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ABSTRACT. We give a foundational account on topological racks and quandles.
Specifically, we define the notions of ideals, kernels, units, and inner automor-
phism group in the context of topological racks. Further, we investigate topolog-
ical rack modules and principal rack bundles. Central extensions of topological
racks are then introduced providing a first step towards a general continuous co-
homology theory for topological racks and quandles.
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1. INTRODUCTION

Quandles are non-associative algebraic structures (with the exception of the
trivial quandles) that correspond to the axiomatization of the three Reidemeister
moves in knot theory. Since 1982 when quandles were introduced by Joyce [12]
and Matveev [13] independently, there have been investigations, (see for example
[8, 14, 16–20]), that have mostly focused on finite quandles. Joyce and Matveev
proved that the fundamental quandle of a knot is a complete invariant up to ori-
entation. Precisely, given two knots K0 and K1, the fundamental quandle Q(K0)
is isomorphic to the fundamental quandle Q(K1) if and only if K1 is equivalent to
K0 or K1 is equivalent to the reverse of the mirror image of K0. Quandles have
been used by topologists to construct invariants of knots in the 3-space and knotted
surfaces in 4-space. We mention the following two examples of invariants: (1) the
set of colorings of a given knot by a quandle (see [6] for example), (2) state sum in-
variants of knots and knotted surfaces coming from quandle cohomology [4,5,15].
Topological quandles were considered in 2007 by Rubinsztein [21]. He extended
the notion of coloring of a knot or link by a quandle to include topological quan-
dles. He showed that the coloring space of the link is a topological space (defined
up to a homeomorphism). Jacobsson and Rubinsztein [11] computed the space of
colorings of all prime knots with up to seven crossings and of all (2, n)-torus links.
They also observed some similarities between the space of colorings of knots and
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Khovanov homology for all prime knots with up to seven crossings and for at least
some eight-crossing knots.

In this paper, we introduce the foundational material to investigate topological
racks and quandles. In section 2, we review the basics of topological racks and then
introduce the notion of units in a topological racks. These form a space that can
be thought of as a generalisation of the center of a topological group (cf. Proposi-
tion 2.17). The inner automorphism group of a topological quandle is constructed
in section 3 and its topology is discussed. In section 4 we introduce the notions
of ideal and kernel for topological racks and we give some first foundamental re-
sults. We go further by exploring in Section 5 modules and rack group bundles over
topological racks which are crucial to the study of central extensions of topological
racks we define in Section 6. We then form an abelian group out of such extensions
that outlines a general continuous cohomology theory for topological racks. This
will appear in a subsequent paper [7].

2. RACKS AND QUANDLES

Recall [2, 9, 21] that a rack is a set X provided with a binary operation

/ : X× X −→ X
(x, y) 7−→ x / y

such that
(i) for all x, y ∈ X, there is a unique z ∈ X such that y = z / x;

(ii) (right distributivity) for all x, y, z ∈ X, we have (x/y)/z = (x/z)/(y/z).
Observe that property (i) also reads that for any fixed element x ∈ X, the map

Rx : X 3 y 7−→ y / x ∈ X is a bijection. Also, notice that the distributivity
condition is equivalent to the relation Rx(y / z) = Rx(y) / Rx(z) for all y, z ∈ X.

A topological rack is a rack X which is a topological space such that the map
X × X 3 (x, y) 7−→ x / y ∈ X is a continuous. In a topological rack, the right
multiplication Rx : X 3 y 7−→ y / x ∈ X is a homeomorphism, for all x ∈
X. Observe that an ordinary (finite) rack is automatically a topological rack with
respect to the discrete topology.

Definition 2.1. A quandle (resp. topological quandle) is a rack (resp. topological
rack) such that x / x = x, ∀x ∈ X.

Remark 2.2. Suppose that a set (resp. a topological space) X is equipped with a
binary operation � : X×X 3 (x, y) 7−→ x �y ∈ X that is right and left distributive
at the same time. Then (X, �) is a quandle (resp. topological quandle). Indeed, for
all x ∈ X, we have

Rx�x(x) = x � (x � x) = (x � x) � (x � x) = Rx�x(x � x),
which implies that x � x = x.

Example 2.3 (The conjugation quandle). Let G be a topological group. The oper-
ation

x / y = yxy−1

makes G into a topological quandle which is denoted by Conj(G) and is called
the conjugation quandle of G. In fact, any conjugacy class of G is a topological
quandle with this operation.
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Example 2.4 (The core quandle). Let G be a topological group. The operation

x / y = yx−1y

defines a topological quandle structure on G. This quandle will be denoted by
Core(G) and we call it the core of G. Observe that this operation satisfies (x /
y) / y = x. Any quandle in which this equation is satisfied is called an involutive
quandle.

Example 2.5 (Symmetric manifold). First recall that a symmetric manifold M is a
Riemannian manifold such that each point x ∈ M is an isolated fixed point of an
involtutive isometry ix :M→M. Given such manifold, every x ∈M endows M
with the structure of topological quandle by setting x / y = iy(x).

Example 2.6. Let Sn be the unit sphere of Rn+1. Then, with respect to the operation

x / y = 2(x · y)y− x, x, y ∈ Sn,
where x · y is the usual scalar product in Rn+1, and the topology inherited from
Rn+1, Sn is a topological quandle.

Example 2.7. Following the previous example, let λ and µ be real numbers, and let
x, y ∈ Sn. Then

λx / µy = λ[2µ2(x · y)y− x].

In particular, the operation

±x /±y = ±(x / y)
provides a structure of topological quandle on the projective space RPn.

Example 2.8. Let G be a topological group and σ be a homeomorphism of G. Let
H be a closed subgroup of G such that σ(h) = h, for all h ∈ H. Then G/H is a
quandle with operation

[x] / [y] := [σ(x)σ(y)−1y],

where for x ∈ G, [x] denotes the class of x in G/H. For example, one can consider
the group G to be the group of rotations G = SO(2n + 1), H = SO(2n) and
G/H = S2n+1.

Definition 2.9. Let X be a topological rack or quandle. An element u ∈ X is
(1) a stabiliser if x / u = x, for all x ∈ X;
(2) totally fixed in X if u / x = u, for all x ∈ X;
(3) a unit if u is a stabiliser and is totally fixed in X.

The set of all stabilisers of X (resp. all totally fixed points in X) is denoted by
Stab(X) (resp. Fix(X))

Observe that if u is a stabiliser in the rack X, we have u / u = u. Moreover, if
u is a unit, then (x / u) / y = x / y for all x, y ∈ X.

Lemma 2.10. Assume the topological rack X admits a non-empty set of units. Then
for all arbitrary pair of units u, v we have

u / v = u, v / u = v.

Proof. Indeed, if u and v are units in X, then by (1) and (2) in the definition 2.9,
we have u / v = u and u / v = u. �



4 MOHAMED ELHAMDADI AND EL-KAÏOUM M. MOUTUOU

Definition 2.11. The set of all units in a topological racks or quandle X is denoted
by UX. We say that X is unital if UX is non-empty.

Example 2.12. LetG be a topological group. Then it is easy to check that UConj(G)
is exactly the centre Z(G) of G.

Example 2.13 (Topological Linear rack). Let G be a topological group and V a
continuous representation; i.e., there is a continuous map

G× V 3 (g, v) 7−→ g · u ∈ V

with g · (h · v) = (gh) · v, for all g, h ∈ G, v ∈ V . We define a topological
structure on G× V as follows:

(g, u) / (h, v) := (h−1gh, h−1 · u), g, h ∈ G,u, v ∈ V.

We denote this rack as Gn V . Observe that this rack is unital and (1, 0) is a unit.

The following proposition is immediate.

Proposition 2.14. Let G be a topological group and V a countinuous represen-
tation through the map π : G −→ GL(V). Denote by VG the subspace of V
consisting of invariant vectors under the continuous G-action. Then we have

Stab(Gn V) ∼= [Z(G) ∩ ker(π)]× V, Fix(Gn V) ∼= Z(G)× VG,

and
UGnV ∼= [Z(G) ∩ ker(π)]× VG.

Definition 2.15. Let X and Y be topological racks. A rack morphism from X to Y
is a continuous map f : X −→ Y such that f(x / y) = f(x) / f(y), for all x, y ∈ X.
Morphisms of topological quandles are defined in the same way. Isomorphisms of
racks or quandles are defined accordingly. If Y is unital, then f is said to be unital
if f(UX) ⊆ UY .

Example 2.16. Given a topological rack X, each element x ∈ X defines a rack
automorphism through Rx : X 3 y 7−→ y / x ∈ X. Moreover, if X is unital, Rx is a
unital morphism.

Proposition 2.17. Let G be a topological group. Then every unit element in
Core(G) is a 2-torsion of the group G. In particular, if G is torsion free, UCore(G)
is empty.

For instance, Core(R) has no units.

Example 2.18. The classical map f : R → S1 given by f(t) = e2iπt is a quandle
homomorphism from R with the binary operation t / t ′ = 2t ′ − t to the quandle
S1 with operation z / z ′ = z ′z−1z ′.

Definition and Lemma 2.19. Let X be a non-unital topological rack. Define the
unitarization X+ of X by adding a one point set {1} to X and declaring that x/1 = x
and 1 / x = 1 for all x ∈ X and endowing it with the topology induced from the
inclusion map X 3 x 7−→ x / 1 ∈ X+. Then X+ is a unital topological rack .
Moreover, the inclusion X ↪→ X+ is an injective morphism of topological racks.

Proof. Straightforward. �
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Remark 2.20. Notice that u ∈ X is a stabiliser if and only if Ru is the identity
morphism of racks X −→ X. Further, u is totally fixed if and only if it is a fixed
point of Rx for every x ∈ X. It follows that in the Definition and Lemma 2.19,
we have changed nothing in the "structure" of X since the added unit 1 may be
identified with the identity morphism of the racks id : X −→ X and be considered
as a fixed point of all of the morphisms Rx.

3. INNER AUTOMORPHISM GROUP

Let X be a topological rack. Notice that if f, g : X −→ X are (continuous) rack
morphisms then so is fg := f ◦ g. If moreover f and g are rack automorphisms
(i.e., rack homeomorphisms), then so is fg. The setAut(X) of rack automorphisms
forms a group under composition. Furthermore, when equipped with the compact-
open topology, Aut(X) is a topological group. Recall that the right translation
Rx : X −→ X is an automorphism of topological rack.

Proposition 3.1. Define the inner representation of X to be the map

R : X −→ Aut(X)
x 7−→ Rx

Then R is continuous. Moreover, for all x, x ′ ∈ X, we have

RxRx ′(·) = Rx(·) / Rx(x ′).

We shall note that the compact-open topology has basis open sets

W(K,U) := {f : X −→ X rack homomorphism | f(K) ⊂ U} ,

where K ⊂ X is compact and U ⊂ X is open. We then need the following lemma
to prove the proposition 3.1.

Lemma 3.2. Let X be a topological rack and let K and U be compact and open
subsets of X, respectively. Suppose there exists x ∈ X such that K / x ⊂ U. Then
there is an open neighbourhood V of x such that K / V ⊂ U.

Proof. Since the rack operation X×X 3 (y, x) 7−→ y/x ∈ X is a continuous map
andU open, there exit open neighbourhoods Ṽx,y and Vx,y of y and x, respectively,
such that

Ṽx,y / Vx,y ⊂ U.

Now, for a fixed x ∈ X, the family {Ṽx,y}y∈K is an open cover of the compact subset
K ⊂ X. Hence, there is a finite set {y0, · · · , yn} ⊂ K such that

K ⊂
n⋃
k=0

Ṽx,yk , and Ṽx,yk / Vx,yk ⊂ U.

It is straightforward that the open neighbourhood

Vx :=
n⋂
k=0

Vx,yk

of x satisfies K / Vx ⊂ U. �
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Proof of Proposition 3.1. LetW(K,U) be an open subset inAut(X). Then thanks
to Lemma 3.2, if x is in the inverse image of W(K,U) by R, there is an open
neighbourhood Vx such that Vx ⊂ R−1(W(K,U)); hence, R−1(W(K,U)) is open
in X and R is then continuous. For the second statement, we have

RxRx ′(y) = (y / x ′) / x = (y / x) / (x ′ / x) = Rx(y) / Rx(x
′), ∀y ∈ X.

�

Definition 3.3. We define the inner automorphism group Inn(X) of X to be the
closure of the subgroup generated by the image of X by R in Aut(X); i.e.,

Inn(X) := < R(X) > ⊂ Aut(X).

Recall that for any quandle endomomorphism f of X, we have f Rx = Rf(x) f.
Then Inn(X) is a normal subgroup ofAut(X) as the closure of a normal subgroup.
With the quotient topology, Aut(X)/Inn(X) is a topological group. Also, since R
is continuous, if X is compact, then Inn(X) is a compactly generated group.

Example 3.4. Consider again the core of R. Then Aut(Core(R)) is the affine

group Aff(R) = {

(
a b
0 1

)
, 0 6= a, b ∈ R} and the inner group Inn(Core(R)) =

R.

Example 3.5. LetM( 6= I2) be an invertible two-by-two matrix over the integers Z
(i.e. det(M) = ±1), where I2 is the identity matrix, and assume that M2 6= I2.
The plane R2 becomes a topological quandle with the operation x / y = Mx +
(I2 −M)y. It is easily seen that this map is compatible with the projection of
R2 → R2/Z2. Let m and n be two vectors of Z2. We have (x + m) / (y +
n) = x / y + m / n. Since m / n ∈ Z2, we obtain a quandle operation on
the torus T 2 = S1 × S1. Lets compute the automorphism group Aut(T 2). First,
one notices that any function fA,B on R2 such that fA,B(x) = Ax + B with the
condition MA = AM is a quandle homomorphism. Thus if A ∈ GL2(R) and
MA = AM, then fA,B is an automorphism of the quandle R2. In fact we claim that
the converse is also true. Precisely if f is a quandle automorphism and we consider
the function g(x) = f(x) − f(0). Then g(0) = 0 and g satisfies the equation
g(Mx+ (I2 −M)y) =Mg(x) + (I2 −M)g(y). In particular g(Mx) =Mg(x),
and thus g will be of the form g(x) = λx, where λ ∈ GL2(R) and λM = Mλ.
ThusAut(T 2) is the subgroup of the affine groupAff(R2) of elements of the form
fA,B for whichA commute withM and the inner group Inn(T 2) = R2. Obviously
this example can be generalised to an n-torus with n ≥ 2.

4. IDEALS AND KERNELS

In this section, we generalise the notion of ideals to the category of topological
racks and quandles.

Definition 4.1. Let X be a topological racks (resp. quandle). A subrack (resp.
subquandle) of X is a topological subspace Y ⊂ X such that x / y ∈ Y whenever
x, y ∈ Y. A subrack or subquandle is closed (resp. open if it is closed (resp. open)
as a subspace of a topological space.

Notice that a subrack (resp. subquandle) Y of X is a rack (resp. quandle) in its
own. Moreover, we have the following straightforward observation.
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Definition and Lemma 4.2. Let Y be a subrack of X. Let

X / Y := {x / y, x ∈ X, y ∈ Y}, Y / X := {y / x, y ∈ Y, x ∈ X}.
Then the operation

(y1 / x1) ? (y2 / x2) := (y1 / y2) / (x1 / x2),

for (yi, xi) ∈ Y × X, i = 1, 2, provides Y / X with the structure of a (right) topo-
logical rack. Note that the topology of Y / X is induced from that of X.

Definition 4.3. A right (resp. left) ideal of a topological rack (resp. quandle) X is
a closed subrack (resp. subquandle) Y of X such that X / Y ⊆ Y (resp. Y / X ⊆ Y).
If Y is a right and left ideal of X at the same time, we will say that Y is a two-sided
ideal, or simply an ideal of X.

Example 4.4. Let G be a topological group endowed with the usual topological
quandle conjugation structure x / y = y−1xy. Then, if N is a closed normal
subgroup of G, we have n / g = g−1ng ∈ N, for all g ∈ G,n ∈ N; hence, N
is a left ideal of the quandle Conj(G). Conversely, it is straightforward for the
definition of the quandle structure of G that if N is a left ideal of the topological
quandle G, then N is closed subgroup of G.

Definition 4.5. A left (resp. right) ideal in a topological rack or quandle X is called
proper if it is not empty and is not (homeomorphic) to the whole X.

Proposition 4.6. Assume X is a topological rack with units. Then X admits no
proper right ideal.

Proof. First, note that if I is a non-empty right ideal in X, then Fix(X) ⊂ I; for
if u is totally fixed, then for all y ∈ I, we have u = u / y ∈ I. Now, if u ∈
Fix(X) ∩ Stab(X), then u ∈ I, and we have x = x / u ∈ I for all x ∈ X. In other
words, X = I. �

Definition 4.7. Let f : X −→ Y be a morphism of topological racks. We define the
kernel of f as

ker f := {x ∈ X | f(x) ∈ UY}.

We immediately have the following observation.

Proposition 4.8. Let f : X −→ Y be a morphism of topological racks or quandles.
Then ker f is a left closed ideal in X.

Proof. Let x ∈ ker f and x ′ ∈ X. Then, since f(x) is totally fixed in Y, we have for
all y ∈ Y

y / f(x / x ′) = y / (f(x) / f(x ′)) = y / f(x) = y,

which implies that f(x / x ′) ∈ Stab(Y); and

f(x / x ′) / y = (f(x) / f(x ′)) / y = f(x) / y = f(x) = f(x / x ′),

which implies that f(x / x ′) ∈ Fix(Y). Hence, x / x ′ ∈ ker f, and ker f / X ⊆
ker f. �

We justify the terminology "kernel" of rack morphisms by the following lemma.

Proposition 4.9. Let X and Y be topological racks with Y unital, and let f : X −→
Y be a unital morphism. If f is injective, then ker f = UX.
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Proof. Suppose f injective and let x0 ∈ ker f. Then, for all x ∈ X, we have

f(x0 / x) = f(x0) / f(x) = f(x0),

which implies x0 / x = x0; i.e., x0 ∈ Fix(X). Further,

f(x / x0) = f(x) / f(x0) = f(x),

so that x / x0 = x; i.e., x0 ∈ Stab(X). We then have shown that ker f ⊆ Fix(X) ∩
Stab(X) = UX. �

Remark 4.10. Note that the converse of the above lemma is not true in general.
Indeed, let G and Γ be topological groups with trivial centres. Any group homo-
moprhism f : G −→ Γ induces a quandle homomorphism Qf : G −→ Γ where G
and Γ are given the usual quandle structure x /y := y−1xy. Moreover, it is easy to
check that f is an injective group homomorphism if and only if Qf is an injective
quandle homomorphism. Now, thanks to Example 2.12 we see that UG and UΓ are
trivial and we obviously have kerQf = UG = {e} for all group homomorphism f.

5. TOPOLOGICAL RACK MODULES

In this section we define and study modules over topological racks.
Let X be a topological space. By a group bundle over X we mean a topological
space A together with a surjective open continuous map π : A −→ X such that
each fibre Ax, x ∈ X, (i.e. the pre-image π−1(x) ⊂ A) is a topological group.

Definition 5.1. Let X be topological rack. A rack group bundle over X consists of
a pair (A, η) where A is a group bundle over X and η is a family of isomorphisms
ηx,y : Ax −→ Ax/y such that

ηx/y,z ηx,y = ηx/z,y/z ηx,z

for all x, y, z ∈ X.

Definition 5.2. Let X be a topological rack. An X-module is a triple A = (A, η, τ)
where (A, η) is a rack group bundle over X and τ is a family of topological group
morphisms τx,y : Ay −→ Ax/y such that

(1) Ax is abelian for all x ∈ X;
(2) ηx/y,z τx,y = τx/z,y/z ηy,z; and
(3) τx/y,z = ηx/z,y/zτx,z + τx/z,y/zτy,z.

Moreover, if X is a quandle, we require the following axiom
(4) τx,x + ηx,x = idAx .

Observe that our definition coincides with the definition of [1,3] when X is given
the discrete topology and when Ax is a fixed abelian group A for all x ∈ X. The
first two identities of the definition 5.2 can be understood as the following two
commutative diagrams,

Ax
ηx,y //

ηx,z

��

Ax/y

ηx/y,z

��
Ax/z ηx/z,y/z

// A(x/y)/z

and
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Ay
τx,y //

ηy,z

��

Ax/y

ηx/y,z

��
Ay/z τx/z,y/z

// A(x/y)/z

All the following examples correspond to the case when Ax is a fixed abelian
group A for all x ∈ X.

Examples 5.3. (1) Let X be a topological rack and A be a topological abelian
group. Take ηx,y to be the identity map and τx,y to be the zero map. Then
A is trivially a topological X–module.

(2) Let Λ = Z[t, t−1] denote the ring of Laurent polynomials. Then any
Λ-module A is an X-module for any quandle X, by ηx,y(a) = ta and
τx,y(b) = (1− t)(b) for any x, y ∈ X.

(3) Given a topological rack X (we may need to assume that X is completely
regular space), recall that the free topological group F(X) on X is defined to
be the unique (up to topological isomorphism) topological group such that
(1) the injection i : X −→ F(x) is continous, and (2) for any topological
group G and a continuous map φ : X →, there is a unique continuous
homomorphismΦ : F(x) → G, such that φ = Φ ◦ i.

letGX be the topological quotient group F(x)/N, whereN is the normal
subgroup generated by 〈 x/y−yxy−1〉. AnyGX-moduleA is a X-module
by ηx,y(a) = ya and τx,y(b) = b− (x / y)b, where x, y ∈ X, a, b ∈ A.

Proposition 5.4 (Rack semidirect product). Let X be a topological rack and A =
(A, η, τ) be an X– module. Let the set

An X := {(a, x) ∈ A× X | a ∈ Ax}

be equipped with the topology induced from that of the product topology ofA×X.
Then, under the operation

(a, x) / (b, y) := (ηx,y(a) + τx,y(b), x / y), (1)

An X is a topological rack called the rack semidirect product of A and X.

Proof. We omit the algebraic verifications since they are similar as in the proof
of [10, Proposition 2.1]. It remains to check that the operation (1) is continuous
when A n X is endowed with the induced topology from A× X. Let then O × U
be an open subset of A n X and ((a, x), (b, y)) be in the pre-image F of O × U
through the binary operation (1) so that we have

(ηx,y(a) + τx,y(b), x / y) ∈ O ×U ⊂ A× X.

In particular x / y ∈ U and since the rack operation of X is continuous, there exist
open sets V,W ⊂ X such that x ∈ V and y ∈W. Further, since the group operation
in Ax/y is continuous and ηx,y(a) + τx,y(b) ∈ O ⊂ Ax/y, there exist two open
subsets C ′ and D ′ in Ax/y containing ηx,y(a) and τx,y(b), respectively. Now, by
continuity of the morphisms ηx,y and τx,y, we can find open subsetsC andD ofAx
and Ay containing a and b, respectively. It follows that F ⊂ (C × U) × (D × V)
is open (An X)× (An X). �
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Example 5.5. Let V be a continuous representation of a topological group G as in
example 2.13. Then the first projection G×V 3 (g, u) 7−→ g ∈ Conj(G) defines
a rack group bundle over the conjugation rack Conj(G) by setting

ηg,h(v) := h
−1 · v, g, h ∈ G, v ∈ V.

Furthermore, it is straightforward to check that (G × V, η, 0) is a topological rack
Conj(G)–module where 0 is the zero map on the vector space V .

The following is a generalization of example 5.5.

Example 5.6. Let V be a continuous representation of a topological group G and
α : G × G → V be a mapping. Consider the binary operation on V × G given as
follows:

(u, g) / (v, h) := (h−1 · u+ α(g, h), h−1gh), g, h ∈ G,u, v ∈ V.

Then it is easly seen that this binary operation gives a rack structure on V × G if
and only if the map α is a cocycle; that is, α satisfies the following condition, for
all g, h, k ∈ G

k−1α(g, h) + α(h−1gh, k) = k−1h−1kα(g, k) + α(k−1gk, k−1hk).

In this case the the topological rack thus obtained if denote by V oα G. Next, it is
straightforward to see that the projection pr2 : VoαG 3 (u, g) 7−→ g ∈ Conj(G)
is a rack group bundle with fibre the abelian group V with ηg,h(v) := h−1 · v, for
g, h ∈ G,u ∈ V . Moreover, by setting τg,h(v) = 0 ∈ V for all g, h ∈ G, v ∈ V ,
we turn V or G into a Conj(G)–module.

6. EXTENSIONS OF TOPOLOGICAL RACKS

In this section we define the notion of central extensions of topological racks
by rack modules. We recall from [21, Definition 2.2] that given a topological rack
X and a topological space M, a continuous rack action of X on M consists of a
continuous map

M× X 3 (m,x) 7−→ m · x ∈M
such that

(m · x) · y = (m · y) · (x / y), ∀m ∈M,x, y ∈ X.

Example 6.1. Let X be a topological rack and denote by X its underlying topolog-
ical space. Then the binary operation / : X × X −→ X defines a continuous rack
X–action on X.

Example 6.2. Suppose X is a topological rack and A is an X-module. Then the
topological space An X is naturally equipped with continuous rack action of X as
follows:

(a, x) · y := (ηx,y(a), x / y), (a, x) ∈ An X, y ∈ X.

Remark 6.3. We shall observe that any continuous right action M × A −→ M
of a topological group A on a topological space M is actually a rack action of the
topological quandleConj(A) onM (cf. [21, Example 2.9]). Whence, in the sequel
we will not distinguish between continuous action of a topological A in the usual
sense and the induced rack action of its conjugation rack.
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Definition 6.4. Let A be a topological group. Suppose E is a topological rack
with a continuous A-action. Let p : E −→ X be a surjective rack homomorphism
with local continuous sections. We say that (E, p) is an A-principal rack bundle
if the fibres Ex := p−1(x) are transitive with respect to the A-action; i.e., for all
e, e ′ ∈ Ex there is a unique a(e, e ′) ∈ A such that e ′ = e · a(e, e ′).

We immediately have the following observation.

Lemma 6.5. If p : E −→ X is an A– principal rack bundle, then for all local
section s : U −→ E of p (i.e., p ◦ s = idU) we get a homeomorphism

E|U
∼=−→ U×A

as follows: for e ∈ E|U, let z = p(e) ∈ U, then since E is A-principal and
s(z), e ∈ Ez, there exists a unique a(s(z), e) ∈ A such that e = s(z) · a(s(z), e).
We then define E|U 3 e 7−→ (p(e), a(s(p(e)), e)) ∈ U×A. And

U×A 3 (x, a) 7−→ x · a ∈ E|U.
Definition 6.6. Let X be a topological rack and A = (A, η, τ) be an X–module. A
central A–extension of X consists of

• a topological rack E;
• a surjective rack homomorphism p : E −→ X with continuous local sec-

tions;
• a continuous A–principal action of E; that is a continuous map

E×X A 3 (e, a) 7−→ e · a ∈ E,
where E ×X A = {(e, a) ∈ E × A | p(e) = π(a) ∈ X}, such that for
all x ∈ X and e, e ′ ∈ Ex, there is a unique element a(e, e ′) ∈ Ax with
e ′ = e · a(e, e ′),

satisfying the following axioms
(1) for all (e, a) ∈ E×X A and all f ∈ E with p(f) = y ∈ X, we have

(e · a) / f = (e / f) · ηx,y(a);
(2) for all e ∈ E with p(e) = x ∈ X and all (f, b) ∈ E×X A, we have

e / (f · b) = (e / f) · τx,y(b).
Such an central A–extension is represented as (E, p).

Proposition 6.7 (Trivial extension). Let A be an X–module. Then the (AnX, π̃) is
a centralA-extension, where the projection π̃ : AnX −→ X is given by π̃(a, x) =
x = π(a) and the Ax–action on Ax is by multiplication on the topological abelian
group Ax.

The proof is straightforward, so we omit it.

Definition 6.8. Let (E, p) and (F, q) be two central A-extensions of X.
(1) A morphism ϕ : (E, p) −→ (F, q) is a topological rack homomorphism

ϕ : E −→ F which is a bundle morphism and A–equivariant in the sense
that the following diagrams commute

E
ϕ //

p ��

F

q��
X
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and
E×X A //

ϕ×Id
��

E

ϕ

��
F×X A // F

where in the horizontal arrows in the second diagram are the A–actions;
i.e.,

q(ϕ(e)) = p(e), ∀e ∈ E, and ϕ(e) · a = ϕ(e · a), ∀(e, a) ∈ E×X A.

(2) We say that (E, p) and (F, q) are equivalent, and we write (E, p) ∼ (F, q),
if there exists a morphism ϕ : (E, p) −→ (F, q) which is an isomorphism
of topological racks whose inverse ϕ−1 : F −→ E is also a morphism
of central A–extensions. In this case, we say that ϕ is an equivalence
of central A–extensions. We denote by Ext(X,A) the set of equivalence
classes of central A–extensions of X.

(3) The extension (E, p) is said to be trivial if it is equivalent to the trivial
central A–extension (An X, π̃).

Definition and Proposition 6.9 (Baer sum). Let (E, p) and (F, q) be central A–
extensions of X. Consider the equivalence relation "∼" in

E×X F := {(e, f) ∈ E× F | p(e) = q(f)}

given by (e ·a, f) ∼ (e, f ·a) for (e, a) ∈ E×XA, and define the topological space
E tX F to be the quotient space. We denote by [e, f] the class of (e, f)× E×X F in
E tX F. Then, with respect to the binary operation

[e1, f1] / [e2, f2] := [e1 / e2, f1 / f2],

E tX F is a topological rack. Furthermore, E tX F is equipped with the continuous
A–principal action

[e, f] · a := [e · a, f] = [e, f · a], (e, a) ∈ E×X A,

and the projection p : EtX F 3 [e, f] 7−→ p(e) = q(f) ∈ X makes (EtX F, p) into
a central A–extension of X which we call the Baer sum of (E, p) and (F, q).

Proposition 6.10. Let (E, p) be a representative of a class in Ext(X,A). Let
(E◦, p◦) be the central A–extension of X where E◦ is E as a topological space,
p◦ : E◦ −→ X is the projection of E (i.e., for e◦ ∈ E◦, p◦(e◦) := p(e), where we
write e◦ for e ∈ E viewed as an element in E◦), and the continuous A–principal
action is given by

e◦ · a := (e · a−1)◦, (e◦, a) ∈ E◦ ×X A.

Then the central A–extension (E tX E◦, p) is trivial. We call (E◦, p◦) the opposite
of (E, p).

Proof. Define the map ψ : E tX E◦ −→ An X by

ψ([e, f◦]) := (a(e, f), p(e)),

where a(e, f) is the unique element in Ap(e) = Ap(f) such that f = e · a(e, f). To
see that ψ is well defined, take (e, b) ∈ E×X A, and (e, f◦)× E×X E◦. Then, we
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have e = f · a(e, f)−1, so that

f · b = (e · b) · a(e · b, f · b)
= (f · a(e, f)−1b) · a(e · b, f · b)
= (f · b) · (a(e, f)−1a(e · b, f · b))

since Ap(e) is an abelian group. Therefore, since E is A–principal, the element
a(e, f)−1a(e · b, f · b) is unique and must then be equal to the identity in Ap(e).
In other words, a(e, f) = a(e · b, f · b), and ψ([e, f]) = ψ([e · b, f◦ · b−1]). It is
a matter of easy check to see that ψ is a morphism of central A–extensions of X.
Now, we get an inverse φ of ψ by setting for all (a, x) ∈ An X,

φ(a, x) := [ex, (ex · a)◦],

where ex is any element in the fibre Ex. �

Corollary 6.11. Let A be an X–module. Then Ext(X,A) is an abelian group under
Baer sum and inverse given by the equivalence class of the opposite extension. The
zero element is the class of the trivial extension.

A general theory of continuous cohomology of topological quandles is being
developed by the authors in [7].
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