UE and

RN-UE links are NLOS links, since they are typically blocked by buildings and other large

obstructing objects, while all BS-RN links may realistically be assumed to be LOS links,

since the RNs may be strategically positioned on tall buildings to create strong wireless

backhaul links. Furthermore, independently and randomly generated set of UE locations as

well as fading channel realizations were used. Again, for benchmarking we employ a baseline

algorithm, which relies on random SMC selections and equal power allocation across the

selected SMCs. This algorithm is termed as the EPA algorithm.

The attainable performance of both the full-IA and partial-IA protocols is explored and

these results are obtained by employing the optimized power control variables and group

selection variables in the actual system model. Therefore, the results reflect the actual EE

achieved rather than the optimized objective value of (5.78), which is optimistic, since it

does not account for any potential OCI remaining after employing the partial-IA protocol.
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5.5.1 The Variation of SE and EE for Different Values of PB
max and PR

max

The effects of varying both PBmax and PRmax are demonstrated in Fig. 5.11. Observe that the

partial-IA protocol outperforms the full-IA protocol for all the power constraints considered.

This is due to the requirements of (5.9), (5.15), (5.27) and (5.37), which restrict the number

of data streams that the BSs can transmit simultaneously in each phase. The full-IA pro-

tocol imposes more restrictive constraints than the partial-IA protocol, since the partial-IA

protocol only requires that the receive BF matrices has to eliminate the ICI, rather than

both the ICI and OCI that the full-IA protocol has to null. Observe furthermore that the

EPA algorithms achieve higher SE values than their EEM algorithmic counterparts at high

PBmax values. However, this is achieved at a higher cost to the EE obtained from using the

EPA algorithms, when compared to their EEM counterparts. In fact, in the low to medium

PBmax regime, both the SEM and EEM correspond to the same solution, as demonstrated in

Chapters 3 and 4. This results in a higher SE for the EEM algorithm than for the heuristic

EPA algorithm. As the value of PBmax increases, the EPA continues to allocate more power,

which increases the SE obtained, without any cognizance to the EE performance.

In comparison to the results presented in Section 4.7, the SE and EE obtained does not

increase significantly upon increasing PRmax. This can be attributed to the low multiplexing

gain specified in these experiments, given that SR = 1. The results of the next subsection

explore the effects of varying the requirements imposed on SU and SR.

5.5.2 The Variation of SE and EE for Different Values of SU and SR

Fig. 5.12 shows the results obtained upon varying SU and SR. Once again, the partial-IA

protocol outperforms the full-IA protocol in terms of both its SE and EE performances.

Additionally, we observe that the EPA algorithm performs worse than the EEM algorithm

for all cases. Increasing SU has a marginal effect on the SE and EE obtained for both

protocols. However, increasing SR does lead to an increase in SE, when employing the

partial-IA protocol, albeit at a cost to EE resulting from the fixed power dissipation costs

of the RNs. Observe that increasing SR reduces the SE attained when using the full-IA

protocol. This may be explained by the detrimental effects of the constraints imposed on

the multiplexing gain of the BSs’ transmissions when employing the full-IA protocol, because

increasing SR imposes a substantial reduction on both (5.9) and (5.27), when multiple RNs

are operated in each macrocell. This reduction in SE is not so dominant for the partial-IA

protocol, since the increase in the multiplexing gain of the RNs’ transmissions outweighs

the detrimental effects of imposing a multiplexing gain restriction at the BSs due to (5.37).

Additionally, the potential multiplexing gain attained at the BSs in the first transmission

phase, given by (5.15), is not affected by the increase of SR.
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(b) Surface plots of the achievable EE when using the EEM and EPA algorithms.

Figure 5.11: The average achievable SE and EE when using the EEM and EPA algorithms

with either full-IA or partial-IA, for varying PB
max and PR

max, and using the parameters in
Table 5.4 with M = 2 and an ISD of 1.5km.
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(a) Surface plots of the achievable SE when using the EEM and EPA algorithms.

A
ve
ra
ge

E
E
[b
it
s/
J
ou

le
/H

z]

Partial-IA w/EPA
Full-IA w/EPA

Partial-IA w/EEM
Full-IA w/EEM

SR

SU

A
ve
ra
ge

E
E
[b
it
s/
J
ou

le
/H

z]

0.014

0.012

0.01

0.008

0.006

0.004

0.002

0

6

4

2

0

8
6

4
2

(b) Surface plots of the achievable EE when using the EEM and EPA algorithms.

Figure 5.12: The average achievable SE and EE when using the EEM and EPA algorithms

with either full-IA or partial-IA, for varying SU and SR, and using the parameters in
Table 5.4 with M = 2, PB

max = 30dBm, PR
max = 20dBm and an ISD of 1.5km.
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5.5.3 The Variation of SE and EE for Different Values of M

and Inter-Site Distance

As shown in Fig. 5.13, both the achievable SE and EE decreases as the ISD is increased,

indicating that the effect of a higher path-loss on the channel gains has a more grave detri-

mental effect on both the SE and EE than the beneficial effects of the reduced interference

levels. Once again, the EPA algorithm performs worse than their EEM algorithmic coun-

terparts. Additionally, the SE attained, when using the full-IA protocol is slightly reduced

upon increasing M due to both (5.9) and (5.27), while the EE achieved is reduced, as the

power dissipation of the system is increased upon increasing M . Furthermore, the SE ob-

tained when using the partial-IA protocol peaks for M = 1, but decreases slightly, upon

increasing M further, since then the multiplexing gain of the experienced during the second

phase is reduced as indicated by (5.37). By contrast, the EEM of the partial-IA protocol

only decreases upon increasing M .

In fact, when M = 0 or SR = 0 we arrive at a special case of the partial-IA protocol, which

is similar to the conventional single cell multi-user ZFBF in the absence of RNs. However,

the proposed partial-IA protocol represents a sophisticated extension of classic ZFBF to

the broad class of multi-relay aided multi-cell networks, which have been combined with

intelligent user selection.

5.5.4 The Variation of SE and EE for Different Values of K

and Inter-Site Distance

Fig. 5.14 shows that both the achievable SE and EE increase, when K increases, which was

also demonstrated in Fig. 3.6. This happens owing to the increased multi-user diversity

attained, when multiple UEs are active in the system, which allows the EEM algorithm to

allocate power and choose SMC groups resulting in greater EE values. Note that both the

SE and EE values also increase upon increasing K, when using the EPA algorithm, even

though it randomly selects the SMC groups to serve. This happens owing to the increased

number of available SMC groups as well as due to the increase in the number of SMCs in

each group as a result of the higher number of UEs, which in turn generate more SMCs

satisfying the semi-orthogonality constraint of (4.25). Note also that the partial-IA protocol

outperforms the full-IA protocol in all cases, as we demonstrated in Figs. 5.12 and 5.13.

5.5.5 The Sensitivity of the IA Protocols to CSI Errors

Furthermore, we may explore the effects of CSI errors on the achieved EE when using either

transmission protocol. For example, the CSI errors are introduced into the BS-RN channel
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(b) Surface plots of the achievable EE when using the EEM and EPA algorithms.

Figure 5.13: The average achievable SE and EE when using the EEM and EPA algorithms
with either full-IA or partial-IA, for varying M and ISD, and using the parameters in

Table 5.4 with PB
max = 30dBm, PR

max = 20dBm and an ISD of 1.5km.
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Figure 5.14: The average achievable SE and EE when using the EEM and EPA algorithms
with either full-IA or partial-IA, for varying K and ISD, and using the parameters in

Table 5.4 with PB
max = 30dBm, PR

max = 20dBm and M = 2.
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parameters in Table 5.4 with M = 2, PB
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matrices as follows

H̆BR,l,n′
n,m =

√
1− ζ2ȞBR,l,n′

n,m + ζ∆ȞBR,l,n′
n,m (5.103)

where ȞBR,l,n′
n,m denotes the channel estimate assuming perfect CSI, ∆ȞBR,l,n′

n,m denotes the

random error in the channel estimate, and H̆BR,l,n′
n,m denotes the true channel estimate with

the CSI error. The matrix H̆BR,l,n′
n,m is combined with pathloss to form HBR,1,n′

n,m , which may

then be employed for computing the BF matrices and scheduling decisions as described in

Section 5.3. The matrix ∆ȞBR,l,n′
n,m is randomly generated for each channel matrix and its

entries are drawn from complex normal distributions having a zero mean and a unit variance.

Thus, the parameter, ζ, denotes the relative magnitude of the CSI error.

Fig. 5.15 characterizes the effects of different values of ζ on the achieved EE. Since the

optimization algorithm is oblivious to the effect of CSI errors, the optimized EE remains

constant for each protocol independent of the value of ζ. However, the actual EE, obtained

from employing the BF matrices and scheduling decisions created when assuming that the

erroneous channel matrices are correct, reduces as ζ increases. As expected, the greater the

value of ζ, the greater the difference between the expected EE and the actual EE, regardless

of the transmission protocol. When ζ = 1.0, both protocols obtain actual EE values of

roughly 11% of the expected EE values.
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Table 5.5: Summary of the EE reduction caused by CSI errors, as was depicted in Fig. 5.15.

Magnitude of CSI error, ζ Reduction in EE
achieved with the
full-IA protocol

Reduction in EE
achieved with the
partial-IA protocol

0.0 0.0% 0.0%

0.1 5.4% 4.9%

0.2 12.1% 10.5%

0.3 18.9% 16.4%

0.4 25.9% 22.5%

0.5 33.7% 29.2%

0.6 41.9% 36.6%

0.7 51.0% 45.1%

0.8 61.5% 55.0%

0.9 73.8% 67.8%

1.0 89.4% 88.7%

5.6 Chapter Summary and Conclusions

In this chapter, a multi-user, multi-relay, multi-cell MIMO system model is studied. In order

to avoid the excessive interference inflicted by the multiple transmission sources, a pair of

distributed IA protocols were designed. The first, termed as full-IA, completely avoids any

interference by finding receive BF matrices, which entirely eliminate the interference imposed

at the receivers. However, this comes at a cost to the spatial multiplexing gain of the BSs,

which limits the number of DL transmission streams. The second transmission protocol,

namely partial-IA, aims for striking a balance between the spatial multiplexing gain and

interference contamination by finding receive BF matrices, which only null the interference

emerging from sources within the same macrocell. Employing the receive BF matrices

created by either of these transmission protocols results in a list of SMCs, which correspond

to data streams that may be conveyed by the BS. We formally defined the problem of

maximizing the EE by optimally choosing the SMCs as well as by appropriately choosing

their power control variables. The resultant nonconvex optimization problem was converted

into a convex optimization problem with the aid of carefully chosen variable relaxations and

transformations, which was then solved using the classic dual decomposition and subgradient

methods [339], that may be implemented distributively at each BS. We characterized the

attainable SE and EE performances of both protocols for a range of system parameters,

while comparing the performance of our EEM algorithm to that of a baseline EPA algorithm.

Additionally, we explored the effect of CSI errors on the achievable EE of either IA protocol

and found that any CSI errors severely reduce the attainable EE, as summarized in Table 5.5.

To summarize, the EEM algorithm of Section 5.4.2 outperforms the EPA algorithm described

in Section 5.5 in most cases. Moreover, the EEM algorithm outperforms the EPA algorithm
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Table 5.6: Summary of the attainable gains in EE, when employing the EEM algorithm
compared to the EPA algorithm, as depicted in Figs. 5.11 to 5.13.

Figures Max. gain in EE
using full-IA

Min. gain in EE
using full-IA

Max. gain in EE
using partial-IA

Min. gain in EE
using partial-IA

Fig. 5.11 15.3 1.9 16.5 1.4

Fig. 5.12 1.6 1.3 1.4 1.2

Fig. 5.13 1.6 1.3 1.4 1.2

Table 5.7: Summary of the attainable gains in EE, when employing the partial-IA protocol
compared to the full-IA protocol, as depicted in Figs. 5.11 to 5.13.

Figures Max. gain in EE using full-IA Min. gain in EE using full-IA

Fig. 5.11 4.1 2.4

Fig. 5.12 4.4 1.6

Fig. 5.13 3.3 1.6

in all cases, when considering only the attainable EE metric, as shown in Table 5.6. On

the other hand, the partial-IA protocol of Sections 5.3.1.2 and 5.3.2.2 surprisingly outper-

forms the full-IA protocol of Sections 5.3.1.1 and 5.3.2.1 in all cases as shown in Table 5.7.

For the cell sizes considered, the path-loss mitigates the majority of the OCI, and thus the

full-IA protocol actually over-compensates, when reducing the available number of transmit

dimensions at the transmitters to facilitate IA. However, in denser wireless networks the

CCI may become strong enough to warrant using the full-IA protocol. Furthermore, the

maximum transmission power constraint imposed on the RNs has only a marginal effect on

the attainable EE, which is however strongly dependent on the maximum power constraint

of the BS. For the scenario considered, PBmax = 36dBm is sufficiently high to attain the

maximum EE. When employing the full-IA protocol, increasing SR only reduces the attain-

able SE and EE, since the multiplexing gain achieved by either the BSs or RNs is severely

reduced in order to accommodate IA. However, when employing the partial-IA protocol,

the maximum SE is attained when SR = 2, albeit at a substantial reduction of the EE.

Furthermore, employing a single RN within each sector is sufficient for maximizing the SE

for the cell sizes considered, when employing the partial-IA protocol. On the other hand,

the SE does not benefit from employing RNs, when using the full-IA protocol. However,

employing additional RNs in conjunction with either protocol reduces the attainable EE.



Chapter 6
Conclusions and Future Research

6.1 Summary and Conclusions

This thesis has motivated and studied the DL EE maximization problem in the context of

relay-aided cellular networks. We firstly described the relevant convex optimization tools,

which were then extensively employed in later chapters for the sake of formulating and solv-

ing the formally defined problems associated with progressively more complex system mod-

els. We developed sophisticated transmission protocols relying on powerful signal processing

techniques, such as spatial multiplexing and IA, for the sake of formulating a tractable op-

timization problem for each system. Thus, we were capable of obtaining the optimal RA

with the aid of low-complexity iterative algorithms. To elaborate further:

• Chapter 1

We justified the importance of EEM as a concern for current and future cellular net-

works, which was complemented by discussing some rudimentary issues of the discrete

channel capacity, channel fading, the OFDMA method, relaying protocols and of RA

in Sections 1.1 to 1.4. A state-of-the-art review was provided in Section 1.5, where an

overview of RA was given, before delving into contributions in the area of RA conceived for

OFDMA systems, which specifically aim for EE optimization. Additionally, the coverage

of the literature review was progressively expanded to include more complex systems, such

as relay-aided and MIMO-aided systems in Sections 1.5.6 and 1.5.7, respectively. Brief

summaries of the pertinent references related to these topics were provided in Tables 1.1

to 1.3. Furthermore, we observed that much effort has been devoted to EE optimization

of OFDMA cellular networks. However, most papers were concerned with minimizing the

total energy, rather than optimizing the fractional EE metric. In particular, the EEM of

relay-aided and MIMO-aided relaying systems has rarely been studied. In Section 1.6, we

concluded the chapter with an overview of the organization of this thesis, as well as listed

209
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its novel contributions. An illustration of the organization of this thesis was provided in

Fig. 1.8.

• Chapter 2

In Section 2.3, we presented the basics of convex sets and functions, along with intuitive

geometric examples for the sake of determining whether they are convex or not in Figs. 2.2

and 2.3. Some well-known convex functions were listed and the specific method by which

they can be combined to form more complex functions was elucidated in Section 2.3.4.

In Section 2.4, we formally defined the classic convex optimization problem structure.

Although some problems, such as MINLPs and FP problems do not readily fall within

the convex problem framework, in Sections 2.4.2 and 2.4.3 we presented methods capable

of reformulating them, so that the conventional convex optimization solution algorithms

can still be applied.

The solution algorithms described later crucially rely on the concept of duality for the

sake of ensuring that the optimal solution is indeed obtained. As described in Section 2.5,

duality is a method derived for obtaining bounds on the optimal objective function value.

Thus, if a solution obtains an objective function value close enough to these bounds, the

conclusion is that the problem has been solved to an acceptable degree of accuracy. The

difference between strong and weak dualities as well as their implications were elucidated

in Section 2.5.3. In Section 2.5.4, we presented the KKT conditions, which are the neces-

sary and sufficient optimality conditions to be satisfied in order to optimally solve convex

optimization problems. They form the basis of the solution algorithms which followed.

We began by describing iterative algorithms conceived for solving simple unconstrained

optimization problems using the so-called descent methods in Section 2.6.1. On the other

hand, the family of equality-constrained problems requires that each iteration should be

feasible, which is guaranteed by initializing the algorithm to a feasible point, and only

progressing along feasible descent directions. In Section 2.6.3, we then discussed interior

point methods proposed for solving problems featuring both equality and inequality con-

straints. The logarithmic barrier function was presented in Fig. 2.20, and its application

in combining the inequality constraints into the associated objective function was high-

lighted in Section 2.6.3.1. Thus, it is possible that the solution to the general optimization

problem presented in Section 2.4 is obtained by solving a series of equality constrained

problems. Furthermore, a simple primal-dual interior point method was provided in Sec-

tion 2.6.3.2. We then explored decomposition theory in Section 2.7 and considered how

either primal or dual decomposition can be applied to any decomposable problem.

The chapter was then concluded with some intuitive examples of convex optimization

applied in the wireless communications field in Section 2.8. Specifically, the well-known

classical water-filling method was depicted in Fig. 2.22 and was reviewed, as well as its

relation to duality. We then expanded upon the water-filling principle applied to more



6.1. Summary and Conclusions 211

complex systems.

• Chapter 3 [330,331]

A multiuser multi-relay OFDMA cellular network was considered in this chapter. In Sec-

tion 3.3, we formulated the problem of maximizing the EE of the system with the aid of

optimal subcarrier and power allocation, where both simultaneous direct and AF relaying

links were permitted. As described in Section 3.2, each UE was associated with the specific

RN that is geographically nearest to itself, hence relay selection was implicitly performed.

We applied several variable relaxations to the optimization problem and proved that the

result is the fractional quasi-concave maximization problem of (3.10)–(3.15), as detailed

in Section 3.3. Thus, all of the methods described in Section 2.4.3 can be invoked for re-

formulating the quasi-concave problem as a series of efficiently solvable convex problems.

In Section 3.4, Dinkelbach’s method reformulated the problem in the subtractive form

of (3.23) by introducing a parameter related to the objective function value. As detailed

in Section 2.4.3.3, the solution to the subtractive problem approaches that of the original

quasi-concave problem, when progressively increasing the value of this parameter. On the

other hand, the Charnes-Cooper transformation of Section 3.5 introduced an additional

variable, which converted the quasi-concave problem of (3.10)–(3.15) to the equivalent

convex problem of (3.55)–(3.61) under an extra linear constraint. Solving only this single

convex problem results in the solution of the original quasi-concave problem, as discussed

in Section 2.4.3.5. In Section 3.6, the bisection method was employed for writing the

problem in a subtractive form with the aid of an additional parameter. However, as de-

tailed in Section 2.4.3.1, the solution to a series of feasibility problems is required. For

all three methods, dual decomposition and gradient methods were respectively invoked

for developing iterative algorithms for solving their resultant problems. Notably, each

algorithm relied on inner iterations, which exhibited comparable complexities in terms

of the number of operations imposed. Thus, the number of inner iterations required by

each algorithm can be used in a complexity versus performance comparison in Section 3.7.

The three algorithms were evaluated in Section 3.7 by comparing them to the results

obtained from an exhaustive search method. As shown in Fig. 3.5, all algorithms were ca-

pable of reaching the optimal objective values. In particular, the algorithm of Section 3.5

based on the Charnes-Cooper transformation reached the optimal solution in less than 20

iterations, while the algorithm of Section 3.4 based on Dinkelbach’s method typically re-

quired 30 or more iterations. Both of these algorithms vastly outperformed the one based

on the bisection search of Section 3.6, which required more than 200 iterations. We con-

cluded that the Charnes-Cooper transformation offered the most beneficial performance

versus complexity trade-off, which makes it the preferred method in later Chapters. A

summary of the required complexities was provided in Table 3.5.

The additional simulation results provided in Section 3.7 showed that both the EEM



212 Ch. 6. Conclusions and Future Research

and SEM algorithms reached the same SE/EE values when there is insufficient power for

attaining the maximum EE. Fig. 3.6(b) showed that, when the power constraint became

sufficientl relaxed, the EEM obtained the maximum EE value for the specific network

scenario considered, which cannot be increased further. For our particular system model,

Fig. 3.6(b) shows that increasing the total power available to the system in excess of

40dBm no longer offers additional EE benefits. On the other hand, the SEM algorithm

continued to allocate more power for the sake of achieving ever-higher SE results, which

was however detrimental to in terms of the system’s EE, as seen in Fig. 3.6(b).

Furthermore, results obtained in Figs. 3.6(a) and 3.6(b) upon varying other system pa-

rameters revealed that increasing the number of UEs in the system benefits both the

SE and EE, which is due to the increased multiuser diversity. Observe in Figs. 3.8(a)

and 3.8(b) that increasing the number of available subcarriers reduces both the SE and

EE, since the subcarriers are not all efficiently utilized. Additionally, relaying is beneficial

when the RNs are placed close to the BS, since that improves their SNRs. Although it is

observed in Fig. 3.12(a) that increasing the number of RNs benefits the SE, which is due

to increased relay selection diversity, the EE is negatively impacted in Fig. 3.12(b), since

each additional RN requires a fixed operating power.

• Chapter 4 [332]

We extended the system model of Chapter 3 to include MIMO transceivers. For the sake

of exploiting the additional antennas, in Section 4.4 we developed a novel transmission

protocol that is applicable to any arbitrary multiuser multi-relay MIMO-OFDMA cellular

network. This transmission protocol relies on spatial multiplexing, which is facilitated by

ZF transmit BF. In Section 4.4, the receive BF matrices of the RNs and UEs are designed

so that their associated MIMO channel matrices can be decomposed into multiple MISO

channels, which we termed as SMCs in this thesis. Thus, the interference between trans-

missions using SMCs associated with the same subcarrier can be completely eliminated

with the aid of ZFBF at the transmitter.

For the sake of improving the effective channel gains resulting from employing the above-

mentioned transmit and receive BF matrices, a pair of beneficial algorithms was designed

in Section 4.5 for grouping the SMCs for each subcarrier. The main grouping criterion

of (4.25) was based on the concept of semi-orthogonality, which was motivated in Sec-

tion 4.3. The ZF transmit BF operation involves channel inversion, which is simply a

matrix rotation and does not affect the norms of each SMC, if the selected SMCs are or-

thogonal to each other. Thus, selecting SMCs, which are orthogonal or nearly-orthogonal,

hence results in higher channel gains overall. In Section 4.5, we described our two group-

ing algorithms, which are termed as ESGA and OCGA. ESGA relies on an exhaustive

search of all the possible grouping combinations, while OCGA is a lower-complexity ap-

proach, which forms a fixed number of groups that are then iteratively improved.
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Finding the EE-optimal groupings across all subcarriers as well as their associated power

allocation values was formulated as an optimization problem in Section 4.6. Once again,

the binary constraints of (4.64) were relaxed to obtain a fractional quasi-concave prob-

lem. Thus, in Section 4.6.2 we opted for employing the Charnes-Cooper transformation

for converting the problem into the convex form of (4.95)–(4.106). Dinkelbach’s method

of Section 2.4.3.3 and the bisection method of Section 2.4.3.1 were not considered, since

our previous results of Fig. 3.5 indicated that algorithms based on those methods require

more iterations for reaching the same solution as the Charnes-Cooper transformation

based algorithm. The resultant convex problem of (4.95)–(4.106) was solved by utilizing

an algorithm based on dual decomposition and the gradient method, as detailed in 4.6.3.

In Section 4.7, our results demonstrated that OCGA is capable of producing groups,

which result in SE values close to those obtained by the ESGA, but much fewer groups

are needed. Since the number of available groups dictates the complexity imposed by the

optimization algorithm of Section 5.4.2, this result indicates that OCGA is an attractive

lower-complexity alternative to ESGA. As expected, our joint optimal power allocation

and group selection optimization algorithm is capable of outperforming the equal power

allocation and random group selection algorithm. The simulation results of Fig. 4.12

indicated that the maximum EE of our system was obtained at PBmax = 50dBm and

PRmax = 50dBm. Further increasing the available power reduced the EE, when employing

the SEM algorithm of Section 4.6, but the power constraint imposed on the BS was shown

to have a more dominant effect on the achievable SE and EE values, when compared to

the power constraint imposed on the RNs. However, increasing either the number of RNs

or the number of available subcarriers reduced the attainable EE in Figs. 4.13 and 4.14,

since these additional resources cannot be efficiently exploited. On the other hand, in-

creasing the number of antennas available at the BS increased the SE and EE in Fig. 4.14

as a result of the higher potential spatial multiplexing gain achieved by the BS.

• Chapter 5 [333]

The system model of Chapter 4 was then further extended to multi-cell systems. In Sec-

tion 5.3, we developed a pair of transmission protocols based on the concept of IA for the

sake of avoiding the excessive interference caused by multiple simultaneously active trans-

mitters. These are the full-IA and partial-IA protocols of Sections 5.3.1.1 and 5.3.2.1,

and Sections 5.3.1.2 and 5.3.2.2, respectively. Since simultaneous direct and relaying

links are possible, we designed separate transmit and receive BF matrices for the first

and second phases of each scheduled frame. When employing the full-IA protocol of Sec-

tions 5.3.1.1 and 5.3.2.1, all potential sources of interference are considered for designing

the interference-nulling BF matrix at each receiver. On the other hand, the partial-IA

protocol of Sections 5.3.1.2 and 5.3.2.2 only aims for avoiding the interference caused

by transmitters within each receiver’s own cell. Therefore, based on the IA principle,
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the partial-IA protocol of Sections 5.3.1.2 and 5.3.2.2 is capable of supporting a higher

multiplexing gain, while requiring less exchange of channel knowledge between BSs than

the full-IA protocol, albeit this results in an increased interference contaminating each

transmission. Having obtained the interference-nulling receive BF matrices in Section 5.3,

their associated MIMO channel matrices can be decomposed into several effective MISO

channels, which constitute the SMCs of the system. Once again, the concept of semi-

orthogonality is considered and the OCGA of Section 4.5 is employed for grouping the

SMCs. Thus, we were able to form the fractional quasi-concave EE optimization problem

of Section 5.4, which we solved using a distributed algorithm based on dual decomposition

and the gradient method.

We compared the performance of the full-IA and partial-IA protocols for a wide range

of system parameters in Section 5.5. Somewhat surprisingly, the partial-IA protocol

consistently outperformed the full-IA protocol, since the interference imposed by the

neighboring cells was mitigated by pathloss of the cell sizes considered. Furthermore,

we demonstrated that our power allocation and group selection optimization algorithm

of Section 5.4.2 outperforms the equal-power allocation algorithm. In particular, we ob-

served in Fig. 5.11 that the achievable EE is again more strongly dependent on the power

constraint imposed on the BSs, rather than that imposed on the RNs, and the EE is

maximized in Fig. 5.11 when PBmax = 36dBm. Furthermore, increasing the number of

spatial streams available at each RN reduced the achievable EE when using the full-IA

protocol due to the resultant reduced multiplexing gain at the BSs. On the other hand,

the EE was increased in Fig. 5.12 by using the partial-IA protocol, when supporting a pair

of spatial streams at each RN. Most importantly, having a single RN in each sector was

seen in Fig. 5.13 to be sufficient for maximizing the SE, when using partial-IA, although

the EE was reduced in all cases, when additional RNs were deployed.

6.2 Future Research Ideas

In this section, we present a range of future research ideas, some of which are related to the

literature review performed in Chapter 1.

• Subcarrier pairing

In this thesis, we assumed that both the first-hop and the second-hop of a relaying link

share the same subcarrier. This is not necessarily the case, and a potentially higher

performance could be obtained if the relaying data was remapped to different subcarriers

at the RNs [298,306]. For example, this could be modeled using a single allocation matrix

for the first-hop and second-hop subcarriers. The goal would then be to maximize the

utility improvement resulting from pairing specific allocations, which can be obtained by
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using the Hungarian algorithm [240]. Furthermore, the performance enhancement versus

additional complexity of employing subcarrier pairing can also be analyzed.

• Low-complexity algorithms

The protocols and algorithms employed in this thesis only aimed for maximizing the EE

performance and did not consider the practicality of their implementation. Thus, low-

complexity alternatives should be developed, either based on reformulating the problem

to the weighted-average form proposed in [223, 225], or by opting for heuristic methods

for some allocation variables, as advocated in [201].

• Cross-layer optimization

In this thesis, we only consider power allocation and subcarrier/group assignment, which

restricts the optimization to the physical and MAC layers. Real communication networks

operate on data packets and suffer from delays in queuing or from erroneous reception in

the case of high BERs. Future efforts can be invested in designing holistic transmission

protocols and formulating problems, which take this into account. Although there exist

some contributions on cross-layer EE optimization in cellular systems [247, 392], their

extension to MIMO multi-cell systems has rarely been performed.

• Effective capacity maximization [269,270]

The ratio of the effective capacity over the energy consumption was previously maximized

in [269, 270]. This metric naturally imposes constraints on the statistical properties of

the packet delay and can be employed in the relay-aided networks studied in this thesis.

• Robust optimization

In realistic communication systems, perfect CSI is never available, but it is typically

only statistically known or outdated. Furthermore, Section 5.5 demonstrated that our

optimization algorithms perform poorly, even when small errors are present in the CSI.

Robust optimization [22,199,341,343] can be a beneficial tool under these circumstances.

To elaborate, the objective function can be optimized under the assumption of only first-

order and second-order statistics of the CSI. Thus, the performance is often degraded, but

it is resistant to changes in the actual channel state. Furthermore, robust optimization is

important, since the realistic CSI suffers from the associated quantization error [22, 199]

as well as delays.

• Joint DL/UL optimization

This thesis only considered the optimization of the DL transmissions. However, the UL

can also be considered, especially the trade-off between DL and UL EEs [271], when

assigning subcarriers for either transmissions. Extensions can be made to the relay-aided

case, when employing two-way relaying [303–305] or full-duplex relaying [307].

• Deployment optimization

The result of EE optimization is not limited to RA. Further progress can be made, when

considering deployment optimization [393, 394] of the RNs. Typically, the statistical

properties of the UEs and their associated channels will have to be considered, since it

is not possible to optimize the location of the RNs, when the cellular network is active.
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Thus, stochastic optimization is preferred. Additionally, the joint optimization of the BSs

and RNs as well as their numbers can be performed.

• Energy harvesting

Although a relatively new concept in wireless communications, energy harvesting [271,281]

can be considering when optimizing the EE of a system. The energy harvested can

additionally by reused in the reverse link, thus lessening the need to rely on the non-

renewable energy source. This effect can be modeled as part of the optimization problem,

as demonstrated in [281].
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