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ABSTRACT 
 

An undergraduate practical exercise has been designed to provide hands-on, 

instrument-based experience of advanced characterisation techniques. A research 

experience approach is taken, centred around the concept of solid-state polymorphism, 

which requires a detailed knowledge of molecular and crystal structure to be gained by 

advanced analytical techniques normally considered as the preserve of a research 

facility. Powder and single crystal diffraction techniques are primarily required and 

implemented via the unique approach of the students themselves using benchtop 

instruments dedicated to teaching, as opposed to more complex and difficult to access 

research instruments. Furthermore, the manual instructions for performing the 

practical are delivered via an adapted Electronic Laboratory Notebook system where, for 

each specific aspect of the practical, students note their intentions, actions, 

observations and inferences. Assessors can access the notebooks and provide targeted 

on-line feedback for each individual section. Evaluation of the approach is based on 

interviews and surveys with the first cohort of 65 students that performed the practical. 
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INTRODUCTION 
 

Practical experience is crucial for a well-rounded education in chemistry. However, 

time,1 resources,2 and routes to deliver this are under extreme pressure,3 leading to a 

decline in standards achieved. Hands-on learning and training is suffering as a result. 

In schools pupils are increasingly subject to demonstrations or detailed written 

instructions4 whereby the “students can be successful even with little understanding of 

what they are doing”5 and are unable to apply the tools and skills learnt outside of the 
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narrow teaching environment. In higher education, similar written instruction 

criticisms are valid, as students undergo formulaic practical exercises in very large 

teaching group sizes. Traditional methods of teaching practical skills i.e. the ‘cook-book’ 

approach, have not changed appreciably for decades. Students are often said to be 

‘carrying out an exercise’, rather than ‘doing an experiment’, and exercises make limited 

intellectual demands.6 Research indicates that students invest significant proportions of 

their time performing procedures without development of substantive understanding7 

which does not provide sufficient skills training to prepare future career work in 

industry or academia.8-15  

It is not uncommon to have 60-80 students per cohort in a degree programme and 

practical training in large groups limits the quality of the experience and makes it 

difficult to provide training in advanced techniques. The primary limiting factors are 

logistics such as space constraints, timing, availability of educators and access to 

advanced equipment. Hence there is a requirement for more imaginative delivery and 

timetabling of practicals – particularly in the latter stage of a degree programme. The 

benefits of moving away from conventional teaching methods are well known,16-19 

however there is little evidence of addressing this. This paper presents an analytical 

practical exercise, akin to solid-state screening in the pharmaceutical industry, 

providing exposure to modern high-powered instrumentation and delivered to small 

groups of about 8 students at a time. 

 

The Challenge 
 

For industry employability a strong analytical chemistry experience should be 

attained.20 Increasing industry exposure has been achieved by two UK universities in 

different ways 1) the University of Surrey with their ‘Analytical Club’,21 where a diverse 
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range of companies (16 in this case) is involved in shaping degree schemes, tutoring 

and providing real-world experience and 2) the Glasgow Caledonian University’s 

collaboration between students in physics and chemistry in a joint-project.22 A further 

shortcoming of undergraduate practicals is a lack of exposure to (industrial) standard 

operating procedures. For example, it is standard practice to use an electronic 

laboratory notebook (ELN) to document practical work and associated data. These 

standards are not met, and rarely even taught, as students use paper notebooks and 

any data generated is dissociated from these.  

The established model for practical training at the University of Southampton places 

first and second year undergraduates into teaching laboratories, following prescribed 

methods in large group sizes and gaining foundational experience in common analytical 

techniques eg infrared (IR) and pre-collected Nuclear Magnetic Resonance (NMR) 

spectra. However, access to advanced characterisation techniques, specifically hands-

on X-ray crystallography,23-25 at undergraduate level is restricted, mainly due large to 

group sizes and scarce resources.  These techniques would only be (partly) experienced 

in the latter stages of a degree if an embedded research project is undertaken. There are 

examples of characterisation data being made available to students eg via a VLE 

(Virtual Learning Environment),26 as well as an alternative approach involving a virtual 

multifunctional X-ray laboratory,27 which attempt to address this issue, but there is no 

substitute for actual practical experience. Final year research projects often provide an 

enriching environment however, with increasing student numbers, quality is decreasing 

and the strain placed upon research groups is increasing.  Additionally, the research 

project often gives exposure only to a narrow field of chemistry and set of techniques. 

Whilst an ‘Analytical Club’ seems a good approach, this is externally dependent, 

requiring continued collaboration with industries.  Due to these factors, development of 

an in-house approach can be considered a more favourable option.  
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Embracing The Challenge 
 

The first design principle is to encourage student engagement, which has been a 

topic of debate for some considerable time.28 The intention of this advanced practical is 

to break the monotony and formulaic approach of the current laboratory experience – 

whilst this serves well for basic skills training it is less suited for experienced students 

preparing for post-degree work. By providing an environment more akin to the research 

workplace and introducing a richer and more challenging variety to the practical 

experience the student is not only more engaged, but also prepared for employment. 

This is specifically achieved by:  

• increasing the level of independence required to complete not only individual 

tasks but the whole study, 

• the use of multiple complementary analytical techniques, requiring piecing 

together data from disparate sources to draw conclusions on a larger scale than an 

individual technique,  

• hands-on use of advanced characterisation equipment, engendering greater 

participation and understanding, 

• providing an alternative method to deliver practical instructions,  

• alternative methods of recording and reporting experimental procedure, 

observations and results and incorporating the assessment into this approach.  

 

Solid state polymorphism, a material existing in more than one solid form, is well 

suited to introducing these approaches for several reasons. Fundamentally, the concept 

has not been considered in depth prior to the experiment, although some foundational 

knowledge of structure and diffraction has been established from earlier years. 
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Therefore, a greater level of self-led study and background reading is required. 

Secondly, the approach described herein develops understanding of the solid state 

through a crystallography-led practical incorporating a variety of techniques. To probe 

the phenomenon and its effect on physical properties it is necessary to draw on data 

from several techniques. Moreover, it is possible to produce polymorphs via different 

recrystallization techniques within the timeframe of the practical, thus providing a 

beginning-to-end experience. 

A similar research-led initiative, in that it is based on the topic of crystallography, 

was introduced by Wilson et al29 who provided a supplementary course in a final year 

degree scheme. Drawing on samples generated by researchers in the department, 

students partake in the research process and explore aspects of chemistry that they 

have not previously had exposure to. The students gained an overview of the area of 

single crystal diffraction, had access to the diffraction laboratories and gained some 

hands-on experience. However, it is important to note several differences with the 

scheme being presented here - primarily that the practical we describe is fully 

integrated into the undergraduate programme with formal assessment. Moreover, our 

practical has adopted a 100% hands on approach to introducing a variety of techniques 

and encourages using multiple analyses to draw conclusions whilst enabling a full 

beginning-to-end experience with crystals grown by the students themselves. 

 

THE EXPERIMENT  
 

At the module level, five different practical exercises spanning different areas of 

chemistry are undertaken in a semester. A single practical takes two full days – one day 

a week over a fortnight. Accordingly this practical was delivered to 65 third year 

bachelors and fourth year masters students (in the ratio 40:25 respectively). To operate 
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with an appropriate level of supervision a minimum of one PhD student laboratory 

demonstrator dedicated solely to this practical was required. 

 

Glycine, a simple molecular organic system for which crystallisation and 

polymorphic behaviour is well documented, was chosen as the subject.30 Crystallisation 

is readily reproducible for two polymorphs (α and γ).  Additionally it exhibits a phase 

transition between these two forms on heating - this is another new concept, which 

distinguishes students who fundamentally understand the practical.  

 

Figure 1. Schematic of the experiment and advanced practical techniques used in this exercise. 

 

A schematic of the practical is given in figure 1 and consists of the following 

components: stock material (from Sigma-Aldrich) was used to generate two polymorphic 

forms via recrystallisation under aqueous and strongly alkaline conditions.  Once 

crystals had formed, structural analysis was performed via number of differing 

techniques including single crystal (SCXRD) and powder (PXRD) X-ray diffraction, and 

infrared (IR) spectroscopy, the latter two techniques were also used on the stock 

material to allow structural determination and bulk purity.  Thermal behaviours were 

also investigated for both polymorphs using Hot Stage Microscopy (HSM) and 
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Differential Scanning Calorimetry (DSC).  To complete the study, literature searching 

and interrogation of structural databases such as the CSD (Cambridge Structural 

Database),31 was carried out to obtain background information and additional data to 

aid in the final comparisons.  Using all data obtained, correlations and relationships 

between the polymorphs were assessed which involved: 

• polymorphs identified by cross referencing with published literature,  

• ‘round-tripping’ - calculating powder patterns from crystal structures and 

comparing to experimental PXRD data to assess if SCXRD is representative 

of the bulk material, 

• analysis of intermolecular interactions in crystal structures, which could 

then be correlated with IR data,  

• exo- or endothermic processes quantitatively identified by DSC, 

• DSC results correlated to HSM observations, enabling identification of 

melting point and phase transitions, 

• thermal behaviour of the polymorphs related to crystal structure. 

We present the practical as implemented in our institution, however it is modular with 

scope for modification into more, shorter laboratory sessions (generate the crystals in 

one session then characterise over several subsequent sessions). This permits one to 

cater for different size groups and fit into timetabling constraints requiring shorter 

timeslots. A modular approach also enables a curtailed experiment with lesser or 

limited analysis to be undertaken. The SCXRD data collection requires a few hours for 

each crystal - could be done in parallel with other techniques but is dependent on 

group size.  Modifications due to equipment availability and access could use melting 

point apparatus or TGA in place of HSM, however the phase transition may not be so 

easily identifiable.  
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The data collected provide a wealth of information and allowed numerous further 

interpretations and connections to be made; packing and arrangement of molecules 

within the unit cell could be visualised; comparisons between hydrogen-bonding 

networks in the different polymorphs could be made which provide an insight into 

stabilities and also aids the explanation of the thermal characteristics observed in the 

DSC and HSM experiments; polymorphic variations are also apparent in the IR spectra 

and could be related to hydrogen-bonding differences between crystal structures.  

 

Learning and assessment goals 
 

The general learning objectives at the module level enable students to:  

• apply practical skills in a more open-ended context, 

• apply core chemistry knowledge in addressing advanced problems, 

• develop a range of key skills – experimentally and in presenting results,  

• manage their own learning.  

The learning objectives of this particular practical are for students to:  

• conduct elementary experiments on advanced characterisation equipment,  

• perform analysis of data from advanced characterisation experiments and 

critically evaluate the results,  

• understand the complementarity of different characterisation techniques and 

how this provides insight beyond that of an individual measurement,  

• recognise that specialised databases form part of the prior work that should 

be researched alongside the primary literature,  

• be able to record experimental observations to the required standard using 

an alternative approach to the traditional paper notebook (i.e. an ELN). 
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In alignment with the learning objectives above, the high-level module assessment 

goals are that students:  

• communicate results, both verbally and in written form, of an open-ended 

investigation using appropriate scientific terminology,  

• manage personal study time effectively, 

• work effectively as a member of a team as required, 

• work independently towards achieving well defined objectives,  

• prepare risk assessments,  

• record practical work to a professional standard,  

• collate and analyse data from a variety of sources. 

More specifically, the goal of assessments for this practical are that students can: 

• appreciate the factors involved in accurately conducting characterisation 

experiments, 

• work up crystallographic data and critically assess the validity of the 

resulting crystal structure, 

• compare and contrast results from complementary techniques to gain 

deeper insight into the phenomenon of polymorphism through hydrogen 

bonding networks and relative stabilities seen through phase transitions, 

• record experimental set-ups, observations, inferences and conclusions in an 

ELN such that someone else can understand what has been done and can 

reproduce the experiment. 

 

CHARACTERISATION INSTRUMENTS  
 

A range of equipment is required (one instrument for each of the techniques 

outlined in Figure 1) and it must be configured to be operable by students with no prior 
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experience. Diffraction equipment used in a research context does not necessarily fit 

this criterion and accordingly benchtop diffractometers (Rigaku MiniFlex 600 and a 

XtaLAB mini for powder and single crystal diffraction respectively) were used. Details of 

a collaboration with Rigaku can be found in a video testimonial32 and the April 2014 

edition of The Bridge.33 The XtaLAB mini provides the same features and data collection 

experience as a larger research instrument, however a more compact design and 

simpler layout means that operation is much easier. The software is identical to that 

used on research equipment, however it can be configured in a semi-automated way so 

that advanced parameters are hidden.  

The Miniflex PXRD instrument is similarly suitable for education. Other equipment 

used includes a Mettler Toledo 82HT Hot Stage for the HSM measurements.  The DSC 

data (provided to the students) and IR spectra were collected on a Mettler Toledo 

DSC821e and a Thermo Scientific Nicolet iS5 FT-IR Spectrometer respectively.  

 

PRACTICAL DELIVERY AND IMPLEMENTATION 
 

The practical used a customised academic ELN, LabTrove,34 to provide the 

experimental manual, split into sections for different parts of the experiment, see 

section 1 Supplementary Information. To the best of our knowledge there are no 

significant reports in the literature of an ELN being employed (and tailored) specifically 

for delivery and assessment of educational exercises. However, a recent review35 

provides insights into the role of ELNs for record keeping. 

Students record their observations, inferences, conclusions and data in a way that 

is linked to the different manual sections and supervisors can view this content and 

leave feedback comments for each section during their assessment. The manuals for 

each component of the experiment, detailing practical requirements and instructions for 
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specific equipment, are provided as a general template from a central notebook, 

available prior to the practical to allow students to familiarise themselves with the 

electronic system and experimental procedures. Students copy a template into their 

individual notebook, creating a new record to which details of process, observations, 

inferences and data can be added. All the templates developed for this experiment have 

been packaged as a learning resource and are openly available via the University of 

Southampton EdShare repository at http://www.edshare.soton.ac.uk/13584/. The 

format of the ELN is non-prescriptive and provides several possible ways for a user to 

structure their work. Metadata (descriptive terms, or keywords) are used to link or 

group related records, e.g. the machine, technique or software used, and are entirely 

user-defined, hence individual preferences can easily be met. This facilitiates navigation 

around the notebook and categorisation of observations, whilst providing the individual 

some flexibility to organise their notes as they wish.  

The key feature of this approach is that students can record all planning, 

observations, thoughts and results together and these can readily be linked to the 

corresponding part of the manual. Furthermore, data from analytical instruments such 

as spectra, structure files, videos, images and analysis documents can be uploaded and 

linked to the appropriate part of the experiment record (figure 2). Students’ observations 

are recorded as comments, to which others can also make comments if they have 

appropriate access privileges.  In this case instructors can see all student records for 

assessment purposes, however students could only see their own notebook’s contents.  
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Figure 2. Screen shot of a student’s notebook record containing the manual instructions, top, followed by any uploaded data or 
files, the student’s comments and finally an assessor’s feedback. 

 

ASSESSMENT 
 

There were a range of assessment methods associated with the practical, including 

a critique of the Laboratory Notebook and COSHH (safety) assessment, ‘follow-up’ 

questions (Section 2 Supplementary Information), a poster, a short presentation and a 

short journal article. These were designed and delivered at the module level which 
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encompasses a number of experiments and therefore align to the assessment aims 

defined for that level (vide supra). It is important that core chemistry knowledge is 

applied to address advanced problems – this is tested through the follow up questions 

and by an understanding of the hazards and risks involved. Awareness of safety was 

tested through a COSHH (Control of Substances Hazardous to Health)36-38 assessment 

form (see SI for blank form) prior to starting the practical. Students must identify and 

assess all chemicals and processes to determine the appropriate protocols and safety 

requirements necessary to undertake the experiment in a safe manner. Finally, 

students are assessed on their ability to manage their own learning by examining their 

ELN notes.  

More specifically, at the level of the individual practical, the learning outcomes (vide 

supra) are matched to assessment in that students learn to: 

• Appreciate the factors involved in accurately conducting characterisation 

experiments - primarily assessed by the extent of ELN notes. 

• Work up crystallographic data and critically assess the validity of the resulting 

crystal structure - the data files and associated observations are available in the 

ELN while the ability to critically assess the results is assessed by observations 

in the ELN and the questions, paper write-up and oral presentation.  

• Record experimental set-ups, observations, inferences and conclusions in an 

ELN such that someone can reproduce the experiment.  

• Compare and contrast results from complementary techniques to gain deeper 

insight into phenomena such as hydrogen bonding and phase transitions;  

assessed by follow-up questions, paper write-up and oral presentation. 

The follow-up questions required bringing together data from all the complementary 

techniques to form conclusions. Examples (see figure 3) include DSC and HSM data 

correlated to confirm melting points and recognise a phase transition; different melting 
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points rationalised by analysis of packing and hydrogen bonding networks evaluated 

from crystal structures and IR; calculating a powder pattern from the crystal structure 

(Mercury software)39 and comparing it to the experimentally determined PXRD pattern. 

 

Figure 3. Examples of student data provided to rationalise observations: a) PXRD comparison of polymorphs; b) overlay of 
experimental XRPD with that simulated from SCXRD for gamma polymorph; c) hydrogen bonding in alpha polymorph; d) 

hydrogen bonding in gamma polymorph. 

 

 

General observations on the level of understanding include:  

• Relevant literature on glycine including PXRD patterns was readily found 

and key peaks identified and compared to experimental data. However, this 

led to PXRD being used to fingerprint rather than compare polymorphs.  

a) b) 

c) d) 
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• Many related IR bands to the functional groups present, but didn’t identify 

subtle differences due to intermolecular interactions. Figure 4 presents 

spectra where a student was able to identify from a good match that the 

starting material is the gamma polymorph, but failed to realise significant 

differences between the two forms around 1300-1600 & 2500-3150cm-1 

reflecting changes in N-H stretching and bending due to its different 

hydrogen bonding modes. 

 

Figure 4. Comparative overlay of the infrared spectra of the glycine forms studied. 

 

• Comparison of HSM and DSC data generally led to the conclusion, with the 

help of the literature, to the presence of a phase transition. 

• Different melting points were attributed to the different structures, however 

it was not readily recognised that the different hydrogen bonding networks 

are a major influencing factor (in fact a significant number failed to 

appreciate the existence of hydrogen bonds). 
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From this one can conclude that students can assess individual characterisations, 

but fail to appreciate the value of comparing, contrasting and correlating techniques.  

 

 
 

EVALUATION 
 

The evaluation comprised two components, one a qualitative approach including 

observation of student behaviour and conducting interviews. 1:1 interviews were 

conducted with 3 students by the PhD student demonstrator (L. Mapp). The responses 

to these interviews informed the design of the questionnaire (vide infra).    

At the module level a general Student Experience Questionnaire is delivered via the 

BlackBoard VLE40 however, to fully and quantitatively evaluate certain aspects of this 

practical, a more in-depth method is required. The second element to evaluation was a 

specific questionnaire broadly probing student engagement, effectiveness of the hands-

on approach and effectiveness of the ELN system. The response rate was 45% (29 out of 

65 students) and the full set of questions are in section 3 of the Supplementary 

Information, whilst the full range of feedback comments is in section 4.  A summary of 

the primary points probed is presented in table 1 – these points are generated either 

directly from one of the survey questions or by pooling the responses to >1 questions 

that addressed the same issue (for the exact mapping of questions to categories in table 

1 see Supporting Information).  

 

Table 1 The proportion of respondents recording a positive reaction to specific categories of question. 

Question Category of Student Response Positive 
Responses /% 

(*N=29) 
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Was there concern about using this instrumentation prior to the experiment? 30 

Was there a benefit from using the equipment? 100 

Better understanding of theory as a result of practice? 48 

Data interpretation facilitated as a result of practice? 94 

(Positive) Attitude towards ELN before? 35 

(Positive) Attitude towards ELN after? 72 

ELN better than paper recording? 53 

ELN helps order notes? 57 

Sharing notes with assessor beneficial? 100 

Feedback in ELN beneficial? 66 

*Questionnaire response rate was 45% (29 out of 65 students)  

 

Evaluation of the Hands-on Equipment Approach 
 

The techniques employed were more complex than those used in previous aspects of 

the undergraduate course and accordingly many found the prospect exciting and were 

positive, however a significant number were apprehensive (worried about breaking 

expensive equipment).  

A significant number considered their knowledge of the underlying theory to have 

improved. There is an overwhelming impression that the interpretation of results was 

facilitated as a result of actively collecting their own data and working it up to the 

result. For advanced instrumentation this is in contrast to the more commonly used 

passive learning process of being presented with pre-collected data or a demonstration.  

Data analysis has two different challenges. Firstly, obtaining a result can range from 

trivial to involved data workup requiring advanced skills. Secondly, one must draw on 

the results of several complementary techniques. Data workup was performed in the 

laboratory enabling peer-to-peer development and consulting instructors whilst the 

Journal of Chemical Education 10/29/15 Page 18 of 28 



ed-20XX-XXXXXX  

broader analysis was performed individually outside of the practical, which many found 

harder.  

There are two areas where more attention should be focussed. Firstly, students 

should make a connection between the experiment and the related theory (this may be 

delivered in previous years). Secondly, students have not been able to fully compare and 

contrast data from complementary techniques and relate this to scientific concepts – eg 

linking hydrogen bonding to thermal behaviour.    

 

Electronic Delivery, Recording and Reporting 
 

Table 1 shows an increase in positive attitude, from 35% to 72%, towards the use of 

an ELN after having been used. Student feedback attributes this to improvements in 

working in a digital environment (structure/ordering, legibility, different data types, etc) 

and working in an online environment (reporting and feedback can be exchanged 

between student and assessor and accessed any time from anywhere).  
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Figure 5. A comparison of paper and electronic note taking for the same experiment. 

 

Comparison of a traditional paper lab notebook and an ELN entry illustrates the 

benefits of a digital environment (figure 5). It was envisaged that observations would be 

recorded directly in the ELN however in practice, due to logistics and not having a 

suitable method, a paper notebook was often completed while performing the 

experiment. The ELN records then became a combination of immediate note taking and 

informal post-experiment write up - this had unforeseen advantages.  

Recording observations at the time does not necessarily produce a record in the 

most suitable layout for reviewing or reporting. The ELN has the advantage that a 

comment can be added to any record at any time, ensuring all aspects of one particular 

technique are collated and organised, regardless of when the information is added. Not 

only can students reflect and structure their thoughts from the laboratory, but also a 

digital format provides a legible and structured form, unlike most (hastily recorded) 
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paper records. Moreover one can upload any format of data: data files collected during 

the experiment (raw or analysed) as well as diagrams or other files eg photographs or 

movies recorded on mobile devices. The ELN therefore became a mechanism to focus 

thoughts and re-write rudimentary notes - leading to a more ordered, meaningful and 

considered record. Submission of laboratory notebooks for assessment was favoured as 

students felt it less formal and they could write exactly what they thought and would 

not be embarrassed by hastily recorded notes. Also, by using the structure of sections 

and a template, students made more comments than with a traditional notebook due to 

the template providing a prompt compelling an answer - thereby students think more 

about all aspects of the experiment.  

There were, however, some less-well received aspects to this system. A number 

preferred to write notes rather than typing, finding it faster, and sketching rather than 

using comments.  

The online ELN may be viewed by an assessor. This improves previous approaches 

to the submission of laboratory notebook-based reports and delivery of feedback. From 

feedback (Table 1), students unanimously welcome this method of sharing laboratory 

notebooks with assessors and the majority find it beneficial as a route to receiving 

feedback. With the experiment split up into sections, it is possible to provide targeted 

feedback at a fine-grained level ie for all sections of the experiment. This is in contrast 

to the usual level at which feedback is delivered, which is rather more general. This was 

thought to be advantageous as evidenced by the following comments: “easier to see 

where individual feedback was directed”; “got feedback on all aspects of the practical”. 

However, conversely, some students felt that this was too dispersed as it necessitated 

searching through the entire notebook to retrieve all feedback comments - “more 

detailed feedback although not all in one place”. 
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Student Experience 
 

The quality of the student experience was evaluated through analysis of the 

questionnaire responses.  There were many points coming from this, indicating that 

students appreciated the approach. Progressing through from growing crystals, 

collecting a variety of data and analysing these to understand an entire phenomenon 

proved very constructive. Comments from students relating to the experience included: 

“It was interesting and valuable to see the process all the way through from the 

crystallisation to obtaining crystals, the analysis and finally solving the crystal 

structure.”; “The crystallography practical was a great way for us as undergraduates to 

be able to perform something which we had never done in practice before.”   

Previously, students performed single reactions in a controlled environment with 

analysis being a single, simple analytical technique.  The experiments were pre-

described and planned to give a reliable outcome, therefore this practical provided a 

rich learning experience more akin to research. The following quotes illustrate this: 

“Feels like a two-week mini-project and comparable to the third year project [I] would 

otherwise be undertaking.”; “[Practical] was helpful for showing how characterisation can 

be used. Use of SCXRD is especially well received”. Hands-on access to advanced 

equipment not normally available was warmly embraced, as evidenced by the following: 

“The hands-on approach to the experiment really allowed us to further our 

understanding of the technique as well as increasing our overall analytical ability in lab 

work.”; “New skill set, chance to experience another side of chemistry.”  

The format of the practical required students to manage their own time to complete 

tasks and negotiate within the group for instrument time - “Less regimented than years 

1 and 2.”; “It was good to choose when and what you did, especially on the second day 

as had certain tasks to complete but could decide when and how.”; “Proximity of 
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everything and working in the same room made checking access and when equipment 

was free very easy.” Some work was completed in pairs, allowing peer and small group 

learning, which some found useful -“Can discuss between a pair if you don't fully 

understand something before asking another pair or a demonstrator.” The semi-

structured approach and pair-work made students more comfortable in this new 

environment - “Made the work seem more manageable and less intense [than lone 

working].” This type of practical provided an excellent extension and reinforcement to 

previously learnt theory - one student stated “My understanding of how the theory is 

applied with the machines has improved.” Using benchtop instruments introduces 

advanced techniques without the potentially overwhelming experience of research 

instruments. Accordingly this practical provides a transition from taught undergraduate 

to research-intensive project - “I now feel that I am more capable of operating this kind of 

equipment whereas before I wouldn’t have been too confident.” 

Additional feedback evaluation statements are provided (Section 4, Supplementary 

Information). 

 

FUTURE WORK 
 

The design of the practical and the techniques involved are fit for purpose at this 

level and the main developments should be made to the ELN system. 

Firstly, reaction regarding feedback delivery indicated that several students were 

unaware of its availability; it would be advantageous to implement alerting indicating 

that feedback is available and how to view it. Providing fine-grained feedback is time 

consuming, so a ‘feedback library’ of frequently used statements would be helpful to 

saving time and include more detail.   
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Secondly, the ELN was not implemented in the way the designer conceived it, 

therefore additional features could be included to support use in education. It was 

intended that note taking be made from the instrument-controlling computer, however 

then one must to continually switch between programs. This is not very usable and 

support for mobile devices is being investigated. This has the advantage of readily 

recording and transferring observations to the ELN in many different forms eg images, 

videos and notes - text, hand-written or voice.  

Finally, as repurposing of hastily recorded notes in order to generate a semi-formal 

record, albeit unintentional, was very well received – we are investigating how this could 

be better supported.  

CONCLUSIONS 
 

A research-led practical with true hands-on time provides an excellent, and 

generally more rewarding, alternative experience than being embedded in an academic 

research group. Students are exposed to a wider range of advanced skills and 

techniques and, through a research techniques-led learning approach, experience a 

richer and more lasting learning experience. The approach taken fosters independence 

and engenders more control in conducting an experiment. This is akin to being involved 

in a research project and develops a range of skills beyond purely laboratory practical 

competency. Additionally, using an ELN for providing instructions, recording 

observations and assessor interaction provides alternative approaches to laboratory 

practice, assessment and feedback that enrich the learning and engagement of 

students, whilst also addressing industrial standards training.  
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