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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL AND APPLIED SCIENCES

Electronics and Computer Science

Doctor of Philosophy

SWITCHED LINEAR DIFFERENTIAL SYSTEMS

by Jonathan C. Mayo-Maldonado

In this thesis we study systems with switching dynamics and we propose new mathe-

matical tools to analyse them. We show that the postulation of a global state space

structure in current frameworks is restrictive and lead to potential difficulties that limit

its use for the analysis of new emerging applications. In order to overcome such short-

comings, we reformulate the foundations in the study of switched systems by developing

a trajectory-based approach, where we allow the use of models that are most suitable for

the analysis of a each system. These models can involve sets of higher-order differential

equations whose state space does not necessarily coincide.

Based on this new approach, we first study closed switched systems, and we provide suf-

ficient conditions for stability based on LMIs using the concept of multiple higher-order

Lyapunov function. We also study the role of positive-realness in stability of bimodal

systems and we introduce the concept of positive-real completion. Furthermore, we

study open switched systems by developing a dissipativity theory. We give necessary

and sufficient conditions for dissipativity in terms of LMIs constructed from the co-

efficient matrices of the differential equations describing the modes. The relationship

between dissipativity and stability is also discussed.

Finally, we study the dynamics of energy distribution networks. We develop parsimo-

nious models that deal effectively with the variant complexity of the network and the

inherent switching phenomena induced by power converters. We also present the solu-

tion to instability problems caused by devices with negative impedance characteristics

such as constant power loads, using tools developed in our framework.
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Notation

Iq Identity matrix of dimension q.

A⊤ Transpose of the matrix A.

col(A,B) If A,B are matrices with the same number of columns,

it denotes the matrix obtained by stacking A over B.

R Set of real numbers.

N Set of natural numbers.

C Set of complex numbers.

C
+ Set of complex numbers with positive real part.

C
− Set of complex numbers with negative real part.

j Imaginary unit
√
−1.

λ̄ Conjugate of the complex number λ.

R
w Space of real vectors with w dimension.

R
m×n Space of m× n dimensional real matrices.

R
•×n Space of real matrices with n columns and a finite

unspecified number of rows.

R
m×∞ Space of real matrices with m rows and an infinite

number of columns.

R[ξ] Ring of polynomials with real coefficients in the

indeterminate ξ.

R[ζ, η] Ring of polynomials with real coefficients in the

indeterminates ζ and η.

R
m×n[ξ] Ring of m× n polynomial matrices with real coefficients

in the indeterminate ξ.

R
m×n[ζ, η] Ring of m× n polynomial matrices with real coefficients

in the indeterminates ζ and η.

det(A) Determinant of a square matrix A.

deg(r) Determinant of a polynomial r.

rank(R) Rank of a matrix R.

n(B) McMillan degree of the behaviour B.

m(B) Number of maximally free components of the

behaviour B (i.e. input variables).

Lw Class of linear differential behaviours associated to an

xvii



xviii NOTATION

external variable of dimension w.

C∞(R,Rq) Set of infinitely differentiable functions from R to R
q.

Lloc
1 (R,Rq) Set of locally integrable functions from R to R

q.

D∞(R,Rq) Set of infinitely differentiable functions from R to R
q

with compact support.

C∞
p (R,Rq) Set of infinitely piece-wise differentiable functions from R to R

q.

D∞
p (R,Rq) Set of piece-wise infinitely differentiable functions from R to R

q

with compact support.

limτրt f(t) Limit of f as τ approaches t from the right.

limτցt f(t) Limit of f as τ approaches t from the left.

f(t−) Value of limτրt f(τ) for a function f : [t− ǫ, t) → R
•.

f(t+) Value of limτցt f(τ) for a function f : (t, t+ ǫ] → R
•.

σ+(G) Nmber of positive eigenvalues of G = G⊤ ∈ R
m×m.



Chapter 1

Introduction

In this chapter, we provide a general introduction to systems with switching dynamics

and we briefly study their classical framework based on state space representations.

We argue that although many remarkable contributions are rested on the state space

setting, its conventional modelling approach is not necessarily well-grounded on physical

considerations. This situation impedes the use of such framework in the analysis of new

emerging applications. We justify this position by discussing the following issues:

• State representations are not a given. Such models have to be computed from sets

of differential equations obtained from first principles, possibly of higher-order.

• Lack of parsimony. Switching between systems with different state space dimen-

sion requires the introduction of fictitious variables and equations, only to satisfy

a global predetermined structure.

• Lack of modularity. Once a global structure is imposed, the modes in the un-

derlying bank need to be altered every time a new mode of higher complexity is

added.

In the following sections, we explain how the latter issues prompted us to reformulate

the current foundations in the study of systems with switching dynamics.

1.1 Switching dynamics

In many disciplines such as physics and engineering, there exist dynamical systems whose

laws change abruptly. Such systems are called switched systems and we find them very

often in real-life situations and applications, e.g. thermostats, air traffic control systems,

switched multi-controller systems, switching power converters, etc.. The abrupt changes

1



2 Chapter 1 Introduction

in the laws describing the system give rise to different dynamic modes, whose modelling

from first principles frequently involves sets of differential equations. The activation

of such modes is orchestrated by a switching rule that is considered, unless otherwise

specified, as an unconstrained piecewise constant function of time, i.e. free to adopt the

value of any element of an index set at any time instant.

When switching between dynamic modes, the trajectories of the system may be subject

to algebraic constraints, which are enforced by physical principles. For example, al-

though discontinuities on the system trajectories may occur at switching instants, con-

servation principles forbid trajectories that imply instantaneous changes in conserved

quantities such as charge, flux, momentum, molar mass, volume, etc. (see [47]). An-

other well-known example of this type of constraints is the case of state reset maps in

multi-controller systems, which are used to re-initialise a bank of controllers that are

interconnected to a plant (see [24]).

One of the main problems studied in switched systems is stability: we are interested

in determining under what conditions the trajectories of a switched system remain

bounded. However, finding such conditions is not a straightforward task since for in-

stance, it is well-known that the switching between stable systems may produce insta-

bility, see [34, 36]. Other subjects of interest are stabilisability, control, system identi-

fication, simulation, design, as well as the application of results on relevant disciplines,

see e.g. the practical cases discussed in [66, 81, 98].

We now introduce several examples of physical systems with switching dynamics.

1.1.1 Coupling of masses in motion

Consider the mechanical system in Fig. 1.1, consisting of two masses with rigid mechan-

ical couplers (of negligible length) attached to their contiguous ends. There exist two

possible dynamic modes that describe the motion of the masses.

Figure 1.1: Coupling of masses in motion
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In Fig. 1.1 (a) the masses are detached and move individually, possibly at different

velocities. The positions w1 and w2, with respect to a fixed point, are governed by the

following laws

Mode 1:





m1
d2

dt2
w1 = 0

m2
d2

dt2
w2 = 0

.

If at any instant of time tk the condition w1(tk) ≥ w2(tk) is satisfied, the masses are

coupled as in Fig. 1.1 (b). Consequently, the laws of the system are described by

Mode 2:





(m1 +m2)
d2

dt2
w1 = 0

w1 − w2 = 0

.

Note that when switching from Mode 1 to Mode 2, the masses are suddenly required to

adopt the velocity of a single mass of magnitude m1 +m2. The new value of velocity

must respect the principle of conservation of momentum (cf. [46]), which states that

the sum of momenta before and after the switch is the same, i.e.

m1
d

dt
w1(t

−
k ) +m2

d

dt
w2(t

−
k ) = (m1 +m2)

d

dt
w1(t

+
k ) .

Considering this equilibrium condition, we conclude that the only admissible value of

velocity at the switching instant is

d

dt
w1(t

+
k ) =

m1
d
dt
w1(t

−
k ) +m2

d
dt
w2(t

−
k )

m1 +m2
.

1.1.2 DC-DC boost converter

In Fig. 1.2, we illustrate a DC-DC boost converter with a nominal resistive load R

(see [10]). For practical purposes such as voltage/current/power regulation, we are

particularly interested in the dynamics at the input/output terminals. Hence we focus

our analysis on the variables col(E, i, v).

Figure 1.2: DC-DC boost converter

By means of a switching signal, we can arbitrarily induce two possible electrical con-

figurations that occur when the switch is in position 1 or 2. We can thus derive the
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following sets of equations.

Mode 1:





L
d

dt
iL − E = 0

C
d

dt
v +

1

R
v = 0

. (1.1)

Mode 2:





L
d

dt
i+ v − E = 0

C
d

dt
v +

1

R
v − i = 0

. (1.2)

By inspecting the circuit we conclude that the values of the magnetic flux and electric

charge due to the inductor and capacitor remain unchanged at the switching instant,

i.e. the internal charge/flux is not affected by external components. Thus the algebraic

constraints to be satisfied at every switching instant tk are

Cv(t−k ) = Cv(t+k ) , Li(t−k ) = Li(t+k ) ;

which evidently implies that the trajectories of the current i through the inductor and

the voltage v across the capacitor are continuous at switching instants.

1.1.3 Feedback multi-controller system

Consider the multi-controller system in Fig. 1.3, where the plant and controllers are

described by the SISO transfer functions n(s)
d(s) and pi(s)

qi(s)
, i = 1, ..., N , respectively.

Figure 1.3: Feedback multi-controller system

When modelling the mode dynamics with respect to the output y, we obtain the following

equations

(
d

(
d

dt

)
qi

(
d

dt

)
+ n

(
d

dt

)
pi

(
d

dt

))
y = 0 , i = 1, ..., N .
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Furthermore, in many cases we are interested in inducing certain “re-initialisation” of

the controllers, which involves additional algebraic constraints at switching instants

according to the application.

1.1.4 Energy distribution networks

Consider the energy distribution network (cf. [61, 89]) in Fig. 1.4, consisting of a DC-DC

converter as in Sec. 1.1.2, feeding three types of loads represented by impedances.

• ZN represents a nominal load, i.e. the load that is considered during the design

stage of the converter and which remains connected in the implementation;

• Zk, k = 1, ..., L, represents a switched impedance, i.e. a finite amount of load

that can be connected or disconnected arbitrarily and which is not necessarily

known during the design stage, e.g. domestic/commercial (dis-)connectable loads,

(dis-)connectable electric vehicles, etc.; and

• ZCPL represents the negative impedance of a regulated switching power converter

whose dynamics resemble a constant power load (CPL).

Figure 1.4: Energy distribution network

Note that the complexity of this system is neither initially bounded nor fixed, i.e. the

McMillan degree associated to each impedance depends on their constitutive reactive

elements which in the case of Zk, k = 1, ..., L, may change depending on the loads that

are connected during certain intervals of time.

1.2 Switched state space systems

The traditional approach to switched (linear) systems is based on the state space frame-

work (see [24, 34, 74]). In this case, the dynamical modes are uniformly represented
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as

Es(t)
d

dt
x = As(t)x+Bs(t)u ; (1.3)

where x(t) ∈ R
n is the state function, u(t) ∈ R

m is the input function, s : R → {1, ..., N},
with N ∈ N, is a switching signal, and Ei ∈ R

n×n, Ai ∈ R
n×n and Bi ∈ R

n×m, with

i = 1, ..., N , are constant matrices associated with the laws of the i-th dynamical mode.

In many cases the matrices Ei, i = 1, ..., N , are invertible and can be omitted for

ease of exposition. However, in some cases Ei is singular and the resulting state space

description is more properly called a differential algebraic equation (see [74]). When

switching from the i-th to the j-th mode at tk, the trajectory of the state may be

continuous: x(t−k ) = x(t+k ), or discontinuous: x(t−k ) 6= x(t+k ). For the latter case, a

state reset map Ri→j ∈ R
n×n can be used to specify a new value of the state, i.e.

x(t+k ) = Ri→jx(t
−
k ).

Undoubtedly, the state space setting has played an important role in the study and

understanding of switched systems, and many outstanding contributions rely on this

framework, see e.g. [3, 7, 24, 35, 36]. The adoption of the state space approach to study

switched systems is not a sheer coincidence, since there are special mathematical reasons

that encourage its use, e.g. 1) the state plays a fundamental role in the concatenation

of the system trajectories at switching instants, as illustrated with the use of state reset

maps in [24]; 2) the use of state space models facilitates the computation of functionals

using LMIs [36]; 3) there is a fundamental relationship between the state and the “mem-

ory” or “energy” of the system [77]. In spite of such appealing features, there exist also

shortcomings in the state space setting.

The postulation of a global state space structure for each dynamical mode is rather

restrictive. For instance, (1.3) indicates that abrupt changes in the laws of a switched

system affect only its parameters, but the state remains unchanged. Note that in the

previous examples in sections 1.1.1, 1.1.2, 1.1.3 and 1.1.4, this situation occurs rarely;

in fact, only the model of the DC-DC converter in equations in (1.1)-(1.2) satisfy such

premise. However if instead of restricting the applicability of such DC-DC converter to

its elementary case (involving a resistor as load) and consider a more realistic scenario

as in the energy distribution network in Sec. 1.1.4, such a global state space structure

does not appear in a natural way; the slightest (dis-)connection of loads modify the

dynamical complexity of the system. From these examples, we conclude that in general

the state space of the dynamic modes of a physical switched system do not necessarily

coincide.

Surprisingly, the issue of dynamic modes with different state spaces has been already

identified and argued in subjects such as physics and computer sciences (see [11, 47, 63]),

but has remained largely disregarded in system and control theory. In the following,

we study the consequences derived from the restrictions of the state space setting in
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the analysis of switched systems and we emphasise issues in modelling, parsimony and

modularity.

1.2.1 Modelling from first principles

In the following we discuss two modelling approaches for physical systems: tearing,

zooming and linking (see [85]), and modelling of n-port networks (see [48]). We also

show that these methods lead in general to models based on higher-order differential

equations.

Tearing, zooming and linking

When modelling a physical system, we are interested in studying the trajectories of cer-

tain manifest variables, that are crucial for analysis, control, simulation, etc. During

the modelling process certain latent variables may appear, which are not necessarily of

interest, but need to be introduced to represent the physical laws of the system in a con-

venient way. Modelling by tearing, zooming and linking embodies the general intuition

of viewing a system as the interaction of subsystems of lower complexity, focusing on

manifest variables.

This procedure consists of the following four steps, which are also depicted in Fig. 1.5.

Figure 1.5: Modelling by tearing, zooming and linking

1) Identifying relevant variables: We view the system as a black-box where we identify

the set of variables of interest denoted by w.
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2) Tearing : we internally examine the black-box unveiling the system structure con-

sisting of interconnections of smaller black-boxes corresponding to subsystems of

lower complexity.

3) Zooming : we model the laws that describe the dynamics of the terminals of each

subsystem.

If the complexity of the subsystem does not permit to model in a straightforward

way the corresponding physical laws involving its terminals, we return to step 2)

to decompose it into smaller subsystems.

4) Linking : we eliminate latent variables by matching the common terminals of the

subsystems in a hierarchical way, starting from the smaller subsystems.

Note that during this hierarchical modelling procedure, the algebraic elimination of latent

variables results in higher-order differential descriptions that involve only the variables

of interest.

Modelling of n-port electrical networks

When we study systems consisting of interconnections of port-driven electrical networks,

e.g. transmission lines with points of common coupling, filters, loads, etc., we are com-

pelled to adopt, under some reasonable conditions, models based on the calculus of n-port

immitances (such as impedances and admittances). These models greatly simplify the

computation of complex models, see e.g. [48].

Models based on impedance matrices describe the input-output dynamics of the net-

work in terms of the variables V := col(v1, ..., vn) and I := col(i1, ..., in), corresponding

respectively to the voltages across and currents through each port. The impedance

Z ∈ R
n×n(s) is a matrix transfer function with input I and output V .

In standard cases, Z can be computed by straightforward algebraic computations such

as series and parallel operations, since any complex n-port impedance matrix Z con-

sists of the interconnection of impedances of lower complexity. The most elementary

components are 1-port impedances corresponding to inductors, resistors and capacitors:

ZL(s) = Ls , ZR(s) = R , Zc(s) =
1

Cs
.

The inverse of an impedance, if exists, is equal to an admittance denoted by Y , i.e.

Y = Z−1.

Consider for instance the n-port networks in Fig. 1.6, whose terminals represent an

n number of terminal pairs. The resultant n-port impedance/admittance due to series

(Fig. 1.6 a) and parallel (Fig. 1.6 b) interconnections is computed as Z = Z1 + Z2 and

Y = Y1 + Y2 respectively.
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Figure 1.6: Series/parallel interconnection of impedances/admittances

The sum of impedances/admittances lead to complex descriptions of transfer functions

that can be effectively translated to systems of higher-order differential equations.

Electrical networks are not the only type of networks than can be studied in this setting,

since any physical system with ports involving conjugate variables such as voltage and

current, force and velocity, pressure and change in volume, etc., can be modelled in this

way (see [48]). Note for example the use of impedances in the analysis of mechanical

networks in [50].

The previous modelling approaches exhibit certain features that point out to some short-

comings in the classical state space framework. Consider for example the following

remarks.

• State representations are constructed from higher-order models. Modelling by tear-

ing, zooming and linking leads to higher-order descriptions involving a set of man-

ifest variables. Note that this situation has been already exemplified in Sec. 1.1.1,

1.1.2 and 1.1.3, where mass displacements, input/output voltages and currents,

and the output of a plant are selected as variables of interest for practical pur-

poses. Hence, additional computations must be performed to derive first-order

models.

• The dimension of the state space vector is unsuitable in complex system analysis.

Sets of first-order differential equations is a special end result of a modelling pro-

cedure based on tearing, zooming and linking, where a vector of state variables is

of interest. Although first-order representations can be always obtained in such a

way or constructed from higher-order models, the resulting dimension of the state

vector has been already determined to be unsuitable for the analysis of complex

systems such as smart grids, see pp. 57-58 [90].

• The use of state space models is not a fundamental requirement. Physical systems

with ports are conveniently modelled in terms of immittances, which are assembled

from libraries of simpler sub-models, and cannot be described mathematically right
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away in terms of first-order equations. In many cases such as in power systems,

the analysis in tems of immittances is generally preferred over other methods,

see e.g. [33, 48, 53, 72, 88]. The use of immittances is also a common approach

for the study of stability of electrical networks with switching dynamics, see e.g.

[61, 67, 82, 89].

For these reasons, the analysis of systems directly in higher-order terms is a sound

mathematical approach for the study of physical systems.

1.2.2 Parsimony

We now show that the state space approach to switched systems scores low in parsimony,

since it usually requires an increased number of variables and equations only to satisfy an

imposed global structure. In order to illustrate this issue, consider the separately-excited

DC motor (see [32], Sec. 2.4, p.78) in Fig. 1.7.

Figure 1.7: Separately excited DC motor (armature winding)

We select the armature current ia and the rotor position θ as the variables of interest.

The dynamics can be modelled using Newton’s second law for rotatory masses and

Kirchhoff’s voltage law, obtaining

Mode 1:





J
d2

dt2
θ +BL

d

dt
θ − Lafifia = 0

La
d

dt
ia − Lafif

d

dt
θ +Raia + Va = 0

(1.4)

where J is the rotor inertia, BL the rotor viscous friction constant, Laf the mutual

inductance, La the armature inductance, Ra the armature resistance, if the constant

field winding current and Va the voltage across the terminals of the armature winding

that can be manipulated freely. To construct a minimal state space representation for

the DC motor, the state variables can be chosen as

x :=




θ
d
dt
θ

ia


 .

A switching phenomenon occurs when at an arbitrary time instant we connect e.g. a

discharged capacitor C to the terminals of the armature winding. Mathematically, this
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results in adding new equations to the existing ones, i.e. C d
dt
v + ia = 0, and v = Va.

Moreover, a minimal set of state variables for the new dynamic mode is

x′ :=




θ
d
dt
θ

ia

v




⊤

;

which has a higher dimension than the previous x.

In practical situations we are not interested in monitoring the voltage dynamics of the

attached capacitor, but in the overall dynamics that this new interconnection induces

on the variables of the motor that we originally decided to be of interest. Consequently,

using tearing, zooming and linking we obtain the following set of higher-order differential

equations: 



J
d2

dt2
θ +BL

d

dt
θ − Lafifia = 0 ;

LafifC
d2

dt2
θ − LaC

d2

dt2
ia −RaC

d

dt
ia + ia = 0 .

(1.5)

Thus the variables of interest in (1.5) are the same that those in (1.4).

In the state space setting we construct representations using the largest state vector

x′ :=
[
θ d

dt
θ ia v

]⊤
for both modes, by increasing the complexity of the simplest

one. However, note that this situation not only undermines the possibility of obtaining

parsimonious representations, but also deviates from a sound physical interpretation of

the laws of the system, e.g. the voltage across the capacitor is included in the description

of both modes, while such variable is only physically meaningful in one of them.

Note that the issue of augmented state space representations becomes more critical as

the difference of complexity among dynamic modes is greater. Consequently in complex

cases the state space setting becomes unsuitable for the study of real-life switched sys-

tems. Consider for example the case of the energy distribution network in Sec. 1.1.4,

where the complexity of the switched system is not bounded, since it depends on the

domestic, commercial and industrial loads that are arbitrarily (dis-)connected. In this

case it is not helpful to postulate a global state-space as a starting point to model the

network, since the slightest (dis-)connection of loads changes the dynamical complexity

of the system. A global state space would be necessary only if all the possible loads

were simultaneously connected; but this situation is not conceivable in practice.

The use of additional fictitious variables and augmented representations lead to unnec-

essary complications in the analysis of switched systems. For instance, if we demand

a global state space structure for systems with different complexity, we decrease dra-

matically the efficiency of computational tools, see e.g. the discussions in [11, 63]. This
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situation motivate the idea to study switched systems using directly higher-order mod-

els obtained from first principles, even if their state space does not coincide. Note for

example that the dynamic modes (1.4) and (1.5) are parsimonious, since they display

the strictly required level of complexity for their description.

1.2.3 Modularity

We now discuss modularity, i.e. the incremental development and combination of models.

In order to illustrate this issue, consider for instance the scenario described in [53] of

a DC-DC converter with impedances as loads, which is a special case of the energy

distribution network in Fig. 1.4.

Consider the converter in Sec. 1.1.2 whose dynamic modes are described by (1.1)-(1.2)

where the state can be selected as

x :=

[
i

v

]
.

As discussed in [53], during the design stage of a power converter only nominal loads

are considered (see Fig. 1.2). However, in practical applications, it is natural to connect

additional loads. Consequently it becomes of interest to study the dynamics induced by

the new dynamic elements.

Consider for instance the interconnection of a series RL load at the output terminals of

the converter, as depicted in Fig. 1.8.

Figure 1.8: DC-DC boost converter

This situation induces two new dynamical modes (depending on the position of the

switch), with state

x′ :=



i

v

iL


 .

As argued in the previous section, in the state space setting the previously modelled

dynamics (1.1)-(1.2) need to be rewritten to satisfy a global structure, by using the

largest state vector. However, note that every time an additional load is connected,
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this operation must be repeated. In other words, in the state space setting dynamic

mode descriptions depend on each other; consequently, new modes cannot be added to

the underlying bank without altering the existing ones.

Note that such inconvenient situation does not occur if we consider higher-order mod-

elling: after selecting the variables of interest, each dynamic mode can be modelled

individually and added to the underlying bank of the switched system in a natural in-

cremental way. For example, when we consider the new load as in Fig. 1.8, we can

model the new dynamic modes with respect to col(E, i, v) as

Mode 3:





L
d

dt
i− E = 0

L′C
d2

dt2
v +

(
R′

LC +
L′

R

)
d

dt
v + v = 0

. (1.6)

Mode 4:





L
d

dt
i+ v − E = 0

− L′ d

dt
i+ L′C

d2

dt2
v +

(
R′

LC +
L′

R

)
d

dt
v + v = 0

. (1.7)

In this way, it does not matter how many new loads are connected: the models already

constructed can be re-used, and new dynamics with incremental complexity can be

considered.

1.3 Switched linear differential systems framework

As previously discussed, observation of physical switched systems suggest that the issues

in modelling, parsimony and modularity, can be overcome if we deal directly with dy-

namic modes involving higher-order differential equations, whose associated state space

does not necessarily coincide.

At this point it remains the question if further results (e.g. stability conditions, analysis

using LMIs, applications, etc.) can be also obtained in an effective way when dealing with

higher-order models, bypassing the need of state space representations. In this thesis

we give answer to this question by developing new mathematical tools for modelling

and analysis of switched systems. In order to do so, we use the theory and principles

of behavioural system theory (see [55]) to develop a trajectory-based approach that

permits to deal directly with sets of linear differential equations. Consequently, instead of

requiring a particular modelling structure, we deal with models that are more natural for

the application at hand, e.g. descriptions obtained from the modelling of immittances.

The collection of results derived from our new approach to switched systems embodies

the switched linear differential systems framework. In this framework we deal with the

issues of modelling, parsimony and modularity as follows.
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• Modelling. Each dynamical mode is associated with a mode behaviour, i.e. the set

of trajectories satisfying higher-order linear differential equations obtained directly

from first principles. A switching signal determines which of the modes is ac-

tive. Additionally, gluing conditions are introduced to specify the concatenability

conditions of the trajectories at switching instants, e.g. charge/flux conservation

principles, kinematic constraints, reset maps, etc.

• Parsimony. The mode behaviours do not necessarily share the same state space

and their modelling does not require to satisfy a particular mathematical structure.

Such freedom permits the use of equations featuring the strictly required level of

complexity for each mode. Moreover, dynamic modes exhibiting a global state

space is considered as a special elementary case.

• Modularity. Each dynamical mode is modelled individually, thus they can be

added to the underlying bank in a natural incremental way. This feature greatly

simplifies not only the modelling phase, but also the computations necessary for

the study of e.g. stability.

Concepts of the behavioural setting such as linear differential systems [55], state maps

[60] and quadratic differential forms [86], are crucial in the development of the main

contributions in this thesis, since they provide suitable mathematical tools to deal with

higher-order models and facilitate computations. The main results include a parsimo-

nious modelling approach, stability conditions using multiple higher-order Lyapunov

functions, new results concerning the notion of positive-realness in stability of switched

systems, a dissipativity theory for open systems, and applications in analysis and sta-

bilisation of energy distribution networks.

The main results in this thesis are translated into the computation of LMIs that can be

easily constructed directly from the higher-order models describing the modes and the

gluing conditions. Our framework constitutes a fundamental step towards the foundation

of an extensive theory on which additional results in control, system identification, model

order reduction, simulation, etc., can be rested.

1.4 Outline of the thesis

We now describe the contents of this thesis:

• Chapter 2. Some selected concepts of behavioural system theory are shown in this

chapter. We present the most relevant information to deal with dynamical systems

described by higher-order linear differential equations. This material is crucial for

the developing of our new approach to switched to switched systems.



Chapter 1 Introduction 15

• Chapter 3. We review fundamental concepts and properties of quadratic differen-

tial forms (QDFs). We study QDFs as a mathematical tool to study Lyapunov

stability and dissipativity under the behavioral setting. We also propose new re-

sults regarding the computation of higher-order- Lyapunov functions and storage

functions using LMIs, that can be easily set-up from the linear differential equa-

tions describing the modes.

The following chapters contain the main results and contributions in this thesis.

• Chapter 4. In this chapter we introduce the switched linear differential systems

approach. We present a modelling framework where the dynamic modes are not

required to share the same state space. We introduce the concept of gluing condi-

tions to specify algebraic constraints on the trajectories at switching instants.

• Chapter 5. We provide general stability conditions in terms of multiple higher-

order Lyapunov functions and we show a method to compute them using LMIs.

We also study the concept of positive-realness and positive-real completion as suf-

ficient conditions for stability of bimodal switched differential systems. We also

introduce results encompassing stability of switched systems with three modes in

the underlying bank.

• Chapter 6. We develop a dissipativity theory that permits the study of switched

differential systems in terms of energy. We give necessary and sufficient conditions

for a switched system to be dissipative. The relationship between dissipativity and

stability is also discussed.

• Chapter 7. We show the application of the switched linear differential systems

framework in the modelling and analysis of power converters and energy distribu-

tion networks. We provide a solution to instability problems associated to constant

power loads.

• Chapter 8. We provide some general conclusions and future research directions.

Appendix A contains all the proofs of the original results in thesis.

Finally, the following flow-diagram illustrates the content and organisation of the mate-

rial of this thesis.
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Chapter 2

Behavioural system theory

In this chapter we introduce general concepts of behavioural system theory that are in-

strumental for the development of the main results in this thesis. We concentrate on the

study of linear time-invariant dynamical systems represented by differential equations.

Further elaboration of the topics discussed in this chapter can be found in [55, 60].

2.1 Linear differential systems

Let us consider a dynamical system whose laws are described by a set of ordinary linear

differential equations, i.e.

R0w +R1
d

dt
w + ...+RL

dL

dtL
w = 0 , (2.1)

where Ri ∈ R
•×w, i = 0, ..., L, and w = col(w1, ..., ww) is the vector of external variables.

Such equations can be expressed in a compact way as

R

(
d

dt

)
w = 0 , (2.2)

where R(ξ) := R0 + R1ξ + · · · + RLξ
L. Note that (2.2) may contain also algebraic

equations in addition to ordinary differential equations. If we adopt C∞ as solution

space of (2.2), then the external behaviour is defined as

B :=

{
w ∈ C∞(R,Rw)

∣∣∣∣ R

(
d

dt

)
w = 0

}
. (2.3)

We denote with Lw the set of external behaviours whose trajectories take their values

in the signal space R
w as in (2.3). Note that according to (2.3), B consists of the set of

trajectories in the null space or kernel of R
(
d
dt

)
, consequently we call equation (2.2) a

kernel representation of the behaviour B ∈ Lw, denoted by B = ker R
(
d
dt

)
.

17
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Definition 2.1. A linear differential system is a triple Σ = (R,Rw,B), with time axis

R, signal space R
w and behaviour B ∈ Lw.

As discussed in the previous chapter, when a dynamical system is modelled from first

principles, it is normally necessary to introduce auxiliary variables (latent variables) in

addition to those in which we are interested in (manifest or external variables). In such

cases, we obtain the following hybrid system of linear, constant coefficient differential

equations

R0w +R1
d

dt
w + · · · +RL

dN

dtL
w = M0z +M1

d

dt
z + · · ·+ML′

dL
′

dtL′ z,

where Ri ∈ R
•×w, i = 0, ..., L; Mj ∈ R

•×z, j = 0, ..., L′; w = col(w1, ..., ww) and

z = col(z1, ..., zz) are the vectors of external- and latent- variables respectively. Such

equations can be expressed in a compact way as

R

(
d

dt

)
w = M

(
d

dt

)
z, (2.4)

with R ∈ R
•×w[ξ] and M ∈ R

•×z[ξ]. Similarly to the previous case, we can define a

hybrid linear differential system as follows.

Definition 2.2. A hybrid linear differential system is a quadruple Σ = (R,Rw,Rz,Bf ),

where:

• R, is the time axis.

• R
w is the manifest signal space.

• R
z is the latent variable space.

• Bf :=
{
(w, z) ∈ C∞(R,Rw)× C∞(R,Rz)

∣∣ R
(
d
dt

)
w = M

(
d
dt

)
z
}

is called the full

behaviour of the system.

The behavior defined as

B := {w : R → R
w | ∃ z : R → R

z s.t. (w, z) ∈ Bf} ,

is called the external behaviour corresponding to (2.4), while the full behaviour Bf is

sometimes called internal behaviour.

In the previous definitions we have adopted C∞ as solution space of the linear differential

equations that describe the laws of a dynamical system. Note however that C∞ leaves

out functions such as steps, sawtooth waves, etc., which are involved in the description

and analysis of many physical situations.
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In such cases we rather choose an extended solution space such as the set of locally

integrable functions, that is large enough to accomodate most of the typical functions

that we find in practice. This set consists of all functions f : R → R
q such that for all

a, b ∈ R it holds that ∫ b

a

‖f(t)‖ dt < ∞ ,

where ‖ · ‖ denotes the Euclidean norm on R
q. The space of locally integrable functions

f : R → R
q is denoted by Lloc

1 (R,Rq).

2.2 Controllability and observability

We introduce the concept of controllability of a linear differential system.

Definition 2.3. A linear differential system Σ = (R,Rw,B) is said to be controllable if

for all w1, w2 ∈ B there exists a t′ ≥ 0 and w ∈ B, such that w(t) = w1(t) for t < 0 and

w(t+ t′) = w2(t) for t ≥ 0.

The property of controllability corresponds to the possibility of conveying any trajectory

from the past to the future of any other trajectory in the behavior, with a certain finite

time delay. The set of linear differential controllable behaviours is denoted by Lw

cont.

Controllability of a system represented by (2.2) can be characterised in terms of prop-

erties of the polynomial matrix R.

Theorem 2.4. Let Σ = (R,Rw,B) be a linear differential system with B := ker R
(
d
dt

)

and R ∈ R
•×w[ξ]. B is controllable if and only if R(λ) is full row rank for all λ ∈ C.

Proof. See [55], Theorem 5.2.10.

Controllable systems admit a special representation called image representation.

Theorem 2.5. Let Σ = (R,Rw,B) be a linear differential system. There exists a

z ∈ N and M ∈ R
w×z[ξ] such that B =

{
w | ∃ z s.t. w = M

(
d
dt

)
z
}
if and only if B is

controllable.

Proof. See [55], Theorem 6.6.1.

Note that the image representation w = M
(
d
dt

)
z is a special case of the hybrid repre-

sentation in (2.4), where the polynomial matrix R is equal to the identity. The behaviors

described by an image representation as in Theorem 2.5 are denoted by B = im M
(
d
dt

)
.

Note that in this case, the latent variable z remains unconstrained, i.e. it can be any

trajectory in C∞(R,Rz). This representation has important practical implications, for
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instance in simulations any arbitrary time function z ∈ C∞(R,Rz) induces a trajectory

w ∈ B.

Another commonly studied property in dynamical systems is observability. In the be-

havioral framework this property corresponds to the possibility of deducing part of the

variables of the system from the remaining ones. In order to formalize this concept, the

following definition is introduced.

Definition 2.6. A linear differential system with latent variables Σ = (T,W,L,Bf ) is

said to have observable latent variables if there exists a map f : R → R
w such that for

all (w, z) ∈ Bf , z = f(w).

The observability of a linear differential system can be characterized algebraically as

follows.

Theorem 2.7. Let Σ = (R,Rw,Rz,B) be a linear differential system with latent vari-

ables represented by (2.4). The variable z is observable from w if and only if M(λ) is of

full column rank for all λ ∈ C.

Proof. See [55], Theorem 5.3.3.

Moreover, as it is shown in Sec. 4 of [84], if B is controllable it always admits an image

representation such that the latent variable z is observable from w.

2.3 Inputs and outputs

Given B ∈ Lw, it may be possible to choose some components of the external variable

w freely, according to the following definition.

Definition 2.8. Let Σ = (R,Rw,B) be a linear differential system. Partition the signal

space R
w = R

w1 × R
w2 , and correspondingly any trajectory w ∈ B as w = col(w1, w2)

with w1 ∈ C∞(R,Rw1) and w1 ∈ C∞(R,Rw2). This partition is called an input/output

partition if:

1) w1 is free, i.e. for all w1 ∈ C∞(R,Rw1), there exists w2 ∈ C∞(R,Rw2) such that

col(w1, w2) ∈ B.

2) w1 is maximally free, i.e. given w1, none of the components of w2 are free.

If 1) and 2) hold, we call w1 an input variable and w2 an output variable.

Remark 2.9. As discussed in Sec. 2.1, in Def. 2.8 we can also adopt the set of locally

integrable functions as solution space. Then some trajectories can be (maximally) free

on Lloc
1 .
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The maximal number of input variables is an invariant and is denoted by m(B). Once

m(B) free variables have been chosen, the remaining components of w are output vari-

ables; evidently, the number p(B) := w− m(B) of output variables is also an invariant.

Under certain conditions, linear differential systems with inputs an outputs can be

described using image form representations; we now elaborate on this feature. Let

B ∈ Lw be a controllable behaviour represented by an observable image representation

w = M
(
d
dt

)
z. Let P be a permutation matrix such that

PM

(
d

dt

)
= col

(
U

(
d

dt

)
, Y

(
d

dt

))
,

where Y (ξ)U(ξ)−1 is a matrix of proper rational functions called transfer function (see

[55], Sec. 3.3). This corresponds to a permutation of the elements of the external

variable such that it can be rewritten as Pw = (u, y), where u = U
(
d
dt

)
z is an input

variable, and y = Y
(
d
dt

)
z is an output variable. Moreover, since z is observable from

w, it follows that m(B) = z, i.e. the number of input variables is equal to the dimension

of z (see [87], Sec. VI-A).

Example 2.1. Consider the 1-port electrical circuit in Fig. 2.1.

Figure 2.1: Port-driven electrical circuit

The 1-port impedance of the circuit is computed by series and parallel operations as

Z(s) = L1s+
(L2s+R)

(
1

C1s

)

(L2s+R) +
(

1
C1s

) =
L1L2C1s

3 +RL1C1s
2 + (L1 + L2)s+R

L2C1s2 +RC1s+ 1
, (2.5)

which corresponds to the input-output description

L1L2C1
d3

dt3
I +RL1C1

d2

dt2
I + (L1 + L2)

d

dt
I +RI = L2C1

d2

dt2
V +RC1

d

dt
V + V .

Let for simplicity R = 1 Ω, L1 = L2 = 1 H and C = 1 F , then

[
V

I

]

︸︷︷︸
=:w

=

[
d3

dt3
+ d2

dt2
+ 2 d

dt
+ 1

d2

dt2
+ d

dt
+ 1

]

︸ ︷︷ ︸
=:M( d

dt)

z ,
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where z is a latent variable corresponding to the current through the inductor L2. Since

M(λ) is of full column rank for all λ ∈ C, we conclude that the latent variable z is

observable from w.

2.4 Autonomous systems and stability

We now study systems with autonomous behaviour, according to the following definition.

Definition 2.10. A behaviour B ∈ Lw is said to be autonomous if for all (w1, w2) ∈ B,

{w1(t) = w2(t) for t < 0} =⇒ {w1 = w2} .

In an autonomous behaviour the future of every trajectory is completely determined by

its past; there are no free components among its variables. Thus, if B is autonomous;

m(B) = 0, or equivalently p(B) = w.

An explicit mathematical descriptionof autonomous behaviours is provided in the fol-

lowing theorem.

Theorem 2.11. Let B be described in kernel form by R
(
d
dt

)
w = 0. Then B is

autonomous iff R has full column rank. Moreover, if B is autonomous, there exists

R ∈ R
w×w[ξ] with det(R) 6= 0 such that B = ker R

(
d
dt

)
.

Assume that R is a nonsingular matrix such that B = ker R
(
d
dt

)
, and denote λi ∈ C,

i = 1, ..., N , the roots of det(R), each with multiplicity ni. Then

{w ∈ B} ⇐⇒ {w =

N∑

i=0

ni−1∑

j=0

Bi,jt
jeλit} ,

where the vectors Bi,j ∈ C
w satisfy:




(
0

0

)
R(0)(λi) · · · · · ·

(
ni − 1

0

)
R(ni−1)(λi)

0
. . .

(
ni − 1

1

)
R(ni−2)(λi)

...
. . .

...

0 · · · · · ·
(
ni − 1

ni − 1

)
R(0)(λi)







Bi,0

Bi,1

...

Bi,ni−1



= 0 ,

for i = 1, ..., N , where R(k)(ξ) denotes the k-derivative of the polynomial matrix R(ξ)

with respect to ξ.

Proof. See Th. 3.2.16 of [55].
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We now introduce the notion of stability and asymptotic stability for autonomous sys-

tems.

Definition 2.12. A linear differential system Σ = {R,Rw,B} is said to be stable if all

the elements in B are bounded on R
+, this means that given w ∈ B there exists an

ǫ ∈ R such that ‖w(t)‖ ≤ ǫ for all t ≥ 0 . Σ is said to be unstable if it is not stable.

Definition 2.13. A linear differential system Σ = {R,Rw,B} is said to be asymptotically

stable if all elements of B approach to zero as t → ∞, i.e.

{w ∈ B} =⇒
{
lim
t→∞

w(t) = 0
}

.

According to the previous definition, (asymptotically) stable systems are autonomous,

since none of the components of w ∈ B is free, otherwise they could be chosen as not

bounded or not going to zero. Stability of an autonomous behaviour can be characterised

in terms of the properties of R, as shown in the following theorem.

Theorem 2.14. Let B = kerR( d
dt
), with R ∈ R[ξ]w×w nonsingular, be an autonomous

behaviour. Then B is stable if and only if detR(λ) 6= 0 for all λ /∈ C
−.

Proof. See [55], section 7.2.

2.5 State space systems

Before introducing the notion of state space system, we briefly discuss the concepts of

concatenability and of state variable. In order to do so, let us consider two trajectories

w1 and w2 in B, then the concatenation of w1 and w2 is defined by

(w1 ∧ w2)(t) :=

{
w1(t) t < 0

w2(t) t ≥ 0
.

Concatenation is closely related to the notion of state variable which is a special case of

a hybrid linear differential system.

Definition 2.15. Let Σs = (R,Rw,Rz,Bf ) be a hybrid linear differential system. The

latent variable z is a state variable if

{(w1, z1), (w2, z2) ∈ Bf} and {z1(0) = z2(0)} and {z1, z2 continuous at t = 0}
=⇒ {(w1 ∧ w2) ∈ B} .

Such a system Σs is called state space system, and the latent variable z corresponds to

the memory of the system that “splits” the past and future of a trajectory at zero. This

variable is usually denoted by x.
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We now introduce the concept of minimality for state space systems.

Definition 2.16. Let Σs = (R,Rw,Rn,Bf ) be a state space system, and B be the

external behaviour of Σs. Σs is state minimal if for any other state space system Σ′
s =(

R,Rw,Rn
′
,B′

f

)
with the same external behaviour B, it follows that n ≤ n′.

The minimal number of state variables necessary to represent B is an invariant called

the McMillan degree of B, and is denoted by n(B).

2.6 State construction

A state variable forB can be computed as the image of a polynomial differential operator

X
(
d
dt

)
called state map (see [60]); we now review how to construct it. Further elaboration

and methods regarding state space construction can be found in [60, 80].

2.6.1 State maps for autonomous systems

In this case, a state map acts on the external variable w. Let B := ker R
(
d
dt

)
with

R ∈ R
w×w[ξ] nonsingular, and consider the set defined by

X(R) := {f ∈ R
1×w[ξ] | fR−1 is strictly proper} , (2.6)

then, X(R) is a finite-dimensional subspace of the vector space R1×w[ξ] over R, (see [60],

Proposition 8.4). A state map X ∈ R
•×w[ξ] is constructed by row vectors in X(R). A

minimal state map has dimension n(B) = deg(det(R)), as shown in Cor. 6.7 of [60]. We

now illustrate the construction of minimal state maps for autonomous systems using the

following algorithm.

Algorithm 1: Construction of a minimal state map for a kernel representation.

Input: R ∈ R
w×w[ξ] with det(R) 6= 0.

Output: X ∈ R
•×w[ξ] inducing, through x = X

(
d
dt

)
w, a state for the system

described by R
(
d
dt

)
w = 0.

Step 1: Choose a set of generators {xi}i=1,...,n(B) so that they form a basis of (2.6).

Step 2: Return X := col(xi)i=1,...,n(B).

Given an autonomous behaviour B := ker R
(
d
dt

)
there exists (according to Th. 6.2 of

[60]) A ∈ R
•×•, B ∈ R

•×w[ξ] such that

ξX(ξ) = AX(ξ) +B(ξ)R(ξ) .
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In addition, if we consider a behaviour B ∈ Lw, and X ∈ R
•×w[ξ] a state map for B

acting on w, a polynomial differential operator Y ∈ R
•×w[ξ] is a linear function of the

state of B if there exists a constant vector C ∈ R
•×n such that

Y (ξ) = CX(ξ) ,

which implies that the rows of Y (ξ) belong to X(R).

2.6.2 State maps for controllable systems

We now summarise a result concerning the construction of state maps for controllable

systems, acting on a latent variable z. Let w = M
(
d
dt

)
z, with M ∈ R

w×z[ξ], be an

observable image representation of B. As discussed in Sec. 2.3, use a permutation

matrix P to obtain an input-output partition PM = (U, Y ). Then, consider the set

defined by

X(M) := {r ∈ R
1×l[ξ] | rU−1 is strictly proper} . (2.7)

which is a vector space R
1×w[ξ] over R, (see [60], Proposition 8.4). X is a state map

for B if and only if its rows span the vector space (2.7), and a minimal one if and only

if its rows form a basis for (2.7) (see [60], Sec. 8). Moreover, since w = M
(
d
dt

)
z is

an observable image representation, then n(B) = deg(det(U)) (see Prop. 3.5.5 of [60]).

The construction of state maps for controllable systems described by observable image

form representations is summarised in the following algorithm.

Algorithm 2: Construction of a minimal state map for an observable image representation.

Input: M ∈ R
w×w[ξ], such that M(λ) is of column rank for all λ ∈ C.

Output: X ∈ R
•×w[ξ] inducing, through x = X

(
d
dt

)
z, a state for the system

described by w = M
(
d
dt

)
z.

Step 1: Partition M using a permutation matrix P , such that PM = col(Y,U)

where det(U) 6= 0 and Y U−1 is proper.

Step 1: Choose a set of generators {xi}i=1,...,n(B) so that they form a basis of (2.7).

Step 3: Return X := col(xi)i=1,...,n(B).

2.7 Equivalence of representations

We now introduce important concepts in the behavioural setting associated to the equiv-

alence of representations in kernel form R
(
d
dt

)
w = 0.
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In this analysis, the concept of unimodular matrix plays an important role. We call V ∈
R
q×q[ξ] unimodular, if there exists V ′ ∈ R

q×q[ξ] such that V ′(ξ)V (ξ) = Iq, equivalently

det(V ) 6= 0 is constant.

Theorem 2.17. Let B1 := ker R1

(
d
dt

)
with R1 ∈ R

q×w[ξ] and let V ∈ R
q×q[ξ]. Define

B2 := ker V R2

(
d
dt

)
with R2 ∈ R

q×w[ξ], then B2 ⊆ B1. Moreover, if V is unimodular,

then B1 = B2.

Proof. See [55], Theorem 2.5.4.

Now we introduce the notion of R-equivalence for polynomial matrices.

Definition 2.18. Let R ∈ Rw×w[ξ] be nonsingular. The polynomial matrices F1, F2 ∈
R
•×w[ξ] are said to be R-equivalent if there exists a polynomial matrix P ∈ R

•×w[ξ] such

that F1 − F2 = PR.

Note that according to Definition 2.18, the polynomial matrices F1

(
d
dt

)
and F2

(
d
dt

)
, are

equivalent along ker R
(
d
dt

)
in the sense that

F1

(
d

dt

)
w = F2

(
d

dt

)
w , for all w ∈ ker R

(
d

dt

)
.

If a polynomial matrix F ∈ R
•×w is such that FR−1 is strictly proper, we say that F is

R-canonical. Furthermore, FR−1 can be uniquely written as

FR−1 = S + P ,

where S ∈ R
•×w(ξ) is a matrix of strictly proper rational functions, and P ∈ R

•×w[ξ].

According to this, we present the following definition of R-canonical representative.

Definition 2.19. Consider R ∈ R
w×w[ξ] nonsingular; F,P ∈ R

•×w[ξ] and S ∈ R
•×w(ξ) as

previously defined. We call SR ∈ R
•×w[ξ], the R-canonical representative of F modulo

R, denoted by F modR.

2.8 Summary

We have introduced fundamental concepts of behavioural system theory that are fre-

quently used in the rest of this thesis, in particular the concept of linear differential

system, autonomous systems, controllable systems and state maps.



Chapter 3

Quadratic differential forms and

dissipativity

In the previous section we introduced some general concepts that are instrumental for

the study of the behaviour of the system variables. In some cases it is also crucial to

study the properties of certain functionals of these variables. In the behavioural setting,

quadratic differential forms play an important role, for instance, they allow us to use

higher-order Lyapunov functions and formulate the concept of dissipativity. Let us start

by introducing the theory and notation that will be frequently used in the following

chapters.

3.1 Preliminary concepts

Let Φ ∈ R
w×w[ζ, η] be a real polynomial matrix in the indeterminates ζ and η ; then

Φ(ζ, η) =

m∑

k,j

Φk,jζ
kηj , (3.1)

where m ∈ N and Φk,j ∈ R
w×w for all k, j ∈ {1, ...,m}. Such a Φ induces a quadratic

differential form

QΦ : C∞(R,Rw) → C∞(R,R)

QΦ(w) :=
∑

k,j

(
dkw

dtk

)⊤

Φk,j

(
djw

dtj

)
.

27
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We call Φ ∈ R
w×w[ζ, η] symmetric if Φ(ζ, η) = Φ(η, ζ)⊤, and this is the case we deal with

in the rest of this thesis. Φ(ζ, η) can be identified with its coefficient matrix

Φ̃ :=




Φ0,0 Φ0,1 · · · Φ0,L · · ·
Φ1,0 Φ1,1 · · · Φ1,L · · ·
...

...
...

...
...

ΦL,0 ΦL,1 · · · ΦL,L · · ·
...

...
...

...
...




;

in the sense that

Φ(ζ, η) =
[
Iw ζIw · · · ζLIw · · ·

]
Φ̃




Iw

ηIw
...

ηLIw
...




.

Although Φ̃ is infinite, only a finite number of its entries are nonzero, since the highest

power of ζ and η in Φ(ζ, η) is finite. Note that Φ(ζ, η) is symmetric if and only if its

coefficient matrix is symmetric, i.e. Φ̃⊤ = Φ̃. In that case, Φ̃ can be factored as

Φ̃ := M̃⊤ΣΦM̃ ,

where M̃ ∈ R
•×∞, with all but a finite number of elements equal to zero, and ΣΦ a

signature matrix. This decomposition leads, after premultiplication by
[
Iw ζIw · · ·

]

and post-multiplication by col
[
Iw ηIw · · ·

]
, to the factorisation

Φ(ζ, η) = M(ζ)⊤ΣΦM(η) ,

which, if we take M̃ surjective, is called a canonical factorisation of Φ(ζ, η).

Expressing quadratic differential forms in terms of two-variable polynomial matrices

allows some convenient computations. For instance the result of the differentiation of

a quadratic differential form is expressed in terms of two-variable polynomial matrices

and leads to the dot operator • defined as

• : Rw×w[ζ, η] → R
w×w[ζ, η] ;

and
•
Φ (ζ, η) := (ζ + η)Φ(ζ, η) . (3.2)
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The two-variable polynomial matrix (3.2) induces

d

dt
QΦ(ζ,η) := Q •

Φ(ζ,η)
.

3.2 Equivalence of quadratic differential forms

An analogous concept of R-canonical representative given for one-variable polynomial

matrices is now introduced for two-variable polynomial matrices.

Definition 3.1. Let R ∈ R
w×w[ξ] be nonsingular. Two quadratic differential forms QΦ1 ,

QΦ2 are R-equivalent, i.e. equivalent along ker R
(
d
dt

)
, if QΦ1(w) = QΦ2(w) for all

w ∈ ker R
(
d
dt

)
.

Among all QDFs that are equivalent to a given QΦ, there is exactly one which is R-

canonical (see [86] p. 1716). Recall from the material in section 2.7 the computation

of the R-canonical representative of one-variable polynomial matrices. The canonical

representative of a two-variable polynomial matrix is computed as follows.

Consider R ∈ R
w×w[ξ] nonsingular. Factorise

Φ(ζ, η) = M(ζ)⊤N(η) .

Now compute the R-canonical representatives M ′ of M and N ′ of N . Then the R-

canonical representative of Φ(ζ, η) modulo R, denoted by Φ(ζ, η)modR, is M ′(ζ)⊤N ′(η)

(see [86], p. 1716).

3.3 Positivity, negativity and nonnegativity of a QDF

The notions of positivity, negativity and nonnegativity are crucial in many applications

such as Lyapunov stability theory. We now introduce these concepts.

Definition 3.2. Given Φ ∈ R
w×w[ζ, η], the quadratic differential form QΦ is said to be

nonnegative, denoted by QΦ ≥ 0, if QΦ(w) ≥ 0 for all w ∈ C∞(R,Rw); and positive,

denoted by QΦ > 0, if QΦ(w) ≥ 0 ∀w ∈ C∞(R,Rw) and [QΦ(w) = 0] =⇒ [w = 0]. We

define QΦ < 0 in an analogous manner.

Positivity and nonnegativity have the following algebraic characterisation.

Proposition 3.3. Let Φ ∈ Rw×w[ζ, η]. QΦ ≥ 0 if and only if there exists D ∈ R•×w[ξ]

such that

Φ(ζ, η) = D(ζ)⊤D(η) .

Moreover, QΦ > 0 if such D has the property that D(λ) is of rank w for all λ ∈ C.
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Proof. See [86], p. 1712.

In some cases, we are interested in studying positivity, negativity and nonnegativity

along a particular behaviour.

Definition 3.4. Given Φ ∈ R
w×w[ζ, η], the quadratic differential form QΦ is said to be

nonnegative along B, denoted by QΦ

B

≥ 0, if QΦ(w) ≥ 0 for all w ∈ B; and positive

along B, denoted by QΦ
B
> 0, if QΦ(w) is positive, i.e. QΦ(w) ≥ 0 ∀w ∈ B and

{QΦ(w) = 0} =⇒ {w = 0}. We define QΦ
B
< 0 in an analogous manner.

The following results show how to test algebraically whether a QDF is positive or non-

negative along the trajectories of a behaviour.

Proposition 3.5. Let Φ ∈ R
w×w[ζ, η] and let B := ker R

(
d
dt

)
, with R ∈ R

•×w[ξ]. Then

1. QΦ

B

≥ 0 iff there exists Y ∈ R
•×w[ζ, η] and D ∈ R

•×w[ξ], such that

Φ(ζ, η) = D(ζ)⊤D(η) + Y (ζ, η)⊤R(η) +R(ζ)⊤Y (ζ, η) .

2. QΦ
B
> 0, iff QΦ

B

≥ 0 and

[
D(λ)

R(λ)

]
has full row rank for all λ ∈ C.

Proof. See Prop. 3.5 of [86].

3.4 Reformulation of QDFs in terms of latent variables

The reformulation of QDFs in terms of latent variables is often used when dealing with

controllable behaviours (see e.g. [78, 86, 87]), since it simplifies certain computations

such as positivity tests. We now discuss this procedure.

Let B be a controllable behaviour, with an observable image representation

w = M

(
d

dt

)
z .

Let QΦ be a QDF induced by Φ ∈ R
w×w[ζ, η] acting on the external variable w. Define

Φ′ ∈ R
z×z[ζ, η] as

Φ′(ζ, η) := M(ζ)⊤Φ(ζ, η)M(η) .

It can be easily verified that if w and z satisfy w = M
(
d
dt

)
z, it follows that

QΦ′(z) = QΦ(w) .
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In this way, it is possible to study the properties of a functional in terms of an uncon-

strained variable, e.g. note that since QΦ′(z) = QΦ(w), it follows that QΦ

B

≥ 0 if and

only if QΦ′ ≥ 0 on C∞(R,Rz).

3.5 Integrals of QDFs

We now introduce the integral of a quadratic differential form. In order to make sure that

such integral exists, we assume that the trajectories on which the quadratic differential

form operates are infinitely differentiable functions with compact support. The set of

such trajectories is denoted by D(R,Rw). Given a quadratic differential form QΦ, we

define its integral as ∫
QΦ : D(R,Rw) → R ,

∫
QΦ(w) :=

∫ ∞

−∞
QΦ(w)dt .

We now define average nonnegativity and average strict positivity of a QDF.

Definition 3.6. Let Φ ∈ R
w×w[ζ, η]. QΦ is called

1. average nonnegative, if
∫
QΦ(w) ≥ 0 for all w ∈ D(R,Rw);

2. strictly average positive, if there exists ǫ > 0 such that for all w ∈ D(R,Rw), it

holds that ∫
QΦ(w) ≥ ǫ

∫ ∞

−∞
‖w‖22 dt ,

Average nonnegativity and average strict positivity of a QDF can be also tested by

studying the properties of its two-variable polynomial matrix on the imaginary axis. In

order to do so, we first introduce the ∂ operator, that permits to obtain one-variable

polynomial matrices from two-variable polynomial ones. This operator is defined as

follows

∂ : Rw×w[ζ, η] → R
w×w[ξ] ; ∂Φ(ξ) := Φ(−ξ, ξ) .

Now consider the following proposition.

Proposition 3.7. Let Φ ∈ R
w×w[ζ, η], and obtain a symmetric canonical factorisation

Φ(ζ, η) := M(ζ)⊤ΣΦM(η). Then QΦ is

1. average nonnegative iff ∂Φ(jω) ≥ 0 for all ω ∈ R;

2. strictly average positive iff there exists ǫ > 0 such that for all ω ∈ R, it holds that

∂Φ(jω) ≥ ǫM(−jω)⊤M(jω) .

Proof. See Prop. 5.2 of [86].
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3.6 Lyapunov stability theory

We know study Lyapunov stability in terms of quadratic differential forms.

Theorem 3.8. Let B ∈ Lw. If there exists a two-variable polynomial matrix Ψ ∈
R
w×w[ζ, η] such that QΨ

B

≥ 0 and d
dt
QΨ

B
< 0, then B is asymptotically stable.

Proof. See Theorem 4.3 of [86].

The quadratic differential form QΨ as in Theorem 3.8 is called a Lyapunov function

for B. We now recall the following result from [86], that reduces the computation of

quadratic Lyapunov functions to the solution of a two-variable polynomial equation

called polynomial Lyapunov equation (PLE).

Theorem 3.9. Let B = kerR
(
d
dt

)
, with R ∈ R

w×w[ξ] nonsingular. If B is asymptoti-

cally stable, for every Q ∈ R
•×w[ξ] there exist Ψ ∈ R

w×w[ζ, η] and Y ∈ R
w×w[ξ] such that

QΨ ≥ 0 and

(ζ + η)Ψ(ζ, η) = Y (ζ)⊤R(η) +R(ζ)⊤Y (η) −Q(ζ)⊤Q(η) . (3.3)

If either one of Q or Y is R-canonical, then also the other and Ψ are R-canonical.

Moreover, if rank

[
R(λ)

Q(λ)

]
= w for all λ ∈ C, then QΨ

B
> 0.

Proof. The result follows from Th. 4.8 and Th. 4.12 of [86].

Thus given an asymptotically stable behaviour, a quadratic Lyapunov function QΨ can

be computed by choosing some polynomial matrix Q and solving the PLE (3.3). Alge-

braic methods for solving it are illustrated in [52]; we now devise an LMI-based one that

will be instrumental for some of the results developed in this thesis. We first introduce

the following important result.

Proposition 3.10. Under the assumptions of Th. 3.9, define n := deg(det(R)) and let

X ∈ R
n×w[ξ] be a minimal state map for B. Write R(ξ) =

∑L
j=0Rjξ

j , with Rj ∈ R
w×w,

j = 0, 1, . . . , L. There exists Ỹ ∈ R
w×n, Q̃ ∈ R

•×n and K ∈ R
n×n such that Y (ξ) =

Ỹ X(ξ), Q(ξ) = Q̃X(ξ) and Ψ(ζ, η) = X(ζ)⊤KX(η). Moreover, there exist Xj ∈ R
n×w,

with j = 0, 1, ..., L − 1, such that X(ξ) =
∑L−1

j=0 Xjξ
j .

Proof. See Appendix A.1.

Now we proceed to relate the PLE (3.3) with a constant matrix equation.



Chapter 3 Quadratic differential forms and dissipativity 33

Proposition 3.11. Under the assumptions of Th. 3.9 and Prop. 3.10, denote the

coefficient matrices of R(ξ) and X(ξ) by

R̃ :=
[
R0 . . . RL

]
, X̃ :=

[
X0 . . . XL−1

]
.

Let K = K⊤ ∈ R
n×n. The following statements are equivalent:

1. Ψ(ζ, η) := X(ζ)⊤KX(η), R, Y , and Q satisfy (3.3);

2. There exists K > 0 , such that

[
0w×n

X̃⊤

]
K
[
X̃ 0n×w

]
+

[
X̃⊤

0w×n

]
K
[
0n×w X̃

]
−
[
X̃⊤

0w×n

]
Ỹ ⊤R̃− R̃⊤Ỹ

[
X̃ 0n×w

]

+

[
X̃⊤

0w×n

]
Q̃⊤Q̃

[
X̃ 0n×w

]
= 0 .

Proof. See Appendix A.1.

This result permits the computation of Lyapunov functions for linear differential sys-

tems represented in kernel form in terms of easy-to-construct LMIs, by exploiting the

properties of the coefficient matrices of QDFs.

3.7 Dissipativity theory

A concept that has played an important role in the study of dynamical systems is

dissipativity, firstly introduced in a control and systems setting in [83]. This concept

is useful in dealing with issues such as stability, stabilisability, design, control, model

reduction and other important applications (see e.g. [78, 83, 87]). Dissipativity theory

allows to study properties of a dynamical system in terms of energy as a generalised

concept where the physical system energy is a special case.

In dissipativity theory we often require the integration of functionals, and as previously

discussed we assume that such integrals act on trajectories of compact support. In

order to ensure that such trajectories exist, we focus our analysis in the study of linear

differential systems with controllable behaviours.

Definition 3.12. Let B ∈ Lw

cont and let Φ ∈ R
w×w[ζ, η]. B is called Φ-dissipative if for

all w ∈ B ∩ D(R,Rw) it holds that

∫ ∞

−∞
QΦ(w)dt ≥ 0 .

Moreover, QΦ is called the supply rate.
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Definition 3.13. Let B ∈ Lw

cont and let Φ ∈ R
w×w[ζ, η]. B is called strictly Φ-dissipative

if there exists ǫ > 0 such that for all w ∈ B ∩ D(R,Rw)

∫ ∞

−∞
QΦ(w)dt ≥ ǫ

∫ ∞

−∞
‖w‖22 dt .

Although energy is flowing in and out of the system, the dissipativity property imposes

that the average of the energy must be nonnegative when evaluated over (−∞,+∞).

Consequently, the total energy is strictly provided by the external world and no energy

has been generated by the system itself.

Some dynamical systems have the property of energy storage, such a property is also

associated to a QDF.

Definition 3.14. Let Ψ,Φ ∈ R
w×w[ζ, η]. QΨ is a storage function for B with respect to

QΦ if for all w ∈ B it holds that

d

dt
QΨ(w) ≤ QΦ(w) .

In some cases, the energy absorbed by a system is positive in any arbitrary interval of

time, we call this special case of dissipativity as half-line dissipativity. The most common

example of this concept is called passivity, see [48].

Definition 3.15. Let B ∈ Lw

cont and let Φ ∈ R
w×w[ζ, η]. B is half-line Φ-dissipative if

for every τ ∈ R and for all w ∈ B ∩ D(R,Rw) it holds that

∫ τ

−∞
QΦ(w)dt ≥ 0 .

In the following lemma, we show an important consequence that follows when we deal

with constant supply rates and the liveness condition is satisfied (see [87], sec. IV-B), i.e.

when given Φ ∈ R
w×w and w = col(u, y) ∈ B, it holds that the number of components

in the input variable u, denoted by m(B), equals the number of positive eigenvalues of

Φ, denoted by σ+(Φ).

Lemma 3.16. Let Φ ∈ R
w×w be a constant supply rate and B ∈ Lw

cont. Assume that

σ+(Φ) = m(B). If B is half-line Φ-dissipative, then every storage function QΨ for B is

such that QΨ

B

≥ 0.

Proof. See Theorem 6.4 in [86].

A storage function satisfies the dissipation inequality d
dt
QΨ ≤ QΦ, which represents the

property that the rate of change of the stored energy is never greater than the supply

rate. We conclude that the latter fact accounts for a portion of the supplied energy

being dissipated towards the environment.
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Definition 3.17. Let Φ,∆ ∈ R
w×w[ζ, η] and let B ∈ Lw

cont be Φ-dissipative. Q∆ is a

dissipation function for B with respect to QΦ if Q∆ ≥ 0, and for all w ∈ B ∩ D(R,Rw),

it holds that ∫ ∞

−∞
QΦ(w)dt =

∫ ∞

−∞
Q∆(w)dt .

Storage functions, supply rates and dissipation functions are associated as follows.

Proposition 3.18. Let B ∈ Lw

cont and let Φ ∈ R
w×w[ζ, η]. The following statements are

equivalent.

• B is Φ-dissipative.

• There exists a storage function QΨ for B with respect to QΦ.

• There exists a dissipation function Q∆ for B with respect to QΦ.

Moreover, there exists a one-to-one relation between QΦ, QΨ and Q∆, defined by the

dissipation equality
d

dt
QΦ = QΦ −Q∆ .

If B = C∞(R,Rw), this equality holds true if and only if

(ζ + η)Ψ(ζ, η) = Φ(ζ, η)−∆(ζ, η) .

Proof. See [77], Th. 4.3.

Dissipativity can be also characterised in the frequency domain. In order to do so, we

reformulate the supply rate in terms of the latent variable (see Sec. 3.4).

Proposition 3.19. Let Φ ∈ R
w×w[ζ, η] and let B := im M

(
d
dt

)
where M(λ) is of full

column rank for all λ ∈ C. Define

Φ′(ζ, η) := M(ζ)⊤Φ(ζ, η)M(η) .

Then B is Φ-dissipative, i.e.
∫
QΦ′ ≥ 0, iff ∂Φ(jω) ≥ 0 for all ω ∈ R.

Proof. The proof follows directly from Prop. 3.7.

Thus the inequality
∫∞
−∞QΦ(w)dt ≥ 0 is equivalent with the condition ∂Φ(jω) ≥ 0 ∀

ω ∈ R. Consequently, since
∫∞
−∞QΦ(w)dt =

∫∞
−∞Q∆(w)dt and since ∂Φ(ξ) is para-

Hermitian, i.e. ∂Φ(ξ) = ∂Φ(−ξ)⊤, we can compute a dissipation function by factoring

Φ(−ξ, ξ) = D(−ξ)⊤D(ξ) =: ∆(−ξ, ξ) .
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with D ∈ R
•×w[ξ]. This factorisation is called polynomial spectral factorisation, see [6].

According to Prop. 3.18, we can thus compute a storage function as

Ψ(ζ, η) :=
Φ(ζ, η)−D(ζ)⊤D(η)

ζ + η
.

Note that since the factorisation Φ(−ξ, ξ) = D(−ξ)⊤D(ξ) is not unique, it follows that

there exists more than one storage function Ψ.

The set of all possible storage functions is bounded from above by the required supply

QΨ+ and from below by the QΦ− available storage, which can be computed using two-

variable polynomial matrices. Consider Φ ∈ R
w×w[ζ, η] such that ∂Φ(jω) > 0 ∀ ω ∈ R.

Given standard results of polynomial spectral factorisation (see [6]), factorise

∂Φ(ξ) = A(−ξ)⊤A(ξ) ,

∂Φ(ξ) = H(−ξ)⊤H(ξ) .

with A,H ∈ R
w×w[ξ], corresponding respectively to the cases when the roots of det(A)

are anti-Hurwitz and those of det(H) Hurwitz. Then

Ψ+(ζ, η) :=
Φ(ζ, η)−A(ζ)⊤A(η)

ζ + η
,

Ψ−(ζ, η) :=
Φ(ζ, η)−H(ζ)⊤H(η)

ζ + η
.

The set of storage functions is convex (see [83], Th. 3), i.e. if Ψ1 and Ψ2 are storage

functions, so is

Ψα := αΨ1 + (1− α)Ψ1 , with 0 ≤ α ≤ 1 .

The computation of storage functions can be also performed in terms of LMIs. Let us

consider the case when the supply rate is constant. In the first result we show that

the storage function is a quadratic function of the state, and the dissipation function a

quadratic function of the state and the input.

Proposition 3.20. Let Φ ∈ R
w×w and let B ∈ Lw

cont. Define B = im M
(
d
dt

)
, where

M ∈ R
w×z[ξ]. Fix a state map X ∈ R

•×z[ξ] for B. Assume that B is Φ-dissipative.

Let Ψ ∈ R
z×z[ζ, η] and ∆ ∈ R

z×z[ζ, η] be as in Prop. 3.18. There exist real symmetric

matrices K and Q of suitable sizes such that

Ψ(ζ, η) = X(ζ)⊤KX(η) ,

and

∆(ζ, η) =
[
X(ζ)⊤ M(ζ)⊤

]
Q

[
X(η)

M(η)

]
.
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Proof. The proof follows directly from Th. 5.5 in [86].

We now introduce results that provide conditions based on LMIs for the existence of a

storage function for linear differential behaviours. For practical purposes, we consider

the two-variable polynomial matrix version Φ(ζ, η) = (ζ + η)Ψ(ζ, η) + ∆(ζ, η) of the

dissipation equality QΦ = d
dt
QΨ+Q∆ (see Prop. 3.18). We first introduce the following

propositions that reveal important properties of coefficient matrices.

Proposition 3.21. Let M ∈ R
w×z[ξ] be defined as M = col(U, Y ), such that Y U−1

is strictly proper. Let X ∈ R
n(B)×z[ξ] be a minimal state map for im M

(
d
dt

)
. Write

M(ξ) =
∑L

i=0Miξ
i, with Mi ∈ R

w×z, i = 0, . . . , L; then there exist Xi ∈ R
n(B)×z,

i = 0, 1, ..., L − 1, such that X(ξ) =
∑L−1

i=0 Xiξ
i.

Proof. See App. A.1.

Proposition 3.22. Under the assumptions of Prop. 3.21, let Φ = Φ⊤ ∈ R
w×w. Define

M̃ :=
[
M0 . . . ML

]
, X̃ :=

[
X0 . . . XL−1

]
.

Let K = K⊤ ∈ R
n(B)×n(B). The following statements are equivalent:

1) Ψ(ζ, η) := X(ζ)⊤KX(η) and ∆ ∈ R
z×z[ζ, η] satisfy ∆(ζ, η) = M(ζ)⊤ΦM(η) −

(ζ + η)Ψ(ζ, η);

2) ∆̃ := M̃⊤ΦM̃ −
[
0z×n(B)

X̃⊤

]
K
[
X̃ 0n(B)×z

]
−
[

X̃⊤

0z×n(B)

]
K
[
0n(B)×z X̃

]
.

Proof. See App. A.1.

In the following lemma, we provide a dissipativity test for linear differential systems in

terms of LMIs.

Lemma 3.23. Under the assumptions of Prop. 3.21, let Φ ∈ R
w×w and define B :=

im M
(
d
dt

)
. Assume that B is Φ-dissipative. Then there exists K = K⊤ ∈ R

n(B)×n(B)

such that any of the statements 1) and 2) in Prop. 3.22 holds, and moreover Q∆ ≥ 0 or

equivalently ∆̃ ≥ 0.

Proof. See App. A.1.

The results in Lemma 3.23 permit to transform the computation of storage functions

into solving the expression 2) in Prop. 3.22 as an LMI, i.e. ∆̃ ≥ 0, involving coefficient

matrices that can be straightforwardly set up from the equations describing the laws of

the system.
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3.8 Summary

In this chapter we have studied the main concepts of quadratic differential forms and

dissipativity theory for the study of linear differential systems. We have also developed

systems of LMIs that facilitate the computation of Lyapunov functions and storage

functions directly from higher-order models.



Chapter 4

Switched linear differential

systems

As discussed in Chap. 1, there exist established approaches to switched systems that deal

with models in state space or descriptor form representations (see [24, 34, 74]) sharing a

global state space, together with a supervisory system determining which of the modes is

active. We argued that first-order representations are usually constructed from higher-

order equations or transfer functions; thus it makes sense to try to work with higher-

order representations directly. Moreover, the traditional state space modelling approach

may not always be justified or advisable, and we offered some practical examples of

problematic situations. These issues prompted us to develop a more general framework

that permits the analysis of dynamic modes directly in higher-order terms.

4.1 Main definitions

In the switched linear differential systems (SLDS) framework, each dynamical mode is

associated with a mode behaviour, the set of trajectories that satisfy the dynamical

laws of that mode. A switching signal determines when a transition between dynamical

modes occurs. At the switching instants the system trajectories must satisfy certain

gluing conditions, that represent algebraic constraints enforced by physical principles.

Definition 4.1. A switched linear differential system (SLDS) Σ is a quadruple Σ =

{P,F ,S,G} where

• P = {1, . . . , N} ⊂ N, is the set of indices;

• F = {B1, . . . ,BN}, with Bj a linear differential behaviour and j ∈ P, is the bank

of behaviours;

39
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• S = {s : R → P}, with s piecewise constant and right-continuous, is the set of

admissible switching signals; and

• G =
{
(G−

k→ℓ(ξ), G
+
k→ℓ(ξ)) ∈ R

•×w[ξ] × R
•×w[ξ] | 1 ≤ k, ℓ ≤ N , k 6= ℓ

}
, is the set

of gluing conditions.

The set of switching instants associated with s ∈ S is defined by

Ts := {t ∈ R | s(t−) 6= s(t+)} = {t1, t2, . . . } ,

where ti < ti+1.

We assume that for every s ∈ S and for every finite interval of R, there exists only a finite

number of switching instants. This is a conventional assumption in switched systems

literature that prevent phenomena such as the Zeno behaviour (see e.g. [34, 68]).

The set of all admissible trajectories satisfying the laws of the mode behaviours and the

gluing conditions is the switched behaviour, and is the central object of study in our

framework.

Definition 4.2. Let Σ = {P,F ,S,G} be a SLDS, and let s ∈ S. The s-switched linear

differential behaviour Bs is the set of trajectories w : R → R
w that satisfy the following

two conditions:

1. for all ti, ti+1 ∈ Ts, w |[ti,ti+1)∈ Bs(ti) |[ti,ti+1);

2. w satisfies the gluing conditions G at the switching instants for each ti ∈ Ts, i.e.

G+
s(ti−1)→s(ti)

(
d

dt

)
w(t+i ) = G−

s(ti−1)→s(ti)

(
d

dt

)
w(t−i ) . (4.1)

The switched linear differential behaviour (SLDB) BΣ of Σ is defined by BΣ :=
⋃

s∈S Bs.

The following example illustrates the concepts in Def. 4.1 and Def. 4.2, including the

role of the gluing conditions in the concatenability of trajectories in the mode behaviours

at switching instants.

Example 4.1. Let Σ be a SLDS as in Def. 1 with P = {1, 2} and

F =

{
B1 := ker

(
d

dt
+ 2

)
,B2 := ker

(
d2

dt2
+ 1

)}
.

The set of gluing conditions is

G :=
{(

G−
1→2(ξ), (G

+
1→2(ξ)

)
,
(
G−

2→1(ξ), G
+
2→1(ξ)

)}
=

{([
1

ξ

]
,

[
1

ξ

])
, (1, 1)

}
.
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Consider the switching signal

s(t) =





1, t ∈ [0, π2 );

2, t ∈ [π2 , π);

1, t ≥ π.

When we switch from B1 to B2 at t = π
2 , the gluing conditions impose

lim
tցπ

2

(

[
1
d
dt

]
(k2 cos(t) + k3 sin(t))) = lim

tրπ
2

(

[
1
d
dt

]
k1e

−2t)

=

[
k1e

−π

−2k1e
−π

]
,

and consequently k2 = 2k1e
−π and k3 = k1e

−π. Then, when we switch from B2 to B1

at t = π, the gluing conditions impose

lim
tրπ

(k4e
−2t) = k4e

−2π = lim
tցπ

(2k1e
−π cos(t) + k1e

−π sin(t)) = 2k1e
−π ;

and consequently k3 = 2k1e
π. The switched trajectory w ∈ Bs corresponding to the

switching signal s(t) is thus given by

w(t) =





k1e
−t, t ∈ [0, π2 );

2k1e
−π cos(t) + k1e

−π sin(t), t ∈ [π2 , π);

2k1e
πe−t, t ≥ π.

Note that this corresponds to one trajectory in Bs according to Def. 2. Varying the

parameter k1, the gluing conditions are automatically satisfied and we obtain all the

trajectories in Bs. Moreover, BΣ consists of all such trajectories Bs for all s ∈ S.

It is important to emphasise that in our framework we allow different state spaces in

the modes. However, the external variables (and thus their number) are the same for

every dynamic mode: they have been chosen as variables of interest during the modelling

state.

Example 4.2 (State space case). Note that the traditional switched linear state space

systems fit also in our setting as a special case by defining the mode behaviours as

Bi := {(x, u, y) | d
dt
x = Aix+Biu, y = Cix+Diu}, i = 1, ..., N .

4.2 Impulsive effects

Since Bi ⊆ C∞(R,Rw), i = 1, ..., N (see Sec. 2.1), it follows that the trajectories in

BΣ are piecewise infinitely differentiable functions from R to R
w with set denoted by

C∞
p (R,Rw). Switched systems whose trajectories belong to this solution space permit
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impulsive effects in the sense of [24], [25], [91], i.e. allowing discontinuities on the

trajectories at switching instants.

It has been pointed out in the literature that the presence of Dirac impulses (and their

derivatives) may appear in the trajectories of the variables of a switched system. For

example, in [74] a unifying, rigorous distributional framework for switched systems has

been given, this approach encompasses also the detection of impulses directly from the

equations. Similarly, for higher-order representations as in [76], the jumps and impulses

induced by the system equations together with additional impact maps are used to

specify the impulsive part of the behaviour.

In our framework, impulsive effects are implicitly defined by the gluing conditions and

the mode dynamics involved in the transition (i.e. do not depend for example on the

degree of differentiability of some input variable). Our position is that gluing conditions

are a given; we take them at face value. Whether they imply impulses or not; and

whether the latter is an important issue for the particular physical system at hand, are

major modelling issues that we assume have been weighed carefully by the modeller (on

this issue see also p. 749 of [15]). We elaborate on this modelling perspective in the

following section.

4.3 Modelling of gluing conditions

We now give two examples of switched behaviours; besides exemplifying the definitions,

they allow us to point out some important features of switched linear differential systems.

Example 4.3. Consider the electrical circuit in Fig. 4.1, where C = 1 F , R = 1
2 Ω and

w1 and w2 are voltages.

Figure 4.1: A switched electrical circuit

With the switch in position 1, the dynamical equations are

d

dt
w2 + w2 = 0

w1 − w2 = 0 ; (4.2)
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when the switch is in position 2, the dynamical equations are

d

dt
w2 + w2 = 0

w1 = 0 . (4.3)

If we consider the voltage across the capacitors as the variables of interest, we then

define

B1 := ker

[
0 d

dt
+ 1

1 −1

]
, B2 := ker

[
0 d

dt
+ 1

1 0

]
.

The switched behaviour consists of all piecewise smooth functions col(w1, w2) that satisfy

(4.2) or (4.3) depending on the position of the switch, and that at the switching instant

satisfy the gluing conditions that follow from the principle of conservation of charge (see

[47]), i.e. either w1(0
+) = 1

2w2(0
−), w2(0

+) = 1
2w2(0

−) (for a transition B2 → B1) or

w1(0
+) = 0, w2(0

+) = w2(0
−) (for a transition B1 → B2). The corresponding matrices

are

G−
2→1 :=

[
0 1

2

0 1
2

]
, G+

2→1 := I2 , (4.4)

and

G−
1→2 :=

[
0 0

0 1

]
, G+

1→2 := I2 . (4.5)

These gluing conditions imply that in any non-trivial case the value of w1 jumps at the

switching instant.

Example 4.4. Consider two behaviours respectively described by the equations

d

dt
w2 + w2 = 0

w1 − w2 = 0 , (4.6)

and

d

dt
w1 +

d

dt
w2 + w1 + w2 = 0

w1 = 0 . (4.7)

The gluing conditions for a transition B2 → B1 are associated with the matrices

G−
2→1 :=

[
0 1

0 1

]
, G+

2→1 := I2 , (4.8)

and for a transition B1 → B2 they are defined by

G−
1→2 :=

[
0 0
1
2

1
2

]
, G+

1→2 := I2 ; (4.9)
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i.e. in a switch B1 → B2 the new value of w2 is the average of the old values of w1 and

w2.

Examples 4.3 and 4.4 offer the opportunity of making important conclusions regarding

the modelling of gluing conditions.

Note that (4.3) and (4.7) describe the same set of solutions; indeed, the description (4.3)

can be obtained from (4.7) by unimodular operations, which in the case of autonomous

systems do not alter the solution set (see Th. 2.17, on equivalence of polynomial rep-

resentations of switched systems, see also sect. 3 of [16]). Since (4.2) and (4.6) are the

same, it follows that the dynamic modes are the same for both switched systems; thus

the two switched behaviours are different because the gluing conditions are. It is proved

later that these two switched systems also have different stability properties- that of Ex.

4.3 is stable under arbitrary switching signals, while the other is not. Stability arises

from the interplay of mode dynamics and gluing conditions.

We conclude that gluing conditions should be defined on the basis of the physics of

the system under study. Those for the system of Example 4.3 are meaningful for the

particular physical system at hand. However, for another physical system whose modes

happen to be described also by (4.6)-(4.7), the conditions (4.8)-(4.9) may also be physi-

cally plausible. In each case we assume that well-grounded physical considerations have

been motivating the choice. A similar point of view is discussed in the linear complemen-

tary framework [13] and in switched port-hamiltonian systems [79], where concatenability

is specified via jump rules for passive systems. A new set of initial conditions, after a

transition between dynamic modes, corresponds to the solution of a quadradic program

involving the energy stored in the switched system, and whose unique solution follows

physical principles e.g. the principle of conservation of charge.

In the following que discuss important concepts associated to gluing conditions in the

SLDS framework. We concentrate our analysis in two particular cases: autonomous-,

and controllable- behaviours.

4.4 Switched autonomous behaviours

In the following we study switched linear differential systems with autonomous mode

behaviours (see Sec. 2.4). We start by introducing the concept of well-posedness of

gluing conditions, that will play a relevant role in our analysis.

4.4.1 Well-posedness of gluing conditions

In principle Def.s 4.1 and 4.2 do not restrict the gluing conditions; however, since we

assume that the modes are autonomous, i.e. no external influences are applied to the
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system between consecutive switching times, it is reasonable to require more. Namely,

no different admissible trajectories should exist with the same past (i.e. same mode

transitions at the same switching instants, and same restrictions from t = −∞ up until

a given switching instant t). If such trajectories exist, then at t the past “splits” in

different futures; however, since no external inputs could trigger such a change, the

past of a trajectory should uniquely define its future. These considerations lead to the

concept of well-posed gluing conditions, which we now introduce.

Let Bk =: kerRk

(
d
dt

)
, with Rk ∈ R

w×w[ξ] nonsingular, k = 1, ..., N , for the modes. We

also define nk := deg(det(Rk)), k = 1, ..., N , and we choose minimal state maps (see Sec.

2.6.1) Xk ∈ R
nk×w[ξ], k = 1, ..., N . Moreover, given the material in Sec. 2.7, we know

that every polynomial differential operator G
(
d
dt

)
on Bk has a unique Rk-canonical

representative G′
(
d
dt

)
, denoted by G′ = G mod Rk, such that G′

(
d
dt

)
w = G

(
d
dt

)
w for

all w ∈ Bk. Now let
(
G−

k→ℓ, G
+
k→ℓ

)
∈ G; then

(
G−

k→ℓ mod Rk, G
+
k→ℓ mod Rℓ

)
,

is equivalent to
(
G−

k→ℓ, G
+
k→ℓ

)
, in the sense that the algebraic conditions imposed by the

one pair are satisfied iff they are satisfied by the other. Moreover, since G−
k→ℓ mod Rk

and G+
k→ℓ mod Rℓ are Rk-, respectively Rℓ-canonical, there exist constant matrices

F−
k→ℓ and F+

k→ℓ of suitable dimensions such that G−
k→ℓ(ξ) mod Rk = F−

k→ℓXk(ξ) and

G+
k→ℓ(ξ) mod Rℓ = F+

k→ℓXℓ(ξ). We call

G′ := {(F−
k→ℓXk(ξ), F

+
k→ℓXℓ(ξ)) | 1 ≤ k, ℓ ≤ N, k 6= ℓ}

the normal form of G.

Remark 4.3. The gluing conditions are algebraic constraints imposed to the trajectories

of the external variable w and their derivatives at switching instants, and not on the

state per se. However, in SLDS with autonomous mode behaviours, gluing condtions

can be always rewritten in terms of the state.

Definition 4.4. Let Σ be a SLDS with Bi = kerRi

(
d
dt

)
autonomous, i = 1, . . . , N .

The normal form gluing conditions

G′ := {(F−
k→ℓXk(ξ), F

+
k→ℓXℓ(ξ)) | 1 ≤ k, ℓ ≤ N, k 6= ℓ} ,

are well-posed if for all k, ℓ = 1, . . . , N , k 6= ℓ, and for all vk ∈ R
nk there exists at most

one vℓ ∈ R
nℓ such that F−

k→ℓvk = F+
k→ℓvℓ.

Thus if a transition occurs between Bk and Bℓ at tj, and if an admissible trajectory

ends at a “final state” vk = Xk

(
d
dt

)
w(t−j ), then there exists at most one “initial state”

for Bℓ, defined by Xℓ

(
d
dt

)
w(t+j ) := vℓ, compatible with the gluing conditions.
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Well-posedness implies that for all k, ℓ = 1, . . . , N , k 6= ℓ, F+
k→ℓ is full column rank, and

consequently there exists a re-initialisation map Lk→ℓ : R
nk → R

nℓ defined by

Lk→ℓ := F+⋆
k→ℓF

−
k→ℓ ,

where F+⋆
k→ℓ is a left inverse of F+

k→ℓ. For all tj ∈ Ts and all admissible w ∈ BΣ it holds

that

[s(tj−1) = k, s(tj) = ℓ] and
[
G+

k→ℓ

(
d
dt

)
w(t+j ) = G−

k→ℓ

(
d
dt

)
w(t−j )

]

=⇒
[
Xℓ

(
d
dt

)
w(t+j ) = Lk→ℓ

(
Xk

(
d
dt

)
w(t−j )

)]
.

Note that the re-initialisation map is not uniquely determined unless F+
k→ℓ is nonsin-

gular. In the rest of the paper, we assume well-posed gluing conditions with fixed

re-initialisation maps.

The concept of well-posedness and switching between mode behaviours with different

state spaces is illustrated in Fig. 4.2.

Figure 4.2: Example: well-posed gluing conditions

Example 4.5. Consider the multi-controller system depicted in Fig. 4.3. Depending on

the value of a switching signal a plant ΣP with two external variables, described by the

differential equation d
dt
w1−w1−w2 = 0, is connected with one of two possible controllers

ΣC1 and ΣC2 , described respectively by −3 d
dt
w1 − w1 − d

dt
w2 = 0 and −2w1 − w2 = 0.

Depending on which controller is active, the resulting closed-loop behaviours are

B1 := ker

[
d
dt

− 1 −1

−3 d
dt

− 1 − d
dt

]
,
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Figure 4.3: Plant/controller interconnection

and

B2 := ker

[
d
dt

− 1 −1

−2 −1

]
.

Note that B1 and B2 have different McMillan degrees (2 and 1, respectively). We define

the gluing conditions for the SLDS associated with B1 and B2 by

G−
2→1(ξ) :=

[
0 1

0 −2

]
, G+

2→1(ξ) :=

[
0 1

1 0

]
,

G−
1→2(ξ) :=

[
1 0

]
, G+

1→2(ξ) :=
[
1 0

]
.

The rationale underlying our choice of gluing conditions is that any trajectory of B1

is uniquely specified by the instantaneous values of col(w1, w2), while a trajectory of

B2 is uniquely specified by the instantaneous value of w1. Moreover, when switching

from the dynamics of B1 to those of B2, we require that the values of w1 before and

after the switching instant coincide. In a switch from B2 to B1, since the second

differential equation describing B2 yields w2 = −2w1 before the switch, we impose that

w2(t
+
k ) = w2(t

−
k ) = −2w1(t

−
k ). Moreover, note that a minimal state map for B1 is

X1(ξ) := I2, and a minimal state map for B2 is X2(ξ) =
[
1 0

]
; and

G+
2→1 mod R1(ξ) = G+

2→1(ξ) = F+
2→1X1(ξ) :=

[
0 1

1 0

]
I2 .

Similarly,

G+
1→2 mod R2(ξ) = G+

1→2(ξ) = F+
1→2X2(ξ) := 1

[
1 0

]
.

Consequently, these gluing conditions are well-posed. It can be verified in a similar way

that the gluing conditions of Examples 4.3 and 4.4 are also well-posed.
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4.4.2 Consistency of gluing conditions

The definition of well-posedness concerns uniqueness of an admissible “initial condition”

vℓ in Bℓ for a given “final condition” vk in Bk. However, another important issue is

existence of such admissible initial condition at the switching instant. Note for instance

that it may happen that the gluing conditions cannot be satisfied by nonzero trajectories;

they may not be “consistent” with the mode dynamics.

Example 4.6. Consider a SLDS with modes (4.6) and (4.7), and (well-posed) gluing

conditions

G−
2→1 := I2, G

+
2→1 := I2 ,

G−
1→2 := I2, G

+
1→2 := I2 .

Note that w ∈ B1 iff w(t) = α col(e−t, e−t), α ∈ R; and w ∈ B2 iff w(t) = α col(e−t, 0),

α ∈ R.

Since constant switching signals σ1 = 1 and σ2 = 2 are admissible, it follows that

BΣ ⊃ Bi, i = 1, 2. However, no genuine switched trajectory exists besides the zero one,

since the gluing conditions cannot be satisfied by nonzero trajectories of either of the

behaviours.

We now discuss the an algebraic characterisation of consistent gluing conditions in our

framework.

Denote the roots of det Rk(ξ) by λk,i, i = 1, . . . nk. Assume for ease of exposition that

the algebraic multiplicity of λk,i equals the dimension of kerRk(λk,i). It follows from

Th. 2.11 that w ∈ Bk iff there exist αk,i ∈ C, i = 1, . . . , ni such that

w =

nk∑

i=1

αk,iwk,ie
λit ,

where wk,i ∈ C
w is such that Rk(λk,i)wk,i = 0, and the wk,i associated with equal λk,i

are linearly independent. Note that the αk,i associated to conjugate λk,i are conjugate.

Define

Vi :=
[
Xi(λi,1)wi,1 . . . Xi(λi,ni

)wi,ni

]
∈ C

ni×ni , i = 1, ..., N .

and

αi :=
[
αi,1 . . . αi,ni

]⊤
, i = k, ℓ ;

and consider a switch from Bk to Bℓ at t = 0. The gluing conditions require that

G−
k→ℓ(w)(0

−) = F−
k→ℓVkαk = F+

k→ℓVℓαℓ = G+
k→ℓ(w)(0

+) .
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Such αi, i = k, ℓ exist if and only if

im F−
k→ℓVk ⊆ im F+

k→ℓVℓ

Standard arguments in ordinary differential equations show that Vk and Vℓ are nonsin-

gular; consequently the consistency property can be equivalently stated as

im F−
k→ℓ ⊆ im F+

k→ℓ .

Remark 4.5. The problem whether a given “initial condition” is consistent or not with

the mode dynamics has been also studied in the switched DAE’s framework (see Ch.

4 of [74]); algorithms are stated that from the matrices describing a mode compute

“consistency projectors” whose image is the subspace of consistent initial values.

4.5 Switched controllable behaviours

The SLDS framework also considers open systems, i.e. systems with inputs and out-

puts. We now consider an important case when the mode behaviours in the bank are

controllable.

As discussed in Sec. 2.2, controllable mode behaviours can be described using observable

image representations w = Mj

(
d
dt

)
zj, j = 1, ...N . It follows that every trajectory of the

latent variable zj corresponds to a unique trajectory of the external variable w when the

j-th mode is active.

We illustrate this modelling approach in the following example.

Example 4.7. Consider the high-voltage switching power converter presented in [8]

and depicted in Fig. 4.4 a). For practical purposes such as voltage/current/power

regulation, we are particularly interested in the dynamics at the input/output terminals.

Consequently we define the external variable (the set of variables of interest) as w :=

col(E, iL, v2, io).

By means of a switching signal, we can arbitrarily induce two possible electrical config-

urations that occur when the transistor is in either closed (see Fig. 4.4 b)) or open (see

Fig. 4.4 c)) operation. Considering a standard modelling of input/output impedances

for each case, we can derive the following physical laws describing the dynamics of the

power converter. For simplicity we consider L = 1H, C1 = C2 = 1F , RL = 1Ω and

R = 1Ω. It can be verified that the corresponding mode behaviours Bj , i = 1, 2, are

controllable and thus can be described by image representations w = Mj

(
d
dt

)
zj , j = 1, 2,
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Figure 4.4: High-voltage switching power converter

where

M1

(
d

dt

)
:=




d
dt

+ 1 0

0 2 d
dt

+ 1

1 0

0 1




; M2

(
d

dt

)
:=




d2

dt2
+ d

dt
+ 1 0

0 d
dt

+ 1
d
dt

0

0 1




;

and z1 := col(iL, v2), z2 := col(v1, v2). Moreover, since Mj(λ), j = 1, 2, are full column

rank for all λ ∈ C we conclude that the latent variables zj , j = 1, 2 are observable from

w.

4.5.1 Gluing conditions in terms of latent variables

In order to facilitate computations when dealing with controllable mode behaviours, we

rather reformulate the gluing conditions in terms of latent variables.

According to Def.s 4.1 and 4.2, the gluing conditions are algebraic constraints acting

on the external variables at switching instants; however, when dealing with controllable

mode behaviours we can reformulate them in terms of latent variables in the following

manner. Define

G
+
s(ti−1)→s(ti)

(
d

dt

)
:=
(
G+

s(ti−1)→s(ti)
Ms(ti)

)( d

dt

)
,

and

G
−
s(ti−1)→s(ti)

(
d

dt

)
:=
(
G−

s(ti−1)→s(ti)
Ms(ti−1)

)( d

dt

)
,
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with s ∈ S. Consequently, if w and zj are related by w = Mj

(
d
dt

)
zj , the gluing

conditions in (4.1) can be equivalently written as

G
+
s(ti−1)→s(ti)

(
d

dt

)
zs(ti)(t

+
i ) = G

−
s(ti−1)→s(ti)

(
d

dt

)
zs(ti−1)(t

−
i ) .

Example 4.8 (Cont’d from Ex. 4.7). At switching instants the physical laws impose

constraints to the system trajectories. By inspecting the circuits in Fig. 4.4 and using

the principle of conservation of charge (see [47]), we find the following conditions at

switching instants.

- When switching from B1 to B2 at ti:

iL(t
+
i ) = iL(t

−
i ) ,

E(t+i )− iL(t
+
i )−

d

dt
iL(t

+
i ) = v2(t

−
i ) ,

v2(t
+
i ) = v2(t

−
i ) .

(4.10)

- When switching from B2 to B1 at ti:

iL(t
+
i ) = iL(t

−
i ) ,

2v2(t
+
i ) = E(t−i )− iL(t

−
i )−

d

dt
iL(t

−
i ) + v2(t

−
i ) .

(4.11)

Consequently, the gluing conditions are defined as

G+
1→2

(
d

dt

)
:=



0 0 1 0

1 0 −1− d
dt

0

0 0 0 1


 ; G−

1→2

(
d

dt

)
:=



0 0 1 0

0 0 0 1

0 0 0 1


 ;

G+
2→1

(
d

dt

)
:=

[
0 0 1 0

0 0 0 2

]
; G−

2→1

(
d

dt

)
:=

[
0 0 1 0

1 0 −1− d
dt

1

]
.

Hence, the equations in (4.10)-(4.11) can be compactly written as

G+
1→2

(
d

dt

)
w(t+i ) = G−

1→2

(
d

dt

)
w(t−i ) ;

G+
2→1

(
d

dt

)
w(t+i ) = G−

2→1

(
d

dt

)
w(t−i ) .

These gluing conditions can be reformulated them in terms of latent variables using

M1

(
d
dt

)
and M2

(
d
dt

)
as follows.

G
−
1→2

(
d

dt

)
:=
(
G−

1→2M1

)( d

dt

)
=

[
1 0 0

0 1 1

]⊤
,
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G
+
1→2

(
d

dt

)
:=
(
G+

1→2M2

)( d

dt

)
=

[
d
dt

1 0

0 0 1

]⊤
,

G
−
2→1

(
d

dt

)
:=
(
G−

2→1M2

)( d

dt

)
=

[
d
dt

0
1
2

1
2

]
,

G
+
2→1

(
d

dt

)
:=
(
G+

2→1M1

)( d

dt

)
=

[
1 0

0 1

]
.

4.5.2 Well-definedness and well-posedness

We now discuss the concept of well-posedness of gluing conditions for open SLDS. In

contrast with the case of switched autonomous behaviours in Sec. 4.4.1, in the case of

dynamic modes with inputs and outputs, well-posedness requires the gluing conditions

to be also well-defined.

Definition 4.6. Let Σ be a SLDS and let Xj ∈ R
n(Bj)×z[ξ], induce minimal state

maps for Bj := im Mj

(
d
dt

)
, j = 1, ..., N . The gluing conditions are well-defined if

there exist constant matrices F−
j→k and F+

j→k, with j, k = 1, ..., N , j 6= k, such that

G
−
j→k(ξ) = F−

j→kXj(ξ) and G
+
j→k(ξ) = F+

j→kXk(ξ), with j, k = 1, ..., N , j 6= k.

Well-definedness implies that gluing conditions are linear functions of the state of the

corresponding modes before and after the switch. Consequently, they do not impose

restrictions to the trajectories of the input variables, since the latter must be maximally

free (see Sec. 2.3).

Definition 4.7. Let Σ be a SLDS with Bj := im Mj

(
d
dt

)
, j = 1, ..., N . The well-defined

gluing conditions G := {(F−
j→kXj(ξ), F

+
j→kXk(ξ))}j,k=1,...,N, j 6=k. are well-posed if for all

k, j = 1, . . . , N with k 6= j, there exists a re-initialisation map Lj→k : Rn(Bj) → R
n(Bk)

such that given a switching signal s ∈ S such that s(ti−1) = j and s(ti) = k; for all

ti ∈ Ts and all admissible w ∈ BΣ with associated latent variable trajectories, it holds

that Xj

(
d
dt

)
zj(t

+
i ) = Lk→jXk

(
d
dt

)
zk(t

−
i ).

As in the case of autonomous behaviours, well-posedness implies that if a transition

occurs between Bj and Bk at ti, and if an admissible trajectory ends at a “final state”

vj := Xj

(
d
dt

)
zj(t

−
i ), then there exists at most one “initial state” for Bk, defined by

Xk

(
d
dt

)
zk(t

+
i ) =: vk, compatible with the gluing conditions. In other words, for all

j, k = 1, . . . , N , j 6= k, F+
j→k is full column rank, and consequently a re-initialisation

map can be defined as Lj→k := F+⋆
j→kF

−
j→k, where F+⋆

j→k is a left inverse of F+
j→k.
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4.6 Summary

We developed a framework for the modelling of closed linear switched systems in which

the dynamical modes are not required to be described in a global state-space form.

Pivotal in our approach is the concept of gluing conditions, that impose concatenation

constraints on the system trajectories at the switching instants.





Chapter 5

Stability of SLDS

In this chapter we study stability of SLDS with autonomous behaviours. We provide suf-

ficient conditions for stability based on LMIs for systems with general gluing conditions.

We also study the role of positive-realness in providing sufficient polynomial-algebraic

conditions for stability of two-modes switched systems with special gluing conditions.

5.1 Lyapunov stability

We call a SLDB BΣ (and by extension, the SLDS Σ) asymptotically stable if

lim
t→+∞

w(t) = 0 for all w ∈ BΣ .

It follows from this definition and the fact that arbitrary switching signals are considered,

that in an asymptotically stable SLDS, all mode behaviours Bi must be asymptotically

stable and consequently autonomous (see Sec. 2.4).

Asymptotic stability for linear differential behaviours can be proved by producing a

higher-order Lyapunov function, i.e. a quadratic differential form (QDF) QΨ such that

QΨ

B

≥ 0 and d
dt
QΨ

B
< 0, see Sec. 3.6. In this chapter we give a sufficient condition for

stability of SLDS in terms of quadratic multiple Lyapunov functions (MLFs).

Theorem 5.1. Let Σ be a SLDS (see Def. 4.1). Assume that there exist QDFs QΨi
,

i = 1, ..., N such that

1. QΨi

Bi≥ 0, i = 1, ..., N ;

2. d
dt
QΨi

Bi

< 0, i = 1, ..., N ;

3. ∀ w ∈ BΣ and ∀ tj ∈ Ts, QΨs(tj−1)
(w)(t−j ) ≥ QΨs(tj)

(w)(t+j ).

55
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Then Σ is asymptotically stable.

Proof. See Appendix A.2.

Conditions 1 and 2 of Th. 5.1 are equivalent to QΨi
being a Lyapunov function for Bi,

i = 1, . . . , N . Condition 3 requires that the value of the multiple functional associated

to QΨi
, i = 1, ..., N , does not increase at the switching instants.

Remark 5.2. QDFs act on C∞-functions, while the trajectories of a SLDS are non-

differentiable; however, this mismatch in differentiability is irrelevant to Th. 5.4 and

the other results developed in this thesis. Indeed, we only use the calculus of QDFs

as an algebraic tool, taking into account its value before and after the switch and the

properties of their coefficient matrices.

We now recall Ex. 4.3 and Ex. 4.4 in the previous section.

Example 5.1. The SLDS in Ex. 4.3 is stable. An MLF is (QΨ1 , QΨ2), where

Ψ1(ζ, η) =

[
0

1

] [
0 1

]
= Ψ2(ζ, η) ,

induces the QDFs QΨ1(w) = w2
2 = QΨ2(w). Their derivatives along B1 and B2 equal

−2w2
d
dt
w2 = −2w2

2 ; due to the gluing conditions, the value of the MLF is the same

before and after the switch.

For the system in Ex. 4.4, straightforward computations show that since the only Ri-

canonical quadratic functionals for Bi are of the form

Ψi(ζ, η) = c

[
0

1

] [
0 1

]
, i = 1, 2 for c > 0 ,

no quadratic multiple Lyapunov functions for the SLDS exist. In fact, an argument

analogous to that of pp. 126-ff. of [74] proves that the system is unstable.

Remark 5.3. The existence of an MLF is only a sufficient condition for asymptotic

stability: the class of quadratic Lyapunov functionals is not universal (see [1], Corollary

4.3 and Remark 4.1 p. 457). The class of polyhedral Lyapunov functions (PLFs) is

universal for linear systems with structured uncertainties; in [92] PLFs are applied to

linear switched systems in state space form, and a numerical procedure to overcome the

complexity of PLF computations is illustrated, see pp. 1021-1022 ibid.

We now describe a procedure, based on results of Prop. 3.11, to compute MLFs as in

Th. 5.1 for SLDS using LMIs. For ease of exposition we assume that for each root of

detRk(ξ) the algebraic multiplicity coincides with the geometric multiplicity.
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Theorem 5.4. Let Σ be a SLDS (see Def. 4.1), with Bk = kerRk

(
d
dt

)
asymptotically

stable, k = 1, . . . , N and Rk ∈ R
w×w[ξ] nonsingular. Let Xk ∈ R

n×w[ξ] be a minimal state

map for Bk. Write Rk(ξ) =
∑Lk

i=0Rk,iξ
i, and denote the coefficient matrix of Rk(ξ) by

R̃k :=
[
Rk,0 . . . Rk,Lk

]
,

and that of Xk(ξ) by

X̃k :=
[
Xk,0 . . . Xk,Lk−1

]
.

Denote the roots of det Rk(ξ) by λk,i, i = 1, . . . nk. Assume that the algebraic multiplicity

of λk,i equals the dimension of kerRk(λk,i). Let wk,i ∈ C
w be such that Rk(λk,i)wk,i = 0,

with the wk,i associated with equal λk,i linearly independent. Define Vk ∈ C
nk×nk by

Vk :=
[
Xk(λk,1)wk,1 . . . Xk(λk,nk

)wk,nk

]
, k = 1, . . . , N ,

Denote by Lk→ℓ, k, ℓ = 1 . . . , N , k 6= ℓ, the re-initialisation maps of Σ.

There exist Kk ∈ R
nk×nk , Y k ∈ R

w×nk , k = 1 . . . , N such that

Φ̃k :=

[
0w×n

X̃⊤
k

]
Kk

[
X̃k 0n×w

]
+

[
X̃⊤

k

0w×n

]
Kk

[
0n×w X̃k

]
−
[
X̃⊤

k

0w×n

]
Y

⊤
k R̃k

−R̃⊤
k Y k

[
X̃k 0n×w

]
≤ 0 . (5.1)

Moreover, there exist F k ∈ R
nk×nk such that Φ̃k =

[
X̃⊤

k

0w×n

]
F k

[
X̃k 0n×w

]
, k = 1, . . . , N .

Moreover, if for k, ℓ = 1, . . . , N , ℓ 6= k, it holds that

F k < 0 and V ∗
k KkVk ≥ V ∗

k L
⊤
k→ℓKℓLk→ℓVk , (5.2)

then Σ is asymptotically stable, and
(
Xk(ζ)

⊤KkXk(η)
)
k=1,...,N

induces an MLF.

Proof. See Appendix A.2.

Th. 5.4 reduces the computation of quadratic MLFs as in Th. 5.1, to the solution

of a system of structured LMIs (5.1)-(5.2), a straightforward matter for standard LMI

solvers.

Remark 5.5. Th. 5.4 and the associated LMI-based procedure to find an MLF assume

that the λk,i and associated directions wk,i are known. If one wants to avoid such pre-

computations, a weaker (i.e. more conservative) sufficient condition for the existence of

a multiple Lyapunov function can be obtained by solving (5.1) together with F k < 0

and Kk ≥ L⊤
i→ℓKℓLk→ℓ in place of (5.2).

Remark 5.6. For state-space switched systems, Rk(ξ) = ξIn − Ak and Xk(ξ) = In,

k = 1, . . . , N , straightforward computations yield that in (5.1) Y k = Kk; with the first
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condition in (5.2) we obtain the matrix Lyapunov equations

A⊤
k Kk +KkAk < 0 .

The second condition in (5.2) reduces to the classical condition on the reset maps (see

e.g. Cor. 2.2 of [51]). For the case of switched DAE’s, see Sec. 6.3 of [75].

5.2 Example: Boost converter with multiple loads

We now illustrate the application of Th. 5.4 in a realistic setting.

Example 5.2. Some source converters used in distributed power systems (see e.g. [53])

consist of a traditional DC-DC boost converter coupled with a (dis-)connectable load,

see Fig. 5.1.

Figure 5.1: Source converter

We take w = col(iL1 , vo) as the external variable. In order to deal with autonomous

behaviours, we set the input voltage V = 0. From standard circuit modelling we conclude

that the modes are given by Bi = ker Ri

(
d
dt

)
, i = 1, ..., 4 where

R1(ξ) :=

[
L1ξ +RL1 0

0 C1ξ +
1
Ro

]
,

R2(ξ) :=

[
L1ξ +RL1 1

−1 C1ξ +
1
Ro

]
,

R3(ξ) :=



L1ξ +RL1 0

0 L2C1ξ
2 +

(
RL2C1 +

L2

Ro

)
ξ +

RL2

Ro
+ 1


 ,

R4(ξ) :=




L1ξ +RL1 1

−L2ξ −RL2 L2C1ξ
2 +

(
RL2C1 +

L2

Ro

)
ξ +

RL2

Ro
+ 1


 .

B1,B2 correspond to the switch in 1 and 2 respectively and the RL load disconnected,

and B3,B4 to the modes for the switch in position 1 and 2 and the load connected. The
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gluing conditions derived from physical considerations are

(I2, I2) =
(
G+

1→2(ξ), G
−
1→2(ξ)

)
=
(
G+

2→1(ξ), G
−
2→1(ξ)

)

=
(
G+

3→1(ξ), G
−
3→1(ξ)

)
=
(
G+

3→2(ξ), G
−
3→2(ξ)

)

=
(
G+

4→1(ξ), G
−
4→1(ξ)

)
=
(
G+

4→2(ξ), G
−
4→2(ξ)

)
;

(
G+

1→3(ξ), G
−
1→3(ξ)

)
:=







1 0

0 1

0 −C1ξ −
1

Ro


 ,



1 0

0 1

0 0





 =:

(
G+

2→3(ξ), G
−
2→3(ξ)

)
;

(
G+

1→4(ξ), G
−
1→4(ξ)

)
:=







1 0

0 1

1 −C1ξ −
1

Ro


 ,



1 0

0 1

0 0





 =:

(
G+

2→4(ξ), G
−
2→4(ξ)

)
;

(
G+

3→4(ξ), G
−
3→4(ξ)

)
:=







1 0

0 1

1 −C1ξ −
1

Ro


 ,




1 0

0 1

0 −C1ξ −
1

Ro





 :=

(
G−

4→3(ξ), G
+
4→3(ξ)

)
.

The following polynomial differential operators induce state maps for Bk, k = 1, . . . , 4:

X1(ξ) = X2(ξ) :=

[
1 0

0 1

]
; X3(ξ) :=




1 0

0 1

0 −C1ξ −
1

Ro


 ; X4(ξ) :=




1 0

0 1

1 −C1ξ −
1

Ro


 .

They can be derived by physical considerations or automatically, using the procedures

in [60]. Proceeding as in Sec. 4.4.1, we compute the re-initialisation maps

L1→2 = L2→1 :=

[
1 0

0 1

]
;

L1→3 = L1→4 = L2→3 = L2→4 :=



1 0

0 1

0 0


 ;

L3→4 = L4→3 := I3 ;

L3→1 = L3→2 = L4→1 = L4→2 :=

[
1 0 0

0 1 0

]
.

In order to obtain a numeric solution, we set the parameters L1 = 100µF , RL1 = 0.01Ω,

C1 = 100µF , Ro = 2Ω, RL2 = 0.02Ω, L2 = 100µF .

We obtain the characteristic frequencies λ1,1 = −5000, λ1,2 = −100, λ2,1 = −2550 +

j9695.2 = λ2,2, λ3,1 = −2600 + j9707.7 = λ3,2, λ3,3 = −100, λ4,1 = −149.94, λ4,2 =
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−2575 + j13933 = λ4,3. The V -matrices of Th. 5.4 are

V1 =

[
0 1

1 0

]
;

V2 =

[
0.70711 0.70711

0.17324 − j0.68556 0.17324 + j0.68556

]
,

V3 =




0 0 1

0.16971 + j0.68644 0.16971 − j0.68644 0

0.62564 − j0.32949 0.62564 + j0.32949 0


 ;

V4 =



0.70796 0.08739 + j0.49199 0.08739 − j0.49199

0.00353 0.70711 0.70711

0.70625 −0.08407 − j0.49323 −0.17147 + j0.98522


 .

Using standard LMI solvers for the LMIs (5.1), (5.2) we obtain

K1 = K2 =

[
0.00123 −0.00002

−0.00002 0.00112

]
;

K3 = K4 =




0.00123 −0.00002 0

−0.00002 0.00112 0

0 0 0.00121


 .

Applying Th. 5.4 we conclude that
(
Xk(ζ)

⊤KkXk(η)
)
k=1,...,4

induces an MLF.

To illustrate the modularity of our modelling framework, assume that the source con-

verter can also be connected to yet another RC load as depicted in Fig. 5.2.

Figure 5.2: Source converter with an RC load

This results in two additional behaviours in F , namely Bi = ker Ri

(
d
dt

)
, i = 5, 6, where

R5(ξ) :=



L1ξ +RL1 0

0 RC2C1C2ξ
2 +

(
RC2C2

Ro
+C1 + C2

)
ξ +

1

Ro




R6(ξ) :=




L1ξ +RL1 1

−RC2C2ξ − 1 RC2C1C2ξ
2 +

(
RC2C2

Ro
+ C1 + C2

)
ξ +

1

Ro


 .
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We choose as state maps for B5 and B6

X5(ξ) :=




1 0

0 1

0 RC2C1ξ +
RC2

Ro
+ 1


 ; X6(ξ) :=




1 0

0 1

−RC2 RC2C1ξ +
RC2

Ro
+ 1


 ,

corresponding to the re-initialisation maps

L5→6 = L6→5 := I3 ;

L1→5 = L1→6 = L2→5 = L2→6 :=



1 0

0 1

0 0


 ;

L5→1 = L5→2 = L6→1 = L6→2 :=

[
1 0 0

0 1 0

]
.

Given the values RC2 = 1Ω, C2 = 100µF , in order to compute an MLF for F :=

{Bk}k=1,...,6 we only need to add two LMIs to those set up previously; the solution is

K1 = K2 =

[
0.00127 −0.00002

−0.00002 0.00126

]
;

K3 = K4 =




0.00127 −0.00002 0

−0.00002 0.00126 0

0 0 0.00131


 ;

K5 = K6 =




0.00127 −0.00002 0

−0.00002 0.00126 0

0 0 0.00382


 .

Remark 5.7. We have chosen a purposely straightforward example (with V = 0 and

the interconnection of passive loads) that though simple, it is helpful to illustrate the

computation of MLFs, as well as some advantages in the analysis of SLDS such as

modularity, i.e. additional dynamic modes (associated with new loads) are incrementally

modelled adding them to the existing description. Note that the set of LMIs that are

set-up for the stability analysis is also modularly augmented. In chapter 7 we revisit

this type of problems in a more challenging scenario, where V is a free input and loads

with negative impedance characteristics may cause instability.

Remark 5.8 (State space case). In constrast with the SLDS framework, in the traditional

state space setting we would consider for the case in Fig. 5.1 dynamic modes d
dt
x = Aix,

with Ai ∈ R
3×3, i = 1, ..., 4. Since a global augmented state space x :=

[
iL1 vo iL2

]⊤

is used, then every mode contains the highest possible complexity, even the modes
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in which the RL load is not connected. When the new RC load is considered after

performing the stability analysis, the previous state space x is augmented to include a

new state variable, thus we define e.g. x′ :=
[
iL1 vo iL2 vc2

]⊤
. In order to construct

the same type of representation for every mode, we write new modes d
dt
x′ = A′

kx
′, with

A′
k ∈ R

4×4, k = 1, ..., 8. Consequently, the previously modelled matrices Ai, i = 1, ...4

need to be inflated with zeros and all the previously constructed LMIs need to be set-up

again.

5.3 Positive-realness and Lyapunov functions

Positive-realness has played an important role in the study of switched systems. For

instance it is well-known that if an open-loop transfer function of a system is positive-

real, then all stable closed-loop systems obtained from it by state feedback share a

common quadratic Lyapunov function (see Sec. 2.3.2 of [34] and [64, 65]).

The polynomial Lyapunov equation (PLE) resemblance to the dissipation equality (see

Th. 3.9 and Prop. 3.18) underlies the results of this section, aimed at connecting

positive-realness and stability of two dynamic modes (see [64, 65] in the classical setting).

We begin by recalling the definition of strict positive-real rational function (note that

this definition is not universally accepted; cf. [71], Th. 2.1.).

Definition 5.9. G ∈ R
w×w(ξ) is strictly positive-real if it is analytic in C+ andG(−jω)⊤+

G(jω) > 0 ∀ω ∈ R.

We now relate the PLE (3.3) with strict positive-realness of an associated transfer func-

tion.

Proposition 5.10. Let N,D ∈ R
w×w[ξ]. Assume that D and N are Hurwitz, and that

ND−1 is strictly proper and strictly positive real. There exist Q ∈ R
•×w[ξ] such that

D(−ξ)⊤N(ξ) +N(−ξ)⊤D(ξ) = Q(−ξ)⊤Q(ξ) ;

moreover rank col(D(λ), Q(λ)) = w for all λ ∈ C, and QD−1 is strictly proper. Define

Ψ(ζ, η) :=
D(ζ)⊤N(η) +N(ζ)⊤D(η)−Q(ζ)⊤Q(η)

ζ + η
.

Then Ψ(ζ, η) is a D-canonical Lyapunov function for kerD
(
d
dt

)
, and Ψ(ζ, η) mod N is

a Lyapunov function for kerN
(
d
dt

)
.

Proof. See Appendix A.2.
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Thus if Ψ is a suitable storage function of the system with transfer function ND−1,

associated with a supply rate induced by

[
0 I

I 0

]
and with dissipation rate Q(ζ)⊤Q(η),

then it is also a Lyapunov function for kerD
(
d
dt

)
and (after the “mod” operation) also

for ker N
(
d
dt

)
(on dissipativity and Lyapunov stability see also [58]).

Remarkably, it turns out that such storage functions also induce a MLF for an SLDS

with modes kerN
(
d
dt

)
, kerD

(
d
dt

)
, and special gluing conditions, naturally associated

with the “mod” operation. This result is elaborated in the following section.

5.4 Stability of standard SLDS

In the following, we consider SLDSs where F =
(
kerR1

(
d
dt

)
, kerR2

(
d
dt

))
, with Rj ∈

R
w×w[ξ], j = 1, 2 nonsingular. We assume that R2R

−1
1 is strictly proper ; this implies

that the state space of kerR2

(
d
dt

)
is included in that of ker R1

(
d
dt

)
, as we presently

show.

Lemma 5.11. Let Bi = kerRi

(
d
dt

)
, i = 1, 2. Assume that R1, R2 ∈ R

w×w[ξ] are

nonsingular, and that R2R
−1
1 is strictly proper. Let ni := deg(det(Ri)); then n2 < n1.

There exist X ′
1 ∈ R

(n1−n2)×w[ξ], X2 ∈ R
n2×w[ξ] such that X2

(
d
dt

)
is a minimal state map

for B2, and

X1

(
d

dt

)
:= col

(
X2

(
d

dt

)
,X ′

1

(
d

dt

))
, (5.3)

is a minimal state map for B1. Moreover, ∃ Π ∈ R
(n1−n2)×n2 such that X ′

1(ξ) mod R2 =

ΠX2(ξ).

Proof. See Appendix A.2.

Example 5.3. If w = 1, R2R
−1
1 is strictly proper iff n1 = deg(R1) > deg(R2) = n2. A

state map for B1 is col(ξk)k=0,...,n1−1, whose first n2 elements form a basis for the state

space of B2. The rows of Π consist of the coefficients of the polynomials ξk mod R2(ξ),

k = n2, . . . , n1 − 1.

In the rest of this chapter we consider standard SLDS, defined as follows.

Definition 5.12. Let Σ = {P,F ,S,G} be a SLDS with F =
(
kerR1

(
d
dt

)
, kerR2

(
d
dt

))
,

where Rj ∈ R
w×w[ξ] is nonsingular, j = 1, 2. Assume that R2R

−1
1 is strictly proper.

Let nj := deg(det(Rj)), j = 1, 2, and let X ′
1 ∈ R

(n1−n2)×w[ξ], X2 ∈ R
n2×w[ξ] and

Π ∈ R
(n1−n2)×n2 be as in Lemma 5.11. Σ is a standard SLDS if the gluing conditions

are

(
G−

2→1(ξ), G
+
2→1(ξ)

)
:=
(
col(X2(ξ),ΠX2(ξ)), col(X2(ξ),X

′
1(ξ))

)
,

(
G−

1→2(ξ), G
+
1→2(ξ)

)
:= (X2(ξ),X2(ξ)) .
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Remark 5.13. It is straightforward to check that the gluing conditions in Def. 5.12 are

well-posed according to Def. 4.4. Note also that the state space of B2 is contained in

that of B1; however, at any time the state used for the description of the system is that

of the active dynamics, and not a global one.

Example 5.4. Assume that R1 and R2 in Ex. 5.3 are monic, and that n1 = n2 +

1. Denote R2(ξ) =:
∑n1−1

j=0 R2,jξ
j , and define S(ξ) :=

[
1 . . . ξn1−2

]⊤
. The gluing

conditions of the standard SLDS are

(
G−

2→1(ξ), G
+
2→1(ξ)

)
=


col(S(ξ),−

n1−2∑

j=0

R2,jξ
j), col(S(ξ), ξn1−1)


 ,

and (
G−

1→2(ξ), G
+
1→2(ξ)

)
= (S(ξ), S(ξ)) .

In a switch B2 → B1, to obtain “initial conditions” uniquely specifying w ∈ B1, we

need to define the value of dn1−1

dtn1−1w after the switch. Standard gluing conditions stipulate

that it coincides with dn1−1

dtn1−1w = −∑n1−2
i=0 R2,i

di

dti
w, since before the switch w ∈ B2. In

a switch B1 → B2, we project the vector of derivatives characteristic of w ∈ B1 down

onto the shorter vector of derivatives of w ∈ B2.

Consider the following example of a realistic scenario.

Example 5.5. Consider the basic multi-controller system in Fig. 5.3, where the plant

described by the transfer function

n(ξ)

d(ξ)
:=

(ξ + 1)(ξ + 4)

(ξ − 2)(ξ + 3)
,

is interconnected to stabilising switched controllers described by

p1(ξ)

q1(ξ)
:=

KDξ
2 +KP ξ +KI

ξ
,

and
p2(ξ)

q2(ξ)
:=

K ′
P ξ +K ′

I

ξ
,

where KD = 1, KP = 25, KI = 150, K ′
P = 1 and K ′

I = 33.

By selecting the output variable w as the variable of interest, we can model the mode

behaviours as Bi := ker ri
(
d
dt

)
, i = 1, 2, with

r1(ξ) :=600 + 844ξ + 280ξ2 + 31ξ3 + ξ4 ,

r2(ξ) :=132 + 163ξ + 39ξ2 + 2ξ3 .

Furthermore, in many cases we are interested in determining a re-initialisation for the

controllers at switching instants that guarantees the continuity of the external variable,
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Figure 5.3: Multi-controller system with two dynamic modes

i.e. w(t+j ) = w(t−j ) for all tj ∈ Ts (see e.g. the bumpless transfer problem in [49]). We

model such requirements via gluing conditions, i.e. when switching from B1 to B2 at tj

we require that 


w(t+j )
d
dt
w(t+j )

d2

dt2
w(t+j )


 =




w(t−j )
d
dt
w(t−j )

d2

dt2
w(t−j )


 .

On the other hand, when we switch from from B2 to B1 we require that




w(t+j )
d
dt
w(t+j )

d2

dt2
w(t+j )

d3

dt3
w(t+j )



=




w(t−j )
d
dt
w(t−j )

d2

dt2
w(t−j )

−66w(t−j )− 163
2

d
dt
w(t−j )− 39

2
d2

dt2
w(t−j )




.

The rationale underlying this choice of gluing conditions is that at switching instants

any trajectory of B1 and B2 is uniquely specified by the instantaneous values of w and

its derivatives, respecting the laws imposed by the mode behaviors and requiring that

the value of w(t+j ) and w(t−j ) coincide. Since

X1(ξ) :=




1

ξ

ξ2

ξ3




, X2(ξ) :=



1

ξ

ξ2


 ,

induce state maps for B1 and B2 respectively, note that the proposed gluing conditions

are standard in the sense of Def. 5.12, where

Π =
[
−66 −163

2 −39
2

]
.

Remark 5.14. Standard gluing conditions describe concatenability specifications when

switching between mode behaviours with different state space dimension as in Ex. 5.5.

In more complex cases, e.g. a multivariable version of Ex. 5.5, standard gluing conditions



66 Chapter 5 Stability of SLDS

can be computed using Lemma 5.11. Standard gluing conditions also appear in switched

electrical systems, see e.g. the example of the energy distribution network shown in Sec.

V of [40].

We now prove that a standard SLDS where R2R
−1
1 is strictly positive real admits a mul-

tiple Lyapunov function induced by (Ψ1,Ψ2) where Ψ1 is a storage function for R2R
−1
1 ,

and Ψ2 = Ψ1 mod R2. The following result can be considered as the multivariable

generalisation of the early results about stability of scalar behaviours shown in [62].

Theorem 5.15. Let Σ be a standard SLDS (see Def. 5.12), with R1 and R2 Hurwitz.

Assume that R2R
−1
1 is strictly proper and strictly positive-real. Define

Φ(ζ, η) := R1(ζ)
⊤R2(η) +R2(ζ)

⊤R1(η) . (5.4)

There exists Q ∈ R
•×w[ξ] such that Φ(−ξ, ξ) = Q(−ξ)⊤Q(ξ), rank col(R1(λ), Q(λ)) = w

for all λ ∈ C and QR−1
1 is strictly proper. Define

Ψ1(ζ, η) :=
Φ(ζ, η)−Q(ζ)⊤Q(η)

ζ + η
. (5.5)

Then Ψ1 is R1-canonical. Define Ψ2 := Ψ1 mod R2; then (Ψ1,Ψ2) induces an MLF for

Σ.

Proof. See Appendix A.2.

Example 5.6 (Contd from Ex. 5.5). Note that since r1(−jω)r2(jω)+r2(−jω)r1(jω) >

0 for all w ∈ R, we conclude that r2(ξ)
r1(ξ)

is strictly positive real. Consequently, using Th.

5.15 we also conclude that the standard SLDS is asymptotically stable under arbitrary

swiching signals.

Th. 5.15 yields two approaches to computing an MLF for a standard SLDS. The first

is algebraic and consists of a polynomial spectral factorisation of Φ in (5.4), and the

computation of Ψ1 from (5.5). The second, based on LMIs, arises from the proof of Th.

5.15. We state it in the following results.

Proposition 5.16. Under the assumptions of Th. 5.15, define n1 := deg(det(R1)) and

let X1 ∈ R
n1×w[ξ] be a minimal state map for B1. Write R1(ξ) =

∑L
j=0R1,jξ

j, with

R1,j ∈ R
w×w, j = 0, 1, . . . , L. There exists R̃2 ∈ R

w×n1 , Q̃ ∈ R
•×n1 and K ∈ R

n1×n1 such

that R2(ξ) = R̃2X1(ξ), Q(ξ) = Q̃X1(ξ) and Ψ1(ζ, η) = X1(ζ)
⊤KX1(η). Moreover, there

exist X1,j ∈ R
n1×w, with j = 0, 1, ..., L − 1, such that X1(ξ) =

∑L−1
j=0 X1,jξ

j

Proof. See Prop. 3.10.
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Proposition 5.17. Under the assumptions of Th. 5.15 and Prop. 5.16, denote the

coefficient matrices of R1(ξ) and X1(ξ) by

R̃1 :=
[
R1,0 . . . R1,L

]
, X̃1 :=

[
X1,0 . . . X1,L−1

]
.

Let K = K⊤ ∈ R
n1×n1. The following statements are equivalent:

1. Ψ(ζ, η) := X1(ζ)
⊤KX1(η), Ri(ξ), i = 1, 2, and Q(ξ) satisfy (5.5);

2. There exists K > 0 , such that

[
0w×n1

X̃⊤
1

]
K
[
X̃1 0n1×w

]
+

[
X̃⊤

1

0w×n1

]
K
[
0n1×w X̃1

]

−
[

X̃⊤
1

0w×n1

]
R̃⊤

2 R̃1 − R̃⊤
1 R̃2

[
X̃1 0n1×w

]
+

[
X̃⊤

1

0w×n1

]
Q̃⊤Q̃

[
X̃1 0n1×w

]
= 0 .

Consequently, (Ψ,ΨmodR2) induces a multiple Lyapunov function for Σ.

Proof. See Appendix A.2.

Remark 5.18. If w = 1 the proof of Th. 5.15 simplifies considerably; see [59] for details.

Remark 5.19. Theorem 5.15 holds also if R2R
−1
1 is bi-proper, i.e. proper and with a

proper inverse; note that in this case the state spaces of B1 and of B2 coincide. Let

X ∈ R
•×•[ξ] be a state map for B1; the standard gluing conditions are

(G−
1→2(ξ), G

+
1→2(ξ)) = (X(ξ),X(ξ)) = (G−

2→1(ξ), G
+
2→1(ξ)) .

It is straightforward to check that e.g. the largest storage function for R2R
−1
1 yields a

MLF. For w = 1 this is shown in [62].

Remark 5.20. In the state-space framework it is well-known that if the open-loop transfer

function of a system is positive-real, then all closed-loop systems obtained from it by

state feedback share a common quadratic Lyapunov function (see sect. 2.3.2 of [34] and

[64, 65]). Th. 5.15 offers a new perspective on the relation between positive-realness and

stability: in our framework, the different dynamical regimes do not arise from closing

the loop around some fixed plant, and positive-realness arises from the interplay of the

mode dynamics.

For standard SLDS, positive-realness of R2R
−1
1 is a sufficient condition for stability. This

assumption is rather restrictive and we now show how to relax it. To this purpose we

introduce the concept of positive-real completion.
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5.5 Positive-real completions

We now study the role of positive real completions in stability of standard SLDS.

Definition 5.21. Let Ri ∈ R
w×w[ξ], i = 1, 2 be nonsingular and R2R

−1
1 strictly proper.

M ∈ R
w×w[ξ] is a strictly positive-real completion of R2R

−1
1 if MR2R

−1
1 is strictly

positive-real.

Remark 5.22. A positive-real completion can be regarded as the multivariable version

of the “passivation” technique used for open SISO systems in Sec. 3 of [31]. We will

show that in the context of SLDS, positive-real completions provide a less conservative

stability condition than that of Th. 5.15, i.e. for the case when R2R
−1
1 is not positive-

real.

Remark 5.23. Strictly- positive-real completions are not unique; e.g. the rational func-

tion mr2
r1

with r1(ξ) := (ξ + 1)(ξ + 3)(ξ + 6) and r2(ξ) := ξ + 2 is positive-real with m

equal to ξ + 4, ξ + 5 or many other. Note also that not every pair of Hurwitz matrices

has a strictly- positive-real completion, for example the polynomials

r1(ξ) :=2523677 + 435616ξ + 81559ξ2 + 7000ξ3 + 603ξ4 + 24ξ5 + ξ6 ,

r2(ξ) :=65 + 46ξ + 26ξ2 + 6ξ3 + ξ4 .

We now show that if an MLF exists, then a positive-real completion can be found.

Theorem 5.24. Let Σ be a standard SLDS (see Def. 5.12). If {Ψ1,Ψ1 mod R2} in-

duces an MLF for Σ such that (ζ+η)Ψ1(ζ, η) mod R1 = −Q(ζ)⊤Q(η) with rank Q(jω) =

w for all ω ∈ R and QR−1
1 strictly proper, then there exists a strictly positive-real com-

pletion M ∈ R
w×w[ξ] for R2R

−1
1 .

Proof. See Appendix A.2.

In the following result we establish general conditions for the existence of a Lyapunov

function for a standard SLDS using positive-real completions.

Theorem 5.25. Let Σ be a standard SLDS as in Def. 5.12. Let R̃1 and X̃1 be as in

Prop. 5.17. Define Y := MR2 with M ∈ R
w×w[ξ] such that Y R−1

1 is strictly proper.

There exist Yj ∈ R
w×w, with j = 0, 1, ..., L − 1, such that Y (ξ) =

∑L−1
j=0 Yjξ

j . Denote

Ỹ :=
[
Y0 . . . YL−1

]
. If there exists K > 0 with K ∈ R

n1×n1 such that

[
0w×n

X̃⊤
1

]
K
[
X̃1 0n×w

]
+

[
X̃⊤

1

0w×n

]
K
[
0n×w X̃1

]
−
[
Ỹ ⊤

0w×w

]
R̃1−R̃⊤

1

[
Ỹ 0w×w

]
≤ 0 , (5.6)
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then M is a strictly positive-real completion of R2R
−1
1 . Moreover, define Ψ1(ζ, η) :=

X1(ζ)
⊤KX1(η). If K partitioned as

K :=

[
K11 K12

K⊤
12 K22

]
,

with K11 ∈ R
n2×n2, K12 ∈ R

n2×(n1−n2) and K22 ∈ R
(n1−n2)×(n1−n2); is such that K12 =

−Π⊤K22, then {Ψ1,Ψ1 modR2} induces a multiple Lyapunov function for Σ.

Proof. See Appendix A.2.

5.5.1 Computation of positive-real completions

Th. 5.25 establishes general conditions for stability of standard SLDS in terms of LMIs.

Although positive-real completions are instrumental for the computation of multiple

Lyapunov functions, they are not necessarily known a priori ; we can compute them by

using the LMI (5.6). In order to do so, let M(ξ) =
∑N

j=0Mjξ
j, i.e. M(ξ) is written in

terms of unspecified parameters, with N ≤ L− 1. Write

Ỹ ⊤ :=




R2,0 0 0 · · · 0

R2,1 R2,0 0 · · · 0
...

...
. . . · · · ...




︸ ︷︷ ︸
=:T̃




M0

M1

...




︸ ︷︷ ︸
=:M̃

; (5.7)

where T̃ ∈ R
L×• is a block Töplitz matrix (see [30], Sec. 8.3.1) containing the coefficients

R2,j of R2(ξ); and M̃ ∈ R
•×w contains the unknown coefficients of M(ξ). The LMI

(5.6) with Ỹ as in (5.7) can be solved using standard LMI solvers. On the other hand,

if (5.6) has no solution, we conclude that the pair R1, R2 does not have a positive-real

completion, see remark 5.23.

Example 5.7 (Cont’d from Ex. 5.5). We cannot expect that the positive-real property

will be satisfied when considering any pair of stabilising controllers, however this does

not imply that a Lyapunov function does not exist. For instance, redefine the transfer

function
p2(ξ)

q2(ξ)
:= 10 ,

corresponding to an elementary negative-feedback proportional controller. It follows

that the resulting r2(ξ) := 34 + 51ξ + 11ξ2 is also Hurwitz; however,

r2(ξ)

r1(ξ)
:=

34 + 51ξ + 11ξ2

600 + 844ξ + 280ξ2 + 31ξ3 + ξ4
,

is not positive-real.
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We proceed to test stability by constructing the LMI (4) introduced in Th. 2, p. 7. In

order to do so, we define

X1(ξ) :=




1

ξ

ξ2

ξ3




, X2(ξ) :=

[
1

ξ

]
,

then we consider standard gluing conditions as in Def. 3, where

Π :=

[
−34

11 −51
11

1734
121

2227
121

]
.

Now we solve the LMI (4) with the constraints K > 0 and Ψ12 = −Π⊤Ψ22, using the

coefficient matrices

X̃1 := I4 , R̃1 :=
[
600 844 280 31 1

]
,

and a matrix involving the coefficients of the positive-real completion:

Ỹ ⊤ :=




34 0

51 34

11 51

0 11




[
m0

m1

]
,

which is contructed according to eq. (5) in remark 6 on p. 8. It can be verified using

standard LMI solvers that there exist several solutions for K, e.g.

K :=




9526.35 10338.06 2330.56 152.62

10338.06 16723.12 3819.00 265.71

2330.56 3819.00 1238.73 104.54

152.62 265.71 104.54 11.89




;

corresponding to the positive real completion m(ξ) = 4.48 + 1.08ξ whose coefficients

are also determined by solving the LMI. Consequently, the asymptotic stability under

arbitrary switching between stabilising controllers is proved.

5.6 Stability of SLDS with three behaviours

In this section we analyse important consequences of the existence of positive-real com-

pletions. The following lemma will be instrumental for this aim.

Lemma 5.26. Let Bi := ker Ri

(
d
dt

)
, i = 1, 2, be as in Def. 5.12. Let M ∈ R

w×w[ξ]

be such that MR2R
−1
1 is strictly proper. Define B3 := ker R3

(
d
dt

)
where R3(ξ) :=
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M(ξ)R2(ξ) and nj := deg(det(Rj)), j = 1, 2, 3. There exist X2 ∈ R
n2×w[ξ], X ′

3 ∈
R
(n3−n2)×w[ξ] and X ′

1 ∈ R
(n1−n3)×w[ξ] such that

1. X1 :=
[
X2 X ′

3 X ′
1

]⊤
is a minimal state map for B1.

2. X2 is a minimal state map for B2.

3. X3 :=
[
X2 X ′

3

]⊤
is a minimal state map for B3.

Moreover, there exist Πj , j = 1, 2, 3, of appropiate sizes, such that col(X ′
3(ξ),X

′
1(ξ))modR2 =

Π1X2(ξ); X
′
3(ξ)modR2 = Π2X2(ξ); and X ′

1(ξ)modR3 = Π3X3(ξ).

Proof. See Appendix A.2.

In the following, we show a sufficient condition for the asymptotic stability of a SLDS

with three behaviours.

Theorem 5.27. Let Σ be a standard SLDS as in Def. 5.12. Assume that there exists

M and K satisfying the conditions of Th. 5.25. Define R3 := MR2, Bi := ker Ri

(
d
dt

)
,

i = 1, 2, 3; and let Xi, i = 1, 2, 3 be as in Lemma 5.26. Consider a SLDS Σ′ with

F ′ = {B1,B2,B3} and gluing conditions

(
G−

2→1(ξ), G
+
2→1(ξ)

)
:=
(
col(X2(ξ),Π1X2(ξ)), col(X3(ξ),X

′
1(ξ))

)
,

(
G−

1→2(ξ), G
+
1→2(ξ)

)
:= (X2(ξ),X2(ξ)) ,

(
G−

3→1(ξ), G
+
3→1(ξ)

)
:=
(
col(X3(ξ),Π3X3(ξ)), col(X3(ξ),X

′
1(ξ))

)
,

(
G−

1→3(ξ), G
+
1→3(ξ)

)
:= (X3(ξ),X3(ξ)) ,

(
G−

2→3(ξ), G
+
2→3(ξ)

)
:=
(
col(X2(ξ),Π2X2(ξ)), col(X2(ξ),X

′
3(ξ))

)
,

(
G−

3→2(ξ), G
+
3→2(ξ)

)
:= (X2(ξ),X2(ξ)) ,

with Πi, i = 1, 2, 3 as in Lemma 5.26.

Define Ψ(ζ, η) := X1(ζ)
⊤KX1(η), then {Ψ1 modRi}i=1,2,3. induces a multiple Lyapunov

function for F ′.

Proof. See Appendix A.2.

Example 5.8 (Cont’d from Ex. 5.7). In this case, we proved that the Lyapunov function

obtained by applying Th. 2 is also a Lyapunov function for a SLDS with an extended

bank including a third behaviour B3 := ker r3
(
d
dt

)
, where r3(ξ) := m(ξ)r2(ξ); and stan-

dard gluing conditions. Note that supported on these results, we can straightforwardly

compute the transfer function of an additional stabilising controller

p3(ξ)

q3(ξ)
:=

44.8 + 10.8ξ

4.48 + 1.08ξ
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Then an extended bumpless transfer strategy with three controllers is obtained.

Another consequence of the notion of positive-real completion is given in the following

theorem where we prove stability of parameter dependent families of SLDS with three

behaviours.

Theorem 5.28. Let Σ be a standard SLDS as in Def. Theorem 5.27. Assume that

there exist strictly positive-real completions M1 and M2 of R2R
−1
1 , each one associated

to a Lyapunov function for Σ as in Th. 5.25. Then, the polynomial matrix

Mα := αM1 + (1− α)M2 , 0 ≤ α ≤ 1 ,

is also a strictly positive-real completion. Moreover, define a SLDS Σ′ with

F ′
α :=

{
ker R1

(
d

dt

)
, ker R2

(
d

dt

)
, ker R3,α

(
d

dt

)}
,

where R3,α := MαR2, and with gluing conditions as in Th. 5.27. Then Σ′ is asymptoti-

cally stable.

Proof. See Appendix A.2.

Theorem 5.28 shows that the existence of two separate completions allows to establish the

stability of a whole family of parameter-dependent SLDS with three behaviors Fα. This

result also shows that the asymptotic stability of a completion established in Theorem

5.27 is robust: perturbations of a given completion, parametrized by α as in Theorem

5.28, also result in a stable SLDS.

5.7 Summary

We provided results regarding stability using multiple higher-order Lyapunov functions

for general SLDS with arbitrary gluing conditions. We also studied stability of a special

class of SLDS using the concept of positive-realness and positive-real completion.



Chapter 6

Dissipative switched linear

differential systems

Dissipativity and its special case passivity have been studied extensively in general set-

tings such as impulsive, discontinuous and hybrid systems (see e.g. [20, 21, 22, 23, 54,

93]), as well as in the switched systems setting (see e.g. [5, 17, 38, 94, 95, 96]). In [18],

the role of passivity for stability of switched systems has been also studied considering

dynamical modes with Hamiltonian structure. In [96], novel definitions of dissipative

switched systems are presented involving the use of cross-supply rates. This approach

also encompasses important results (e.g. stability, passivity, L2-gain) associated to dis-

sipative nonlinear systems with infinitely differentiable trajectories. In [23], another

definition of dissipativity is presented where the use of connective supply rates charac-

terises the energy change of inactive modes. More recently, in [38, 37], the notion of

decomposable dissipativity is introduced for discrete-time switched systems.

In this chapter, we give definitions of dissipativity of switched linear differential sys-

tems. Furthermore, we provide sufficient conditions for dissipativity based on systems

of LMIs for arbitrary switching signals and involving the computation of multiple storage

functions. Such systems of LMIs can be set up straightforwardly from the equations of

the mode dynamics and the gluing conditions. We also study the relationship between

dissipativity and stability of switched systems by studying passive systems.

6.1 Preliminaries

In order to formulate the concept of dissipativity and the main results obtained in this

chapter, we need to establish a few standard assumptions that are made partly for

convenience of exposition, these initial considerations are now enlisted.

73
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1. Compact support trajectories. In dissipativity theory we often require the integra-

tion of functionals acting on w ∈ BΣ. In order to avoid convergence issues, and

ensure that such integrals exist, we assume that they involve piecewise infinitely

differentiable trajectories of compact support whose set is denoted by Dp(R,R
w).

For this reason we introduce the notation BΣ ∩Dp(R,R
w).

2. Inputs and outputs. We consider dynamical modes sharing the same external

variable and admitting the same input-output partition w = col(u, y) (see Sec.

2.3). Here we consider that the selection of the manifest variables is the same for

every mode, and moreover, during the switching between dynamic modes, inputs

are not transformed into outputs and vice versa. Note that this consideration

includes e.g. the case of physical systems with ports and conjugate variables (see

[48]) e.g. mechanical, electrical, thermodynamical systems, etc; among many other

situations.

3. Controllability and observability. We consider switched linear differential systems

with controllable mode behaviours, i.e. Bj ∈ Lw

cont, j = 1, ...N , described by

observable image form representations w = Mj

(
d
dt

)
zj, j = 1, ...N , with Mj ∈

R
w×z[ξ]. Controllability ensures that compact support trajectories exist (see as-

sumption 2 above). Observability ensures that every trajectory of the latent vari-

able zj corresponds to a unique trajectory of the external variable w when the

j-th mode is active, which in many instances simplifies computations (see e.g. Sec.

3.4).

6.2 Dissipative SLDS

Our concept of dissipativity is fundamentally based on that for linear differential systems

discussed in Sec. 3.7. In order to introduce the main definition and results about

dissipative SLDS, we introduce the following notation.

Let s ∈ S be a fixed but otherwise arbitrary switching signal, whose associated set of

switching instants is Ts := {t1, t2, ..., tn, ...}. We denote by |Ts| the total number of

switching instants in Ts.

1. If |Ts| = ∞, define

∫
QΦ(w) :=

∫ t−1

−∞
QΦ(w) dt +

∫ t−2

t+1

QΦ(w) dt + ...+

∫ t−n+1

t+n

QΦ(w) dt + ... ;

and

∫
‖w‖22 :=

∫ t−1

−∞
‖w‖22 dt+

∫ t−2

t+1

‖w‖22 dt+ ...+

∫ t−n+1

t+n

‖w‖22 dt+ ... .
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2. If 0 < |Ts| < ∞, then define

∫
QΦ(w) :=

∫ t−1

−∞
QΦ(w) dt +

|Ts|∑

k=2

∫ t−
k

t+
k−1

QΦ(w) dt +

∫ ∞

t+
|Ts|

QΦ(w) dt ;

and ∫
‖w‖22 :=

∫ t−1

−∞
‖w‖22 dt+

|Ts|∑

k=2

∫ t−
k

t+
k−1

‖w‖22 dt+
∫ ∞

t+
|Ts|

‖w‖22 dt .

3. If |Ts| = 0, i.e. no switching takes place, then

∫
QΦ(w) :=

∫ +∞

−∞
QΦ(w) dt ;

and ∫
‖w‖22 :=

∫ +∞

−∞
‖w‖22 dt .

Moreover, given a trajectory w ∈ BΣ, we denote the switching signal associated to it

(see Def. 4.2) as sw.

Definition 6.1. Let Σ be a SLDS and let QΦ be a QDF. Σ is Φ-dissipative if for all

w ∈ BΣ ∩Dp(R,R
w) it holds ∫

QΦ(w) ≥ 0 ;

and strictly Φ-dissipative if there exists ǫ > 0 such that for all w ∈ BΣ ∩Dp(R,R
w), it

holds ∫
QΦ(w) ≥ ǫ

∫
‖w‖22 .

In the previous definition, the quadratic differential formQΦ can be interpreted as power,

consequently, its integral over the real line measures the energy that is being supplied

to, or flows out from the SLDS. If the net flow of energy is nonnegative then we call the

SLDS Φ-dissipative.

The definition of dissipativity is not uniform in the literature for switched/hybrid sys-

tems. For instance, in [96] multiple- and cross-supply rates are considered to characterise

the energy change of inactive modes for the case when they share the same state space.

A similar concept is used in [23], where connective supply rates are used. These defini-

tions permit the modelling of dynamical modes with different inputs, which is a suitable

approach in cases such as multi-controller control systems. In our definition, we con-

sider the use of a main supply rate acting on a fixed external variable for modes that

do not necessarily share the same state-space. This definition is most suitable for the

study of switched systems whose variables of interest are fixed, consequently the modes

interchange energy with the environment in the same manner for every mode e.g. by

means of ports.
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If a SLDS is dissipative, then every dynamic mode in the bank is also dissipative.

Proposition 6.2. Let Σ be a SLDS. If Σ is (strictly) Φ-dissipative according to Def.

6.1. Then Bi, i = 1, ...N , is a (strictly) Φ-dissipative linear differential behaviour.

Proof. See Appendix A.3.

Following standard results in dissipative linear differential systems, if an SLDS is dissi-

pative each dynamic mode can be associated with a storage function.

Proposition 6.3. Let Σ be a (strictly) Φ-dissipative SLDS. For all i ∈ P there exists

a QDF QΨi
that is a storage function for Bi. Let a < b, then for all w ∈ BΣ with

sw(t) = i for t ∈ [a, b], it holds that

∫ b

a

QΦ(w) dt ≥ QΨi
(w)(b) −QΨi

(w)(a) .

Proof. See Appendix A.3.

6.3 Multiple storage functions

As discussed in the literature (see e.g. [23, 96]), the use of a global storage function

for all dynamical modes of a dissipative switched system is not only conservative but

also not supported by physical considerations. Note for instance that physical switched

systems may have different ways to store energy depending on the mode that is active.

Example 6.1 (Cont’d from Ex. 4.7). Consider the electrical circuit in Fig. 4.4. Fol-

lowing first principles, the stored energy for each mode is given respectively by the

QDFs

QΨ1(w) :=
1

2
Li2L +

1

2
(C1 + C2)v

2
2

and

QΨ2(w) :=
1

2
Li2L +

1

2
C1(E +RLiL − L

d

dt
iL)

2 +
1

2
C2v

2
2 .

When switching between modes, the trajectories of w are in general subject to algebraic

constraints modelled via the gluing conditions. Consequently, the transition between

storage functions becomes of interest in dissipative systems. The second law of thermo-

dynamics prevents stored energy in a dissipative system to increase at switching instants,

since the process of dissipation cannot be reversed and energy is strictly provided by

external sources characterised by the supply rate. Consequently any change in the phys-

ical stored energy is necessarily accounted as energy losses. This point of view has been
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elaborated in [47] where the analysis of a wide variety of physical systems exhibiting

discontinuities is presented; the same principle is also discussed in [14, 19, 73]. This

energy condition is also used for a definition of passivity for hybrid systems in Prop. 1

of [93], where the nonincreasing condition for multiple Lyapunov functions introduced in

[3] is used for multiple storage functions. Here we illustrate such condition for dissipative

systems from a physical point of view using the power converter in Fig. 4.4.

Example 6.2 (Cont’d from Ex. 6.1). Let us compute the changes in stored energy

of the circuit at a switching instant ti. Taking into account the gluing conditions in

Ex. 4.7 and after some straightforward computations, the change in stored energy when

switching respectively from B1 to B2 and vice versa can be computed respectively as

QΨ1(w)(t
−
i )−QΨ2(w)(t

+
i ) = 0 ,

i.e. there is no loss; and

QΨ2(w)(t
−
i )−QΨ1(w)(t

+
i ) =

1

4

(
E(t−i ) + iL(t

−
i )−

d

dt
iL(t

−
i )− v2(t

−
i )

)2

.

Evidently the latter quantity is nonnegative implying that the circuit loses energy.

Definition 6.4. Let Σ be a SLDS and let s ∈ S. An N -tuple (QΨ1 , ..., QΨN
) is a

multiple storage function for Σ with respect to QΦ if

1) d
dt
QΨi

Bi≤ QΦ, i = 1, ..., N .

2) ∀ w ∈ BΣ s.t. s = sw and ∀ tk ∈ Ts, it holds

QΨs(tk−1)
(w)(t−k )−QΨs(tk)

(w)(t+k ) ≥ 0 .

Remark 6.5. In condition 1) of Def. 6.4 we require each mode behaviour to be Φ-

dissipative which is equivalent to QΨi
satisfying the dissipation inequality for the i-th

mode. In condition 2) we require that the storage function does not increase when we

switch from one mode to another: switching cannot increase the amount of stored energy

in the system.

Theorem 6.6. Let Σ be a SLDS and let QΦ be a QDF. Assume that there exists a

multiple storage function as in Def. 6.4. Then Σ is Φ-dissipative.

Proof. See Appendix A.3.

In Th. 6.6, we proved that the existence of a multiple storage function as in Def. 6.4

is a sufficient condition for dissipativity. In the classical theory for linear differential

behaviours, dissipativity is actually equivalent to the existence of a storage function

(see Prop. 3.18). In the following we show that if Φ is a constant matrix, then strict

Φ-dissipativity implies the existence of a multiple storage function for SLDS.
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Theorem 6.7. Let Φ ∈ R
w×w and let Σ be a strictly Φ-dissipative SLDS with G well-

defined and well-posed, and with mode behaviours Bk, k = 1, ..., N . There exist storage

functions QΨi
, i = 1, ...N , for the linear differential behaviours Bk, i = 1, ..., N , with

respect to QΦ, such that for all tk ∈ Ts and for all i, j ∈ P, i 6= j, it holds that

QΨs(tk−1)
(w)(t−k )−QΨs(tk)

(w)(t+k ) ≥ 0 .

Consequently, (QΨ1 , ..., QΨN
) is a multiple storage function for Σ.

Proof. See Appendix A.3.

Derived from strict dissipativity and the fact that for constant supply rates, storage

functions are quadratic functions of the state (see Prop. 3.20), we can construct an LMI

equivalent with condition 2) in Def. 6.4.

Lemma 6.8. Under the assumptions of Th. 6.7, denote by zi, i = 1, ..., N , the unique

latent variable trajectories associated with the external variable, i.e. w = Mi

(
d
dt

)
zi,

i = 1, ..., N . Let Xi ∈ R
n(Bi)×z[ξ] induce minimal state maps for Bi , i = 1, ..., N ,

and let QΨ′
i
(zi) = QΨi

(w), i = 1, ..., N . Let Li→j ∈ R
n(Bj)×n(Bi) for all i, j ∈ P,

i 6= j, be the re-initialisations maps. There exist Ki = K⊤
i ∈ R

n(Bi)×n(Bi), such that

Ψ′
i(ζ, η) = Xi(ζ)

⊤KiXi(η), i = 1, ..., N .

Moreover, the following conditions are equivalent: for all w ∈ BΣ, tk ∈ Ts and i, j ∈ P,

i 6= j,

1) QΨi
(w)(t−k ) ≥ QΨj

(w)(t+k ) .

2) QΨ′
i
(zi)(t

−
k ) ≥ QΨ′

j
(zj)(t

+
k ) .

3) Ki ≥ L⊤
i→jKjLi→j .

Proof. See Appendix A.3.

An important consequence of Lemma 6.8 is the following result.

Proposition 6.9. Under the assumptions of Th. 6.7 and Lemma 6.8, if the re-initialisation

maps Li→j associated to the switching between Bi to Bj , for all i, j ∈ P and i 6= j, are

the identity, there exists QΨ such that (QΨ, QΨ, ..., QΨ) is a multiple storage function

for Σ with respect to QΦ.

Proof. See Appendix A.3.
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As a special case of Th. 6.7, Prop. 6.9 can be interpreted in the following way. If the

mode behaviours share the same state space and the state trajectories are continuous

at switching instants, strict dissipativity implies the existence of a common storage

functionQΨ for open systems. This result is analogous to the converse Lyapunov theorem

(see Th. 2.2 of [34], p. 25), where asymptotic stability implies the existence of a

common Lyapunov function for closed systems under analogous conditions. Note that

in such case, the “asymmetric” converse implication in our results arises as well, i.e. the

existence of a quadratic common Lyapunov function implies that the switched system is

stable (not necessarily asymptoticaly stable, see e.g. [34], Ex. 2.1). However, stability

does not imply the existence of a quadratic common Lyapunov function, see e.g. the

counterexample in [34], Sec. 2.1.5.; this is only true for asymptotic stability according

to the converse Lyapunov theorem.

6.4 Half-line dissipativity

When the energy absorbed by a SLDS is positive in any arbitrary interval of time, we

call such SLDS half-line dissipative.

In order to introduce the definition and results regarding half-line dissipativity, we use

the following notation. Let w ∈ BΣ ∩ Dp(R,R
w) and τ ∈ R. Let s = sw ∈ S whose

associated set of switching instants is Ts := {t1, t2, ..., tn, ...}; we define

∫ τ

QΦ(w) :=

∫ t−1

−∞
QΦ(w) dt +

n∑

k=2

∫ t−
k

t+
k−1

QΦ(w) dt +

∫ τ

t+n

QΦ(w) dt ; (6.1)

where n = max{k | tk ∈ Ts, and tk ≤ τ}.

Definition 6.10. Let QΦ be a QDF. A SLDS Σ is half-line Φ-dissipative if for every

τ ∈ R and for all w ∈ BΣ ∩Dp(R,R
w), it holds that

∫ τ

QΦ(w) ≥ 0 .

Half-line dissipativity appears very frequently in physical systems. For instance, in n-

port driven electrical circuits we can select a external variable w := col(V, I) consisting

of a vector of voltages V := col(V1, ..., Vn) and currents I := col(I1, ..., In) across and

through the ports. We say that the circuit is passive if for the supply rate defined as

QΦ(w) := V ⊤I, it follows that for all τ and for all the trajectories of w with compact

support
∫ τ

−∞QΦ(w) dt ≥ 0 (cf. the classical definition in [48]).

Proposition 6.11. Let Σ be a SLDS. If Σ is half-line Φ-dissipative, then Bi, i = 1, ...N ,

are half-line Φ-dissipative linear differential behaviours.



80 Chapter 6 Dissipative switched linear differential systems

Proof. See Appendix A.3

Consider now the following proposition regarding half-line dissipativity of SLDS. We

consider the case when the liveness condition is satisfied (see [87], sec. IV-B), namely,

given Φ ∈ R
w×w and w = col(u, y) ∈ BΣ, the number of components in the input u,

denoted by m(BΣ), equals the number of positive eigenvalues of Φ, denoted by σ+(Φ).

Theorem 6.12. Let Σ be a SLDS and let Φ ∈ R
w×w. Assume that σ+(Φ) = m(BΣ). If

there exists a multiple storage function as in Def. 6.4, then Σ is half-line Φ-dissipative.

Proof. See Appendix A.3.

6.5 Computation of multiple storage functions

In this section, we develop procedures based on LMIs to compute multiple storage func-

tions. The following theorem follows from the results in Prop. 3.21, Prop. 3.22, and

Lemma 3.23.

Theorem 6.13. Let Φ ∈ R
w×w and let Σ be a SLDS with G well-defined and well-

posed. Let Bk := im Mk

(
d
dt

)
, with Mk ∈ R

w×z[ξ], k = 1, ...N , be strictly Φ-dissipative.

Let Xk ∈ R
n(Bk)×z[ξ] be a minimal state map for Bk, i = 1, ..., N , and let Li→j ∈

R
n(Bj)×n(Bi) for all i, j ∈ P, i 6= j, be the re-initialisations maps of Σ. Denote the

coefficient matrix of Mk(ξ) by

M̃k :=
[
Mk,0 . . . Mk,Lk

]
;

then that of Xk(ξ) can be written as

X̃k :=
[
Xk,0 . . . Xk,Lk−1

]
.

There exist Kk = K⊤
k ∈ R

n(Bk)×n(Bk), k = 1 . . . , N , such that

M̃⊤
k ΦM̃k −

[
0z×n(Bk)

X̃⊤
k

]
Kk

[
X̃k 0n(Bk)×z

]
−
[

X̃⊤
k

0z×n(Bk)

]
Kk

[
0n(Bk)×z X̃k

]
≥ 0 . (6.2)

Moreover, if for k, j = 1, . . . , N , k 6= j, it holds that

Kk − L⊤
k→jKjLk→j ≥ 0 , (6.3)

then (Ψk(ζ, η) := Xk(ζ)
⊤KkXk(η))k=1,...,N induces a multiple storage function for Σ,

and Σ is Φ-dissipative.

Proof. See Appendix A.3.
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Theorem 6.13 reduces the computation of multiple storage functions to the solution of

a system of LMIs (6.2)-(6.3), a straightforward matter for standard LMI solvers.

Example 6.3. Consider the switched electrical circuit in Fig. 6.1. The switching

occurs when at an arbitrary instant of time, the inductor L2 is connected. We select

w := col(V, i1) as the external variables. For simplicity we consider C1 = 1F , L1 = 1H,

and L2 = 1H.

Figure 6.1: Switched electrical circuit with two modes

• Mode behaviours: The (controllable) mode behaviours Bi, i = 1, 2, are described by

the observable image representations w = Mi

(
d
dt

)
zi, i = 1, 2, with

M1

(
d

dt

)
:=

[
d2

dt2
+ 1
d
dt

]
, M2

(
d

dt

)
:=

[
d3

dt3
+ 2 d

dt
d2

dt2
+ 1

]
;

and z1 := v1, z2 := i2.

• Gluing conditions: We consider the state maps acting on the latent variables induced

by

X1(ξ) :=
[
1 ξ

]⊤
,X2(ξ) :=

[
ξ ξ2 1

]⊤
.

The physics of the circuit imposes that for every tk ∈ Ts, the gluing conditions can be ex-

pressed asX2

(
d
dt

)
i2(t

+
k ) = L1→2X1

(
d
dt

)
v1(t

−
k ) andX1

(
d
dt

)
v1(t

+
k ) = L2→1X2

(
d
dt

)
i2(t

−
k ),

where

L⊤
1→2 :=

[
1 0 0

0 1 0

]
=: L2→1 .

• LMI conditions: Define

Φ :=
1

2

[
0 1

1 0

]
,

corresponding to the supply rate QΦ(w) = V i. Based on Th. 6.13, we construct the

LMIs (6.2) and (6.3) for this case. Then using standard LMI solvers we obtain

K1 :=

[
0.5 0

0 0.5

]
; K2 :=



0.500 0 0

0 0.500 0

0 0 0.577


 .

Thus, (Xi(ζ)
⊤KiXi(η))i=1,2 induces a multiple storage function for the SLDS. Note that

the system is thus dissipative according to Prop. 6.6 and in fact half-line dissipative

according to Th. 6.12, since σ+(Φ) = m(BΣ) = 1.
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The result of Th. 6.13 permits to deduce a further result regarding the computation

of multiple storage functions. If the LMIs (6.2)-(6.3) are feasible, then they may have

more than one solution; i.e. several values of the “optimisation variable” Ki, i = 1, ..., N ,

may satisfy the same constraints (see [2]), concluding that a multiple storage function

is not necessarily unique. Moreover, the set of all possible multiple storage functions is

a convex set.

Proposition 6.14. Let Σ be a Φ-dissipative SLDS. Let the N -tuples QΨ := (QΨ1 , ..., QΨN
)

and QΨ′ :=
(
QΨ′

1
, ..., QΨ′

N

)
be multiple storage functions for Σ. Then, for all 0 ≥ α ≥ 1,

the N -tuple

αQΨ + (1− α)QΨ′ ,

is a multiple storage function for Σ.

Proof. See Appendix A.3.

6.6 Passivity

In this section we study passive SLDS, i.e. SLDS which are dissipative with respect to

the positive-real supply rate

Φ :=
1

2

[
0 I

I 0

]
.

In particular, we are interested in determining under which circumstances a multiple

storage function is also a multiple Lyapunov function as in Th. 5.1 for switched au-

tonomous behaviours.

In a dissipative SLDS the external variables include inputs, consequently the modes are

not autonomous. However, we can associate to Σ an autonomous SLDS as follows.

Definition 6.15. Let Σ := {P,F ,S,G} be a SLDS with switched behaviour BΣ and

w = col(u, y). The unforced SLDS Σaut associated to Σ is defined as Σaut := {P,F ,S,G},
with switched behaviour

BΣ
aut :=

{
w = col(u, y) ∈ BΣ | u = 0

}
.

Note that BΣ
aut is not empty, since it contains at least the zero trajectory w = 0. The

following proposition deals with asymptotic stability of unforced SLDS as in Def. 6.15.

Theorem 6.16. Let Σ and Σaut be as in Def. 6.15 and let Φ := 1
2

[
0 Iz

Iz 0

]
. Assume

that Σ is strictly Φ-dissipative, then Σaut is asymptotically stable.

Proof. See Appendix A.
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6.7 Summary

We developed a theory of dissipativity for switched systems in which the dynamical

modes are not described in state space form, and do not necessarily share a common

state space. We provided necessary and sufficient conditions for the existence of multiple

storage functions, and a method to compute them using sets of LMIs. We studied the

notion of passivity as a special case, as well as its relationship with stability.





Chapter 7

An SLDS approach to energy

distribution networks

In recent years, the development of a new paradigm of energy generation and distribu-

tion systems has become a pressing research question. Issues such as the urge to reduce

CO2 emissions, the compelling advantages of renewable energy generation and the un-

desirable power losses in complex transmission lines, have motivated the development

of distributed energy generation systems based on renewable energies [90]. However,

the intermittent nature of renewable energies is reflected in the characteristics of the

voltages/currents (e.g. amplitude and frequency) provided by transducers, prompting

to regulate such variables to satisfy the nominal requirements of the the loads. In order

to achieve voltage/current/frequency regulation and distribution of electricity, intercon-

nections of power converters are implemented; however, their interaction can display

unstable behaviors (see [61, 89, 98]). A common example of this issue is the nega-

tive impedance instability produced by current/voltage controlled converters behaving

as constant power loads (see [57]).

In this chapter we discuss the modelling and analysis of energy distribution networks

consisting of interconnections of DC-DC switching power converters and multiple (dis-)

connectable loads, see [61]). We start by reviewing the classical modelling framework of

power converters, and we show that such approach is not general enough to be applied

to the analysis of new emerging topologies; consequently, a paradigm-shift is required.

We demonstrate that the SLDS framework is suitable to accommodate the models of

switching power converters and energy distribution systems. Moreover we show that

the results provided in Chap. 6, regarding dissipative SLDS, can be directly applied

to solve the problem of negative impedance stability in energy distribution networks.

In particular, we introduce a systematic method to design stabilising filters in terms of

bilinear- and linear- matrix inequalities that can be easily constructed from higher-order

models obtained from first principles.

85
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7.1 Traditional approach to DC-DC converters

In this thesis we have exemplified the modelling of DC-DC switching power converters,

see e.g. Sec. 1.1.2 and Sec. 4.5. In such examples we adopted the switched systems

perspective to model the constitutive dynamic modes of the converters separately. There

exist however a different modelling approach that is widespread in the power electronics

literature called state space averaging (see [10]), which has been widely adopted in the

literature as the starting point for analysis and control (see [66]). In this section, we

discuss the limitations of such approach and explain how the SLDS framework provides

more general tools that can be used in the analysis of more challenging situations and

applications. For ease of exposition, we concentrate our analysis on bimodal systems.

The piecewise linear dynamics of power electronics devices with two dynamic modes,

constant inputs, and ideal switches, are usually modelled using the following structure

(see [66])
d

dt
x = Aux+Bu ; u = 0, 1 ; (7.1)

where x(t) ∈ R
n is called the state function; Au ∈ R

n×n, Bu ∈ R
n×1 are the matrices

that describe the physical laws of the dynamic modes. A switching signal s : R → {1, 0}
determines the value of u, which is a binary index term that denotes which of the two

modes is active due to the position of physical switches such as diodes and transistors.

Now consider a traditional pulse width modulation, which is based on a periodical switch-

ing signal defined as

s(t) :=

{
0, tk ≤ t < tk +DT ;

1, tk +DT ≤ t < tk + T.
(7.2)

with t0 := −∞, tk+1 = tk + T , k = 0, 1, 2, ...; and where D ∈ [0, 1] is called duty cycle

and T is the switching period.

As discussed in [10], we can approximate the dynamics of the switched linear system

into “averaged” ones by involving the duty cycle D in the description of the system

(7.1). This action is equivalent to approximate a switched linear system into a “unified”

bilinear one where the so-called current and voltage ripples of the converter are neglected.

The averaging technique allows us to obtain the following structure

d

dt
xav = [DA0 + (1−D)A1] xav +DB0 + (1−D)B1 ; (7.3)

where xav(t) ∈ R
n is an averaged state function.

Such approximation is justified in the following lemma where it is shown that trajectories

of the original state space switched system with switching signal (7.2), and its averaged

approximation remain close to each other.
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Lemma 7.1. Consider the state space switched system in (7.1) with switching signal

(7.2). Define the average state space system (7.3). Then there exists ε > 0 such that for

every compact time interval it holds that

‖x(t)− xav(t)‖ ≤ εT .

Proof. See Sec. 2.8 of [68].

The structure (7.3) is usually the starting point for the dynamic analysis and control of

DC-DC converters, since it can be derived almost directly from the switched linear sys-

tem structure (7.1), and it allows to apply a wide number of nonlinear control techniques

(see for instance the compendium of controllers in [66]).

Remark 7.2. The piecewise linear modelling in the traditional approach to power con-

verters is a special case in the SLDS framework, where the mode behaviours are Bi :=

{x | d
dt
x = Aix+Bi}, i = 1, 2; and the gluing conditions are such that x(t+k ) = x(t−k )

for every tk ∈ Ts. Moreover, note that (7.2) is a very specific admissible switching signal

in S, which means that only a subset of the switched behaviour BΣ in Def. 4.2 is usually

taken into account.

Unfortunately, though useful in many instances, the traditional averaging technique have

some significant disadvantages. Some of them are inherited from the original switched

state space structure on which it is rested (see Sec. 1.2). Other relevant limitations of

this approach are the strong assumptions that cannot be always satisfied in practice.

We now enlist the main assumptions of the traditional averaging technique, and we

discuss the resulting difficulties and limitations.

1) First-order models. The requirement of a this type of models undermines the

possibility of using advantageous techniques such as the modelling of loads as

impedances, that leads naturally to higher-order descriptions.

2) Global state space. As discussed in Sec. 1.2, this approach scores low in parsimony

and modularity and is unsuitable for complex cases.

3) PWM switching signal. The averaging approximation demands the switching be-

tween dynamic modes to be orchestrated by the switching signal (7.2). However,

as shown in Sec. 5.2, in practice dynamic modes are not only induced by the

position of physical switches, but also by arbitrary (dis-)connection of loads.

4) Continuous trajectories and switching instants. The averaging technique cannot

be applied in general if the trajectories of the state are discontinuous at switching

instants (see the counter-example in [27]).
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In the following sections we show that there exist modern implementations where none

of the previous assumptions are satisfied, and consequently the traditional averaging

technique cannot be used to study important characteristics in some energy distribution

networks such as stability. Note also that in the SLDS framework this assumptions are

not necessary , i.e. 1) systems with higher-order models are allowed, 2) dynamic models

can be associated to different state spaces, 3) arbitrary switching signals are permitted;

and 4) gluing conditions may imply discontinuities at switching instants.

Remark 7.3. The development of less restrictive averaging techniques is still and open

research direction, see e.g. [26] and [56], where some additional special cases have been

presented.

In order to show the generality of our modelling framework, we now study a family of

power converters with discontinuous trajectories, whose dynamics can be easily modelled

as an SLDS.

7.2 Switched-capacitor DC-DC converters

DC-DC power converters with switched-capacitors exhibit highly desirable features in

energy distribution systems such as high-voltage gains, high-efficiency, and transformer-

less profiles, (see [28]). However, their analysis is severely limited by the way in which

they are currently modelled, since the resulting mathematical descriptions have not been

directly linked to advanced control algorithms and stability analysis, as in the case of

other traditional topologies (see e.g. [66]).

In switched-capacitor converters parallel connections between capacitors induce discon-

tinuities on the voltages across them at switching instants, demanding the introduction

of non-trivial concatenability conditions in their modelling. In order to avoid to deal

with such discontinuous behavior, models with non-ideal switches involving parasitic

resistances have been proposed (see e.g. [12]); however, they involve highly-nonlinear

equations for which currently unavailable dynamic analysis tools are required to solve

control and stability problems. Consequently, we propose to study this type of con-

verters using the SLDS framework, since it not only provides a suitable and general

modelling approach, but also the application of the mathematical tools for analysis that

have been developed in the previous sections.

In order to illustrate the modelling procedure, we consider the Two-phase Fibonacci

SC converter depicted in Fig. 7.1, corresponding to a simplified version1 of the SC

converter in Fig. 1(b) of [70]. The converter in Fig. 7.1(a) has two possible modes

depending on the position of the group of switches “1” and “2” illustrated by blocks and

1For ease of exposition, the third “Fibonacci cell” of the SC converter in Fig. 1(b) of [70] has been
omitted, and a parallel RC load is considered.
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Figure 7.1: Fibonacci switched-capacitor converter.

whose operation is complementary. Fig. 7.1(b) and Fig. 7.1(c) show the two possible

equivalent circuits of the converter.

We define w := col(E, v1, v2, v3, v4) as the set of variables of interest. Now consider the

case in Fig. 7.1(b), we obtain the following mode behaviours Bi = ker Ri

(
d
dt

)
, i = 1, 2,

with

R1(ξ) :=




−1 1 0 0 0

0 1 1 −1 0

0 0 0 1 −1

0 0 C2ξ 0 (C3 + C4)ξ +
1
R




,

R2(ξ) :=




1 1 −1 0 0 0

0 C1ξ C2ξ 0 0

0 0 0 C3ξ 0

0 0 0 0 C4ξ +
1
R




.

Moreover, the gluing conditions are not trivial, since the voltages across capacitors

are discontinuous and need to be uniquely specified at switching instants. In order to

model them, we consider the principle of conservation of charge [47], and the algebraic

constraints imposed by the active modes. When we switch from B2 to B1, the total

charge in the capacitors that exhibits a redistribution due to parallel connections must

be the same before and after every switching instant tk, i.e.

C2v2(t
−
k ) + C3v3(t

−
k ) + C4v4(t

−
k ) = C2v2(t

+
k ) + C3v3(t

+
k ) + C4v4(t

+
k ) .
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Additionally the algebraic constraints, due to parallel connections among capacitors,

when B1 is active dictate that

v1(t
+
k ) = E(t+k ) ,

v2(t
+
k ) = v3(t

+
k )− v1(t

+
k ) ,

v3(t
+
k ) = v4(t

+
k ) .

Similarly, when we switch from B1 to B2, the physical redistribution of charge estab-

lishes that for every switching instant ts we have that

C1v1(t
−
s ) + C2v2(t

−
s ) = C1v1(t

+
s ) + C2v2(t

+
s ) ,

C3v3(t
−
k ) = C3v3(t

+
k ) ,

C4v4(t
−
k ) = C4v4(t

+
k ) .

Moreover, note that B2 imposes the algebraic constraint

v2(t
+
s )− v1(t

+
s ) = E(t+s ) .

We have shown that the modelling of power converters with discontinuous trajectories

can be accommodated as a special case in our framework. In the following section, we

illustrate a general approach to model energy distribution networks where any type of

switching power converter with controllable mode behaviours is considered.

7.3 Modelling of energy distribution networks

We now consider the modelling of energy distribution networks consisting of switching

power converters and multiple (dis-) connectable loads as in Fig. 1.4. Once again, for

ease of exposition we consider bimodal DC-DC converters whose dynamic modes are

controllable, and consequently represented by

w = Mu

(
d

dt

)
zu , u = 0, 1 ; (7.4)

where u is a binary index term that denotes the on/off operation of complementary

ideal switches. Note that the auxiliary variables z0 and z1, are not necessarily the same

for each mode. In order to facilitate the illustration of our modelling approach we start

with a simple case, where the auxiliary variables are the same for each mode and the

voltages/currents of the converter are continuous at switching instants.

Example 7.1. Consider for instance the DC-DC boost converter in Fig. 7.2. We select

the conjugate variables (input/output voltages and currents) as the variables of interest,

i.e. w = col(E, io, iL, v).
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Figure 7.2: DC-DC boost converter and its electrical configurations

When the transistor is closed (see Fig. 7.2b), we obtain the following dynamic equations

Mode 1





E = RLiL + L
d

dt
iL

io = −C
d

dt
v − 1

R
v

;

when the transistor is open (see Fig. 7.2c), we obtain

Mode 0





E = RLiL + L
d

dt
iL + v

io = iL − C
d

dt
− 1

R
v

.

In both cases we can select z1 = z0 = col(iL, v), then the mode dynamics of the boost

converter can be written as in (7.4), where

M1

(
d

dt

)
:=




RL + L d
dt

0

0 C d
dt

+ 1
R

1 0

0 1




;

M0

(
d

dt

)
:=




RL + L d
dt

1

−1 C d
dt

+ 1
R

1 0

0 1




.

We now consider a more challenging scenario, e.g. the energy distribution in Fig. 1.4.

The calculus of impedances facilitates our analysis, for instance the energy distribution
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network in Fig. 1.4 can be simplified by computing ZTk
, k = 1, ..., L, as

1

ZTk
(s)

=
1

Zk(s)
+

1

ZN (s)
+

1

ZCPL(s)
; k = 1, ..., L .

The simplified network is depicted in Fig. 7.3.

Figure 7.3: Simplification of the energy distribution network in Fig. 1.4

The dynamic modes arising from the the interconnection of the DC-DC converter and the

multiple (dis-) connectable loads can be obtained by algebraic manipulations, preserving

an image form representation.

Proposition 7.4. Consider the energy distribution network in Fig. 1.4. Assume that

the dynamical modes of the switching power converter can be described in image form

by w = Mj

(
d
dt

)
zj, where Mj ∈ R

4×2[s]; zj = col(z1,j , z2,j) ∈ C∞
p (R,R2); j = 1, 2; and

w :=
[
V I i v

]⊤
. Let zk ∈ C∞

p (R,R), k = 1, ..., L; then there exist M̂j,k ∈ R
4×2[s]

such that the mode behaviors can be described by image representations




V

I

i

v



= M̂j,k

(
d

dt

)[
z1,j

z′k

]
, (7.5)

with j = 1, 2, and k = 1, ..., L.

Proof. See App. A.4

We now discuss the properties of well-definedness and well-posedness of gluing conditions

(see Sec. 4.5.2).

Proposition 7.5. Assume that switching among the modes described by (7.5) does not

involve short-circuiting of voltage sources, or open-circuiting of current sources. Then

the gluing conditions are well-defined.

Proof. See Appendix A.4.

Note that the requirement in Prop. 7.5 is reasonable from a practical point of view,

since constraints on the inputs such as short-circuiting are not desirable in practice.
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Well-posed gluing conditions (see Def. 4.6) guarantee that after a switching instant

only one initial state for the new dynamical regime is specified from the final state of

the previous one. Such property holds since the switching cannot cause any increase in

the total amount of charge or flux stored in the system and thus the value of the state

after the switch is uniquely determined by the state before the switch, on this issue see

[14, 47]. In the rest of this chapter we assume that the gluing conditions are well-posed.

Example 7.2. Consider the energy distribution network in Fig. 7.3, where the DC-DC

converter is that of Fig. 4.4. Let nk, dk ∈ R[s], k = 1, ..., L, define ZTk
(s) := nk(s)

dk(s)
, k =

1, ..., L. The mode dynamics with w := col(E, I, iL, v) are described by w = Mj,k

(
d
dt

)
zk,

where z1 := col(i1, z
′
k), z2 := col(v1, z

′
k), k = 1, ..., L, and j = 1, 2.

M1,k

(
d

dt

)
:=




RL + L d
dt

0

0 dk
(
d
dt

)
+ (C1 + C2)

d
dt
nk

(
d
dt

)

1 0

0 nk

(
d
dt

)




;

M2,k

(
d

dt

)
:=




LC1
d2

dt2
+RLC1

d
dt

+ 1 0

0 dk
(
d
dt

)
+ C2

d
dt
nk

(
d
dt

)

C1
d
dt

0

0 nk

(
d
dt

)




;

with k = 1, ..., L. The gluing conditions can be obtained by defining the impedances

ZTk
, k = 1, ..., L and following the procedure exemplified in Sec. 7.2.

Remark 7.6. As illustrated in Ex. 7.2, each mode can be modelled independently, i.e.

we compute the laws of each two-port network that depends on the mode of operation

of the converter and the model of the switched impedance ZTk
, 1, ..., L. It can be easily

verified that the McMillan degree of each mode behaviour is not fixed and depends on

the degree of the denominator of ZTk
, 1, ..., L. However each mode exhibits only the

required level of complexity to describe each dynamic mode. This is in sharp contrast

with the traditional approach where the dynamic modes are represented by d
dt
x = Aix,

with Ai ∈ R
n×n, i.e. considering a global state space and where n is the highest possible

McMillan degree. The latter approach results in more complex dynamic models (with

more variables and more equations), which has an impact also on the complexity of

stability analysis, simulation, control, etc. Moreover, there is no compelling reason to

resort to such non-parsimonious approach if we can study the dynamic properties of the

network directly in higher-order terms, as shown in the following section.

7.4 Stabilization by passive damping

In energy distribution networks the interconnected subsystems (e.g. generators, switch-

ing power converters, loads, etc.) are designed separately and their stability is thus
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assured by design. However, their interaction in the overall system can result in un-

stable behaviours (see [61, 89]). In some cases, such interactions can be accurately

modelled assuming that some components behave as constant power loads, leading to

negative-impedance instability [9].

To deal with instability of energy distribution networks we use passive damping (see e.g.

[4]), where a passive load (filter) is interconnected to the system in order to guarantee

stability.

We consider the case where the energy distribution network is unstable due to the

presence of constant power loads (see [57]). We proceed to design a filter that guarantees

stability when interconnected to the converter, see Fig. 7.4.

Figure 7.4: Energy distribution network with a stabilising filter

We consider now consider the impedance ZT (s) and the filter as an additional load in

the array depicted in Fig. 7.4. The impedance function of the filter is given by

Zf (s) =
p(s)

q(s)
; (7.6)

with an associated image form representation

[
if

v

]
=

[
p( d

dt
)

q( d
dt
)

]
z′ , (7.7)

whose parameters need be computed. The interconnection of impedances (7.6) and

ZT (s) in Fig. 7.4 yields

Zint(s) :=
ZT (s)Zf (s)

ZT (s) + Zf (s)
=

n(s)

d(s)
. (7.8)

The first step in our procedure is to obtain image representations w = Mk

(
d
dt

)
zk,

i = 1, ..., N , describing each mode as in Prop. 7.4, and exemplified in Ex. 7.2. Similarly,

we model the corresponding gluing conditions and compute re-initialisation maps as in

Def. 4.6.
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The second step in our procedure is the setting up of a system of matrix inequalities

corresponding to the conditions of Th. 6.13. To make explicit the linear dependence

on the parameters of Zint, in the following we write Mk(s) and their corresponding

state maps Xk(s) respectively as M
k,ñ,d̃

(s) and X
k,ñ,d̃

(s), where ñ, d̃ are the coefficient

matrices of the numerator and denominator of Zint, that also involve the coefficients of

the passive filter:

M̃⊤
k,ñ,d̃

ΦM̃
k,ñ,d̃

−
[
0m×n(Bk)

X̃⊤
k,ñ,d̃

]
Kk

[
X̃

k,ñ,d̃
0n(Bk)×m

]

−
[

X̃⊤
k,ñ,d̃

0m×n(Bk)

]
Kk

[
0n(Bk)×m X̃

k,ñ,d̃

]
≥ 0 , k = 1, . . . , N ,

Kk − L⊤
k→jKjLk→j ≥ 0 , k, j = 1, . . . , N , k 6= j . (7.9)

The third step is to formalise the requirement that the filter is passive. Define

Φ′ :=
1

2

[
0 1

1 0

]
, M ′(s) :=

[
p(s)

q(s)

]
, X ′(s) :=




1

s
...

sdeg(p)−1




, (7.10)

and denote the coefficient matrices of M ′ and X ′ by M̃ ′
p̃,q̃ and X̃ ′, respectively. With

these positions, it follows from the positive-real lemma that q
p
is positive-real if and only

if there exists K ′ = K ′⊤ ∈ R
deg(p)×deg(p) such that

M̃ ′⊤
p̃,q̃Φ

′M̃ ′
p̃,q̃ −

[
01×deg(p)

X̃ ′⊤

]
K ′
[
X̃ ′ 0deg(p)×1

]

−
[

X̃ ′⊤

01×deg(p)

]
K ′
[
0deg(p)×1 X̃ ′

]
≥ 0 .

(7.11)

If values of the parameters p̃ and q̃ exist such that the matrix inequalities (7.9),(7.11)

are satisfied for some Kk, k = 1, . . . , N and K ′, then the interconnection of Fig. 7.4 is

passive, and consequently i/o stable. Moreover, the filter q
p
can be implemented using

only resistors, capacitors, inductors and transformers (see [48]).

Remark 7.7. The McMillan degree n of the stabilizing passive filter (assuming it exists)

is not known a priori. To start our procedure, some value of n should be decided upon,

and a solution attempted to the matrix inequalities (7.9),(7.11). If no solution exists for

the current value of n, the latter should be increased, and the procedure repeated.

Note that inequalities (7.9) and (7.11) are bilinear in the coefficients of the polynomials

p and q of the passive filter. However, sub-optimal solution of the system of bilinear

matrix inequalities (BMIs) can be found as shown in the following example.
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7.5 Example: High-voltage DC-DC converter

We consider the implementation in Fig 7.5, with RL = 0.1Ω; L = 880µH; C1 = C2 =

220µF ; R = 500Ω. According to (7.6) we define the impedance of the filter Zf (s) :=
p(s)
q(s)

with p(s) = a0s+ a1 and q(s) = 1, for which the a-parameters will be computed.

Figure 7.5: DC-DC converter with a passive filter and a constant power load.

We consider the total impedance as a constant power load, i.e. ZT (s) = −RCP with

−RCP = −300Ω. Considering (7.8), we obtain n(s) = 300(a0 + a1s) and d(s) = 300 −
a0 − a1s. We thus substitute n

(
d
dt

)
and d

(
d
dt

)
in the dynamic models computed in

Ex. 7.2. Define state maps for each dynamical mode acting respectively on the latent

variables z1 and z2 as

X1

(
d

dt

)
:=



1 0

0 n
(
d
dt

)

0 d
(
d
dt

)


 , X2 :=



C1

d
dt

0

1 0

0 n
(
d
dt

)


 ,

then for every tk ∈ Ts, the gluing conditions can be expressed as X2

(
d
dt

)
z2(t

+
k ) =

L1→2X1

(
d
dt

)
z1(t

−
k ) and X1

(
d
dt

)
z1(t

+
k ) = L2→1X2

(
d
dt

)
z2(t

−
k ), where

L1→2 :=




1 0 0

0 1 0

0 1 0

0 0 1




, L2→1 :=



1 0 0 0

0 C1
C1+C2

C2
C1+C2

0

0 0 0 1


 .

We now solve simultaneously the bilinear matrix inequalities (7.9) and (7.11) using

standard solvers such as Yalmip. We thus obtain a solution a0 = 377, a1 = 293× 10−6,

b2 = 377. Finally, the realization of the filter with impedance Zf (s) = 293×10−6s+377

is shown in Fig. 7.6.

Figure 7.6: Realisation of the stabilising filter.
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Remark 7.8. A common assumption in the known approaches to the constant load

problem is to model the destabilizing load as a negative resistance (see e.g. [4]). In our

methodology we do not restrict the class of load models; for example we admit frequency-

domain models of as differences of squares (P (−s)⊤P (s)−N(−s)⊤N(s)). This may lead

to less conservative solutions of the constant load problem, for example leading to the

design of filters that induce a smaller power loss than those arrived at by conventional

means.

In some special cases they can be made linear by fixing the values of certain parameters,

for example by deciding a priori what the poles/zeros of the filter should be. We illustrate

this feature in the following section.

7.6 Example: DC-DC Boost converter

Consider the DC-DC power converter in Fig. 7.7 which is interconnected to a constant

power load.

Figure 7.7: DC-DC converter with a stabilising filter

The filter is a 1-port impedance function Z(s) = q(s)
p(s) , with p, q ∈ R[s], or equivalently

an image representation [
v

if

]
=

[
p
(
d
dt

)

q
(
d
dt

)
]

︸ ︷︷ ︸
=:M ′( d

dt)

z′ ,

where z′ is a latent variable associated to the internal dynamics of the filter and whose

physical meaning can be determined after the realisation. Similarly, the dynamics of

the negative impedance are ZCPL(s) = −R. Applying fundamental current and voltage

laws, the mode dynamics when the transistor is closed and the diode open are described

by

V = L
d

dt
i1 +RLi1 ,

I = C
d

dt
v − 1

R
v + q

(
d

dt

)
z′ .
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When the transistor is open and the diode is closed, the mode dynamics are described

by

V = L
d

dt
i1 +RLi1 + v ,

I = −i1 + C
d

dt
v − 1

R
v + q

(
d

dt

)
z′ .

By selecting the external and latent variables as w :=
[
V I i1 v

]⊤
and z :=

[
i1 z′

]⊤
,

the mode dynamics can be modelled using image form representations w = Mk

(
d
dt

)
z,

k = 1, 2, where

M1(s) :=




Ls+RL 0

0 −
(
1
R
− Cs

)
p(s) + q(s)

1 0

0 p(s)




M2(s) :=




Ls+RL p(s)

−1 −
(
1
R
− Cs

)
p(s) + q(s)

1 0

0 p(s)




. (7.12)

Note that as described in Prop. 7.4, the dependence of M1 and M2 on the unknown

parameters of the filter is linear.

State maps for Bi, i = 1, 2 and the filter can be computed e.g. as

X1(s) :=

[
1 0 0 0

0 1 s s2

]⊤
=: X2(s) ,

X ′(s) :=
[
1 s

]⊤
. (7.13)

In this particular case the matrices X̃i, i = 1, 2 (the coefficient matrices of state maps

for the dynamical modes) and the coefficient matrices M̃i, i = 1, 2, do not depend on the

unknown coefficients associated to the filter . It follows from the physics of the switched

circuit that the re-initialisation maps are L1→2 = L2→1 = I4.

It is straightforward to see that the matrix inequalities (7.9) and (7.11) associated with

the models (7.12) and the choice of the state maps (7.13) are bilinear in the coefficients

of p(s) and q(s). Given the particular structure of our problem, if we fix the coefficients

of the polynomial p, linear matrix inequalities occur, depending only on the coefficients

of q(s). Fixing p is tantamount to fixing the poles of the filter; this is often a reasonable

choice, since filter performance specifications such as time response, characteristic fre-

quencies etc., are directly related to the position of the poles of the filter in the complex

plane (see [88]).
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Now assume that RL = 0.01Ω, L = 500µH, C = 47µF and −R = −300Ω. Define

p(s) := 7392000 + 87200s + 160s2, and let p(s) := a2s
2 + a1s + a0. Using standard

LMI solvers for such choice of q, the coefficients of the polynomial p resulting from the

solution of the LMIs, yield p(s) = 14000 + 270s + s2. Consequently the filter described

by the impedance

Z(s) =
7392000 + 87200s + 160s2

14000 + 270s + s2

stabilizes the interconnection. Note that such filter can be physically realised using any

suitable method of passive circuit synthesis (see [88]); for example, Fig. 7.8 depics a

realization of Z(s), with R1 = 160Ω, R2 = 287.75Ω, R3 = 80.24Ω, C1 = 22.72µF and

C1 = 136.105µF .

Figure 7.8: Filter realisation.

7.7 Summary

We introduced a modelling approach for energy distribution networks based on the

switched linear differential framework. We also introduce a stabilisation method for

switching power converters feeding potential destabilisers such as constant power loads.





Chapter 8

Conclusions and future work

In Chapter 4, 5 and 6 we introduced a new framework for the study of switched linear

systems using concepts of behavioural system theory. In the following, we summarise

the main contributions developed in this thesis.

Chapter 4:

• We proposed a trajectory-based approach to switched linear differential systems

whose dynamic modes do not necessarily share the same state space. We also

introduced the concept of gluing conditions, interpreted as physical equilibrium

conditions that specify the concatenation of the trajectories of the dynamic modes

at switching instants.

• Further analysis has been given for two main cases, namely, SLDS with mode

behaviours that are 1) autonomous; and 2) controllable. We showed that in the

autonomous case, normal form gluing conditions which are written in terms of

the state, can be always derived from the general gluing conditions that act on

the external variable. We also discuss that in the case of systems with inputs and

outputs, gluing conditions can be written in terms of the state if they are well-

defined, which means that the gluing conditions do not impose constraints to the

inputs.

• We introduced the concept of well-posedn gluing conditions as those specifying a

unique set of “initial conditions” for the external variable trajectory at switching

instants. This property permits the computation of re-initialisation maps that can

be interpreted as a linear map between the state spaces of the dynamic modes

before and after switching instants.

101
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Chapter 5:

• In Th. 5.1 we introduced a trajectory-based sufficient condition for asymptotic

stability of SLDS. This condition is based on the existence of a multiple higher-

order Lyapunov function described in terms of N -tuples of quadratic differential

forms.

• In Th. 5.4 we introduceds a set of LMIs whose solution, if it exists, leads directly

to the computation of multiple higher-order Lyapunov functions. This set of LMIs

can be set-up directly from the higher-order equations describing the laws of the

dynamic modes. This result corroborates the intuition that state space represen-

tations are not a fundamental requirement in the analysis of switched systems,

since methods such as the computation of functionals based on LMIs can be also

performed directly for higher-order models and the gluing conditions.

• We studied the role of positive-realness in the SLDS setting for bimodal systems. In

Th. 5.15, we showed that positive-realness is a sufficient condition for the existence

of a multiple higher-order Lyapunov function, and consequently for asymptotic

stability of a special class of SLDS (“standard” ones) whose modes have different

state space dimension and special gluing conditions. In Th. 5.15 we show a

different perspective when compared to existing results (e.g. [34, 64, 65]) on the

relation between positive-realness and stability: the dynamical regimes do not arise

from closing the loop around some fixed plant. In our case, positive-realness arises

from the interplay of the mode dynamics, i.e. the construction of a rational matrix

involving the two modes

• In Prop. 5.17 we provided an LMI version of Th. 5.15, that facilitates the stability

test and permits the computation of a multiple Lyapunov function.

• We relaxed the positive-real condition by using the concept of positive-real com-

pletions. In Th. 5.24 we showed the fundamental role of positive-real completions

in the study of stability of standard SLDS, since we proved that the existence of

a positive-real completion is a necessary condition for the existence of a multiple

Lyapunov function.

• In 5.25, we provided an LMI-based test for stability using positive-real completions.

We exemplified the application of Prop. 5.17 in Ex. 5.7, where we study the

bumpless transfer problem in a multi-controller system.

• In Theorem 5.27, we showed that the existence of a positive-real completion for a

standard SLDS leads to the stability of a SLDS with three modes. Moreover, we

proved that the Lyapunov function in Theorem 5.24 is also a Lyapunov function

for the new SLDS with three behaviors.
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• In Theorem 5.28, we we showed the robustness of the results in Theorem 5.27

against perturbations on the positive-real completion; and characterized a family

of asymptotically stable SLDS with three behaviors.

Chapter 6:

• In this chapter we developed a dissipativity framework for SLDS. This approach

enables the study of the properties of SLDS in terms of energy as a general concept

where the physical system energy is a special case. We introduced the definition a

(strictly) dissipative SLDS, as well as the concept of multiple higher-order storage

function.

• In Th. 6.6, we showed that the existence of a multiple storage function is a sufficient

condition for dissipativity, and in Th. 6.7 we showed that is also necessary in the

case of strictly dissipative SLDS. A special case of Th. 6.7 can be interpreted as

an analogous result to the converse Lyapunov theorem (see Th. 2.2 of [34], p. 25),

where asymptotic stability implies the existence of a common Lyapunov function

for closed systems under analogous conditions.

• In Th. 6.13, we showed that multiple storage functions can be obtained by setting

up standard LMIs directly from the linear differential equations describing the

mode dynamics of dissipative SLDS, and the gluing conditions.

• In Th. 6.16, we showed the relationship between a special case of dissipativity,

called passivity, and stability of SLDS. In particular, we showed that a multiple

storage function for an open SLDS is a Lyapunov function for an unforced version

of such system.

• We exemplified that our main results can be directly applied to study physical sys-

tems as in Ex. 6.3. In such example, we showed that the computation of multiple

storage functions can be reduced to the straighforward set-up and computation of

LMIs, where our technical results can be directly applied using a minimal amount

of effort, notation and technical concepts.

Chapter 7:

• In this chapter we reviewed the traditional modelling approach to switching power

converters, and we showed some of its limitations. We also showed that the dynam-

ics of such power converters can be easily accommodated in the SLDS framework

since the gluing conditions permit the modelling of the algebraic conditions im-

posed at switching instants.
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• We also showed that our modelling approach can be also applied to the analy-

sis of complex networks involving switched power converters and multiple (dis-)

connectable loads.

• We showed that the dissipativity framework for SLDS in Chap. 6 can be used

to solve the problem of negative impedance instability in energy distribution ne-

towrks. In order to do so, we introduced a systematic method to design stabilising

filters, based on the LMI conditions introduced in Th. 6.13.

• We exemplified our procedure by computing stabilising filters for a DC-DC boost

converter and a high-voltage DC-DC converter. Our method can be regarded

as a modification of the output impedance of the power converter (see Sec. 7 of

[98]), in our case achieved by adding a passive filter to the output stage of the

converter. Note also that our method coincides with the “physical interpretation”

of the output impedance control based on a feedback scheme provided in Sec. 8

of [98], where an admittance-like function is associated with controller gains.

The results developed in this thesis contribute to some essential issue in the switched

linear differential systems framework, that can be used to solve other relevant problems

in switched systems. In the following, we point out some future research directions.

• Structural properties of SLDS. In this thesis we have study autonomy, controlla-

bility and observability as properties derived from the individual dynamic modes

of SLDS. However, the fundamental question remains of how to define these prop-

erties in a global sense, i.e. in terms of the trajectories of the switched behaviour

BΣ. As typical of behavioural system theory, it is also necessary to derive algebraic

characterisations of such properties. An example of an important consequence of

such characterisation is the design of controllers and observers (see e.g. [69] and

[97]).

• Control. The concept of control by interconnection in the behavioural setting (see

[87]) can be set-up also for SLDS. Moreover, the dissipativity framework can play

an important role in this problem since in the case of linear differential systems it

has been proved in [58] that interconnecting a plant with a stabilising controller is

equivalent to imposing the requirement of dissipativity to the plant with respect

to a dynamic supply rate induced by the controller. Extension of these results to

the case of SLDS are to be expected.

• Differential variational inequalities. We have studied the application of the SLDS

framework to the study of energy distribution networks. However, complex switch-

ing power converters such as inverters, involve many switches, leading to a large

number of mode dynamics. To model such systems as switched systems would be

impractical and innatural, considering the combinatorial number of possible modes
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and the fact that switching is state-dependent. This motivates the development

of compact and natural modelling techniques for complex power systems compo-

nents, using differential variational inequalities, which is a general higher-order

case of the linear complementarity framework (see [14]).

• Applications. Further applications of dissipativity and control can be envisioned for

the implementation of energy distribution networks, in particular in those problems

where the power exchange plays a fundamental role. Examples of this situation

are (see [66, 98]): power factor correction, maximum power point tracking, power

balancing, active filtering, virtual impedance design, etc.

• Other developments. System identification, model order reduction, simulation, the

study of SLDS with mode behaviours represented by hybrid, non-image represen-

tations are also pressing research directions in our framework.





Appendix A

Proofs

A.1 Proofs of Chapter 3

Proof of Prop. 3.10. The existence of Ỹ and Q̃ follow from the fact that Y R−1 and

QR−1 are strictly proper (due to the R-canonicity of Y and Q) and that the rows of X(ξ)

are a basis of the vector space over R defined by {f ∈ R
1×w[ξ] | fR−1 is strictly proper}.

Using this argument and the fact that Ψ is R-canonical, we also conclude that K exists.

The claim that the highest degree present in X is less than that in R, follows from the

strict properness of XR−1 and Lemma 6.3-10 of [29].

Proof of Prop. 3.11. Define SL(ξ) :=
[
Iw ξIw · · · ξLIw

]
, the equivalence of state-

ments 1) and 2) follows from the equalities

X(ξ) =
[
X̃ 0n×w

]
SL(ξ) , ξX(ξ) =

[
0n×w X̃

]
SL(ξ) , and R(ξ) = R̃SL(ξ) ,

and Th. 3.9.

Proof of Prop. 3.21. To prove that the degree of X(ξ) is less than the degree of

M(ξ), note that since Y U−1 and XU−1 are strictly proper (see Sec. 2.6.2), we can

apply Lemma 6.3-10 of [29] and conclude that the highest degree of each entry in X is

less than the highest degree present in M .

Proof of Prop. 3.22. To prove the equivalence of statements 1) and 2) let us define

SL(ξ) :=
[
Iz ξIz · · · ξLIz

]
. The equivalence follows from the equalities X(ξ) =

[
X̃ 0n(B)×z

]
SL(ξ), ξX(ξ) =

[
0n(B)×z X̃

]
SL(ξ), and M(ξ) = M̃SL(ξ).

Proof of Lemma 3.23. Since B is Φ-dissipative, then there exists a storage func-

tion Ψ(ζ, η), moreover according to Prop. 3.20, there exists K such that Ψ(ζ, η) =

X(ζ)⊤KX(η).

107



108 Appendix A Proofs

To prove that statements 1) and 2) in Prop. 3.21 hold, it is enough to recall from Prop.

3.18 that there exists a dissipation function ∆(ζ, η) such that ∆(ζ, η) = M(ζ)⊤ΦM(η)−
(ζ + η)Ψ(ζ, η).

To prove the final claim define SL(ξ) :=
[
Iz ξIz · · · ξLIz

]
. Factorise ∆(ζ, η) =

SL(ζ)
⊤∆̃SL(η), with ∆̃ = ∆̃⊤ ∈ R

(L+1)z×(L+1)z. Then it follows from the definition of

dissipation function that Q∆ ≥ 0 and consequently ∆̃ ≥ 0.

A.2 Proofs of Chapter 5

Proof of Th. 5.1. Let s ∈ S be a switching signal, and from {QΨ1 , . . . , QΨN
} define

the “switched functional” QΛ acting on BΣ by QΛ(w)(t) := QΨs(t)
(w)(t). Observe that

in every interval [tj−1, tj) QΛ is nonnegative, continuous and strictly decreasing, since

QΨs(tj−1)
satisfies conditions 1)−2). Moreover, for every admissible trajectory the value

of QΛ does not increase at switching instants (condition 3)). It follows from standard

arguments (see e.g. Th. 4.1 of [91]) that Σ is asymptotically stable.

Proof of Th. 5.4. Solutions Kk, Y k to (5.1) exist because of Th. 3.9 and Prop. 3.11.

Multiply (5.1) on the left by SL(ζ)
⊤ defined as in the proof of Prop. 3.11 and on the

right by SL(η), and define Ψk(ζ, η) := Xk(ζ)
⊤KkXk(η) and Yk(ξ) := Y kXk(ξ) to obtain

(ζ + η)Ψk(ζ, η) − Yk(ζ)
⊤Rk(η)−Rk(ζ)

⊤Yk(η) = Φk(ζ, η) .

Since Yk is R-canonical, it follows from Th. 3.9 that also Φk(ζ, η) is, and consequently

F k exist as claimed. Now observe that the first inequality in (5.2) is equivalent with

V ⊤
k F kVk < 0 and thus it implies QΦk

(w) = d
dt
QΨk

(w) < 0 for all w ∈ Bk. Applying

Th. 3.9 we conclude that QΨk
is a Lyapunov function for Bk. The second LMI in (5.2)

implies condition 3. of Th. 5.1.

Proof of Prop. 5.10. From the strict positive-realness of ND−1 (see Def. 5.9) and

the fact that D is Hurwitz conclude that N(−jω)⊤D(jω) + D(−jω)⊤N(jω) > 0 for

all ω ∈ R. The existence of Q then follows from standard arguments in polynomial

spectral factorisation. That Ψ is a polynomial matrix follows from Th. 3.1 of [86]. Since

rank col(D(λ), Q(λ)) = w for all λ ∈ C, d
dt
QΨ(w) < 0 for all w ∈ kerD

(
d
dt

)
, w 6= 0.

Apply Th. 3.9 to conclude that QΨ(w) > 0 for all nonzero w ∈ kerD
(
d
dt

)
. This proves

that Ψ is a Lyapunov function for kerD
(
d
dt

)
. That Ψ is D-canonical and QD−1 strictly

proper, follow from strict properness of ND−1 and Th. 3.9.

We prove the second part of the claim. Use Prop. 4.10 of [86] to conclude that since

Ψ is D-canonical, it is also ≥ 0. Denote Ψ′ := Ψ mod N . Since QΨ(w) = QΨ′(w) for

all w ∈ ker N
(
d
dt

)
, it follows that QΨ′ ≥ 0 also along ker N

(
d
dt

)
. We now show that
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d
dt
QΨ′ is negative along ker N

(
d
dt

)
. To do so it suffices to show that col(Q(λ), N(λ)) = w

for all λ ∈ C. Assume by contradiction that there exists λ ∈ C and a corresponding

v ∈ C
w, v 6= 0, such that Q(λ)v = 0 and N(λ)v = 0. Substitute ζ = −λ, η = λ in the

PLE, obtaining

D(−λ)⊤N(λ) +N(−λ)⊤D(λ) = Q(−λ)⊤Q(λ) .

Multiply on the right by v; it follows that N(−λ)⊤D(λ)v = 0. Since N is Hurwitz, this

implies D(λ)v = 0, but this contradicts the assumption rank col(D(λ), Q(λ)) = w.

Proof of Lemma 5.11. That n2 < n1 follows from R2R
−1
1 being strictly proper.

To prove the claim on X1 defined by (5.3), define

Xi(Ri) := {f ∈ R
1×w[ξ] | fR−1

i is strictly proper} , i = 1, 2 ;

we now show that X2 ⊂ X1. Observe that fR−1
2 ·R2R

−1
1 = fR−1

1 ; since both fR−1
2 and

R2R
−1
1 are strictly proper, so is their product. Consequently, f ∈ X1 (see sec. 2.6.1).

Arrange the vectors of a basis for X2 in X2 ∈ R
n2×w[ξ]; then X2

(
d
dt

)
is a state map for

B2. Complete X2 with X ′
1 ∈ R

(n1−n2)×w[ξ] to form a basis of X1; this defines a state

map for B1. Since each row of X ′
1 mod R2 belongs to X2, it can be written as a linear

combination of the rows of X2. This proves that Π exists.

Proof of Theorem 5.15. The existence of Q ∈ R
•×w[ξ] and the R1-canonicity of Ψ1

follow from Prop. 5.10. To prove that Ψ1 and Ψ2 := Ψ1 mod R2 yield an MLF we show

that:

C1. QΨ1

B1≥ 0 and d
dt
QΨ1

B1
< 0;

C2. QΨ2

B2≥ 0 and d
dt
QΨ2

B2
< 0;

C3. The multiple functional associated with Ψ1 and Ψ2 does not increase at switching

instants.

Conditions C1 and C2 follow from Prop. 5.10. To prove C3, we first define the

coefficient matrices of Ψ1 and Ψ2. Since Ψ1 is R1-canonical, it can be written as

X1(ζ)
⊤K1X1(η) for some coefficient matrix K1 ∈ R

n1×n1 . Since QR−1
1 is strictly proper,

it follows (see Th. 3.9) thatQΨ1

B
> 0 and sinceX1 is a minimal state map forB1 it follows

thatK1 > 0. Note that col(X2(ξ),X
′
1(ξ)) modR2 = col(X2(ξ) modR2,X

′
1(ξ) modR2) =

col(X2(ξ),ΠX2(ξ)). Consequently (see Prop. 4.9 of [86]),

Ψ1(ζ, η)modR2 =
[
X2(ζ)

⊤ X2(ζ)
⊤Π⊤

]
K1

[
X2(η)

ΠX2(η)

]
,

from which it follows that the coefficient matrix of Ψ2 isK2 = col(In2 ,Π)
⊤ K1 col(In2 ,Π).
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We prove C3 showing that K1 and K2 satisfy some structural properties. We begin

proving the following linear algebra result.

Lemma A.1. Let Π ∈ R
(n1−n2)×n2 , and K1 = K⊤

1 ∈ R
n1×n1. Assume K1 > 0, and

define

Ke
2 :=

[
In2 Π⊤

(0n1−n2×n2) (0n1−n2×n1−n2)

]
K1

[
In2 (0n2×n1−n2)

Π (0n1−n2×n1−n2)

]
.

Then K1 ≥ Ke
2 if and only if there exist K11 ∈ R

n2×n2 , K12 ∈ R
n2×(n1−n2) and K22 ∈

R
(n1−n2)×(n1−n2) such that

K1 =

[
K11 −Π⊤K22

−K22Π K22

]
.

Proof of Lemma A.1. Partition K1 =:

[
K11 K12

K⊤
12 K22

]
, with K11 ∈ R

n2×n2 , K12 ∈

R
n2×(n1−n2) and K22 ∈ R

(n1−n2)×(n1−n2). Straightforward manipulations show that

K1 ≥ Ke
2 iff [

−(K12 +Π⊤K22)K
−1
22 (K⊤

12 +K22Π) 0

0 K22

]
≥ 0 .

Now K22 > 0, since K1 > 0; thus the inequality holds iff K⊤
12 = −K22Π.

We aim to show that Lemma A.1 holds for the coefficient matrix of Ψ1 and the Π arising

from the standard gluing conditions. To this purpose we first prove the following result.

Lemma A.2. Define L := limξ→∞ ξX ′
1(ξ)R1(ξ)

−1; then L ∈ R
(n1−n2)×w. Moreover,

partition K1 as K1 =:

[
K11 K12

K⊤
12 K22

]
, with K11 ∈ R

n2×n2 , K12 ∈ R
n2×(n1−n2) and K22 ∈

R
(n1−n2)×(n1−n2). Then R2(ξ) = L⊤

(
K⊤

12X2(ξ) +K22X
′
1(ξ)

)
.

Proof of Lemma A.2. That the limit is finite follows fromX ′
1R

−1
1 being strictly proper.

To prove the rest, recall from Sec. 2.6.1 that there exist A1 ∈ R
n1×n1 , F1 ∈ R

n1×w such

that

ξX1(ξ) = A1X1(ξ) + F1(ξ)R1(ξ) . (A.1)

Multiply both sides of (A.1) by R−1
1 , and take the limit for ξ → ∞. Since R2R

−1
1 is

strictly proper and X2(ξ) is a state map for B2, it follows that limξ→∞ ξX2(ξ)R1(ξ)
−1 =

0n2×w. Moreover, limξ→∞X1(ξ)R1(ξ)
−1 = 0n1×w. Consequently F1 is constant, and

F1 = lim
ξ→∞

col(0n2×w, ξX
′
1(ξ)R1(ξ)

−1) = col(0n2×w, L) .

The claim on R2 now follows from Prop. 4.3 of [52].
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From Lemma A.2 and the fact that R2 is square and nonsingular, it follows that L⊤ is

of full row rank, and consequently n1 − n2 ≥ w. We now prove that L is square, thus

nonsingular.

Lemma A.3. deg(det(R1)) − deg(det(R2)) = n1 − n2 = w, and consequently L is

nonsingular.

Proof of Lemma A.3. We prove the first part of the claim, well-known in the scalar

case, but for whose multivariable version we have failed to find a proof in the literature.

Let U ∈ R
w×w[ξ] be a unimodular matrix such that R′

1 := R1U is column reduced (see

sect. 6.3.2 of [29]); define R′
2 := R2U . Observe that R′

2R
′−1
1 = R2R

−1
1 ; moreover n1 =

deg(det(R′
1)) = deg(det(R1)) and n2 = deg(det(R2)) = deg(det(R′

2)). Thus w.l.o.g. we

prove the claim for R′
2R

′−1
1 . Define X′

1(R1) := {f ∈ R
1×w[ξ] | fR′−1

1 is strictly proper}
and similarly X′

2; it is straightforward to see that X′
i equals Xi defined as in Lemma

5.11, i = 1, 2. Denote the degree of the i-th column of R′
1 by δ1i and that of the i-th

column of R′
2 by δ2i , i = 1, . . . , w; strict properness yields δ1i > δ2i , i = 1, . . . , w. A basis

for X′
1 is eiξ

k, k = 1, . . . , δ1k − 1, i = 1, . . . , w, where ei is the i-th vector of the canonical

basis for R
1×w. A straightforward argument proves that these vectors can be arranged

in a matrix X(ξ) = col(X2(ξ),X
′
1(ξ)) so that the n2 rows of X2 span X′

2 and those of

X ′
1 span its complement in X′

1. Permute the rows of X ′
1 so that eiξ

δ1i −1, i = 1, . . . , w, are

its last w rows.

An analogous of (A.1) holds for R′
1; given the arrangement of the basis vectors for X′

1,

it is straightforward to verify that the last w rows of L contain the inverse of the highest

column coefficient matrix of R1, while its first n1 − n2 − w rows are equal to zero, i.e.

L⊤ =
[
0(n1−n2−w)×w L′⊤

]
, with L′ ∈ R

w×w nonsingular.

Now let Ψ′
1 be a storage function for R′

2R
′−1
1 with the same properties as Ψ1 in the

statement of Th. 5.15; we denote with K ′
ij, i, j = 1, 2 the block submatrices arising from

a partition of its coefficient matrix K ′
1 as in Lemma A.2. Use the formula for R′

2(ξ)

established in Lemma A.2 to conclude that

R′
2(ξ) = L′⊤K ′⊤

12X2(ξ) + L′⊤
[
K ′′

22 K ′′′
22

]
X ′

1(ξ) ,

where K ′⊤
12 ∈ R

w×n2 ,
[
K ′′

22 K ′′′
22

]
∈ R

w×(n1−n2), and K ′′′
22 has w columns. K ′

1 > 0

implies K ′′′
22 > 0; thus the highest column coefficient matrix of R2(ξ) is L′K ′′′

22 and it

is nonsingular. Thus also R′
2(ξ) is column reduced; moreover, its column degrees are

δ1i − 1, i = 1, . . . , w. From this it follows that

deg det(R′
2) =

w∑

i=1

(δ1i − 1) = (

w∑

i=1

δ1i )− w = n1 − w .

The claim is proved.
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We resume the proof of Th. 5.15. From the formula for R2(ξ) proved in Lemma A.2 it

follows that

0 = R2(ξ)modR2

= L⊤
(
K⊤

12X2(ξ) +K22X
′
1(ξ)

)
modR2

= L⊤
(
K⊤

12 +K22Π
)
X2(ξ) .

(A.2)

The rows of X2(ξ) are linearly independent over R, since X2 is a minimal state map.

Consequently (A.2) implies L⊤(K⊤
12 +K22Π) = 0, and since L is nonsingular by Lemma

A.3, we conclude that K⊤
12 +K22Π = 0. Thus the coefficient matrix of K1 is structured

as in Lemma A.1.

We now show that this structure implies that condition C3 holds. Consider first a switch

from B1 to B2 at tk. Taking the standard gluing conditions into account, QΨ1(w)(t
−
k ) ≥

QΨ2(w)(t
+
k ) if and only if

[
X2(

d
dt
)w(t−k )

X ′
1(

d
dt
)w(t−k )

]⊤
K1

[
X2(

d
dt
)w(t−k )

X ′
1(

d
dt
)w(t−k )

]
−
[
X2(

d
dt
)w(t+k )

ΠX2(
d
dt
)w(t+k )

]⊤
K1

[
X2(

d
dt
)w(t+k )

ΠX2(
d
dt
)w(t+k )

]

=

[
X2(

d
dt
)w(t−k )

X ′
1(

d
dt
)w(t−k )

]⊤(
K1 −

[
In2 Π⊤

0 0

]
K1

[
In2 0

Π 0

])[
X2(

d
dt
)w(t−k )

X ′
1(

d
dt
)w(t−k )

]
≥ 0 .

(A.3)

Since the matrix between brackets is semidefinite positive (see Lemma A.1), (A.3) is

satisfied.

It is straightforward to check that in a switch from B2 to B1 the value of the multi-

functional is the same before and after the switch. The theorem is proved.

Proof of Th. 5.17. The proof follows readily from Prop. 3.11 and Th. 5.15.

Proof of Th. 5.24. W.l.o.g. assume that QΨ is R1-canonical; then by Lemma 5.11,

given a minimal state map X1

(
d
dt

)
for B1 as in (5.3) there exists K = K⊤ ∈ R

n1×n1

such that Ψ(ζ, η) = X1(ζ)
⊤KX1(η). Partition K as

K =:

[
K11 K12

K⊤
12 K22

]
,

where K11 ∈ R
n2×n2 , K12 ∈ R

n2×(n1−n2) and K22 ∈ R
(n1−n2)×(n1−n2). At a switch from

B1 to B2 at tk the inequality (A.3) holds in particular for a switching signal s(t) = 1

for t ≤ tk, s(t) = 2 for t > tk. Since for every choice of v ∈ R
n1 there exists a trajectory

w ∈ B1|(−∞,0] s.t.
(
X1

(
d
dt

)
w
)
(0−) = v, using Lemma A.1 we conclude that (A.3) holds,
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then K⊤
12 +K22Π = 0. Consequently,

K =

[
K11 −ΠK22

−K22Π K22

]
=

[
K ′ 0

0 0

]
+

[
Π⊤

−In1−n2

]
K22

[
Π −In1−n2

]
, (A.4)

where K ′ := K11 − Π⊤K22Π. Pre- and post-multiply (A.4) by X1(ζ)
⊤ and X1(η) to

obtain

Ψ(ζ, η) = X2(ζ)
⊤K ′X2(η)︸ ︷︷ ︸

=:Ψ′(ζ,η)

+X1(ζ)
⊤

[
Π⊤

−I(n1−n2)

]
K22

[
Π −I(n1−n2)

]
X1(η) . (A.5)

Since Ψ1 is a Lyapunov function for ker R1

(
d
dt

)
, there exists V ∈ R

w×w[ξ] such that

(ζ + η)Ψ1(ζ, η) = −Q(ζ)⊤Q(η) + V (ζ)⊤R1(η) +R1(ζ)
⊤V (η) .

We now show that there exists M ∈ R
w×w[ξ] such that V = MR2.

From Prop. 4.3 of [52] it follows that

V (ξ) = lim
µ→∞

µR1(µ)
−⊤Ψ1(µ, ξ) ;

substituting (A.5) in this expression we obtain

V (ξ) = lim
µ→∞

(
µR1(µ)

−⊤X2(µ)
⊤K ′X2(η)

+ µR1(µ)
−⊤X1(µ)

⊤

[
Π⊤

−I(n1−n2)

]
K22

[
Π −I(n1−n2)

]
X1(η)

)
.

Since R2R
−1
1 is strictly proper, the first term goes to zero. Now

[
Π −In1−n2

]
X1(ξ) =

−X ′
1(ξ) + ΠX2(ξ) and consequently

V (ξ) =− µR1(µ)
−⊤X ′⊤

1 (µ)K22

[
Π −I(n1−n2)

]
X1(ξ)

+ lim
µ→∞

µR1(µ)
−⊤X2(µ)

⊤

︸ ︷︷ ︸
→0

Π⊤K22

[
Π −I(n1−n2)

]
X1(ξ)

=−
[
0(n1−n2)×w L′⊤

]
K22

[
Π −I(n1−n2)

]
X1(ξ) ,

where L′ ∈ R
w×w is a nonsingular matrix, as proved in Lemma A.2 and A.3. That V has

the right factor R2 follows from the following argument. Observe that

[
Π −I(n1−n2)

] [X2(ξ)

X ′
1(ξ)

]
= X ′

1(ξ)modR2 −X ′
1(ξ) .
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Write X ′
1(ξ)R2(ξ)

−1 = P (ξ) + S(ξ), with S(ξ) a strictly proper polynomial matrix and

P ∈ R
(n1−n2)×w[ξ]; then

ΠX2(ξ)−X ′
1(ξ) = X ′

1(ξ)− P (ξ)R2(ξ)−X ′
1(ξ) = −P (ξ)R2(ξ) .

This proves that

V (ξ) =
[
0(n1−n2)×w L′⊤

]
K22P (ξ)R2(ξ) =: M(ξ)R2(ξ) .

Finally, the equality

(ζ + η)Ψ1(ζ, η) = −Q(ζ)⊤Q(η) +R2(ζ)
⊤M(ζ)⊤R1(η) +R1(ζ)

⊤M(η)R2(η) ,

together with rank Q(jω) = w for all ω ∈ R and R1 being Hurwitz, prove strict positive-

realness of MR2R
−1
1 . That MR2R

−1
1 is strictly proper follows from QR−1

1 being strictly

proper and Th. 3.9. This concludes the proof.

Proof of Th. 5.25. The first claim follows directly from Prop. 5.17 and the second

from Lemma A.1 in the proof of Th. 5.15.

Proof of Lemma 5.26. We know from Lemma 5.11 that the polynomial row vectors

that form a basis for the state space of B2 are contained in that of B1. We can arrange

such vectors that form a minimal state map X2 in the first n2-rows of X1. Moreover,

since R3R
−1
1 is strictly proper, we apply the same argument to arrange in the first n3-

rows, the vectors that form a basis for the state space of B3 including those in X2 and

the additional (n3 − n2)-vectors, denoted by X ′
3. The existence of Πi, i = 1, 2, 3 follows

from the same argument used in Lemma 5.11.

Proof of Th. 5.27. In order to show that {ΨmodRi}i=1,2,3. induces a multiple Lya-

punov function for F ′, we prove the following statements:

S1. QΨ

B1≥ 0 and d
dt
QΨ

B1
< 0.

S2. QΨ

B2≥ 0 and d
dt
QΨ

B2
< 0.

S3. QΨ

B3≥ 0 and d
dt
QΨ

B3
< 0.

Moreover, we prove that the value of QΨ does not increase when switching between:

S4. B1 and B2;

S5. B1 and B3;
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S6. B3 and B2.

Note that statements S1 and S2 and S4 hold, since {Ψ,ΨmodR2 is a multiple Lyapunov

function for a standard SLDS with mode behaviours {B1,B2}.

The validity of statement S5 follows from Th. 5.15, since R3R
−1
1 is strictly positive-real.

The proof of S3, follows from defiing Ψ3(ζ, η) := Ψ(ζ, η)modR3 and applying the same

arguments used in the proof of Th. 5.25 for Ψ(ζ, η)modR2.

It now remains to prove S6. Consider the following lemma.

Lemma A.4. Let X1, R2, R3 and Πi, i = 1, 2, 3, be as in the theorem, then

(X1 modR3) modR2 = X1 modR2 .

Moreover, considering the partition Π3 :=
[
Π′

3 Π′′
3

]
with Π′

3 ∈ R
(n1−n3)×n2 and Π′′

3 ∈

R
(n1−n3)×(n3−n2), it follows that Π1 =

[
Π2

Π′
3 +Π′′

3Π2

]
.

Proof. To prove the first claim, let P2, P3 ∈ R
n1×w[ξ] be the non strictly proper part of

X1R
−1
2 and X1R

−1
3 respectively. The claim follows from the computations X1 modR2 =

X1−P2R2; and (X1 modR3) modR2 = (X1 − P3MR2) modR2 = X1−P3MR2− (P2−
P3M)R2 = X1 − P2R2. The second claim is easily proved by computing X1 mod R2

in terms of Π1 and (X1 modR3) mod R2 in terms of Π3 and Π2 according to Lemma

5.26, then factorise X2.

Taking the gluing conditions into account and using Lemma A.4, we conclude that when

we switch from B3 to B2, the condition QΨ(w)(t
−
i )−QΨ(w)(t

+
i ) ≥ 0 is equivalent with

QΨ mod R3(w)(t
−
i )−Q(Ψ mod R3)modR2

(w)(t+i ) ≥ 0 ; (A.6)

In the following, we aim to express condition (A.6) in terms of an LMI. In order to do

so, factorise QΨ = X1

(
d
dt

)⊤
KX1

(
d
dt

)
with

K :=



K11 K12 K13

K⊤
12 K22 K23

K⊤
13 K⊤

23 K33


 , (A.7)

with K11 ∈ R
n2×n2 , K12 ∈ R

n2×(n3−n2), K13 ∈ R
n2×(n1−n3), K22 ∈ R

(n3−n2)×(n3−n2),

K23 ∈ R
(n3−n2)×(n1−n3) and K33 ∈ R

(n1−n3)×(n1−n3). From the results of Lemma 6.7

and Lemma A.4, since the Lyapunov function QΨ does not increase when switching
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from B1 to B2, it follows that

[
K⊤

12

K⊤
13

]
= −

[
K22 K23

K⊤
23 K33

]
Π1 = −

[
K22 K23

K⊤
23 K33

][
Π2

Π′
3 +Π′′

3Π2

]
,

and consequently

K⊤
12 = −(K22Π2 +K23Π

′
3 +K23Π

′′
3Π2) , (A.8)

K⊤
13 = −(K23Π2 +K33Π

′
3 +K33Π

′′
3Π2) . (A.9)

We now express the entries of the coefficient matrix of QΨmodR3 in terms of those of

QΨmodR2 as in (A.7), according to the following lemma.

Lemma A.5. Let QΨ = X1

(
d
dt

)⊤
KX1

(
d
dt

)
and Π3 :=

[
Π′

3 Π′′
3

]
, be as previously

defined. Factorise QΨ mod R3 = X3

(
d
dt

)⊤
K̃X3

(
d
dt

)
with K̃ = K̃⊤ ∈ R

n3×n3. Consider

the partition

K̃ :=

[
K̃11 K̃12

K̃⊤
12 K̃22

]
, (A.10)

with K̃11 ∈ R
n2×n2, K̃12 ∈ R

n2×(n3−n2) and K̃22 ∈ R
(n3−n2)×(n3−n2). Then

K̃11 = (K11 +Π′
3K

⊤
13 +K13Π

′
3 +Π′⊤

3 K33Π
′
3) ,

K̃12 = (K12 +Π′⊤
3 K⊤

23 +K13Π
′′
3 +Π′⊤

3 K33Π
′′
3) ,

K̃22 = (K22 +Π′′⊤
3 K⊤

23 +K23Π
′
3 +Π′′⊤

3 K33Π
′′
3) .

Proof. Following the same procedure as in the proof of Lemma 6.7 and considering

the partitions (A.7) and (A.10), we conclude that the coefficient matrix (A.10) can be

computed as

[
K̃11 K̃12

K̃⊤
12 K̃22

]
=



In(B2) 0

0 I(n3−n2)

Π′
3 Π′′

3




⊤ 

K11 K12 K13

K⊤
12 K22 K23

K⊤
13 K⊤

23 K33






In(B2) 0

0 I(n3−n2)

Π′
3 Π′′

3


 ;

The desired equalities follow by inspection.

Now we return to the proof of Th. 5.27. Note that from inequality (A.6) we can obtain

[
K̃11 K̃12

K̃⊤
12 K̃22

]
−
[
In2 Π⊤

2

0 0

][
K̃11 K̃12

K̃⊤
12 K̃22

][
In2 0

Π2 0

]
≥ 0 .

Arguing as in Lemma 6.7, this inequality holds if and only if K̃⊤
12 + K̃22Π2 = 0, or

equivalently from Lemma A.5, the condition is satisfied if and only if

K⊤
12 +Π′′⊤

3 K⊤
13 +K23Π

′
3 +Π′′⊤

3 K33Π
′
3 = −(K22 +Π′′⊤

3 K⊤
23 +K23Π

′
3 +Π′′⊤

3 K33Π
′′
3)Π2 .
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Substituting (A.8) in the latter equation we obtain (A.9), therefore we conclude that the

condition K̃⊤
12 = −K̃22Π2 is satisfied. Consequently the value of QΨ does not increase

when switching from B3 to B2. It is a matter of straightforward verification to check

that when switching from B2 to B3 the value of QΨ remains the same. This concludes

the proof of the theorem.

Proof of Th. 5.28. To prove that Mα, with 0 ≤ α ≤ 1, is a strictly positive-real

completion define G1(ξ) := M1(ξ)R2(ξ)R1(ξ)
−1 and G2(ξ) := M2(ξ)R2(ξ)R1(ξ)

−1. It

follows that

(
Mα(−jω)R2(−jω)R1(−jω)−1

)⊤
+Mα(jω)R2(jω)R1(jω)

−1

=
(
(αM1(−jω) + (1 − α)M2(−jω))R2(−jω)R1(−jω)−1

)⊤

+ (αM1 + (1− α)M2)R2(jω)R1(jω)
−1

= αG1(−jω)⊤ + (1− α)G2(−jω)⊤ + αG1(jω) + (1− α)G2(jω)

= α
(
G1(−jω)⊤ +G1(jω)

)
+ (1− α)

(
G2(−jω)⊤ +G2(jω)

)
.

The claim follows from the fact that G1 and G2 are strictly positive-real. We now prove

that Σ′ is asymptotically stable. Let Ki :=

[
Ki,11 −Π⊤Ki,22

−Ki,22Π Ki,22

]
> 0, i = 1, 2 be as in

Th. 5.25, corresponding to the solution of (5.6) using the positive-real completion Mi,

i = 1, 2, respectively. Following straightforward computations, it can be proved that

Ψα(ζ, η) :=αΨ1(ζ, η) + (1− α)Ψ2(ζ, η)

=
R1(ζ)

⊤Mα(η)R2(η) +R2(ζ)
⊤Mα(ζ)

⊤R1(η) −Qα(ζ)
⊤Qα(η)

ζ + η
,

for some Qα ∈ R
•×w[ξ]. It follows that the convex combination of the two-variable

polynomial matrices Ψ1 and Ψ2 yields the coefficient matrix

Kα :=

[
Kα,11 −Π⊤Kα,22

−Kα,22Π Kα,22

]
> 0 ,

as in Th. 5.25, then QΨα is a Lyapunov function for Σ. Finally, to conclude the proof

apply Th. 5.27.

A.3 Proofs of Chapter 6

Proof of Prop. 6.2. Let i ∈ {1, ..., N}; since Σ is (strictly) Φ-dissipative and a con-

stant switching signal s(t) = i for all t is admissible in S, then it necessarily follows

that
∫∞
−∞QΦ(w)dt ≥ 0 (respectively ∃ ǫ > 0 s.t.

∫∞
−∞QΦ(w)dt ≥ ǫ

∫ +∞
−∞ ‖w‖22dt ) for all

w ∈ Bi of compact support, i.e. Bi is (strictly) Φ-dissipative.
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Proof of Prop. 6.3. Since Bi is (strictly) Φ-dissipative, according to Prop. 6.2, the

existence of QΨi
, i = 1, ..., N , is guaranteed (see Prop. 3.18). Now integrate the inequal-

ity d
dt
QΨi

≤ QΦ between a and b, for all w ∈ Bi ∩D(R,Rw).

Proof of Th. 6.6. We consider the three possible cases, i.e. A) |Ts| = ∞, B) 0 <

|Ts| < ∞ and C) |Ts| = 0. Let t0 := −∞. Use Prop. 6.3 and the fact that

limt→±∞w(t) = 0 for all w ∈ BΣ ∩ Dp(R,R
w) to obtain the following expressions for

cases A) and B), where s = sw:

A)

∫
QΦ(w) ≥(QΨs(t0)

(w)(t−1 )−QΨs(t1)
(w)(t+1 )) + ...

+ (QΨs(tn−1)
(w)(t−n )−QΨs(tn)

(w)(t+n )) + ... .

B)

∫
QΦ(w) ≥(QΨs(t0)

(w)(t−1 )−QΨs(t1)
(w)(t+1 ))

+ Σ
|Ts|−1
k=2 (QΨs(tk−1)

(w)(t−k )−QΨs(tk)
(w)(t+k ))

+ (QΨs(|Ts|−1)
(w)(t−|Ts |

)−QΨs(|Ts|)
(w)(t+|Ts |

)) .

Since QΨs(tk−1)
(w)(t−k )−QΨs(tk)

(w)(t+k ) ≥ 0, ∀ tk ∈ Ts, we conclude that in both cases∫
QΦ(w) ≥ 0.

Finally the claim for C) when no switching takes place, i.e. s(t) = i for all t, follows

readily from the existence of a storage function QΨi
(see Prop. 6.3) and the standard

result quoted in Prop. 3.18.

Proof of Th. 6.7. The existence of storage functions QΨi
, i = 1, ...N , follows from

Prop. 6.2 and Prop. 3.18. To prove the rest of the claim let us introduce first the

following lemma.

Lemma A.6. Let Φ ∈ R
w×w and let Σ be a strictly Φ-dissipative SLDS with G well-posed.

Consider two behaviours B1,B2 ∈ F , described by the observable image representations

w = Mi

(
d
dt

)
zi, i = 1, 2, respectively. Consider the switching signal

s(t) :=




1, t ≤ 0 ,

2, t > 0 .

Let Xi ∈ R
n(Bi)×z[ξ], i = 1, 2, be minimal state maps for Bi, i = 1, 2; and let L1→2 ∈

R
n(B2)×n(B1) be the corresponding re-initialisation map when switching from B1 to B2
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at zero. Select a fixed but otherwise arbitrary final state v1, corresponding to the unique

initial state v2 := L1→2v1.

There exists A1,H2 ∈ R
z×z[ξ] such that det(A1) and det(H2) are respectively anti-

Hurwitz and Hurwitz polynomials; and

M1(−ξ)⊤ΦM1(ξ) = A1(−ξ)⊤A1(ξ) ,

and

M2(−ξ)⊤ΦM2(ξ) = H2(−ξ)⊤H2(ξ) .

There exist unique latent variable trajectories z1, z2 : R → R
z such that A1

(
d
dt

)
z1 = 0,

X1

(
d
dt

)
z1(0

−) = v1; and H2

(
d
dt

)
z2 = 0, X2

(
d
dt

)
z2(0

+) = L1→2v1. Consequently, the

external variable trajectory defined by

w(t) :=




M1

(
d
dt

)
z1, t ≤ 0 ,

M2

(
d
dt

)
z2, t > 0 ;

belongs to BΣ. Moreover, the final/initial state of w at zero is v1 and L1→2v1 respec-

tively.

Proof. The existence of A1,H2 ∈ R
z×z[ξ] satisfying the conditions in the first claim

follows directly from standard results in polynomial spectral factorization (see Sec. 3.7).

To verify that the second claim holds true, it is enough to prove that the state space of

each mode behaviour equals the state space associated to its supply rate spectral factor,

i.e. to prove that X(M1

(
d
dt

)
) = X(A1

(
d
dt

)
) and X(M2

(
d
dt

)
) = X(H2

(
d
dt

)
). In order to

do so, we recall from Prop. 6.2 that if Σ is strictly Φ-dissipative, it follows that every

behaviour in the bank is also strictly Φ-dissipative. Since there exists ǫ > 0 such that

∫
QΦ(w) ≥ ǫ

(∫ 0−

−∞
‖w‖22 dt+

∫ ∞

0+
‖w‖22 dt

)
;

using Prop. 3.7 we conclude that ∂Φ′
i(jω) := Mi(−jω)⊤ΦMi(jω) > ǫMi(−jω)⊤Mi(jω) ∀ω ∈

R, i = 1, 2. Select a submatrix Ui ∈ R
z×z[ξ] of Mi of maximal determinantal degree,

then MiU
−1
i , i = 1, 2 is a proper rational matrix. Consequently

lim
ω→∞

Ui(−jω)−⊤∂Φi(jω)Ui(jω)
−1 = M⊤

i∞ΦMi∞ > ǫM⊤
i∞Mi∞ , i = 1, 2 ,

with Mi∞ := limω→∞Mi(jω)Ui(jω)
−1. It is easy to check that Mi∞ contains Iz as a

submatrix, and consequently M⊤
i∞

Mi∞ > 0, implying that

lim
w→∞

Ui(−jω)−⊤Φi(−jω, jω)Ui(jω)
−1 , i = 1, 2 ,
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is invertible and therefore

U1(−ξ)−⊤Φ1(−ξ, ξ)U1(ξ)
−1 = U1(−ξ)−⊤A1(−ξ)⊤A1(ξ)U1(ξ)

−1 ,

as well as

U2(−ξ)−⊤Φ2(−ξ, ξ)U2(ξ)
−1 = U2(−ξ)−⊤H2(−ξ)⊤H2(ξ)U2(ξ)

−1 ,

have a proper inverse. Considering (2.6) and (2.7) in Sec. 2.6, we conclude that

X(M1

(
d
dt

)
) = X(A1

(
d
dt

)
) and X(M2

(
d
dt

)
) = X(H2

(
d
dt

)
).

Consequently, the trajectories1 z1 ∈ ker A1

(
d
dt

)
and z2 ∈ ker H2

(
d
dt

)
are such that

X1

(
d
dt

)
z1(0

−) = v1 and X2

(
d
dt

)
z2(0

+) = L1→2v1. Finally, since the latent variables z1

and z2 are observable, they correspond to a unique trajectory w ∈ BΣ defined as in the

Lemma with final/initial state v1 and L1→2v1 respectively. The lemma is proved.

We now prove the claim of Th. 6.7 by contradiction. Let X
n(Bi)×z

i [ξ] be minimal

state maps for Bi, i = 1, ..., N and Lj→k ∈ R
n(Bk)×n(Bj) with j, k = 1, ..., N the re-

initialisation maps. Let w.l.o.g. i = 1, j = 2 and assume that there exists a final/initial

state v1 and L1→2v1 for w ∈ BΣ respectively, such that QΨ1(w)(0
−) < QΨ2(w)(0

+).

Construct latent variable trajectories z1, z2 : R → R
z as in Lemma A.6 corresponding

to an admissible switched trajectory w ∈ BΣ. For this trajectory it holds that

∫
QΦ(w) =

∫ 0−

−∞
QΦ′

1
(z1)dt+

∫ ∞

0+
QΦ′

2
(z2)dt = QΨ′

1
(z1)(0

−)−QΨ′
2
(z2)(0

+) < 0 ;

which contradicts the fact that Σ is strictly Φ-dissipative.

Note that it follows automatically from the latter results that there exists an N -tuple

(QΨ1 , ..., QΨN
) that satisfies the conditions 1) and 2) in Def 6.4. The theorem is proved.

Proof of Lemma 6.8. The fact that Ψ′
i(ζ, η), i = 1, ..., N , can be factorised asXi(ζ)KiXi(η),

i = 1, ..., N , follows from Prop. 3.20.

The equivalence of conditions 1) and 2) follows from the fact that w = Mi

(
d
dt

)
zi,

i = 1, ..., N , and the standard reformulation of QDFs in terms of latent variables, see Sec.

3.4. We now prove the equivalence of conditions 2) and 3). Use Lemma A.6 in the proof

of Th. 6.7 to conclude that since Σ is strictly Φ-dissipative, then the final/initial states

at switching instants corresponding to zi and zj are arbitrary. Use the factorisations

Ψ′
i(ζ, η) = Xi(ζ)KiXi(η), i = 1, ..., N , to conclude that v⊤i Kivi ≥ v⊤j Kjvj for all i, j ∈ P,

1Note that zi, i = 1, 2 are not trajectories with compact support, however an approximation argument
can be used to complete the proof of the claim.
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i 6= j. Then use the re-initialisation map to conclude that v⊤i Kivi ≥ v⊤i L
⊤
i→jKjLi→jvi,

which is equivalent to condition 3).

Proof of Prop. 6.9. The proof follows from the fact that the re-initialisation maps

are also the identity, and since Ki ≥ Kj and Kj ≥ Ki for all i, j ∈ P. Consequently,

Ki = Kj and QΨi
= QΨj

for all i, j ∈ P.

Proof of Prop. 6.11. The proof of the proposition follows readily from the same ar-

gument used in Prop. 6.2.

Proof of Th. 6.12. Define t0 := −∞. Using Prop. 6.3 and equation (6.1), it follows

that since limt→−∞(w)(t) = 0, we obtain

∫ τ

QΦ(w) ≥(QΨs(t0)
(w)(t−1 )−QΨs(t1)

(w)(t+1 )) +
n∑

k=2

(QΨs(tk−1)
(w)(t−k )−QΨs(tk)

(w)(t+k ))

+QΨs(tn)
(w)(τ) .

Note that QΨs(tj−1)
(w)(t−j )−QΨs(tj )

(w)(t+j ) ≥ 0, for every tj ∈ Ts. Moreover, since every

mode has the same partition w = col(u, y), it follows that σ+(Φ) = m(Bi), i = 1, ..., N .

Use lemma 3.16 to conclude that QΨs(tn)
(w)(τ) ≥ 0, consequently

∫ τ
QΦ(w) ≥ 0.

Proof of Th. 6.13. To prove the first part of the claim note that the degree of Xk

cannot exceed that of Mk, k = 1, ..., N , because of the same argument used in Prop.

3.21. Moreover solutions Kk, k = 1, ...N , for the LMIs (6.2) exist because of the fact

that Bk, i = 1, ..., N , is strictly Φ-dissipative and Lemma 3.23. Moreover, according to

Lemma 3.23 and Prop. 3.22 if the LMIs (6.2) hold, Ψk(ζ, η) induces a storage function

forBk, k = 1, ..., N . Finally, note that due to Lemma 6.8, the LMIs (6.3) imply condition

2) in Def. 6.4, then using Th. 6.6 we conclude that Σ is Φ-dissipative.

Proof of Prop. 6.14. Since QΦ

Bi≥ d
dt
QΨi

and QΦ

Bi≥ d
dt
QΨ′

i
, i = 1, ..., N , it follows

from standard results regarding dissipative systems (see Sec. 3.7) that

QΦ

Bi≥ d

dt

(
αQΨi

+ (1 − α)QΨ′
i

)
, i = 1, ..., N .

Moreover, to show that condition 2) in Def. 6.4 is satisfied, let s ∈ S and note that

since QΨs(tk−1)
(w)(t−k ) ≥ QΨs(tk)

(w)(t+k ) and QΨ′
s(tk−1)

(w)(t−k ) ≥ QΨ′
s(tk)

(w)(t+k ) for every

tk ∈ T, it follows that

αQΨs(tk−1)
(w)(t−k )+(1−α)QΨ′

s(tk−1)
(w)(t−k )−αQΨs(tk)

(w)(t+k )−(1−α)QΨ′
s(tk)

(w)(t+k ) ≥ 0 .
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Proof of Th. 6.16. Since Σ is strictly Φ-dissipative, it follows from Th. 6.7 that there

exists a multiple storage function QΨ := (QΨi
, ..., QΨN

) for Σ. Note that since only the

trajectories BΣ
aut ⊆ BΣ are permitted for Σaut according to Def. 6.15, it necessarily

follows that the trajectories of its mode behaviours are also restricted as B′
i := {w =

col(u, y) ∈ Bi | u = 0}, i = 1, ..., N . We now show that Σaut is asymptotically stable by

showing that QΨ satisfies the conditions 1)-3) in Th. 5.1.

C1. The fact that QΨi

B′
i≥ 0, i = 1, ..., N , follows directly from Lemma 3.16, i.e. since

B′
i ⊆ Bi and QΨi

Bi≥ 0, i = 1, ..., N , then QΨi

B′
i≥ 0, i = 1, ..., N .

C2. In order to prove that d
dt
QΨi

decreases along B′
i, i = 1, ..., N , use Prop. 6.2 to show

that Bi, i = 1, ..., N , is strictly Φ-dissipative and consequently there exists ǫi > 0

such that QΦ(w) ≥ d
dt
QΨi

(w) + ǫi‖w‖22, i = 1, ..., N . Since, for every trajectory

col(0, y) ∈ B′
i it follows that QΦ(w) = 0, then d

dt
QΨi

(w)
B′

i≤ −ǫi‖w‖22 < 0, for every

w 6= 0.

C3. Finally, note that the non increasing condition at switching instants 3) in Th. 5.1

is equivalent to condition 2) in Def. 6.4.

A.4 Proofs of Chapter 7

Proof of Prop. 7.4. The impedance ZTk
, k = 1, ..., L, is described by a one-port, and

consequently can also be represented in observable image representation byM ′ ∈ R
2×1[s]

with external variables w′ :=
[
I ′ v

]⊤
and a one-dimensional latent variable denoted by

z′k. It follows from the elimination theorem (see Sec. 6 of [55]) that after the elimination

of the latent variable z2,j , j = 1, 2, the interconnection of this one-port with the switching

power converter has a number 2L of dynamic modes that can be described as two-ports,

corresponding to the image representations (7.5).

Proof of Prop. 7.5. If switching between modes does not involve short- or open-

circuiting sources, no constraints on the input variables of the system are imposed at

the switching instants. Consequently, the gluing conditions only impose constraints on

the output variables of the modes, which are linear functions of the state variables. The

claim follows.
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