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Abstract—The key aspect of this work is to simulate the
evolution of structure damages in polyethylene under the effect
of electro-thermal stresses based on the trapping and detrap-
ping aging model. In addition, the susceptibility of the model
parameters to the isolated sites during the aging period have also
been studied. The simulation work is performed on a 2D square
grid that is assumed to represent a part of the insulation. The
mesh structure is divided using the finite element method. Based
on the nature of polyethylene, its structure is semi-crystalline
with a spatially varying morphology. Consequently, each bond
in the grid is assigned a set of parameter values. One of these
parameters is the critical fraction of trapped charges C*, which
needs to be reached in order to fail a bond. It is chosen at random
values from a range centered on the characteristic value obtained
from the experimental results. This indicates that the insulation
life at varying parameter C™* is lower than its characteristic value.

Keywords—Ageing, Lifetime, Electro-thermal Breakdown,
Space Charge, Decay, Conductivity, Schottky, Trap, Detrap, LDPE

I. INTRODUCTION

The work presented in this paper investigates the aging
process by describing the growth of breakdown path. Gener-
ally, it was assumed during the aging process that molecule
dissociation contributes to change in the structure of polymer
such as changes in morphology leading to the final breakdown
[1]-[3]. In a homogeneous material, molecule dissociation
seems to randomly take place in the insulating material, and
the final breakdown could occur due to the accumulation of
the deteriorated regions with molecule dissociations. Some
of the models used the percolation process to describe the
accumulation of deteriorated regions as shown in [4]. Other
simulation models of mechanical failure assumed that the crack
development during aging was not only due to the growth
itself, but also due to the accumulation of damage regions [5],
[6]. However, because the failure was assumed to be only due
to the formation of percolation path through the insulation,
these models are not suitable for use in electrical aging
processes where the breakdown strength has to be gradually
decreased over the time of the aging process.

It is important to mention that the insulation below a critical
value of stress should infinitely survive. This is the definition of
deterministic breakdown theories [7]. In the developed aging
model adopted in this paper, we assume that the insulation

systems below such critical values are well. Thus, the risk to
its integrity is reduced as the local fields that lead to rapid
premature failures are eliminated.

A great deal of effects have been developed to study the ag-
ing of polymeric insulations without explicit agreement among
who as to which physical mechanism should be involved.
One of the main concerns is the basis on which the model’s
parameters were chosen. Most of the aging models have a
range of values for each parameter, but only the characteristic
or average value is used in the model to extrapolate the life
of a specific material. Therefore, it is convenient to study the
effects of the model parameters by representing the insulator
as a grid whose bonds are identical capacitors. Each individual
capacitor can have a different random number within the range
of the upper and lower values of the model’s parameter. For
example, electric fields at some regions are higher, based on the
concentration of charges at these regions, also spatial location
of chemical structures within the polymer is different, which
causes variation in the depth of traps. These assumptions will
not only affect the rate at which a single defect grows up, but
also to defect amalgamation during cluster generation and the
formation of breakdown path.

II. AGING MODEL THEORY
A. Trapping Rate

The trapping rate depends on the concentration of elec-
tronic charges which is proportional to the injected current
density. The dynamic of trapping rate can be written as:

dnr_,
dt
where N and np are the total traps and the trapped charges,

respectively. The trapping coefficient K is proportional with
the injected current density (J) as shown in [8], [9] as

= KT(NT — TLT) (1)

J or
Kp=— @
q
where ¢ is the charge amount and op is the capture cross-
section area.

For simplicity purposes, charge carriers in insulation mate-
rials are assumed to be generated via charge injection from the
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electrodes. Some of the injection mechanisms are reported in
the literature such as the Schottky effect and tunneling [10]. To
identify the appropriate mechanism in our system, the values
of measured current densities versus the applied electric fields
have been traced. The Schottky injection mechanism fits well
with the experimental data for low-density polyethylene LDPE
as shown in Figure 1. It is given as:

3)

— 1/2
J = A*T? exp <_W>

kT
where @ is the barrier height of the electrode-insulation
barrier, B, = (q/4meoe,)/? and A* is called the effective
Richardson—Dushman constant, which is a function of the
effective mass of electron [11] as:

drgm* k2

where h is the Planck constant and m™ is the effective mass.

A*

B. Detrapping Rate

Once the electron has been captured, different mechanisms
can cause its detrapping [12]. These mechanisms are (1)
photon assisted depopulation, which is negligible in the present
study as the sample was not exposed to any light, (2) impact
ionization and (3) tunneling. The latter two take place at very
high electric fields and are not considered in this work, and
(4) thermal detrapping. Only the latter is considered as a
detrapping mechanism in this paper, and this occurs when the
trapped charge carrier gains its energy for detrapping from the
thermal lattice vibrations. The mathematical expression for the
detrapping process can be described as:

dnp
dt
where Kp is the detrapping coefficient. This coefficient was

used for detrapping in the literature, with good fitting results
[13]-[15]. It is expressed as:

= —Kpnr &)

(6)

Er —Wen
K= Vo - i)

kT

where N, is the effective density of energy states in the
conduction band, v, is the thermal velocity of the charge,
Er7 is the trap depth, k the Boltzmann constant and 7T is
the absolute temperature. The stored electromechanical energy,
Wem, in the spherical shell can be estimated as:

Tem (TO)2
2Y
where V is the spherical volume, Y is Young’s modulus which
is roughly equal to 1.5 x 108N/m? for polyethylene. The

electromechanical stress, o, is given as:

Wem = |4 (7)

7505’”2(”’) i ®)

where ¢y and ¢, are the permittivity of free space and the
relative permittivity of polyethylene, respectively.

Uem(r()) =

C. Kinetics of the Trapping and Detrapping Process

Based on the above explanation, the kinetics of the trap-
ping and detrapping process can be expressed as the sum of
(dnr— /dt) and (dnp /dt), it yields:

dn
Tf = K¢(Nr —nr) — Kpnr &)

We can see that Eq.9 is a standard first order deferential
equation. It can be solved if the initial condition is known.
Before the injection takes place, the total quantity of trapped
charges is zero (nr(x,0) = 0). Therefore, the solution is:

NrK
no(t) = THT

= m{l —exp[— (Kr+ Kp)t]}

(10)

If we assume that the ratio of the trapped charges to the
total traps can be described through a normalized variable X
as:

= (11)

then Eq.10 becomes:

X(t)=C{l —exp|— (K7 + Kp)t]}

+ Coexp [ (Ko + Kp) ] (12

where (Y is the initial value of C. This is the general form
of the solution where Cjy was chosen to be zero in Eq.10 at
specific conditions, and

Kt
o= BT
Kr+Kp
(ET - Wem) - ((I) - ﬁSEl/z)
kT

chUth
= {1 + 172 exp

(13)
is the equilibrium value of X.

From the definition of the variable X, all the traps are at
the initial state (un-trapped) at X = 0 and state of fully trapped
charges at X = 1. At a fraction of trapped charges, the released
electromechanical energy from the detrapping process is able
to break the insulation bonds and terminate the lifetime (t in
Eq.12). This fraction is symbolized here as C*, which intails
that the lifetime should never been terminated before the state
of trapped charges reaches C*.

The lifetime equation can be expressed by setting X (7')
equals to C* in the integrated equation, which gives:

Ul *2 _(I)_ﬁsEl/z
. AT exp< T

Er — W,
+ N.vihor exp (—Tem)]

NELECT B

HE,T) =

-1
(14)

C(E) - C*

s
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III. RESULTS AND DISCUSSION

The results reported from simulations are performed on the
applied fields ranging from 60 MV /m to 140 MV /m on a
mesh grid of a bond that its length is 3.75um at temperature
of 80C”. A set of the model parameter values is assigned
for each bond. An investigation of the spatial variation in C*
was carried out gives each bond a different value that was
selected at random from a given range of values centered on the
parameter value found to reproduce the characteristic value of
the life distribution. The chosen range was from 0.48 to 0.20,
with the characteristic 0.34 as an average value. The trapping
and detrapping was considered at the bond scale. A number of
realizations have been considered for this variation range, and
the evolution time that corresponds to broken bonds is plotted
when C* is spatially distributed.
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Fig. 1. Plot of square root of electric field versus In of the current density
to calculate the material permittivity of LDPE samples.

Initially, It is significant to explain how the parameter
values have been chosen. From the literature, the effective
density of states in the conduction band can be estimated as
N. = 2(2rm.*kT/h?)3/2, where m,* is the electron effective
mass which is roughly equal to m.. For polyethylene, it is
around the order of 1023 to 10%° m 3 [16]. The thermal veloc-
ity of the charge, vy, = (3kT/m.*)?%, is in the order of 10°
m/s [17]. The parameters of the Schottky effects (i.e., ¢ and
A*) are extracted from the conductivity measurement of LDPE
samples as shown in Figure 1. The relative permittivity €, can
be estimated from the slope of the curve as Slope = Bs/kT,
while the @ value can be estimated from the intercept of y-axis
of the same curve as the rest of the parameters of the Schottky
equation are known. On the other hand, the detrapping process
is much simpler when the applied field is removed. Thus, the
solution of Eq.9 becomes:

nr(t) = ngexp[— (Kp)t]

where ng is the initial condition which can be obtained from
Eq.10 at the moment where the applied field is removed. This
can assist to extract the detrapping rate constant K p from the
decay measurement of space charge in Figure 2. Substituting
the detrapping rate constant in Eq.10, makes the trapping rate
easy to be calculated. At this stage, the trap cross-section and

15)

the the trap depth can be calculated based on the trapping and
detrapping rate constants. With regards to C*, the value was
extracted from Figure 3 using the curve fitting of Eq.14.

The way in which the simulation worked essentially began
by distributing the electric field using the finite difference
method (FDM). At the beginning of the simulation, we as-
sumed that each bond is unfailed (similar to a non-conducting
capacitor). The bond with the shortest time to failure by using
Eq.14 was converted to conductor. Thereby, the local fields are
changed at that time in the whole 2D grid . The amount of life
lost in all of the other bonds is converted to an equivalent bond-
dependent value of C appropriate to that time. Thereafter,
repeating the same procedure to find the shortest lifetime
bonds. On this simulation, there is no restriction on the number
of broken bonds that should be reached to end the insulation
life.
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Fig. 2. Decay of the total trapped charge after being stressed at 10kV for
[a] 5 mins and [b] 3 mins.

During the aging process, an inspection of the damage
affecting the sample shows that only isolated bonds are dam-
aged. The unconnected bonds to the breakdown path can be
obviously seen in Figure 4. Even though the values of C*
for these bonds are small, which mean that they are most
susceptible to damage, their capability for extension is limited.
A sample failure is initiated by the irreversible damage to a
bond where its local electric field is increased, and therefore
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increasing the mechanical energy that is produced in a trap.
This mechanical energy is able to cause damage to the bond
after being released by detraping an electron. The initiation
of breaking bonds takes a considerable time, andthe damage
extension is accelerated rapidly once one bond causes the
neighbors to fail and connects the two electrodes via the
conducting path, causing sample failure. Isolated damaged
bonds lying next to or on the failure path are absorbed into the
path. Some of these failed bonds cause minor deviation from
a straight line. This pattern of behaviour is shown in all of the
repeated simulations.
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Fig. 3. The emperical lifetime for LDPE samples at different electric fields
and fixed temperature of 80 C°.

Through the simulation results, the structure of isolated
failures is similar to the expected form of a deterministic
runaway process, where a filamentary conducting path is
produced by a local reinforcement of damage generation [7].
This is roughly close to the evolution of the isolated failures in
the simulation as shown in Figure 5. The slight difference in
the simulation is that the beginning of runaway is considerably
delayed rather than being initiated at the most susceptible
site. The key factor in determining insulation life is not the
susceptibility of individual local sites to damage, but the
susceptibility of cluster sites together that leads to a self-
reinforcing of extending damage. This conclusion is illustrated
by the results from simulations when C* is given a spatial
variation. A study of stochastic extension of the percolation
model for breakdown showed similar results [18].

The simulation shows, in addition, that a reasonable num-
ber of isolated failed regions occur during the aging period
as can be seen in Figure 4 before the breakdown process
accelerates rapidly. However, this conclusion is in contrast
to the study with [19] which states that a few of the bonds
which failed during the main part of the aging period would
be detectable as nano voids, cracks or local conducting regions
[20]. The rest of the regions have not reached the critical
situation for irreversibility as it is assumed that detecting
the changes during the main part of aging period would be
difficult.

The chosen lifetime at a specific field from repeated simula-
tion results was deducted using the Weibull failure probability
(Pr), which is given as: [21]:

¢ B
Pr=1—exp|— () (16)
o
where « is the characteristic life, and 3 is the shape parameter
of the distribution. Due to the limited number of sample tested
for long aging, the experimental evaluation of the parameters
« and S still cannot be made precisely.

Fig. 4. Damage produced by failure corresponding to the damage evolution
shown in Figure5.
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Fig. 5. The damage evolution during the aging process when electric field
is 140 MV/m, temperature is 80 C'° and spatial variation of C*.

According to the results of lifetime from repeating simula-
tions for a specific field, such as Figure 6, the variations among
these results seems to be very small. This may be related to
the fixed characteristic value for some parameters of the aging
model which are not influenced during the simulation period,
such as variation of trap depth. Here, we have assumed that five
samples are sufficient to characterize the simulation lifetime
for a chosen field since our aim is to investigate the effect
of C* variations on the aging model. Moreover, the shape
parameter of the distributed results, /3, has a large value as
the results are close to each other. This result, however, would
be expected to be in contrast with what we can see from the
empirical breakdown results. Figure 6 illustrates the Weibull
distribution of several applied field with the variation of C*.
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Parameter Unit Value
or m? 6.55 x 10716
N, em™  3.21 x 10125
Vih ms™ ! 1.27 x 10+°
Erp J 3.94 x 10719
> J 2.70 x 10719
T K 353
c* - 0.34

TABLE 1. CHARACTERISTIC VALUES OF THE MODEL PARAMETERS.

A suitable modification on the value of the fraction C* has
been made to study its effect on the aging of polymer while the
other parameters are fixed as shown in Table I. As an example,
the characteristic lifetime of a LDPE sample stressed under
140 MV /m at a fixed value of C* is around 11 hours, while
under the same conditions with C* ranging from 0.44 to 0.23
reducing to 7 hour, similarly the time at 60 MV /m is around
300 hours for the experimental work, and 200 hours with the
variation of C*. The reason could be that the most susceptible
sites to aging with smallest values of C* can fail earlier than
the expected time.
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Fig. 6. Weibull plot of simulating lifetimes at a constant stress of 60 MV/m
and 80 C°.

IV. CONCLUSION

Simulations performed using the developed lifetime model
with the spatial variation in the fraction of trapped charges
C* yields a form of a single filamentary path as showing in
the failure structure. A similarity to a deterministic runaway
process has been found for the time evolution of the damage
during the aging process, but the initiation of failing bonds is
much more delayed. Damage occurs when sufficient morpho-
logical changes exist in a region that is able to continually in-
crease the local energy concentration and therefore increasing
the released energy from the detrapping process. Simulations
performed at different applied fields cannot show a significant
difference in the number of the isolated failures.

The lifetime distribution that results from the simulations
can be fitted to the Weibull distribution. The shape parameter
reflects the variation between the simulation results at the same
field. It has been found to be a large value, which means
repeated simulation results are close together.

ACKNOWLEDGMENT
The authors would like to thank the Ministry of Education

in Saudi Arabia for the financial sponsorship .

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

REFERENCES

T. Tanaka and A. Greenwood, “Effects of charge injection and extraction
on tree initiation in polyethylene,” Power Apparatus and Systems, IEEE
Transactions on, no. 5, pp. 1749-1759, 1978.

L. Dissado, G. Mazzanti, and G. Montanari, “The incorporation of space
charge degradation in the life model for electrical insulating materials,”
Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 2,
no. 6, pp. 1147-1158, 1995.

J.-L. Parpal, J.-P. Crine, and C. Dang, “Electrical aging of extruded di-
electric cables. a physical model,” Dielectrics and Electrical Insulation,
IEEE Transactions on, vol. 4, no. 2, pp. 197-209, 1997.

B. Halperin, S. Feng, and P. Sen, “Differences between lattice and
continuum percolation transport exponents,” Physical review letters,
vol. 54, no. 22, p. 2391, 1985.

W. Curtin and H. Scher, “Time-dependent damage evolution and failure
in materials. mi. mtheory,” Physical Review B, vol. 55, no. 18, p. 12038,
1997.

M. 1. Zeifman and D. Ingman, “A percolation model for lifetime
variability in polymeric materials under creep conditions,” Journal of
Applied Physics, vol. 88, no. 1, pp. 76-87, 2000.

L. A. Dissado and J. C. Fothergill, “Electrical degradation and break-
down in polymers,” vol. 9, 1992.

Y. Nissan-Cohen, J. Shappir, and D. Frohman-Bentchkowsky, “Dynamic
model of trapping-detrapping in sio2,” Journal of applied physics,
vol. 58, no. 6, pp. 2252-2261, 1985.

E. Avni and J. Shappir, “Modeling of charge-injection effects in metal-
oxide-semiconductor structures,” Journal of applied physics, vol. 64,
no. 2, pp. 734-742, 1988.

J. Simmons, “Conduction in thin dielectric films,” Journal of Physics
D: Applied Physics, vol. 4, no. 5, p. 613, 1971.

M. Kiziroglou, X. Li, A. Zhukov, P. De Groot, and C. De Groot,
“Thermionic field emission at electrodeposited ni—si schottky barriers,”
Solid-State Electronics, vol. 52, no. 7, pp. 1032-1038, 2008.

C. Sah, “Models and experiments on degradation of oxidized silicon,”
Solid-state electronics, vol. 33, no. 2, pp. 147-167, 1990.

J. Albohn, W. Fiissel, N. Sinh, K. Kliefoth, and W. Fuhs, “Capture cross
sections of defect states at the si/sio2 interface,” Journal of Applied
Physics, vol. 88, no. 2, pp. 842-849, 2000.

Y. Wang and K. Cheung, “Carrier capture at the sio 2—si interface: A
physical model,” Applied Physics Letters, vol. 91, no. 11, pp. 113 509—
113509, 2007.

D. Goguenheim, D. Vuillaume, G. Vincent, and N. M. Johnson,
“Accurate measurements of capture cross sections of semiconductor
insulator interface states by a trap-filling experiment: The charge-
potential feedback effect,” Journal of Applied Physics, vol. 68, no. 3,
pp. 1104-1113, 1990.

D. D. Gupta and M. Barbarez, “On electronic conduction in polyethy-
lene films,” Journal of Physics D: Applied Physics, vol. 6, no. 7, p.
867, 1973.

K. Kao and W. Hwang, “Electronic transport in solids, international
series in the science of the solid state, vol. 14. general editor br
pamplin,” 1981.

K. Wu and Y. Cheng, “Simulation on the time dependence of breakdown
strength in insulating polymers,” Journal of applied physics, vol. 101,
no. 6, p. 064113, 2007.

L. A. Dissado and A. Thabet, “Simulation of electrical ageing in
insulating polymers using a quantitative physical model,” Journal of
Physics D: Applied Physics, vol. 41, no. 8, p. 085412, 2008.

L. Dissado, A. Thabet, and S. Dodd, “Simulation of dc electrical ageing
in insulating polymer films,” Dielectrics and Electrical Insulation, IEEE
Transactions on, vol. 17, no. 3, pp. 890-897, 2010.

“Ieee guide for the statistical analysis of electrical insulation breakdown
data,” IEEE Std 930-2004 (Revision of IEEE Std 930-1987), pp. 1-41,
2005.

791



