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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF PHYSICAL SCIENCES AND ENGINEERING

SCHOOL OF PHYSICS AND ASTRONOMY

Doctor of Philosophy

Fine tuning in non-minimal supersymmetric models

by Maien Yahya M Binjonaid

This thesis is based on work that investigates the fine tuning in low scale non-minimal

supersymmetric models. We present a comparative and systematic study of the fine

tuning in Higgs sectors in three scale-invariant NMSSM models: the first being the

standard Z3-invariant NMSSM; the second is the NMSSM plus additional matter

filling 3(5 + 5) representations of SU(5) and is called the NMSSM+; while the third

model comprises 4(5 + 5) and is called the NMSSM++. Naively, one would expect the

fine tuning in the plus-type models to be smaller than that in the NMSSM since the

presence of extra matter relaxes the perturbativity bound on λ at the low scale. This,

in turn, allows larger tree-level Higgs mass and smaller loop contribution from the

stops. However we find that LHC limits on the masses of sparticles, especially the

gluino mass, can play an indirect, but vital, role in controlling the fine tuning. In

particular, working in a semi-constrained framework at the GUT scale, we find that

the masses of third generation stops are always larger in the plus-type models than in

the NMSSM without extra matter. This is an RGE effect which cannot be avoided,

and as a consequence the fine tuning in the NMSSM+ (∆ ∼ 200) is significantly larger

than in the NMSSM (∆ ∼ 100), with fine tuning in the NMSSM++ (∆ ∼ 600) being

significantly larger than in the NMSSM+.

Moreover, supersymmetric unified models in which the Z ′ couples to the Higgs

doublets, as in the E6 class of models, have large fine tuning dominated by the

experimental mass limit on the Z ′. To illustrate this we investigate the degree of fine



iv

tuning throughout the parameter space of the Constrained Exceptional

Supersymmetric Standard Model (cE6SSM) that is consistent with a Higgs mass

mh ∼ 125 GeV. Fixing tanβ = 10, and taking specific values of the mass of the Z ′

boson, with MZ′ ∼ 2− 4 TeV. We find that the minimum fine tuning is set

predominantly from the mass of Z ′ and varies from ∼ 200− 400 as we vary MZ′ from

∼ 2− 4 TeV. However, this is lower than the fine tuning in the Constrained Minimal

Supersymmetric Standard Model (cMSSM), of O(1000), arising from the large stop

masses required to achieve the Higgs mass. Finally, it was found that varying tanβ

below and above 10 does not correspond to lower fine tuning in the cE6SSM, nor does

lowering the mass of the Z ′ by lowering its associated coupling g′.
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Chapter 1

Introduction

The SM of particle physics is a remarkably successful theory describing Nature at the

smallest distance scales accessible to experiments. However, the SM is believed to be

an incomplete description of Nature due to a number of observational and theoretical

issues. One such issue is the hierarchy problem associated with the Higgs. The

quadratic sensitivity of the Higgs mass-squared parameter (m2
H) to the scale of new

physics, be it the Planck scale at 1019 GeV or a scale at which heavy masses may exist

(e.g. the GUT scale MGUT = 1016 GeV) means that in the absence of new physics at

the low scale (O(1) TeV), the parameter m2
H will need to be carefully fine tuned, order

by order in perturbation theory, against the cut-off of the new scale (or any heavy

mass), thereby destabilizing the electroweak scale. For example, if new heavy states

exist at the GUT scale, then the degree of tuning is roughly 1 part in 1032.

Naturalness, which can be understood as the requirement that observable quantities in

a given model does not possess large and unexplained fine tuning, has been a leading

motivation for developing theories beyond the SM in order to overcome that huge fine

tuning.

Supersymmetry is a well motivated extension of the SM. It predicts the existence of a

new sector of particles in Nature at the energy scales currently probed by the Large

Hadron Collider (LHC) experiment at CERN. These particles are related to the

ordinary particles of the SM by a symmetry principle that flips the quantum spin by a

1
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unit of half an integer. This means that any scalar particle in the SM (spin zero) will

have a supersymmetric fermion partner (spin half), any fermion particle in the SM

(spin half) will have a scalar supersymmetric partner (spin zero), and finally, any

vector boson in the SM (spin 1) will have a supersymmetric fermion partner (spin

half). The lightest supersymmetric particle could be neutral and stable, and have the

properties of dark matter.

Finding supersymmetry is one of the major goals of particle physics experiments, and

in particular the LHC. So far, the LHC has been running since 2009, it has achieved

centre-of-mass energy of 8 TeV, and accumulated more than 20 fb−1 of data. However,

there are no signs of supersymmetry yet. Moreover, the discovery of a scalar boson

that resembles the Higgs predicted by the SM at the LHC is a major triumph of the

SM. However, considering the hierarchy and the fine tuning problems associated with

the SM, this discovery may be an indication of new physics at the O(1) TeV scale since

such a SM-like Higgs is generally predicted by supersymmetric models.

Supersymmetric models differ in the way they predict observables, such as the mass of

the Higgs and the Z bosons (mZ), since these are derived quantities. While some

models require large contributions from radiative corrections as in the MSSM, other

models can, in principle, accommodate a 126 GeV Higgs at tree-level.

However, the absence of supersymmetric particles at the LHC leads to a tension

between the electroweak scale and the supersymmetry scale (the little hierarchy

problem). As a result, a given model becomes less attractive from the point of view of

naturalness if its parameter space require large fine tuning. It is important, then, from

model building point of view to learn the degree of fine tuning within a given model

and whether or not it is possible to find regions in the parameter space that have low

fine tuning along with correct predictions for the values of observables. This in turn

enables testing the predictions of Naturalness at the LHC.

In this thesis, we review some aspects of the SM of particle physics in Chapter two. We

start by discussing quarks and leptons, and their experimentally observed properties

and interactions. Next, we discuss gauge symmetries that are associated with the

forces of electromagnetism, and weak and strong nuclear interactions. The Higgs
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mechanism of breaking the electroweak symmetry is reviewed. Next, the hierarchy

problem in the SM is explained. Finally, other issues with the SM are covered.

In Chapter three, we introduce Supersymmetry and its algebra. We briefly discuss

superfields. Next, we review the minimal supersymmetric standard model, and use it

to layout the main concepts needed in later Chapters. These include, electroweak

symmetry breaking, soft supersymmetry breaking, renormalisation group equations,

and the hierarchy problem. Next, quantifying the fine tuning is discussed. Finally,

non-minimal supersymmetric extensions are motivated, and the next-no-minimal and

the exceptional supersymmetric standard model are briefly introduced.

In Chapter four, the fine tuning in the parameter spaces of three scale-invariant

NMSSM models is considered. We discuss the main motivation to add extra vector-like

states to the NMSSM. Next, we outline our procedure of calculating and implementing

the RGEs of the new models in the public tool NMSSMTools. Then we present our

results in six different parameter spaces. Finally, we discuss dark matter relic density

constraints on the parameter space of the NMSSM with three extra SU(5) states.

In Chapter five, the fine tuning in the exceptional supersymmetric standard model is

discussed. A brief motivation to the E6SSM is outlined. Next, the properties of the

E6SSM are introduced, and the electroweak symmetry breaking conditions are

presented. Then a fine tuning master formula is presented, and the procedure to

implement this formula in a private spectrum generator is presented. The results are

presented for five different parameter spaces corresponding to different masses of the Z’

boson. Finally, the results are discussed and conclusions are presented.

In Chapter six, we conclude the thesis.





Chapter 2

The Standard Model of Particle

Physics

Figure 2.1: The Content of the Standard Model

5



6 Chapter 2 The Standard Model of Particle Physics

The SM Particle Physics is a quantum gauge field theory describing quarks and

leptons, and their electromagnetic, weak, and strong interactions through the exchange

of gauge bosons (photons, W± and Z, and gluons). QFT consistently combines

Einstein’s special theory of relativity and quantum mechanics. Quantum fields are

operators that satisfy canonical commutation (or anti-commutation) relations, and are

non-unitary representations of the Lorentz group (rotations and boosts). These fields

are Fourier expanded in terms of creation and annihilation operators, which are infinite

unitary representations of the Poincare group (the combination of the Lorentz group

with translations). Elementary particles found in Nature are excitations of such

quantum fields. For each type of particle, there exists an antiparticle with the opposite

additive quantum numbers (e.g. charge, lepton number, etc.).

The area of particle physics tries to confront these theoretical constructs with

experiments and observations. Up to the date of writing this thesis, the SM is in an

exceptional agreement with experiments, but there are reasons to believe that the SM

does not constitute a complete description of the realm of particle physics. It is,

however, believed by some to be an effective field theory that is only valid up to the

O(1) TeV energy scale.

In this Chapter, we explore the matter content of the SM, gauge symmetries, the Higgs

mechanism, the Higgs boson, and shortcomings of the SM. In particular the hierarchy

problem and the fine tuning problem associated with it.

Along with the original SM papers and reviews cited, more details on the SM can be

found in e.g. Refs. [1, 2, 3, 4, 5].

2.1 Matter content

As far as experiments and observations are concerned, the Universe is made of

fermions and bosons. Fermions are spin 1
2 -n entities obeying anti-commutation

relations, while bosons are spin n entities obeying commutation relations, where n is

an integer. The set of spins observed in elementary particles contains: {0, 1
2 , 1}.
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According to their interactions, fermions are divided into two categories: quarks and

leptons. Quarks interact strongly, weakly, and electromagnetically. There are two

types of quarks: up-type quarks comprising the up (u) [6, 7, 8], charm (c) [9], and top

(t) [10] quarks with masses1,

mu = 2.3+0.7
−0.5 MeV << mc = 1.275± 0.025 GeV << mt = 173.21± 0.51± 0.71 GeV,

(2.1)

and electric charge qu = 2
3e. Next, down-type quarks comprising the down (d) [6, 7, 8],

strange (s) [6, 7, 8], and bottom (b) [10] quarks with masses

md = 4.8+0.5
−0.3 MeV << ms = 95± 5 MeV << mb = 4.18± 0.03 GeV, (2.2)

and electric charge qd = −1
3e. Moreover, each quark comes in three distinct quantum

numbers called colours and denoted: red, green, and blue. And each quark has an

anti-quark with the opposite additive quantum numbers, such as the electric charge.

On the other hand, leptons (and antileptons) are only weakly and electromagnetically

interacting. They comprise three electron-like particles: the electron (e), muon (µ),

and tau (τ) [12] particles with masses

me = 0.510998928± 11× 10−9 MeV <<

mµ = 105.6583715± 35× 10−7 MeV << (2.3)

mτ = 1776.82± 0.16 MeV,

and three neutrinos: the electron-neutrino (νe), muon-neutrino (νν), and tau-neutrino

(ντ ) with extremely small masses (mν < 2 eV). However, in the SM, these neutrinos

are massless.

The previous physical particles are viewed as excitations of the corresponding quantum

fields. Depending on how these fields transform under the Lorentz group, they are

classified into: scalars, spinors, vectors, and tensors. For spinors, it is the

two-component Weyl fermion fields that form irreducible representations of the

1All values of masses, couplings, and limits cited in this Chapter are from [11].
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Lorentz group. Moreover, it is well-known that there is an equivalence between the

Lorentz algebra and the algebra su(2)⊗ su(2) 2. Therefore, it is possible to denote

fields transforming differently under Lorentz transformations by two numbers that are

multiples of one-half. Specifically,

• (0, 0)→ Scalar fields.

• (1
2 , 0)→ LH spinors.

• (0, 1
2)→ RH spinors.

• (1
2 ,

1
2)→ Vector fields.

A four-component Dirac fermion can be expressed in terms of two Weyl fermions as

follows,

ψ =

(
χα
ηα̇

)
, (2.4)

where α, α̇ = 1, 2, and ηα̇ = (ηα)† .

As mentioned at the beginning of this Chapter, elementary particles interact through

the exchange of gauge bosons. Table 2.1 shows some experimentally observed processes

exemplifying such fundamental interactions:

Finally, it turns out that weak interactions are only communicated to LH particles and

RH antiparticles. An interesting consequence is that, only LH neutrinos (RH

anti-neutrinos) are found in Nature according to the SM and current observations. The

possibility of RH neutrinos (LH anti-neutrinos) is the subject of new physics beyond

the SM.

2.2 Gauge symmetries

Gauge field theories, such as the SM, are theories in which the free Lagrangian (i.e.

non-interacting) is invariant under certain global gauge transformations of the form:

ψ(x, t)→ eiMαψ(x, t), (2.5)

2Lower case letters denote the algebra, whereas upper case letters, e.g. SU(N) denote the group
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Interaction Process Diagram

QED ff̄ → ff̄

QCD qq̄ → qq̄

µ− → e− νe νµ,

Weak νµ e− → νµ e−

Table 2.1: Processes and Interactions

where α is an arbitrary parameter that is spacetime-independent, and M is the

generator of the group representing the gauge transformation. Additionally, M is a

number if the group under consideration is Abelian, such as U(1), and a matrix if the

group is non-Abelian, such as SU(N) where N > 1.

Demanding the invariance of such Lagrangians under certain local gauge

transformations (sometimes referred to as: gauging) by allowing α to be

spacetime-dependant leads to the introduction of gauge bosons that interact with the

matter fields. These gauge bosons are strictly massless and are self-interacting if the

group is non-Abelian.

In the SM, there are three types of gauge interactions, we briefly describe them in this

section.

2.2.1 U(1)EM

QED [13, 14, 15, 16] is based on local U(1)EM symmetry, which is a symmetry of the

vacuum. The QED Lagrangian comprises mass terms of fermionic fields, kinetic terms
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of fermionic and gauge fields, and interaction term between fermions and gauge fields.

It reads,

LQED = −ψ(x)( /Dµ +m)ψ(x)− 1

4
Aµν(x)Aµν(x), (2.6)

where /D = γµDµ, and Dµ is the covariant derivative.

Under U(1)EM , the field transformation is,

ψ(x)→ eiQα(x)ψ(x), (2.7)

where Q is the charge (zero component of the current Jµem). And α(x) is a

spacetime-dependent (local) parameter.

The covariant derivative takes the form:

Dµ = ∂µ + ieQAµ, (2.8)

and the gauge field transforms as,

Aµ(x)→ Aµ −
1

e
∂µα(x), (2.9)

whereas the field strength tensor,

Aµν = ∂µAν − ∂νAµ, (2.10)

transform as,

Aµν → eiQα(x)Aµν (2.11)

Finally, the strength of QED interactions is determined by the fine structure constant:

αQED(mZ) =
1

128
. (2.12)
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2.2.2 SU(3)C

The gauge symmetry associated with the strong interactions is the non-Abelian

SU(3)C group [17] (also see [18] for a concise review), which is a symmetry of the

vacuum. The Lagrangian of QCD (in terms of quarks) reads,

LQCD = −
∑
q

ψq(x)( /Dµ +m)ψq −
1

4
GaµνG

µν
a , (2.13)

where ψ is a vector in colour space, q denotes quark flavours, and a is the colour index.

The quark fields transformation as,

q(x)→ Uq(x), (2.14)

and

U = ei
λa

2
αa(x), (2.15)

where, λa are the eight Gell-Mann matrices. They are the generators of the SU(3)c

group, and obey the following algebra:

{
λa

2
,
λb

2

}
= ifabc

λc

2
(2.16)

where fabc are the structure constants.

The covariant derivative takes the form,

Dµ = ∂µ − igs
λa

2
Gaµ, (2.17)

and by introducing the matrix notation [Gµ]αβ =
(
λa
2

)
αβ
Gaµ, the gauge fields

transform as,

Gµ → U−1GµU + ∂µUU
−1, (2.18)

while the field strength tensor transforms as,

Gµν → UGµνU
†, (2.19)
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where,

Gµν =
λa

2
Gaµν =

λa

2

(
∂µG

a
ν − ∂νGaµ − gsfabcGbµGcν

)
(2.20)

Finally, the strength of QCD interactions is measured in terms of the fine structure:

αs(mZ) ≈ 0.1184 (2.21)

.

2.2.3 SU(2)L ⊗ U(1)Y

The gauge theory of Electroweak interactions is more involved than QCD and QED.

First, the mediators of the weak interaction are massive. Second, these mediators only

couple to LH particles and RH antiparticles. Third, a mass term for the matter fields

is not allowed since it mixes left and right chiral fields, which in turn would lead to

explicit breaking of the gauge invariance.

Here, we will discuss the Electroweak theory with massless matter particles and gauge

bosons. Only in Sec. 2.4 we will address the issue of giving masses to these fields.

As far as the electroweak interaction is concerned, a LH electron and a LH

electron-neutrino form an SU(2)L doublet (similarly for LH up and down quarks),

(
νe
e−

)
L

,

(
u

d

)
L

(2.22)

The Lagrangian before Electroweak symmetry breaking is:

LEW = −ψL /DµψL − ψR /DµψR −
1

4
BµνB

µν − 1

4
W i
µνW

µν
i (2.23)

where only LH particles (or RH antiparticles) interact with the gauge bosons in the

covariant derivative.

LH fields will transform as:

ψL → ULUY ψL, (2.24)
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where the SU(2)L transformation is,

UL = ei
σi

2
α, (2.25)

where σi are the three Pauli matrices that generate the SU(2) group, while the U(1)Y

transformation is,

UY = ei
Y
2
β, (2.26)

where Y is the hypercharge that generate the U(1) group. Both α and β are

spacetime-independent parameters.

The su(2)L algebra obeys, [
σi

2
,
σj

2

]
= iεijk

σk

2
, (2.27)

where εijk is the totally antisymmetric symbol.

On the other hand, RH fields are singlets under SU(2)L, hence will only transform

under U(1)Y .

ψR → UY ψR. (2.28)

The electric charge is related to the hypercharge and the third component of the weak

isospin, denoted T 3, by,

Q = T 3 + Y. (2.29)

Moreover, the covariant derivative is written generically as,

Dµ = ∂µ − cLig
σa

2
W a
µ − ig′

Y

2
Bµ (2.30)

where,

cL =

 1 for LH fields

0 for RH fields
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After introducing the matrix notation Wµ = σi

2 W
i
µ, gauge fields transform as,

Wµ → ULWµU
†
L −

1

g
∂µULU

†
L, (2.31)

while Bµ transform as,

Bµ → Bµ −
1

g′
∂µβ (2.32)

The field strength tensors of the electroweak interaction transform as (in matrix

notation),

Wµν → ULWµνU
†
L

Bµν → Bµν , (2.33)

where,

Wµν =
σa

2
W a
µν =

σa

2

(
∂µW

a
ν − ∂νW a

µ − gfabcW b
µW

c
ν

)
, (2.34)

and

Bµν = ∂µB
a
ν − ∂νBa

µ. (2.35)

Given these gauge symmetries, the SM gauge group is the direct product of,

SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (2.36)

which is a rank-4 group. This group will reduce to

SU(3)C ⊗ U(1)EM , (2.37)

after breaking the Electroweak symmetry as will be discussed in Sec. 2.4.

Finally, the SM fields and their symmetry properties are compiled in Table 2.2.
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Field SU(3)C × SU(2)L × U(1)Y SL(2,C)

Quark doublets
(
u
d

)
L

(3, 2, 1
6) (1

2 , 0)

and Singlets uR (3, 1, 2
3) (0, 1

2)
dR (3, 1,−1

3) (0, 1
2)

Lepton doublets
(
ν
e

)
L

(1, 2,−1
2) (1

2 , 0)

and Singlets eR (1, 1,−1) (0, 1
2)

Higgs H (1, 2, 1
2) (0, 0)

G (8, 1, 0)
Gauge Bosons W (1, 3, 0) (1

2 ,
1
2)

B (1, 1, 0)

Table 2.2: Matter content of the SM (first generation) and quantum numbers. The
last column indicates how SM fields transform under the Lorentz group as discussed at

the end of Sec.2.1.

2.3 Accidental Symmetries

As mentioned at the beginning of this Chapter, the SM is believed by some to be an

effective theory and that a more complete description of the Universe at energy scales

larger than O(1) TeV is yet to be formulated, and experimentally verified. A common

aspect of effective field theories is that some symmetries appear to be respected even

though such symmetries are not necessarily respected by a more complete and

underlying theory. Here we will describe two of these symmetries, namely, baryon (B)

and lepton (L) number conservation. The symmetry group takes the form,

U(1)e ⊗ U(1)µ ⊗ U(1)τ ⊗ U(1)B, (2.38)

The generators of these symmetries are: Le,µ,τ , and B. Table 2.3 lists the values of

these numbers for the fermion content of the SM.

(Particles),(Antiparticles) Le Lµ Lτ B

(e, νe),(ē, ν̄e) (1),(-1) 0 0 0
(µ, νµ),(µ̄, ν̄µ) 0 (1),(-1) 0 0
(τ, ντ ),(τ̄ , ν̄τ ) 0 0 (1),(-1) 0

(q),(q̄) 0 0 0 (1
3),(−1

3)

Table 2.3: Lepton and Baryon numbers of SM fermions.

A remarkable fact is that such symmetries in the SM forbid all processes violating the

conservation of Lepton (L = Le + Lµ + Lτ ) and Baryon numbers. Up to the date of
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writing this thesis, there is no experimental evidence for the contrary. Any observation

of violation of these two numbers will be evidence for new physics beyond the SM.

However, due to neutrino masses, the individual lepton numbers are not conserved.

2.4 The Higgs mechanism and EWSB

Figure 2.2: Schematic Higgs potential

At energy scales below 100 GeV, the SU(2)L ⊗ U(1)Y symmetry is spontaneously

broken 3 into U(1)EM . An issue arise here, according to the Goldstone theorem [19],

such continuous global symmetry when spontaneously broken gives rise to a massless

and chargeless scalar boson, called the Goldstone boson, for each broken generator

(e.g. the modes circulating the trough of the potential in Fig. 2.2).

Moreover, it is not possible to add mass terms to the intermediate vector gauge bosons

(W±, and Z0) by hand since gauge invariance will be explicitly broken.

These two issues are resolved by the Higgs mechanism [20, 21, 22] that combines

spontaneous symmetry breaking with local gauge invariance. The result is that the

Goldstone modes will contribute as the longitudinal component of the intermediate

vector bosons thereby turning them from massless into massive fields.

3The vacuum of the theory is not invariant under the symmetry
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In the SM, the Higgs mechanism involves introducing an SU(2)L doublet (T 3 = 1
2 and

Y = 1
2) of two complex scalars,

Φ ≡
(
φ+

φ0

)
, (2.39)

where φ+ = 1√
2

(φ1 + iφ2), φ0 = 1√
2

(φ3 + iφ4), φ− = (φ+)∗, and φ0 = (φ0)∗.

The Higgs potential is designed to provide spontaneous symmetry breaking of

SU(2)L ⊗ U(1)Y ,

V (Φ,Φ†) = −m2
φ

∣∣∣Φ†Φ∣∣∣+ λ
∣∣∣Φ†Φ∣∣∣2 (2.40)

where m2
φ is a squared-mass parameter, and λ is a quartic self-coupling. The minimum

of this potential occurs at Φ†Φ =
m2
φ

2λ = vΦ.

Under the electroweak gauge symmetry, the Higgs doublet transforms as,

Φ→ ei
σa

2
αeiY βΦ. (2.41)

One can use the gauge freedom to select a certain direction that fixes the gauge

symmetry, and where the three Goldstone bosons (φ1,2,4) disappear. This is the

so-called unitary gauge in which the vacuum is,

〈Φ〉 ≡ 1√
2

(
0

vh

)
, (2.42)

where

vh ≡
√

2vΦ ≈ 246GeV (2.43)

is the VEV of the Higgs field.

This process of acquiring a non-zero VEV by one of the components of the Higgs

doublet, namely the Higgs field, will result in giving rise to mass terms to the gauge

bosons of the weak interaction, to fermion matter fields, and to the Higgs boson; the

quantum excitation of the Higgs field around vh. That is, φ3 = vh + h, where h

corresponds to the Higgs boson.

Now if we examine the kinetic term of the Higgs field at excitations above the

minimum (in the unitary gauge) we find,
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LH ⊃ (DµΦ)†(DµΦ)

=

[(
∂µ −

ig

2
σiW i

µ −
ig′

2
Bµ

)
1√
2

(
0

vh + h

)]† [(
∂µ − ig

2
σiWµ

i −
ig′

2
Bµ

)
1√
2

(
0

vh + h

)]
=

1

2
∂µh∂

µh+ (v + h)2

(
g2

4
W+
µ W

− µ

)
+

(v + h)2

8

(
gW 3

µ − g′Bµ
)2
, (2.44)

where W± ≡ 1√
2

(
W 1 ∓ iW 2

)
.

By rotating the neutral gauge eigenstates in the last term of Eq. 2.44, we obtain the

neutral mass eigenstates,

(
Zµ
Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
W 3
µ

Bµ

)
, (2.45)

where θW is so-called Weinberg angle,

cos θW =
g√

g2 + g′2
,

sin θW =
g′√

g2 + g′2
. (2.46)

Therefore, both the W±, and Z bosons acquired masses,

m2
W =

v2
hg

2

4
,

m2
Z =

v2
hg

2

4
, (2.47)

where g2 ≡ g2 + g′2.

The application of the Higgs mechanism to the Electroweak theory and the first

estimation of mW and mZ was carried out by Weinberg [23] and Salam (cited in [24]).

Similarly, the coupling of the Higgs boson, h, to the weak gauge bosons can be read off

from Eq. 2.44.

Before discussing Yukawa interactions between the Higgs field and fermions, we note

that, indeed the generators of SU(2)L and U(1)Y will not annihilate the vacuum state,
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that is,

σi〈Φ〉 =

{(
0 1

1 0

)
,

(
0 − i
i 0

)
,

(
1 0

0 − 1

)}
1√
2

(
0

vh

)
6= 0,

Y 〈Φ〉 =
1

2
√

2

(
0

vh

)
6= 0, (2.48)

while the combination corresponding to the electromagnetic charge, Q, does annihilate

the vacuum, (
σ3

2
+ Y

)
〈Φ〉 = 0, (2.49)

and hence U(1)EM is a symmetry of the vacuum.

Next, we turn to the Yukawa coupling between the Higgs field and fermions. The

presence of this coupling will generate masses for fermions once the Higgs field acquires

a VEV. However, an issue will arise when dealing with quark SU(2)L doublets, since

〈Φ〉 can only give mass to the lower entry (c.f. Eq. 2.22). Overcoming this issue can be

accomplished by introducing:

Φc ≡ iσ2Φ∗ =

(
φ0

−φ−

)
. (2.50)

The Yukawa Lagrangian takes the form (for quarks):

LF = hdQ
†
LΦDR + huQ

†
LΦcUR + h.c., (2.51)

where hd,u are 3× 3 Yukawa matrices.

After EWSB, mass terms of the form mqqq̄ will arise, where

mq =
hqvh√

2
. (2.52)

Note that the Yukawa coupling is proportional to the mass. Since the top quark is by

far the heaviest of all fermions in the SM (see Eq. 2.1), its Yukawa coupling to the

Higgs is by far the largest and of O(1). An important consequence of this is that
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quantum corrections to the Higgs propagator will be dominated by the contribution

from the top quark. This will be further discussed in the Sec. 2.5.

The quantum excitation of the Higgs field, the Higgs boson (h), will also acquire a

mass of the form

m2
h = 2λv2

h = 2m2
φ. (2.53)

Finally, in 2012, ATLAS and CMS experiments at CERN discovered a scalar particle

that is consistent with a SM Higgs boson [25, 26]. One of the discovery channels is the

process

gg → h→ γγ (2.54)

where g, h, and γ stand for the gluon, Higgs, and photon. Fig. 2.3 shows the Higgs

discovery plots by the CMS experiment for this particular channel.

Figure 2.3: Left panel shows a di-photon event at the CMS detector, while the right

panel shows the invariant mass distribution (by CMS) where a peak occurs at around

126 GeV corresponding to the Higgs mass.

2.5 Beyond tree-level and the hierarchy problem

The cross-section of the interaction between elementary particles is perhaps one of the

most important quantities to be calculated in particle physics. This is because it can
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be directly related to experiments, thereby enabling the verification of theoretical

predictions of the SM. The cross-section is determined in terms of what is called the

scattering matrix (Ŝ-matrix) that contains the dynamical information of the theory.

The Ŝ-matrix is a perturbative expansion of the interacting Hamiltonian in powers of

the relevant coupling where the interaction is dictated by the symmetries of the theory.

For instance, given an initial state |ψ(t = −∞)〉 of free particles and asking what the

possible finial states |ψ(t = +∞)〉 due to a certain interaction are, we have,

|ψ(t = +∞)〉 = Ŝ|ψ(t = −∞)〉. (2.55)

Furthermore, the Ŝ-matrix can be expressed in terms of interacting and

non-interacting parts,

Ŝ = 1 + iT̂ , (2.56)

where the matrix elements of the T̂ -matrix will contain delta functions that enforce the

conservation of the four-momentum. It is the convention in most of the literature to

separate the purely dynamical part from the purely kinematic part in the T̂ -matrix.

The dynamics is then encoded in the so-called invariant amplitude M. Schematically,

Sfi ∼ 1 + δ(. . . )iMfi. (2.57)

The cross-section will be proportional to |M|2, which in turn can be calculated using

the method of Feynman diagrams.

The diagrams shown in Table 2.1 represent interactions to lowest order in perturbation

theory (referred to as tree-level or leading order). In order to obtain more precise

predictions, it is necessary consider radiative corrections (e.g. loop diagrams in Fig.2.4)

that represent higher order terms in the perturbative expansion of the Ŝ-matrix.

However, by inspecting such loop diagrams, it is found that they involve integrals over

internal momenta of virtual particles, which take the generic form (up to certain
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Figure 2.4: Possible 1-loop corrections to the Higgs field propagator.

factors): ∫ ∞
0

kndk, (2.58)

where k is an internal 4-momentum, and n ≥ −1. This is problematic since such

integrals are ultra-violet divergent.

In QFT, the procedure to tackle these divergences is to introduce a certain

regularisation scheme, which involves the introduction of a parameter with a mass

dimension. Three common schemes are the methods of dimensional regularisation,

dimensional reduction, and Pauli-Villars. In dimensional regularisation, one calculates

the ultra-violet divergent integrals in D-dimensions, where D = 4− 2ε. Then the

results will turn out to be separated into finite parts, and divergent parts in the form

of powers of 1
ε poles as the limit ε→ 0 is taken. As far as dimensional reduction is

concerned, the procedure is the same as in dimensional regularisation expect that the

algebra of the fields is taken to be four dimensional. This will prove crucial for

preserving supersymmetry, which will be introduced in Ch. 3. Finally, the Pauli-Villars

procedure involves adding auxiliary massive fields such that the integrals become

convergent. In Sec. 2.5.2 we will apply a simple version of the Pauli-Villars
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regularisation scheme to calculate the one-loop correction to the Higgs mass parameter

m2
φ.

Once a divergence is isolated, it is subtracted by the introduction of counter-terms at a

certain renormalisation scale. However, it will turn out that the couplings and masses

will be scale dependent. This dependence is determined using the RGEs of the model

(also called β functions). In the SM, the one-loop β functions of the three gauge

couplings are,

16π2∂g(1,2,3)

∂t
=

(
41

10
,−19

6
,−7

)
g3

(1,2,3)(t), (2.59)

where t = log(Q), and Q is the renormalisation scale.

The solution to Eq. 2.59 for each coupling (in terms of αi =
g2i
4π ) takes the general form,

α(Q) =
α(Q0)

1− cgi
2π α(Q0) log( QQ0

)
, (2.60)

where α(Q) is the running coupling, Q0 is some energy scale at which the coupling is

measured, and cgi is the corresponding coefficient in Eq. 2.59. A remarkable property

of the QCD running coupling is that it decreases with the increase of the energy scale.

This is called Asymptotic freedom, and was discovered in [27, 28].

2.5.1 The SM is anomaly free

In QFT, an anomaly refers to an explicit breaking of a symmetry (e.g. gauge

symmetry) due to the transition from classical to quantum fields. A theory that has

anomalies is inconsistent since claims about the symmetries of the theory, and hence

conserved quantities will be invalid. Therefore, it is vital for a theory that is intended

to describe Nature to be anomaly free. In the SM, there are sources of anomalies, such

as the triangle diagram in Fig. 2.5, but fortunately they cancel once all of them are

taken into account.
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Figure 2.5: Chiral anomaly

In particular, it is possible to check if the theory is anomaly free by calculating the

so-called: anomaly coefficient defined as,

Tr [Ta{Tb, Tc}] , (2.61)

where Ta,b,c are the generators of the symmetries, and the trace is over all fermions in

the theory. An anomaly free theory must have Eq. 2.61 equal to zero, which is the case

in the SM.

2.5.2 The hierarchy problem in the SM

In this section we describe the well-known hierarchy problem that is considered one of

many important arguments for the incompleteness of the SM.

As described in Sec. 2.4, the Higgs doublet and the Higgs potential (Eq. 2.40) are

introduced in order to break the electroweak symmetry spontaneously, thereby

introducing masses to vector gauge bosons and to fermions. The Higgs mass parameter

receives quantum corrections from all particles in the SM. However, the dominant

contribution comes from the heaviest particle, the top quark. The interaction term is

shown in Eq. 2.51. This interaction term leads to the following loop integral (top right

loop diagram in Fig. 2.4),

I = −(−i)2y2
t

∫
d4k

(2π)4

i(−i(/p+ /k)) i(−i/k)

[(p+ k)2 − iε][k2 − iε]
, (2.62)



Chapter 2 The Standard Model of Particle Physics 25

where we have denoted the coupling of the Higgs field to the top quark by yt. p, and k

are external and internal momenta, respectively. Using Feynman parametrisation

(described in [3]) one obtains:

I = y2
t

∫ 1

0
dx

∫
d4l

(2π)4

l2 −∆

[l2 + ∆− iε]2
(2.63)

where ∆ = x(1− x)p2 and k was shifted k = l − xp.

We have two integrals. Only the first one will give rise to quadratic divergence,

IA =

∫
d4l

(2π)4

l2

[l2 + ∆− iε]2
(2.64)

This integral is divergent, which can be seen by power counting. One can use a

Pauli-Villars regularisation by making the following replacement,

1

[l2 + ∆− iε]2
−→ 1

[l2 + ∆− iε]2
− 1

[l2 + Λ2 − iε]2
, (2.65)

where Λ2 >> ∆ is of dimension [mass]2. As l becomes large the term involving Λ2

renders the integral finite.

Finally we have,

ISM = δm2
H(SM) = i

3

16π2
y2
t [Λ

2 + . . . ] (2.66)

where the dots represent log-divergent and finite terms, and the factor of 3 is a colour

factor.

The fact that the Higgs squared-mass parameter is quadratically divergent leads to the

destabilising the electroweak scale since, as discussed in Sec. 2.4, it is related to the

Higgs VEV and physical mass (Eq.2.53). The former being indirectly measured via

measuring the Z boson mass and the gauge couplings g1, and g2, while the latter has

been directly measured.

If the energy scale at which the SM fails is of O(MPlanck), then the squared-mass

parameter has to be tuned to order ∼ 1030 in order to bring it down to the weak scale

where the physical Higgs mass is observed.
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The huge amount of fine tuning makes the parameter mH “unnatural”. In fact, a

general feature of scalar masses is that they lead to quadratic divergences. By

contrast, fermions and gauge bosons do not introduce such divergences because they

are protected by chiral and gauge symmetries. That is, the limit where the masses goes

to zero results in restoring some symmetries. This is the definition of a natural

parameter according to the ′t Hooft Naturalness criteria [29].

In this thesis, we take this fine tuning problem as an indication that the SM is only an

effective field theory, and that some new physics is expected to appear around and

above the weak scale in order to solve this technical hierarchy problem.

2.6 Scalar partners and the hierarchy problem

A possible solution to the hierarchy problem described in the previous Section is the

existence of scalar partners to top quarks (labelled with a tilde) as this will lead to the

cancellation of quadratic divergences. In particular, consider the following interaction

terms,

L 3 Yu|HuQ̃L|2, Yu|Hut̃R|2. (2.67)

where Yu is the coupling of the left scalar quark doublet (third generation), Q̃L, and

the right top scalar quark singlet, t̃R, to the Higgs doublet, Hu. Eq. 2.67 leads to the

loop diagrams in Fig. 2.6.

Figure 2.6: Correction to the Higgs squared-mass parameter from Q̃L and t̃R.
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The loop integrals are,

I1 = −iYu
∫

d4k

(2π)2

−i
[k2 +m2

t̃
− iε]

Using similar techniques as before and introducing PV regulator one obtains,

I1 = −i 3

32π2
Yu[Λ2 − 2m2

t̃
log(

Λ2

m2
t̃

)−m2
t̃
]

Similarly, the second diagram reads,

I2 = −i 3

32π2
Yu[Λ2 − 2m2

Q̃
log(

Λ2

m2
Q̃

)−m2
Q̃

]

Combining the two results we have,

I = δm2
H = −i 3

16π2
YuΛ2 + . . . (2.68)

We notice that this quadratic divergence is similar to the one obtained in Eq. 2.66, but

with the opposite sign due to the different nature of the particles running in the loops

(fermions in the SM, while scalars in this extension of the SM). Therefore, as long as

Yu = y2
t , the quadratic divergences in the Higgs squared-mass parameter will cancel.

Remarkably, supersymmetry (discussed in the next Chapter) introduces such scalar

partners with the required relation between the couplings. This means that

supersymmetry enable the stabilisation of the weak scale against radiative corrections

to the Higgs squared-mass parameter, which in turn becomes technically natural.

2.7 Other issues beyond the SM

In this section we summarise some of the issues that provide evidence of the

incompleteness of the SM in its current form, and that some new physics beyond the

SM must exist. A more extensive list of issues can be found in [30].
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Dark matter

There is an overwhelming evidence supporting the existence of a type of matter that is:

• Non-Baryonic

• Electrically neutral

• Slow (i.e non-relativistic)

• Stable (i.e. lifetime longer than the age of the Universe)

This unknown matter is called Dark Matter (DM), and it constitutes about 80% of the

matter content of the Universe today. SM particles fail to account for DM (e.g.

neutrinos are relativistic particles) and hence a new kind of particle that lies beyond

the SM is required (if DM is really a particle and not a modification of gravity).

Assuming a particle dark matter, the relic density of dark matter, ΩDh
2, is related to

the cross-section, σ, and velocity, v, by

ΩDh
2 ∼ 3× 1027

〈σv〉
, (2.69)

where h is the Hubble parameter, and 〈. . . 〉 denotes thermal averaging. Therefore,

given the expansion rate of the Universe, a large cross-section and velocity is

inconsistent with observations ΩDh
2 ≈ 0.1. A common candidate is a called the weakly

interacting massive particle (WIMP) [31]. A WIMP that has an interaction

cross-section of order 10pb, velocity of 0.1c, and a mass between 10 GeV and 1 TeV

can, in principle, account for cosmological observations (see [32] and references

therein). In fact, in supersymmetic extensions of the SM, as will be seen in Sec. 4.7, a

stable LSP can account for the observed DM relic density.

Matter-antimatter asymmetry

Another issue is the the asymmetry between matter and antimatter. Our observed

Universe seems to have matter but not antimatter. It is commonly assumed that the



Chapter 2 The Standard Model of Particle Physics 29

Universe started with an equal amount of matter and antimatter. However, at some

point, and due to some mechanism, there was an excess of matter over anti-matter that

lead to our baryonic Universe. The ratio between matter and anti-matter should be,

nm − nm̄
nm + nm̄

∼ 10−10, (2.70)

where nm and nm̄ is the number density of matter and anti-matter respectively.

Eq. 2.70 indicates that at some point in the history of the Universe, there was an

excess of one matter particle for each 1010 matter-antimatter pairs. In order to reach

this situation, three conditions have to be met (Sakharov conditions):

1. Baryon number violation.

2. CP violation.

3. Thermal non-equilibrium.

Although these three conditions can be met in the SM, the amount of

matter-antimatter asymmetry produced in the SM is not sufficient to account for the

ration in Eq. 2.70. Therefore, some mechanism due to physics beyond the SM has to

take place.

Neutrino mass

We have seen in Sec.2.4 that generating masses for fermions require mixing left and

RH states. However, due to the fact that the weak force only couples to LH particles

and RH antiparticles, RH neutrinos are not present. Therefore, the SM predicts that

neutrinos are massless. However, this turned out to be wrong. Neutrinos oscillate,

which is a strong indication that they are massive. This is considered as a direct

evidence that the SM is incomplete and that new physics exists.

Finally, these issues, and other open questions in the SM, motivate the introduction of

new theories and concepts beyond the SM. In the reminder of this thesis we consider

low energy scale Supersymmetry.
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In the previous Chapter, we have briefly introduced the SM of particle physics. We

discussed some issues that motivate replacing the SM with a more complete theory. In

this Chapter we will introduce N = 1 Supersymmetry (SUSY), and discuss the

minimal supersymmetric extension of the SM, called the MSSM. Next, we consider the

little hierarchy and fine tuning problems in the MSSM. Finally, the transition to

non-minimal supersymmetric extensions of the SM will be motivated. Two models

that are relevant to the thesis will be introduced, namely, the Next-to-minimal

supersymmetric SM (NMSSM), and the Exceptional supersymmetric SM (E6SSM).

3.1 Supersymmetry and its algebra

SUSY links bosons and fermions via fermionic generators Qα and Qα̇, where

α, α̇ = 1, 2 are spinor indices, and (Qα)† = Qα̇. Schematically,

Qα
∣∣Boson〉 →

∣∣Fermion〉α, (3.1)

Qα
∣∣Fermion〉α →

∣∣Boson〉. (3.2)

This means that there is a non-trivial relation between internal and external

(spacetime) symmetries encoded in the super-Poincare algebra (or superalgebra).

Formally,

{Qα, Q̄β̇} = 2(σµ)αβ̇Pµ, (3.3)

{Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0, (3.4)

[Pµ, Qα] =
[
Pµ, Q̄α̇

]
= 0 (3.5)

[Mµν , Qα] = −i(σµν)βαQβ. (3.6)

Eq. 3.3 shows that the anti-commutation between elements of Qα and Q̄α̇ are elements

of translation in spacetime. This establishes the fact that SUSY is a spacetime

symmetry. Eq. 3.5 shows that the commutation between elements of supersymmetric
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transformations and spacetime translations vanishes. This relation establishes the fact

that particles and their superpartners share the same mass if supersymmetry is exact.

Additionally, Eq. 3.6 shows that the commutation between elements of Lorentz

transformations and supersymmetric transformations are elements of supersymmetric

transformations. This establishes the fact that supersymmetric generators are Lorentz

spinors.

As discussed in the previous Chapter, the SM is a chiral theory since LH fields are

treated differently from RH fields. SUSY establishes a realistic extension of the SM

since it preserves this distinction between fields of different chirality, as opposed to

extended SUSY where additional supersymmetic charges are present. This in turn

means that there is a superpartner (sparticle) for each chiral state present in the SM,

along with superpartners of SM vector fields. In particular, particles and their

sparticles form supermultiplets. These are chiral supermultiplets containing,

spin-0

spin-1
2

 , (3.7)

and vector supermultiplets containing,

spin-1
2

spin-1

 . (3.8)

A given supermultiplet contains the same number of bosonic and fermionic degrees of

freedom, and its members share the same quantum numbers and the same mass.

3.2 Superfields

While it is possible to formalise Supersymmetric models in ordinary spacetime, it is

desired to use a formalism that enables writing terms that are manifestly

supersymmetric (in analogy to 4-vector notation that makes Lorentz invariant

manifest). Superspace is such a formalism (See [33, 34, 35]). It is an extension of

spacetime that introduces fermionic coordinates, θα, θ
α̇
. Fields that live in superspace
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are functions of {xµ, θα, θα̇}. Such fields are called general superfields. A superfield

that is only a function of {xµ, θα} is called a chiral superfield and satisfies D
α̇
Φ = 0,

where D̄α̇ is a super-derivative defined as,

D̄α̇ =
∂

∂θ̄α̇
− i (σ̄µθ)α̇ ∂µ. (3.9)

Furthermore, expanding a chiral superfield around its fermionic coordinates results in,

Φ(xµ, θ) = φ+ θψ + θθF, (3.10)

where φ is a scalar, ψ is a fermion, and F is called F-term and has dimension [mass]1.

On the other hand, if a general superfield is hermitian, then it is a vector superfield.

That is, it satisfies V = V †. Expanding a vector superfield around its fermionic

coordinates results in,

V = θ̄σ̄µθAµ + θ̄θ̄θλ+ θθθ̄λ̄+
1

2
θθθ̄θ̄D, (3.11)

where λ is a fermion field, and D is called the D-term, which has dimension [mass]2.

It turns out that the presence of F and D terms is important to ensure the closure of

the SUSY algebra. Specifically, for a given two supersymmetric transformation, δ1, δ2

applied on a given field X, the requirement that,

(δ1δ2 − δ2δ1)X = 0 (3.12)

will not be satisfied without the presence of the auxiliary F and D term fields in the

theory.

Moreover, the F and D terms transform as total derivatives under SUSY

transformations, which implies that they are not non-physical. This property enables

building SUSY-invariant Lagrangians.

More pedagogical treatment can be found in [35].
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3.3 The MSSM

In terms of superfields, a general renormalisable SUSY Lagrangian takes the form,

L = (
1

4
[WaαWa

α]F + c.c.) +
[
Φ∗i

(
e2gaTaV a

) j
i

Φj

]
D

+ ([W (Φi)]F + c.c.) , (3.13)

where Φ and V are chiral and vector superfields. Wα is the field-strength superfield

defined as,

Wα = −1

4
D†D†DαV, (3.14)

and W (Φ) is the superpotential.

The superpotnetial, W , contains the supersymmetric interactions of the theory. It is

gauge-invariant and defined as,

W = LiΦi +
1

2
M ijΦiΦj +

1

6
yijkΦiΦjΦk. (3.15)

where Li is a parameter of dimension [mass]2 and is present if Φi is a gauge singlet

and if the theory is not scale-invariant. M ij is a mass matrix, and yijk are Yukawa

couplings. Moreover, W is strictly complex-analytic in the chiral superfields. This is to

ensure constructing a supersymmetric Lagrangian.

The MSSM is minimal in the sense that it adds superpartners to the SM particles

without the inclusion of other gauge and SUSY allowed terms. The superpotential

reads

WMSSM = yu ˆ̄uQ̂Ĥu − yd ˆ̄dQ̂Ĥd − ye ˆ̄eL̂Ĥd + µĤuĤd, (3.16)

where µ is the Higgs and Higgsino (fermion partner of the scalar Higgs) mass term.

The hats denote superfields.

As mentioned previously, W , is holomorphic the the chiral superfields. Therefore, it is

essential to introduce two Higgs doublets with the opposite hypercharge in order to

have mass terms for up- and down-type quarks via the Higgs mechanism described in

Ch. 2.4.
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Notice that not all terms allowed by gauge and SUSY invariance are present in

Eq. 3.16. In particular,

α1Q
iLjD̄k + α2L

iLjĒk + α3D̄
iD̄jŪk. (3.17)

These terms correspond to lepton and baryon number violation respectively. To

formally disallow such terms, a matter parity (equivalent to R-parity) is usually

imposed on the low scale SUSY models. Under this discrete symmetry, ordinary

matter is even, while superpartners are odd.

3.3.1 Soft SUSY-breaking

Sparticles have not been observed in particle physics experiments. Thus, SUSY must

not be a symmetry of the weak scale. The issue of breaking SUSY is still the subject of

research and its technicalities are irrelevant to our discussion. However, we will briefly

discuss broken SUSY. First, it turns out that attempting to spontaneously break SUSY

extensions of the SM will be always associated with the prediction that some sparticles

will have masses smaller than their SM partners, which is ruled out. To overcome this,

it is assumed that there exists a sector with suppressed couplings to SM particles,

called the Hidden Sector, in which SUSY is spontaneously broken by some mechanism

[36]. Then this breakdown is mediated to the “visible” sector either via gravity, or

gauge interactions, or other means (e.g. anomaly mediation) as illustrated in Fig. 3.1.

Figure 3.1: Spontaneous SUSY breaking takes place in a hidden sector. It is then
mediated to the visible sector.

Therefore, the type of realistic SUSY models that we discuss in this thesis is that in

which SUSY is explicitly broken at the low energy scale. That is, we add, by hand,

terms that explicitly break SUSY. However, not all such term are allowed. Only the

ones that keep the feature that quadratic divergences are cancelled since the main
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motivation for low energy scale SUSY is stabilising the weak scale by protecting the

Higgs squared-mass parameter from large radiative corrections (as discussed in

Sec. 2.6).

The set of allowed soft SUSY-breaking masses contains:

• Gaugino masses: M1,M2, and M3,

• Scalar squared-mass terms: m2
i ,

• Trilinear scalar couplings: Au, Ad, and AL, and finally,

• Higgs bilinear term: b.

The matter content of the MSSM is compiled in Table 3.1

Field Superpartner SU(3)C × SU(2)L × U(1)Y SL(2,C)

Quark/squark doublets
(
u
d

)
L

(ũ
d̃

)
L

(3, 2, 1
6) (1

2 , 0)

and Singlets uR ũR (3, 1, 2
3) (0, 1

2)

dR d̃R (3, 1,−1
3) (0, 1

2)

Lepton/slepton doublets
(
ν
e

)
L

(
ν̃
ẽ

)
L

(1, 2,−1
2) (1

2 , 0)

and Singlets eR ẽR (1, 1,−1) (0, 1
2)

Down-type Higgs Hd H̃d (1, 2, 1
2) (0, 0)

Up-type Higgs Hu H̃u (1, 2,−1
2) (0, 0)

Gauge Bosons G G̃ (8, 1, 0)

and their superpartners W W̃ (1, 3, 0) (1
2 ,

1
2)

B B̃ (1, 1, 0)

Table 3.1: Matter content of the MSSM (first generation) and quantum numbers.

3.3.2 Electroweak symmetry breaking

In the MSSM, the tree-level Higgs scalar potential is (at the minimum)

V = m2
1v

2
d +m2

2v
2
u − 2bvdvu +

1

8
ḡ2(v2

d − v2
u)2, (3.18)

where m2
i = m2

Hd,u
+ µ2, and ḡ2 = (g2 + g′2).
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Here, it is worth mentioning the difference between the Higgs potential in the SM

(Eq. 2.40), and in the MSSM (Eq. 3.18). The former was designed and contains a free

parameter λφ, whereas in the MSSM the Higgs potential is derived, and λφ is no longer

a free parameter, but instead a quantity that depends on the gauge couplings, g′ and g.

Applying the minimisation conditions,

∂V

∂vd
=
∂V

∂vu
= 0, (3.19)

to Eq. 3.18 leads to,

m2
Z

2
=

(m2
1 − tan2 βm2

2)

tan2 β − 1
(3.20)

sin 2β =
2m2

3

m2
1 +m2

2

(3.21)

where, m3 = b and the ratio of the two Higgs VEVs is

tanβ =
vu
vd
. (3.22)

These electroweak symmetry breaking conditions will restrict the parameter space of

the MSSM. Moreover, it is important to include quantum corrections to Eqs. 3.18- 3.21

in order to obtain more precise and reliable predictions. There are two types of

corrections. First, there is the so-called Coleman-Weinberg correction to the potential

(in the DR scheme),

V (1) =
1

64π2
STrM4

[
log

(
M2

m2
soft

)
− 3

2

]
, (3.23)

where, (1) is for one-loop, and STr is the supertrace 1. M denotes all particles in the

model. Notice that the Coleman-Weinberg potential depends on the physical masses of

squarks. It is proportional to logarithmic quantities that can be small.

1Defined as: STr(M2) =

( ∑
scalars

m2

)
−
(

2
∑

fermions

m2

)
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On the other hand, there are radiative corrections to the up- and down-type Higgs

doublets. For instance, the correction δmHu can be given as,

δm2
Hu ≈ −

3

8π2
y2
t

(
m2
Q̃t

+m2
ũt +A2

t

)
log

(
MX

MS

)
, (3.24)

where, m2
Q̃t
,m2

ũt
, and A2

t are soft SUSY-breaking terms associated with the top

squarks. MX is a high energy scale (e.g. MGUT), and M2
S = 1

2(m2
Q̃t

+m2
ũt

) is the

average top squark mass.

Here, we notice that such corrections depend on logarithms that can be large.

3.3.3 The Higgs sector

Unlike the SM where only one physical Higgs is present, the MSSM predicts the

existence of five Higgs particles. They are,

{h,H0, H±, A}, (3.25)

where h is a SM-like CP-even Higgs, H is a non-SM-like CP-even Higgs particle, H±

are two charged Higgs particles, and A is a CP-odd Higgs particle.

One of the important features of low scale SUSY models is that, there exists a limit,

called the decoupling limit, where the theory predicts a SM-like Higgs, in terms of

mass and couplings, and the rest of the Higgs particles can be heavy enough to escape

detection. In this limit, mA >> mZ . And,

m2
h ≈ m2

Z cos 2β2 + ∆m2
h (3.26)

where,

∆m2
h =

3m4
t

2π2v2
ln
m2
t̃

m2
t

+
X2
t

m2
t̃

(1− X2
t

12m2
t̃

), (3.27)

and m2
t̃

= mt̃1
mt̃2

; the mass eigenstates of the stop, and Xt = At − µ cotβ is a mixing

term.
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While the other Higgs particles take similar heavy masses

mA ≈ mH ≈ mH± >> mZ . (3.28)

3.3.4 MSSM RGEs

For large tanβ, Eq. 3.20 can be written as,

m2
Z

2
= −µ2 −m2

Hu , (3.29)

where the parameters in this equation are low energy scale parameters. However, it is

possible to express m2
Hu

in terms of high energy (GUT) input parameters, which are

considered as the fundamental parameters of the model. For example, in the

constrained MSSM, the fundamental parameters are; a universal scalar mass, m0, a

universal gaugino mass, m1/2, and a universal trilinear coupling A0, µ0, and the

bilinear B0. Therefore, mZ can be expanded in terms on high energy input parameters,

obtained from the relevant RGEs as,

m2
Z = a µ2(0) + b m2

1/2 + c m2
0 + d A2

0 + e A0 m1/2 (3.30)

The target is, then, to calculate these coefficients by setting a value for one input

parameter at the GUT scale to unity, say m2
0, while the other parameters are set to

zero. Next, we run the RGEs down to the MSUSY scale by solving the set of coupled

differential equations, thereby obtaining,

c =
m2
H2

(MSUSY)

(1GeV)2 . (3.31)

It is worth mentioning that the values of the coefficients will depend on tanβ as well as

the gauge and Yukawa couplings.

Fig. 3.2 shows the running of MSSM parameters from the GUT scale to the weak

scale. In particular, we notice that scalar masses increase as they evolve from an input
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Figure 3.2: MSSM RG Evolution

high scale to the electroweak scale. And more importantly, the effect of the top

Yukawa coupling is to decrease the Higgs mass mHu as it evolves down to lower scales.

This effect can drive m2
Hu

to a negative value near the electroweak scale. hence

allowing it to obtain a non-zero VEV. This effect is called Radiative EWSB.

Using the RGEs with universal boundary conditions at the GUT scale, it is possible to

write (for a fixed value of tanβ = 10),

−m2
Hu = 2.29 m2

1/2 + 0.09 m2
0

+ 0.098 A2
0 − 0.39 A0 m1/2

(3.32)

We notice from Eq. 3.32 that the coefficient of the gaugino mass parameter assumes

the largest value. This means that m2
Hu

can be very sensitive to changes in m2
1/2 and is

driven more negative as m2
1/2 increases.

On the other hand, in a non-universal case, one can expand m2
Z in terms of the GUT

scale parameters as,
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m2
Z

2
=c0µ

2
0 + c1M

2
3 + c2M

2
2 + c3M

2
1

+ c4m
2
Hu + c5m

2
Hd

+ c6m
2
q + c7m

2
u

+ c8AtM3 + c9AtM2 + c10AtM1 + c11A
2
t

+ c12M2M3 + c13M1M3 + c14M1M2.

(3.33)

The coefficients can be calculated using the same method previously discussed for the

universal case. For instance, using one-loop RGEs a number of coefficients are shown

in Table 3.2.

Parameter Coefficient

M2
3 3

M2
2 - 0.11

M2
1 0.008

m2
Hu

- 0.65

A2
t 0.08

Table 3.2: Coefficients of MSSM non-universal parameters with tanβ = 2.5 using
one-loop RGEs.

We notice that the coefficient of M2
3 is the largest, and therefore, m2

Z is significantly

affected by changes of M2
3 at the GUT scale. However, there could be some subtle

effects that alter this behaviour to some extent if one takes into account all corrections

to mZ as discussed in [37].

Finally, in both of the previous cases, the coefficient of m2
0 is found to be significantly

small. This indicates that m2
Hu

and m2
Z are insensitive to changes in m2

0 at the GUT

scale. This this sometimes called the focus point region [38].

3.4 The little hierarchy problem

In Sec. 3.3.2, we saw that the mass of the Z boson is a derived quantity (Eq. 3.20). In

particular, we found that m2
Z is related to SUSY soft-breaking parameters, mHu ,mHd ,

and the µ term. Furthermore, we saw in Sec. 3.3.4 that m2
Z can be expanded in terms
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of GUT scale fundamental parameters that might be universal or otherwise. By

inspecting Eq. 3.20, we can see that m2
Hu

should be of the same order as m2
Z for fine

tuning to be absent. Theoretically this can be achieved. However, one needs to ask if

there is another derived quantity that requires m2
Hu

to be considerably larger than m2
Z ,

since in such a case, fine tuning in inevitable. This is indeed the case, and the other

quantity is the physical Higgs mass in Eq. 3.26. This equation shows that the MSSM

predicts the Higgs mass that is always smaller than the Z mass at tree-level.

However, it is possible to rely on higher order corrections to increase the predicted

Higgs mass to the desired range of values between 123− 128 GeV. This in turn can

only take place if either the average top squark mass in Eq. 3.27 is significantly large,

or if the mixing term in the same equation is close to maximum. Both cases are

problematic, in terms of fine tuning. First, the more we separate the SUSY scale from

the weak scale, the more fine tuning we expect in our model. Indeed, as we have seen

in Eq. 3.24, the correction to m2
Hu

is dominated by the top squarks. The larger the

input value for the top squark parameters, the larger the correction to m2
Hu

, and the

further it is from O(M2
Z). This is the case in the MSSM since large top squarks are

required in order to enhance the loop correction to the mass of the physical Higgs.

This is the little hierarchy problem. It is a main source of fine tuning and is present in

all low scale SUSY models, as far as we are aware.

3.5 Measuring the fine tuning

Given the little hierarchy problem, it is desired to ask the questions:

• Does the fine tuning depend on the boundary conditions of the model and how

much?

• Which of the fundamental parameters are more relevant to fine tuning?

• What are the sources of fine tuning in a given model?

• How do different models compare in terms of fine tuning?
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• What is the least fine tuned model?

All of these questions, and more, require a mean of measuring the fine tuning in a

practical way.

This has been addressed in [39], where a fine tuning measure was introduced and

became popular after its usage in [40].

In particular, it is a sensitivity measure that quantifies the fractional change in mZ in

response to a fractional change in a given fundamental parameter, a,

∆ =

∣∣∣∣∂ logmZ

∂ log a

∣∣∣∣ . (3.34)

Applying this formula to Eq. 3.20 leads to a fine tuning master formula for the MSSM

(Ref. [41]),

∆ =

∣∣∣∣ ai
(tan2 β − 1)m2

Z

{
∂m2

1

∂ai
− tan2 β

∂m2
2

∂ai
− tanβ

cos 2β
×(

1 +
m2
Z

m2
1 +m2

2

)[
2
∂m2

3

∂ai
− sin 2β

(
∂m2

1

∂ai
+
∂m2

2

∂ai

)]}∣∣∣∣ , (3.35)

where m2
1 = m2

Hd
+ µ2, m2

2 = m2
Hu

+ µ2.

This formula can then be implemented in a spectrum generator and calculated for each

point in the parameter space. It is necessary to understand the sources of fine tuning,

and to quantify this fine tuning in order to compare different regions of the parameter

space of a certain model or different models. Ultimately, this might help in discovering

the least fine tuned supersymmetric model, and could provide guidance to SUSY

searches at the LHC as it is believed that regions with high fine tuning might be less

likely to be discovered.

This measure has been used extensively within the literature e.g.

[42, 43, 44, 45, 46, 47, 48, 38, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63].
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3.5.1 Alternative fine tuning measures

Although the fine tuning measure in Eq. 3.34 is widely used, there exists a number of

alternative fine tuning measures in the literature

[64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 77].

These measures are motivated by some issues associated with the traditional measure.

For instance, the value of the fine tuning can vary depending on how one defines the

measure. Some authors define it with m2
Z in the nominator while the parameters in the

denominator correspond to are not squared. Others discriminate between the

parameters such that scalar masses are squared while the other parameters are not.

All of this can cause confusion when comparing the results of different papers.

Therefore, some of the alternative measures try to overcome this issue by having a

normalised measure that is insensitive to different definitions.

Moreover, the fine tuning associated with a point in the parameter space can be taken

to be the maximum fine tuning in that point (as is done in this paper), or could be

chosen to be a sum of quadrature [72, 73, 74, 75, 79].

We will use the traditional measure for the following reasons:

1. It is the most widely used tuning measure with which one can compare;

2. It is simple to understand and apply;

3. It is in better agreement with the more complicated measure [77] than other

measures that use the quadrature summation.

Finally, it is important to note that, while the different definitions of the fine tuning

measure can produce different values of fine tuning for a given point in a given

parameter space, the overall conclusions regarding which model is less fine tuned than

the other will be consistent regardless of which measure has been used.
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3.6 Non-minimal supersymmetric models

There are several issues in the MSSM that motivate the departure from minimality.

First, we have seen that the weak sector is fine tuned, and hence it is tempting to ask

if it is possible to find a model that is significantly less fine tuned. Second, there is an

issue with the µ-term (the supersymmetric Higgs/Higgsino mass term). Looking at

Eq. 3.29, we see that a supersymmetric term must be of the same order as a

soft-breaking term. This is a phenomenological requirement. Theoretically, however, µ

could be zero, or of O(MGUT), which is not viable phenomenologically. This is the µ

problem in the MSSM. It also motivates departing from minimality and finding a

dynamical origin of this parameter.

3.6.1 The NMSSM

In the NMSSM (see [80, 81] for a review), the µ parameter is replaced with a new

SM-gauge-singlet superfield Ŝ. This singlet couples to the Higgs (λSHdHu). Hence, its

superpotential takes the form,

WNMSSM = WMSSM(µ = 0) + λSHdHu. (3.36)

However, this superpotential has a Pecci-Quinn symmetry where,

S → ei2αS, (3.37)

(Hu, Hd) → e−iα(Hu, Hd)

(Q,L) → eiα(Q,L),

(u, d, e) → (u, d, e).

Once a VEV is acquired by S near the weak scale, this symmetry is spontaneously

broken, resulting in a massless axion, which has not been observed (detailed discussion

and analysis can be found in [82]). In order to avoid issues with this axion, a cubic
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interaction term is added to Eq. 3.36,

WNMSSM = WMSSM(µ = 0) + λSHdHu +
κ

3
S3, (3.38)

where κ is the cubic self-coupling of S. This is called the Z3 invariant NMSSM, which

is what is considered in this thesis (other possibilities include e.g. [83]). Therefore, we

will refer to it simply as the NMSSM in the next Chapters.

More details about the NMSSM will be discussed in Ch. 4.

3.6.2 The E6SSM

Unification of the gauge couplings at the GUT scale indicates that the SM group is

embedded in a larger group at the GUT scale with one coupling constant. The E6

group is such a group [84]. It is a rank-6 Lie group, and hence it contains SO(10).

However, SO(10) is a rank-5 group. Therefore, E6 contains,

E6 3 SO(10)× U(1)ψ, (3.39)

Moreover, SO(10) contains SU(5), which is a rank-4 group as well as a U(1) group,

SO(10) 3 SU(5)× U(1)χ. (3.40)

The SM group, which is a rank-4 group is contained in SU(5),

SU(5) 3 SU(3)⊗ SU(2)⊗ U(1). (3.41)

Furthermore, the E6 group has complex representations. This is crucial for having

chiral representations as is required by the SM.

A fundamental representation of E6 that accommodates the SM particles could be the

27-dimensional representation. In general, it decomposes under SO(10)× U(1)ψ as ,

27→ (16; 1) + (10;−2) + (1; 4), (3.42)
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Then it is possible to decompose the 16, 10 and 1 representations under

SU(5)× U(1)χ as,

16 → (10;−1) + (5̄; 3) + (1;−5), (3.43)

10 → (5; 2) + (5̄;−2),

1 → (1; 0).

The general form of 27 under SU(5)× U(1)χ × U(1)ψ is,

27→ 10−1,1 + 5−2,−2︸ ︷︷ ︸
Quarks &
Leptons

+ 53,1 + 52,−2︸ ︷︷ ︸
Higgs doublets &
Coloured exotics

+ 1−5,1︸ ︷︷ ︸
Singlets

+ 10,4︸︷︷︸
RH Neutrinos

, (3.44)

where the numbers in the underscript denote the U(1) charges.

Defining a linear combination of the two separate U(1) charges as,

Qα = Qψ cosα−Qχ sinα (3.45)

It is possible to choose an angle that renders the last term in Eq. 3.44 chargesless (see

[85] and references therein). This multiplet is associated with RH neutrinos. And this

defines the E6SSM model that we will discuss in more details in Ch 5.
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Naturalness in scale-invariant

NMSSMs with and without extra

matter

4.1 Overview

The scalar particle discovered in July 2012 [25, 26] is increasingly consistent with a

Standard-Model-like Higgs boson [86]. This may reinforce the hierarchy problem and

the call for new physics at low scales just above the electroweak scale [87, 88]. Low

scale supersymmetry (SUSY) is perhaps the most well-motivated candidate for such

new physics beyond the Standard Model (SM) since it provides, for e.g., a solution to

the hierarchy problem, a candidate for Dark Matter and unifies the SM group at the

Grand Unification (GUT) scale. However low scale SUSY remains elusive at the LHC

[89].

The naturalness problem in SM [29] is associated with the large ratio between the

weak scale (MW ) and the Planck scale (MP ). If no new physics enters at the weak

scale or the TeV scale, then the Higgs mass has to be fine tuned against the Planck

scale, GUT scale, or any new scale represented by possible heavy masses (e.g. a heavy

right-handed neutrino). This situation is theoretically unpleasant and the lightness of

49



50 Chapter 4 Naturalness in scale-invariant NMSSMs with and without extra matter

the Higgs needs to be explained or maintained without huge fine tuning.

Supersymmetry (SUSY) can resolve this issue by cancelling the quadratic divergence

associated with fundamental scalars.

Nevertheless, the observed value of the Higgs mass (mh ∼ 126 GeV) already places the

minimal supersymmetric extension of the standard model (the MSSM) in tension with

the naturalness requirement since the tree-level Higgs mass bound mh ≤ mZ implies

that very large stop masses and mixing is required in order to radiatively increase the

Higgs mass to its observed value, leading to a fine tuning in the permille level (see [90]

for a general discussion on Naturalness and SUSY). Moreover, the lower bound on the

gluino mass at the LHC of greater than 1 TeV or so is exacerbating the situation, since

the gluino mass radiatively increases the mass of the top squarks, independently of

their experimental limit, especially in high scale SUSY models such as the constrained

MSSM (cMSSM) or minimal supergravity (mSUGRA) where the effect of gluino

radiative corrections occurs over a larger energy range (for a general discussion on the

Status of SUSY after LHC8 we refer the reader to [91]).

Non-minimal SUSY models, such as the next-to-minimal standard model (NMSSM)

(for a review see [81]), can accommodate a 126 GeV Higgs boson without requiring

such large stop masses and mixing. This is because non-minimal models usually

introduce additional contributions to the physical Higgs mass at tree level. In

particular, the superpotential of the NMSSM contains an F-term interaction

(λŜĤuĤd) that couples the up- and down-Higgs doublets with the SM singlet. This

will enhance the Higgs mass with an additional term proportional to λ at tree-level

(Equation 5.1 in Sec. 4.2). Thus, the fine tuning is expected to be less severe than in

the MSSM since one does not require large stop loop contributions as is the case in the

MSSM [92, 93, 94]. However, there is an upper bound on λ at the low scale (λ . 0.7)

[95] for it to be perturbative to the GUT scale. This indeed will limit the tree-level

enhancement to the Higgs mass in the NMSSM. Moreover, the increased lower bounds

on sparticles from direct searches at the LHC sets the minimum amount of fine tuning

in the electroweak sector of all SUSY models, and the NMSSM is no exception.
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Adding extra matter to the particle content of the NMSSM has a profound impact on

the phenomenology and predictions of the model. In particular, it allows λ to be larger

at the low scale [96, 97, 98], while still perturbative to the GUT scale. Indeed, this can

improve the tree-level enhancement to the Higgs mass in comparison with the NMSSM

without extra matter. Conventional wisdom dictates that increasing λ at the low scale,

by adding extra matter, reduces the fine tuning of the model. However, surprisingly,

this question has not been fully addressed in the literature in a Z3-invariant

semi-constrained SUGRA framework, as far as we know. In this Chapter, we consider

two examples of the NMSSM with extra matter, and we find that, although λ is

increased at the low scale, neither model leads to a reduction in fine tuning. The two

models are called: the “NMSSM+”, which is defined by adding extra matter filling

three (5 + 5̄) of SU(5) (cf. 3.44 ), and the “NMSSM++”, where four extra (5 + 5̄)

matter representations of SU(5) are added to that present in the NMSSM.

Although the fine tuning in the “NMSSM+” has not been discussed before, a related

model, the “Peccei-Quinn NMSSM” with additional three (5 + 5̄) states of SU(5) has

been considered [97], where the fine tuning due to the parameter Aλ (the trilinear soft

SUSY breaking term associated with λ) was discussed. This model is characterised by

removing the cubic self-coupling term of the singlet superfield (κ3 Ŝ
3) from the

superpotential. On the other hand, the analysis in [99] considered a non-scale invariant

version of the Peccei-Quinn NMSSM, as well as the so-called “λ-SUSY” model, where

λ is not required to be perturbative to the GUT scale, but only to ∼ 10 TeV to comply

with electroweak precision tests. Further references will be given in Sec. 4.4.

In this Chapter, then, we study and compare the fine tuning in three Z3-invariant

semi-constrained GUT models: the NMSSM, where we update previous literature, and

the NMSSM+ and NMSSM++ for the first time. We show that, surprisingly, while λ

assumes larger values in the plus-type models than in the NMSSM, hence the tree-level

Higgs mass is larger in such models, there is an indirect RGE effect, played by the

gluino, that renders the plus-type models more fine tuned than the NMSSM. 1 As a

1In particular, we find that, in order to obtain the same physical gluino mass at the low scale in the
three models, the GUT scale boundary condition of the gluino mass parameter M3(MGUT) will follow
a specific ordering. Namely, M3(MGUT) is larger in the NMSSM+, and even larger in the NMSSM++,
as compared to the NMSSM.
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consequence of this unavoidable RGE effect (explained in Sec. 4.3), the mass of the top

squarks will always be larger than in the NMSSM+, and even larger in the

NMSSM++, as compared to the NMSSM. Taking into account current LHC limits and

constraints on the Higgs, third generation squarks, and the gluino, the lowest fine

tuning in the semi-constrained NMSSM, NMSSM+, and NMSSM++ is found to be

about 100, 200 and 600, respectively, which is a new and unexpected result. While the

NMSSM and the NMSSM+ are less fine tuned than the cMSSM, the NMSSM++ is

fine tuned to a level comparable to that in the cMSSM. More importantly, our results

show that increasing the perturbativity bound on λ by adding extra matter does not

reduce the fine tuning. In fact, it can increase the fine tuning significantly.

In Sec. 4.2, we give a brief overview of the models is given. Sec. 4.3 discusses certain

one-loop RGEs and features of each model. In Sec. 4.4, we discuss the fine tuning

measure that is used, and the two-loop RGEs implementations. Next, we discuss the

theoretical framework at the GUT scale, and the ranges of parameter space we are

considering in each model in Sec. 4.5. Sec. 4.6 is where we present our main results.

Finally, we conclude in Sec. 4.8.

4.2 The models

Non-minimal models are associated with adding fields not present in the SM, and/or

enlarging the gauge structure. The NMSSM is a well-known example where the µ term

in the MSSM is omitted, and a SM-singlet field is introduced. This field acquires VEV

near the weak scale to dynamically generate a µ effective term. The NMSSM keeps all

the good features of the MSSM, such as unification of gauge couplings, and radiative

electroweak symmetry breaking. It is also known to have lower fine tuning than the

MSSM as mentioned in Sec. 4.1. However, to avoid unwanted weak-scale Axion, one

introduces a cubic term for the singlet and the superpotential is invariant under a

discrete Z3 symmetry,

WNMSSM =
κ

3
Ŝ3 + λŜĤ1Ĥ2 +WMSSM(µ = 0) (4.1)
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where Ĥ1 = Ĥd, Ĥ2 = Ĥu are the down- and up-type Higgs superfields, Ŝ is a SM

singlet superfield. κ is the cubic coupling of the singlet, and λ is the Higgs

singlet-doublet coupling. WMSSM(µ = 0) is the superpotential of the MSSM without a

µ term. Note that 4.1 is invariant under a discrete Z3 symmetry, and once the VEVs

are acquired this symmetry is broken.

The Higgs and the SM singlet superfields will acquire VEVs represented classically as,

〈H1〉 =

v1

0

 , 〈H2〉 =

 0

v2

 , 〈S〉 = v3, (4.2)

In terms of these VEVs, the scalar Higgs potential reads,

VNMSSM =m2
1v

2
1 +m2

2v
2
2 + λ2v2

1v
2
2 + 2µeffBeffv1v2

+
ḡ2

8
(v2

1 − v2
2)2 + v2

3(m2
S +

2

3
kv3Aκ + κ2v2

3).

(4.3)

where, m2
j = m2

Hj
+ µ2

eff, for j = 1, 2. µeff = λv3 and Beff = κv3 +Aλ are effective terms

produced as the SM singlet acquires its VEV. Aλ and Aκ are trilinear soft terms

associated with the couplings λ and κ. mS is the soft mass of the singlet. And

ḡ2 = g2
1 + g2

2, where g1 and g2 are the gauge couplings associated with U(1)Y and

SU(2)L, respectively.

From the minimisation conditions, ∂V
∂vi

= 0, where the index i runs from 1 to 3, we

obtain three conditions for electroweak symmetry breaking in terms of the mass of the

Z boson, mZ , and sin 2β, where tanβ = v2
v1

, and the soft mass of the SM singlet, mS :

m2
Z

2
=
m2

1 − tan2 βm2
2

tan2 β − 1
, (4.4)

sin 2β =
2µeffBeff

m2
1 +m2

2 + λ2v2
, (4.5)

m2
S + κAκv3 + κ2v2

3 ' 0 (4.6)
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where, v2 = v2
1 + v2

2 = (174 GeV)2 2.

Equations 4.4- 4.5 are similar to those of the MSSM, while Equation 4.6 is absent in

the MSSM since it does not contain a SM singlet superfield. In contrast to the MSSM,

the µeff in the NMSSM depends on soft parameters as it includes v3, which, in turn,

can be written in terms of mS and Aκ by using Equation 4.6.

The soft terms, {mHj ,mS , Aκ, and Aλ}, at the low scale, e.g. MSUSY ∼ O(1TeV), can

be expanded in terms of the fundamental parameters of the theory that are specified at

the GUT scale using the Renormalisation Group Equations (RGEs) (this will be

briefly discussed in Sec. 4.3). In particular, in the framework of mSUGRA/CNMSSM,

all scalar masses share a common mass: m0, all gaugions share a common mass: m1/2,

and all trilinear couplings share a common value: A0. This is called universal

boundary conditions. One can work on a framework where some or all of this

universality is relaxed.

One of the remarkable features of the NMSSM is that it allows for the increase of the

tree-level Higgs physical mass via an additional F-term contribution:

m2
h ≤ m2

Z cos2 2β + λ2v2 sin2 2β, (4.7)

therefore, unlike the case in the MSSM, moderate values of tanβ (<10) are preferred

in conjunction with large values of λ ∼ 0.7. Additionally, loop corrections to the

physical Higgs mass, which are dominated by the top/stop, need not be as large as in

the MSSM. This means that, in the NMSSM, the A-term can be as small as zero, and

the lightest stop can be significantly smaller than in the MSSM (more discussion can

be found in [98]). Moreover, it is well-known that in the NMSSM, the SM-like Higgs

can be either the lightest or the next-to-lightest CP-even Higgs states.

Nevertheless, the NMSSM is also known to have its own issues, namely, the “domain

wall problem” that arises as the Z3 symmetry is spontaneously broken near the

electroweak scale [100]. This problem, as well as the 0.7 bound on λ(MSUSY) are the

2cf. 2.43, and notice that the value of v depends on the definition of the Higgs fields, specifically,
whether the square-root is absorbed into the fields or not.
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main motivation for studying extensions of the NMSSM where extra matter surviving

to a scale of a few TeV are present. Plus-type models can overcome both issues [101]

and offer a link to a more fundamental (F-Theory) framework [102].

In the notation of SU(5) representations, the two models we are considering and

comparing with the NMSSM can be viewed as:

NMSSM+ ≈ NMSSM + 3(5 + 5̄), (4.8)

and

NMSSM++ ≈ NMSSM + 4(5 + 5̄). (4.9)

From low energy standpoint, Eqs. 4.4-4.6 hold in the plus-type models to a good

approximation, this is because the extra matter resides in a secluded sector that only

relates to ordinary NMSSM superfields through gauge interactions, and therefore, any

contributions to EWSB conditions from such sector could be suppressed [101]. This is

a key feature of the models we are considering, and as a consequence, the chief effect of

the presence of the extra matter is the modification of running of the gauge couplings

(and gaugino mass running) at one-loop, and the running of the rest of the parameters

at two-loop. Gauge coupling unification is approximately achieved at two-loop in both

plus-type models (Fig. 4.1) since the extra matter form complete representations of

SU(5). Furthermore, in the NMSSM+ (++), and for a mass scale of the extra matter

of 3 (6) TeV, the unification scale is MGUT ∼ 2.5× 1016 GeV (MGUT ∼ 3.6× 1016

GeV), and the unified coupling is αGUT ∼ 0.11 (αGUT ∼ 0.33). This can be compared

to the NMSSM, where MGUT ∼ 1.5× 1016 GeV, and αGUT ∼ 0.04. Moreover, the

implication of such increase in MGUT, and αGUT is that the proton lifetime from

dimension-6 operators (τp ∝
M4

GUT

α2
GUT

) will be roughly, τp ∼ 2.5× 1034 years

(τp ∼ 1× 1034 years), in comparison to the NMSSM where τp ∼ 2.1× 1034 years. These

are well above the limit on τp (p→ eπ) > 8.2× 1033 years [103].
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Figure 4.1: Gauge coupling unification to two-loop in the NMSSM+ (left) and the

NMSSM++ (Right). The mass scale of the extra matter in the NMSSM+ (NMSSM++)

is taken here to be 3 (6) TeV. Below that scale, the NMSSM without extra matter is

assumed. At Mt = 173.6 GeV, we set: g1,SM = 0.35940, g2 = 0.64754, g3 = 1.1666,

ht = 1.01685, tanβ = 5, λ = 0.7, and κ = 0.1.

In Sec. 4.3 we provide a comparison of specific one-loop RGEs and approximate

solutions in order to establish some crucial differences between the models that will be

relevant in subsequent Sections.

4.3 One-loop renormalisation group analysis

In this Sec. we present a one-loop analysis of the three models to illustrate a few key

points that will aid in anticipating and understanding the fine tuning results in Sec.

4.6. The main arguments will still be valid even though we incorporate two-loop RGEs

in our analysis in Sec. 4.6.

The addition of extra matter in the plus-type models is motivated both from the high

scale and the low scale model building point of view. In particular, by examining the

effects on the RGEs, one can show that the perturbativity bound on λ at the SUSY

scale (λMSUSY
) increases in the plus-type models as shown in the left panel of Fig. 4.2.
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Figure 4.2: The left panel: λ(1 TeV) as a function of tanβ in the three different

models (for κ(1 TeV) ∼ 0.002). Right panel: The one-loop running of the strong

coupling α3(≡ αs), where the running from mZ (vertical black line), passing through

mt = 173.6 GeV (vertical red line), to a fixed SUSY scale at 1 TeV (vertical green

line) is performed using SM RGE. Next, the running from 1 TeV to the GUT scale is

performed using the NMSSM RGE, and at 3 TeV (vertical yellow line) the NMSSM+

and the NMSSM++ RGEs are used to run up to the GUT scale.

The reason behind this increase can be understood by inspecting the RGEs of the

gauge couplings: ga (where a = 1, 2 and 3, for U(1)Y , SU(2)L, and SU(3)c gauge

groups, respectively), the top Yukawa coupling: ht, the doublet-singlet coupling: λ, in

the three models. At one-loop, the RGEs take the following form:

16π2∂tg
2
1 =

(
11, 16,

53

3

)
g4

1 (4.10)

16π2∂tg
2
2 = (1, 4, 5) g4

2 (4.11)

16π2∂tg
2
3 = (−3, 0, 1) g4

3 (4.12)

16π2∂th
2
t = h2

t

(
6h2

t + h2
b + λ2 − 13

9
g2

1 − 3g2
2 −

16

3
g2

3

)
(4.13)

16π2∂tλ
2 = λ2

(
3h2

t + 3h2
b + 4λ2 − g2

1 − 3g2
2

)
, (4.14)

where, ∂t ≡ ∂
∂ lnQ2 , and Q is the renormalisation scale. The coefficients between

parentheses in Equations 4.10-4.12 belong to the NMSSM, the NMSSM+ and the

NMSSM++, respectively. And g1 is SM normalized (as opposed to the GUT

normalization that introduces a factor of
√

3
5 , i.e. g2

1 ,SM = 3
5g

2
1 ,GUT). The magnitudes

and the signs of these β-function coefficients lead to larger g3 and smaller ht, at the
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GUT scale, in the NMSSM+ compared to the NMSSM, and similarly larger values of

both couplings in the NMSSM++ compared to the NMSSM+, at the GUT scale. This

allows larger λ at the low scale (e.g. 1 TeV) while keeping its perturbativity to the

GUT scale. The advantage of having a larger low-scale λ is that it allows for a larger

tree-level Higgs mass in 5.1. Moreover, since the top/stop Yukawa coupling depends on

sinβ as follows,

ht(Q) =
mt(Q)

v sinβ
, (4.15)

it is possible to achieve smaller tanβ in the plus-type models.

Moreover, it is instructive to examine the running of α3 =
g23
4π (which runs similar to

the gluino mass parameter M3). This is shown in the right panel of Fig. 4.2. Note

that, in order to reach the same point at the low scale, say α3(1 TeV), in three models,

the starting point at the GUT scale (i.e. the boundary condition: α3,GUT ≡ α3(MGUT)

is significantly different. In particular,

αNMSSM++

3,GUT
> αNMSSM+

3,GUT
> αNMSSM

3,GUT . (4.16)

This effect will play a profound role in shaping the fine tuning (as we show in Sec. 4.6)

since we expect a similar behaviour in the running of the gluino mass parameter M3.

And although we use two-loop RGEs to obtain our fine tuning results in Sec. 4.6, the

argument is still valid, namely that, in order to reach the same physical gluino mass at

the low scale in the three models, the GUT scale boundary condition

M3,GUT ≡M3(MGUT) will follow the ordering:

MNMSSM++

3,GUT
> MNMSSM+

3,GUT
> MNMSSM

3,GUT . (4.17)

The physical gluino mass at the low scale can be approximately related to the input

parameter m1/2, which is a universal gaugino mass at the GUT scale, as follows:

mg̃ ≈ fm1/2, where the coefficient f is model-dependent. We will present these values

in Sec. 4.6. Next, we consider the implication of the ordering in 4.17. The gluino
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affects the running of the squarks at one-loop in the following fashion,

∂m2
Q̃3

∂t
= −3α3

8π
M2

3 + f(m2
scalars, A

2, g2
a, . . . ), (4.18)

where we are only showing the gluino mass term explicitly. It is well-known

[47, 104, 105] that the gluino mass parameter, if large enough at the GUT scale, can

dominate the running of the scalars. It is also well-known that coloured scalars run

from the GUT scale to the low scale in such a way that the running masses increase.

Any negative term in the RGE will enhance this increase in the running mass at the

low scale, and indeed the gluino mass term in Equation 4.18 is negative, thus the larger

the boundary condition (M3,GUT) the larger the scalar mass will be at the low scale.

We wish to point out that, in the MSSM, obtaining a physical Higgs mass of 126 GeV

requires very large top squarks or large stop mixing (large A-term), hence, it is

requiring a 126 GeV Higgs that is causing the fine tuning (in addition to direct limits

on sparticles). Whereas in the NMSSM, the top squarks do not need to be as large as

in the MSSM, but the limits from direct searches, especially on the top squarks will

play a crucial role in determining the fine tuning. However, in the plus-type models we

are considering, we expect that the top squarks in the NMSSM+ will always be larger

than in the NMSSM, and they will always be larger in the NMSSM++ than in the

NMSSM+. This is a result of the rather larger values of the M3(MGUT), or m1/2, that

one has to start with at the GUT scale in order to achieve a gluino mass larger than

1.2 TeV at the low scale, as indicated in Equation 4.17. Therefore, we expect that the

gluino is the main source of fine tuning in the plus-type models, and we verify that in

Sec. 4.6.

Next, we present approximate solutions of the one-loop RGE of the parameter mHu in

the three models. This is for tanβ = 2, κ(MSUSY) = 0.002, and MSUSY = 1 TeV, and

we expand mHu(MSUSY) in terms of universal GUT parameters: m1/2, m0 and A0,

1. NMSSM (λ(MSUSY) = 0.6):

−m2
Hu(MSUSY) ≈ 3m2

1/2 + 0.8m2
0 + 0.07A2

0 − 0.09m1/2A0 (4.19)
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2. NMSSM+ (λ(MSUSY) = 0.72):

−m2
Hu(MSUSY) ≈ 2.04m2

1/2 + 0.74m2
0 + 0.09A2

0 − 0.18m1/2A0 (4.20)

3. NMSSM++ (λ(MSUSY) = 0.75):

−m2
Hu(MSUSY) ≈ 1.78m2

1/2 + 0.71m2
0 + 0.1A2

0 − 0.3m1/2A0. (4.21)

While it is clear from Equations 4.19- 4.21 that the sensitivity of m2
Hu

(MSUSY) to m2
1/2

is reduced by adding extra matter, it is important to notice the ordering in

Equation 4.17. Clearly, the more matter included, the larger the required m1/2 in order

to produce the desired physical mg̃, hence the larger the top squarks. We quantify this

to two-loop and study the associated fine tuning in the following Sec.s.

4.4 Fine tuning and two-loop implementations

4.4.1 Fine tuning

To quantify fine tuning at each point in the parameter space, one can measure the

fractional sensitivity of an observable, namely the mass of the Z boson, mZ to

fractional variations in the fundamental GUT parameters,

a = {m1/2,m0,mS ,mHu ,mHd , A,Aλ, Aκ, λ, κ, ht} ([39] and [40]),

∆a =

∣∣∣∣∂ logmZ

∂ log a

∣∣∣∣ , (4.22)

where ∆−1 × 100% represents the percentage to which a parameter is fine tuned.

This measure is usually called the Barbieri-Giudice measure, and it has been

extensively used in the literature (see for e.g. [106, 107, 108, 109, 110, 111, 112, 113],

and [114] and references therein). Note that some authors prefer to use m2
Z instead of

mZ and/or a2 instead of a. All different choices can be related to each other by the
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inclusion of an appropriate factor. This global sensitivity of Equation 4.22, alternative

measures, and Bayesian approaches has been briefly discussed in [114].

Moreover, the measure (Equation 4.22) is already implemented in the Fortran code

NMSPEC [115] that we use, which is part of the package NMSSMTools 4.1.2. In this

package, the fine tuning is calculated in two steps: first, the tuning with respect to

SUSY scale parameters

mHu,d(MSUSY),mS(MSUSY), Aλ,κ(MSUSY), λ(MSUSY), κ(MSUSY), ht(MSUSY) (4.23)

is calculated using Equation 4.22 with the parameter a being a SUSY scale parameter

in 4.23. Second, the results are linked to GUT scale parameters using the RGEs, hence

determining the fine tuning with respect to the GUT scale parameters. The procedure

is discussed in details in [93]. This method is equivalent to deriving a fine tuning

“master formula” for the NMSSM, as in [92].

4.4.2 Two-loop implementations

We modify the tool for both the NMSSM+ and the NMSSM++ cases by adding the

relevant two-loop RGEs (presented in Appendix A) to enable calculating the mass

spectrum of each model and study the fine tuning.

The procedure for calculating the RGEs is to start from the two-loop RGEs of the

NMSSM, and then modify them for the NMSSM+ and the NMSSM++ cases. This is

since only a specific set of coefficients will be altered due the presence of extra matter.

Particularly, the extra fields, which are charged under the SM gauge group, will change

the coefficients of O(g4
a) terms of the beta functions since they can run in the loop as

depicted in Fig. 4.3
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Figure 4.3: A schematic two-loop diagram illustrating how extra matter loops can

modify O(g4a) terms of the running scalars, gauginos, trilinears, and Yukawas (see Ap-

pendix A)

The relevant terms to be modified are calculated using the results in [116], and the full

set of RGEs are cross-checked using the package SARAH [117] by manually carrying

out algebraic operations of adding traces, obtaining the RGEs for the trilinears

∂tA = ∂t

(
a(t)

h(t)

)
, (4.24)

since SARAH outputs the RGEs of a(t), and ensuring the consistency of the

conventions. Furthermore, we take an effective theory approach whereby the extra

matter are integrated out via a step-function change of the beta functions at a scale

QSUSY =

√
2m2

Q1
+m2

U1
+m2

D1

4
, (4.25)

as defined in NMSSMTools to be the scale of the first and second generations squarks.

m2
Q1
,m2

U1
, and m2

D1
are scalar squared masses of the first generation squarks. In the

parameter spaces scanned in Sec. 4.6, it ranges between 1.1-4.1 TeV in the NMSSM,

1.9-6.4 TeV in the NMSSM+, and 3.5-7.5 TeV in the NMSSM++.

Moreover, for convenience, we assume a degenerate mass scale for the extra matter,

and we set it to be QSUSY. Consequently, the RGEs of the full theory, i.e. the

NMSSM+(++), are used between the GUT scale and the scale QSUSY, whereas the

RGEs of the effective theory, i.e. the NMSSM, are used below that. As the RGEs

descend from QSUSY, NMSSMTools includes leading logarithmic threshold corrections

to the gauge and Yukawa couplings from the relevant superpartners. However, since

the mass scale of some of the squarks (and all of the extra matter) is assumed to be of



Chapter 4 Naturalness in scale-invariant NMSSMs with and without extra matter 63

order QSUSY, such states do not contribute to the threshold corrections, as pointed out

in [81].

Nevertheless, the extra matter sector is in fact a secluded sector since no Yukawa

couplings are shared with the NMSSM superfields. The extra matter will obtain

fermionic and scalar masses in the secluded sector by mechanisms that are irrelevant to

the weak scale (further details in [101]). As such, we have not calculated the precise

mass spectrum of this secluded sector. Additionally, in our set-up, the contributions

from the running masses of the extra matter to the NMSSM scalar masses can be

safely ignored at one- and two-loop 3 since they are highly suppressed and only

introduce a relative error smaller than 1%.

Finally, it worth mentioning that the ordering in Equation 4.17 will remain valid at the

two-loop order, therefore the situation will always be such that for a given physical

gluino mass, say 1.2 TeV, the NMSSM+ will require M3(MGUT) to be larger than that

in the NMSSM, and hence the top squarks in the NMSSM+ will be larger than the top

squarks in the NMSSM. Similarly, the NMSSM++ will require M3(MGUT) to be larger

than that in the NMSSM+, which means the top squarks will be larger in the former

than in the latter. We verify this and study the implication on the fine tuning in

Sec. 4.6.

4.5 Framework and parameter space

4.5.1 Framework

We choose to work in a semi-constrained framework where the gaugino masses are

universal at the GUT scale, i.e. M1(MGUT) = M2(MGUT) = M3(MGUT) = m1/2,

where M1,M2 are Bino and Wino mass parameters. One the other hand, we allow mS ,

mHu and mHd to differ from the rest of the scalars that have a common mass m0 at

the GUT scale. However, since we use µeff as an input, NMSSMTools will output the

allowed values for those parameters at the GUT scale. In addition, the trilinears Aλ

3 In ξ, ξ′, σ1, σ2 and σ3 in Equation A.3 in Appendix A
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and Aκ can take different values, at the GUT scale, from the universal trilinear

A0 = At(MGUT) = Ab(MGUT) = Aτ (MGUT), where the indices t, b, τ denote the top,

bottom, and τ squarks.

Moreover, it is crucial to note that choosing non-universal gauginos at the GUT scale,

i.e. M1(MGUT) 6= M2(MGUT) 6= M3(MGUT) might be desirable 4. However, we do not

make this assumption here since it has no impact on the fine tuning comparison for the

three models. In particular, as we show in Sec. 4.6, M3(MGUT) controls the fine tuning

in the plus-type models, while the other two parameters (M1 and M2) have little or no

impact. Hence, we find it simpler to assume universality in our analysis. Finally, we do

not include constraints from dark matter in our analysis (although we check that

regions of low fine tuning are not excluded by an upper bound of Ωh2 < 0.13 as

calculated by the package micrOMEGAs [118] that is embedded in NMSSMTools), and

we are not addressing the issue of the anomalous magnetic moment of the muon 5.

4.5.2 Parameter space

We have focused on the parameter space where λ, at the low scale, can be as large as

possible, while tanβ can be as small as possible in the three models, this is subject to

constraints from perturbativity, successful electroweak symmetry breaking, and

experimental limits, all of which are taken into account in NMSSMTools 6 (including:

LEP bounds on Higgs searches and invisible Z decays [120, 121, 122], constraints on

new physics from Br(b→ sγ) = (355± 24± 9)× 10−6 [123] ,

Br(Bs → µ+µ−) = (3.2+1.5
−1.2 × 10−9) [124], and Br(B → τντ ) = (1.12± 0.22)× 10−4

[125], all to within 2σ). The mass of the SM-like Higgs is required to be mh = 125.7± 3

GeV to account for uncertainties. If the SM-like Higgs is the second-to-lightest Higgs

in the NMSSM, then NMSSMTools will ensure that the lightest Higgs satisfies LEP

constraints. Furthermore, NMSSMTools ensures that the couplings and signals of the

SM-like Higgs comply with LHC results as studied in [126]. Additionally, we require

4One possible situation where abandoning this universality is desirable is to have M1(MGUT) 6= m1/2

to satisfy dark matter constraints as discussed in [93]
5This means that it is possible that some points in the parameter space do not satisfy the experimental

limit on (g−2)µ, which is already in tension with the SM. In the NMSSM (g−2)µ was analysed in [119]
6A full list of constraints can be found in the official website of NMSSMTools:http://www.th.u-psud.

fr/NMHDECAY/nmssmtools.html

http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html
http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html
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that mt̃1
> 700 GeV, and mg̃ > 1.2 TeV [127]. Removing the constraint on mt̃1

from

our analysis does not negate our main finding that the NMSSM is less fine tuned than

the NMSSM+, and the NMSSM+ is less fine tuned than the NMSSM++.

Additionally, it is difficult to relax this constraint since this will depend on certain

mass relations (e.g. between mt̃1
and mχ̃0

1
), which we are not analysing here 7

We use the simple random sampling method provided by NMSSMTools. However, in

order to test the effect of increasing λ by adding extra matter on the fine tuning, we

choose a representative range of the parameters λ, tanβ, and µ that leads to an

enhancement to the tree-level Higgs mass, and to a reduction of the tuning in mZ . Our

strategy is to scan small patches of the parameter space, with narrow ranges of m0,

m1/2, and A in order to find solutions where the fine tuning is expected to be small.

With this in mind, we scan up to 6× 107 points in this region of the parameter space

in each model. Next, points that violate the constraints mentioned previously are

removed. Finally, we divide the data into two sets, the first set is where the lightest

Higgs is SM-like, and the second set is where the second-to-lightest Higgs is SM-like.

The scanned range of parameters is,

0 < m0 < (2, 4, 7) TeV

0 < m1/2 < (2, 4, 7) TeV

−3.5 < A < 7 TeV

−3.5 < Aλ < 3.5 TeV

−3.5 < Aκ < 3.5 TeV

100 < µeff < 400 GeV

0 < tanβ < 5

0.5 < λ < 1

10−4 < κ < 0.6

where the numbers between parentheses in the first two lines correspond to the range

in the NMSSM, the NMSSM+, and the NMSSM++, respectively. In all models, the

7It is important to mention that, while the lightest stop plays a role in the determination of the fine
tuning, the heavy stop also plays a role, as well as the trilinear coupling At, and the soft Higgs mass
mHu . For instance, a very light mt̃1

can be obtained if At is quite large. However, this will lead to a
rather large mt̃2

, which in turn will contribute to the fine tuning via the radiative corrections to the
Higgs potential.



66 Chapter 4 Naturalness in scale-invariant NMSSMs with and without extra matter

fine tuning plots range from 0 to 2000 –we stop at ∆ = 2000 for convenience– using the

same colour scheme. This enables direct comparison between the parameter spaces of

the three models.

4.6 Results

In this Sec., we present the results for the fine tuning in the parameter spaces of the

three models. For each model, we have divided the parameter space into two cases, the

first (case 1) is where the SM-like Higgs is the lightest CP-even Higgs, whereas the

second (case 2) is where the SM-like Higgs is the next-to-lightest CP-even Higgs. The

reason for this is that the detailed phenomenology of the two cases can be different

(e.g. see [128] and [98]).

4.6.1 NMSSM

As stated in Sec. 4.1, the NMSSM is well-known to be less fine tuned than the most

studied supersymmetric model that is the MSSM. Given the current LHC limits on the

Higgs couplings, on the mass of naturalness-related superpartners, such as the top

squarks and the gluino, the results in this Sec. serve as an update to the status of the

fine tuning in the NMSSM within the range of parameter space specified in Sec. 4.5.
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4.6.1.1 Case 1: mh1 is SM-like.

Figure 4.4: The left panel shows the fine tuning while the right panel shows the gluino

mass, both in the m0 −m1/2 plane in the NMSSM when mh1
is SM-like.

Fig. 4.4 (left) shows the fine tuning, max(∆a) or simply ∆, represented by colours in

the m0 −m1/2 plane, which ranges from 0 to 2 TeV. In this range of parameter space

we find that ∆� 2000. The lowest fine tuning was found to be ∆ ∼ 120 for mh1 = 124

GeV, mg̃ = 1.4 TeV, mt̃1
= 750 GeV. Furthermore, the fine tuning forms contours in

this plane and the band of contours associated with 120 < ∆ < 300 corresponds to

values of m0 and m1/2 that range from 0.3 - 1 TeV and 0.6 - 1.2 TeV, respectively. As

m1/2 becomes smaller and approaches 0.5 TeV, m0 becomes larger and approaches 1.9

TeV, thus increasing the fine tuning up to ∼ 500. On the other hand, as m0 becomes

smaller and approaches zero, m1/2 rises to around 1.7 TeV. Consequently, the fine

tuning rises above 600. Additionally, regions where m0 and m1/2 are both above 1.3

TeV are associated with ∆ > 500. In particular, at the top-right corner where both m0

and m1/2 are of O(2 TeV), ∆ ∼ 1000. It is worth-noting that this parameter space is

in fact multidimensional since all fundamental parameters assume different values at

each point.

A number of observables is significantly linked with fine tuning, this includes: mh1 ,mg̃,

and mt̃1,2
. In the NMSSM, the lowest fine tuning ranges from 100 to 200 for a Higgs

mass between 123 and 127 GeV.

The gluino mass (Right panel of Fig. 4.4) in this parameter space form plateaus

specified by the value of the parameter m1/2. In particular, mg̃ ranges between ∼ 1.4
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TeV and 2 TeV for values of m1/2 between 0.5 TeV and 0.8 TeV, and increases

gradually with m1/2 to reach values of order 4.5 TeV as m1/2 reaches 2 TeV. In fact,

by examining the data one finds that mg̃ ∼ 3m1/2 in the NMSSM. This will remain

true for case 2 in 4.6.1.2.

For convenience, we define the root-mean-square (RMS) stop mass, which we will

frequently use,

MS =

√
m2
t̃1

+m2
t̃2

2
(4.26)

and we plot it in the m0 −m1/2 plane. Since we require the lowest mass for the lightest

stop to be larger than 700 GeV, MS can tell us if there is much separation between

mt̃1
and mt̃2

. Our aim is to search for points where both masses are close to 700 GeV

or with the minimum separation since such points are associated with low fine tuning.

From the left panel in Fig. 4.5, MS starts at nearly 900 GeV, and increases steadily

until reaching 3.4 TeV with increasing m1/2. However, it increases very slowly in

respond to an increase in m0, particularly in this range of parameter space.

In the right panel of Fig. 4.5, the distribution of the lightest stop mass mt̃1
shows that

it ranges from 700 GeV to ∼ 2.7 TeV. Also, it grows steadily with increasing m1/2.

Moreover, Fig. 4.6 presents the fine tuning against mg̃,MS and mt̃1
. Notice how the

data points of each parameter correlate with the lowest fine tuning. In particular,

MS ,mg̃, and mt̃1
increase from 900 GeV to 3 TeV, 1.2 TeV to 4.3 TeV and 700 GeV to

2.5 TeV, fine tuning increases from 100 to 600, 400 and 600, respectively. Clearly, the

stop plays the dominant role in determining the fine tuning. Thus, the gluino can

become as large as 4.3 TeV without impacting the fine tuning as much as the top

squarks.

The impact of increasing m1/2 (and mg̃) on the top squarks, represented by MS , will

turn to be more significant in the plus-type models. In the NMSSM, having a gluino

mass of 1.2 TeV does not require m1/2 to be larger than ∼ 600 GeV -recall that m1/2

determines, along with other parameters, the value of the top squarks via its RGE

effect- and the top squarks can be as light as 700 GeV. Varying both m1/2 and mg̃

from 600 GeV to 2 TeV and 1.2 TeV to 4.3 TeV, corresponds to MS in the range 900
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GeV-3.4 TeV. Therefore, one can escape the LHC limit on the gluino mass without

dragging the top squarks to too heavy masses.

Figure 4.5: The left panel shows the RMS stop mass, while the right panel shows the

lightest stop mass, both in the m0 −m1/2 plane in the NMSSM when mh1
is SM-like.

Figure 4.6: Fine tuning as a function of mg̃,MS , and mstop1
in the NMSSM when

mh1
is SM-like.

4.6.1.2 Case 2: mh2 is SM-like.

Here we present the results of fine tuning in the Higgs sector of the NMSSM where the

next to lightest Higgs, mh2 , is SM-like. First, we note that the fine tuning, Fig. 4.7

(left panel), is roughly similar to case 1 in 4.6.1.1. However, the lowest fine tuning here

was found to be ∆ ∼ 71 for: mh2 = 127 GeV, mg̃ = 1.34 TeV, mt̃1
= 700 GeV, which is

slightly smaller than case 1 in 4.6.1.1 because mt̃1
is slightly smaller. Moreover, in this

parameter space, we find valid points where m1/2 can assume lower values than found
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in the previous case, and more points occupying regions where m0 = 0. Those points

at m0 ∼ 0 are particularly associated with Aλ(MGUT) > 1 TeV, and 100 ≤ µeff ≤ 260.

As for the gluino mass (Right panel of Fig. 4.7), it ranges from ∼ 1.3 TeV to 4.4 TeV,

and it correlates to m1/2 as expected from the approximate relation mg̃ ∼ 3m1/2.

Notice that increasing m0 can have a small effect on raising mg̃. This is a loop effect

related to quark/squark corrections to the physical gluino mass.

The lowest fine tuning forms a plateau, of order 100, as one increases mh2 from 123

GeV to 127 GeV. Next, Fig. 4.8 (left panel) shows how the parameter MS varies in the

m0 −m1/2 plane; it ranges from 900 GeV to 3.4 TeV, while the right panel shows that

the lightest stop varies between 700 GeV and 3 TeV.

Moreover, Fig. 4.9 shows that increasing MS , mg̃, and mt̃1
from 900 GeV to 3.3 TeV,

1.2 TeV to 4.3 TeV, and 700 GeV to 2.8 TeV results in a rise in the lowest fine tuning

from 71 to roughly 450 in the three cases. Therefore, it is still clear that the top

squarks are in control of the fine tuning, whereas the gluino mass can assume a value

as large as 4.3 TeV without worsening the situation.

While this parameter space contains the lowest fine tuned point in all our study, it is

still of O(100), and the parameter space is not as rich as the previous one.

Figure 4.7: The left panel shows the fine tuning while the right panel shows the gluino

mass, both in the m0 −m1/2 plane in the NMSSM when mh2
is SM-like.
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Figure 4.8: The left panel shows the RMS stop mass, while the right panel shows the

lightest stop mass, both in the m0 −m1/2 plane in the NMSSM when mh2
is SM-like.

Figure 4.9: Fine tuning as a function of mg̃,MS , and mstop1
in the NMSSM when

mh2
is SM-like.

4.6.2 NMSSM+

As discussed in Sec. 4.3, the gaugino mass parameter m1/2 has to be larger in the

NMSSM+ than in the NMSSM in order to produce the same physical gluino mass at

the low scale. Moreover, the RG running of scalars depends strongly on the parameter

M3, which is equal to m1/2 at the GUT scale. Therefore, larger m1/2, as required by

the gluino, means larger top squarks, as dictated by the RGEs. Thus, we expect the

fine tuning to be larger in the NMSSM+ than in the NMSSM because the top squarks

are heavier. The following results show for the first time the fine tuning in the Higgs

sector of the NMSSM+ with a Z3-invariant superpotential.
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4.6.2.1 Case 1: mh1 is SM-like.

The parameter space of the NMSSM+ is richer than that of the NMSSM. In

particular, it is easier to obtain a Higgs mass near 126 GeV since both λ and the top

squarks are larger in the NMSSM+ than in the NMSSM.

Fig. 4.10 shows the fine tuning (left panel) distribution in the m0 −m1/2 plane, which

ranges from 0 to 4 TeV each. Only a relatively small area, located at the bottom-left

corner, corresponds to fine tuning between 200 and 400. As both m0 and m1/2 grow

larger than 2 TeV, the fine tuning steadily exceeds 400 reaching values up to 2000.

The fine tuning contours show how the fine tuning is more sensitive to changes in m1/2

than in m0. However, as m0 becomes larger than 3.5 TeV, the fine tuning rapidly

increases. Regions where m0 = 0 are not associated with low fine tuning since they

correspond to large values of m1/2. The lowest fine tuning is ∆ ∼ 205 for: mh1 = 126

GeV, mg̃ = 1.2 TeV, mt̃1
= 727 GeV.

Moreover, notice how the physical gluino mass in the right panel of Fig. 4.10 is

associated with larger values of m1/2 than in the NMSSM (Fig. 4.4) as explained in

Sec. 4.3. Particularly, one requires 1.3 TeV < m1/2 < 1.5 TeV to achieve mg̃ ≈ 1.2

TeV. And the approximate relation between the two parameters is: mg̃ ∼ 0.85m1/2.

As a result of having a rather large m1/2, the smallest value of the parameter MS is

now around 1.2 TeV (Fig. 4.11, left panel). One can also see that it is not possible to

access smaller values of MS because either m1/2 or m0 will become exceedingly large.

Recall that the scalar masses are controlled by both parameters as explained in Sec.

4.3. The right panel of Fig. 4.11 presents the mass distribution of lightest stop. It can

be as small as 700 GeV and as large as 4 TeV. It worth recalling that not only m0 and

m1/2 determine mt̃1
and mt̃2

, but also A0. Large values of A0 can lead to large

splitting between the lightest and heaviest top squarks. Therefore, the data points in

Fig. 4.11 (right panel) where small mt̃1
corresponds to large MS (left panel), hence

large mt̃2
, are associated with large A0.
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Both mt̃1
and mt̃2

contribute to the fine tuning. Hence, it is necessary to look at the

parameter MS to understand the fine tuning results. As stated previously, the larger

MS becomes, the more the fine tuning required.

As was the case in the NMSSM, varying the Higgs mass between 123 GeV and 127

GeV has a little impact on the lowest fine tuning in the NMSSM+. However, the

lowest fine tuning here forms a plateau around ∆ ∼ 200.

Moreover, MS , mg̃, and mt̃1
(Fig. 4.12) cause the lowest fine tuning to increase from

200 to roughly 2000 as they rise from 1.2 TeV to 4.2 TeV, 1.2 TeV to 3.7 TeV, and 700

GeV to 4 TeV, respectively. The important feature that distinguishes the NMSSM+

from the NMSSM is the steady to sharp increase in the lowest fine tuning associated

with increasing the gluino mass (c.f. Fig. 4.6). The lightest stop can now become more

massive than the gluino and still leads to the same amount of the lowest fine tuning, in

contrast to the situation in the NMSSM. Clearly, the gluino here is a major factor in

determining the fine tuning since it requires a large m1/2, which in turn affects the

running of the top squarks, making them larger in comparison to the NMSSM.

Figure 4.10: The left panel shows the fine tuning while the right panel shows the

gluino mass, both in the m0 −m1/2 plane in the NMSSM+ when mh1
is SM-like.
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Figure 4.11: The left panel shows the RMS stop mass, while the right panel shows

the lightest stop mass, both in the m0 − m1/2 plane in the NMSSM+ when mh1
is

SM-like.

Figure 4.12: Fine tuning as a function of mg̃,MS , and mstop1
in the NMSSM+ when

mh1
is SM-like.

4.6.2.2 Case 2: mh2 is SM-like.

Here we examine the parameter space of the NMSSM+ where mh2 is SM-like.

Fig. 4.13 shows the fine tuning, which starts from about 188 and reaches 2000, in the

m0 −m1/2 plane. The features of the fine tuning are similar to those found in case 1

in 4.6.2.1. However, more points can reach the m0 = 0 region in this parameter space.

Points close to m0 ∼ 100 GeV, and between 2 TeV < m1/2 < 3 TeV are particularly

associated with A0 > 2400 TeV. Moreover, the lowest fine tuning that was found is

∆ ∼ 188 for: mh2 = 126.5 GeV, mg̃ = 1.2 TeV, mt̃1
= 793 GeV.
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The gluino mass (Fig. 4.13, right panel) also ranges from 1.2 to 3.7 TeV, and shares

the same features as in case 1. Again, it correlates to m1/2 as: mg̃ = 0.85m1/2. Next,

the average stop mass, MS , starts from 1.2 TeV and approaches 5 TeV (Fig. 4.14, left

panel). On the other hand, the lightest stop mass (right panel) takes values between

700 GeV and 4.2 TeV.

Furthermore, when mh2 varies between 123 GeV and 127 GeV, the fine tuning is a

plateau around 200. However, Fig. 4.15 shows that the lowest fine tuning increases

from ∼ 200 to 2000 when MS , mg̃, and mt̃1
change from 1.2 TeV to 3.6 TeV, 1.2 TeV

to 4.9 TeV, and 700 GeV to 4 TeV, respectively. Notice that the lightest stop can be

as large as 4 TeV and still results in the same degree of the lowest fine tuning as that

associated with a gluino mass of 3.6 TeV. Therefore, we again see, as expected, the

important effect the gluino has on the lowest fine tuning in the NMSSM+. Indeed, the

curves that the data points form in conjunction with the lowest fine tuning clearly

show that the gluino mass is now most relevant to the fine tuning and in fact controls

it, as opposed to the situation in the NMSSM in 4.6.1.

Figure 4.13: The left panel shows the fine tuning while the right panel shows the

gluino mass, both in the m0 −m1/2 plane in the NMSSM+ when mh2
is SM-like.
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Figure 4.14: The left panel shows the RMS stop mass, while the right panel shows

the lightest stop mass, both in the m0 − m1/2 plane in the NMSSM+ when mh2
is

SM-like.

Figure 4.15: Fine tuning as a function of mg̃,MS , and mstop1
in the NMSSM+ when

mh2
is SM-like.

4.6.3 NMSSM++

Finally, the fine tuning in the parameter space specified in Sec. 4.5 for the NMSSM++

is shown for the first time. The effect of having to start with a very large

M3(MGUT) = m1/2 as explained in Equation 4.17 is very significant here in comparison

with the previous two models. Particularly, the minimum mass scale of the top squarks

in the NMSSM++ will be larger than that in the NMSSM+.
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4.6.3.1 Case 1: mh1 is SM-like.

The parameter space of the NMSSM++ is significantly different from both the

parameter spaces of the NMSSM and the NMSSM+. It is charactarized by large values

of m0 and m1/2 in order to be compatible with our phenomenology constraints.

The fine tuning starts at a value of O(600), shown in Fig. 4.16, and rapidly increases

as m0 and m1/2 increase. In this parameter space, the lowest fine tuning found is

∆ ∼ 663 for: mh1 = 126 GeV, mg̃ = 1.2 TeV, mt̃1
= 2.1 TeV.

Note that a large value of m1/2, ∼ 4 TeV is needed to obtain a gluino mass of 1.2 TeV.

And very roughly the correlation between m1/2 and mg̃ is on average: mg̃ ∼ 0.25m1/2.

Only when m0 is significantly large, one can access slightly smaller values of m1/2.

Moreover, since m1/2 is very large it controls the scalar masses as demonstrated in the

left panel of Fig. 4.17 which shows that the parameter MS is always larger than 1.8

TeV in this parameter space, and rises rapidly with m1/2 to values close to ∼ 5 TeV.

Furthermore, the mass of the lightest stop (Fig. 4.17, right panel) assumes values

between 700 GeV and 4.5 TeV. However, those points with mt̃1
∼ 700 GeV correspond

to mt̃2
> 2.6 TeV, and mHu(MGUT) ∼ 5 TeV. Next, the fine tuning is almost a plateau

around 600 with respect to mh1 . Again, the mass of the Higgs plays no role in

controlling the lowest fine tuning in the NMSSM++.

On the other hand, the lowest fine tuning sharply increases from ∼ 600 to 2000 as MS ,

mg̃, and mt̃1
increase from 2.5 TeV to around 4.8 TeV, 1.2 TeV to 2.6 TeV, and 2.5

TeV to 4.2 TeV, respectively as Fig. 4.18 shows. Clearly, the gluino mass in the

NMSSM++ strongly drives the lowest fine tuning to be larger than that in the

NMSSM and the NMSSM+ because it raises MS to quite large values. Therefore, even

though the original goal of increasing λ at the low scale can be easily achieved in the

NMSSM++, it comes at the expense of having very large M3(MGUT) = m1/2 in order

to obtain the gluino mass around 1.2 TeV. Consequently, this will dominate the

running of the top squarks, thereby making them much heavier than the current

experimental limits. This effect is the reason why the NMSSM++ (similarly the

NMSSM+) is more fine tuned than the NMSSM.
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Figure 4.16: The left panel shows the fine tuning while the right panel shows the

gluino mass, both in the m0 −m1/2 plane in the NMSSM++ when mh1
is SM-like.

Figure 4.17: The left panel shows the RMS stop mass, while the right panel shows

the lightest stop mass, both in the m0 −m1/2 plane in the NMSSM++ when mh1
is

SM-like.

Figure 4.18: Fine tuning as a function of mg̃,MS , and mstop1
in the NMSSM++

when mh1
is SM-like.
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4.6.3.2 Case 2: mh2 is SM-like.

Here, we present the results of case 2 where mh2 is SM-like in the NMSSM++. First,

due to our sampling procedure, the parameter space contains fewer points satisfying

the applied cuts than in the previous case. The fine tuning results in the m0 −m1/2

plane are presented in the left panel of Fig. 4.19. Overall, the patterns are similar to

those found in the case 1 in 4.6.3.1. While the lowest fine tuning possible is still

around 600, most of the points in this parameter space has fine tuning above 800. The

fine tuning, again, is more sensitive to changes in m1/2 than in m0. The lowest fine

tuning found in this parameter space is ∆ ∼ 634 for: mh2 = 126 GeV, mg̃ = 1.2 TeV,

and mt̃1
= 2.76 TeV.

The gluino mass distribution in Fig. 4.19 (right panel) shows that it ranges from 1.2

TeV to 2.8 TeV. Again, very roughly and on average mg̃ ∼ 0.25m1/2. The reason this

correlation is very rough in the NMSSM++ is that we are presenting regions where m0

is very large. This means that the corrections to the gluino mass due from scalars is

significant.

Next, the RMS stop mass,MS , see Fig. 4.20, is quite large as it starts from 2 TeV (as

opposed to 900 GeV and 1.2 TeV in the NMSSM and the NMSSM+). Thus, both top

squarks are pushed to heavy values. Again, this is because m1/2 has to be very large

∼ 4 TeV in order to satisfy the gluino mass limit.

Moreover, the fine tuning does not vary significantly with mh2 as it is found to be

∼ 600 for 123 ≤ mh2 ≤ 127 GeV. On the other hand, Fig. 4.21 shows that that

increasing the lightest stop from around 2 TeV to 4.5 TeV, and increasing MS from 2.5

TeV to 5 TeV, results in a raise in the fine tuning from around 600 to 2000. More

noticeably, the fine tuning increases sharply from around 600 to 2000 as mg̃ increases

from 1.2 TeV to around 2.8 TeV. This is a key feature of the NMSSM++ and the

reason why it is much more fine tuned than the NMSSM, and the NMSSM+.
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Figure 4.19: The left panel shows the fine tuning while the right panel shows the

gluino mass, both in the m0 −m1/2 plane in the NMSSM++ when mh2
is SM-like.

Figure 4.20: The left panel shows the RMS stop mass, while the right panel shows

the lightest stop mass, both in the m0 −m1/2 plane in the NMSSM++ when mh2
is

SM-like.

Figure 4.21: Fine tuning as a function of mg̃,MS , and mstop1
in the NMSSM++

when mh2
is SM-like.
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4.6.4 Comparison

Here, we compare the three models to point out the main finding which is that adding

extra matter to the NMSSM, hence increasing λ(MSUSY), does not necessarily improve

the fine tuning. In fact, it makes it worse, especially in the framework we have chosen.

We found that the RG running of the αs and similarly the gluino forces one to start

with a large m1/2 (M3(MGUT)) at the GUT scale in the plus-type models in order to

reach the desired gluino mass at the low scale. This, in turn, causes an increase in the

mass of the top squarks at the low scales in comparison to the NMSSM as Fig. 4.22

shows. It is clear from this Fig. that, in all of the parameter spaces we studied, and for

a given physical gluino mass, it is always possible to find MS that is smaller in the

NMSSM than in both the NMSSM+ and the NMSSM++, and smaller in the

NMSSM+ than in the NMSSM++. This is an RGE effect that was explained in Sec.

4.3. The larger MS is, the larger the separation between the weak and the SUSY

scales, and, as a consequence, the larger the fine tuning in the plus-type models,

especially the NMSSM++.

The fine tuning results in the three models can be straightforwardly compared by

referring to Fig.s 4.4, 4.10, and 4.16 for case 1, and Fig.s 4.7, 4.13, and 4.19 for case 2.

Moreover, the correlation between the fine tuning and both of mt̃1
and mg̃ in each

model is shown in Fig. 4.6, Fig. 4.12, and 4.18, for case 1. And in Fig. 4.9, Fig. 4.15,

and 4.21, for case 2.

Figure 4.22: The left panel shows the correlation between the fine tuning and the

gluino mass for the three models. The right panel shows the correlation between the

RMS stop mass and the gluino mass for the three models.
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4.7 Dark matter relic density constraints on the

parameter space of the NMSSM+

4.7.1 Overview

In the previous Sections, we investigated the effect of adding vector-like states to the

NMSSM on the fine tuning. In particular three and four (5+5*) fundamental states of

SU(5) were added to the NMSSM, and the mass spectrum satisfying experimental

constraints from LEP, Tevatron, B-Physics, and the LHC was generated using modified

version of the publicly available package NMSSMTools4.1.2. Next, the fine tuning in

the two new models, called the NMSSM+ and the NMSSM++, was compared with

that in the NMSSM, and the main finding was that the running mass of the gluino

from the GUT scale to the SUSY scale will drive both the light and heavy top squarks,

as well as the soft-supersymmetry breaking mass of the up-type Higgs, mHu , to rather

large values, thereby reintroducing the fine tuning. In fact, the fine tuning in such

models was found to be significantly worse than in the standard NMSSM. However, in

the previous study, the constraints on DM relic density were only partly taken into

account. Namely, the region of the parameter space that is associated with lowered

fine tuning is required to only contain model points that do not exceed the upper

bound on DM relic density set by Planck experiment by more than 10% [129]. This

means that such points may contain models that do not fully account for the current

DM relic density in the Universe. In this Sec., we explore the parameter space of the

NMSSM+, and apply up-to-date experimental constraints by using NMSSMTools4.4.0,

which we modify to generate the mass spectrum of the NMSSM+ as explained in 4.4.2,

and more importantly we impose DM constraints by Planck (+/- 10%) on the scanned

parameter space of the NMSSM+. The results are them compared with the results of

the NMSSM presented in [130].
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4.7.2 Experimental constraints

Using a modified version of NMSSMTools4.4.0, we choose a semi-constrained

framework where, at the GUT scale, Gaugino masses are universal (m1/2), and the

masses of scalars are universal (m0), expect for mHu , mHd , and mS . Additionally, the

A-terms are universal,expect for Aλ, Aκ. We fix tanβ = 3, κ = 0.4, A0 = −1 TeV, and

µ = 250. Next, we scan up to 105 points over the following range of parameters,

300 < m0 < 2000 GeV

300 < m1/2 < 2000 GeV

0.45 < λ < 0.7

−100 < Aλ < 100 GeV

−100 < Aκ < 100 GeV

Finally, we apply the experimental constraints listed in Table 4.1.

Constraint Details

LEP Bounds Higgs searches and invisible Z decays [120, 121, 122]
New Physics (to within 2σ) B → sγ, Bs → µ+ + µ−, B → τντ (See Sec. 4.5.2)

Higgs mass 125.7 ± 3 GeV
DM relic density 0.107 < Ωh2 < 0.131 [129]

Table 4.1: Phenomenological constrains.

Finally, the fine tuning results are calculated via NMSSMTools using the common fine

tuning measure that was introduced in 3.5.
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4.7.3 Preliminary results

Figure 4.23: The left panel shows the fine tuning while the right panel shows the

gluino mass, both in the m0 −m1/2 plane in the NMSSM+.

Preliminary results are presented in this Section. We plot the parameter space in the

m0-m1/2 plane to show the available range of models. The reason for this choice is that

the predicted masses of sparticles will depend strongly on these two parameters. In

this plane, the fine tuning is shown in colours in Fig. 4.23 (left). The lowest possible

fine tuning is about 250. It increases steadily as m1/2 and m0 are increased reaching a

value of 700 in the corner where both parameters are larger than 1.2 TeV and 1.8 TeV

respectively.

Next, Fig. 4.23 (right) shows the DM relic density in colours. Clearly, it is possible to

account for DM relic density in the NMSSM+ since all points appearing in this figure

have the parameter Ωh2 within the experimental limit imposed by the Planck satellite.

Figure 4.24: The left panel shows the gluino mass while the right panel shows the

lightest to squark mass, both in the m0 −m1/2 plane in the NMSSM+.
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Fig. 4.24 (left) shows the range of the gluino mass in colours. It is clear that lower fine

tuning prefers regions of the parameter space where the gluino mass is smaller than 1

TeV. However, this could be in tension with the LHC limits which require that the

gluino mass is larger than 1.4 TeV if the mass of the LSP is smaller than 600 GeV 8.

Next, Fig. 4.24 (right) shows the mass range of the lightest top squark in colours.

Lower fine tuning lies in the region where the lightest top squark has a mass of about

200 GeV. Again, this might be in tension with LHC limits since it is required that the

mass of such a sparticle is larger than 600 GeV if the LSP is lighter than 250 GeV.

From those results, it is clear that the NMSSM+ could accommodate a 125.7±3 GeV

SM-Higgs, satisfying a range of phenomenological constraints, as well as accounting

from DM relic density. However, compared with the fine tuning results [130] the the

NMSSM+ remains more fine tuned than the NMSSM.

Finally, in all of the scanned parameter space, the LSP is mostly bino with a mass

range 88 GeV < mχ̃0
1
< 210 GeV.

4.8 Conclusions

In this Chapter, we have considered three non-minimal Z3-invariant supersymmetric

models. Namely, the NMSSM, the NMSSM+ that adds 3(5, 5) extra states of SU(5) to

the NMSSM, and the NMSSM++ that adds 4(5, 5) extra states of SU(5) to the

NMSSM. Moreover, the extra matter in the NMSSM+ and NMSSM++ is treated as a

secluded sector that only affects the mass spectrum of the ordinary sparticles through

gauge interactions. We have calculated the low energy spectrum (focusing on

naturalness-related sparticles and the SM-like Higgs boson) using the package

NMSSMTools. We have modified NMSSMTools by implementing two-loop RGEs of

the NMSSM+, and the NMSSM++. Furthermore, we have assumed that the extra

matter is mass degenerate at the scale of the first and second generations of squarks.

Hence, the running masses of the extra matter was ignored due to suppression by

powers of gauge couplings and loop factors at one- and two-loop.

8These limits are available on the official website of the CMS and ATLAS experiments’
summary plots:https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults and https://

twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/CombinedSummaryPlots
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Such extensions are known to relax the perturbativity bound on λ(MSUSY), which is

the coupling between the SM singlet superfield and the up- and down-type Higgs

doublets. As a result, it is expected that the tree-level Higgs mass in the NMSSM++

will be larger than in the NMSSM+, and larger in the NMSSM+ than in the NMSSM

without extra matter. Moreover, it is usually assumed that the fine tuning reduces as

the perturbativity bound on λ is increased since a large tree-level Higgs mass could

imply lighter top squarks in the plus-type models than in the NMSSM. We have tested

this commonly held hypothesis in the context of the three models above, and

surprisingly find that this is not the case. Indeed, of all three models, we find that the

NMSSM is the least fine tuned (∆ ∼ 100). The fine tuning in the NMSSM+ was the

closest of the two plus-type models to the NMSSM with the lowest value being

∆ ∼ 200. Finally, the NMSSM++ is the most fine tuned model where the fine tuning

starts from 600. In general, the mass spectrum in the NMSSM++ was found to be

heavier than in the NMSSM+, and heavier in the NMSSM+ than in the NMSSM.

The reason why the fine tuning is worse in the plus-type models than in the NMSSM is

that such models with extra matter involve a larger gluino mass at high energies. In

particular, we find that M3,GUT is always larger in the NMSSM+ and very much larger

in the NMSSM++, as compared to the NMSSM. This ordering results in an increased

low energy stop mass spectrum, well above either the stop mass experimental limits or

the stop mass limits required to obtain a sufficiently large Higgs mass. The heavy stop

masses appear to be unavoidable in the NMSSM+, and especially the NMSSM++,

purely as a result of the low energy experimental gluino mass limit and the RGE

running behaviour, at least for the class of high energy semi-constrained SUGRA

inspired models under consideration. In conclusion, it appears that increasing the

perturbativity bound on λ at the low scale by adding extra matter does not reduce the

fine tuning, but worsens it.

We also studied the parameter space of the NMSSM+ where DM relic density

constraints are imposed. We modified NMSSMTools4.4.0, were two-loop RGEs of the

NMSSM+ are implemented. The mass scale of the vector-like state is fixed at 2.5 TeV.

Furthermore, we considered a parameter space with a small tanβ (fixed at 3), µ-term
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(250 GeV), and large λ in order to enhance its tree-level contribution the Higgs mass.

We found that the NMSSM+ have a range of parameter space that passes the

experimental constraints in Table 4.1, and can account for DM relic density. We also

found that the lowest fine tuning possible sets around 250. This further confirms that

the NMSSM+ is more fine tuned than the NMSSM. However, the results presented a

preliminary, and more thorough investigation is needed.

In conclusion, it appears that increasing the perturbativity bound on λ at the low scale

by adding extra matter does not reduce the fine tuning, but worsens it.





Chapter 5

Fine tuning in the constrained

exceptional supersymmetric

standard model

5.1 Overview

The Large Hadron Collider (LHC) has been accumulating data since 2009 with no

observation of new physics beyond the standard model (BSM) so far, placing strong

limits on new coloured states in extensions of the standard model. For example, in

supersymmetric (SUSY) models there are strong experimental limits on the first and

second generation squark and gluino masses [131, 132] which imply that they must be

at least an order of magnitude larger than the electroweak (EW) scale. Within

constrained versions of SUSY, where the masses of top squarks are linked to first and

second generation squarks masses, this can considerably increase fine tuning since the

EW scale is very sensitive to top squark masses, through the electroweak symmetry

breaking conditions.

At the same time Atlas and CMS have recently observed a new state consistent with a

Standard-Model-like Higgs boson at mh = 125− 126 GeV [25, 26], which is within the

range for it to be consistent with the lightest Higgs in supersymmetric models. In the

89
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minimal supersymmetric standard model (MSSM) this introduces further tension with

naturalness since the light Higgs mass at tree-level is bounded from above by the Z

boson mass (MZ). The large radiative contributions from top squarks needed to raise

it to the observed value typically imply very large fine tuning. For example the

constrained MSSM (cMSSM) [133] has been shown to require fine tuning of O(1000) if

it is to contain a 125 GeV Higgs mass [134, 135].

Here we consider fine tuning in an alternative class of constrained SUSY models which

involves both an extra singlet field, denoted S, and an extra U(1) gauge symmetry at

low energy (TeV scale). As the singlet acquires a VEV, denoted s, it produces a µ

term, denoted µeff, and it breaks the extra U(1) gauge symmetry, giving rise to a

massive Z ′ boson. Such models can increase the tree-level physical Higgs boson mass

above the MZ limit of the MSSM, due to both F-term contributions of the singlet and

the D-term contributions associated with the Z ′, allowing lighter top squark masses

and hence reducing fine tuning due to top squark loops. The exceptional

supersymmetric standard model (E6SSM) [136, 137] is an example of such a model,

inspired by the E6 group. At tree-level, the light Higgs mass is given as,

m2
h ≈M2

Z cos2 2β︸ ︷︷ ︸
MSSM

+
λ2

2
v2 sin2 2β

︸ ︷︷ ︸
NMSSM

+
M2
Z

4
(1 +

1

4
cos 2β)2

︸ ︷︷ ︸
E6SSM

+∆m2
h, (5.1)

where, tanβ = v2
v1

is the ratio between the two Higgs doublets’ vacuum expectation

values (VEVs), λ is the Yukawa coupling of the singlet field to the Higgs doublets, and

∆m2
h represents loop corrections.

Indeed, Eq. 5.1 shows that the E6SSM allows larger tree-level Higgs masses than the

NMSSM [138, 139, 140, 141, 142, 143, 144], which in turn allows larger tree-level Higgs

masses than the MSSM. This means that the E6SSM does not rely on such a large a

contribution from the radiative correction term ∆m2
h in order to reproduce the Higgs

mass. As a result the E6SSM permits lighter top squarks than either the NMSSM or

the MSSM. In addition the λ coupling in the E6SSM can be larger at low energies,
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while still remaining perturbative all the way up to the GUT scale, than is the case in

the NMSSM.

One might conclude that this should lead to lower fine tuning in the E6SSM than

either the NMSSM or MSSM, since the large top squark masses are usually the main

source of fine tuning in SUSY models. However, the origin of the extra term in Eq. 5.1

is due to D-terms arising from the coupling of the Higgs doublets to the extra U(1)

gauge symmetry, and such D-terms also contribute to the minimisation conditions of

the Higgs doublets. Indeed, as we shall discuss, one of the minimisation conditions of

the E6SSM can be written in the form,

c
M2
Z

2
= −µ2

eff +
(m2

d −m2
u tan2 β)

tan2 β − 1
+ d

M2
Z′

2
, (5.2)

where c, d are functions of tanβ which are of order ∼ O(1) (given explicitly in

Eq. 5.13), m2
d,m

2
u are soft Higgs mass squared parameters. µeff arises from the singlet

VEV, and M2
Z′ is proportional to s2 (given explicitly in Eq. 5.15). Written in this form

it is clear that the D-terms are a double edged sword since they also introduce a new

source of tree-level fine tuning, due to the Z ′ mass squared term in Eq. 5.2, which will

increase quadratically as M2
Z′ , eventually coming to dominate the fine tuning for large

enough values of MZ′ . This tree-level fine tuning can be compared to that due to µeff

which typically requires this parameter to be not much more than 200 GeV, and

similar limits also apply to MZ′ . With the current CMS experimental mass limit for

the Z ′ in the E6SSM of MZ′ & 2.08 TeV [145] it is clear that there is already a

significant, perhaps dominant, amount of fine tuning due to the Z ′ mass limit.

In this Chapter we investigate this new and important source of fine tuning, namely

that due to the MZ′ limit, and compare it to the usual other sources of fine tuning in

the framework of the Constrained E6SSM (cE6SSM) [146, 147, 148, 149]. Although the

impact of a SM-like Higgs with mh ∼ 125 GeV on the parameters has recently been

considered in [150, 151], fine tuning was not considered. In fact the present study here

is the first time that fine tuning has been considered in any supersymmetric E6 model

with a low energy Z ′. To obtain the required Higgs mass in the cE6SSM, it turns out

that the SM singlet field, S, must have a VEV s ≥ 5 TeV as pointed out in [150]. This
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corresponds to a mass of the Z ′ boson predicted by the model of 1.9 TeV, which

almost reaches the experimental bound of 2 TeV [145]. Thus, all the parameter space

we study respects the experimental limit on MZ′ . Fixing tanβ = 10, and taking

specific values of the mass of the Z ′ boson, MZ′ , ranging from 1.9 to 3.8 TeV we find

that the current minimum fine tuning in the cE6SSM, consistent with a Higgs mass

mh ∼ 125 GeV, varies from ∼ 200− 400, and is already dominated by the MZ′ limit.

However, this is significantly lower than the fine tuning in the cMSSM of O(1000)

arising from the heavy top squarks required to achieve the Higgs mass.

The rest of the Chapter is organised as follows: Section two provides a short overview

of the E6SSM. Then, the scalar Higgs potential and the electroweak symmetry

breaking (EWSB) conditions are discussed in Section three. In Section four we discuss

the fine tuning measure we use, and derive a fine tuning master formula for the E6SSM

with a brief description of our semi-numerical procedure of calculating fine tuning.

Section five is where we present our results and discussion, then we conclude the study

in Section six.

5.2 The E6SSM

The Exceptional Supersymmetric Standard Model (E6SSM) is a non-minimal

supersymmetric extension of the SM, which provides a low energy alternative to the

MSSM and NMSSM. It is well motivated both from more fundamental theories due to

its connection to E6 GUTs, heterotic and F- string theory [152] and at the same time

as a low energy effective model, providing solutions to phenomenological problems. For

instance, as mentioned in the Introduction, the E6SSM allows a larger Higgs mass at

tree-level than in both the MSSM and the NMSSM, thereby requiring smaller

contributions from loops. In addition it also solves the µ problem associated with the

MSSM by dynamically producing the µ-term at the TeV scale, without introducing the

domain walls or tadpole problems that can appear in the NMSSM.
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The E6SSM is based on the Exceptional Lie group E6. This contains both of SO(10)

and SU(5) as subgroups,

E6 → SO(10)× U(1)ψ (5.3)

SO(10)→ SU(5)× U(1)χ, (5.4)

and hence also contains the Standard Model gauge group, which is a subgroup SU(5).

A linear combination of the two extra U(1)ψ and U(1)χ groups can survive to low

energies, where it is spontaneously broken by a SM singlet field, S. This generates the

mass of the associated Z ′ boson and the exotic quarks, as well as dynamically

producing a µeff term. The model allows right-handed (RH) neutrinos to have

Majorana masses at some scale between the GUT and low scales. This is achieved by

choosing this linear combination to be,

U(1)N =

√
15

4
U(1)ψ +

1

4
U(1)χ (5.5)

such that the RH neutrinos are not charged under U(1)N , hence it is possible to

explain the tiny neutrino masses via seesaw mechanisms.

At low energies, the group structure of the model is that of the SM, along with the

additional U(1)N symmetry,

E6 → SU(5)× U(1)N (5.6)

SU(5)→ SU(3)c × SU(2)w × U(1)Y (5.7)

The matter content of the model is contained in the complete 27-dimensional

representation which decomposes under SU(5)× U(1)N to,

27i −→ (10, 1)i + (5∗, 2)i + (5∗,−3)i + (5,−2)i + (1, 5)i + (1, 0)i (5.8)
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Ordinary Quarks and Leptons are contained in the representations: (10, 1) and (5∗, 2).

The Higgs doublets and exotic quarks are contained in (5∗,−3) and (5,−2). The

singlets are contained in (1, 5), and finally the right handed neutrinos are included in

(1, 0).

Moreover, the model requires three 27 representations, hence i = 1, 2, 3, in order to

ensure anomaly cancellation. This means that there are three copies of each field

present in the model. However, only the third generation (by choice) of the two Higgs

doublets, and the SM singlet acquire VEVs. The other two generations are called inert.

Furthermore, in order to keep gauge coupling unification, non-Higgs fields that come

from extra incomplete 27′, 2̄7′ representations are added to the model. As a result, a µ′

term, which is not necessary related to the weak scale, is present in the model.

The full superpotential consistent with the low energy gauge structure of the E6SSM

includes both E6 invariant terms and E6 breaking terms, full details of which are given

in [136]. However as in the MSSM it is necessary to forbid proton decay and therefore

a generalisation of R-parity should be imposed, and additionally because the E6SSM

includes three generations of every chiral superfield, there needs to be a suppression of

new terms which can induce flavour changing neutral currents. To achieve this we

impose either a ZL2 symmetry1 (Model I) or a ZB2 symmetry2 (Model II) along with an

approximate ZH2 symmetry, under which all fields are odd except for the third

generation Higgs superfields, which may arise from a family symmetry[153, 154].

The ZH2 invariant superpotential then reads,

WE6SSM ≈ λiŜ(Ĥd
i Ĥ

u
i ) + κiŜ(D̂iD̂i) + fαβŜα(ĤdĤ

u
β ) + f̃αβŜα(Ĥd

βĤu)

+
1

2
MijN̂

c
i N̂

c
j + µ′(Ĥ ′Ĥ ′) + hE4j(ĤdĤ

′)êcj + hN4j(ĤuĤ
′)N̂ c

j

+WMSSM(µ = 0), (5.9)

1All superfields except the leptons and survival Higgs are even.
2All the exotic quark, lepton and survival Higgs superfields are odd while all the other superfields

remain even.
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where the indices α, β = 1, 2 and i = 1, 2, 3 denote the generations. S is the SM singlet

field, Hu, and Hd are the Higgs doublet fields corresponding to the up and down types.

Exotic quarks and the additional non-Higgs fields are denoted by D and H ′

respectively.

Finally to ensure that only third generation Higgs like fields get VEVs a certain

hierarchy between the Yukawa couplings must exist. Defining λ ≡ λ3, we impose

κi, λi � fαβ, f̃αβ, h
E
4j , h

N
4j . Moreover, we do not impose any unification of the Yukawa

couplings at the GUT scale.

5.3 The Higgs potential and the EWSB conditions

The scalar Higgs potential is,

V (Hd, Hu, S) = λ2|S|2(|Hd|2 + |Hu|2) + λ2|Hd.Hu|2

+
g2

2

8
(H†dσaHd +H†uσaHu)(H†dσaHd +H†uσaHu)

+
g′2

8
(|Hd|2 − |Hu|2)2 +

g′21
2

(Q1|Hd|2 +Q2|Hu|2 +Qs|S|2)2

+m2
s|S|2 +m2

d|Hd|2 +m2
u|Hu|2

+ [λAλSHd.Hu + c.c.] + ∆Loops

(5.10)

where, g2, g′(=
√

3/5g1), and g′1 are the gauge couplings of SU(2)L, U(1)Y (GUT

normalized), and the additional U(1)N , respectively. Q1 = −3/
√

40, Q2 = −2/
√

40,

and Qs = 5/
√

40 are effective U(1)N charges of Hu, Hd and S, respectively. ms is the

mass of the singlet field, and mu,d ≡ mHu,d .

The Higgs field and the SM singlet acquire VEVs at the physical minimum of this

potential,

〈Hd〉 =
1√
2

v1

0

 , 〈Hu〉 =
1√
2

 0

v2

 , 〈S〉 =
s√
2
, (5.11)
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It is reasonable exploit the fact that s� v, which will help in simplifying our master

formula for fine tuning as will be seen in Section 4. Then, from the minimisation

conditions,

∂VE6SSM

∂v1
=
∂VE6SSM

∂v2
=
∂VE6SSM

∂s
= 0, (5.12)

the Electroweak Symmetry Breaking (EWSB) conditions are,

M2
Z

2
= −1

2
λ2s2 +

(m2
d −m2

u tan2 β)

tan2 β − 1
+
g′21
2

(
Q1v

2
1 +Q2v

2
2 +Qss

2
) (Q1 −Q2 tan2 β)

tan2 β − 1

(5.13)

sin 2β ≈
√

2λAλs

m2
d +m2

u + λ2s2 +
g′21
2 Qss

2(Q1 +Q2)
, (5.14)

m2
s ≈ −

1

2
g′21 Q

2
ss

2 = −1

2
M2
Z′ , (5.15)

where M2
Z = 1

4(g′2 + g2
2)(v2

2 + v2
1) and M2

Z′ ≈ g′21 Q2
ss

2.

Eq. 5.13 can be written in the form,

c
m2
Z

2
= −µ2

eff +
(m2

d −m2
u tan2 β)

tan2 β − 1
+ d

M2
Z′

2
, (5.16)

where c, d are functions of tanβ which are of order ∼ O(1) and we have written

µeff = λs√
2
. Written in this form it is clear that fine tuning will increase as MZ′

increases. Another source of fine tuning is the large |µeff| term as mentioned in the

introduction since satisfying Eq. 5.16 will require this term to compensate for any

increase in either the second term (term 2: ∼ m2
u,m

2
d) or the last term (term 3:

∼M2
Z′).

The increasing experimental limits on MZ′(∼ s) results in constraining the parameter

space of the E6SSM such that only relatively large values of m0 and m1/2 result in

successful solutions to the EWSB conditions (Fig. 5.1- 5.11).
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Moreover, imposing universal boundary conditions, which is what characterises the

cE6SSM, means that all low energy SUSY parameters can be expanded in terms of a

few GUT-scale universal and fundamental input parameters, namely,

m0, m1/2, A, λi(0), κi(0), ht,b,τ (0) (5.17)

where, m0,m1/2 and A are a universal scalar mass, a universal gaugino mass, and a

universal trilinear coupling, respectively, and (0) means taking the parameter at the

GUT scale (in the Results section, we refer to λ3(0) and κ1,2,3(0) as λ0 and κ0,

respectively).

This is accomplished by using the one-loop RGEs of the scalar masses, so that one can

express m2
Hu

at the SUSY scale, MS , as,

m2
Hu(MS) = z1m

2
0 + z2m

2
1/2 + z3A

2 + z4m1/2A. (5.18)

Then, it is possible to write,

m2
Z

2
≈

n∑
i=1

Fizia
2
i (5.19)

where, a denotes the fundamental parameters, z is the coefficient corresponding to

each parameter, and is calculated numerically using E6SSM RGEs (cf. Sec. 3.3.4). The

values of these coefficients depend on the input values of λ0, κ0, and the other gauge

and Yukawa couplings. F is some factor, possibly, involving tanβ.

Whence, one can calculate (analytically or numerically) the sensitivity of mZ to each

fundamental parameter, and this leads us to fine tuning.

5.4 Fine tuning and the master formula

To study the degree of fine tuning, a quantitative measure needs to be applied. Here

we use the conventional fine tuning measure presented in Sec. 3.5,
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∆a =

∣∣∣∣∂ lnmZ

∂ ln a

∣∣∣∣ , (5.20)

where mZ is the mass of the Z boson3 and a is one of the fundamental parameter in

the set {m0,m1/2, A, λ(0), κ(0)}.

For example, ∆a = 10 and 200 correspond to a 10% and 0.5% tuning in the parameter

a, respectively. Moreover, for a given point in the parameter space, fine tuning is the

maximum value of fine tuning in the set {∆a}, and is denoted ∆max (or simply ∆).

5.4.1 Master Formula

We now proceed to apply it in a quantitative analysis of fine tuning. To do so we first

derive and present the master formula which gives the explicit expression from which

the fine tuning is calculated. Using Equations 5.13, 5.14, 5.15 and 5.20, we derive this

master formula for fine tuning in the E6SSM4,

∆a ≈c−1 × a

m2
Z(tan2 β − 1)

{
(1− tan2 β)

2

∂(λ2s2)

∂a
+
∂m2

d

∂a
− tan2 β

∂m2
u

∂a

+
g′21
2

(Q1 − tan2 βQ2)

(
Qs

∂s2

∂a
+

4m2
Z

ḡ2

∂

∂a
(Q1 cos2 β +Q2 sin2 β)

)
− tanβ

cos 2β

[
1 +

m2
Z

m2
d +m2

u + λ2s2 +
g′21
2 Qss

2(Q1 +Q2)

]
×

×
[√

2
∂(λAλs)

∂a
− sin 2β

∂

∂a
(m2

d +m2
u + λ2s2 +

g′21
2
Qs(Q1 +Q2)s2)

]}
,

(5.21)

where

c =

[
1− 4

(tan2 β − 1)

g′21
ḡ2

(Q1 − tan2 βQ2)× (Q1 cos2 β +Q2 sin2 β)

]
, (5.22)

and ḡ2 = (g′2 + g2
2). For tanβ = 10; c−1 ' 0.88.

3Note that some authors choose m2
Z instead of mZ . Both measures can be easily linked since

1
2
∆a(m2

Z) = ∆a(mZ). Our choice was made to enable straightforward comparisons with the results
in [135].

4Note we have left two terms in the second line of Eq. 5.21 written in terms of derivatives of cos2 β and
sin2 β with respect to a. Substituting for soft masses here would unnecessarily clutter the expression and
we note that these terms are numerically negligible since their contribution to fine tuning is very small
(< O(1)). This is due to the fact that they will be multiplied by an overall factor of order O(< 10−12).
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The aim is to expand the low energy parameters, including s, in terms of the

GUT-scale universal input parameters using the E6SSM RGEs as mentioned in the

previous section. Next, the formula is implemented into a private cE6SSM spectrum

generator (described in [148, 149]) and fine tuning at each point in the scanned

parameter space is calculated. In order to ensure accuracy of the results, the

derivatives in the master formula for a = λ(0) and a = κ(0) are calculated numerically.

And in order to calculate,

∂

∂a
s2, (5.23)

we use

s2 = − 2

g′21 Q
2
s

m2
s, (5.24)

where, as usual, m2
s is expanded in terms of the GUT parameters.

Finally, throughout our study, we fix tanβ = 10 since larger and smaller values restrict

the availability of mh ∼ 125 GeV, and the parameter space [150].

5.5 Results and discussion

The scans are taken for fixed s = 5− 10 TeV corresponding to MZ′ = 1.9− 3.8 TeV.

We scan over

− 3 . λ3(0) . 0 and 0 . κ1(0) = κ2(0) = κ3(0) . 3 (5.25)

while fixing λ1,2(0) = 0.1 and tanβ = 10. The sign of λ ≡ λ3(0) is a free parameter in

our convention since we are setting s and m1/2 > 0. However as with previous studies

[150] we found that most of the parameter space is covered with λ < 0, while λ > 0

covers a much smaller region of the parameter space. Therefore we focused on λ < 0 in

our study. The other GUT parameters: m0,m1/2 and A0 are obtained as an output so

that the EWSB conditions are satisfied to one-loop order. Then we plot both mh and

∆max in the m0 −m1/2 plane. The key at the top-left of all plots corresponding to mh

shows the central value in a bin of width ±0.5 GeV, while that corresponding to ∆

shows the central value in a bin of width ±50.
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Moreover, we select a benchmark point corresponding to each value of s. These points

possess the smallest fine tuning in the m0 −m1/2 plane consistent with a Higgs mass

within the 124 < mh < 127 GeV range, and mg̃ ≥ 850 GeV 5. They are denoted as a

black dot in Figures 5.1- 5.12. These points and the relevant physical masses are

summarised in Table B.1 in Appendix B.

Figure 5.1: ∆max (left) and mh (right) in the m0 −m1/2 plane for tanβ = 10 and

s = 5 TeV corresponding to MZ′ = 1.9 TeV. We also fixed λ1,2(0) = 0.1 while scanning

over −3 ≤ λ3(0) ≤ 0 and 0 ≤ κ1,2,3(0) ≤ 3. The benchmark point corresponds to

m0 = 2020,m1/2 = 1033 GeV.

In the left panel of Fig. 5.1 the results for s = 5 TeV, corresponding to MZ′ = 1.9 TeV,

are shown with fine tuning contours, ranging from 100 to above 800 for the highest m0.

For each value of m0 and m1/2, the parameters λ, κ, and A take different values. Since

the Higgs mass strongly depends both on top squark corrections and λ, it will also take

different values denoted by the Higgs mass contours displayed in the right panel of

Fig. 5.1. Since both fine tuning and the Higgs mass vary over the m0 −m1/2 plane the

mass of the Higgs discovered at the LHC plays a crucial rule in fixing the level of

tuning, though this dependence is significantly more complicated than in the MSSM.

Thus, although for s = 5 TeV the tuning can in principle be as low as 100, in order to

obtain mh ∼ 124 GeV the fine tuning must be more than twice as large as this. A

benchmark representing points with the lowest tuning compatible with data shown as

5The constraint on mg̃ applied here is based on earlier LHC results than the constraint applied in
the previous Chapter. This is because this study was published before the one in the previous Chapter.
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Figure 5.2: The left panel highlights the parameter responsible for the largest amount
of fine tuning, ∆max, in the m0−m1/2 plane for tanβ = 10 and s = 5 TeV corresponding
to MZ′ = 1.9 TeV. On the right a coarse scan shows which terms Eq. 5.16 give the
largest contribution, with regions where the largest contribution comes from term 2,
which is proportional to m2

d −m2
u tan2 β, are shown in yellow and while regions where

the dominant contribution is from term 3, proportional to M2
Z′ are shown in blue.

black dot in Fig. 5.1 having ∆BM = 251 with mh ≈ 124 GeV. Note that mh ∼ 125

GeV is almost impossible to achieve for s = 5 TeV (represented by the very small

green region in the right panel). In addition, the value MZ′ = 1.9 TeV slightly violates

the CMS limit MZ′ & 2.08 TeV [145], although this limit does not take into account

the presence of lighter singlet states which increase the Z ′ width and reduce the

leptonic branching ratio, weakening this limit as discussed in [146].

One also needs to take into account LHC constraints from squark and gluino searches

which rule out m1/2 . 1 TeV corresponding to a gluino mass mg̃ . 850 GeV [150].

In Appendix B we provide a set on benchmark points corresponding to m1/2 ∼ 1 TeV

and these benchmark points are denoted by small black dots on the Figures. We

emphasise that the cE6SSM has not been studied by any of the LHC experiments, and

that the gluino mass limits in the E6SSM may differ from those of the MSSM as

discussed recently [155]. Therefore, in choosing our minimum tuning benchmarks, the

limits we assumed are quite conservative. From the results in [150], we find that in the

cE6SSM the gluino mass is approximately given by mg̃ ∼ 0.85m1/2 and the first and

second generation squark masses are given by mq̃ ∼ (1.3− 1.8)m0, depending on m1/2.

In the future (for example when the full 8 TeV data set is analysed) the allowed values
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of m0 and m1/2 are expected to increase according to these approximate relations.

Therefore, we show in Appendix B.1 (Table B.2) the minimum allowed fine tuning

associated with gluino mass in the 1 ≤ mg̃ ≤ 1.5 TeV range, and the usual range for

the singlet VEV s = 5− 10 TeV. Clearly, the fine tuning in the cE6SSM is not as large

as that in the CMSSM, where increasing mg̃ to 1.5 TeV leads to minimum fine tuning

> 1000 as found in [135], while it varies between ∼ 600− 800 in the cE6SSM.

At first sight, the distribution of fine tuning in the m0−m1/2 plane could seem counter

intuitive since one might expect the region of smaller values of m0 and m1/2 to possess

lower fine tuning. However, the variation of ∆max can be understood by studying

which parameter contributes the maximum fine tuning at each point in the parameter

space. We show this in Fig. 5.2 (left panel) where it is clear that the region of small

m0 and m1/2 is dominated by large fine tuning in the parameter λ0, resulting from a

large |µeff| term in this region.

In addition, κ0 can contribute to ∆max since Aλ and ms are strongly dependent on this

parameter. The physical origin of the fine tuning in κ0 is due to the loops of exotic

D-particles which serve to radiatively drive the singlet mass squared negative which

triggers electroweak symmetry breaking. Finally, m0 can be the source of fine tuning

for very large values of m0 which is the region extending beyond what we show in the

plots.

The relative fine tuning in the input parameters {m0,m1/2, A, λ(0), κ(0)} does not

directly tell us any information about the relative importance of the second and third

terms on the right-hand side of Eq. 5.16, both of which can independently be large and

hence lead to a large |µeff| which is manifested as large fine tuning in λ0. It is therefore

instructive to directly compare the magnitudes of the second and third terms of

Eq. 5.16, where the former is proportional to m2
u and m2

d, hence sfermions, and the

latter is proportional to M2
Z′ . In Fig. 5.2 (right panel) we scan the parameter space for

s = 5 TeV, and for each point we show which of the two terms is larger. The larger of

the two would be responsible for the fine tuning at the corresponding point. It is clear,

then, that MZ′ (blue region) not only controls the minimum fine tuning allowed, but

also is the dominating source of fine tuning over large regions of the parameter space.



Chapter 5 Fine tuning in the constrained E6SSM 103

This is true for all the other values of s. However, some substantial contribution to fine

tuning comes from sfermions as seen in the yellow region.

Figure 5.3: ∆max (left) and mh (right) in the m0 −m1/2 plane for tanβ = 10 and

s = 6 TeV corresponding to MZ′ = 2.3 TeV. The benchmark point corresponds to

m0 = 1951,m1/2 = 1003 GeV.

Figure 5.4: The left panel highlights the parameter responsible for the largest amount
of fine tuning, ∆max, in the m0−m1/2 plane for tanβ = 10 and s = 6 TeV corresponding
to MZ′ = 2.3 TeV. On the right a coarse scan shows which terms Eq. 5.16 give the
largest contribution, with regions where the largest contribution comes from term 2,
which is proportional to m2

d −m2
u tan2 β, are shown in yellow and while regions where

the dominant contribution is from term 3, proportional to M2
Z′ are shown in blue.

As we increase s to 6 TeV (shown in Fig. 5.3), we simultaneously satisfy the CMS mass

limit on the Z ′ mass, with MZ′ = 2.3 TeV, and we obtain more points with the heavier

Higgs mass mh = 125 GeV. Interestingly, the benchmark point in this case has a fine

tuning ∆BM = 233 for mh ≈ 124 GeV which is slightly smaller than for the previous
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case with s = 5 TeV. Additionally, in the left panel in Fig. 5.3 a tiny region of

∆max = 200 appears as a small circle inside the ∆max = 300 band. While it is still λ0

that is responsible for ∆max in that area as seen in the left panel in Fig. 5.4, this

region is associated with a slightly smaller |µeff| (|λ0|) and larger κ0 than in the

adjacent regions, an effect which was not present in the results of s = 5 TeV.

Moreover, Fig. 5.4 shows that the origin of fine tuning depends on the point in the

m0 −m1/2 plane consistent with the Higgs mass and the LHC limits of squark and

gluino masses, estimated above as mg̃ ∼ 0.85m1/2 and mq̃ ∼ (1.3− 1.8)m0. For

example if the squark and gluino masses are increased then it is possible that fine

tuning is dominated by fine tuning in m1/2 or in λ0 via large |µeff| which could be due

to heavy top squarks rather than large MZ′ according to the right panel in Fig. 5.4.

Figure 5.5: ∆max (left) and mh (right) in the m0 −m1/2 plane for tanβ = 10 and

s = 7 TeV corresponding to MZ′ = 2.6 TeV. The benchmark point corresponds to

m0 = 2186,m1/2 = 1004 GeV.

For s = 7 TeV, corresponding to MZ′ = 2.6 TeV, the region with mh ∼ 125 GeV

expands in comparison to s = 5 and 6 TeV, as can be seen by comparing the right

panel in Fig. 5.5, to the previous plots. In addition a very small region with mh ∼ 126

GeV appears for the first time. In the left panel of Fig. 5.5, fine tuning starts from

200, and reaches 600 outside the middle region. In addition, the tiny circle of points

with smaller fine tuning than its surroundings in the small m0 −m1/2 region, which

appeared previously in the results for s = 6 TeV, now grows a little.



Chapter 5 Fine tuning in the constrained E6SSM 105

Figure 5.6: The left panel highlights the parameter responsible for the largest amount
of fine tuning, ∆max, in the m0−m1/2 plane for tanβ = 10 and s = 7 TeV corresponding
to MZ′ = 2.6 TeV. On the right a coarse scan shows which terms Eq. 5.16 give the
largest contribution, with regions where the largest contribution comes from term 2,
which is proportional to m2

d −m2
u tan2 β, are shown in yellow and while regions where

the dominant contribution is from term 3, proportional to M2
Z′ are shown in blue.

The chosen benchmark point has ∆BM = 270 for mh ≈ 125 GeV. Notice how

increasing s, hence MZ′ , affects the lowest fine tuning possible in the parameter space,

confirming that it is the MZ′ term in Eq. 5.16 dominating fine tuning and defining its

lowest value as can be seen in the right panel of Fig. 5.6. As before, this conclusion

depends on the particular point in the m0 −m1/2 plane.

Figure 5.7: ∆max (left) and mh (right) in the m0 −m1/2 plane for tanβ = 10 and

s = 8 TeV corresponding to MZ′ = 3.0 TeV. The benchmark point corresponds to

m0 = 2441,m1/2 = 1002 GeV.
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Figure 5.8: The left panel highlights the parameter responsible for the largest amount
of fine tuning, ∆max, in the m0−m1/2 plane for tanβ = 10 and s = 8 TeV corresponding
to MZ′ = 3.0 TeV. On the right a coarse scan shows which terms Eq. 5.16 give the
largest contribution, with regions where the largest contribution comes from term 2,
which is proportional to m2

d −m2
u tan2 β, are shown in yellow and while regions where

the dominant contribution is from term 3, proportional to M2
Z′ are shown in blue.

For s = 8 TeV the Higgs mass mh ∼ 125 GeV dominates over most of the m0 −m1/2

plane as shown in the right panel of Fig. 5.7. Also the mh ∼ 126 GeV region has

become larger. However, fine tuning starts from 300, and the portion of the parameter

space with ∆max ≥ 500 is now more apparent than in the s = 7 TeV case. The

Benchmark point has ∆BM = 302 for mh ≈ 125 GeV. The dominance of the MZ′ term

in Eq. 5.16 for fine tuning can be seen in the right panel of Fig. 5.8, with this

conclusion dependent on the particular point in the m0 −m1/2 plane.
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Figure 5.9: ∆max (left) and mh (right) in the m0 −m1/2 plane for tanβ = 10 and

s = 9 TeV corresponding to MZ′ = 3.4 TeV. The benchmark point corresponds to

m0 = 2709,m1/2 = 1001 GeV.

Figure 5.10: The left panel highlights the parameter responsible for the largest
amount of fine tuning, ∆max, in the m0 − m1/2 plane for tanβ = 10 and s = 9
TeV corresponding to MZ′ = 3.4 TeV. On the right a coarse scan shows which terms
Eq. 5.16 give the largest contribution, with regions where the largest contribution comes
from term 2, which is proportional to m2

d −m2
u tan2 β, are shown in yellow and while

regions where the dominant contribution is from term 3, proportional to M2
Z′ are shown

in blue.

As we reach s = 9 TeV, corresponding to MZ′ = 3.4 TeV, which is shown in Fig. 5.9,

we see that the region where mh ∼ 125 GeV starts to shrink and is replaced by

mh ∼ 126 GeV. If the Higgs mass is indeed mh ∼ 126 GeV then there is a preference

for s = 9 TeV, especially for smaller values of m0 and m1/2. This illustrates the

importance of an accurate determination in the Higgs mass for selecting the most
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appropriate value of s. Fine tuning starts from 200, although a very small region, and

quickly increases to 500 such that a significant portion of the parameter has

∆max & 500. The benchmark point has ∆BM = 330 for mh ≈ 125 GeV. The

dominance of the MZ′ term in Eq. 5.16 for fine tuning can be seen in the right panel of

Fig. 5.10, as usual dependent on the particular point in the m0 −m1/2 plane.

Figure 5.11: ∆max (left) and mh (right) in the m0 −m1/2 plane for tanβ = 10 and

s = 10 TeV corresponding to MZ′ = 3.8 TeV. The benchmark point corresponds to

m0 = 2975,m1/2 = 1005 GeV.

Figure 5.12: The left panel highlights the parameter responsible for the largest
amount of fine tuning, ∆max, in the m0 − m1/2 plane for tanβ = 10 and s = 10
TeV corresponding to MZ′ = 3.8 TeV. On the right a coarse scan shows which terms
Eq. 5.16 give the largest contribution, with regions where the largest contribution comes
from term 2, which is proportional to m2

d −m2
u tan2 β, are shown in yellow and while

regions where the dominant contribution is from term 3, proportional to M2
Z′ are shown

in blue.
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Finally, for s = 10 TeV, corresponding to MZ′ = 3.4 TeV, in the left panel of Fig. 5.11

the fine tuning starts from 300, and the parameter space is severely restricted in terms

of fine tuning as it is mostly covered by points with ∆max > 500. In addition, the

region of mh ∼ 125 GeV has shrunk and now occupies a smaller portion than the

mh ∼ 126 GeV region. In addition a small region with mh ∼ 127 GeV now exists

prominently for the first time (only a miniscule region existed for s = 9 TeV).

Moreover, as seen before, the left panel in Fig. 5.11 contains short lines of points in the

small m0 −m1/2 region with smaller fine tuning than their surrounding points for the

same reason as before, namely that |µeff| can be somewhat smaller.

The benchmark point has fine tuning ∆BM = 359 and mh ≈ 125 GeV. The dominance

of the MZ′ term in Eq. 5.16 for fine tuning can be seen in the right panel of Fig. 5.12,

with the familiar dependence on the particular point in the m0 −m1/2 plane.

5.6 More on the fine tuning of the E6SSM

In the previous Sections, we have investigated the fine tuning in the cE6SSM for the

range of parameters detailed in Sec. 5.5 and a fixed value of tanβ = 10.

In this Section, we study two additional cases. The first is cE6SSM with tanβ 6= 10,

and the second is a variant of the E6SSM where g′ does not unify with the other

couplings at the GUT scale.
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5.6.1 Small and large tan β

Figure 5.13: In the left panel, the fine tuning in the parameter space is shown in the

m0 −m1/2 plane, while the the right panel shows the values of mh. All with a fixed

value of MZ′ ≈ 3.8 TeV, and tanβ = 5.

Figure 5.14: In the left panel, the fine tuning in the parameter space is shown in the

m0 −m1/2 plane, while the the right panel shows the values of mh. All with a fixed

value of MZ′ ≈ 3.8 TeV, and tanβ = 30.

Scanning over values of λ3(GUT) ∼ {−3, 0}, κ1,2,3(GUT) ∼ {0, 3}, taking specific

values of tanβ = 5 and 30, while fixing s = 10 TeV (i.e. MZ′ ≈ 3.8 TeV). The cuts we

applied are rather conservative (see [114]) as we require a gluino mass mg̃ > 1.4 TeV.

The Higgs mass is required to be within the range 124 < mh < 127 GeV.

From the right panel in Fig. 5.13, one can see that small values of tanβ can hardly

produce the desired Higgs mass. From our results we notice that the gluino mass can

be large (> 1.5 TeV) in that region, however, fine tuning becomes larger as we
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approach lower values of tanβ (c.f. Fig. 5.14). The benchmark point (appears as a

black dot in the Figures) for the tanβ = 5 case corresponds to a Higgs mass of 124

GeV, mg̃ ∼ 1.7 TeV, and fine tuning ∆ ∼ 1000, which is ∼ 0.1% tuning.

One the other hand, in regions where tanβ is large, as in Fig. 5.14, it is easy to find

the desired Higgs mass and fine tuning is slightly lowered. However, as one approaches

larger and larger values it becomes somewhat difficult to find a gluino mass larger than

1.5 TeV. Therefore, moderate values of tanβ are favored in this model from

phenomenological and naturalness standpoints. The benchmark point for tanβ = 30

corresponds to mh ∼ 126.4 GeV, mg̃ ∼ 1.4 TeV, and fine tuning in the ∼ 0.2% level

(∆ ∼ 600), which is slightly better than the previous case.

5.6.2 lowered g′

Finally we also considered the possibility of lowering the predicted value of MZ′ by

reducing g′1 away from the value predicted by gauge coupling unification. In order to

significantly reduce, or eliminate, tree-level fine tuning associated with mZ , both the

first and third terms of Eq. 5.13 should be of O(MW ). This could be achieved by

requiring both λ and g′ to be of O(10−2).

At the GUT scale, one allows g′ to break the unification of gauge couplings. For

example, setting,

g′(GUT) =
g1(GUT)

100
, (5.26)

which would result in g′(MSUSY) ∼ 0.011, while g1(MSUSY) ∼ 0.47.

Moreover, for different values of g′ one needs to estimate new lower bounds on MZ′

and the corresponding increase in s. This has been carried out in [156] Without g′1

unifying with the other gauge couplings at the GUT scale, Eq. 5.1 becomes ([136]),

m2
h ≈ m2

Z cos2 2β +
λ2

2
v2 sin2 2β + g′2v2(Q1 cos2 β +Q2 sin2 β)2 + ∆m2

h. (5.27)

Therefore, it is clear that reducing g′ and λ to order O(10−2) affects the prediction for

mh as shown in Fig. 5.6.2.
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Figure 5.15: As both g′ and λ decreases to O(10−2), the tree-level prediction of mh

decreases, since the additional contributions coming from the NMSSM-like term and

the E6SSM term are lost.

However, loop corrections can still make it possible to obtain the desired value of mh.

In order to investigate this case more systematically, we take a case where s = 100

TeV, g′ = 0.01 at the GUT scale, and tanβ = 30. We modify the private code

described in Sec. 5.4.1, and scan ranges and constraints on the benchmark point are

chosen to be similar to those discussed in Sec. 5.5.

Fig. 5.16 shows the fine tuning and mh in the usual m0-m1/2 plane in the parameter

space of E6SSM with g′ = 0.01g at the GUT scale, and s = 100 TeV.

Figure 5.16: Left panel shows the fine tuning while the right panel shows the gluino
mass, both in the m0 −m1/2 plane.
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As can be seen in the left panel in Fig. 5.16, the fine tuning varies between ∆ = 200

and ∆ = 2000 as m1/2 varies between ∼ 500 GeV and 4 TeV. The benchmark point

(black triangle), is where the fine tuning is lowest while satisfying the conditions that,

123 GeV ≤ mh ≤ 128 GeV, mg̃ > 1 TeV. The fine tuning was found to be ∆ ∼ 600.

The corresponding parameters and physical masses associated with this point are,

g′ = 0.014 λW = −0.023 κW = 0.14

A0 = 442 GeV

mg̃ = 1.4 TeV mt̃1
= 1.5 TeV

mχ̃0
1

= 270 GeV mχ̃±1
= 480 GeV

MZ′ = 900 GeV

Clearly, the E6SSM with a lowered g′ does not improve the fine tuning of the model as

expected.

5.7 Conclusion

Supersymmetric unified models in which the singlet VEV is responsible simultaneously

both for µeff and for the Z ′ mass, as in the E6 class of models for example, have

relatively large fine tuning which is typically dominated by the experimental mass

limit on the Z ′. To illustrate this, we have investigated the degree of fine tuning

throughout the parameter space of the cE6SSM. In fact this is the first time that fine

tuning has been studied in any E6 model containing a TeV scale Z ′.

To quantify fine tuning we have derived a fine tuning master formula for the E6SSM

and implemented it in a spectrum generator for the constrained version of the model.

Using this we scanned the parameter space of the cE6SSM. The results are presented

in the m0 −m1/2 plane for fixed tanβ = 10 and various s values corresponding to

MZ′ ∼ 2− 4 TeV. This value of tanβ = 10 is the optimum choice for achieving a large

enough Higgs mass in the cE6SSM and so we have exclusively focussed on it here. We

selected benchmark points corresponding to each value of s which possess the smallest

fine tuning while allowing a Higgs mass within the 124 < mh < 127 GeV range, and

mg̃ ≥ 850 GeV. They are the black dot points in Figures 5.1- 5.12. These benchmark
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points and the relevant physical masses are summarised in Table B.1 for a gluino mass

of about 900 GeV. Table B.2 shows how the minimum fine tuning changes as the

gluino mass limit increases up to 1.5 TeV. As remarked earlier, the fine tuning in the

cE6SSM is always significantly smaller than that in the cMSSM, for all gluino masses.

It is clear that the Z ′ mass (determined by the s VEV value) has a significant effect on

the naturalness of the cE6SSM model, with higher values leading to increased fine

tuning. Therefore future improved direct mass limits on the Z ′ mass from the LHC

will imply higher fine tuning. We have also seen an indirect relation between the Higgs

boson mass and the Z ′ mass. For example if the Higgs mass turns out to be mh & 127

GeV then we are driven to s & 10 TeV corresponding to MZ′ & 3.8 TeV requiring

higher fine tuning. Conversely if the Higgs mass turns out to be mh . 124 GeV then

s & 5 TeV corresponding to MZ′ & 1.9 TeV allowing lower fine tuning.

Given present limits, the results in Figures 5.1- 5.12 and Table B.1 show that the

present lowest value of fine tuning in the cE6SSM, consistent with a Higgs mass

mh ∼ 125 GeV, varies from ∆ ∼ 200− 400 where the allowed lowest fine tuning values,

taking into account the relevant experimental bounds, are dominated by MZ′ rather

than the other sources of fine tuning. This is presently significantly lower than the fine

tuning in the cMSSM of ∆ ∼ 1000 arising from the heavy top squarks required to

achieve the Higgs mass.

In the future, the LHC lower limits on gluino and squark masses will improve, along

with the Z ′ mass limit (or else a discovery will be made) and the Higgs boson mass

will be more accurately specified. It is not completely clear where the dominant source

of fine tuning in the cE6SSM will originate from in future. However the results in this

Chapter allow this question to be addressed. The future Z ′ mass limit will determine

the minimum s value permitted, while the Higgs mass and gluino and squark mass

limits will determine the allowed regions of the m0 −m1/2 plane, from which the fine

tuning may be read off from the contour plots we provide.

We have also investigated regions of the parameter space of the cE6SSM where tanβ is

as low as 5 and as high as 30. We find that, in general, fine tuning in the Electroweak

sector lies in the percent level between 0.2%− 0.1%. Small tanβ regions are
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characterized by smaller prediction for the Higgs mass, and gluino masses that are

larger than experimental limits. The fine tuning is more severe in this region of the

parameter space. On the other hand, large tanβ regions are associated with Higgs

masses around the experimentally observed value, and gluino masses that tend to be

smaller than 1.5 TeV. However, the fine tuning is slightly less than that in the very low

tanβ regime. We can conclude that moderate values of tanβ are favoured by

naturalness in the cE6SSM.

Finally, we studied a variant of the E6SSM where g′ is 100 times smaller than g1 at the

GUT scale. While this might reduce the tree-level fine tuning on mZ from the term

proportional MZ′ , it reintroduces fine tuning by requiring the top squarks to be large

in order to obtain a ∼ 126 Higgs mass. The fine tuning in this case is at least ∆ ≥ 600.





Chapter 6

Conclusions

In Ch. 4, three non-minimal Z3-invariant supersymmetric models has been considered.

In particular, the NMSSM, and two variants that add three and four (5, 5) extra states

of SU(5) to the matter content of the NMSSM, and they are called the NMSSM+ and

the NMSSM++, respectively. This extra matter is treated as a secluded sector that

affects the ordinary NMSSM matter via gauge interactions. The low energy spectrum

has been calculated using the package NMSSMTools. For the cases of the NMSSM+,

and the NMSSM++, two loop RGEs were implemented in a modified versions of

NMSSMTools. Additionally, the running masses of the extra matter was ignored due

to suppression by powers of gauge couplings and loop factors at one- and two-loop.

The mass scale of the extra matter was assumed to be degenerate at the scale of first

generation squarks.

The perturbativity bound on λ(MSUSY) can be relaxed in the NMSSM+ and the

NMSSM++ due to the presence of the extra matter. Therefore, it is expected that the

tree-level Higgs mass in the NMSSM++ will be larger than in the NMSSM+, and

larger in the NMSSM+ than in the NMSSM without extra matter. Moreover, a

common assumption is that the fine tuning reduces as the perturbativity bound on λ is

increased since a large tree-level Higgs mass could imply lighter top squarks in the

plus-type models than in the NMSSM.

117
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We have investigated this hypothesis in the context of the three models above, and

surprisingly have found that this is not the case. It was found that the NMSSM is the

least fine tuned (∆ ∼ 100) mdoel. The fine tuning in the NMSSM+ was found to be

the closest to the NMSSM with the lowest value being ∆ ∼ 200. Finally, the

NMSSM++ was the most fine tuned model where the fine tuning starts from 600. The

mass spectrum in the NMSSM++ was found to be heavier than in the NMSSM+, and

heavier in the NMSSM+ than in the NMSSM.

The reason why the fine tuning was found to be worse in the plus-type models than in

the NMSSM is that such models with extra matter involve a larger gluino mass at high

energies. In particular, we have found that M3(GUT) is always larger in the NMSSM+

and very much larger in the NMSSM++, as compared to the NMSSM. This ordering

results in an increased low energy stop mass spectrum, well above either the stop mass

experimental limits or the stop mass limits required to obtain a sufficiently large Higgs

mass. The heavy stop masses appear to be unavoidable in the NMSSM+, and

especially the NMSSM++, as a result of the low energy experimental gluino mass limit

and the RGE running behaviour, at least for the class of high energy semi-constrained

SUGRA inspired models we have considered. Therefore, it appears that increasing the

perturbativity bound on λ at the low scale by adding extra matter does not reduce the

fine tuning.

We have also studied the parameter space of the NMSSM+ where DM relic density

constraints were imposed. We have modified NMSSMTools4.4.0, where two-loop RGEs

of the NMSSM+ were implemented. The mass scale of the vector-like state is fixed at

2.5 TeV. Furthermore, we have considered a parameter space with a small tanβ (fixed

at 3), µ-term (250 GeV), and large λ in order to enhance its tree-level contribution the

Higgs mass. We have found that the NMSSM+ have a range of parameter space that

passes the experimental constraints in Table 4.1, and can account for DM relic density.

We have also found that the lowest fine tuning possible sets around 250. This further

confirms that the NMSSM+ is more fine tuned than the NMSSM. However, the results

presented are preliminary, and more thorough investigation is needed.
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In Ch. 5, it has been shown that supersymmetric unified models in which the singlet

VEV is responsible simultaneously both for µeff and for the Z ′ mass, as in the E6 class

of models for example, have relatively large fine tuning which is typically dominated by

the experimental mass limit on the Z ′. In particular, we have investigated the degree

of fine tuning throughout the parameter space of the cE6SSM.

To quantify fine tuning we have derived a fine tuning master formula for the E6SSM

and implemented it in a spectrum generator for the constrained version of the model.

Using this we scanned the parameter space of the cE6SSM. The results are presented

in the m0 −m1/2 plane for fixed tanβ = 10 and various s values corresponding to

MZ′ ∼ 2− 4 TeV. This value of tanβ = 10 is the optimum choice for achieving a large

enough Higgs mass in the cE6SSM and so we have exclusively focussed on it here. We

selected benchmark points corresponding to each value of s which possess the smallest

fine tuning while allowing a Higgs mass within the 124 < mh < 127 GeV range, and

mg̃ ≥ 850 GeV. They are the black dot points in Figures 5.1- 5.12. These benchmark

points and the relevant physical masses are summarised in Table B.1 for a gluino mass

of about 900 GeV. Table B.2 shows how the minimum fine tuning changes as the

gluino mass limit increases up to 1.5 TeV. As remarked earlier, the fine tuning in the

cE6SSM is always significantly smaller than that in the cMSSM, for all gluino masses.

The Z ′ mass (determined by the s VEV value) had a significant effect on the

naturalness of the cE6SSM model, with higher values leading to increased fine tuning.

Therefore future improved direct mass limits on the Z ′ mass from the LHC will imply

higher fine tuning. We have also seen an indirect relation between the Higgs boson

mass and the Z ′ mass. For example if the Higgs mass turns out to be mh & 127 GeV

then we are driven to s & 10 TeV corresponding to MZ′ & 3.8 TeV requiring higher

fine tuning. Conversely if the Higgs mass turns out to be mh . 124 GeV then s & 5

TeV corresponding to MZ′ & 1.9 TeV allowing lower fine tuning.

Given present limits, the results in Figures 5.1- 5.12 and Table B.1 show that the

present lowest value of fine tuning in the cE6SSM, consistent with a Higgs mass

mh ∼ 125 GeV, varies from ∆ ∼ 200− 400 where the allowed lowest fine tuning values,

taking into account the relevant experimental bounds, are dominated by MZ′ rather
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than the other sources of fine tuning. This is presently significantly lower than the fine

tuning in the cMSSM of ∆ ∼ 1000 arising from the heavy top squarks required to

achieve the Higgs mass.

Future LHC lower limits on gluino and squark masses will improve, along with the Z ′

mass limit (or else a discovery will be made) and the Higgs boson mass will be more

accurately specified. It is not completely clear where the dominant source of fine

tuning in the cE6SSM will originate from in future. However the results in this

Chapter allow this question to be addressed. The future Z ′ mass limit will determine

the minimum s value permitted, while the Higgs mass and gluino and squark mass

limits will determine the allowed regions of the m0 −m1/2 plane, from which the fine

tuning may be read off from the contour plots we provide.

We have also investigated regions of the parameter space of the cE6SSM where tanβ is

as low as 5 and as high as 30. We find that, in general, fine tuning in the Electroweak

sector lies in the percent level between 0.2%− 0.1%. Small tanβ regions are

characterized by smaller prediction for the Higgs mass, and gluino masses that are

larger than experimental limits. The fine tuning is more severe in this region of the

parameter space. On the other hand, large tanβ regions are associated with Higgs

masses around the experimentally observed value, and gluino masses that tend to be

smaller than 1.5 TeV. However, the fine tuning is slightly less than that in the very low

tanβ regime. We can conclude that moderate values of tanβ are favoured by

naturalness in the cE6SSM.

We have studied a variant of the E6SSM where g′ is 100 times smaller than g1 at the

GUT scale. While this might reduce the tree-level fine tuning on MZ from the term

proportional MZ′ , it reintroduces fine tuning by requiring the top squarks to be large

in order to obtain a ∼ 126 Higgs mass. The fine tuning in this case is at least ∆ ≥ 600.

In the future, it is interesting to consider the NMSSM with non-minimal Gauge

mediation. In this scenario we allow the singlet superfield to couple the messenger

superfields, and to vector-like superfields that survive to the energy scale of the first

generation of sfermions. Such vector-like states originate from a (5+5*) fundamental

representation of an SU(5) group at the messenger scale. One issue with gauge
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mediation in the NMSSM is that the scalar component of the singlet superfield does

not acquire a vacuum expectation value at the desired low energy scale due to

insufficient RG running from the messenger energy scale to the weak scale (i.e. the

running squared-mass parameter of the singlet does not become negative at the

required energy scale). The addition of the previously mentioned vector-like states

could allow this to happen. Our aim is to investigate this idea and analyse the

parameter space taking into account the latest experimental constraints. We aim to

see how this will affect the naturalness of the model.





Appendix A

Two-loop renormalisation group

equations

In this Appendix we present the two-loop RGEs (in the DR scheme) used to obtain the

mass spectrum and fine tuning results. We follow the same notation in [81], and use

SM normalisation of the U(1)Y gauge coupling, g1 in the three models. Also, t ≡ lnQ2.

Finally, the RGE coefficients that are different in the three models are placed as

follows:

{NMSSM, NMSSM+, NMSSM++}

in the same RGE equation. For example, the coefficients between braces in:

16π2dg
2
1

dt
= {11, 16,

53

3
}g4

1

belong to the NMSSM, NMSSM+, and NMSSM++, respectively.

123
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Two-loop RGEs of gauge and Yukawa couplings in the NMSSM, NMSSM+ and

NMSSM++ are,
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2
1

dt
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3
}g4

1 +
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t

dt
= h2

t

(
6h2

t + h2
b + λ2 − 13

9
g2

1 − 3g2
2 −

16

3
g2

3

)
+

h2
t

16π2

(
− 22h4

t − 5h4
b − 3λ4 − 5h2

th
2
b − 3h2

tλ
2 − h2

bh
2
τ − 4h2

bλ
2

− h2
τλ

2 − 2λ2κ2 + 2g2
1h

2
t +

2

3
g2

1h
2
b + 6g2

2h
2
t + 16g2

3h
2
t

+ {2743, 3913, 4303} g
4
1

162
+ {15, 33, 39}g

4
2

2
+ {−16, 128, 176}g

4
3

9

+
5

3
g2

1g
2
2 +

136

27
g2

1g
2
3 + 8g2

2g
2
3

)
,



Appendix A Two-loop renormalisation group equations 125
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2
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Two-loop RGEs for the gauginos in the NMSSM, NMSSM+, and NMSSM++ are,
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Two-loop RGEs of the trilinear couplings in the NMSSM, NMSSM+, and NMSSM++

are,
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Again, we follow the notation in [81] defining:
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where {m2
D̄x
,m2

Dx,m
2
Hux

,m2
Hdx
} are diagonal 3× 3 matrices in the NMSSM+, and

diagonal 4× 4 matrices in the NMSSM++.
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The two-loop RGEs of the scalars in the NMSSM, NMSSM+, and NMSSM++ are,
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The Two-loop RGEs of the Higgs doublets and singlet in the NMSSM, NMSSM+, and

NMSSM++ are,
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Finally, for completeness we add the one-loop RGEs of the extra matter, in the

NMSSM+ and the NMSSM++
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Appendix B

cE6SSM Benchmark points

Table B.1 lists the details on the masses and parameters associated with each

benchmark (BM) point that was chosen. We can see that m0 increases significantly as

s (MZ′) becomes larger, while m1/2 is roughly constant. Upon choosing a BM point,

we imposed the limit m1/2 > 1 TeV to have gluino mass mg̃ > 850 GeV. The gluino

masses for our benchmark points are about 900 GeV or close to it, hence if the

experimental limits on mg̃ are to be increased for constrained models, then fine tuning

will increase as well. The lightest stop, t̃1, masses range from 1.7 TeV to 2.4 TeV for

the range of s we studied, and thereby is above the experimental limits.
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BM1 BM2 BM3 BM4 BM5 BM6

s [TeV] 5 6 7 8 9 10

tanβ 10 10 10 10 10 10

λ3(MX) -0.2284 -0.2646 -0.25 -0.2376 -0.2260 -0.2171

λ1,2(MX) 0.1 0.1 0.1 0.1 0.1 0.1

κ1,2,3(MX) 0.1760 0.1923 0.2111 0.2288 0.2452 0.2601

m1/2 [GeV] 1033 1003 1004 1002 1001 1005

m0 [GeV] 2020 1951 2186 2441 2709 2975

A0 [GeV] -83 500 661 781 846 888

mD̃1
(1, 2, 3) [GeV] 2252 2234 2659 3149 3680 4222

mD̃2
(1, 2, 3) [GeV] 3186 3501 3991 4499 5017 5540

µD(1, 2, 3) [GeV] 1782 2238 2752 3279 3812 4347

|mχ0
6
| [GeV] 1973 2349 2727 3105 3483 3861

mh3 'MZ′ [GeV] 1889 2267 2645 3023 3401 3779

|mχ0
5
| [GeV] 1809 2189 2566 2944 3322 3699

ms(1, 2) [GeV] 2448 2548 2897 3263 3639 4014

mH2(1, 2) [GeV] 1970 1847 2023 2218 2426.5 2633

mH1(1, 2) [GeV] 1887 1685 1824 1986 2167 2343

µH̃(1, 2) [GeV] 492 569 642 711 777 841

mũ1(1, 2) [GeV] 2505 2461 2687 2934 3199 3468

mũ1 ' md̃1
(1, 2) [GeV] 2553 2507 2729 2973 3235 3501

md̃2
(1, 2) [GeV] 2571 2558 2810 3082 3372 3665

mẽ1(1, 2, 3) [GeV] 2136 2107 2366 2641 2935 3224

mẽ2(1, 2, 3) [GeV] 2267 2271 2550 2848 3159 3468

mτ̃1 [GeV] 2119 2090 2347 2623 2912 3200

mτ̃2 [GeV] 2259 2263 2541 2838 3148 3457

mb̃1
[GeV] 2202 2151 2340 2549 2777 3009

mb̃2
[GeV] 2552 2539 2789 3059 3347 3639

mt̃1
[GeV] 1741 1681 1839 2016 2212 2411

mt̃2
[GeV] 2215 2166 2354 2561 2787 3018

|mχ0
3,4
| ' |mχ±2

| [GeV] 887 1174 1258 1329 1386 1443

mh2 ' mA ' mH± [GeV] 1890 2268 2646 3025 3403 3782

mh [GeV] 124 124 125 125 125 125

mg̃ [GeV] 901 879 887 892 898 906

|mχ±1
| ' |mχ0

2
| [GeV] 285 279 279 279 279 280

|mχ0
1
| [GeV] 162 157 158 158 158 158

∆max 251 233 270 302 330 359

Table B.1: Parameters and masses for the benchmarks with lowest fine tuning and

Higgs masses in the range of mh = 124− 125 GeV in the cE6SSM.
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B.1 Fine tuning and mg̃

As the lower limits on the gluino mass are expected to rise, Table B.2 shows the

minimum amount of the fine tuning corresponding to different values of gluino mass

within mg̃ = 1− 1.5 TeV, and for s = 5− 10 TeV. The corresponding Higgs mass is

shown in parenthesis next to each value of fine tuning.

s [TeV] 5 6 7 8 9 10

mg̃ [TeV] ∆ (mh [GeV])

1 293 (124) 297 (124) 324 (125) 367 (125) 405 (126) 443 (126)

1.1 388 (125) 348 (124) 358 (124) 408 (125) 454 (126) 497 (126)

1.2 474 (124) 440 (125) 400 (124) 448 (125) 500 (126) 550 (126)

1.3 - 556 (125) 462 (124) 484 (124) 547 (126) 600 (126)

1.4 - 658 (125) 617 (126) 525 (124) 587 (125) 650 (126)

1.5 - - 767 (125) 635 (125) 628 (125) 699 (126)

Table B.2: For different values of the singlet VEV (s = 5 − 10 TeV) corresponding to

MZ′ ∼ 2−3.8 TeV, the effect of rising the lower limit on the gluino mass between mg̃ = 1−1.5

TeV on fine tuning is shown. Next to every fine tuning value, the corresponding Higgs mass

(in GeV) is shown between parentheses. The dash means there’s no mh ∼ 124 − 127 GeV

found in the scanned parameter space.
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