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The authors  have  very carefully revised  the  document  by following every comments  from the
editors  and the two anonymous reviewers.  It  has been tried every possible effort  to solve each
remark that has been addressed. Below a detailed summary of the updates is provided. We would
like to thank the editors and the reviewers for their constructive comments on this manuscript and
positive support.

To Editors:

Once more,  we would very much like to  invite  you to revise your  paper,  seriously taking into
account  the  comments  of  the  reviewers,  and  to  resubmit  your  revised  version  by  02/25/2015
(mm/dd/yy). Any revision received after that may be treated as a new submission.

Authors' response:
The paper has been revised according to the comments and suggestions of reviewer 2.

2) To Reviewer #1:

The  revised  manuscript  is  sufficient  to  Neurocomputing  publication  standards,  and  I  suggest
accepting this manuscript.

Authors' response:
Thanks  for  the  positive  comments  and  the  opportunity  of  publishing  the  document  in
Neurocomputing.

3) To Reviewer #2:

Q1. I thank the authors for the revised version of their manuscript.

Authors' response:
Thanks for the positive comments.

Q2. They open the abstract with the statement: "Parametric methods for data visualisation are most
of the time founded on an usual mixture model framework."
Even a light-hearted revision of  existing parametric  methods for multivariate  data  visualization
(See, for instance, Lee & Verleysen, 2007) would reveal that this is
not the case. Therefore, I think this statement should be either removed or revised.

Authors' response:
Thanks for this suggestion. Indeed, the term « parametric methods » was meaning « probabilistic
methods » or « parametric model » in a statistical framework and could have been read as any
methods with parameters on the contrary to svd for instance. This sentence has been removed, and
the summary updated for complying with other comments in the review.

Q3.  Co(Bi)-clustering in general and co(bi)-clustering with visualization-oriented self-organizing
models are more adequately introduced in the new version.

Authors' response:
Thanks for this remark.

Q4. I am a bit puzzled by the new introduction "storyline", though. It roughly goes like this:

Revision Notes



a) - Co-clustering was first proposed in the seventies and some more works [6-11], reviewed in [12-
13], have been produced. All this references are prior to 2004.
b) -  Only [11]  (2004)  deals  with  SOM for  visualization  (and  one  of  the  strong  points  of  the
reviewed manuscript is precisely visualization).
c) - GTM is a good alternative to SOM (correct)
d) - co-clustering with SOM has been used, mostly in bio- areas [23-28]
e) - authors propose a more principled co-clustering model based on GTM
f) If this is the storyline, the second point and the last two are at odds with each other, because some
of the works in [23-28] (all of them post-2004) do indeed deal with data visualization. This running
theme (co-clustering/SOM>M/Visualization) should be more consistently told.

Authors' response:
Thanks for  this  concern.  Indeed,  after  a  reconsideration  of  the references,  it  is  really better  to
introduce co-clustering at first without visualization (see a) and then introduce its combination with
visualisation (see b).
It  is  now clear in the text  that many methods exist  with an hybridization from a co-clustering
framework (see a) and a SOM, not only in [11] (see b). These combinations do not exist only in
bioinformatics (see d). 
Note that BGTM is not exactly a new principle co-clustering model based on GTM (see e) but a
variant of GTM with a clustering of the columns.
Hence, the story line has been revised for more clarity as follows in the introduction:
- First paragraph, the former co-clustering methods are briefly listed and justified for a reduction of
the dimension for large number of columns.
- Second paragraph, the combination of a co-clustering with a SOM is presented.
- Third paragraph, SOM is presented with its probabilistic variant, GTM.
- Fourth paragraph, the proposal by a probabilistic method by extending LBM to data visualisation.
This can be seen as a principle method indeed because the model takes benefice of the properties of
the statistical tools.
- Fifth paragraph, the plan of the paper.

Q5. Also in the introduction, you state that "A parametric model is flexible and scalable when it is
defined properly." Well, the concept of "properly defined" is quite
vague, to say the least. I reckon that Kohonen and colleagues would not be too happy with this
comment. I would feel far more confortable with something along the
lines of "A parametric model is more flexible and reliable when it is defined according to sound
statistical principles".

Authors' response:
Thanks for this suggestion. The idea was only to comment on probabilistic models and also to
justify  co-clustering  model  in  comparison to  clustering  model  because  in  certain  cases  indeed
scalability is obtained jointly with parsimony. But the sentence has been removed and only the term
parsimony remains in the text.

Q6. I am afraid that it is also unclear what does scalability have to do this. In what sense a model is
more scalable when it is "properly defined"?

Authors' response:
Thanks for this concern. The idea was once again to recall the possible scalability of co-clustering
in comparison with row clustering. The sentence have been removed.



Q7.  Authors go on to say that "the Generative Topographic Mapping (GTM) [18] is a parametric
SOM with a set of possible values for its parameters which are more restricted than Kohonen's
maps." I truly ignore what do the authors mean by "a set of possible  values for its parameters which
are more restricted than Kohonen's maps" Why are they more restricted? In what sense? Do they
mean that the values of some of the GTM parameters can be adaptively estimated and, therefore,
there is no need of trial-and-error choices for the values of at least these parameters?

Authors' response:
Thanks for this remark. Indeed, it seems less needed of performing trial-and-error choices in GTM
because the width of the neirboorhood function is not explicit, while in SOM, this is a function
which needs to be chosen. The sentence has been removed and the new one is as follows :

« In GTM the auto-organization of the clusters is directly induced by the parameterization. The
algorithm of Kohonen's map is re-formulated by embedding the auto-organization process at the
level of the means of a Gaussian mixture model. »

Hence, in this new version, it is not longer possible to see any blow against the Kohonen's map, but
just a short recall about the differences of the modeling. Note that trial-and-error choices is not a
problem per se.

Q8.  Another unfair  blow against SOM is contained in the following comment: "Self-organizing
maps and co-clustering have been combined and illustrated with bioinformatics
or biological data in several methods [23, 24, 25, 26, 27], but they are non generative and use an
Euclidian distance which may not be relevant in certain cases."
Well, being generative certainly endows GTM with a number of advantages over SOM, but both
SOM and GTM have been re-defined in existing literature to make use of non-Euclidean metrics,
therefore, I do not see how this argument can be used as a disadvantage of SOM for co-clustering.

Authors' response:
Thanks for this suggestion. This was not a justification of the paper, the paper deals with LBM and
how to do visualisation with LBM via SOM. There was no any blow, just a short remark but the
sentence has been removed.

Q9. A more serious concern is that, even if the overall structure and style of the text has admittedly
improved, it is still very difficult to separate in this paper what is novel contribution and what is
existing work.

Authors' response:
Thanks for this concern. A new sentence has been inserted in the introduction part :

« If the previous models of block generative topographic mapping have been proposed for only one
particular distribution for the blocks, the new generalization is able to provide a unified framework
for  the  visualisation  of  data  block  matrices  and  can  help  for  implementing  and  comparing
alternative distributions in future. »

And the summary is more explicit :

« A co-clustering leads to parsimony in data visualisation with a number of parameters dramatically
reduced  in  comparison  with  the  dimensions  of  the  data  sample.  Herein,  we  propose  a  new
generalized approach for nonlinear mapping by a re-parameterization of the latent block mixture
model. The approach is related to probabilistic factorisation where the two dimensions of the matrix
are clustered but one of the two sets of latent vectors is fixed. The densities modeling the blocks are



in an exponential family such that the Gaussian, Bernoulli and Poisson laws are particular cases.
The inference of the parameters is derived from the block expectation-maximization algorithm with
a Newton-Raphson procedure at the maximization step. Empirical experiments with textual data
validate the interest of our generalized model. »

Q10. This worries me in particular because, despite onerous self-citation, authors fail to cite some
of their own recent work such as: Pattern Anal Applic (2014) 17:839-847, doi:10.1007/s10044-014-
0368-8 which has an obvious relation with the current manuscript.

Authors' response:
Thanks for this suggestion. The reference has been added.

Q11. It has also come to my attention recent work by Sarazin, Lebbah, Azzag and Chaibi:
Sarazin, T., Lebbah, M., Azzag, H., & Chaibi, A. (2014, January). Feature Group Weighting and
Topological Biclustering. In Neural Information Processing, pp.369-376, Springer
Chaibi, A., Lebbah, M. and Azzag, H. A new bi-clustering approach using topological maps. The
2013 International Joint Conference on Neural Networks (IJCNN),IEEE,2013.
.. that the authors must now account for to put their own work in perspective.

Authors' response:
Thanks for this suggestion. The two references have been added. Done for perspective with further
comparisons in future.

Q12. Concerning the experiments, I would like to see an explicit expression of what the authors call
"the usual classification error rate, denoted error-rate, [...] obtained
from the estimated labels ..." It is very unclear from the authors' description.

Authors' response:
Thanks for this concern. Done.

Q13. Some of the settings are also unclear: in the last paragraph of p.14, what is m=20? Also, you
say that the number of bfs. is h=28. These bfs. are usually set as a square
grid, so, where does the value of 28 come from? According to what rationale were the values of g,
m and h chosen? Were they compared with others and no significant changes were found? (a similar
thing can be said about the experiment reported in section 5.3)

Authors' response:
Thanks for this suggestion. Three new sentences have been added.

« A visual inspection of the final map and the values of the indicators lead to an empirical choice of
the parameters g, m, and h in BGTM for the results presented hereafter with three datasets. »

« The frequencies are meaningful in clustering textual data. If this is clearly true for N4, in the case
of C3-s outliers seem to perturbate the empirical result obtained from only one sample and a more
robust model might be preferred. »

And a sentence at the sub-section 4.1 for describing further the vectors of bfs. These three terms
have been introduced in other references in the litterature like .



Q14.  I  am  not  convinced  with  the  comparison  experiments:  you  just  compare  PBGTM  with
BBGTM and GBGTM. Is that fair? wouldn't each of those models be more suited to certain types of
data that to others (thus explaining the advantages of the Poisson model)? Why not compare with a
SOM-based co-clustering technique?

Authors' response:
Thanks  for  this  concern.  This  was mostly motivated  with  the  presented  large  dataset  which  is
difficult to be handled by usual approaches because of the large number of variables and also the
non existence of available implementations for the existing models in the litterature.
Anyway, a new method called BCASOM is proposed by restricting the parameters of CASOM, a
multinomial SOM. The column clustering is fixed and pre-computed with a Poisson LBM, and only
the row clustering is required in the training procedure. Please, see page 9 and 10 plus the footnote
number 4.

Q15. In the experiment reported in section 5.3 you say that "the initialization was performed with a
first mapping of only 2500 documents followed by a nearest neighbour rule." Why did you choose
this type of initialization? How did you sample those 2,500 cases? Why 2,500?

Authors' response:
Thanks for this suggestion. As this is possible to deal with more than 10000 rows for handling the
SVD actually, even with a regular function in R langage now, the sentence has been changed into :

« The initialization is performed with the help of the first principal plane of CA. »
 
Q16. The experiment shows that a sensible data visualization can be generated ... so what?

Authors' response:
Thanks for this remark. This is an illustration. If the small (toy) datasets are 'easy' to visualize, this
is clearly not true for this larger one.

Q17.  In my previous review,  I  said that  results  seemed to be evaluated only in  terms of  error
measures, but no qualitative comment was made on the (potential) meaning
of the blocks of data variables obtained (in the same way we could comment on the data prototypes
of the blocks of data points)
I still cannot find any comment on that (although I agree that the parsimony of the resulting model
makes, by itself, a point).

Authors' response:
Thanks for this  suggestion.  Some elements in that direction have been added at  the end of the
subsection 4.3 but no empirical results have been provided in this document which deals mainly
with the generalization and not a double representation. Note that this could be possible to provide
usual results such that a table of the more frequent or meaningful words in each clusters of the map
for instance.

Q18. Minor things:
p.2 "Euclidian distance": Euclidean
p.4 "modeled separatly":separately
p.11 "Connexion to GTM" Connection
p.11 "in close form": closed
p.12 "The pdf of the latent block model becomes as:"
p.12 "The normal equations equating [...]"



p.12 "4.3. visualisation"; Visualization (the full text should be revised to make consistent use of US
vs. British English)
p.13 "for the of contingency tables" ... ???
p.13 "... They are brievly described ...": briefly
p.14  "This  indicator  decreases  with  more  compact  and  more  separated  clusters  such  that  it  is
preferred minimal.": awkward sentence (The description of the S-index would
also require some re-phrasing.
p.14 "... and it is compound of 3 classes"

Authors' response:
Thanks for this concern. Done.

Q19.  The full name of the model "generative topographic mapping" is used throughout the text
despite the fact that the acronym has been defined almost at the onset.

Authors' response:
Thanks for this suggestion. Some acronyms have been added but note that it is not readable to have
to much acronyms (in uppercase) too.

Q20. The format of the references requires some patient attention.

Authors' response:
Thanks for this remark. If the paper is accepted, we will be happy to correct the references under the
checking of the edition process.

We tried our best to address all comments and concerns raised by the reviewers and believe that the
paper is improved considerably.  In the meantime, if there are still concerns or additional comments
related to our answers and clarifications, we will be happy to address them.
 



Generalized topographic block model

Abstract

Co-clustering leads to parsimony in data visualisation with a number of pa-
rameters dramatically reduced in comparison to the dimensions of the data
sample. Herein, we propose a new generalized approach for nonlinear map-
ping by a re-parameterization of the latent block mixture model. The densi-
ties modeling the blocks are in an exponential family such that the Gaussian,
Bernoulli and Poisson laws are particular cases. The inference of the param-
eters is derived from the block expectation-maximization algorithm with a
Newton-Raphson procedure at the maximization step. Empirical experi-
ments with textual data validate the interest of our generalized model.

Keywords: Latent block mixture model, Exponential family, Generative
topographic mapping, Block expectation-maximization, Visualisation.

1. Introduction

For the visualisation [1, 2] of a data matrix, the main proximities or the
higher correlations are summarized by a comprehensible and low dimensional
graphical view. When the number of variables is large, the visualisation may
combine a preprocessing stage by selection or linear transformation [3, 4, 5].
In a co-clustering method, both sides of the matrix are partionned [6], hence
the reduction of the variables space and the row clustering occur simulta-
neously. A earliest co-clustering formulation called direct clustering was in-
troduced by Hartigan [7] who proposed a greedy algorithm for hierarchical
co-clustering. We can also mention the following works [8, 9, 10, 11, 12] and
the reviews in [13, 14, 15]. These methods are dedicated to a simultaneous
clustering but not to visualisation.

Co-clustering is combined to self-organizing maps (SOM) for visualisation
or clustering purposes in many ways in the litterature [16, 17, 18, 19, 20, 21,
22], with illustrations to biological or textual data. Such combination can
improve the quality of the clustering [23, 24], with two contributing modeling
factors or four sub-ones. Roughly speaking, the co-clustering leads to (a) the
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parsimony of the parameters and (b) the groups of variables. And, the auto-
organization leads to (c) the partition of each class into several clusters and
(d) the connections between neighboor clusters. Note that the subfactors (c)
can enhance the classification [25], while (a) and (b) the regression [26].

The family of methods SOM counts the variants and the extensions of the
Kohonen’s map [27] which is a sequential clustering algorithm with decreas-
ing connections of vicinity between the clusters for mapping continuous data.
Modified versions are adapted to the analysis of discrete, sequential or block
matrices for instance. Moreover, generative models for self-organizing maps
has been justified [28, 29, 30]. The Generative Topographic Mapping (GTM)
[31] is a probabilistic model of SOM for data visualisation [32, 33, 34, 35]. In
GTM the auto-organization of the clusters is directly induced by the param-
eterization. The algorithm of Kohonen’s map is re-formulated by embedding
the auto-organization process at the level of the means of a Gaussian mixture
model (GMM) [36].

Herein we are interested on a probabilistic co-clustering model, the latent
block mixture model (LBM) [12, 37, 38], in order to visualize the natural
classes in a block matrix with a parameterization similar to GTM. First, we
define a general model of LBM with the help of an univariate exponential
familly [39] which is well suited for most kinds of numerical variables. Then
we introduce a parameterization of the central parameters in order to simul-
taneously perform the clustering and the reduction of the obtained clusters
in a low dimensional space. The model is general enough to be related not
only to self-organizing maps but also to recent approaches in factorization
[40, 41, 42]. This offers a broad perspective for data analysis as illustrated
through a generalized method for block generative topographic mapping or
block GTM (BGTM) [43, 44]. If the previous models of block generative to-
pographic mapping have been proposed for only one particular distribution
for the blocks, the new generalization is able to provide a unified framework
for the visualisation of data block matrices and can help for implementing
and comparing alternative distributions in future.

The paper is organized as follows. In section 2, we introduce the latent
block model for an exponential family and add the constraints. In section
3, we present the related objective function to optimize for the estimation
of parameters. We deduce the learning algorithm in a general setting, from
the block expectation-maximization (BEM) [45]. In section 4 we present the
connection of our approach with GTM and discuss the resulting nonlinear
visualisation. In section 5 we present the numerical experiments for testing
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the proposed approach. Finally, in section 6 we summarize our contribution.

2. Generalized LBM

Let us have x := {xij ; i = 1, . . . , n; j = 1, . . . , d} stand for a data matrix
of size n × d. When x is a two-way contingency table it is associated to
two categorical variables that take values in sets I = {1, . . . , n} and J =
{1, . . . , d}. In this case, the entries xij are co-occurrences of row and column
categories, each of them counts the number of entities that fall simultaneously
in the corresponding row and column categories. Let z and w be partitions
in g row clusters and m column clusters of I and J of x. The partition z will
be represented by the vector of labels (z1, . . . , , zn) where zi ∈ {1, . . . , g} or,
by the classification matrix {zik; i = 1, . . . , n; k = 1, . . . , g} where zik = 1 if i
belongs to the kth cluster and 0 otherwise. A similar notation will be used for
the partition w which will be represented by the vector (w1, . . . , wj, . . . , wd)
where wj ∈ {1, . . . , m} or the classification matrix {wjℓ; j = 1, . . . , d; ℓ =
1, . . . , m}. Note that zikwjℓ = 1 if xij belongs to the (kℓ)th block and 0
otherwise. For a latent block model, the n×d random variables that generate
the observed cells xij are assumed to be independent, once z and w are fixed,
they make it possible to define a co-clustering model. Hereafter, to simplify
the notation, the sums and the products relating to rows, columns or clusters
will be subscripted respectively by the letters i, j, k, or ℓ without indicating
the limits of variation, which are implicit.

2.1. Latent block model (LBM)

The probability density function (pdf) of a latent block model is denoted
fLBM(x; θ) and defined as the following decomposition. It is obtained by
independence of z and w, by summing over all the assignments [12] and
takes the following form:

∑

(z,w)∈Z×W

∏

i

pzi
∏

j

qwj
∏

i,j

ϕ(xij ;α
ij
ziwj

) ,

where the set of all the possible assignments is denoted Z for I and W for
J , while ϕ(.;αij

kℓ) is a probability density function defined for cell (ij) on the
set of reals R while αij

kℓ depends on the parameter αkℓ as given in (1). The
vectors of the probabilities pk and qℓ that a row (resp. a column) belongs to
the kth component (resp. ℓth component) are denoted p = (p1, . . . , pg) (resp.
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Model pdf of cell (kℓ) ϕ A(αij
kℓ) B(αij

kℓ) βij αkℓ xij

GLBM N (αkℓ; σkℓ0)
exp(−|xij−αkℓ|2/2σ2

kℓ0)√
2πσkℓ0

αkℓ/σ
2
kℓ0 α2

kℓ/2σ
2
kℓ0 1 R R

BLBM B(αkℓ) (αkℓ)
xij(1− αkℓ)

1−xij log αkℓ
1−αkℓ

− log(1− αkℓ) 1 [0; 1] {0, 1}

PLBM P(βijαkℓ)
exp(−βijαkℓ)(βijαkℓ)

xij

xij !
logαkℓ βijαkℓ µiνj [0; 1] N+

Table 1: Table with the three cases of distribution for the matricial cells modeled with
ELBM.

q = (q1, . . . , qm)). The set of parameters is denoted θ and is a compound
of p and q plus α which aggregates all the parameters from the pdf of the
cells, θ = {p,q,α}. The set of parameters θ of the model can be estimated
by maximizing the log-likelihood:

L(x; θ) = log fLBM (x; θ).

The block model is dramatically more parsimonious than the usual mixture
model where each dimension of the data table is modeled separately. Next,
we describe the latent block model where ϕ is in an exponential family.

2.2. Univariate exponential family of distributions

When the cells are generated with an exponential family, the latent block
model is denoted in the following ELBM and the density function for the
(kℓ)th block is written:

ϕ(xij ;α
ij
kℓ) = exp

(

xijA(α
ij
kℓ)−B(αij

kℓ) + C(xij)
)

,

where A(αij
kℓ) is the natural parameter, while B(αij

kℓ) and C(xij) ensure that
ϕ is a probability density function. The considered form of distributions is
defined without nuisance parameter and without loss of generality. Note that
a more general expression is possible for modeling more particular distribu-
tions. For instance a function of xij could be used instead of the identity one
or A could be chosen multivariate. It is also supposed that the quantities
αij
kℓ are written as a function of a fixed parameter depending on the data βij

and an unknown parameter named αkℓ, such that:

αij
kℓ = βijαkℓ . (1)
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The model can be represented by a graphical model depicted in Figure 1.
Here two aggregating matrices are involved, α = (αkℓ)g×m for the parame-
ters and β = (βij)n×d for the multiplicative effects. Three cases of distribu-

X

Z W

p q

α β

Figure 1: Graphical notation for the Latent block model with random variables X, Z and
W generating the observations and latent labels.

tions which belong to this family for discrete and continuous matrices are
considered. The different distributions are listed on Table 1, where the cells
are drawn from one particular distribution. For a Bernoulli law with the
parameters αkℓ, the model is denoted BLBM [12]. For a Poisson law with
the parameters αkℓ, it is denoted PLBM [46], with µ = (µ1, · · · , µn)

T where
µi =

∑

j xij and ν = (ν1, · · · , νd)T where νj =
∑

i xij . For a normal law, it
is denoted GLBM [47] with the means αkℓ and the variances σkℓ0 assumed
constant here. For the three cases, the support for the variables generating
the observation xij and the parameter range of αkℓ are defined in Table 1.
Note that in the case of a Poisson law, the parameters αkℓ can be chosen
unconstrained as introduced in [46], and the quantities βij can be optimized
too in certain cases. Next, each parameter αkℓ is written with a link function
as explained.

2.3. Re-parameterization of the model

The parameters of the exponential latent block model are parameterized
with two sets of (unknown) vectors,

{ξk ∈ R
h, 1 ≤ k ≤ g} ,

{wℓ ∈ R
h, 1 ≤ ℓ ≤ m} .

(2)

where h ∈ N
∗
+ is the dimension of the latent space. These two sets of vectors

are used for modeling the blocks (kℓ) because each αkℓ is dependent on two
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indices, k and ℓ. As an effect from the kth and ℓth clusters, the inner products
are then considered as

{wT
ℓ ξk; 1 ≤ k ≤ g, 1 ≤ ℓ ≤ m} . (3)

To map the inner product (wT
ℓ ξk ∈ R) onto its corresponding parameter

(αkℓ ∈ [0; 1]) a link function ̺(.) is used. For instance, for the Bernoulli law
the sigmoid function can be chosen. For all k, and ℓ, we have:

αkℓ = ̺(wT
ℓ ξk) . (4)

For the Poisson law, the sigmoid or the exponential function may be selected.
For the Gaussian law, the canonical identity function can be used for ̺. The
reduced g × m matrix α with cells defined by the parameters αkℓ in the
previous co-clustering model is re-parameterized with the two matrices:

Φ = [ξ1|ξ2| · · · |ξg]T ,
Ω = [w1|w2| · · · |wm] .

(5)

The resulting model is more parsimonious than a GTM with an usual mixture
model because the loading matrix Ω counts only m columns instead of d ones
and m ≪ d. Next, we propose a generalized criterion and an algorithm for
the inference of θ in the exponential latent block model.

βij = 1 ∇Q̃ℓ = ΦTG′
ℓ {MA′Yℓ − dℓMB′Gc}1g

H̃ℓ = ΦTG′×2
ℓ {MA′′Yℓ − dℓMB′′Gc}Φ +ΦTG′′

ℓ {MA′Yℓ − dℓMB′Gc}Φ

βij 6= 1 ∇Q̃ℓ = ΦTG′
ℓC

T {TA′ ×2 (x⊙ β ×Dℓ)−TB′ ×2 (β ×Dℓ)}1g

H̃ℓ = ΦTG′×2
ℓ CT

{

TA′′ ×2 (x⊙ β×2 ×Dℓ)−TB′′ ×2 β
×2 ×Dℓ

}

Φ

+ ΦTG′′
ℓC

T {TA′ ×2 (x⊙ β ×Dℓ)−TB′ ×2 (β ×Dℓ)}Φ

Table 2: Derivatives of the constrained criterion at t-th step of EM for the exponential
family.
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3. Parameters inference and algorithm

We aim to address the problem of parameters estimation by a maximum
likelihood (ML) approach, in Expectation and Maximization steps, such that:

θ̂ = argmax
θ

L(x; θ) .

To induce a quantization, the mixing probabilities can be chosen constant and
equidistributed. For visualisation like in the generative topographic mapping,
Φ may be kept constant and not optimized. Hence, the set of parameters is
reduced to θ = Ω in the following.

3.1. Expectation step

For the estimation of a suitable value of θ by the maximum likelihood,
the block EM algorithm or BEM (see [45]) leads to an objective function
denoted Q̃ for short. It is maximized instead of the original log-likelihood
function and written:

Q̃(θ|θ(t))

=
∑

i,j,k,ℓ

c
(t)
ik d

(t)
jℓ logϕ(xij ;α

ij
kℓ)

=
∑

i,j,k,ℓ

c
(t)
ik d

(t)
jℓ

{

xijA
(

αij
kℓ

)

−B
(

αij
kℓ

})

+ cte .

Here θ(t) is a current value of the parameters at the t-th step, cte is a constant
independent of the parameters, the superscript (t) permits to denote a current
estimation of the parameters or a function of them but is removed in the
following when the notation is made lighter. The quantities cik (resp. djℓ) are
the posterior probabilities that a row (resp. a column) belongs to the (kℓ)th

block and at the current time (t). It is also denoted y
(t)
kℓ =

∑

i,j c
(t)
ik d

(t)
jℓ xij ,

c
(t)
k =

∑

i c
(t)
ik , and d

(t)
ℓ =

∑

j d
(t)
jℓ . The function Q̃ comes from an approach

type EM [48] which often makes possible to obtain values of the parameters
in a closed form as opposed to a direct optimization with function L. The
algorithm proceeds by alternating two steps at each iteration (t + 1). At
the first step called Expectation or E-step, the posterior probabilities are
computed knowing the data and the current value of the parameter θ(t).
These probabilities are estimated by maximizing the same objective function
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Q̃ where their entropies are added. They are solution of the dependent
equations:

cik ∝ exp
∑

jℓ djℓ logϕ(xij ;αkℓ) ,

djℓ ∝ exp
∑

ik cik logϕ(xij ;αkℓ) .
(6)

A new current value of the parameters θ(t+1) is obtained at a second step
called Maximization or M-step where the new parameters are written as
weighted means of the sufficient statistics and the weights are the posterior
probabilities. At each iteration (t + 1), the algorithm increases the function
Q̃ as explained in [12, 46, 47].

The two next sections present the algorithm for the estimation of the
parameters by optimizing the objective function parameterized with the two
matrices.

3.2. Derivatives of the objective function

The expression for the gradient vector Q̃
(t)
ℓ and the Hessian matrix H̃

(t)
ℓ for

the function Q̃ w.r. to the parameter wℓ, may be directly written1 according
to the value of βij in a matricial format as given in Table 2. Here it is also
denoted 1a = (1)a×1 with an integer a, C = (cik)n×g and D = (djℓ)d×m

while other matrices or tensors are given in Table 3. The operators are as
follows: M×2 =M×M , M⊙N is the Hadamard product ofM and N , while
TM ×2 N = (

∑

j MijkNij)a×c where TM = (Mijk)a×b×c is a tensor with three
modes and N = (Nij)a×b is a matrix with a rows and b columns. diagk(vk)
is the diagonal matrix with non nul elements vk. These general expressions
could permit to differentiate between the cell distributions for continuous or
binary variables (βij = 1) and categorical or counting variables (βij 6= 1).

From the Table 2 or by a direct derivation from each particular function Q̃,
the formula for updating the matrix Ω for the three univariate distributions
given in Table 1 can be deduced. As the provided expression is general,
other distributions or link functions are also possible. Moreover, the Hessian
matrix from the model can be not definite negative in certain cases like for the
Poisson law and an approximation can be derived as in [44]. It is supposed
in the following that the Hessian matrix has been altered into a well defined
approximation if required. An increase of the diagonal from the matrix by

1We denote: ∂αkℓ

∂wℓ
= α′

kℓξk and ∂2αkℓ

∂wℓ∂w
T

ℓ

= α′′

kℓξkξ
T
k , while A

′ and A′′ (resp. B′ and B′′)

are the first and second order one-dimensional derivative of A (resp. B).
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MA′ = (A′(αkℓ))g×m

MA′′ = (A′′(αkℓ))g×m

MB′ = (B′(αkℓ))g×m

MB′′ = (B′′(αkℓ))g×m

TA′ = (A′(βijαkℓ))n×d×g

TA′′ = (A′′(βijαkℓ))n×d×g

TB′ = (B′(βijαkℓ))n×d×g

TB′′ = (B′′(βijαkℓ))n×d×g

G′
ℓ = diagk (α

′
kℓ)

G′′
ℓ = diagk (α

′′
kℓ)

Yℓ = diagk (ykℓ)
Dℓ = diagj(djℓ)
Gc = diagk (ck)

Table 3: Matrices and tensors for the derivatives.

an additive or multiplicative way may be useful, at least for exact Hessian
matrices and their regularization. Note also that numerical approximations
of the Hessian matrix exist in the literature, and from [49] a justification of
the approach can be derived.

3.3. Maximization step and learning algorithm

The algorithm for maximizing Q̃ depending on the new set of parameters
θ proceeds iteratively as previously explained but at the M-step the next
current value of the parameters is estimated by:

θ(t+1) = argmax
θ

Q̃(θ|θ(t)) . (7)

Here, a Newton-Raphson procedure is considered for this maximization step
because of the non linearities. In [32], a model which is a particular case of
our proposal was introduced. Indeed, when cancelling the column clustering,
the objective functions are the same. Our constrained model is more general
than this former generalizing approach. In particular, the Bernoulli case is
identical when m = d. It must be noticed that in the original paper [32], the
Poisson case is slightly different because instead of the sigmoidal function,
an exponential transformation was chosen. This alternative unbounded link
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function has been tested for block GTM in pratice, but was less stable in its
current implementation.

In order to find a local solution to (7) in the general case, the proposed
algorithm is BEM with a new M-step. In order to decide when the algorithm
should be stopped, a small positive constant ǫBEM is taken to indicate the Q̃
value change is small or there is no change. After initializing the parameters,
the algorithm is an incremental procedure repeating two steps:

- E-step where the posterior probabilities {cik} or {djℓ} are updated (see
update formula (6)).

- M-step where the parameters are updated for all columns of Ω, such
that Q̃(θ|θ(t)) is increased with respect to wℓ as follows:

w
(t+1)
ℓ = w

(t)
ℓ −

[

H̃
(t)
ℓ

]−1

∇Q̃(t)
ℓ .

If any, nuisance parameters need to be updated here, such as in BEM for
the unconstrained LBM. Note also that for factorization, Φ would be also
updated similarly thanΩ by symmetry of the minimized criterion. By repeat-
ing the computational iterations, the agorithm converges towards a solution
where the parameters reach a stable value. They are denoted with a hat
while the final matrices of posterior probabilites are respectively Ĉ = (ĉik)
and D̂ = (d̂jℓ).

4. From GTM to block GTM

A semi-flexible model is obtained for data visualisation with our general-
ized setting and a matrixΦ constant as defined in [31]. We present the former
model of generative topographic mapping next, after a brief description of its
particular matrix for inducing an auto-organization of the central parameters
during the inference. We also discuss the method for the construction of a
nonlinear projection after the parameters estimation.

4.1. Set of basis functions of GTM

The constant matrix Φ in the generative topographic mapping is defined
as follows. Let us consider a set of g two-dimensional vectors of coordinates,

S =

{

sk =

(

sk1
sk2

)

; k = 1, ..., g

}

.
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They come from the nodes of a regular mesh which discretizes the latent
space for the projection, a regular square on the plane. S is directly related
to the set of nodes in the Kohonen’s maps. Each coordinate sk is nonlinearly
transformed as follows. This is a vector of h kernel Gaussian functions,
ψo(sk) = e−||sk−µψo ||2/2νψo with mean centers µφo ∈ R

2, variances νφo ∈ R
∗
+

and 1 ≤ o ≤ h, completed with an intercept equal to one and the two
coordinates of sk, such that for all k:

ξk =
[

1, sTk , ψ1(sk), ψ2(sk), · · · , ψh(sk)
]T

.

The three first components are added here for the empirical results for BGTM
otherwise they may be omitted for the original GTM. The relative positions
between the bidimensional coordinates in S are kept for the transformed
vectors at least locally.

Introducing the vectors ξk at the level of the central parameters of the
generative model with the inner products ξTk wℓ induces an organization of
the cluster centers as a discretized surface. It is able to summarize the data
cloud and its unfolding leads to the projection on the latent space discretized
by S. In the re-parameterized ELBM, the obtained model is called the
block generative topographic mapping (block GTM). In [43, 44], the discrete
cases for binary and counting features have been presented and are called
respectively Poisson block generative topographic mapping (PBGTM) and
Bernoulli block generative topographic mapping (BBGTM). In the Gaussian
case, the obtained model is called Gaussian block generative topographic
mapping (GBGTM). This model has an inference in closed form2 for linearity
reasons and derived from the proposed algorithm in the previous section.

4.2. Connection to GTM

In the next paragraphs, we present the generative topographic mapping
with its parametric model, its training algorithm and its link with our gen-
eral framework. Our proposed model generalizes the generative topographic

2This is: wℓ ←
1

dℓ

(

Φ
TΥℓGc Φ

)

−1

Φ
TΥℓYℓ1g. The nuisance parameters σ2

kℓ0 are

estimated as σ2

kℓ ←
∑

cikdjℓ(xij − αkℓ)
2/ckdℓ while Υℓ = diagk(σ

−2

kℓ ) and αkℓ = wT
ℓ ξk.

Note that a non fuzzy column clustering could be preferred for GBGTM as the non
constrained model [47] and the batch procedure for a Kohonen’s map with a block setting
in [23].
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mapping. Let us have m = d, the ith row of x denoted xi in a column-vector
format and all σkℓ0 equal to σ. In this case, when pk = 1

g
and the terms

coming from the mixing probabilities qℓ are removed, the pdf of the latent
block model can be written as follows:

∏

i

∑

k pk
exp(−||xi−ΩT ξk||2/2σ2)

(2π)d/2σ2d
,

which is the likelihood of the generative topographic mapping. With the
gradient equal to zero, this leads to the update equation of the generative
topographic mapping which is written as follows in matricial form:

ΦTGcΦ Ω = ΦTCTx ,

which is exactly3 the solution in [31] and can be directly found by expectation-
maximization. In generative topographic mapping (resp. block generative
topographic mapping), the estimation of the variance term is identical to its
corresponding unconstrained model with the following update:

σ2 =
1

n× d

∑

i,k

||xi −ΩT ξk||
2 .

4.3. Visualisation

A nonlinear projection of a given data sample is obtained after the pa-
rameters inference. This is the set of the two-dimensional coordinates or
projection on the plane for all the row data. For the kth cluster it corre-
sponds a two-dimensional position sk on the plane, such that an averaged
position is written:

ŝi =
∑

k

ĉiksk .

From an auto-organization point of view of the probabilities αkℓ, only a pro-
jection at the maximum a posteriori position can also be preferred. Indeed,
when a row i has a higher probability in a given cluster then it belongs to

3Constraints corresponding to a non fuzzy clustering of the rows can be defined by a
linear matrix R such that when m < d, it can be written RΩ = 0h×m where the right
member is a null matrix. In this case a solution for the update with the constraints may
be obtained as in restricted least squares.
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Classic3-s News4

Figure 2: Maps with the method PBGTM.

this cluster. An estimated label for the ith row maximizes the posterior prob-
abilities and is denoted ẑi. The corresponding datum can be represented at
a ẑth

i node with coordinates ŝMAP
i = sẑi. By performing this procedure for

each datum, the model builds a reduced view of the dataset in tabular form.
As our model is defined for the projection of the rows, a direct double repre-
sentation with both rows and variables is not available, and a methodology is
required for adding a projection of the variables. For instance for a discrete
law, the more meaningful columns for each cluster kth can be added at the
coordinates of the corresponding node sk or a continuous projection can be
deduced from the parameters (see [43]).

Next, experiments with the visualisation of real data illustrate the gen-
eralized model in order to validate the proposal.
5. Experiments

In this section, we are interested in illustrating our model for textual
data with diverse functions ϕ for a nonlinear mapping of contingency tables
in order to observe how the constrained latent block model behaves. We
present our experiments with two small datasets and one large dataset.
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5.1. Experimental settings

The results of the methods are compared with three indicators. For an
evaluation of the quality of the clustering, an error rate is obtained from
the estimated labels {ẑi} and denoted error-rate. For an evaluation of the
quality of the nonlinear mapping, two indicators are obtained by a measure of
the separation of the original classes from the true labels and the projection
points {ŝi} in the latent space. They are briefly described below.

- The error rate is the percentage of missclassified samples, say
#
{

zi 6=ẑSẑi

}

n
.

Here, ẑSk denotes the estimated class label by majority vote of the kth

cluster from the map while zi is the true class label and #{.} is the
cardinality of a set. This indicator may decrease with the size of the
map g until a limit if the classes are not perfectly separated.

- The Davies-Bouldin index [50], denoted DB-index, is the average sim-
ilarity between each class and its most similar one. The similarity
between the kth

1 class and the kth

2 one is measured by the quotient
(vk1 + vk2)/dk1k2 where vk1 and vk2 are the intra-variance in each class
while dk1k2 is the Euclidean distance between the class centers. This
indicator is preferred minimal as it decreases if the classes are more
separated.

- The average of the Silhouettes [51], denoted S-index, is the mean value
of (bi − ai)/max(ai, bi) where ai and bi are as follows. The first quantity
is the average dissimilarity between the ith datum and the other ones
in the ẑth

i class. The second one is the minimal average dissimilarity
from the other classes. This indicator is confined in the interval [−1; 1]
and is preferred maximal for more compact classes.

A visual inspection of the final map and the values of the indicators lead to
an empirical choice of the parameters g, m, and h in BGTM for the results
presented hereafter with three datasets.

5.2. Output for two small datasets

When x is a contingency table, I corresponds to a corpus of documents,
and J to the vocabulary, so the frequency xij denotes the number of occur-
rences of a word in a document. The two datasets considered for comparing
the methods are:
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- The dataset News4 or N4 which consists of 400 documents selected
from a textual corpus of 20000 usenet posts from 20 original news-
groups. From each group among the 4 retained, 100 posts are selected
and 100 terms are filtered by mutual information [32].

- The dataset Classic3-s or C3-s is a sample from Classic3 resulting to
a contingency table of size 450× 171. The texts are distributed among
3 topics named respectively Medline, Cisi and Cranfield. The dataset
Classic3 or C3 is a commonly used dataset [11] for experiments in
co-clustering.

In this experiment, for the three versions of the block generative topographic
mapping, the map is a square with a size equal to g = 92, while the number of
column clusters is m = 20. The number of basis functions for the nonlinear
mapping is h = 28, with 52 nonlinear basis functions plus the three linear
components.

The empirical visualisations are shown in Figure 2 for the case of a Pois-
son law. Each map is represented as follows. For each cluster, a barplot
corresponding to the true labels of the data is constructed after fitting the
model. Hence, for a given dataset the map shows a table of 9 × 9 barplots
such that if two clusters are near in the data space and on the map they
should have similar barplots. This is a tabular view of the dataset which also
confirms that the nearest clusters have texts with similar topics as expected
for a self-organizing map. Moreover, most of the clusters with misclassifica-
tion are at the frontier between two classes which confirms that the classes
are well detected by the method.

The statistics for a comparison of the different methods are summarized
in Table 4 with the obtained results per method and per dataset. The last
two indicators are informative of how compact are the projections of the
classes, but we are mostly interested in an auto-organization of the clusters.
Globally, the Poisson case performs better as expected because the binary
version loses the information of the true number of occurrences. Moreover,
the Gaussian case behaves slightly like the Bernoulli one because the clusters
do not overlap much. To sum up, the Poisson law with parametric constraints
is clearly more valuable than the other laws considered in our experiments.
The frequencies are meaningful in clustering textual data. If this is clearly
true for N4, in the case of C3-s outliers seem to perturbate the empirical
result obtained from only one sample and a more robust model might be
preferred.
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Algorithm error-rate (%) S-index DB-index
N4 C3-s N4 C3-s N4 C3-s

PBGTM 3.8 5.3 0.44 0.36 0.82 0.94
BBGTM 5.6 5.1 0.27 0.36 1.68 0.89
GBGTM 8.3 5.1 0.27 0.28 1.14 1.55
BCASOM 6.5 3.6 0.51 0.36 0.76 1.38

Table 4: Error rate in percent, S-index and DB-index for the two datasets considered, N4
and C3-s.

For comparing our approach with an alternative combination of co-clustering
with SOM, we have also computed the indicators with a variant4 of CASOM
[52]. The parameters in each multinomial distribution are reduced to only
m values where a fixed pre-clustering was obtained from the Poisson latent
block model. The results from this alternative5 method, denoted BCASOM,
are presented in Table 4. Hence, BGTM leads to less compact projections of
the classes with the current implementation for these small datasets. Note
that a regularisation of the matrix Ω as in [53] for our generalized model,
or an early stopping and another setting of the neighborhood function for
BCASOM may improve the empirical results.

5.3. Output for a table of size 12648× 6034

The dataset PubMed5 comes from the collection 10Pubmed [54], with
approximately 15500 medical abstracts from the database Medline published
between the years 2000 and 2008 for 10 classes. While the size of the original
data table is 15565 × 22437, only the five largest classes are included here
for this experiment with small overlapping. We end with 12648 documents
and only 6034 terms after a selection of the vocabulary: when selecting the

4Let’s have P = (Pkℓ)m×g the matrix of component parameters in the (kℓ)th blocks,
and H = (hkk′ )g×g the matrix with the values of the neighborhood function where the
width is decreasing with the iteration (t). C and D (here binary) are the matrices of the
posterior probabilities. N is the diagonal matrix with non null elements 1T

dD. The update
equations are as follows. a) C ∝ exp{xD log{P}H} with an usual normalisation from the
diagonal elements equal to the inverse of the components of C1g, while exp{.} and log{.}
are respectively the logarithmic and exponential transformation of each cell of the matrix.
b) P

T ∝ HC
T
xD with a normalisation from the diagonal elements equal to the inverse

of the components of 1T
m(NP).

5Another possible model is the multinomial GTM [32] with restricted parameters.
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five larger classes, the terms which occur in less than 6 different texts are
removed. The initialization is performed with the help of the first principal
plane of CA.

The parameters of the model PBGTM are chosen equal tom = 30, g = 92,
and h = 19. The value of the S-index is 0.42 for this dataset. The confusion
matrix for the proposed model is presented in Table 5, while the overall
accuracy is equal to 97.1%. In the Figure 3, the five classes are almost
perfectly separated on the map.

PBGTM
1485 2 2 20 8
1 1499 15 27 7
7 8 3220 41 7
25 18 40 3609 11
59 17 7 46 2467

Table 5: Confusion matrix for PubMed5.

Figure 3: Nonlinear map with the method PBGTM, with the coordinates (ŝi) for the real
dataset PubMed5.

17



In conclusion, we observe that the method is able to deal with a large table,
with a large number of columns. For a comparison with an usual mixture
model where the columns are not clustered, the number of parameters would
be d×g = 488754 instead ofm×h = 570. An alternative model such as in [32]
would need d× h = 114646 parameters. Hence our proposal is dramatically
more parsimonious with a dramatic reduction factor of respectively 0.001 and
0.005.

6. Conclusion

Herein, we have proposed a family of models for the reduction and pro-
jection of numerical tables with a block structure. In the experiments for
discrete data we observe that block GTM is able to present a quick sum-
mary for three datasets. Our proposal brings parsimony, flexibility and more
generality than the existing models.

As a perspective, the parameter selection or the clustering of the nodes of
the map [55, 56] could be addressed. Local maxima in the training process
is a serious concern in GTM, this may be worse for BGTM hence this issue
needs to be reduced in future for making the model available for further
extensive experiments, by adding constraints [57, 58] for instance. Other
distributions and link functions for the cells are also interesting to explore in
order to help improving the robustness and the fitting.

Acknowledgment

The authors would like to thanks the editor and the reviewers for con-
tributing to the improvement of the earlier versions of the paper. This re-
search was partially supported by the CLasSel ANR project ANR-08-EMER-
002 and the BLUE-ETS project G.A. n.244767.

References

[1] L. Lebart, A. Morineau, K. Warwick, Multivariate Descriptive Statisti-
cal Analysis, J. Wiley, 1984.

[2] J. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, Springer,
2007.

18



[3] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harsh-
man, Indexing by latent semantic analysis, Journal of the American
Society for Information Science 41 (1990) 391–407.

[4] E. Bingham, H. Mannila, Random projection in dimensionality reduc-
tion: Applications to image and text data, in: Proceedings of the Sev-
enth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’01, ACM, New York, NY, USA, 2001, pp.
245–250.

[5] T. Liu, S. Liu, Z. Chen, W.-Y. Ma, An evaluation on feature selection for
text clustering., in: T. Fawcett, N. Mishra (Eds.), ICML, AAAI Press,
2003, pp. 488–495.

[6] A. K. Jain, Data clustering: 50 years beyond K-means, Pattern Recog-
nition Letters 31 (8) (2010) 651–666.

[7] J. A. Hartigan, Direct Clustering of a Data Matrix, Journal of the Amer-
ican Statistical Association 67 (337) (1972) 123–129.

[8] H. Bock, Simultaneous clustering of objects and variables, in: E. Diday
(Ed.), Analyse des Données et Informatique, INRIA, 1979, pp. 187–203.

[9] G. Govaert, Simultaneous clustering of rows and columns, Control and
Cybernetics 24 (4) (1995) 437–458.

[10] I. S. Dhillon, Co-clustering documents and words using bipartite spectral
graph partitioning, in: Proceedings of the Seventh ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD
’01, ACM, New York, NY, USA, 2001, pp. 269–274.

[11] I. S. Dhillon, S. Mallela, D. S. Modha, Information-theoretic co-
clustering, in: Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’03, ACM,
New York, NY, USA, 2003, pp. 89–98.

[12] G. Govaert, M. Nadif, Clustering with block mixture models, Pattern
Recognition 36 (2) (2003) 463–473.

[13] I. V. Mechelen, H. H. Bock, P. D. Boeck, Two-mode clustering methods:
a structured overview, Statistical methods in medical research 13 (5)
(2004) 363–394.

19



[14] S. C. Madeira, A. L. Oliveira, Biclustering algorithms for biological data
analysis: A survey, IEEE/ACM Trans. Comput. Biol. Bioinformatics
1 (1) (2004) 24–45.

[15] M. Charrad, M. Ben Ahmed, Simultaneous clustering: A survey, in:
PReMI 2011, LNCS 6744, 2011, pp. 370–375.

[16] Y. Kluger, R. Basri, J. T. Chang, M. Gerstein, Spectral biclustering of
microarray cancer data: Co-clustering genes and conditions, Genome
Research 13 (2003) 703–716.

[17] M. Cottrell, S. Ibbou, P. Letremy, Som-based algorithms for qualitative
variables, Neural Networks 17 (8-9) (2004) 1149–1167.

[18] T. Hoang, M. Olteanu, Som biclustering - coupled self-organizing maps
for the biclustering of microarray data, in: IDAMAP 03, Workshop
notes, 2003, pp. 40–46.
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