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Abstract

Participants in interbank payment systems manage a stream of payment
requests of varying priority to minimise their total costs. However, indi-
vidually optimal strategies may conflict with system-wide optimality and
can lead to inefficient equilibria, where banks cannot meet obligations in a
timely manner. We construct a model of a collateralised payment system and
demonstrate that socially optimal states exist in which banks should delay a
proportion of non-priority payments in an internal queue, but banks’ strate-
gising behaviour leads to liquidity hoarding and increased systemic cost. We
discuss how this behaviour can be reduced using measures available to a
regulator.
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1. Introduction

Providing payment services to allow banking institutions to settle their

obligations is one of the key functions of the financial system, and hence it

is vitally important that the interbank payment systems are well designed

and regulated. The importance of this point becomes even more apparent

when considering the exceptionally large payment volumes that have to be

processed on a daily basis. The US Fedwire system settles around $2.4 tril-

lion of transactions every day (Federal Reserve Board, 2014), while the UK

interbank systems, CHAPS1 and CREST2, settle around £575 billion in the

same period, which is roughly equivalent to UK annual GDP every three

days (Dent and Dison, 2012).

One of the reasons for these incredibly high volumes has been the move

to gross settlement. In the past, most payment systems operated on a net

settlement basis, but this entailed banks running tremendous counterparty

exposures throughout the day. Furthermore, the potential cost of late set-

tlement failure was shown by many studies to lead to heavy systemic risks

(Humphrey, 1986; Van den Bergh, 1994). In order to alleviate this prob-

lem, many systems now operate a mechanism of Real Time Gross Settlement

(“RTGS”), ensuring that all obligations are settled with finality, in real-

time, via a transfer of funds from the account of the creditor to the account

1 Clearing House Automated Payment System.
2 CREST is a securities settlement system.
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of the debtor at the central bank.

The increased liquidity demand posed by gross settlement means that in-

traday liquidity is the lifeblood of these RTGS systems. Ideally this liquidity

would be provided free of charge on an intraday basis by the central bank

operating as settlement agent for the system, but this would require them

to take on an unacceptable level of credit risk. Therefore the central bank

must implement a pricing policy to both mitigate this risk but also allow the

smooth functioning of the system (Furfine and Stehm, 1998; Freixas et al.,

2000). The first policy option is to charge an overdraft fee for any period of

negative balance on a participant bank account, as used in the US Fedwire

system (Coleman, 2002). The second approach is to demand high-quality

collateral on an intraday basis up to the value of liquidity required by the

participant. Both CHAPS and the European TARGET23 system utilise the

latter approach.

In a collateral-based system, the central bank typically provides intraday

liquidity to the participant banks at the start of the day. Banks will source

liquidity dependent on their projected payment flows, with each balancing a

trade-off between the opportunity cost of using that collateral elsewhere and

the costs that it will incur due to expected payment delays throughout the

day. In a low opportunity cost environment these systems operate efficiently

due to a high volume of liquidity being present, but there is a systemic risk if

3 Trans-European Automated Real-Time Gross Express Transfer 2.
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those costs increase. The system incentivises member banks to minimise their

own total costs, so that individually optimal strategies, such as free-riding

on the liquidity provision of others, may be at odds with the most beneficial

behaviour for overall system performance (Afonso and Shin, 2011). Notably,

insufficient liquidity sourcing or poor recycling of liquidity within the system

can cause cascades of payment failures, leading to delays and system-wide

inefficiencies (Angelini, 1998).

For these reasons, intraday liquidity risk is currently receiving a high level

of scrutiny. The Basel Committee on Banking Supervision (2012) recently

released a paper, detailing a number of measures which banks must report

that assess their intraday liquidity requirements under various stress scenar-

ios. However these measures focus on the individual banks themselves and do

not fully capture the system-wide effects that a stress situation would cause.

An analysis of the equilibrium behaviour of collateralised payment systems

under differing conditions is a first step towards understanding these systemic

risks. In this paper, we focus on providing such an analysis for CHAPS, but

the principal results are applicable to any collateral-based system.

The CHAPS system was until recently very effective in terms of liquidity

provision. It had settled into a comfortable equilibrium where banks posted

more collateral than they needed to at the start of the day, and all payments

were made smoothly with minimal delays. It was also simple for banks

to make their decisions on a day-to-day basis as their collateral postings

tended not to change, so banks were fully informed as to how others would
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act. However, these low liquidity sourcing costs were due to the practice of

double duty, whereby collateral that banks were forced to hold as part of their

prudential asset buffer could still be used on an intraday basis for posting in a

collateral-based RTGS system (Ball et al., 2011). This effectively meant that

many banks incurred costs significantly lower than the true opportunity cost

of the collateral4 (James and Willison, 2004). Under the new regulations,

banks are forced to hold an additional intraday liquidity buffer (Ball et al.,

2011). This implies a significantly larger opportunity cost to banks and hence

the incentives for actors in the CHAPS “liquidity game” have changed.

Modelling payment flows in these systems is far from trivial, as bank

interactions lead to a complex dynamic of queues and cascades. State-of-

the-art models in the field such as that of Galbiati and Soramäki (2011) use

a combination of multi-agent simulation and game-theoretic analysis to un-

derstand the relationship between bank decisions and delay costs. However,

they do not yet explore realistic queueing protocols within banks and treat all

incoming payments as identical. One important aspect in real payment sys-

tems is prioritisation, whereby banks will internally delay certain payments

and prioritise others due to both internal and external factors (Becher et al.,

2008). In this paper we extend earlier work (Galbiati and Soramäki, 2011)

by introducing a novel framework to model this prioritisation behaviour in a

multi-agent setting. We then consider a game-theoretic model in which banks

4 The difference between the unsecured interbank rate and the secure-lending repo rate.
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optimise both their liquidity sourcing and their internal queueing strategy

with the aim of minimising total expected costs. We discuss the equilibrium

behaviours that evolve in this system and how inefficiencies may be reduced

by utilising measures that are available to the Bank of England, specifically

liquidity-saving mechanisms and throughput requirements.

2. Related literature

Models of interbank payment systems have traditionally taken one of two

forms. The first form is simulation based on empirical data, attempting to

capture as much detail as possible about the mechanics of the settlement

process using a simulator such as the Bank of Finland’s BoF-PSS2 (2015).

Leinonen (2005) provides a comprehensive overview of such papers, studying

liquidity requirements, liquidity shocks and various liquidity saving mech-

anisms. Similarly, the optimal timing of intraday payments is studied by

Angelini (2000), who compares a simulated optimisation model to empirical

data from the Italian interbank market. However a major shortcoming of

these studies is that bank behaviour is parameterised using rules based on

historical data. Such an approach makes it difficult to capture changes in

strategic behaviour in the face of unprecedented scenarios. A change in the

behaviour of actors is one major source of systemic risk that needs to be in-

vestigated when considering new regulation. This is particularly true of the

recent paper by McLafferty and Denbee (2013), which simulates the effect

of introducing a liquidity saving mechanism to CHAPS. They predict that
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up to 30% less liquidity will be required by the system post-introduction,

but this is purely based on historical data and does not incorporate any

consideration of the change in the behaviour of the participants, which they

themselves acknowledge will have a big impact.

The second approach is to treat the interbank payment system as a multi-

player game and to use techniques from game theory to study the strategic

behaviour of the participant banks (Bech and Garratt, 2003; Willison, 2004;

Martin and McAndrews, 2008). This involves defining banks’ strategies in

terms of liquidity sourcing and the management of payment streams, then cal-

culating incentive structures that characterise the underlying liquidity game.

Costs and benefits are a function of the amount of liquidity sourced and the

total payment delays incurred5. These studies then use game-theoretic rea-

soning to compare strategies corresponding to Nash equilibria of the liquidity

game with strategies a central planner would impose to optimize overall sys-

tem performance. We term this latter strategy the “social optimum”.

The game theoretic approach has the advantage of being able to model

bank behaviour in the face of changes to the incentive structure. Notably, be-

haviour that optimises costs for an individual bank can be counter-productive

at the systemic level. Bech and Garratt (2003) demonstrate that if liquid-

ity is sufficiently expensive, banks will choose to “free ride” on the liquidity

5 The delay cost is a function of the time between receipt of a payment order and
settlement of that order, with the “cost” to the bank being either reputational for
failing to make payments on time, imposed for missing a payment deadline or some
combination of similar drivers.

8



of others in order to make their payments, thus resulting in a tragedy of

the commons scenario (Hardin, 1968) in which there is insufficient liquidity

in the system and all participants incur large delay costs. However, this

approach can only achieve analytical tractability by simplifying the system

dramatically, usually by reducing the number of payment periods and banks

to two. In reality, liquidity is recycled many times throughout the course

of the day, forming a complex dynamic of queues and cascades. Beyeler

(2007) demonstrates that at low levels of liquidity, payment instructions and

payment settlements lose correlation leading to the emergence of payment

cascades of all sizes, which is a hallmark of an irreducible complex system

In order to combine the positive aspects of both streams, Galbiati and

Soramäki (2011) utilise an agent-based approach, which combines detailed

stochastic simulation with game-theoretic analysis. Agent-based models have

been shown to be a useful tool for analysing other complex economic systems,

such as in the work of Chakrabarti (2000) on Foreign Exchange markets.

In order to simulate the settlement process, a Poisson-distributed stream

of incoming payments is handled by each bank according to its liquidity,

creating a series of payments and queues. Payoff matrices for each bank can

be estimated from Monte Carlo simulations of the queuing dynamics under

a range of cost parameters. Nash equilibrium strategies and the socially

optimal behaviour can then be compared analytically on this basis.

One important element that is missing from this work is the idea of pay-

ment prioritisation for banks. Angelini (1998) shows that banks have an
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incentive to delay payments for as long as possible if liquidity is too ex-

pensive in a fee-based payment system such as Fedwire, but the analogous

result for a collateral-based payment system suggests that payments should

be made instantaneously if possible, as collateral is a sunk cost incurred at the

start of the day. However Becher (2008) demonstrates that there are other

drivers encouraging banks to prioritise some payments over others. These

are both internal factors, such as bilateral net credit limits or counterparty

importance, and external factors, such as market timings and throughput

restrictions, whereby banks may have to make a certain percentage of pay-

ments by a specified time to avoid a fine. McAndrews and Rajan (2000)

highlight the concern that a high number of delayed payments may lead to

a peak in activity towards the end of the day, which heightens operational

risk in the US Fedwire system. One of the measures specified in the Basel

Committee paper (2012) is “the volume and value of time-specific and other

critical obligations”, so that the importance of such priority payments can

be assessed across the system as a whole.

Prioritisation has been introduced into the two-period game-theoretic lit-

erature by Merrouche and Schanz (2009), where payments are treated in a

binary manner as either priority or non-priority. This partition allows the

implementation of a Balance-Reactive Gross Settlement strategy (Norman,

2010), which is implemented as follows. Each bank chooses a buffer size on

a daily basis. All priority payments are submitted immediately to the RTGS

system as there is no advantage to not making these payments immediately.
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However, if at any point the bank receives a non-priority payment and the

balance of its liquidity is equal to or less than its buffer size, the bank will hold

the non-priority payment in an internal queue. Once the liquidity balance

rises back above the buffering threshold and there are no payments queued

centrally within the RTGS, the bank will release as many payments as it can

from its internal queue. This strategy can be implemented on a decentralised

basis by individual banks or through an RTGS system with centralised queu-

ing and liquidity reservation functionality, such as TARGET2.

Galbiaki and Soramäki (2010) have investigated the addition of priority

payments as part of their study on liquidity saving mechanisms. However

their model uses an unrealistic queuing system, whereby once a non-priority

payment is queued internally, it remains unsettled until the end of the day,

regardless of the liquidity balance of the bank6. Under these rather extreme

conditions, the socially optimal strategy is to delay either all or none of the

non-priority payments, dependent on liquidity cost.

The novel contribution of our model is to implement a Balance-Reactive

Gross Settlement system in a multi-period setting and to incorporate the level

of liquidity buffer into the banks’ strategic decision-making. This allows us

to assess a range of buffering strategies under different parameter conditions,

with our analysis below indicating that the socially optimal strategy can vary

from the dichotomous regime posited by Galbiati and Soramäki.

6 This setting represents the special case of infinite buffer size in the model specification
we propose in Section 3.
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3. Methods

3.1. Overview

We simulate a payment system over a number of days and assess how

bank behaviour evolves. The behaviour of bank i on any particular day can

be formulated as a tuple {li(0), bi}, where li(0) is the amount of liquidity

requested from the central bank at the start of the day and bi characterises

the bank’s buffering strategy. In practice, applying a buffer means withhold-

ing non-priority payments in an internal queue if the amount of liquidity

in the RTGS account is equal to or less than the buffer size. Limiting the

banks to a single decision at the start of the day is consistent with behaviour

within CHAPS. Large banks will be members of multiple payment systems,

meaning that the allocation of collateral must be planned in advance and lit-

tle unencumbered collateral will be available throughout the day. Similarly,

maintaining a consistent intraday strategy for internal queueing is necessary

to minimise operational risk unless there is a significant change to the pro-

portion or relative weight of priority payments.

In our analysis we distinguish between processes at two separate timescales.

Behaviour is assessed at an interday level, where banks can alter their liq-

uidity and buffering strategies in order to minimise their expected cost. This

cost is approximated using simulations of the intraday payment dynamics

for all combinations of strategic bank behaviour, with respect to liquidity l

and buffer size b. Our model does not necessarily assume that banks run
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such simulations to evaluate their options; an equally valid interpretation

would be that banks use historical data and accumulated knowledge about

best responses to understand the incentive structure of the system.

3.2. Intraday

The day is modelled as a series of T discrete time-steps. The choice of

discretisation is motivated by two main reasons. The first is that in real

payment systems, the arrival of orders is likely to be clumpy due to non-

continuous feeds from trading desks and other institutions. The second and

more important reason is that there is no concept of delay cost beyond a cer-

tain degree of granularity. This is demonstrated by the US Fedwire system,

where interest on an overdraft is only calculated on the balance at the end

of each minute and any intra-period volatility from payment netting is ig-

nored (McAndrews and Rajan, 2000). To model payment dynamics, a series

of payment orders is randomly generated throughout the day for each bank

using a Poisson process with λ = 1/N , where N is the number of banks.

These orders can be viewed as emanating from other parts of the bank, or

from external clients. The payee is fixed to be equally likely from the set

of all other banks7. Consistent with previous work (Galbiati and Soramäki,

2011), we set T to be 3000, representing time periods of approximately ten

7 For implementation, it is simpler to generate payments from a central server with λ

= 1, and a constraint that banks cannot pay themselves. It is also simpler to generate
the payee on payment, rather than storing that information for any queued payments.
Both of these methods cause no loss of generality to the results.
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minutes. This means that each institution has 200 payments per day on

average.

The simulation is run with fifteen identical banks8 to represent the mem-

bers of the CHAPS system who directly face the central bank. We assume

that these banks are linked by a complete network, so that payments can be

between any pair of banks. Bank homogeneity is not an entirely accurate

representation of CHAPS where the majority of payments are made by the

top four counterparties (Becher et al., 2008), but simplifies the analysis and

is a common assumption in previous models (Galbiati and Soramäki, 2011;

Bech and Garratt, 2003).

All payments are of unit size, but we assign a binary partition of payments

to be either priority or non-priority. Priority payments carry a higher delay

cost than non-priority payments, but are also less frequent. We introduce

a further parameter, α, which determines the probability of any particular

payment being priority. Therefore in any given day, the expected number

of priority payments P and non-priority payments NP for each bank are as

follows:

E(P ) =
αT

N
, E(NP ) =

1− αT

N
(1)

Payment orders are processed by each bank using a mechanistic system

8 The actual number of banks directly facing the Bank of England in CHAPS has now
increased to twenty one, but that does not alter the nature of the simulation.
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of queuing, dependent upon the amount of liquidity available at a given

time. There may be occasions where payments orders will not be executed

instantaneously, even when there is sufficient liquidity to do so, due to the

internal buffering.

Let zPi (t) represent the number of priority payment orders received by

bank i up to time t, and xPi (t) the number of priority payment orders executed

by bank i up to time t. zNPi (t) and xNPi (t) have equivalent definitions for

non-priority payments. Therefore at time t, bank i will have two queues of

payments:

qPi (t) = zPi (t)− xPi (t), qNPi (t) = zNPi (t)− xNPi (t) (2)

and a liquidity of:

li(t) = li(t− 1)− xPi (t)− xNPi (t) + yi(t) (3)

where yi(t) represents the value of payments received by bank i up to time t.

Bank i is indifferent as to whether it is receiving a priority or a non-priority

payment, hence we do not need to distinguish.

We assume that all banks adopt the following payment rules for each new

time period:

1. if new payment instructions have been received, add them to qPi (t) or

qNPi (t) as appropriate.
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2. if li(t) > 0 and qPi (t) > 0, make priority payments on a FIFO basis

until either of these equations is no longer satisfied9.

3. if li(t) > bi and qNPi (t) > 0, make non-priority payments on a FIFO

basis until either of these equations is no longer satisfied9.

As the system is closed and all outgoing payments represent incoming

payments to other banks, these equations fully describe the settlement pro-

cess. The discretisation of time means that chains of payments are assumed

to occur instantaneously in the same time period, which is a realistic assump-

tion given a period length of ten minutes.

Let ψi(k) be the kth priority payment request and φi(k) the kth non-

priority payment request received by bank i. If tψi(k) and t
′
ψi(k) are the order

time and payment time respectively for ψi(k), then the total expected delays

suffered by bank i for each payment type can be expressed using the following

equations:

DP
i = E(

∑

k

t′ψi(k) − tψi(k)), DNP
i = E(

∑

k

t′φi(k) − tφi(k)) (4)

Both DP
i and DNP

i are generated by stochastic processes. Expected delays

are a function of the strategic behaviour of all participant banks, but also

9 The model is a stylised version of our description in Section 2, but shows equivalent
behaviour. In practice, the P queue will be within the RTGS system and the NP
queue will be held internally by the bank. Similarly, all P payments will be released
into the RTGS system which will automatically apply FIFO, and NP payments will
only be released into the RTGS system if there is sufficient liquidity to settle them.
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depend on the frequency of priority payments.

DP
i = f(l1(0)...lN(0), b1...bN , α), DNP

i = g(l1(0)...lN (0), b1...bN , α) (5)

By simulating the intraday process a sufficient number of times, we are

able to construct estimates for DP
i and DNP

i under different parameter com-

binations. The analysis is simplified by a key result of Galbiati and Soramäki

(2011) which proves that the resulting game is an aggregation game. This

implies that the outcome for an individual is reducible to a function of its

own actions and the sum of others’ actions. Therefore for any bank, the de-

lay process is not dependent on the exact distribution of liquidity and buffer

choices by other participants, but only on the bank’s own choices and the

average of the other participants’ choices.

DP
i = f(li(0), L, bi, B, α), DNP

i = g(li(0), L, bi, B, α) (6)

where

L =
∑

j 6=i

lj(0), B =
∑

j 6=i

bj (7)

We have reduced the problem to each bank playing against the “system” of

other banks, and can now represent expected delays for both priority and

non-priority payments using just six parameters. Extending Property 2 from

Galbiati and Soramäki (2011), we can be comfortable that DP
i and DNP

i are
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both convex with respect to liquidity and buffer choices, which ensures that

a unique minimum cost exists.

3.3. Interday

In the following analysis we assume banks to be risk neutral. Hence, on an

interday basis, banks will aim to adapt their strategies in order to minimise

their expected daily cost C. We change the notation slightly to drop the

time dependence of liquidity used in intraday analysis, so {li, bi} will now

represent bank i’s behavioural choices on a particular day, with L and B as

before. C is comprised of a cost for the liquidity sourced and costs for the

delays of both priority and non-priority payments:

C = βli + γDP
i (li, bi, L, B, α) +DNP

i (li, bi, L, B, α) (8)

Relative to the cost of delaying a non-priority payment for one unit of time,

which we can set to be one without loss of generality, β is the cost per unit

of liquidity sourced and γ is the cost of delaying a priority payment for one

unit of time. We then fix a value for α, and simulate the intraday process

under each combination of li,bi,L and B to obtain estimates forDP
i and DNP

i .

As this process is stochastic in terms of the incoming payment distribution,

Monte Carlo estimates for averages are used10. As a result we obtain two

4-dimensional surfaces for DP
i and DNP

i which can be amalgamated to form

10 Empirically, we found that the average of ten sets of 10,000 runs for each combination
was effective.
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a 4-dimensional surface for C. This surface effectively represents the pay-

off matrix for the game, where one bank is playing against the aggregate

average decision of all the others. C is convex following the convexity of

Cost Surface Projection
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Figure 1. An example cost surface C, with α = 0.5, β = 1000, γ = 20 and a buffer of zero for all banks

both DP
i and DNP

i , as demonstrated by the example cost surface in Figure 1

which is projected onto a 2-dimensional surface by setting the buffer equal

to zero for all banks. From the combination of the convexity of C and the

aggregation property, the social optimum is reached when all banks adopt

the same liquidity sourcing and buffering strategies (Galbiati and Soramäki,

2011). Therefore the optimal strategy for any bank can be found at the

point on the payoff surface that minimises C whilst satisfying li=L/N and

bi=B/N , which is computationally easy to find.

In order to find the Nash equilibria we implement adjustment dynamics

based on fictitious play (Brown, 1951). One round of adjustment corresponds

to one day in real time and banks adjust their strategies based on Bayesian
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learning of their counterparts’ behaviour11, so that after the strategies of each

bank have converged to a fixed distribution12, the proportion of appearances

of any particular strategy in a given time period represents its weight in the

mixed-strategy Nash equilibrium (Fudenberg and Levine, 1998).

4. Results

In this section, we start by comparing our model to a baseline case where

no payments are internally queued. We then systematically alter three pa-

rameters - the proportion of priority payments α, the unit cost of liquidity β

and the relative cost of priority payment delays γ - and use our simulation

to compare the liquidity and buffer choices forming both the socially optimal

and Nash equilibrium strategies under each permutation. We also examine

the cost associated with each of these strategies.

4.1. The benefit of a buffering strategy on the social optimum

Our first scenario is to test whether a non-zero buffering strategy can

improve the social optimum of the system and what impact it will have on

liquidity sourcing. We create cost surfaces using the parameter sets 0 ≤ β ≤

3600 and 0 ≤ γ ≤ 25, and set the proportion of priority payments to be 0.5.

The range for β is inferred from the typical ratio of liquidity to payments

in CHAPS (Galbiati and Soramäki, 2011), while the range for γ is chosen to

11 See Appendix A for a more complete description.
12 Although this is not guaranteed to happen under fictitious play, all of our simulations

successfully converged.

20



reflect the diversity in relative importance between priority and non-priority

payments. Using the method described in Section 3.3, we find the socially

optimal cost for each surface and assess the liquidity and buffering required

at that point. For clarity in Figure 2, we then average the results across β.
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Figure 2. Socially optimal strategies both with and without internal queueing

NOTE: Results for the dependence of liquidity, total cost and buffer size on the parameter γ, the cost of
priority payment delays. The black squares show the optimal liquidity and cost that can achieved if no
internal queuing is allowed, while the white circles display the optimal values that can be achieved if all
banks utilise the best possible buffering strategy for the given parameter combination. The proportion of
priority payments α = 0.5 and the results are averaged across β.

Figure 2 demonstrates two important points. The first is that buffering

can reduce the socially optimal cost of the system as a whole, with the magni-

tude of the saving increasing with the relative cost of priority payment delays.

The second is that adaptive buffering also reduces the total liquidity demand

of the system, with the liquidity saving also increasing with γ. Therefore in-

ternal queuing can actually aid system efficiency and does not need to be the

“second-best” approach implied by previous work (Galbiati and Soramäki,

2010).

It is also of interest to see how the optimal buffering strategy varies with

γ (right panel). The adaptive buffer grows unsteadily as the cost of priority

payment delays increases, with the unsteadiness deriving from the fact that
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the buffer can only take a discrete value in our model, precluding a smooth

curve. The optimal buffer size and liquidity provision appear to grow at ap-

proximately the same rate, indicating that the core (i.e. unbuffered) liquidity

in the system remains constant, irrespective of priority payment delay cost.

4.2. Nash equilibrium behaviour

Our second scenario is to evolve the Nash equilibrium strategies based

on the parameter combinations in Section 4.1 to see how they compare to

the social optimum. We display liquidity and buffer surfaces to visualise how

behaviour changes with both liquidity cost and relative priority payment

delay cost.
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NOTE: The dark surfaces represent the socially optimal liquidity and buffering, while the light surfaces
represent the liquidity and buffering that are the evolved Nash equilibria of banks participating repeatedly
in fictitious play. The proportion of priority payments α = 0.5.

Figure 3 demonstrates that banks will consistently under -provide liquid-

ity to the system and over -buffer their non-priority payments. Liquidity

under-provision has been demonstrated when there are no priority payments
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(Galbiati and Soramäki, 2011), but it is interesting to see that the behaviour

is persistent even as γ increases, when we might expect banks to provide

substantially more liquidity in fear of the punitive cost of priority payment

delays. Instead, banks increase their level of buffering to protect against this

risk, but do so too prohibitively, decreasing the core liquidity in the system.

The socially optimal buffer actually decreases slightly as liquidity cost in-

creases due to buffering representing a greater proportion of liquidity in the

system, but the Nash equilibrium buffer remains relatively unchanged.

As the socially optimal behaviour will minimise a bank’s costs, any vari-

ance from it by the Nash equilibrium represents an inefficiency. We can

investigate this further by understanding dependence on the proportion α of

priority payments. In both Figures 4 and 5, we compare the reference case

of all payments being identical (α=0) to a scenario of infrequent priority

payments (α=0.1) and very frequent priority payments (α=0.5). In order

to approximate continuous system behaviour, we fit our data to continuous

functional forms13.

The right hand graph of Figure 4 makes it clear that over-buffering grows

with both α and γ. As either the relative cost or frequency increases, banks

have a greater pressure to meet priority payments without delay and con-

sequently adopt progressively more defensive strategies of liquidity hoarding.

13 The discretisation of the liquidity and buffer choices is an artefact of our modelling
setup. In reality, banks are able to choose their strategies from a continuous range.
We therefore use least squares curve fitting to remove the discrete element from our
results.
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Figure 4. Strategy inefficiencies as a function of relative priority payment delay cost

NOTE: The y axis represents the difference between the socially optimal strategy and the Nash equilibrium
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The left hand graph shows that banks do provide more initial liquidity to

the system as α and γ increase, but it is not enough to compensate for the

over-buffering and is still inefficient relative to the social optimum.
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The right hand graph of Figure 5 illustrates a similar dependency to
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Figure 4, with over-buffering increasing with both α and β, but this is no

longer due to liquidity hoarding. As the price of acquiring liquidity increases,

holding a buffer becomes relatively more expensive as it represents a greater

proportion of liquidity within the system. Therefore the benefits of making

priority payments in a prompt manner are more than offset by the excess

queues caused by a reduction in core system liquidity and it is more efficient

to reduce buffer size (in parameter terms, the cost of liquidity begins to

dominate the relative cost of delaying priority payments as the driver for

socially optimal buffering behaviour). However as can be seen from Figure 3,

the Nash equilibrium buffering strategies remain relatively unaffected across

all values of β, meaning that they become increasingly inefficient as the cost

of liquidity increases.

Under-provision of liquidity initially becomes more pronounced as β in-

creases, but starts to improve once the cost of liquidity becomes very high.

This is due to liquidity becoming so expensive that the socially optimal

amount for the bank to choose begins to approach zero, thus reducing the

absolute distance to the Nash equilibrium liquidity. Interestingly the propor-

tion of priority payments has little effect on under-provision, indicating that

liquidity cost is the dominant driver of liquidity strategy.

4.3. Breakdown of cost by buffering and liquidity

In our final scenario we assess the importance of both buffering and over-

buffering in terms of the bank’s expected cost. We calculate the efficiency
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of various strategies by comparing them to a baseline, which is the expected

cost that the bank would incur by using the socially optimal strategy for

both liquidity and buffering14. Although buffering and liquidity choices are

not independent, we can estimate the impact of buffering by imposing the

optimal buffering strategy on all the banks and only evolving their liquidity

choice. The expected cost difference in that scenario can then be compared

to the expected cost difference obtained if both liquidity and buffering are

co-evolved. We also compare to a case where liquidity is evolved but the

buffer is fixed to zero.
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Figure 6. Expected extra cost incurred by bank due to strategy inefficiencies

NOTE: The y axis represents the expected extra cost incurred by a bank relative to a strategy that is
socially optimal for both liquidity and buffering. Crosses represent Nash equilibrium strategies where
buffering is not allowed at all. Black squares represent equilibrium strategies where the buffer is fixed
at the social optimum and only liquidity is evolved. White circles represent equilibrium strategies where
both buffer and liquidity are co-evolved. Results are averaged across β.

Figure 6 clearly demonstrates that allowing banks to evolve an internal

14 This optimum requires that all other banks use the same strategy as well, so must be
imposed by some central controller.
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buffer (circles) leads to substantial savings over the zero buffer case (crosses),

even though the buffer that they evolve is too large. The overall cost incurred

by the bank when it evolves a buffer is substantially closer to the social

optimum than the zero buffer case for all values of relative priority payment

delay cost. We can also see that the main driver of cost inefficiency is under-

provision of liquidity, as over-buffering (the difference between the circles and

squares) only represents up to around 10% of the total excess over the social

optimum. However it is clear that over-buffering becomes proportionally

more damaging as the relative cost of priority payment delays increases.

Interestingly, enforcing an optimal buffering strategy (squares) leads to an

improvement in the cost differential with the social optimum as the relative

cost of priority payment delays increases. This is because the bank now has

to provide more liquidity rather than over-buffer as a defence against the

severe delay costs, thus bringing its liquidity closer to the social optimum

and reducing its overall expected cost.

5. Conclusion

In this paper, we develop a detailed model of buffering and prioritisation

within a collateralised payment system such as CHAPS. Using stochastic

simulation of queuing and buffering dynamics combined with game-theoretic

analysis allows us to assess changes in the strategic responses of participant

banks to a variety of different regulatory scenarios.

We start by constructing an optimal system in which a benevolent central
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planner controls the liquidity and buffering decision of each bank. Consid-

erations of payment prioritisation change the framework of previous studies

(Galbiati and Soramäki, 2011; Bech and Garratt, 2003) in an important re-

gard. We show that socially optimal states exist in which banks delay a

proportion of non-priority payments by internal queuing. This behaviour be-

comes more prominent as the proportion or delay cost of priority payments

relative to ordinary payments increases. Hence we demonstrate that efficient

internal queuing by banks can improve system efficiency while utilising less

liquidity.

Having analysed socially optimal choices, we then focus on a game-theoretic

analysis of strategic behaviour. We demonstrate that in comparison to the

social optimum, the Nash equilibrium is to under-provide liquidity and over-

buffer non-priority payments. The severity of this hoarding-like effect be-

comes more pronounced as the proportion or relative delay cost of priority

payments increases. At a system level, the result of strategic interactions

is an excess cost and we analysed the dependence of this cost on various

parameters. However we also demonstrated that the equilibrium formed by

strategic interactions is far superior from a cost perspective to the equilib-

rium formed if banks are not allowed to buffer at all, hence showing that

adaptive buffering by banks can increase system efficiency. Finally, we show

that the relative increase in cost attributable solely to over-buffering becomes

proportionately larger as the cost of priority payment delays increases.

Our findings allow some general observations regarding the efficacy of two
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regulatory options available to the Bank of England. CHAPS has recently in-

troduced a Liquidity Saving Mechanism (“LSM”) (Dent and Dison, 2012),

whereby an algorithm can settle off-setting payments between counterpar-

ties which are submitted to a central LSM queue. The benefit of such an

algorithm is that it does not require any liquidity and does not reintroduce

settlement risk, as payments are considered unsettled within the queue until

they are successfully offset. This incentivises banks to submit payments early

to the LSM in order to maximise the chance of them being offset (Willison,

2004; Davey and Gray, 2014). However, the LSM cannot be used in isola-

tion, as not all payments can be offset in a timely manner. Therefore it is

combined with the RTGS to form a two-channel hybrid system.

Previous work (McLafferty and Denbee, 2013; Galbiati and Soramäki, 2010)

suggests that using an LSM can lead to substantial liquidity savings by di-

viding payments into two streams, with all priority payments settled through

the RTGS and all non-priority payments settled via the LSM. An empirical

study by the Bank of England (Davey and Gray, 2014) since the introduc-

tion of the LSM demonstrates that banks behaving in this manner has led

to liquidity savings, albeit to a lesser extent than anticipated. However, this

behaviour removes any potential benefit from efficient queuing by the banks,

which we have shown to exist (see section 4.3). It also causes a negative corre-

lation between the LSM and the RTGS, as high LSM usage reduces liquidity

recycling within the RTGS. This leads to some “bad” equilibrium strategies

(Galbiati and Soramäki, 2010) which carry a higher cost than the base case

29



without an LSM. Indeed, Davey and Gray (2014) also show that the number

of payments queued within the system has increased, and it is unclear how

the empirical results obtained would change if the system were to become

stressed, by either liquidity becoming more expensive or the relative cost of

payment delays increasing.

Instead we suggest the following implementation. Any non-priority pay-

ments which are internally queued by banks due to their buffering strategy

should be placed initially into the LSM. However if a bank subsequently has

sufficient liquidity to exceed its buffer and the LSM algorithm has not al-

ready settled the queued payments, they should be removed from the LSM

and settled instead through the RTGS15. This should lead to an improvement

in system efficiency without the danger of unexpectedly poor Nash equilib-

rium strategies, as the positive benefits of internal queuing have not been

compromised.

The second regulatory option available to the Bank of England is the

implementation of throughput rules, which establish the minimum proportion

of a bank’s daily settlement flow that must be settled by a particular time

(Ball et al., 2011). The current arrangement within CHAPS is for 50% of

daily flow to be settled by noon and 75% of daily flow to be settled by

2.30pm. However enforcement of these rules is by peer pressure rather than

financial sanctions.

15 Within the new CHAPS LSM, it is possible to switch payments between the two
streams at any time.
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Previous work on throughput rule design by Buckle (2003) raises the

issue of whether bilateral throughput limits between counterparties would

work better than a generic throughput restriction. However this would in-

crease the cost discrepancy between priority and non-priority payments (γ),

as payments to certain counterparties would become progressively more im-

portant if the bilateral credit position between the two became substantially

one-sided. From our results (see section 4.2), we can see that a higher rela-

tive priority payment delay cost leads to an increase in over-buffering and a

greater system-wide cost.

Similarly, Ball (2011) and Norman (2010) suggest more extensive moni-

toring of banks’ payment behaviour when calculating throughput, in order to

discourage strategic delays. However any throughput requirements which fo-

cus on the settlement of specific payments effectively ascribes those payments

an increased priority, and so the overall proportion of priority payments (α)

will increase. This also leads to over-buffering and additional costs (see sec-

tion 4.2).

Therefore, it appears that a generic throughput requirement to homogenise

all payments is a better solution, as it will reduce both the relative cost of

priority payments (γ) and their frequency (α). Clearly this homogenisation

can only be achieved if the incentive to meet the strict throughput require-

ments is sufficient, as otherwise banks will naturally start to ascribe some

payments priority over others. Therefore we would suggest that the flow per-

centages are enforced on a daily basis, rather than using the current monthly
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average which gives the banks opportunity to under-perform with regards

to their obligations for long periods. In addition, a stronger enforcement

mechanism than peer pressure should be implemented, as suggested by Ball

(2011). Davey and Gray (2014) suggest that throughput has been improved

by the implementation of the LSM, due to banks submitting their payments

earlier in order to maximise offsetting possibilities, but it is unclear whether

this does actually lead to increased settlement in all parameter regimes or

simply an increase in payment queuing.

A natural extension of our model would be to explicitly introduce an LSM

in order to test our suggested implementation. Another potential extension

would be to investigate how banks adapt their buffering strategy to changes

in the Poisson parameter used for incoming payments. This would allow a

study of stress scenarios, where one or more banks cannot make payments

for operational reasons and become liquidity sinks. Analysing how the other

banks adapt their payment strategies under these conditions is an interesting

avenue for further research.

April 14, 2015
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Appendix A. Fictitious Play

Bank i’s beliefs about the aggregate behaviour of others are held by the

matrix













pti(0, 0) · · · pti(0, Bmax)

...
. . .

...

pti(Lmax, 0) · · · pti(Lmax, Bmax)













(A.1)

where pti(j, k) = Pi(L = j and B = k at time t). L and B represent the

aggregate liquidity and aggregate buffer of all other banks, while Lmax and

Bmax are upper bounds for the liquidity and buffer totals respectively. Note

that t is now in terms of number of days, rather than intraday time as it was

in Section 3.2.

Beliefs are updated according to:

pti(j, k) =
(1 +

∑

s=1,...,t−1 Ij,k(s))

t + Lmax.Bmax

= pt−1
i (j, k)+

Ij,k(t− 1)− pt−1
i (j, k)

t+ Lmax.Bmax

(A.2)

where

Ij,k(s)) =











1 if L = j and B = k at time s;

0 otherwise.

so that combinations that have appeared many times previously will start to

acquire a heavier weighting as time increases.
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Bank i is now able to make its behavioural choice for liquidity and buffering

at time t, {li(t), bi(t)}, in the following manner:

{li(t), bi(t)} = argli,bimin

Lmax
∑

j=0

Bmax
∑

k=0

C(li, bi, j, k)p
t
i(j, k) (A.3)

where C(li, bi, j, k) is the cost incurred by bank i if it follows strategy {li, bi}

and the aggregate strategy for the other banks is {j, k}.

It is instructive to note that in our simulation, C is independent of time as

the payoff matrix for each bank does not change.
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