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Abstract

Modern systems of official statistics require the timely estimation of area-specific

densities of sub-populations. Ideally estimates should be based on precise geo-coded

information, which is not available due to confidentiality constraints. One approach

for ensuring confidentiality is by rounding the geo-coordinates. We propose multi-

variate non-parametric kernel density estimation that reverses the rounding process

by using a measurement error model. The methodology is applied to the Berlin reg-

ister of residents for deriving density estimates of ethnic minorities and aged people.

Estimates are used for identifying areas with a need for new advisory centres for

migrants and infrastructure for older people.

Keywords: Ageing; Binned data; Ethnic segregation; Non-parametric estimation; Offi-

cial statistics.

1 Introduction

Modern systems of official statistics require the estimation of area-specific densities of

sub-populations. In large cities researchers may be interested in identifying areas with

high density of ethnic minorities or areas with high density of aged people. The focus can

be even more specific for example, on density estimates of school age children of ethnic

minority background. In this paper the term ethnic minority will be used to define the

part of the population with migration background. Estimates of this type can be used

by researchers in Government Departments and other organisations for designing and

implementing targeted policies.
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Figure 1: Density estimates of the population of ethnic minority background (left map)
and of the population aged 60 or above in Berlin (right map). The blue points (left map)
show the spatial distribution of advisory centres for migrants. The blue points (right
map) show the spatial distribution of care homes.

To motivate the methodology we propose in this paper, we start by presenting two

maps in Figure 1. The left map presents an estimate of the density of the population of

ethnic minority background in Berlin. The right map presents an estimate of the density

of the population aged 60 or over in Berlin. The blue points superimposed on the left

map show the spatial distribution of advisory centres in Berlin. These are centres that

provide assistance for migrants in Berlin. The blue points superimposed on the right map

show the spatial distribution of care homes in Berlin. Both kernel density estimation

plots in Figure 1 have been produced by using real data from the Berlin register, which

is a register of residents in all Berlin household addresses that contains exact geo-coded

coordinates. At this point we must mention that the register data is available only to

the data host in a safe environment. Hence, for producing Figure 1 we had to rely on

collaborating with staff at the Berlin-Brandenburg Statistics Office who monitored the

in-house use of the data. Maps such as those we presented in Figure 1 can be very useful

for planning purposes. For example, city councils can use the density estimation plots to

decide where new advisory centres for migrants are mostly needed or for deciding in which

areas to offer planning permissions for opening new care homes. Register databases are

updated on a frequent basis and hence their timeliness is better than that of alternative

sources of data for example, Census data.

The statistical problem we face in this paper is created by the fact that the register with

the exact coordinates used for producing the maps in Figure 1 is not publicly available.

Access to such data is impeded by confidentiality constraints (VanWey et al., 2005) and

this holds true also for the Berlin register data. It is easy to see why confidentiality

constraints are in place. The availability of precise geo-coding alongside information on
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demographic characteristics can increase the disclosure risk in particular for sensitive sub-

groups of the population such as ethnic minorities. Restricted access to sensitive data

may not only apply to users working outside the data host but also to researchers working

for the data host or for related organisations for example, Government Departments. As

we will see in this paper, in the case of the Berlin register data specific procedures are

used to ensure confidentiality of the sensitive data. Nevertheless, policies that govern

access to sensitive data are country-specific. Other countries that have a long tradition of

maintaining register geo-coded data are the Scandinavian ones for example, Norway and

Finland. However, access to and use of such data is restricted and these restrictions are

decided by the data host in each country.

The host of the data can offer access, possibly in a safe setting, to geo-coded data

whilst ensuring confidentiality. One way to achieve this is by introducing measurement

error to longitudes and latitudes (Armstrong et al. 1999; Ozonoff et al. 2007 or Rushton

et al. 2007). However, this raises the following question. Can we derive precise density

estimates of the sub-groups of interest by using data that has been subjected to disclosure

control via the introduction of measurement error in the geographic coordinates? The

present paper proposes non-parametric multivariate density estimation in the presence

of measurement error in the geographic coordinates. The aim is to investigate how the

precision of density estimates produced by using coarsened data and the use of a non-

parametric statistical methodology for reversing the measurement error process compares

to density estimates produced by using the exact geo-referenced data. At this point we

should make clear that the paper does not discuss whether the released geo-referenced

information makes identification possible. Instead, we assume that the parameters of

the disclosure control process are decided by the data provider. For a discussion on the

effectiveness of anonymisation techniques, we refer the reader to Kwan et al. (2004).

Scott and Sheather (1985) used Naive density estimation methods that disregard the

presence of rounding. To account for rounding Härdle and Scott (1992) introduced a

kernel-type estimator based on weighted averages of rounded data points and Minnotte

(1998) developed an approach of histogram smoothing. An iterative estimation scheme

presented by Blower and Kelsall (2002) ensures non-negative estimates and can potentially

be applied to multivariate data as well. A recent publication of Xu (2014) extends this

approach to asymmetric kernels. However, the bandwidth selection which is crucial in

kernel density estimation is done with a rather ad-hoc approach on the binned data.

Wang and Wertelecki (2013) proposed a parametric and a non-parametric kernel density

estimator for rounded data but considered only the univariate case. Wang and Wertelecki

(2013) showed that using a Naive kernel density estimator to rounded data with standard

bandwidth selection may lead to poor results for large rounding intervals and large sample

sizes.

An alternative idea, explored in this paper, is to interpret rounding as a measurement

error process and to formulate the problem by using measurement error models (Car-

3



roll et al., 2010; Fuller, 2009). For classical additive error models the problem can be

regarded as density deconvolution and can be solved using Fourier methods (Stefanski

and Carroll, 1990; Zhang, 1990). The topic of density deconvolution has been extensively

studied and literature has focused on optimal convergence rates (Fan et al., 1991), differ-

ent error distributions such as Gaussian or uniform distributions (Feuerverger et al., 2008)

and choice of an optimal bandwidth (Delaigle and Gijbels, 2004). Moreover, the case of

additive Berkson errors (Berkson, 1950) in the context of non-parametric density esti-

mation has been investigated. Delaigle (2007, 2014) proposed a density estimator which

does not require any bandwidth choice and converges at a parametric rate but with the

drawback of producing spiky estimates with high variance when the measurement error

is rather low. A recent paper by Long et al. (2014) empirically compares the estimator of

Delaigle (2007, 2014) to two novel approaches for multivariate kernel density estimation

contaminated with Gaussian Berkson error and states that one of them shows superior

performance. However, rounding error can neither be classified as classical nor Berkson

additive error structure as the error is neither independent of the true coordinate nor the

rounded one. Nevertheless, a Berkson model with uniform error distribution can be used

as an approximation (Wang and Wertelecki, 2013). In this case the estimator by Delaigle

(2007) is a bivariate histogram type estimator. When the rounding error, which governs

the binwidth, is high the estimator proposed by Delaigle (2007) can be biased. Therefore,

in this paper we develop a method that correctly specifies the measurement error model

under rounding.

From a methodological perspective the present article proposes a novel approach to

multivariate non-parametric kernel density estimation in the presence of rounding errors

used to ensure data confidentiality. The main advantage of the proposed methodology,

compared to alternative methodologies, is that under our approach the bandwidth is

derived as part of the estimation process. Moreover, our method is very easy to implement

and works regardless of the dimension, the kernel and the bandwidth selection method.

In this paper we assume only the availability of register geo-coded data with mea-

surement error in the geographic coordinates. Hence, conventional estimation methods

that combine Census/register data with survey data are not applicable in this case. In

this paper we use the Berlin register data, a complete enumeration of the entire Berlin

population in private households, for illustrating how to derive precise density estimates

of sensitive groups in the presence of measurement error in two applications.

The first application aims at estimating the density of the Berlin population that is of

ethnic minority background. The focus on this application is motivated by the debate on

integration/segregation of migrants. Residential segregation describes the phenomenon

of a separation of residents according to certain characteristics such as ethnicity. Recent

literature suggests that higher levels of segregation are linked with higher crime rates

and lower health and educational outcomes (Peterson et al., 2008; Card and Rothstein,

2007; Acevedo-Garcia et al., 2003). To prevent the segregation of ethnic minorities it
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is necessary to assist these groups with integration programmes offered by advisory cen-

tres. Programmes of this kind should be established in areas with high density of ethnic

minorities. For the purposes of this application we study the current location of advi-

sory centres in relation to density estimates and identify areas where more support is

potentially needed.

The second application relates to the provision of social services for the elderly and

urban planing in the context of changing demographics. Longer life expectancy and de-

clining birth rates lead to an ageing population, which needs to be accounted for in urban

and social planning. For example, the German National Statistical Institute (Destatis,

2009) predicts the ratio of people over 65 to rise from 20% in 2008 to 34% in 2060. This

is a common issue for other industrialised countries too. To ensure the wellbeing of the

elderly and to secure adequate and affordable support for this group it is necessary to

analyze where the elderly live. Gorr et al. (2001) used the density of the elderly popula-

tion as a basis for a spatial decision support system for home-delivered services (meals on

wheels). Further challenges arise in urban planing, where an ageing population requires

easy access to buildings, public services and public transportation. Shortcomings in urban

development can be analyzed by comparing the density of the elderly population against

those characteristics (Verma, 2014). In addition, many elderly people decide to live in a

retirement home. To secure adequate and affordable support for the elderly population

it is necessary to establish services where needed. The methodology we propose in this

paper is also used for providing precise density estimates of the elderly population in the

Berlin area. For both applications the sensitivity of density estimation to the severity of

the rounding error process is studied and the proposed methodology is contrasted to a

Naive kernel density estimator which disregards the presence of measurement error.

The structure of the paper is as follows. In Section 2 we describe the Berlin register

data. In Section 3 we review multivariate kernel density estimation in the presence of

measurement error. A multivariate kernel density estimator is proposed and the compu-

tational details of the proposed method are described. In Section 4 we present the results

of the two applications by using the Berlin register data. In Section 5 we empirically

evaluate the performance of the proposed methodology under different assumptions for

the rounding error process with data generated from known bivariate densities. The pre-

cision of the density estimates provided by the proposed methodology is contrasted to

the precision of the estimates derived by (a) using a Naive kernel density estimator that

disregards the presence of rounding error and (b) alternative approaches that have been

proposed in the literature. Finally, in Section 6 we conclude the paper with some final

remarks.
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Figure 2: Density estimates of the population with ethnic minority background in Berlin
(left map) and of the population aged 60 or above in Berlin (right map) based on the
publicly available data.

2 The Berlin register data

The statistical problem we face in this paper is motivated by the Berlin register of residents

dataset, which comprises all Berlin household addresses and contains exact geo-coded

coordinates. Such a comprehensive data set is gathered because of German legislation.

In particular, registration at the local residents’ office is compulsory in Germany and is

carried out by the federal state authorities. In the federal city state of Berlin registration

is regulated by the Berlin registration law. This law requires every person who moves into

a new residential unit in Berlin to be registered in person within one week.

This register is not publicly available because of the detailed geo-coded information it

contains. However, a version of the register data is publicly available as part of the Open

Data initiative in Berlin (http://daten.berlin.de), an initiative that aims at using

data for improving urban development. The open dataset includes aggregates for the 447

lowest urban planning areas, the so-called LORs (’Lebensweltlich orientierte Räume’),

with coordinates given by the centroid of these areas. This is a discrete and possibly

arbitrary demarcation. The discreteness of the demarcation is apparent in Figure 2, which

shows kernel density estimates of the population of ethnic minorities (left map) and of

the population aged 60 or over (right map) in Berlin by using the publicly available data.

A main aim of the present paper is to derive precise density estimates of population

groups by using a more flexible definition of geographic demarcation. This in turn may

provide more useful information to local authorities than the currently available LOR

demarcation.

An alternative to the currently available data, and one explored by the data host, is to

generate a grid-based version of the data that is independent from the somewhat arbitrary
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geometry of the LORs. In this case the grid-aggregates can be interpreted as the result

of rounding geo-coded data for ensuring data confidentiality. Here each point of the grid

defines a square-shaped area around the grid point with a longitude and latitude increment

equal to the grid length. Then the value of the variable of interest is the aggregate of the

values with exact geo-coordinates over the area surrounding the grid point. In fact, the

LOR demarcation in Berlin can be thought of as the process of rounding the geo-referenced

data by using grids of average size 2000 meters by 2000 meters. The methodology we

propose in this paper attempts to reverse the rounding process for deriving estimates that

are more precise than density estimates that ignore the measurement error process and

relate to a more flexible definition of geographic demarcation.

The data that we have access to in this paper contains all 308,754 Berlin household

addresses on the 31st of December 2012 with the exact geo-coded coordinates subject

to different degrees of rounding error. One of the scenarios we explore is rounding by

using grids of size 2000 meters by 2000 meters that approximately correspond to the

LOR demarcation. The location is measured by (Soldner)-coordinates in meters. The

original (without rounding error) data includes the total number of residents (Berlin

Total) at their principal residence and the number of persons according to some key

demographic characteristics. The first demographic variable is the migration background

(Migration) of individuals defined by the number of people that are of (a) non-German

nationality, (b) German nationality but born abroad and (c) non-German nationality

who changed their nationality into German at the coordinates of the principal household

address. The definition of this variable is further refined by the number of individuals of

migration background from Turkey (Migration Turkey) or Vietnam (Migration Vietnam).

The second demographic variable is age (age over 60) defined by the number of individuals

who are older than 60 years old. The density estimates of the subgroups of interest that are

produced by using the proposed methodology are contrasted to maps of the corresponding

densities produced by using the data with the exact geo-coded coordinates. The use of

these maps has been approved by the data host, the Berlin-Brandenburg Statistics Office.

Table 1 presents summary statistics of the number of residents living at a household

address of the key variables based on the exact geo-coded data. Due to confidentiality

restrictions we are not allowed to publish the maximum number of residents living at a

household address. The average of individuals living at a household address in Berlin

is 11.24 leading to a total population of 3,469,619 (registered) inhabitants. Note that a

household address in the data is defined for example, as an entire block of apartments.

Around 27% of the total population are of migration background and around 24.8% of

the population are older than 60 years. The average number of residents of migration

background is 3.07 with a median of 0, whereas the average number of individuals above

60 years of age is 2.78 with a median of 1. This gives a first indication that inhabitants

with migration background are more clustered compared to older people in Berlin.
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Table 1: Summary statistics of the number of residents living at a household address.

Sum Min. 1st Qu. Median Mean 3rd Qu.
Berlin Total 3,469,619 1 2 4 11.24 15
Migration 949,184 0 0 0 3.07 3
Migration Vietnam 21,637 0 0 0 0.07 0
Migration Turkey 176,738 0 0 0 0.57 0
Age over 60 859,170 0 0 1 2.78 3

3 Multivariate kernel density estimation in the pres-

ence of measurement error

In this section we propose an approach to non-parametric multivariate density estimation

in the presence of measurement error in particular, rounding of the geographical coordi-

nates used for disclosure control of sensitive data. Multivariate kernel density estimation

is introduced in Section 3.1. In Section 3.2 we investigate kernel density estimation in

the presence of measurement error and in Section 3.3 we present a model that corrects

for measurement error in multivariate kernel density estimation. Estimation and the

computational details of the algorithm we use for implementing the proposed model are

described in Section 3.4.

3.1 Multivariate kernel density estimation

Kernel density estimation as a non-parametric approach is an important tool in ex-

ploratory data analysis. Multivariate kernel density estimation attempts to estimate

the joint probability distribution for two or more continuous variables. This method has

the advantage of producing smooth density estimates compared to a histogram whose

appearance heavily depends on the bin’s breakpoints. Let X = {X1, X2, . . . , Xn} denote

a sample of size n from a multivariate random variable with unknown density f(x). In

the following, we only consider the two-dimensional case without loss of generality such

that x = (x1, x2). Thus, Xi, i = 1, . . . , n is given by (Xi1, Xi2), where – in our application

– Xi1 and Xi2 denote longitude- and latitude- coordinates, respectively.

The multivariate kernel density estimator at point x is given by

f̂H(x) =
1

n|H| 12

n∑
i=1

K
(
H− 1

2 (x−Xi)
)
, (1)

where K(·) is a multivariate kernel function, H denotes a symmetric positive definite

bandwidth matrix and | · | denotes the determinant. A standard choice for K(·), used

throughout this paper, is the multivariate Gaussian kernel. The choice of bandwidth H

is crucial for the performance of a kernel density estimator. Approaches for bandwidth

selection have been widely discussed in the literature. A popular strategy is to choose H

by minimizing the asymptotic mean integrated squared error (AMISE) through plug-in or
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cross-validation methods (Izenman, 1991 or Silverman, 1986). In the univariate case we

refer the reader to Marron (1987) or Jones et al. (1996). Wand and Jones (1994) discussed

the choice of the bandwidth in the multivariate case by using a plug-in estimator. The

approach by Wand and Jones (1994) is the one we use for bandwidth selection in this

paper.

3.2 Rounding and kernel density estimation

By introducing rounding for achieving anonymisation of sensitive data the true values X =

{X1, X2, . . . , Xn}, the exact geographical coordinates, are lost. Instead, only the rounded

(contaminated by measurement error) values, denoted by W = {W1,W2, . . . ,Wn}, are

available. As a consequence the data is concentrated on a grid of points. Using a Naive

kernel density estimator that ignores the rounding process by replacing the true values

Xi by the rounded values Wi in (1) may lead to a spiky density that is not close to the

density of the uncontaminated (true) data. This effect becomes more pronounced with

increasing sample size. In particular, as the bandwidth determinant |H| is decreasing

with higher sample size this causes higher density estimates on the grid points and lower

in between the grid points.

The process of rounding means that the true, unknown, values Xi = (Xi1, Xi2) given

the rounded values Wi = (Wi1,Wi2) are distributed in a rectangle with Wi in its center,[
Wi1 −

1

2
r,Wi1 +

1

2
r

]
×
[
Wi2 −

1

2
r,Wi2 +

1

2
r

]
. (2)

The value r denotes the rounding parameter. For instance, the data is rounded to the

next integer for r = 1.

3.3 The Model

A model for the density f(x) could be formulated parametrically, for example by a mul-

tivariate Gaussian distribution, or non-parametrically either by a mixture of parametric

distributions (Escobar and West, 1995; Gelfand et al., 2005) or by using multivariate ker-

nel density estimation as introduced in Section 3.1. As discussed in Section 3.2, the true

values Xi are lost because of the rounding process and only the rounded values Wi are

observed. However, we still aim to estimate the density f(x) – from which our sample X

is drawn – only by using the rounded values Wi. Under the assumption that the round-

ing/anonymisation process of the Xi is known, we are able to formulate a measurement

error model π(W |X) for W . In particular, the measurement error model π(W |X) for

rounding is defined by a product of Dirac distributions, π(W |X) =
∏n

i=1 π(Wi|Xi), with

π(Wi|Xi) =

1 for Xi ∈ [Wi1 − 1
2
r,Wi1 + 1

2
r]× [Wi2 − 1

2
r,Wi2 + 1

2
r]

0 else.
(3)

9



From the Bayes theorem it follows that π(X|W ) ∝ π(W |X)π(X). Utilizing this formula-

tion we can draw pseudo samples (imputations) of the Xi from π(Xi|Wi) which enables

us to estimate f(x). As π(X) =
∏n

i=1 f(Xi) is initially unknown we propose an iterative

procedure, which uses an initial estimate of f(x) based on the Wi followed by alternating

simulations of X from π(X|W ) and re-estimation of π(X) until convergence. The fol-

lowing subsection gives further details about the exact implementation of the algorithm

and discusses how this can be viewed as a variant of the Expectation-Maximization (EM)

algorithm (Dempster et al., 1977).

3.4 Estimation and Computational details

As discussed in the previous subsection, for fitting the model we need to draw pseudo

samples of the Xi. The conditional distribution of the Xi given the rounded values Wi is

the following:

π(Xi|Wi) ∝ I(Wi1−
1

2
r ≤ Xi1 ≤ Wi1 +

1

2
r)×I(Wi2−

1

2
r ≤ Xi2 ≤ Wi2 +

1

2
r)×f(Xi), (4)

where I(·) denotes the indicator function. The conditional distribution ofXi is the product

of a uniform distribution on the square with side length r around Wi and density f(x). As

the density f(x) is unknown it is replaced by an estimate, which is the multivariate kernel

density estimator f̂H(x) defined in (1). In particular, Xi is repeatedly drawn from the

square of side length r around Wi using the current density estimate f̂H(x) as a sampling

weight. The steps of the algorithm are described below.

1. Get a pilot estimate of f(x) by setting H to

(
l 0

0 l

)
, where l is a sufficiently large

value such that no rounding spikes occur.

2. Evaluate the density estimate f̂H(x) on an equally-spaced fine grid G = z1 × z2
(with G = {g1, . . . , gm}, gridwidth δg and

z1 =
{

min
i

(Wi1)− 1
2
r,min

i
(Wi1)− 1

2
r + δg, . . . ,max

i
(Wi1) + 1

2
r
}

,

z2 =
{

min
i

(Wi2)− 1
2
r,min

i
(Wi2)− 1

2
r + δg, . . . ,max

i
(Wi2) + 1

2
r
}

(i = 1, . . . , n)),

where r denotes the rounding parameter introduced in Section 3.2.

3. Sample from π(Xi|Wi) by drawing a sample XS
i =

(
XS

1i, X
S
2i

)
randomly from(

z1 ∈ [Wi1 − 1
2
r,Wi1 + 1

2
r]
)
×
(
z2 ∈ [Wi2 − 1

2
r,Wi2 + 1

2
r]
)

with sampling weight

f̂H(XS
i ), i = 1, 2, . . . , n.

4. Estimate the bandwidth matrix H by the multivariate plug-in estimator of Wand

and Jones (1994) and recompute f̂H(x). Here we should mention that other band-

width selectors are applicable.

5. Repeat steps 2-4 B (burn-in iterations) +N (additional iterations) times.
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6. Discard the B burn-in density estimates and get the final density estimate of f(x)

by averaging the remaining N density estimates f̂H(x) on the evaluation grid G.

The prospective reader may ask how the algorithm fits into existing estimation frame-

works. Generally, a popular fitting algorithm for models that depend on latent, unob-

served data (the Xi values in our case) is the Expectation Maximization (EM) algorithm.

The proposed algorithm is a variant of the classical EM algorithm, namely the Stochastic

Expectation Maximization (SEM) algorithm (Celeux et al., 1996). The SEM algorithm

works by drawing samples from the conditional distribution π(Xi|Wi) creating a pseudo

sample of X in each iteration as a replacement of the E-step in the classical EM algorithm

where the conditional expectation of Xi given Wi is computed analytically. The classical

EM approach would clearly not work for kernel density estimation with rounded data

because all the observations within the rectangle around Wi would still be concentrated

at a single point, namely the expectation of the conditional distribution of Xi given Wi,

computed in the E-Step, leading to spiky estimates of the density. In its original form both

the EM and SEM algorithm are used for maximum likelihood estimation in the presence

of unobserved variables. However, kernel density estimation is a non-parametric method.

We therefore utilize a generalization of the SEM algorithm for the use of surrogates of

the likelihood in the M-step (McLachlan and Krishnan, 2007) such that the objective of

maximization, i.e. the likelihood, is replaced by the minimization of the AMISE of the

kernel density estimator in our case.

The estimator we propose in this paper – hereafter referred to as GRSST estimator

– allows for estimating the bandwidth matrix H simultaneously with the density. In

contrast, for the algorithm proposed by Blower and Kelsall (2002) it is not immediately

clear how to estimate H. Blower and Kelsall (2002) suggest using an initial estimate

based on the rounded data. Another advantage is that with the proposed algorithm we

can get an estimate of the variance induced by the rounding process. This is obtained

as a byproduct of the Monte-Carlo process. In particular, standard errors for the density

estimates at some arbitrary point can be computed by using the f̂H(x) produced in each

iteration of the algorithm. The algorithm we propose in this paper is also linked to

the one proposed by Wang and Wertelecki (2013) in the univariate case. Apart from

being derived only for the univariate case, the approach by Wang and Wertelecki (2013)

corresponds (in the univariate case) to the method we propose in this paper with B = 0

burn-in iterations and N = 1 or more sampling steps. However, without a burn-in period

no convergence is achieved and final estimates can heavily depend on the pilot estimate.

The influence of the burn-in iterations and the sampling steps on the quality of density

estimation is evaluated in a simulation study the results of which are included as part of

the supporting information. The algorithm is implemented by using function dbivr in the

Kernelheaping R package (Gross, 2015), which is available on CRAN. Additionally, the

proposed approach allows for the use of an adaptive bandwidth selection method proposed

by Davies et al. (2011) and is implemented in the sparr package.
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4 Analysis of the Berlin Register of Residents

The benefits of using the proposed multivariate kernel density estimator that accounts

for measurement error are illustrated in two applications both of which use the Berlin

register data we described in Section 2. The first application aims at estimating the

density of the population with migration background in Berlin. The density estimates

are compared to the current geographical distribution of advisory centres for migrants

in Berlin. The second application aims at estimating the density of the population aged

60 and above in the Berlin area. The density estimates are compared to the current

geographical distribution of care homes in the Berlin area.

The analysis is carried out by using the two variables (a) Migration and (b) Age

over 60. The setup of the analysis is as follows: To start with, we impose grids on the

geographical space of the Berlin data set with respective grid sizes of 250, 500, 1250, 2000

and 2500 meters. The grid sizes correspond to different degrees of measurement error used

for anonymisation purposes. Note that the use of the 2000m by 2000m grids is because

these are of similar size to the currently used urban planning areas in Berlin a level at

which data is publicly available. Subsequently, we estimate the density of the target

population by using the Naive and the proposed GRSST density estimators for each of

the grid sizes. We use B = 5 and N = 20 iterations for the proposed GRSST method in

the algorithm presented in Section 3.4. The sensitivity of the density estimators to the

size of the dataset, (n) and the effect of the burn-in size, (B) and sample steps (N) is

assessed in the supporting information.

The performance of a generic density estimator f̂(x), for example the Naive or the

GRSST , is typically evaluated by the root mean integrated squared error (RMISE), which

is approximated by a Riemann sum over an equally-spaced fine grid,

RMISE(f̂(x)) =

√
E

(∫
(f(x)− f̂(x))2dx

)
≈

√√√√ 1

m

m∑
j=1

(f(gj)− f̂(gj))2δ2g , (5)

where m is the number of grid points gj and δg is the gridwidth. For computing the

Naive estimator and the GRSST estimator (using the algorithm in Section 3.4) we use a

bivariate Gaussian kernel and the plug-in bandwidth selector of Wand and Jones (1994).

This is implemented by using the R functions kde (kernel density estimation) and Hpi

(bandwidth selector) provided by the ks package (Duong, 2014). The unobserved true

density f(x) is substituted by the kernel density estimator (1) that uses the original data

without rounding with bivariate Gaussian kernel and the plug-in bandwidth selector.

This is treated as a benchmark because it is not affected by rounding error. At this

point we must mention that the original data is available only to the data host. Hence,

for implementing the code with the original data we had to collaborate with staff at the

Berlin-Brandenburg Statistics Office. Table 2 shows the goodness of fit in terms of RMISE

for the Naive and the proposed density estimators and for different grid sizes. Figures 3
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Table 2: Berlin register data: RMISE for Naive and GRSST multivariate kernel density
estimators for different grid sizes (results in units of 10−8)

r = 250m r = 500m r = 1250m r = 2000m r = 2500m

Variable Naive GRSST Naive GRSST Naive GRSST Naive GRSST Naive GRSST

Age above 60 0.66 0.67 1.32 1.27 4.52 2.46 14.08 4.06 23.34 4.66
Migration 0.98 0.97 1.98 1.84 7.33 3.43 22.07 6.12 36.94 6.31

and 4 present kernel density estimation plots for selected grid sizes for Age over 60 and

Migration respectively. To start, we note that the proposed estimator outperforms the

Naive estimator especially for large grid sizes (≥ 1250m). For grid sizes larger or equal to

1250m the Naive estimator produces small spikes at the location of the grid points since

in this case the probability mass is mostly attributed to the center points of the grid. In

contrast, the proposed estimator preserves the fundamental structure of the underlying

density. For the largest grid size (2500m), which implies strongly anonymised data, the

general shape produced with the proposed estimator is clearly visible. This is not the

case with the Naive estimator.

Having assessed the performance of both estimators, we now discuss the results of the

density estimates in the context of two applications.

Advisory services for population with migration background: Around 950,000 people

with migration background from around 190 countries live in the 12 districts in Berlin.

The four largest communities consist of approximately 200,000 people with Turkish mi-

gration background, around 100,000 people from Russia or from the former Soviet Union

and its successor states, approximately 60,000 people of migration background from the

successor states in the former Yugoslavia and around 45,000 people of Polish migration

background. The history of many migrants started in former West Berlin in the mid-sixties

with the recruitment of guest workers. Workers were recruited mainly from Mediterranean

countries like Greece, Italy, Yugoslavia or Turkey. In the former East Berlin workers were

employed by inter-state agreements from countries like Angola, Poland or Vietnam. From

the very beginning Berlin offered advisory services for migrants. For instance, Berlin has

a commissioner for integration and migration. This office was established in 1981 and

was the first of its kind in Germany. Nowadays, there are specialized advisory service

centres that assist people with migration background. The youth migration services pro-

vide advice to young adults and teenagers of migration background. In addition, Berlin

has in total 32 advisory service centres for adults. In these centres migrants can receive

support and personal consultation directly that will assist with their integration. For

example, people receive support with finding appropriate child care facilities. To secure

an appropriate level of support it is important to establish advisory centres where mostly

needed. The left panel of Figure 5 shows the estimated densities of the population with

migration background in Berlin. The blue points represent the 32 advisory service centres

for adults. The plot on the top panel shows the density estimates produced by using

the original data and the exact address coordinates, which are not publicly available.
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Figure 3: Density estimates of population aged 60 and above: Naive (left panel) and
GRSST estimators (right panel) with rounding step sizes of 0 (original data), 500, 1250
and 2500 m (top down).
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Figure 4: Density estimates of population with migration background: Naive (left panel)
and GRSST estimators (right panel) with rounding step sizes of 0 (original data), 500,
1250 and 2500 m (top down).
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Figure 5: Migration background (left panel) and Age above 60 (right panel) for the original
data, Naive method and GRSST method (top down) for rounding step size of 2000 m
including points of interest. Blue points indicate migrant advisory centers and retirement
houses respectively.
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The plots in the middle and at the bottom present density estimates produced by using

the Naive and the GRSST density estimators with a rounding step size of 2000m. The

choice of 2000m times 2000m grids is because these are of similar size to the currently

used urban planning areas in Berlin. The estimates based on the original data in Figure

5 show that the density of populations with migration background varies by Berlin dis-

tricts. The estimated density is particularly high in the former West-Berlin districts of

Wedding (in the north), Neukölln (in the south-east), Kreuzberg (in the center to south)

and Schöneberg (in the south). Friedrichshain and Prenzlauer Berg (in the north-east),

show a lower estimated density of population with migration backgrounds.

The spatial distribution of advisory centres cover populations in the centre and north

of Berlin quite well. However, there are some hotspots for example, in the western and

south-west parts (Charlottenburg or Moabit) or in the very northern parts (Märkisches

Viertel) of Berlin, with a high density estimate of ethnic minority populations but without

any advisory service centres. The commentary on the first map above depends on precise

geo-coded addresses which are not publicly available. The second and third maps show

the density estimates based on the rounded data. The density plot obtained by using

the Naive estimator (plot in the middle in Figure 5) produces spikes at the center of

the grids. In contrast, the proposed estimator produces a map (plot at the bottom in

Figure 5) that is able to preserve the fundamental density structure of the original data.

Hence, the commentary we produced by looking at the map of the original data holds also

true for the map of density estimates produced by using the proposed multivariate kernel

density estimator that accounts for measurement error. In addition, the proposed density

estimator produces more precise density estimates than theNaive one (see Table 2). Local

authorities should prefer the density estimates produced by the proposed estimator, to

the one produced by the Naive estimator, for making informed decisions.

Care for the elderly: Life expectancy in Germany has improved due to advances in

medical research. This leads to a change in the demographic structure with an increasing

number of old-aged people. Approximately 860,000 individuals aged 60 and above live in

Berlin. It is projected that by 2030 the average age of Berlin’s population will increase

from 42.5 years (in 2007) to 45.3 years and roughly every third citizen of Berlin will be 60

years or older. With increasing age the prevalence of diseases and functional restraints,

which are often chronic and irreversible, rises as well (Saß et al., 2009). In 2012, 58.3%

of German women and 55.3% of German men suffered from at least one chronic disease

(Robert Koch Institute, 2014). According to the World Health Organization (2005),

the prevalence and incidence of various chronic diseases, such as cardiovascular diseases,

cancer, diabetes mellitus, dementia or respiratory problems, is predicted to increase in

the next years. For this reason older people are more likely to need help in their daily

life and will increasingly depend on care. According to the nursing care insurance in

2011 there were roughly 117,500 care-dependent people in Berlin. In order to support

the increasing elderly population it is necessary to offer high-quality medical and social
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community structures of care that are close to the people’s place of residence. This is

important because elderly people tend to feel connected to their neighbourhood. These

structures consist of:

- Neighborhood centers: These are combinations of accessible living, residential care

homes and social/cultural centres with neighbourhood cafes, which are suitable for

senior citizens. Such structures offer elderly people with or without care dependency

the opportunity to live actively within the community until old age.

- Foster ambulatory care: These are home care nursing services that enable care-

dependent people to live at home.

- Networked care: The different forms of care systems (e.g., ambulatory care, semi-

residential care or impatient care) need to be more strongly interconnected than

they currently are. This will offer more choices for older people for example, live at

home with ambulatory care but have the opportunity to change to semi-residential

or impatient care near to the place they live.

In order to improve such services for the city of Berlin it is necessary to have an accurate

picture about the distribution of the elderly population in Berlin. The right panel of Figure

5 shows the density estimates for the population aged 60 years or above. The blue points

represent 108 retirement homes in Berlin. The location of these points was extracted by

using Google Maps. The plot on the top panel indicates the density estimates based on

the original data with the exact address coordinates, which are not publicly available. The

plots in the middle and at the bottom present the density estimates by using the Naive

and the proposed density estimators with a rounding step size of 2000m. The supply

of retirement houses is particularly good in the center of Berlin. However, locations for

future expansion of retirement houses and other support structures can be identified.

For instance, there are some hotspot areas in the north (Reinickendorf and especially

Märkisches Viertel) or in the south-east (Gropiusstadt) with a high density estimate of the

population over 60 but without retirement homes. As in the first application,the proposed

estimator (plot at the bottom in Figure 5) preserves the structure of the density of the

population over 60 years despite the presence of measurement error in the available data

and offers more precise estimates. Hence, the use of the proposed estimator may enable

local authorities and other organisations to make sound strategic decisions regarding the

best places for investigating in creating infrastructure for social care without requiring

access to exact geo-referenced data. A more refined analysis of the Berlin register data

could consider the use of local bandwidths as opposed to a global bandwidth. This is

possible by using the R package that has been written for implementing the methodology

we propose in this paper. Nevertheless, use of local bandwidths can increase significantly

the computational time.
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5 Simulation Study

In this section we present results from a Monte-Carlo simulation study that was conducted

for evaluating the performance of the proposed multivariate kernel density estimator we

presented in Section 3. The objective of this simulation study is to investigate the ability of

the proposed methodology to account for measurement error, under different scenarios for

the intensity of the measurement error process, and hence provide more precise estimates

than Naive kernel density estimation that disregards measurement error. The proposed

estimator is further compared to the estimator proposed by Delaigle (2007). Finally, the

sensitivity of the proposed method in relation to the size of the data (n), to the burn-in

size (B) and sample steps (N) used in the GRSST algorithm is evaluated and the results

are provided as part of the supporting information.

The simulation data is generated under different bivariate normal distributions. Three

scenarios, denoted by A, B and C, are considered. Under Scenario A data is generated

by using a bivariate standard normal distribution,

fA(x) = φ(x|µ,Σ),

where φ(x|µ,Σ) denotes a multivariate normal density with mean µ and variance-covariance

matrix Σ given by,

µ =

(
0

0

)
, Σ =

(
1 0

0 1

)
.

Under Scenario B data is generated by using a mixture of three uncorrelated bivariate

normal distributions,

fB(x) =
1

3
φ(x|µ1,Σ1) +

1

3
φ(x|µ2,Σ2) +

1

3
φ(x|µ3,Σ3),

with

µ1 =

(
0

0

)
, µ2 =

(
5

3

)
, µ3 =

(
−4

1

)
,Σ1 =

(
2 0

0 2

)
,Σ2 =

(
1 0

0 1

)
,Σ3 =

(
1 0

0 3

)
.

Finally, under Scenario C data is generated by using a mixture of three correlated normal

distributions with

µ1 =

(
0

0

)
, µ2 =

(
5

3

)
, µ3 =

(
−4

1

)
,Σ1 =

(
4 3

3 4

)
,Σ2 =

(
3 0.5

0.5 1

)
,Σ3 =

(
5 4

4 6

)
.

The corresponding density contours under the three scenarios are shown in Figure 6. The

use of bivariate distributions is motivated by the fact that our application data in Section

4 is bivariate. The use of Gaussian distributions for generating the simulation data follows

Zhang et al. (2006) and Zougab et al. (2014).

For each scenario we generate a dataset S0 of size n = 500 from the corresponding
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Figure 6: Contour plots of the simulated data under the three simulation scenarios.

distribution fA(x), fB(x) or fC(x). The dataset S0 includes the exact x- and y-coordinates.

For introducing measurement error via rounding of the coordinates, we define a grid for

the x- and y-coordinates ranging from -10 to 10 with gridwidth according to rounding

values r = 0.75, 1.5 and 2.25. For a formal definition of r and the rounding process we

refer to Section 3.2. We denote the dataset after rounding by Sr. Figure 7 shows the

different scenarios for the rounding process for a specific dataset under Scenario B. The

size of the points represents the number of points at a specific rounding tick.
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Figure 7: Scenario B: Rounding procedure for a specific dataset.

By using Sr, we estimate the density with three methods: a) Naive: a standard kernel

density estimator that ignores measurement error, b) GRSST : This is the proposed SEM

estimator with B = 5 burn-in and N = 20 sample steps and c) Delaigle: this is the

estimator presented in Delaigle (2007). As in Section 4, for computing the Naive and

GRSST estimators we use a bivariate Gaussian kernel and a plug-in bandwidth selector.

The density of the original data S0 (r = 0 in Table 3) is estimated by using function

kde (kernel density estimation) with a bivariate Gaussian kernel and a plug-in bandwidth
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Table 3: Mean RMISE for different grid sizes (r) and scenarios. Corresponding standard
errors of the RMISE in parentheses.

r = 0 r = 0.75 r = 1.5 r = 2.25

Original Naive GRSST Delaigle Naive GRSST Delaigle Naive GRSST Delaigle

Scenario A
0.205 0.238 0.239 0.301 3.952 0.242 0.887 4.917 0.568 1.113

(0.026) (0.029) (0.031) (0.027) (0.301) (0.030) (0.034) (0.248) (0.045) (0.056)

Scenario B
0.162 0.172 0.170 0.328 0.380 0.183 0.272 0.679 0.256 0.390

(0.016) (0.017) (0.016) (0.019) (0.033) (0.018) (0.013) (0.043) (0.016) (0.014)

Scenario C
0.119 0.125 0.121 0.268 0.147 0.131 0.181 0.351 0.152 0.172

(0.012) (0.013) (0.012) (0.015) (0.013) (0.013) (0.009) (0.034) (0.014) (0.012)

selector. The density estimates of the original data are treated as a benchmark because S0

is not affected by rounding error. The simulation steps (generation of a dataset, rounding

of the coordinates and the density estimation) are independently repeated 500 times for

each scenario.

In Table 3 we compare the performance of the Naive, the GRSST and the Delaigle

density estimators in the three scenarios. The first column of Table 3 shows the means and

the standard deviations of the RMISE over 500 Monte-Carlo replications of the benchmark

case i.e. in the absence of rounding error (r = 0). Note that in the definition of the RMISE

in (5) f(x) denotes now the underlying true density, fA(x), fB(x) or fC(x) respectively.

For the scenarios with small rounding errors (r = 0.75) we observe that the Naive and

the GRSST density estimators perform similarly and both methods have RMISE which

is comparable to the RMISE under the benchmark scenario. The Delaigle estimator

reveals a higher RMISE compared to the two other approaches. Data providers may

be keen, however, to introduce more severe measurement error to the data for ensuring

confidentiality. For such scenarios (r = 1.5 and r = 2.25) the GRSST density estimator

clearly outperforms the Naive estimator. The Delaigle estimator performs better than

the Naive estimator but worse compared to the GRSST estimator. It is notable that

the Naive estimator performs very poorly especially for r = 1.5 and r = 2.25 in the case

of a bivariate standard normal distribution (Scenario A). Presumably this is due to the

small variance of the underlying density we are trying to estimate in Scenario A such that

discretizing for given rounding values has a much more pronounced effect. For this reason

we also tested a bivariate normal distribution with a larger variance. The results for

the Naive method become more stable but the GRSST estimator still performs better.

Figure 8 shows contour plots of a particular simulation run under Scenario B for the Naive

and GRSST estimators. It appears that, unlike the Naive, the GRSST density estimator

is able the maintain the underlying structure of the density for different rounding levels.

Contour plots under Scenarios A and C (provided as part of the supporting information)

confirm this finding. The anisotropic pattern for the Naive estimator (r = 1.5 and r =

2.25) is caused by a larger bandwidth in x-direction than in y-direction. This bandwidth

is chosen by the plug-in bandwidth matrix selector of (Wand and Jones (1994).
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Figure 8: Scenario B: Contour plots of Naive estimator (upper panel) and GRSST
estimator (lower panel), for grid size r = 0.75, 1.5, 2.25 (left to right). The original data
scenario (r = 0) is used as the benchmark.

6 Discussion

Precise geo-coded data is rarely available due to confidentiality constraints. The paper

proposes methodology for deriving density estimates of populations of interest in the

presence of rounding in the geographical coordinates used for disclosure control. The pro-

posed methodology is motivated by reversing the measurement error process by combining

a measurement error model with kernel density estimation. The method is straightfor-

ward to implement and works for different dimensions, symmetric as well as asymmetric

kernel types and bandwidth selection methods. The use of the proposed methodology is

facilitated by the availability of function dbivr in the R package Kernelheaping avail-

able on CRAN (Gross, 2015). As we demonstrated with the analysis of the Berlin register

data the proposed method can offer considerably deeper insights, compared to a Naive

estimator that disregards the measurement error process, to data analysts about the den-

sity of target populations within an area of interest. The structure preserving property

of the proposed method is particularly attractive when working with data that has been

subjected to disclosure control via the introduction of measurement error. In addition,

the paper provides some first indications on how to set the grid-lengths for geo-coding in

the Berlin register of residents such that a data analyst is able to derive precise density

estimates. At the same time working with the data host for deciding the grid-lengths is

crucial for ensuring confidentiality.

Further work could extend the proposed approach to different geographical masking

22



or anonymisation methods including for example the use of Gaussian errors added to

the original geographic coordinates. With minor adaptions to the algorithm direct use

of arbitrary demarcation shapes like the LORs instead of the grid-structure induced by

rounding is possible for obtaining smooth density estimates as well. The proposed method

can be further generalized for application to data with varying degree of rounding (heap-

ing) occurring, for example, in self-reported survey data (Pudney, 2008). Finally, one idea

for further work is to explore the application of the proposed methodology for generating

synthetic geo-coded data based on anonymised data sets with rounding errors.
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